
Practical Lattice-Based Distributed Signatures
for a Small Number of Signers

Nabil Alkeilani AlkadriB, Nico Döttling, and Sihang Pu

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{nabil.alkadri,doettling,sihang.pu}@cispa.de

Abstract. n-out-of-n distributed signatures are a special type of thresh-
old t-out-of-n signatures. They are created by a group of n signers, each
holding a share of the secret key, in a collaborative way. This kind of
signatures has been studied intensively in recent years, motivated by
different applications such as reducing the risk of compromising secret
keys in cryptocurrencies. Towards maintaining security in the presence
of quantum adversaries, Damgård et al. (J Cryptol 35(2), 2022) pro-
posed lattice-based constructions of n-out-of-n distributed signatures
and multi-signatures following the Fiat-Shamir with aborts paradigm
(ASIACRYPT 2009). Due to the inherent issue of aborts, the protocols
either require to increase their parameters by a factor of n, or they suffer
from a large number of restarts that grows with n. This has a significant
impact on their efficiency, even if n is small. Moreover, the protocols use
trapdoor homomorphic commitments as a further cryptographic build-
ing block, making their deployment in practice not as easy as standard
lattice-based Fiat-Shamir signatures. In this work, we present a new
construction of n-out-of-n distributed signatures. It is designed specif-
ically for applications with small number of signers. Our construction
follows the Fiat-Shamir with aborts paradigm, but solves the problem of
large number of restarts without increasing the parameters by a factor
of n and utilizing any further cryptographic primitive. To demonstrate
the practicality of our protocol, we provide a software implementation
and concrete parameters aiming at 128 bits of security. Furthermore,
we select concrete parameters for the construction by Damgård et al.
and for the most recent lattice-based multi-signature scheme by Chen
(CRYPTO 2023), and show that our approach provides a significant im-
provement in terms of all efficiency metrics. Our results also show that
the multi-signature schemes by Damgård et al. and Chen as well as a
multi-signature variant of our protocol produce signatures that are not
smaller than a naive multi-signature derived from the concatenation of
multiple standard signatures.

Keywords: n-out-of-n distributed signatures · threshold n-out-of-n sig-
natures · Fiat-Shamir with aborts · lattice-based cryptography

1 Introduction

An n-out-of-n distributed signature is a signature on a single message that is
jointly generated by a group of n signers. Before signing this message, the signers

invoke a key generation protocol to create a pair of public and secret key, where
each signer learns the public key and a share of the secret key only. The signa-
ture can be verified by the public key. An n-out-of-n distributed signature is a
special type of threshold t-out-of-n signatures [18], hence also called a threshold
n-out-of-n signature. The required security property of n-out-of-n distributed
signatures is that it should be infeasible to generate a valid signature even if at
most n − 1 signers are corrupted. Distributed signature protocols constitute a
fundamental cryptographic primitive, most notably, in the blockchain domain
when it comes to authorize transactions in the presence of multiple signers. This
minimizes the risk of compromising the secret key. Distributed signatures can
provide institutional and personal account key management by multiple people.

Currently, real-life applications employing distributed signatures rely on con-
structions whose security is based on the hardness of number-theoretic assump-
tions. However, when taking into account recent developments of quantum com-
puters, it is meanwhile known that these assumptions cannot be used long-term.
In an effort to develop new constructions that are conjectured to be secure in
the presence of quantum computers, few works based on lattice assumptions con-
sidered threshold t-out-of-n signatures (see Appendix A). Recently, Damgård et
al. [17] proposed a lattice-based construction of n-out-of-n distributed signa-
tures following the Fiat-Shamir with aborts paradigm [25]. Hence, it relies on
the so-called rejection sampling when generating signatures. In the context of
Fiat-Shamir signatures based on lattices, rejection sampling is a crucial tool that
is used as a security check. Using a so-called masking term, it allows to verify
that a secret (or secret-related) term is concealed and distributed independently
from a public term that is computed using both the masking and secret term.
In particular, it makes sure that signatures are distributed independently from
the secret key. If the check fails, i.e., if rejection sampling rejects, the signing
protocol is restarted in order to sample a fresh masking term. This is because
all computations carried out up to rejection sampling are related to a certain
masking term. In interactive protocols with multiple rejection sampling proce-
dures such as distributed signatures, this has a significant negative impact on
the efficiency. To see this, suppose that n signers would like to generate a signa-
ture, and each one has to restart the protocol M times on average, where M is
determined in accordance to other parameters of the protocol (the smaller M is,
the larger the signature size). Then, the total average number of restarts in such
a protocol is given by Mn, which is large even for a small n. One way to make
this number reasonably small is to increase the parameters by a factor of n [17].
However, this induces larger sizes of keys and signatures, even if n is small. In
addition to the large number of restarts, the construction by Damgård et al. [17]
uses a trapdoor homomorphic commitment scheme as a further cryptographic
building block, which affects its efficiency in a significant way.

Due to the above mentioned drawbacks, we conclude that the protocol of [17]
is not suitable for deployment in practice, even when it comes to applications
with small number of signers, which is our main focus in this work and is apparent
in real-world applications as we argue in the following. Consider the well-known

2

problem of fraud management (CEO fraud), where a fraudster pretends to be
a senior manager – often the CEO – in order to persuade a staff member to
make an urgent payment to a supplier or business partner. This kind of social
engineering can be easily prevented by employing distributed signatures. By
means of a defined policy, contracts are only authorized by various decision
makers, typically 2 or 3. In cryptocurrencies, distributed signatures add a great
level of security by requiring few devices to authenticate transactions. A so-
called distributed wallet requires all signers involved in the generation of such
a wallet to agree before any transaction can be created. For instance, wallets
developed by Armory allow at most 7 signers to authorize a transaction, while
those developed by BitGo and Coinbase provide up to 3 signers1.

1.1 Contribution

We present a new construction of n-out-of-n distributed signatures based on lat-
tices over modules. It is designed to support applications with a small number
of signers only. Similar to the protocol by Damgård et al. [17], our construction
follows the Fiat-Shamir with aborts approach, but solves its drawbacks that we
mentioned above. More precisely, it solves the problem of the large number of
restarts without increasing the parameters by a factor of n, and it does not rely
on any additional primitives like trapdoor homomorphic commitments. It also
supports the offline-online paradigm. This feature is desirable in practice, since
it allows expensive operations of our signing protocol to be pre-processed. Using
the rewinding technique [7], we prove the security of our construction in the
random oracle model [8] assuming the hardness of the Module Learning With
Errors (MLWE) problem and Module Small Integer Solution (MSIS) problem.
We provide a proof-of-concept implementation of our protocol demonstrating
its practicality, and propose concrete parameters targeting 128 bits of security.
In order to give a fair comparison, we also select concrete parameters for the
distributed signature and multi-signature protocols by Damgård et al. [17] and
for the most recent multi-signature protocol by Chen [13]. The reason of consid-
ering multi-signatures is because a distributed signature protocol can be derived
from [13], and conversely we can derive a multi-signature scheme from our con-
struction (see Section 1.3 for more details). The comparison is summarized in
Table 1, which shows that our approach provides a significant improvement re-
garding all efficiency metrics.

1.2 Technical Overview

Similar to [17], our construction follows the Fiat-Shamir with aborts approach
and can be seen as a distributed variant of the standard signature scheme
Dilithium-G [21]. Basically, the key generation protocol generates an instance
of the MLWE problem in a distributed way. Therefore, we give in this overview
a high-level explanation of our signing protocol only. For ease of exposition, we
1 https://coinsutra.com/best-multi-signature-bitcoin-wallets/

3

https://coinsutra.com/best-multi-signature-bitcoin-wallets/

Table 1. Comparison between our construction, the constructions of distributed signa-
tures and multi-signatures introduced by Damgård et al. [17], and the multi-signature
scheme by Chen [13]. The corresponding parameters are given in Table 3 and consider
7 signers. Performance measures are only provided for our protocol, since no imple-
mentations are given in [17,13]. Parameter selection is described in Section 3.3. All
numbers are rounded to the nearest integer. Sizes and communication costs are pro-
vided in kilobytes, while performance measures in milliseconds.

Protocol Sizes Communication per signer Performance per signer

Public
key

Distributed
signature

Multi-
signature

Key
generation

Signature
generation

Key
generation

Signature
generation

Signature
verification

This work 7 12 12 7 25 2 41 2
[17] 21 2538 2594 21 2536 - - -
[13] 8 - 25 - 53 - - -

consider a group of just two signers. A generalization to n ≥ 2 signers can be
derived in a straightforward manner and is considered in Section 3. Our pro-
tocol operates over the rings R = Z[X]/⟨XN + 1⟩ and Rq = Zq[X]/⟨XN + 1⟩.
Let Ā = [Ik|A] be a joint public matrix, where Ik is the identity matrix of di-
mension k and A ∈ Rk×ℓ

q is uniformly random. The public and secret key share
of each signer are given by (pk , sk j) = ((Ā,b), sj), where b = Ā · s (mod q),
s = s1 + s2 ∈ Rk+ℓ, and j ∈ {1, 2}. Each share sj is chosen uniformly random
over a small subset of R. In Fig. 1, we present an informal overview of our sign-
ing protocol. We only present the behavior of signer S1, as each signer plays the
same role and performs the same steps. Note that all operations up to computing
g1 can be pre-processed without knowledge of the message. The remaining steps
are carried out online. This reflects the support of offline-online paradigm. In
the following we highlight the major techniques and differences to [17].

Removing Homomorphic Commitments. In lattice-based Fiat-Shamir
signatures like Dilithium-G [21], a signer computes a commitment v to some ran-
domness y. In our case, y follows the Gaussian distribution Dk+ℓ

ZN ,σ
with standard

deviation σ. Together with the message m, v is used to generate a challenge c
via a cryptographic hash function Hash. Then, a response z is computed as
z = y + sc. After that, rejection sampling is carried out on z in order to make
sure that z is distributed independently from sc. The signing process is restarted
if rejection sampling does not accept. Otherwise, the signature is given by (z, c).
In n-out-of-n distributed signatures, the challenge is created via the sum of the
commitments of all signers, and the final response is given by aggregating all
individual responses. This means that each signer reveals its own commitment
whether rejection sampling accepts or not. As indicated in [17], security cannot
be proven if commitments of aborted executions are revealed. To circumvent
this issue, [17] employ a lattice-based homomorphic commitment scheme whose
statistical hiding property ensures that no information can be leaked from a
commitment to v, which is only revealed if rejection sampling is successful. Our
approach is to use a specific regularity property [27]. It ensures that aborted

4

S1(st , pk = (Ā = [Ik|A],b), sk1 = s1,message m)

st = (1, ⟨L⟩), where ⟨L⟩ is a unique encoding of L = (b1,b2) and
b1 = Ā · s1 (mod q), b2 = Ā · s2 (mod q)

sample y0,y1,y2 from the Gaussian distribution Dk+ℓ
ZN ,σ

compute vt = Ā · yt (mod q) for all t ∈ {0, 1, 2}
set v = (v0,v1,v2) and compute g1 = Hash(v,b1)

(1,g1)−−−−−−−−→
(2,g2)←−−−−−−−−

v−−−−−−−−→
u←−−−−−−−−

check Hash(u,b2) = g2, where u = (u0,u1,u2)
compute w0 = v0 + u0, w1 = v0 + u1, w2 = v0 + u2, . . . , w8 = v2 + u2

compute root : the root of hash tree whose leaves are hash values of w0, . . . ,w8

compute c = Hash(root ,m,b)
find i ∈ {0, 1, 2} such that rejection sampling on z1 = yi + s1c accepts
set z1 = ⊥ if rejection sampling rejects for all i

z1−−−−−−−−−→
z2←−−−−−−−−−

restart if z1 = ⊥ ∨ z2 = ⊥
check ∥z2∥ is small and Ā · z2 − b2c = uj for some j ∈ {0, 1, 2}
compute z = z1 + z2
let i = 1 and j = 2
compute auth: the authentication path of w5 = v1 + u2 in the hash tree
output sig = (c, z, auth) as a distributed signature on m

Fig. 1. Overview of our n-out-of-n distributed signature protocol. For simplicity, we
consider in this overview a group of two signers only, where each signer computes and
sends commitments to three Gaussian distributed masking vectors. The choice of three
Gaussian masking vectors is only for presentation purposes.

executions do not leak any information so that security can be proven without
utilizing any additional primitive. More concretely, increasing the standard de-
viation σ of y according to the regularity property makes the distribution of v
statistically close to uniform over Rk

q . As demonstrated in Table 1, this improves
the performance and complexity of the protocol, and produces much shorter
signatures. We remark that the same regularity property must be satisfied by
the commitment scheme used in [17]. In other words, we directly endow v with
the regularity property, without having to compute an additional homomorphic
commitment to v that is statistically hiding by the regularity property.

Removing Restarts. [17] suggest to increase σ by a factor of n in order
to reduce the large number of protocol restarts inherent in carrying out rejec-
tion sampling. We use the tree of commitments technique by Alkadri et al. [3],
where each signer generates and sends a specified number of commitments to the
remaining signers. For example, in Fig. 1 we let signer S1 generate three com-
mitments v0,v1,v2. Then, each one is added to u0,u1,u2 individually, where

5

u0,u1,u2 are the commitments of signer S2. After that, each signer computes a
binary hash tree whose leaves are the hash values of the aggregated commitments
w0, . . . ,w8. The root of this hash tree is used to generate the challenge c. Note
that the input of the signing protocol includes a state information st = (1, ⟨L⟩),
where ⟨L⟩ is a unique encoding (e.g., lexicographical ordering) of the list of pub-
lic key shares L = (b1,b2). This state is obtained during executing the key
generation protocol. Here, we assume, w.l.o.g., that b1 is the first entry of ⟨L⟩.
The unique encoding of signers is crucial in our construction, since otherwise
each signer may compute a different hash tree, and hence a different challenge.
In order to obtain the same local ordering by each signer and allow to map them
to the index of their public key shares in ⟨L⟩, each signer sends the entry of
its public key share in the first round of the protocol. The correctness of the
ordering is verified when checking the validity of the hash values (see Fig. 1).
The commitments generated by each signer allow to carry out rejection sampling
up to three times without the need to restart the signing protocol. The response
for which rejection sampling accepts is sent out, and the signature is given by
(c, z, auth), where z is the aggregated response, and auth is the authentication
path of the aggregated commitment corresponding to the used masking vectors.
Using this technique not only reduces the number of restarts, or removes it at
all, but also reduces the signature size. This is because an aggregated (homo-
morphic) commitment together with its opening, which are part of the signature
in [17], are replaced with the root of the tree root and an authentication path
auth, where the pair (root , auth) is just a short sequence of hash values. However,
the number of commitment additions is given by ωn, where ω is the number of
commitments created by each of the n signers (in Fig. 1 we have ω = 3 and
n = 2). In other words, the computational complexity is O(ωn). This is why our
construction is only suitable for a limited number of signers, which is sufficient
for several applications as demonstrated in the introduction. We note that in
Fig. 1 we set ω = 3 only for presentation purposes. In practice, ω is selected
such that the protocol is restarted with a probability of choice. In our sample
parameters, ω is selected such that each signer aborts with probability ≈ 0.

Round Complexity. Our signing protocol consists of three rounds (see
Fig. 1). The first round, where the hash value of the commitments is sent, is
a standard technique that is required to prove security. It allows the security
reduction to simulate honest signer by extracting the commitments of corrupt
signers from incoming queries to the hash function Hash (when modeled as ran-
dom oracle). It also allows programming Hash accordingly before revealing the
commitments. This standard first round is removed in [17] by adding a trapdoor
feature to the homomorphic commitment scheme, while in [13] a straight-line
simulation via a dual secret key is used. In order to reduce the complexity to
two rounds, our construction can be instantiated with a trapdoor as in [12]. We
choose to keep the first round instead in order to obtain an improved communi-
cation cost and smaller sizes of public keys and signatures.

6

1.3 Related Work

In Appendix A, we provide related work on lattice-based threshold signatures.
Multi-Signatures. A multi-signature scheme [23] resembles n-out-of-n dis-

tributed signature protocols. The differences are (1) each signer has its own key
pair, i.e., it locally generates its public and secret key, where the public key is
published before signing, (2) the group of signers is not required to be fixed, and
each signer can initiate the signing protocol with a set of signers of its choice,
and (3) unless a so-called key aggregation property is supported, verification
does not use a single public key. Instead, it takes the set of public keys involved
in signing the message. When it comes to the flexibility of choosing the group
of signers, multi-signatures are more suitable than distributed signatures, but
at the cost of more verification time and larger size of joint public key. The
crucial property of a multi-signature is that it is compact, i.e., its size is not
larger than the total size of signatures generated by each signer individually. If
this property is not satisfied, then it is meaningful to use the naive approach,
i.e., by simply concatenating the individual signatures created by each signer to
produce a multi-signature. For instance, the signature scheme Dilithium [20] or
Dilithium-G [21] can be used, which produces signatures of size less than 2.5 KB.

[17] observed that lattice-based multi-signature schemes prior their work have
incomplete proof of security. In particular, their security proof does not consider
simulating aborted executions of the signing protocol, which are inherent in the
lattice setting due to carrying out rejection sampling. To solve this issue, [17] pro-
posed a scheme that utilizes lattice-based trapdoor homomorphic commitments,
while Boschini et al. [12] used trapdoors without homomorphic commitments.
Chen [13] improved the schemes of [17,12] by introducing a so-called dual signing
simulation technique, which allows to prove security without trapdoors.

Our construction can be easily turned into a multi-signature scheme. The
difference is that each signer computes its own challenge and response using its
own key pair. A multi-signature is given by the tuple (root , z, auth). In particu-
lar, the parameters are exactly the same, and the security proof is even simpler,
since there is no dedicated key generation protocol. However, the compactness
property is not satisfied for every small n. It seems that the regularity property
of the commitments is the reason for this, even without using the tree of com-
mitments technique. More concretely, commitments must be statistically hiding,
while in standard signature schemes like Dilithium, they are only computation-
ally hiding, since aborted executions are never revealed. Therefore, we choose
not to present a multi-signature variant of our protocol. In fact, Table 1 shows
that all current multi-signature schemes may be compact only for a large n.

Reducing Restarts. In order to solve the problem of the large number of
restarts inherent in lattice-based interactive protocols following the Fiat-Shamir
with aborts paradigm, Alkadri et al. [3] introduced a technique called tree of
commitments. A tree of commitments is a binary hash tree whose leaves are
constructed from many masking terms. This allows to reduce the number of
restarts of lattice-based protocols by iteratively applying rejection sampling us-
ing different masking terms in one execution. By using a large enough number

7

of masking terms, this even allows to completely eliminate restarts, i.e., with
probability very close to one. However, this technique was used to construct ef-
ficient lattice-based blind signature schemes only [3,4], which involve just two
parties (a signer and a user). The user blinds the signer’s commitments via many
random values, builds a hash tree from the blind commitments, and generates
a blind signature from one of them without the need to abort and request a
protocol restart from the signer. In this work, we use the technique in a multi-
user setting, where each user generates multiple commitments and builds a hash
tree to create a partial signature. Each leave of the tree corresponds to the sum
of commitments, and each summand is created by one user. We show how to
ensure that each signer computes the same hash tree, i.e., adding commitments
in exactly the same way as the remaining signers. Otherwise, each signer would
obtain a different root and signatures would not be verified.

2 Background

Notation. We denote by N,Z, and R the sets of natural numbers, integers, and
real numbers, respectively. If n ∈ N, we let [n] denote the set {1, . . . , n}. We de-
note the security parameter by λ ∈ N, and abbreviate probabilistic polynomial-
time by PPT and deterministic polynomial-time by DPT. We write x ←$ D to
denote that x is sampled randomly according to a distribution D. If S is a finite
set, we also write x←$ S if x is chosen randomly from the uniform distribution
over S. Let q ∈ Z>0. We write Zq to denote the ring of integers modulo q with
representatives in [− q

2 ,
q
2) ∩ Z. Let N be a fixed power of two and consider the

polynomial ring Z[X] in a variable X. We define the rings R := Z[X]/⟨XN + 1⟩
and Rq := Zq[X]/⟨XN + 1⟩. Elements in R and Rq are denoted by regular
font letters. Column vectors and matrices with coefficients in R or Rq are de-
noted by bold lower-case letters and bold upper-case letters, respectively. The
identity matrix of dimension k is denoted by Ik. The ℓp-norm of any a ∈ R

is defined by ∥a∥p := (
∑N−1

i=0 |ai|p)1/p if p < ∞ and by max{|a0|, . . . , |aN−1|}
if p = ∞. Similarly, the ℓp-norm of any b = (b1, . . . , bk)

⊤ ∈ Rk is defined by
∥b∥p := (

∑k
i=1 ∥bi∥pp)1/p if p < ∞ and by max{∥b1∥p, . . . , ∥bk∥p} if p = ∞. We

write ∥ · ∥ instead of ∥ · ∥2. We define the sets Sη := {f ∈ Rq : ∥f∥∞ ≤ η} and
Tκ := {f ∈ Rq : ∥f∥∞ = 1 ∧ ∥f∥1 = κ}. The discrete Gaussian distribution over
Zm with standard deviation σ > 0 and center c ∈ Rm is the probability dis-
tribution DZm,σ,c, which assigns to every x ∈ Zm the probability of occurrence
given by DZm,σ,c(x) := ρσ,c(x)/ρσ,c(Zm), where ρσ,c(x) := exp(−∥x−c∥

2

2σ2) and
ρσ,c(Zm) :=

∑
x∈Zm ρσ,c(x). The subscript c is omitted when c = 0. Additional

background is provided in Appendix B.

Hardness Assumptions. We define the lattice problems: Module Learning
With Errors (MLWE) and Module Small Integer Solution (MSIS).

Definition 1. Let pp = (N, k, ℓ, q, η), where N, k, ℓ, q, η are positive integers.
We say that MLWE holds w.r.t. pp if for every PPT algorithm A the advantage

8

AdvMLWE
A (pp) is negligible in λ, where AdvMLWE

A (pp) :=∣∣∣∣∣∣Pr
 b = 1:

A←$ Rk×ℓ
q ; s←$ Sk+ℓ

η ;
t := [Ik|A] · s ∈ Rk

q ;
b←$ A(pp,A, t)

− Pr

 b = 1:
A←$ Rk×ℓ

q ;
t←$ Rk

q ;
b←$ A(pp,A, t)

∣∣∣∣∣∣ .
Definition 2. Let pp = (N, k, ℓ, q, β), where N, k, ℓ, q are positive integers and
β is a positive real. We say that MSIS holds w.r.t. pp if for every algorithm A
the advantage AdvMSIS

A (pp) is negligible in λ, where AdvMSIS
A (pp) :=

Pr[0 < ∥x∥ ≤ β ∧ 0 = [Ik|A] · x (mod q) : A←$ Rk×ℓ
q ;x ∈ Rk+ℓ ←$ A(pp,A)].

Estimating the hardness of MLWE and MSIS is described in Appendix C.

Distributed Signatures. We follow [17] to recall the syntax and security of
n-out-of-n distributed signatures. We assume that many sessions of the signing
protocol can be invoked concurrently, while key generation can be executed only
once. All signers participating in both key and signature generation play the
same role. Hence, we only present nth signer’s behavior, who is the first one
sending out a message in each round of interaction. Consequently, we assume
that the adversary is rushing, i.e., based on the honest nth signer’s message, the
adversary is allowed to choose messages of the remaining n−1 corrupted signers.

Definition 3. An n-out-of-n distributed signature protocol is a tuple of algo-
rithms DSig = (PGen,KGenj ,Signj ,Verify), where:

PGen is a PPT parameter generation algorithm that, on input 1λ, returns public
parameters pp, which implicitly contains 1λ. We assume that pp is given as
an implicit input to all algorithms.

KGenj, for all j ∈ [n], is a PPT interactive key generation algorithm that is run
by each signer Sj. At the end of the protocol, Sj returns a state st and a pair
(pk , sk j), where pk is a public key and sk j is a secret key share.

Signj, for all j ∈ [n], is a PPT interactive signing algorithm that is run by
each signer Sj. Each Sj runs Signj on input a session identifier sid , a state
information st , a public key pk , a secret key share sk j, and a message m.
At the end of the protocol, Sj returns a signature sig.

Verify is a DPT verification algorithm that, on input a public key pk , a message
m, and a signature sig, returns 1 if sig is valid and 0 otherwise.

Definition 4. We say that DSig is UF-CMA secure (distributed signature un-
forgeability against chosen message attacks) w.r.t. pp ∈ PGen(1λ) if for every
adversary A that makes qSign signing queries to an oracle ODSig

n , the following
advantage is negligible in λ:

AdvUF-CMA
DSig,A (pp) = Pr[ExpUF-CMA

DSig,A (pp) = 1],

where the oracle ODSig
n and the experiment ExpUF-CMA

DSig,A are defined in Fig. 2.

9

ExpUF-CMA
DSig,A (pp)

1: Lm ← ∅
2: (m∗, sig∗)←$ AODSig

n (pp)
3: if m∗ ∈ Lm then
4: return 0
5: return Verify(pk ,m∗, sig∗)

ODSig
n (sid ,m)

1: flag ← false
2: if sid = 0 then
3: if flag = true then
4: return ⊥
5: (st , (pk , skn))←$ KGenn()
6: flag ← true
7: if flag = false then
8: return ⊥
9: Lm ← Lm ∪ {m}

10: sig ←$ Signn(sid , st , pk , skn,m)
11: return sig

Fig. 2. Experiment ExpUF-CMA
DSig,A . We define by Lm the set of all messages m such that

(sid ,m) was queried by A to its oracle as the first query with identifier sid ̸= 0.

3 Distributed Signature Protocol

3.1 Protocol Description

Let G : {0, 1}∗ → {0, 1}ℓG , F : {0, 1}∗ → {0, 1}ℓF , and H : {0, 1}∗ → Tκ be crypto-
graphic hash functions. Define by Expand : {0, 1}∗ → Rk×ℓ

q an extendable output
function (XOF), e.g., SHAKE. Let ω ∈ N>1. Following [3,4], we define the algo-
rithms that build a tree of commitments:
1. HashTree is a DPT algorithm whose input is ω commitments v0, . . . ,vω−1,
where A ∈ Rk×ℓ

q and for all j ∈ {0 . . . , ω − 1} : vj = [Ik|A] · yj (mod q) and
yj ∈ Rk+ℓ. It returns a pair (root , tree), where root is the root of a binary hash
tree of height h = ⌈log(ω)⌉ whose leaves are the hash values F(vj), and tree is
the sequence that consists of all leaves and inner nodes of the tree.
2. BuildAuth is a DPT algorithm whose input is an index t, a sequence of nodes
tree, and a height h. It returns auth = (t,a0, . . . ,ah−1), where ai ∈ {0, 1}ℓF ,
0 ≤ t < ω, and 0 ≤ i < h. Let z′ be some secret vector. The output auth
represents the authentication path of a vector zt = yt+z′, for which the rejection
sampling procedure accepts, i.e., masking vector yt ensures that zt hides z′.
3. RootCalc is a DPT algorithm whose input is a commitment v and its authen-
tication path auth = (t,a0, . . . ,ah−1). It returns the root of the hash tree that
includes the leaf F(v) at index t and the inner nodes a0, . . . ,ah−1.
We define the following bijective mapping:
IntIndexω,n : {0, . . . , ω−1}n → {0, . . . , ωn−1}; (i(1), . . . , i(n)) 7→

∑n−1
j=0 i(n−j) ·ωj .

IntIndexω,n converts a tuple (i(1), . . . , i(n)) into a unique positive integer. Let L
be a finite set, we define by Encode(L) a unique encoding of L, e.g., lexicograph-
ical ordering. We also write L[j] to denote the jth entry of L. We let Compress
and Decompress define algorithms for representing Gaussian elements via Huff-
man encoding. The first algorithm is used in the signing process to reduce the
signature size, while the latter is used in the verification algorithm to reconstruct

10

KGenn()

1: seed (n) ←$ {0, 1}ℓseed
2: ḡ(n) ← G(seed (n), n)
3: broadcast ḡ(n)

4: receive ḡ(j) for all j ∈ [n− 1]
5: broadcast seed (n)

6: receive seed (j) for all j ∈ [n− 1]
7: for j = 1 to n− 1 do
8: if ḡ(j) ̸= G(seed (j), j) then
9: broadcast abort

10: return (⊥,⊥,⊥)
11: seed ←

⊕n
j=1 seed

(j)

12: A← Expand(seed), Ā← [Ik|A]
13: s(n) ←$ Sk+ℓ

η

14: b(n) ← Ā · s(n) (mod q)
15: ĝ(n) ← G(b(n), n)

16: broadcast ĝ(n)

17: receive ĝ(j) for all j ∈ [n− 1]
18: broadcast b(n)

19: receive b(j) for all j ∈ [n− 1]
20: for j = 1 to n− 1 do
21: if ĝ(j) ̸= G(b(j), j) then
22: broadcast abort
23: return (⊥,⊥,⊥)
24: b←

∑n
j=1 b

(j) (mod q)

25: L← Encode(b(1), . . . ,b(n))
26: let L[int] = b(n), int ∈ [n]
27: st ← (int , L)
28: pk ← (seed ,b)
29: sk (n) ← s(n)

30: return (st , (pk , sk (n)))

Fig. 3. Key generation of our lattice-based n-out-of-n distributed signature protocol.

the Gaussian vector computed during signature generation. In the following we
give a detailed description of our n-out-of-n distributed signature protocol. Its
respective algorithms are given in Fig. 3,4. Since all signers play the same role,
we only present nth signer’s behavior.
Parameter and key generation. PGen generates public parameters as given
in Table 2. We assume that PGen is invoked by a trusted party. KGenn first
generates a uniformly random A ∈ Rk×ℓ

q in a distributed way. That is, it samples
seed (n) ←$ {0, 1}ℓseed , computes ḡ(n) = G(seed (n), n), and sends out ḡ(n). After
receiving ḡ(j) for all j ∈ [n − 1], it sends out seed (n) and then receives seed (j).
If ḡ(j) ̸= G(seed (j), j) for any j ∈ [n − 1], it aborts. Otherwise, it computes
seed =

⊕n
j=1 seed

(j), A = Expand(seed), and sets Ā = [Ik|A]. KGenn proceeds
by sampling s(n) ←$ Sk+ℓ

η , computing a public key share b(n) = Ā ·s(n) (mod q),
and then sending out ĝ(n) = G(b(n), n). After receiving ĝ(j) for all j ∈ [n − 1],
it sends out b(n) and then receives b(j). If ĝ(j) ̸= G(b(j), j) for any j ∈ [n − 1],
it aborts. Otherwise, it computes b =

∑n
j=1 b

(j) (mod q), and encodes the list
of public key shares (b(1), . . . ,b(n)) via Encode to obtain an ordered list L.
The state information is given by st = (int , L), where int is the index of b(n)

in L, i.e., L[int] = b(n). The public key and secret key share are given by
(pk , sk (n)) = ((seed ,b), s(n)). Note that based on the security of Expand and as
long as at least one honest signer samples a seed correctly, the computed matrix
A is guaranteed to be uniformly random. The same applies to the combined
public key. As explained in [17], this prevents the so-called rogue key attack [28],
i.e., to choose some malicious key share depending on the honest signer’s share.

11

Signn(sid , st , pk , sk
(n),m)

1: if sid ∈ Lsid then
2: return ⊥
3: parse st = (n,L = (L[1], . . . , L[n])

= (b(1), . . . ,b(n)))
4: parse (pk , sk (n)) = ((seed ,b), s(n))
5: A← Expand(seed), Ā← [Ik|A]
6: for i = 0 to ω − 1 do
7: yi ←$ Dk+ℓ

ZN ,σ

8: v
(n)
i ← Ā · yi (mod q)

9: y← (y0, . . . ,yω−1)

10: v(n) ← (v
(n)
0 , . . . ,v

(n)
ω−1)

11: g(n) ← G(v(n),b(n))
12: broadcast (n, g(n))
13: receive (j, g(j)) for all j ∈ [n− 1]
14: broadcast v(n)

15: receive v(j) = (v
(j)
0 , . . . ,v

(j)
ω−1), j ∈ [n− 1]

16: for j = 1 to n− 1 do
17: if g(j) ̸= G(v(j), L[j]) then
18: broadcast abort and return ⊥
19: for t = 0 to ωn − 1 do
20: (i(1), . . . , i(n))← IntIndex−1

ω,n(t)

21: wt ←
∑n

j=1 v
(j)

i(j)

22: (root , tree)← HashTree(w0, . . . ,wωn−1)
23: c← H(root ,m,b)
24: z′ ← s(n)c
25: (z(n), i(n))←$ IterateRej(y, z′)
26: if (z(n), i(n)) = (⊥,⊥) then
27: broadcast ⊥ and goto 6
28: broadcast z(n)

29: receive z(j) for all j ∈ [n− 1]
30: for j = 1 to n− 1 do
31: if z(j) = ⊥ then
32: goto 6
33: (b, i(j))← Vrf(Ā,b(j),v(j), c, z(j))
34: if (b, i(j)) = (0,−1) then
35: broadcast abort and return ⊥
36: z←

∑n
j=1 z

(j)

37: z← Compress(z)
38: t← IntIndexω,n(i

(1), . . . , i(n))
39: auth ← BuildAuth(t, tree, h)
40: return sig = (c, z, auth)

IterateRej(y, z′)

1: parse y = (y0, . . . ,yω−1)
2: T ← {0, . . . , ω − 1}
3: while T ̸= ∅ do
4: i←$ T
5: T ← T \ {i}
6: z← yi + z′

7: if RejSamp(z, z′) = 1 then
8: return (z, i)
9: return (⊥,⊥)

Vrf(Ā,b(j),v(j), c, z(j))

1: if ∥z(j)∥ > Bz then
2: return (0,−1)
3: parse v(j) = (v

(j)
0 , . . . ,v

(j)
ω−1)

4: w(j) ← Ā · z(j) − b(j)c (mod q)
5: for i = 0 to ω − 1 do
6: if v

(j)
i = w(j) then

7: return (1, i)
8: return (0,−1)

Verify(pk ,m, sig)

1: parse pk = (seed ,b)
2: A← Expand(seed), Ā← [Ik|A]
3: parse sig = (c, z, auth)
4: z← Decompress(z)
5: if ∥z∥ > B then
6: return 0
7: w← Ā · z− bc (mod q)
8: root ← RootCalc(w, auth)
9: if c ̸= H(root ,m,b)

10: return 0
11: return 1

Fig. 4. Signing protocol of our lattice-based n-out-of-n distributed signature protocol.

12

For the sake of domain separation [6], we also follow [17] by setting the index
of the signer as part of the value to be hashed via G. This prevents a rushing
adversary from forwarding a hash value sent by the honest signer and claiming
knowledge of its preimage after receiving it from the honest signer. To save space,
s(n) can also be generated by expanding a random seed via an XOF.

Signing. Sn first checks that sid has not been used before, i.e., Sn is not executed
if sid ∈ Lsid , where Lsid is the list of already used session identifiers. We assume,
w.l.o.g., that after ordering the list of public key shares in KGenn, the index of
b(n) in the encoded list L is given by int = n, i.e., L[n] = b(n). Then, Sn
reconstructs A using Expand and sets Ā = [Ik|A]. It proceeds by sampling ω
vectors yi from the Gaussian distribution Dk+ℓ

ZN ,σ
and computing commitments

v
(n)
i = Ā ·yi (mod q), where i ∈ {0, . . . , ω−1}. Note that σ is chosen according

to Lemma 2 so that each vector v
(n)
i is distributed statistically close to uniform

over Rk
q . This prevents learning any information from the commitments in case

of aborts, and hence maintains the security of the secret key share. Afterwards,
signer Sn sets v(n) = (v

(n)
0 , . . . ,v

(n)
ω−1), computes g(n) = G(v(n),b(n)), and sends

out (n, g(n)) to the remaining signers S1, . . . ,Sn−1 in order to receive (j, g(j)) for
all j ∈ [n− 1]. Sending the index j ∈ [n] together with g(j) allows to map each
signer to the index of its public key share in L. This way, all signers use the
same local ordering of S1, . . . ,Sn, which corresponds to the indices of the public
key shares in L. Then, Sn sends out v(n) and receives a similar vector v(j) from
each Sj . After that, Sn verifies that g(j) = G(v(j),b(j)) for all j ∈ [n − 1], and
aborts if this is not the case. Sn proceeds by computing ωn vectors wt, where
t ∈ {0, . . . , ωn − 1}. These vectors correspond to all possible sums of n different
commitments v

(j)

i(j)
, i.e., each sum includes one commitment from each signer.

The commitments wt are then used to generate a tree of commitments of height
h = ⌈log(ωn)⌉ via algorithm HashTree, which outputs (root , tree). Note that
due to the unique encoding of L, the indices of the signers are the same by all
signers. Thus, all signers compute the same hash tree. Then, H is called on input
(root ,m,b) to obtain c. After that, Sn runs IterateRej on input (y, z′), where
y = (y0, . . . ,yω−1) and z′ = s(n)c. This algorithm repeatedly keeps applying the
rejection sampling algorithm RejSamp on input (z, z′), where z = yi+z′, until it
accepts for some randomly chosen masking vector yi, where i ∈ {0, . . . , ω − 1}.
IterateRej outputs (z(n), i), where i corresponds to the masking vector for which
RejSamp(z(n), z′) = 1. If RejSamp does not accept for all yi, then IterateRej
returns (⊥,⊥) and the protocol has to be restarted. In this case Sn broadcasts
⊥ and restarts by generating ω fresh masking vectors yi, i.e., from line 6 of Signn.
Otherwise, Sn broadcasts z(n) and receives z(j) from each Sj , where j ∈ [n− 1].
If z(j) = ⊥ for any j ∈ [n − 1], then Sn restarts from line 6. Otherwise, Sn
verifies the correctness of each cosigner’s signature by running Vrf on input
(Ā,b(j),v(j), c, z(j)) for all j ∈ [n− 1]. Vrf outputs a pair (b, i), where b ∈ {0, 1}
indicates accept or reject and i is the index of commitment vi that corresponds
to response zi. If one cosigner’s signature is not valid, then Vrf returns (0,−1),
and Sn aborts. Otherwise, Sn proceeds by computing z =

∑n
j=1 z

(j), compressing

13

the sum z via Compress, and running BuildAuth to generate the authentication
path auth associated to the index t = IntIndexω,n(i

(1), . . . , i(n)) of commitment
wt, where wt is the sum of signer’s commitments v

(j)

i(j)
that correspond to z.

Finally, Sn returns the signature sig = (c, z, auth).
Verification. Verify first computes A via Expand, sets Ā = [Ik|A], and checks
that ∥z∥ ≤ B after reconstructing z using algorithm Decompress. Then, it com-
putes w = Ā ·z−bc (mod q), and runs RootCalc on input (w, auth) to compute
the root root ′ of the tree of commitments that includes the leaf F(w) and its au-
thentication path auth. The signature is accepted if and only if c = H(root ,m,b).

3.2 Security Analysis

In this section we prove the security of our distributed signature protocol.

Theorem 1. Let DSig be the n-out-of-n distributed signature protocol depicted
in Fig. 3,4. For any PPT adversary that initiates a single key generation protocol
of DSig by querying ODSig

n with sid = 0, initiates qSign signature generation pro-
tocols of DSig by querying ODSig

n with sid ̸= 0, and makes qE , qG, qF, qH queries to
the random oracle Expand,G,F,H, respectively, DSig is UF-CMA secure w.r.t.
pp ∈ PGen(1λ) if MLWE is hard w.r.t. pp′ = (N, k, ℓ, q, η) and MSIS is hard
w.r.t. pp′′ = (N, k, ℓ+ 1, q, 2

√
B2 + κ), where

AdvUF-CMA
DSig,A (pp) ≤q2F + qF

2ℓF
+

(qG + nqSign + 1)2

2ℓG+1
+

qE
qkℓN

+

qSign ·
(qG + nqSign

|Tκ|
+

qH + qSign
|Tκ|

+
n

2ℓG
+

2−Ω(N)−100+1

M

)
+

2 ·
((qG + 1)2

2ℓG+1
+

n

2ℓG

)
+

qG
2ℓseed

+
qG
qkN

+AdvMLWE
D (pp′)+

(qH + qSign) · ωn

|Tκ|
+

√
(qH + qSign) · ωn ·AdvMSIS

A (pp′′).

Proof. Let A be an adversary that wins the experiment ExpUF-CMA
DSig,A (pp) given

in Fig. 2 with advantage AdvUF-CMA
DSig,A (pp). We assume, w.l.o.g., that Sn is an

honest signer. We construct a reduction R that uses A in a black-box manner
and simulates the behavior of Sn without using honestly generated key pairs.
Then, we use the forking algorithm (see Appendix B.1) to solve MSIS w.r.t. pp′′.
The simulation of key and signature generation is presented in Fig. 5 and 6,
respectively. They are derived via the following intermediate hybrids:
Hybrid H0:
Random oracle simulation. We assume that R is given hi ←$ Tκ as input,
for all i ∈ [qSign + qH]. For each of oracles OExpand,OG,OF, and OH, reduction R
maintains a list LExpand,LG,LF, and LH, respectively. These lists are initialized
with the empty set, and store pairs consisting of queries to the respective oracle
and their answers. Also, R maintains a counter ctr initialized by 0. If an oracle
was previously queried on some input, then R looks up its entry in the respective

14

SimKGenn(A,b)

1: seed ←$ {0, 1}ℓseed
2: OExpand(seed)← A
3: ḡ(n) ←$ {0, 1}ℓG
4: broadcast ḡ(n)

5: receive ḡ(j) for all j ∈ [n− 1]
6: (bad ′

1, alert , (seed
(1), 1), . . . , (seed (n−1),

n− 1))← Search(ḡ(1), . . . , ḡ(n−1))
7: if bad ′

1 = true then
8: return (⊥,⊥) {simulation fails}
9: if alert = true then

10: seed (n) ←$ {0, 1}ℓseed
11: seed (n) ← seed

⊕n−1
j=1 seed (j)

12: if (seed (n), n) is set then
13: bad ′

2 ← true
14: return (⊥,⊥) {simulation fails}
15: OG(seed

(n), n)← ḡ(n)

16: broadcast seed (n)

17: receive seed (j) for all j ∈ [n− 1]
18: for j = 1 to n− 1 do
19: if ḡ(j) ̸= OG(seed

(j), j) then
20: broadcast abort
21: return (⊥,⊥)
22: if alert = true then
23: bad ′

3 ← true
24: return (⊥,⊥) {simulation fails}
25: ĝ(n) ←$ {0, 1}ℓG

26: broadcast ĝ(n)

27: receive ĝ(j) for all j ∈ [n− 1]
28: (bad ′

4, alert
′, (b(1), 1), . . . , (b(n−1),

n− 1))← Search(ĝ(1), . . . , ĝ(n−1))
29: if bad ′

4 = true then
30: return (⊥,⊥) {simulation fails}
31: if alert ′ = true then
32: b(n) ←$ Rk

q

33: b(n) ← b−
∑n−1

j=1 b(j)

34: if (b(n), n) is set then
35: bad ′

5 ← true
36: return (⊥,⊥) {simulation fails}
37: OG(b

(n), n)← ĝ(n)

38: broadcast b(n)

39: receive b(j) for all j ∈ [n− 1]
40: for j = 1 to n− 1 do
41: if ĝ(j) ̸= OG(b

(j), j) then
42: broadcast abort
43: return (⊥,⊥)
44: if alert ′ = true then
45: bad ′

6 ← true
46: return (⊥,⊥) {simulation fails}
47: L← Encode(b(1), . . . ,b(n))
48: let L[int] = b(n), int ∈ [n]
49: st ← (int , L)
50: pk ← (seed ,b)
51: return (st , pk)

Search(g(1), . . . , g(n−1))

1: bad ← false, alert ← false
2: for j = 1 to n− 1 do
3: if g(j) is set then
4: let (str ,OG(str)) ∈ LG : OG(str) = g(j)

5: if ∃(str ′,OG(str
′)) ∈ LG : (str ̸= str ′) ∧ (OG(str

′) = g(j)) then
6: bad ← true {more than one preimage found}
7: str (j) ← str
8: else
9: str (j) ← ⊥, alert ← true {no preimage found}

10: return (bad , alert , str (1), . . . , str (n−1))

Fig. 5. Simulation of key generation.

15

SimSignn(sid , st , pk ,m)

1: if sid ∈ Lsid then
2: return ⊥
3: parse st = (n,L = (L[1], .., L[n]))
4: parse pk = (seed ,b)
5: A← OExpand(seed)
6: Ā← [Ik|A]
7: c←$ Tκ

8: With probability δ do
9: v

(n)
0 , . . . ,v

(n)
ω−1 ←$ Rk

q

10: z(n) ← ⊥
11: With probability 1− δ do
12: i(n) ←$ {0, . . . , ω − 1}
13: z(n) ←$ Dk+ℓ

ZN ,σ

14: v
(n)

i(n) ← Ā · z(n) − b(n)c (mod q)
15: for i = 0 to ω − 1 do
16: if i = i(n) then
17: continue
18: yi ←$ Dk+ℓ

ZN ,σ

19: v
(n)
i ← Ā · yi (mod q)

20: v(n) ← (v
(n)
0 , . . . ,v

(n)
ω−1)

21: g(n) ← OG(v
(n),b(n))

22: broadcast (n, g(n))
23: receive (j, g(j)) for all j ∈ [n− 1]
24: (bad1, alert , (v

(1),b(1)), . . . , (v(n−1),
b(n−1)))← Search(g(1), . . . , g(n−1))

25: if bad1 = true then
26: return ⊥ {simulation fails}
27: if alert = true then
28: broadcast v(n)

29: else
30: parse v(j) = (v

(j)
0 , . . . ,v

(j)
ω−1)

for all j ∈ [n− 1]
31: for t = 0 to ωn − 1 do
32: (i(1), . . . , i(n))← IntIndex−1

ω,n(t)

33: wt ←
∑n

j=1 v
(j)

i(j)

34: (root , tree)←
← HashTree(w0, . . . ,wωn−1)

35: if OH(root ,m,b) is set then
36: bad2 ← true
37: return ⊥ {simulation fails}
38: OH(root ,m,b)← c
39: broadcast v(n)

40: receive v(j) = (v
(j)
0 , . . . ,v

(j)
ω−1)

for all j ∈ [n− 1]
41: for j = 1 to n− 1 do
42: if g(j) ̸= OG(v

(j), L[j]) then
43: broadcast abort and return ⊥
44: if alert = true then
45: bad3 ← true
46: return ⊥ {simulation fails}
47: if z(n) = ⊥ then
48: broadcast ⊥ and goto 8
49: broadcast z(n)

50: receive z(j) for all j ∈ [n− 1]
51: for j = 1 to n− 1 do
52: if z(j) = ⊥ then goto 8
53: (b, i(j))← Vrf(Ā,b(j),v(j), c, z(j))
54: if (b, i(j)) = (0,−1) then
55: broadcast abort and return ⊥
56: z←

∑n
j=1 z

(j), z← Compress(z)

57: t← IntIndexω,n(i
(1), . . . , i(n))

58: auth ← BuildAuth(t, tree, h)
59: return sig = (c, z, auth)

Fig. 6. Simulation of signature generation. Simulator SimSignn assumes that SimKGenn
has been previously invoked. Algorithm Search is given in Fig. 5, and Vrf in Fig. 4.

16

list and returns its answer. Otherwise, for queries to OExpand,OG,OF, reduction
R selects a uniformly random answer from the respective range and updates the
respective list. However, for each query to OH, the counter ctr is incremented by
one. Then, the answer hctr ∈ Tκ is returned and the list LH is updated.
Honest signer simulation. R invokes Signn exactly as given in Fig. 4.
Forgery. When A returns a forgery (sig∗ = (c∗, z∗, auth∗),m∗), R proceeds as
follows: It returns (0, 0,⊥) if m∗ ∈ Lm or Verify(pk ,m∗, sig∗) ̸= 1. Otherwise, R
finds an index i∗ ∈ [qSign+qH] such that c∗ = hi∗ , and returns (i∗, t∗, out∗), where
t∗ ∈ {0, . . . , ωn − 1} is included in auth∗ and out∗ = (root∗, c∗, z∗, auth∗,m∗).
root∗ is obtained by running Verify. We let Pr[Hi] denote the probability that R
does not return (0, 0,⊥) at hybrid Hi. Then we have Pr[H0] = AdvUF-CMA

DSig,A (pp).
Hybrid H1: In this hybrid we modify R from H0 as follows:
Random oracle simulation. Oracle OF is simulated as follows:
1. If OF(str) is set, then return OF(str).
2. Select OF(str)←$ {0, 1}ℓF .
3. If there exists a pair (str ′,OF(str

′)) ∈ LF : (str ̸= str ′)∧(OF(str) = OF(str
′)),

then simulation fails.
4. If there exists (str ′,OF(str

′)) ∈ LF : str
′ = OF(str), then simulation fails.

5. Return OF(str) and update LF.

Note that oracle OF is simulated in a way that excludes collisions and chains. This
ensures that each node output by algorithm HashTree has a unique preimage,
and prevents spanning hash trees with cycles. This simulation is within statistical
distance of at most (q2F+qF)/2

ℓF from an oracle that allows collisions and chains.
Honest signer simulation. R selects c ←$ Tκ and computes signature part
z(n) without interacting with A. After that, R proceeds as in previous hybrid
by sending out (n, g(n)). Upon receiving (j, g(j)) for all j ∈ [n − 1], R finds
corresponding preimages (v(j),b(j)). Then, R proceeds by computing root and
programming OH such that c := OH(root ,m,b). Simulation fails if for any g(j)

more that one preimage were found or no corresponding preimage exists in LG.
Note that H1 is identical to H0 from A’s point of view, except at simulating OF

and the events bad1, bad2, bad3 appeared in Fig. 6, where bad1 is the event that
at least one collision is found during at most qG + nqSign queries to OG, bad3 is
the event that A predicted one of the n− 1 outputs of OG without querying it,
and bad2 is the event that programming OH fails at least once out of qSign queries
to OH due to one of the following cases:
1. OG has been queried by A on (v(n),b(n)) during at most qG +nqSign queries.

This means that A knows (root ,m,b) and could intentionally query OH on
(root ,m,b).

2. OH(root ,m,b) has been set during at most qH + qSign prior queries to OH.

Therefore
∣∣Pr[H1]− Pr[H0]

∣∣ ≤ q2F+qF
2ℓF

+ Pr[bad1] + Pr[bad2] + Pr[bad3], where

Pr[bad1] ≤
(qG + nqSign)(qG + nqSign + 1)/2

2ℓG
≤ (qG + nqSign + 1)2

2ℓG+1
,

Pr[bad2] ≤ qSign

(qG + nqSign
|Tκ|

+
qH + qSign
|Tκ|

)
, and Pr[bad3] ≤

nqSign
2ℓG

.

17

Hybrid H2: This hybrid is identical to H1 except at the following points:
Honest signer simulation. R does not generate z(n) honestly, and simulates
rejection sampling as follows: With probability δ, sample v

(n)
0 , . . . ,v

(n)
ω−1 ←$ Rk

q

and set z(n) = ⊥. Otherwise, sample i(n) ←$ {0, . . . , ω − 1} and z(n) ←$ Dk+ℓ
ZN ,σ

.

Then, compute v
(n)

i(n) = Ā · z(n) − b(n)c (mod q). The remaining v
(n)
i , for all

i ∈ {0, . . . , ω − 1}\{i(n)}, are computed honestly (see Fig. 6). By Lemma 5 in
Appendix D we obtain

∣∣Pr[H2]− Pr[H1]
∣∣ ≤ qSign · 2

−Ω(N)−100+1

M .

Hybrid H3: At this point, simulation does not rely on the actual secret key
share s(n) (see SimSignn, Fig. 6). In this hybrid, R samples seed ←$ {0, 1}ℓseed
and programs OExpand such that A := OExpand(seed). Then, it computes seed (n)

a posteriori, after extracting A’s committed shares seed (1), . . . , seed (n−1) via al-
gorithm Search, i.e., by searching the recorded queries to OG (see SimKGenn,
Fig. 5). Note that H3 is identical to H2 from A’s point of view, except at
programming OExpand and the events bad ′1, bad

′
2, bad

′
3 appeared in SimKGenn.

Therefore we have
∣∣Pr[H3] − Pr[H2]

∣∣ ≤ qE
qkℓN + (qG+1)2

2ℓG+1 + qG
2ℓseed

+ n
2ℓG

, where
Pr[bad ′1] ≤ ((qG + 1)qG/2)/2

ℓG is the probability that at least one collision is
found during at most qG queries to OG, Pr[bad ′2] is the probability that program-
ming OG fails, which occurs if OG has been previously queried by A on (seed (n), n)
during at most qG queries, and the probability that guessing a uniformly random
seed (n) is at most 1/2ℓseed for each query, and Pr[bad ′3] ≤ n/2ℓG is the probability
that A predicted one of the n− 1 outputs of OG without querying it.
Hybrid H4: This hybrid is identical to H3 except that R samples public key
share b(n) ←$ Rk

q instead of computing b(n) = Ā·s (mod q), where s(n) ←$ Sk+ℓ
η .

If A can distinguish between H3 and H4, then A can be used to break the MLWE
assumption w.r.t. pp′. Therefore we have

∣∣Pr[H4]− Pr[H3]
∣∣ ≤ AdvMLWE

D (pp′).

Hybrid H5: In this hybrid, R computes its public key share b(n) a posteriori,
after extracting A’s committed shares b(1), . . . ,b(n−1) via Search, i.e., by search-
ing the recorded queries to OG (see SimKGenn, Fig. 5). Note that H5 is identical
to H4 from A’s point of view, except at the events bad ′4, bad

′
5, bad

′
6 appeared in

SimKGenn. Therefore we have
∣∣Pr[H5] − Pr[H4]

∣∣ ≤ (qG+1)2

2ℓG+1 + qG
qkN + n

2ℓG
, where

Pr[bad ′4],Pr[bad
′
5], and Pr[bad ′6] are calculated as in H3.

Forking: Given A′ ∈ R
k×(ℓ+1)
q as input, the goal is to solve MSIS w.r.t. pp′′. To

this end, R writes A′ = [A|b] ∈ Rk×ℓ
q ×Rk

q and generates the remaining parame-
ters of DSig to obtain pp and run A on input pp. This does not change the view of
A at all. In order to use the forking lemma (Appendix B.1), we define its instance
generator algorithm IGen such that it outputs (A,b). Then, R runs forking al-
gorithm FrkTκ,A on input (A,b). With probability frk , we obtain two forgeries
out , out ′, where out = (root , c, z, auth,m) and out ′ = (root ′, c′, z′, auth ′,m ′).
Thus we obtain Pr[H5] = acc ≤ (qH+qSign)·ωn

|Tκ| +
√
(qH + qSign) · ωn · frk . Simu-

lating OF as given in hybrid H1 ensures that both auth = (t, str0, . . . , strh−1)
and auth ′ = (t′, str ′0, . . . , str

′
h−1) include the same sequence of hash values, i.e.,

str i = str ′i for all i ∈ {0, . . . , h − 1} and h = ⌈log(ωn)⌉. By the forking lemma

18

we have root = root ′, t = t′, m = m ′, and c ̸= c′. Moreover, the view of A is
identical in both executions until the forking index i∗. Since auth = auth ′, we
have w = w′, where w = Ā · z− bc and w′ = Ā · z′ − bc′. Thus, we obtain

[Ik|A|b] ·
[
z− z′

c′ − c

]
= 0.

Note that 0 < ∥c′−c∥ ≤ 2
√
κ, and since both forgeries are valid we have ∥z∥ ≤ B

and ∥z′∥ ≤ B. Therefore, ∥z−z′∥ ≤ 2B and the vector [z−z′|c′−c]⊤ constitutes
a non-trivial solution to MSIS w.r.t. pp′′. Hence, frk ≤ AdvMSIS

A (pp′′).

3.3 Concrete Parameters

In this section we propose sample parameters for our distributed signature pro-
tocol and the protocols introduced by Damgård et al. [17] and Chen [13]. The
parameters are presented in Table 3. The corresponding sizes of public keys and
signatures as well as the communication cost of key and signature generation
are given in Table 1. The hardness of the underlying instances of MLWE and
MSIS are estimated as described in Appendix C. We provide a proof-of-concept
implementation for our protocol in C++ 2 and evaluate it on a regular laptop
(Macbook Air M1) with 3.2 GHz CPU and 8 GB RAM. The performance results
are shown in Table 1. In the following we highlight some key points regarding
the parameter selection.

The parameters of our protocol are chosen according to the constraints given
in Table 2. In particular, the modulus q together with the standard deviation
σ are selected such that each commitment generated by a signer is distributed
statistically close to uniform over Rk

q , and the underlying instances of MLWE
and MSIS are sufficiently hard. We note that for all schemes we set q > β,
where β is the bound of a solution to MSIS. This prevents the existence of
trivial solutions like (q, 0, . . . , 0). The number of commitments ω is chosen such
that with probability very close to 1, signers compute a response without the
need to restart the signing protocol, i.e., the number of restarts per signer is
S = 1/(1−2−25) ≈ 1. Therefore, the whole signing protocol does not abort at all
with very high probability, i.e., M̄ ≈ 1. Note that this value of S is reasonable in
practice, and there is no need to increase ω to obtain a value of S more closer to 1,
e.g., S = 1/(1−2−50). Increasing ω would reduce the performance of the signing
protocol in a significant way, which is not desired in practice. For a reasonably
small M̄ , [17] suggests to set α = 11n to obtain M̄ = 3, while α = 8.5n is
suggested in [13] so that M̄ ≈ 5. We set α = 11n = 77 to obtain M̄ = 3 for both
schemes. The trapdoor homomorphic commitment scheme used in [17] commits
to a single element from Rq. Therefore, a commitment to each coefficient of a
vector from Rq is computed separately3. Concrete parameters of the commitment
scheme are given by the tuple (N, q, s) = (1024,≈ 245,≈ 225). The remaining
2 Source code: https://anonymous.4open.science/r/distSig-Lattice-2D48
3 As stated in [17], there is no efficiency gain from extending the construction to

commit to vectors from Rq.

19

https://anonymous.4open.science/r/distSig-Lattice-2D48

Table 2. Parameters of our distributed signature protocol.

Parameter Description Bounds

n No. signers ωn small
N Defines the ring R power of two
k, ℓ Dimension of matrix A k, ℓ ∈ N>0

q Modulus prime, q = 1 (mod 2N)

η Bound of ∥s(n)∥∞ η ∈ Z>0

κ Specifies the set Tκ 2κ

(
N

κ

)
≥ 2λ

σ Standard deviation of z(n) σ = α∥sc∥ = ακη
√

(k + ℓ)N ,

α > 0, σ > 2N·q
k

k+ℓ
+ 2

N(k+ℓ)
√
2π

ω No. vectors yi ω ∈ N>1, (1− 1−2−100

M
)ω ≤ δ,

M = exp(12
α

+ 1
2α2), δ > 0

h Tree height h = ⌈log(ωn)⌉
S No. restarts of Signn S = 1/(1− δ)
M̄ Total No. restarts M̄ = Sn

Bz Bound of ∥z(n)∥ Bz = γσ
√

(k + ℓ)N , γ > 0
B Bound of ∥z∥ B =

√
nBz

ℓseed Input length of Expand ℓseed ≥ λ
ℓG, ℓF Output length of G,F ℓG, ℓF ≥ 2λ

parameters can be easily derived form this tuple. They are selected to support
homomorphic additions of 7 commitments, and such that all security properties
are satisfied (see [17, Section 5.2] for details). The communication cost of each
signing protocol is given by the total amount of data sent per signer, including
the number of restarts, i.e., M̄ · (|R1| + |R2|) + |R3|, where for i ∈ {1, 2, 3},
the term |Ri| denotes the length of the bit string sent by each signer in the
ith round. Note that |R1| = 0 in [17,13]. The size of any Gaussian element is
computed according to Lemma 1, i.e., the values of t and γ are selected such
that the bounds in Lemma 1 hold with probability at most 2−80. Finally, we
would like to note that the scheme by Chen [13] is the most suitable one for
applications requiring a large number of signers.

Conclusion

In this paper we have presented a new lattice-based construction of n-out-
of-n distributed signatures. Our protocol follows the Fiat-Shamir with aborts
paradigm and supports applications with a small number of signers only. We pro-
posed sample parameters and provided a comparison with similar works showing
the significant improvement and practicality of our approach. An interesting ex-
tension to our work is to provide a security proof in the quantum random oracle
model [10]. The possibility of both rewinding and programming the random
oracle in the quantum setting have already been shown, e.g., in [19,24,31].

20

Table 3. Concrete parameters for our distributed signature protocol and the protocols
proposed in [17,13]. The parameters consider n = 7 signers and target 128 bits of
security. We fix N = 256 and set κ = 23 for all schemes so that |Tκ| ≥ 2128 and the
challenge space Tκ provides at least 128 bits of entropy. In [17,13], the total number of
restarts M̄ is denoted by Mn. The output length of hash functions is set to 256 bits.

Parameter Our protocol Damgård et al. [17] Chen [13]

k 5 5 6
ℓ 7 4 9
q ≈ 245 ≈ 227 ≈ 243

η 1 3 1
ω 2 - -
α 72090 77 77
σ 91899568 255024 78293860
σ′ - - 37127790
M̄ 1 3 3

Acknowledgements. This work was funded by the European Union (ERC,
LACONIC, 101041207). Views and opinions expressed are however those of the
authors only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them.

References

1. Agrawal, S., Stehlé, D., Yadav, A.: Round-optimal lattice-based threshold signa-
tures, revisited. In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2022.
LIPIcs, vol. 229, pp. 8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2022)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

3. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: On lattice-based inter-
active protocols: An approach with less or no aborts. pp. 41–61 (2020). https:
//doi.org/10.1007/978-3-030-55304-3_3

4. Alkeilani Alkadri, N., Harasser, P., Janson, C.: BlindOR: an efficient lattice-based
blind signature scheme from OR-proofs. pp. 95–115 (2021). https://doi.org/10.
1007/978-3-030-92548-2_6

5. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. pp. 10–24 (2016). https://doi.org/
10.1137/1.9781611974331.ch2

6. Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs,
oracle cloning and read-only indifferentiability. pp. 3–32 (2020). https://doi.org/
10.1007/978-3-030-45724-2_1

7. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. pp. 390–399 (2006). https://doi.org/10.1145/1180405.1180453

21

https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-030-92548-2_6
https://doi.org/10.1007/978-3-030-92548-2_6
https://doi.org/10.1007/978-3-030-92548-2_6
https://doi.org/10.1007/978-3-030-92548-2_6
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453

8. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. pp. 62–73 (1993). https://doi.org/10.1145/168588.168596

9. Bendlin, R., Krehbiel, S., Peikert, C.: How to share a lattice trapdoor: Threshold
protocols for signatures and (H)IBE. pp. 218–236 (2013). https://doi.org/10.
1007/978-3-642-38980-1_14

10. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. pp. 41–69 (2011). https://doi.org/10.
1007/978-3-642-25385-0_3

11. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M.R.,
Sahai, A.: Threshold cryptosystems from threshold fully homomorphic encryption.
pp. 565–596 (2018). https://doi.org/10.1007/978-3-319-96884-1_19

12. Boschini, C., Takahashi, A., Tibouchi, M.: MuSig-L: Lattice-based multi-signature
with single-round online phase. pp. 276–305 (2022). https://doi.org/10.1007/
978-3-031-15979-4_10

13. Chen, Y.: DualMS: Efficient lattice-based two-round multi-signature with trapdoor-
free simulation. In: Advances in Cryptology – CRYPTO 2023. pp. 716–747 (2023).
https://doi.org/10.1007/978-3-031-38554-4_23

14. Chen, Y.: Réduction de réseau et sécurité concrete du chiffrement completement
homomorphe. Ph.D. thesis, ENS-Lyon, France (2013)

15. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. pp. 1–20 (2011).
https://doi.org/10.1007/978-3-642-25385-0_1

16. Cozzo, D., Smart, N.P.: Sharing the LUOV: Threshold post-quantum signatures.
pp. 128–153 (2019). https://doi.org/10.1007/978-3-030-35199-1_7

17. Damgård, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n and
multi-signatures and trapdoor commitment from lattices 35(2), 14 (Apr 2022).
https://doi.org/10.1007/s00145-022-09425-3

18. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. pp. 307–315 (1990). https:
//doi.org/10.1007/0-387-34805-0_28

19. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir trans-
formation in the quantum random-oracle model. pp. 356–383 (2019). https:
//doi.org/10.1007/978-3-030-26951-7_13

20. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS-Dilithium: A lattice-based digital signature scheme 2018(1),
238–268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-268, https:
//tches.iacr.org/index.php/TCHES/article/view/839

21. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.:
Crystals – dilithium: Digital signatures from module lattices. Cryptology ePrint
Archive, Paper 2017/633 (2017), https://eprint.iacr.org/archive/2017/633/
20170627:201152

22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions. pp. 197–206 (2008). https://doi.org/10.1145/
1374376.1374407

23. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisig-
natures. NEC Research & Development (71), 1–8 (1983)

24. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. pp. 326–355 (2019).
https://doi.org/10.1007/978-3-030-26951-7_12

25. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. pp. 598–616 (2009). https://doi.org/10.1007/978-3-642-
10366-7_35

26. Lyubashevsky, V.: Lattice signatures without trapdoors. pp. 738–755 (2012).
https://doi.org/10.1007/978-3-642-29011-4_43

22

https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-38980-1_14
https://doi.org/10.1007/978-3-642-38980-1_14
https://doi.org/10.1007/978-3-642-38980-1_14
https://doi.org/10.1007/978-3-642-38980-1_14
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-031-15979-4_10
https://doi.org/10.1007/978-3-031-15979-4_10
https://doi.org/10.1007/978-3-031-15979-4_10
https://doi.org/10.1007/978-3-031-15979-4_10
https://doi.org/10.1007/978-3-031-38554-4_23
https://doi.org/10.1007/978-3-031-38554-4_23
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-030-35199-1_7
https://doi.org/10.1007/978-3-030-35199-1_7
https://doi.org/10.1007/s00145-022-09425-3
https://doi.org/10.1007/s00145-022-09425-3
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://eprint.iacr.org/archive/2017/633/20170627:201152
https://eprint.iacr.org/archive/2017/633/20170627:201152
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43

27. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
pp. 35–54 (2013). https://doi.org/10.1007/978-3-642-38348-9_3

28. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: Extended
abstract. pp. 245–254 (2001). https://doi.org/10.1145/501983.502017

29. Micciancio, D., Regev, O.: Lattice-based Cryptography, pp. 147–191. Springer
Berlin Heidelberg (2009)

30. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994), https:
//doi.org/10.1007/BF01581144

31. Zhandry, M.: How to record quantum queries, and applications to quantum indiffer-
entiability. pp. 239–268 (2019). https://doi.org/10.1007/978-3-030-26951-7_9

A More Related Work

Threshold Signatures. Few works proposed lattice-based constructions of t-
out-of-n threshold signatures [9,16,11,1]. The first one by Bendlin et al. [9] gives a
threshold variant of standard hash-and-sign signatures by Gentry et al. [22]. The
main downside of this protocol is that only a priori bounded number of online
non-interactive signing operations can be performed before an offline interactive
protocol must be performed. This offline protocol includes a threshold Gaus-
sian sampling phase, which is carried out using generic multiparty computation
(MPC). Cozzo and Smart [16] show that the lattice-based signature schemes
that have been submitted to the NIST post-quantum standardization process
have significant issues when converting them into threshold ones using relatively
generic MPC techniques. The main issue is the need to carry out the rejection
sampling procedure, which requires to keep intermediate values secret until after
performing rejection sampling and comparing them with given constants. More-
over, they require several rounds of communication and a mixture of linear and
non-linear operations that incur costly transformations between both represen-
tations. Boneh et al. [11] propose a generic framework that requires several other
cryptographic primitives as building blocks, including deterministic signatures,
threshold fully homomorphic encryption, and a homomorphic signature scheme.
Due to the involvement of heavy cryptographic primitives, it is not clear if their
construction can be adapted in practical applications. Agrawal et al. [1] improve
the construction by Boneh et al. [11] bringing it closer to practice.

B Additional Background

The next lemma is for the tail bound of Gaussian vectors.

Lemma 1 ([26, Lemma 4.4]). Let σ, t, γ ∈ R>0 and m ∈ N>0. Then we have:

1. Prx←$DZm,σ
[∥x∥∞ > tσ] ≤ 2m exp(−t2/2).

2. Prx←$DZm,σ
[∥x∥ > γσ

√
m] ≤ γm exp(m2 (1− γ2)).

We rely on the following lemma, which is a certain regularity theorem.

23

https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1145/501983.502017
https://doi.org/10.1145/501983.502017
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

Lemma 2 ([27, Corollary 7.5]). Let A←$ Rk×ℓ
q and Ā = [Ik|A] ∈ R

k×(k+ℓ)
q .

Let σ > 2N ·q
k

k+ℓ
+ 2

N(k+ℓ)
√
2π

and x←$ Dk+ℓ
ZN ,σ

. Then, the distribution of Ā·x (mod q)

is within statistical distance 2−Ω(N) of the uniform distribution over Rk
q .

The next lemma is a variant of the rejection sampling lemma specified for DZm,σ.

Lemma 3 ([26, Theorem 4.6]). Define V := {v ∈ Zm : ∥v∥ ≤ T}, where
T > 0. Let σ = αT for some α > 0, and h : V → R be a probability distribution.
Then, there exists a constant M > 0 such that exp(12α + 1

2α2) ≤ M , and the
following two algorithms are within statistical distance of at most 2−100/M :

1. v←$ h; z←$ DZm,σ,v; output (z,v) with probability 1−2−100

M .
2. v←$ h; z←$ DZm,σ; output (z,v) with probability 1/M .

We let RejSamp denote an algorithm that carries out rejection sampling on z,
where z ←$ DZm,σ,v, ∥v∥ ≤ T , and σ = αT . That is, on input (z,v), RejSamp
returns 1 if z is accepted and 0 if rejected. By Lemma 3, the output 1 indicates
that the distribution of z is within statistical distance of at most 2−100/M from
DZm,σ, where exp(12α + 1

2α2) ≤ M . RejSamp returns 1 with probability ≈ 1/M ,
and hence the expected number of restarts necessary to return 1 is given by M .

B.1 Forking Lemma

Let C be some finite set and R be some randomness space. Let IGen be a PPT
algorithm, and consider an algorithm A that, on input an instance x ∈ IGen and
random values h1, . . . , hq ∈ C, returns a pair (idx , out), where 0 ≤ idx ≤ q and
out is a side output related to hidx . The index idx = 0 indicates that A has
failed to compute a side output out related to any of the values h1, . . . , hq. The
general forking lemma [7] gives a lower bound on the probability of the forking
experiment in which A, if run twice on the same instance x and randomness
r ∈ R, but partially different values from C, will return the same index idx and
two side outputs out and out ′, which are related to the values hidx and h′idx ,
respectively. The experiment fails if both runs of A return two different indices,
or if hidx = h′idx . For the security proof of our n-out-of-n distributed signature
protocol we need a minor version of the general forking lemma. This version was
given in [4]. It considers an algorithm A that further returns a second index as
part of the output, i.e., A returns a tuple (idx 1, idx 2, out), where idx 1 and out are
as before, and 0 ≤ idx 2 < ω for ω ∈ N>0. The forking experiment succeeds only
if both runs of A return the same pair of indices (idx 1, idx 2) and hidx1

̸= h′idx1
.

Lemma 4. Let q, ω ∈ N>0, C be a finite set of size |C| ≥ 2, and R be a ran-
domness space. Let IGen be a PPT algorithm, and A be a PPT algorithm that,
on input x ∈ IGen and h1, . . . , hq ∈ C, outputs a tuple (idx 1, idx 2, out), where
0 ≤ idx 1 ≤ q and 0 ≤ idx 2 < ω. Define the accepting probability and the forking
probability of A by

acc := Pr[ExpAcc
IGen,C,A = 1] and frk := Pr[ExpFrkIGen,C,A = 1],

24

ExpAcc
IGen,C,A

1: x←$ IGen
2: h1, . . . , hq ←$ C
3: (idx1, idx2, out)←$ A(x, h1, . . . , hq)
4: if 1 ≤ idx1 ≤ q then
5: return 1
6: return 0

ExpFrkIGen,C,A

1: x←$ IGen
2: (b, out , out ′)←$ FrkC,A(x)
3: return b

FrkC,A(x)

1: r ←$ R
2: h1, . . . , hq ←$ C
3: (idx1, idx2, out)← A(x, h1, . . . , hq; r)
4: if idx1 = 0 then
5: return (0,⊥,⊥)
6: h′

idx1
, . . . , h′

q ←$ C
7: (idx ′

1, idx
′
2, out

′)←
← A(x, h1, . . . , hidx1−1, h

′
idx1

, . . . , h′
q; r)

8: if (idx1 = idx ′
1) ∧ (idx2 = idx ′

2) ∧
(hidx1 ̸= h′

idx1
) then

9: return (1, out , out ′)
10: return (0,⊥,⊥)

Fig. 7. Definition of experiments ExpAcc
IGen,C,A, ExpFrk

IGen,C,A, and forking algorithm FrkC,A.

where the experiments ExpAcc
IGen,C,A and ExpFrkIGen,C,A are depicted in Fig. 7. Then,

we have frk ≥ acc ·
(

acc
q·ω −

1
|C|

)
. Alternatively, acc ≤ q·ω

|C| +
√
q · ω · frk .

C Hardness Estimation of MLWE and MSIS

In this section, we explain the methodology that we follow in this work to es-
timate the hardness of MLWE and MSIS. First, we remark that all known algo-
rithms solving MLWE and MSIS do not exploit their algebraic structure.

Estimating the hardness of MLWE w.r.t. pp = (N, k, ℓ, q, η) is carried out by
using the LWE-Estimator4 presented by Albrecht et al. [2].

Given pp = (N, k, ℓ, q, β) and A = [ai,j]1≤i≤k,1≤j≤ℓ ∈ Rk×ℓ
q , the hardness

of MSIS w.r.t. pp is equivalent to solving the Shortest Vector Problem (SVP),
i.e., finding a non-trivial vector, whose ℓ2-norm is bounded by β, in the lattice
{x ∈ Zm : 0 = [Id|A′] · x (mod q)}, where d = kN , m = (k+ ℓ)N , and A′ is the
matrix obtained by computing the rotation matrix of each entry of A, i.e.,

A′ =

Rot(a1,1) . . . Rot(a1,ℓ)...
. . .

...
Rot(ak,1) . . . Rot(ak,ℓ)

 ∈ ZkN×ℓN
q .

We recall that the rotation matrix of any a =
∑N−1

i=0 aiX
i ∈ R is defined by

Rot(a) := (a, rot(a), rot2(a), . . . , rotN−1(a)) ∈ ZN×N ,

where a = (a0, . . . , aN−1)
⊤, rot(a) := (−aN−1, a0, . . . , aN−2)⊤, and for all other

k ∈ {2, . . . , N − 1} : rotk(a) := rot(rotk−1(a)) .

4 https://github.com/malb/lattice-estimator

25

https://github.com/malb/lattice-estimator

The best known algorithm for finding short non-trivial vectors is due to
Schnorr and Euchner [30]. It is called the Block-Korkine-Zolotarev algorithm
(BKZ), and was improved in practice by Chen and Nguyen [15]. As a subroutine,
BKZ uses an SVP solver in lattices of dimension b, where b is called the block
size. The best known classical algorithm for SVP with no memory restrictions is
due to Becker et al. [5], and it takes time ≈ 20.292 b. The time required by BKZ
to run with block size b on an m-dimensional lattice L is given by (see, e.g. [5])

8m 20.292 b+16.4. (1)

The output of BKZ is a vector of length δm det(L)1/m, where δ is called the
Hermite delta and it is given by (see, e.g. [15,14])

δ =
(
b (πb)

1
b /(2πe)

) 1
2(b−1) , (2)

and det(L) is the determinant of L. Micciancio and Regev [29] showed that
it is better to run algorithm BKZ with a maximum of m =

√
d log(q)/ log(δ)

columns of the matrix [Id|A′]. The coefficients of the solution output by BKZ
and correspond to the dropped columns are then set to zero. This allows to
find a non-zero vector of length min(q, 22

√
d log(q) log(δ)). In other words, when

considering δm det(L)1/m as a function of m, Micciancio and Regev [29] showed
that the minimum of this function is given by the value 22

√
d log(q) log(δ), and

it is obtained when m =
√

d log(q)/ log(δ). Therefore, in order to compute the
time required by BKZ to solve MSIS w.r.t. pp, we first determine δ by setting
β = 22

√
d log(q) log(δ), where d = kN and m = (k + ℓ)N . After that, we compute

the minimum block size b required to achieve δ by using (2). The resulted b is
put in (1) to obtain the desired time.

D Indistinguishability of Hybrids H2 and H1

The following lemma establishes the statistical distance between the hybrids H2

and H1 defined in the proof of Theorem 1.

Lemma 5. Let σ be as in Lemma 2, M be as in Lemma 3, and δ > 0 such that
(1 − 1−2−100

M)ω ≤ δ. Let A ←$ Rk×ℓ
q , Ā = [Ik|A] ∈ R

k×(k+ℓ)
q , s ←$ Sk+ℓ

η , and
b = Ā · s (mod q). Then, the output distributions of the algorithms A0 and A1

defined in Fig. 8 are within statistical distance of at most 2−Ω(N)+1 · 2−100/M .

Proof. The proof is similar to the one of [12, Lemma B.8], which is performed
via standard hybrid arguments. The only difference here is that in algorithm
A0 rejection sampling is carried out at most ω times, using Gaussian masking
vectors y0, . . . ,yω−1. The goal is to make sure that the distribution of z = yi+sc
is independent of sc. The random choice of ρ ∈ [0, 1) and doing the test in
line 13 is a standard implementation of the rejection sampling procedure. By
Lemma 3, rejection sampling accepts with probability (1 − 2−100)/M , and z is

26

A0(Ā,b, s)

1: c←$ Tκ

2: T ← {0, . . . , ω − 1}
3: for j = 0 to ω − 1 do
4: yj ←$ Dk+ℓ

ZN ,σ

5: vj ← Ā · yj (mod q)
6: v← (v0, . . . ,vω−1)
7: z′ ← sc
8: while T ̸= ∅ do
9: i←$ T

10: T ← T \ {i}
11: z← yi + z′

12: ρ←$ [0, 1)

13: if ρ ≤ 1
M
·exp

(−2⟨z,z′⟩+∥z′∥2
2σ2

)
then

14: return (A,b,v, c, z, i)
15: (z, i)← (⊥,⊥)
16: return (A,b,v, c, z, i)

A1(Ā,b)

1: c←$ Tκ

2: T ← {0, . . . , ω − 1}
3: i←$ T
4: z←$ Dk+ℓ

ZN ,σ

5: vi ← Ā · z− bc (mod q)
6: for j = 0 to ω − 1 do
7: if j = i then
8: continue
9: yj ←$ Dk+ℓ

ZN ,σ

10: vj ← Ā · yj (mod q)
11: v← (v0, . . . ,vω−1)
12: ρ←$ [0, 1)
13: if ρ ≤ 1− δ then
14: return (A,b,v, c, z, i)
15: (z, i)← (⊥,⊥)
16: return (A,b,v, c, z, i)

Fig. 8. The algorithms that show the Indistinguishability of hybrids H2 and H1 defined
in the proof of Theorem 1.

within statistical distance of 2−100/M from the Gaussian distribution Dk+ℓ
ZN ,σ

.
When using ω masking vectors y0, . . . ,yω−1, instead of only one, algorithm A0

returns (z, i) ̸= (⊥,⊥) with probability 1− (1− 1−2−100

M)ω ≤ 1− δ. Lemma 2 is
applied twice in order to obtain a statistical distance of 2−Ω(N) between a vector
Ā · y ∈ Rk

q , for y ←$ Dk+ℓ
ZN ,σ

, and a uniformly random vector from Rk
q . We refer

to [12, Lemma B.8] for more details.

27

	Practical Lattice-Based Distributed Signatures for a Small Number of Signers

