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ABSTRACT

We introduce a blockchain Fair Data Exchange (FDE) protocol, en-
abling a storage server to transfer a data file to a client atomically:

the client receives the file if and only if the server receives an agreed-

upon payment. We put forth a new definition for a cryptographic

scheme that we name verifiable encryption under committed key

(VECK), and we propose two instantiations for this scheme. Our pro-

tocol relies on a blockchain to enforce the atomicity of the exchange

and uses VECK to ensure that the client receives the correct data

(matching an agreed-upon commitment) before releasing the pay-

ment for the decrypting key. Our protocol is trust-minimized and

requires only constant-sized on-chain communication, concretely 3

signatures, 1 verification key, and 1 secret key, with most of the data

stored and communicated off-chain. It also supports exchanging

only a subset of the data, can amortize the server’s work across mul-

tiple clients, and offers a general framework to design alternative

FDE protocols using different commitment schemes. A prominent

application of our protocol is the Danksharding data availability

scheme on Ethereum, which commits to data via KZG polynomial

commitments. We also provide an open-source implementation for

our protocol with both instantiations for VECK, demonstrating our

protocol’s efficiency and practicality on Ethereum.

1 INTRODUCTION

Cloud data storage is a rapidly growing global market (≈ 18.5%

annual growth rate) with an estimated value of $78.6 billion in

2022 [51]. The volume of cloud data being stored today is counted

in tens to hundreds of zettabytes (1 zettabyte = 2
70

bytes) [62]. Data

economy globally is much larger and is estimated at the trillions

of US dollars (based on Canadian [20, 66] and European [45] as-

sessment). Recent regulations [57] enforce companies to make the

generated data more widely accessible potentially helping expand

the global market for cloud data. Fair and secure protocols to pur-

chase access to data are essential to unlock the massive potential

of global data markets. However, most approaches for accessing

data today are either subscription-based, where the client pays the

∗
Big part of the work was done at a16z crypto research.

server in advance and must trust the reputation of the server to

deliver the data, or altruistic, where either the server provides the

data free of charge or the data is exchanged between the users

themselves as in BitTorrent [25]. The former approach does not

safeguard the client from a malicious server that receives payment

without fulfilling the data request, while the latter lacks incentives

for clients to offer data for download, leading to free-riding and

limited capacity. Moreover, the vast majority of storage systems do

not provide data integrity guarantees to users [6].

While blockchains were originally conceived as payment sys-

tems, it was quickly observed that they could also be used for

data storage [24]. Bitcoin [53] adopted a dedicated mechanism

(OP_RETURN) for storing data on-chain in 2014, which has been

used for a variety of purposes [69]. Ethereum [72] has always sup-

ported arbitrary data storage (calldata) as required by its Turing-

complete smart contract platform (EVM). As append-only, immutable,

and distributed ledgers, blockchains can provide data storage that

is robust against faults and abuse of power.

However, by themselves, blockchains are highly limited in both

storage and computational capacity, making on-chain data storage

expensive. For example, storing 1 megabyte of data on Ethereum

as calldata would cost approximately $2,100 at the time of writing.

While many blockchain projects are working to improve capacity

and reduce costs, it is conjectured that these systems will always

be limited as increased capacity is at odds with maintaining secu-

rity and decentralization (an observation dubbed the blockchain
trilemma [15]).

Limited on-chain capacity has led to the development of so-called

layer-2 (L2) solutions (e.g., rollups, validiums) for both computation

and data storage. These solutions perform computation and store

data off-chain while enabling the main blockchain (now called a

layer-1) to verify off-chain computation via verifiable computation

(as [64, 68, 73]) and off-chain storage via proofs-of-storage and repli-

cation (as in [35]). In the case of off-chain storage, the blockchain

typically receives a succinct commitment to the data uploaded to
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the servers. It can then use the commitment to verify proofs-of-

retrievability [14]) or proofs-of-replication [36, 37] attesting to the

persistence of the data.

A current gap in both theory and practice is that, while these

proofs provide a natural mechanism to pay servers to store data,
they don’t provide ameans to pay for actually serving the data when

requested by the clients. Today’s protocols only incentivize storage

and assume servers will provide download access essentially “for

free.” This is problematic for two reasons: First, transferring the data

comes with its own costs, which servers should be compensated for,

proportional to the number of times the data is downloaded. Second,

without any incentives, malicious servers might store the data (and

receive payment for doing so) but never respond to legitimate

download requests.
1
Storage is useless unless the data is made

available for access.

The FDE problem. To fill this gap, in this work, we introduce the

concept of a blockchain Fair Data Exchange (FDE) protocol, where

clients and servers have cryptographic fairness and data integrity

guarantees, and formalize its syntax and security properties (cf.
Section 4.1). We notice that in most scenarios, it’s natural to assume

that the client holds a short cryptographic commitment to the

stored data that the server possesses in its entirety. Therefore, we

informally require that in FDE protocols, the server will receive the

payment from the client if and only if the client receives the data

beneath the commitment.

A prominent application of our scheme is ProtoDanksharding

(EIP-4844) [16], a new data availability scheme being designed for

Ethereum.In ProtoDanksharding, validators store special kind of

blockchain data designated for storage and not for execution, called

blob-data. The blob-data expires, but the KZG-commitment to the

data is persisted. After its expiry, data-availability servers or full-

nodes might voluntarily continue storing the blob-data, but they are

not required to. Our FDE protocol helps incentivize nodes to con-

tinue storing the data by enabling the users to purchase expired data

from nodes in a trust-minimized, fair, and efficient way. Our scheme

also applies to Danksharding [30], an extension that would dissem-

inate blob-data to the nodes, avoiding data-replication. Besides

these applications, our protocol can also facilitate marketplaces for

arbitrary committed data with multiple servers and clients.

A strawman blockchain-based solution. Pagnia and Gärtner’s

well-known impossibility result states that fair exchange is impos-

sible without a trusted third party (TTP) [55]. A straightforward

but inefficient solution to the FDE problem using an L1 blockchain

(such as Ethereum) as the TTP would be as follows: Suppose the

client has a short commitment𝐶 to the data that it wishes to obtain

from the server. The client locks some funds for payment in an

FDE smart contract on the blockchain along with the commitment

𝐶 . The contract enables the server to receive these funds only if it

publishes the requested data, that correctly verifies against 𝐶 in a

smart contract. While this is a secure and fair solution, it is highly

inefficient as it requires all data to be written to the L1 chain. If the

data is too large to fit in a single transaction, the parties would also

need to interact multiple times with the blockchain, adding latency

1
Game-theoretic approaches to enforce responses require posting the data on the

blockchain in the worst-case [70].

and additional costs. We aim to design a constant-round protocol

with a small (ideally constant) storage footprint on the blockchain.

Our approach. We introduce a new FDE protocol (cf. Figure 1),
where a client and a server atomically exchange funds for data

committed using the KZG polynomial commitment scheme [47].

Our choice of KZG is due to two reasons: First, it has the ability to

provide constant-size commitments and batchable opening proofs,

which are particularly useful when a client only wants to retrieve a

subset of the committed data. Second, KZG commitments are also

used in Danksharding, making our protocol a natural fit.

We describe the blue-print of our FDE protocol in Figure 1. We

consider data stored as a length 𝑛 + 1 vector of field elements.

Let 𝜙 (·) with commitment 𝐶𝜙 be the degree 𝑛 polynomial whose

evaluation over the points {0, . . . , 𝑛} correspond to the data entries.
To start the exchange of data for funds, the server posts a public

verification key vk to a contract along with the specific details of

the data exchange, e.g., the agreed price and the client’s blockchain

address (step 1). Subsequently, the server sends the client (off-chain)

the encryptions {ct𝑖 }𝑛𝑖=0 of the data points {𝜙 (𝑖)}𝑛
𝑖=0

along with

a proof which shows that indeed for all 𝑖 ∈ [𝑛], ct𝑖 is the correct
encryption of the evaluation 𝜙 (𝑖) at index 𝑖 of the polynomial 𝜙 (·)
committed by 𝐶𝜙 , under some decryption key sk committed by

vk (step 2). After receiving the encrypted data, the client locks up

funds in the on-chain contract if the details of the exchange and

the proofs are correct with respect to the ciphertexts and the KZG

commitment (step 3). The server can redeem the payment only if it

provides the (secret) decryption key sk that matches its previously

submitted verification key vk (step 4). The client can then read sk
from the contract and decrypt the ciphertexts to obtain the data

(steps 5 and 6). If the server does not reveal a decryption key, the

client can withdraw its locked coins after a timeout. We show that

our FDE protocol satisfies correctness, client-fairness (the server

cannot receive any payment if the client does not obtain the data)

and server-fairness (the client cannot learn anything about the data

without paying the server).

Our protocol also extends to the multi-client setting in which

multiple clients download the same data. We introduce a multi-

client FDE protocol where, via preprocessing, we amortize the

server’s computation cost to serve multiple clients. In certain appli-

cations, this protocol can also reduce the clients’ computation by

having the blockchain verify the server’s preprocessing output.

For the proof-system/encryption scheme combination required

in FDE, we make the following important observation: the decryp-

tion key for the ciphertext is produced together with the ciphertext

itself, and the decryption key is only used once. Henceforth more ef-

ficient encryption schemes could be used, including symmetric-key

or one-time schemes, opening a broader design space for the under-

lying cyprographic primitive that we introduce in this work: Veri-

fiable Encryption under Committed Key (VECK). The blockchain

FDE protocol is then built using VECK in a black-box way. We

build two instantiations for VECK: using a symmetric-key version

of exponential ElGamal encryption and using public-key version of

Paillier encryption. Our instantiations of VECK allow encrypting

evaluations of a polynomial under a KZG commitment, however

we set forth more general definitions to capture other potential

applications or commitment schemes.
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# Rounds data com. |𝜋disp | S → C comm. C → E comm. S → E comm. Online

FairSwap [31] 5 Merkle tree 3 log(𝑘) |H| (𝑘 + 1) |H| 2|H| + |𝜎 | 2|𝜎 | + |G| ✓

FileBounty [46] 𝑘 Merkle-Damgård [29] 3G 𝑘 (𝜆 + |H|) 𝑘 |𝜎 | 2|𝜎 | ✗

FairDownload [44] 𝑘 Merkle tree log(𝑘) |H| 𝑘 |ct| 𝑘 |𝜎 | 2|𝜎 | + O(log𝑘) |H| ✗

FDE-ElGamal (cf. Figure 2) 3 KZG [47] N/A 𝑘8|ct| + 6|G| |𝜎 | 2|𝜎 | + 2|G| ✓

FDE-Paillier (cf. Figure 5) 3 KZG [47] N/A 𝑘 (2|ct| + |F𝑝 |) |𝜎 | 2|𝜎 | + 2|G| ✓

Table 1: Comparing our 𝐹𝐷𝐸 protocols with our closest related works. 𝑘 denotes the number of exchanged chunks of data.

Each data chunk has 𝜆 bits. S, C, E denotes the server, the client, and the payment environment (typically a smart contract),

respectively. The size of the proof submitted during the dispute protocol is denoted as |𝜋disp |. We say a fair exchange protocol

is online if the protocol assumes that C and S must be online during the entire execution of the protocol. Here, |H|, |G|, and
|F𝑝 | refer to the size of a single hash function output, (an elliptic curve or Z𝑁 2 ) group element, and field element, respectively,

whereas |𝜎 | refers to the signature size. N/A means not applicable.

Implementation and benchmarks. We provide a practical, open-

source implementation
2
of our FDE protocols accompanied by as-

ymptotic and concrete performance evaluations (cf. Table 1 for a
comparison of our performance metrics with prominent related

work). Our FDE protocols are practical and have low round com-

plexity (3 rounds). For the server, the cost of proving the consistency

of ciphertexts for 4, 096 KZG-committed BLS12-381 field elements

(enough to transfer 128 KiB of data) takes ≈ 89 seconds for expo-

nential ElGamal (vs. ≈ 5 seconds for Paillier) on a consumer laptop.

We foresee several venues for optimizing our proof of concept im-

plementation. The bulk of the cost (≈ 40%) for ElGamal is due to

generating range-proofs which can be amortized when serving

multiple clients. Our exponential ElGamal-based protocol has a

constant-size proof (9 G and 2 F𝑝 elements), but we split the plain-

texts into 𝑘 smaller chunks to enable efficient decryption, resulting

in a 𝑘-factor blowup in the ciphertext size. On the other hand, the

Paillier-based protocol has linear-sized proofs in the number of

exchanged BLS12-381 field elements. Overall, we observe a ≈ 10×
bandwidth overhead in our ElGamal protocol (vs. ≈ 50× for Paillier),
that is, the size of the ciphertexts and proofs compared solely to

the size of the exchanged data. Despite of this, interestingly, both

the Paillier prover and verifier are concretely more efficient than

the ElGamal prover and verifier, cf. Figure 6. For more benchmarks,

cf. Section 6.

Outline. The rest of this paper is organized as follows. We review

the pertinent literature in Section 2. We introduce the notion of

verifiable encryption under committed key (VECK) in Section 3.

In Section 4, we introduce the syntax, security, and privacy require-

ments of blockchain Fair Data Exchange (FDE) protocols, and con-

struct secure FDE protocol instances on Ethereum and Bitcoin using

VECK protocol as a black-box. In Section 5, we provide two con-

structions for secure FDE protocols: based on exponential ElGamal

and based on Paillier encryptions. We provide an extensive perfor-

mance evaluation of our implementation in Section 6. In Section 7,

we introduce a multi-client FDE protocol where, via preprocessing,

we amortize the server’s computation cost to serve multiple clients

We conclude our paper with some discussions, possible extensions,

and open problems in Section 8.

2
https://github.com/PopcornPaws/fde.

Server(          )
Client(         )

Contract

Data

3) Locks Payment

Payment

1) Sends public key

4) Sends secret key

2) Sends encrypted data with proofs

5) Reads secret key

Decrypt(      ,             )=

6) Obtaining the data

5) W
ithdraws coins

Figure 1: The blueprint of FDE protocols on Ethereum that

relies on a smart contract for achieving fairness.

2 RELATEDWORK

It has been long known that fair exchange without a trusted third

party (TTP) is impossible [55]. Recently, with the development of

blockchains as reliable trusted third parties, fair exchange protocols

have received renewed attention [7, 31, 44, 46]. These protocols

typically resolve a witness-selling problem: the buyer is willing

to offer 𝐷 coins for the witness value 𝑥 (e.g., factorization of a

modulus) such that 𝑓 (𝑥) = true. The protocol then goes as follows:

the buyer locks 𝐷 coins, and only if the seller provides 𝑥 to the

buyer does the seller get these coins; if no 𝑥 is provided, the buyer

gets its money back after a time-out. This protocol effectively boils

down to exchanging a signature on a transaction for a witness, and

a more general version of it is tasked with fairly exchanging two

witnesses (e.g., two signatures or two keys, or a signature for a key,

etc.). Such protocols roughly fall into two categories: optimistic

(e.g., [3]) and atomic. The former uses a TTP for dispute resolution,

where each party encrypts its signature or witness under the TTP’s

public key and sends it to the other party. TTP then helps the parties

complete the exchange in the event one of the parties aborts or

cheats. However, in these works, the trusted party is assumed to

handle secrets which is not translatable to the general blockchain

setting. In an atomic exchange, the TTP holds the coins and sends

them to the seller if the seller’s witness value 𝑥 given to TTP satisfies

3
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a statement, i.e., 𝑓 (𝑥) = true. In these schemes, the TTP need not

store any secret information.

In FairSwap [31], Dziembowski et al. develop a general protocol

for exchanging the witness, 𝑥 , of an NP statement 𝜙 for a signature

(or a payment). The server encrypts the input 𝑥 of the NP state-

ment and the wires of the circuit for evaluating the statement 𝜙 (𝑥),
commits to all of these encryptions in a Merkle tree, and submits

the Merkle root to a smart contract. It also submits a Merkle root

committing to the circuit 𝜙 . The client then locks the payment to

the server in the smart contract, after which the server submits the

decryption key. A complaint period allows the client to succinctly

prove to the contract the inconsistency of the data, in which case

the client gets its money back. Our solution avoids the complaint

period and allows the exchange to happen at network speed. A

follow-up work, OptiSwap [32], improves the performance of the

protocol for the optimistic case when both parties behave honestly

by introducing interaction to the dispute resolution process.

More efficient protocols have been built for a special case of

the problem above, aiming at exchanging the data underneath

the client’s commitment for a signature (i.e. a payment). In File-

Bounty [46], the commitment to the data (𝑀1, 𝑀2, . . . , 𝑀𝑁 ) is as-
sumed to be an application of an iterated hash function (e.g., SHA256
based on Merkle-Damgard paradigm):

C = ℎ(ℎ(. . . ℎ(ℎ(𝐻𝑁 , 𝑀𝑁 ), 𝑀𝑁−1) . . .), 𝑀1) .

The data is transferred chunk-by-chunk from𝑀1 to𝑀𝑁 , and each

chunk 𝑀𝑖 is accompanied by a value 𝐻𝑖 with 𝐻1 := C and it is

checked that ℎ(𝐻𝑖+1, 𝑀𝑖 ) = 𝐻𝑖 . In case any one of the parties cheats

or disappears, the dispute resolution is done on a blockchain, where

zkSNARKs are used in order to hide the data. If the server or the

client stops executing the protocol in the middle, then at worst,

the client receives a small chunk that it did not pay for, or the

server is paid a small amount for a small chunk it did not provide.

In both cases, the loss can be tolerated since the chunk and the

corresponding payment are both small. This model, however, only

works if the client’s utility in receiving a portion of the data is

proportional to its size, and it is not suitable for scenarios where

the client is only interested in receiving the whole data. In these

cases, the blockchain can be used to help participants complete the

exchange, albeit at the expense of privacy concerns and higher costs.

Our work mitigates these issues by employing efficient verifiable

encryption protocols.

He et al. [44] provide an FDE protocol called FairDownload,

where aMerkle root hash of the data is published on-chain. The data

is the leaves of the Merkle tree. The client and the server exchange

the data chunk by chunk without any consistency proofs with

respect to the Merkle root hash. However, the exchanged chunks

are signed by the server. Therefore, if there is any dispute between

the client and the server, the client can prove the misbehavior of

the server to the on-chain contract with a O(log𝑘)-sized Merkle-

inclusion proof. Linus [50] also designs a similar scheme called

BitStream with optimistic dispute resolution on Bitcoin with the

help of Merkle proofs. The O(log𝑘) cost of these schemes is in

contrast with our constant-sized on-chain communication cost.

Interestingly, He et al. define novel notions of fairness (e.g., delivery
fairness) and show that their protocol satisfies them.

Finally, Bitcoin zk-Contingent-Payments (ZKCP) introduced

as a concept by Gregory Maxwell in 2011 [52] aims to solve a fair

exchange problem for the Bitcoin blockchain limited in scripting

capabilities. ZKCP uses symmetric key encryption along with the

Pinocchio/BCTV14 zkSNARK to prove that the ciphertext encrypts

a plaintext that satisfies a certain predicate using a key committed

via a cryptographic hash function. However, concrete instantiations

were shown to be insecure [19, 39]. In this context, ZKCPlus [49]

addresses the security problems and performance limitations of

zk-Contingent-Payments by proposing a ‘commit-and-prove non-

interactive zero-knowledge arguments of knowledge (CP-NIZK)’

protocol suited to computations with parallelized identical sub-

circuits. Another protocol that uses symmetric key encryption

is FairRelay, a fair exchange protocol across payment channel

networks, where data is transmitted through multiple parallel se-

quences of relays. Besides server and client fairness, it provides

data privacy and atomic exchange of the data and payments to the

relays. To ensure the authenticity of the data, FairRelay relies on

proofs of misbehavior generated by Groth16 [42], which incur a

proving cost of over 50s on 64 kB of data.

In contrast to the previous work, our protocol has a minimum

number of rounds and entirely avoids a dispute resolution phase.

See Table 1 for a more detailed comparison. Our protocol also

supports selective download, where a subset of the data is requested,

and it is friendly to data-dispersal protocols which utilize erasure

coding (e.g., Danksharding [30]).

In [1], Abadi et al. defined an atomic and privacy-preserving fair-

exchange scheme named Recurring Contingent Service Pay-

ment (RC-S-P) that uses blockchains as a TTP for exchanging

payments with an arbitrary verifiable service in a recurrent fashion.

As RC-S-P uses NIZKs to support arbitrary verifiable services, the

authors also present a concretely efficient instantiation of RC- S-P

called RC-PoR-P that targets proof-of-retrievability (PoR) as the

verifiable service. Our FDE protocol syntax can be viewed as the

syntax of an RC-S-P scheme, where the service is providing the data

attested by a public commitment. However, unlike the RC-PoR-P

application, our protocol requires the server to provide the data

rather than a PoR
3
in exchange for the payment.

Our protocol builds a variant of verifiable encryption (VE) for

committed values. VE allows an encryptor to prove an NP-relation

about a plaintext encrypted under a public key encryption scheme.

It was first introduced by Stadler [67] for discrete logarithms and

later generalized by [4] for the fair exchange of signatures. A related

problem of practical encryption for discrete-logarithm values was

solved by Camenish and Shoup [17] using a CCA-secure encryp-

tion scheme based on Paillier’s Decision Composite Residuosity

(DCR) assumption [56], with application, among others, to the fair

exchange of Schnorr or DSS signatures. This was the first scheme

to avoid the expensive "cut-and-choose" paradigm adopted by the

earlier works [4, 67].

Whereas VE can be instantiated generically using zero-knowledge

(zk)SNARKs, this requires the inclusion of the encryption as part of

the SNARK relation, with potential effects on efficiency. In this con-

text, the LegoSNARK framework allows proving relations satisfied

3
A PoR guarantees that the stored data is intact, but does not provide any guarantee

that it will be made available upon request.
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by a witness with respect to an existing commitment, thus com-

bines the commitment and SNARK akin to lego pieces [18]. SAVER

extends this idea to encryptions of the witness by allowing SNARK

proofs without including encryption in the SNARK circuit [48].

Unlike VE, VECK allows the use of symmetric key encryption.

In fact, VECK is generically realizable using symmetric encryption

and NIZKs, as we discuss in Section 8. Morever, as our scheme uses

a fresh key to encrypt the data in each request, unlike [17], we

do not need CCA-security, and simpler, more efficient CPA-secure

schemes such as ElGamal or Paillier would suffice. We explore both

variants and demonstrate their efficiency in this work.

A related construction to VE is commitment consistent encryp-

tion (CCE), which is a public key encryption scheme with the ability

to generate a commitment to the encrypted message (with the pub-

lic key) and to subsequently open the commitment (with the secret

key) [27]. CCEs were developed to provide universally verifiable

voting schemes with perfectly private audit trail; so that the elec-

tion results can be verified via the audit data while preserving voter

privacy even after key leakages [27, 58]. Unlike CCEs, VECKs en-

able verifiable encryption of subsets of the messages under a vector

or polynomial commitment.

3 VERIFIABLE ENCRYPTION UNDER

COMMITTED KEY (VECK)

Preliminaries. We let 𝜆 ∈ N denote the security parameter. A

non-negative function 𝜎 (𝜆) is called negligible if for every poly-

nomial 𝑝 (𝜆) it holds that 𝜎 (𝜆) ≤ 1/𝑝 (𝜆) for all sufficiently large

𝜆 ∈ N. For a random variable 𝑥 we denote by 𝑥 ←𝑅 𝑋 the process

of sampling a value 𝑥 from the set 𝑋 uniformly at random.Before

we present the formal definition for VECKs, we briefly recall poly-

nomial commitments and their properties.

Polynomial Commitment schemes allow committing to uni-

variate polynomials of degree at most ℓ over F𝑝 and are comprised

of the following algorithms, where Setup is randomized and the

rest are deterministic (although Commitmight also be randomized,

but this case will not be our focus here):

• Setup(1𝜆, 𝑛) → crs : generates public parameters for com-

mitting to polynomials of degree at most 𝑛.

• Commit

(
crs, 𝜙 (𝑋 )

)
→ 𝐶 : deterministically computes the

commitment𝐶 to the polynomial𝜙 (𝑋 ) ∈ F≤𝑛𝑝 [𝑋 ] of degree
not greater than 𝑛.

• VerifyPoly

(
crs, 𝜙 (𝑋 ),𝐶

)
→ 0/1 : outputs 1 if it holds that

Commit

(
crs, 𝜙 (𝑋 )

)
= 𝐶 , and outputs 0 otherwise.

• Open(crs, 𝑖, 𝜙 (𝑋 )) → 𝜋 : outputs a proof 𝜋 for the fact that

𝜙 (𝑋 ) evaluates to 𝜙 (𝑖) at index 𝑖 .
• VerifyEval

(
crs,𝐶, 𝑖, 𝜙 (𝑖), 𝜋

)
→ 0/1 : verifies the proof.

• BatchOpen(crs, 𝑆 = (𝑖1, . . . , 𝑖𝑘 ), 𝜙 (𝑋 )) → 𝜋 : outputs a

proof for multiple evaluations of 𝜙 (𝑋 ) at indices 𝑆 .
• BatchVerify(crs,𝐶, (𝑚𝑖1 , . . . ,𝑚𝑖𝑘 ), (𝑖1, . . . , 𝑖𝑘 ), 𝜋) → 0/1

verifies the batch proof.

A secure polynomial commitment scheme satisfies the following

properties (for the full statements, please refer to e.g., [47]):
Correctness: Honestly generated commitment and proofs verify

correctly.

Polynomial Binding: No PPT adversary can generate a commit-

ment 𝐶 and two different polynomials 𝜙 (𝑋 ), 𝜙 ′ (𝑋 ) ∈ F≤𝑛𝑝 [𝑋 ] ∧

𝜙 (𝑋 ) ≠ 𝜙 ′ (𝑋 ), such that the commitment verifies against both

of them correctly, i.e., they generate the same commitment: 𝐶 =

Commit

(
crs, 𝜙 (𝑋 )

)
= Commit

(
crs, 𝜙 ′ (𝑋 )

)
4
.

Evaluation Binding: No PPT adversary can generate a commit-

ment 𝐶 and two different evaluations 𝜙 (𝑖) ≠ 𝜙 ′ (𝑖) on the same

point 𝑖 with proofs 𝜋, 𝜋 ′ that would verify correctly.

Polynomial commitments can be viewed as a special case of

vector commitments, where a data vector m = (𝑚0, . . . ,𝑚ℓ ) ∈ Fℓ+1𝑝

is mapped to a polynomial 𝜙 (𝑋 ) ∈ Fℓ𝑝 (𝑋 ) of degree ℓ , s.t. ∀𝑖 ∈
[ℓ] : 𝜙 (𝑖) =𝑚𝑖 [21], BatchOpen then allows to generate subvector-

opening proofs.

Verifiable encryption under committed key (VECK), intu-

itively, allows an encryptor to show with a zero-knowledge proof

that committed data was encrypted correctly using a committed

key. It has the following functionality: given a commitment to the

data, it allows to encrypt the data (or a pre-specified function of the

data). The encryption outputs a verification key, a ciphertext and a

zero-knowledge proof of correct encryption. It satisfies correctness,

soundness and zero-knowledge. Correctness guarantees that the

decryption key corresponding to the verification key decrypts the

original data (or its pre-specified function). Thus, the verification

key can be viewed as a commitment to the decryption key. Sound-

ness guarantees that no polynomial-time adversary can generate

a convincing proof about an incorrect encryption which does not

correspond to the data underlying the commitment, without break-

ing the underlying assumptions, or the security of the commitment

schemes. Zero-knowledge guarantees that the ciphertext, verifica-

tion key and the proof leak no information that enables the recovery

of the underlying data, therefore, the data would remain private

until the decryption key is revealed.

Although such functionality can be generically achieved using

public-key encryption and generic SNARKs, we show that building

it holistically using tailored one-time encryption and proofs results

in a simpler and more elegant stand-alone construction.

VECK allows us to reduce the problem of fair data exchange to

a problem of fair exchange of decryption key for a payment, as we

show in Section 4. The latter exchange can be done fairly through a

blockchain, since the validity of the decryption key can be verified

against the verification key using a blockchain smart-contract.

Definition 3.1 (verifiable encryption under committed

key (VECK)). Let (Setup,Commit) be a non-interactive binding
commitment scheme, where Setup(1𝜆) → crs generates a public
common-reference string, and Commit(crs,𝑤 ∈ W) → 𝐶𝑤 ∈ C
generates a commitment. A non-interactive VECK scheme for a class
functions F = {𝐹 : W → V} is a tuple of algorithms ΠF =

(Gen, Enc,Verct,Verkey,Dec):
• Gen(crs) −→ pp: Probabilistic polynomial-time algorithm

that takes as input the crs generated by the setup of the com-
mitment scheme and outputs parameters for the system, as
well as the description of appropriate spaces. The parameters
pp are implicitly taken by all the following algorithms, we
omit them where it is clear from the context.

• Enc(pp, 𝐹 ,𝐶𝑤 ,𝑤) −→ (vk, sk, ct, 𝜋) : Probabilistic polynomial-
time algorithm, run by the server, It takes in the function 𝐹 ,

4
We only workwith polynomials of degree ℓ by assuming that the size of the committed

data is known.

5



Ertem Nusret Tas, István András Seres, Yinuo Zhang, Márk Melczer, Mahimna Kelkar, Joseph Bonneau, and Valeria Nikolaenko

the commitment 𝐶𝑤 to 𝑤 and the 𝑤 itself, and outputs a
verification key vk, a decryption key sk, an encryption ct of
𝐹 (𝑤) and a proof 𝜋 .

• Verct (pp, 𝐹 ,𝐶𝑤 , vk, ct, 𝜋) −→ 1/0: A deterministic polynomial-
time algorithm run by the client that outputs accept or reject.

• Verkey (pp, vk, sk) −→ 1/05: A deterministic polynomial-time
algorithm run by the blockchain or a trusted third party that
checks the validity of the secret key.

• Dec(pp, sk, ct) −→ 𝑣/⊥ : A deterministic polynomial-time
algorithm run by the client, it outputs a value (such as an
evaluation of 𝐹 on𝑤 ) or ⊥.

A VECK scheme satisfies the following properties:
Correctness: Verifications for honestly generated encryption succeed:
∀𝑤 ∈ W,∀𝐹 ∈ F , the following event holds with probability 1:

Pr


Verct (𝐹,𝐶𝑤 , vk, ct, 𝜋) = 1 ∧

Verkey (vk, sk) = 1

��������
crs← Setup(1𝜆)
𝐶𝑤 ← Commit(crs,𝑤)
pp← Gen(crs)
(vk, sk, ct, 𝜋) ← Enc(𝐹,𝐶𝑤 ,𝑤)


Soundness: No probabilistic polynomial time adversary can generate
sk, vk, ct and 𝜋 such that verification succeeds, yet decryption does
not output a valid value. Namely, ∀ 𝑤 ∈ W,∀𝐹 ∈ F , for any PPT
algorithm A, there exists a negligible function 𝜈 (·) such that the
following is less than 𝜈 (𝜆):

Pr


Verct (𝐹,𝐶𝑤 , vk, ct, 𝜋) = 1 ∧

Verkey (vk, sk) = 1 ∧
𝑦 ≠ 𝐹 (𝑤)

����������
crs← Setup(1𝜆)
𝐶𝑤 ← Commit(crs,𝑤)
pp← Gen(crs)
(sk, vk, ct, 𝜋) ← A(pp, 𝐹 ,𝐶𝑤)
𝑦 ← Dec(𝐹, sk, ct)


We note that for 𝐹 that computes identity, knowledge extraction

(knowledge-soundness) is implicit in the definition of security and
is given by the decryption, i.e., a valid 𝑤 can be extracted from the
adversary that convinces the verifiers.
Computational Zero-Knowledge: The ciphertext and the proof leak
no additional information about the witness. For any PPT algorithm
A, there exists a PPT simulator Sim such that there is a negligible
function 𝜇 (·), s.t. for all𝑤 ∈ W,∀𝐹 ∈ F the following probability is
less than 1/2 + 𝜇 (𝜆):

Pr


A(pp, 𝐹 ,𝐶𝑤 , vk𝑏 , ct𝑏 , 𝜋𝑏 ) = 𝑏

����������������

crs← Setup(1𝜆)
𝐶𝑤 ← Commit(crs,𝑤)
pp← Gen(crs)
(vk0, sk0, ct0, 𝜋0)

↱ Enc(pp, 𝐹 ,𝐶𝑤 ,𝑤)
(vk1, ct1, 𝜋1)

↱ Sim(pp, 𝐹 ,𝐶𝑤)
𝑏 ←𝑅 {0, 1}


Zero-knowledge property can also be statistical instead of com-

putational, where instead of having the algorithmA distinguishing

the real (pp,𝐶𝑤 , vk0, ct0, 𝜋0) and the simulated (pp,𝐶𝑤 , vk1, ct1, 𝜋1)
distribution as above, we would say that they are statistically indis-

tinguishable. Some of our constructions satisfy this stronger notion

of zero-knowledge.

5
In our constructions, the key verification will not need full public parameters.

Note that VECK allows the use of symmetric key encryption and

can be built generically using symmetric encryption and NIZKs

(cf. Section 2 for related protocols). Likewise, it can be built using

public key encryption, but the possibility of using symmetric key

encryption opens up a prospect for using more efficient schemes.

For the FDE application, we will explore a polynomial commit-

ment scheme, where the VECK function 𝐹 is the evaluations of

a given degree-ℓ polynomial: 𝐹 (𝜙) = {𝜙 (𝑖)}𝑖∈[ℓ ] , where 𝜙 (𝑋 ) is
a polynomial of degree ℓ , and more generically 𝐹 computes the

subsets of evaluations: 𝐹𝑆 (𝜙) = {𝜙 (𝑖)}𝑖∈𝑆 . In practice, instead of

𝑖 ∈ {0, 1, . . . , ℓ}, an FFT-friendly set (and its subsets) can be used for

efficiency: {1, 𝜔, 𝜔2, . . . , 𝜔ℓ }, where 𝜔 ∈ F𝑝 is a primitive (ℓ + 1)-th
root of unity.

4 APPLICATION OF VECK: FAIR

BLOCKCHAIN DATA EXCHANGE

PROTOCOLS

We introduce the syntax of fair blockchain data exchange (FDE)

protocols and instantiate them by combining a VECK scheme with

smart contracts on Ethereum and adaptor signatures [5] on Bitcoin.

We define a transparent payment environment E as a trusted
third party that holds money under addresses belonging to the

other parties. It can transfer money from one party’s address to

another but requires a message authorizing the transaction with the

sender’s signature. It is transparent in the sense that any message

sent to E eventually becomes visible to all other parties.

4.1 The FDE Protocol Syntax and Properties

In the typical setting for the FDE protocol, a client wants to offload

some data to a remote server. While storing the data, the client

retains a commitment to it for authenticating server’s responses

during the subsequent data payment exchanges.

Definition 4.1 (Blockchain Data Exchange Protocols). A
FDE protocol consists of two PPT algorithms and two protocols be-
tween a client C and a server S involving a transparent payment
environment E:

• FDE.Setup(1𝜆) → pp. Probabilistic polynomial-time algo-
rithm that outputs the public parameters for the system (e.g.,
the description of appropriate spaces). The public parame-
ters are implicitly taken by all the following algorithms and
protocols; we omit them for brevity.

• FDE.Com⟨C(data),S()⟩ → ⟨C(com),S(data)⟩. The par-
ties C and S run a non-interactive protocol, where C commits
to data ∈ {0, 1}ℓ ·𝜆 consisting of ℓ blocks of data and stores
the commitment com ∈ {0, 1}𝜆 . C then sends data to S.

• FDE.Vrfy(data, com) → {0, 1}. Given data and com, the
server S verifies the correctness of the commitment com with
respect to the data data.

• FDE.Exc⟨C(com, tk),S(com, data)⟩ → ⟨C(data), S(tk)⟩.
The parties C and S run an interactive protocol to exchange
the data held by S and the tokens tk held by C over E.

FDE protocols satisfy the following properties.

Definition 4.2 (FDE Correctness). If the client C and server S
are honest, given pp ←− FDE.Setup(1𝜆) and ⟨C(com),S(data)⟩ ←−

6
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FDE.Com⟨C(data),S()⟩; with probability 1, FDE.Vrfy(data, com) =
1, and

⟨C(data),S(tk)⟩ ←− FDE.Exc⟨C(com, tk),S(com, data)⟩,
i.e., C receives the correct data, and S receives tk tokens.

The client-fairness property guarantees that the server cannot

receive any payment if the client does not obtain the data, and

server-fairness guarantees that the client cannot learn anything

about the data without paying the server.

Definition 4.3 (Client-Fairness). Given an honest client C, for
any data from an appropriate space, for all PPT S∗, the following
probability that C does not receive the whole data while S∗ receives
a positive payment6is negligible in 𝜆:

Pr

FDE.Vrfy(data
′,com)=0
∧ tk′>0

������
pp←FDE.Setup(1𝜆 )

⟨C (com),S(data) ⟩←FDE.Com⟨C (data),S() ⟩
⟨C(data′ ),S∗ (tk′ ) ⟩←FDE.Exc⟨C (𝑥𝑐 ),S∗ (𝑥𝑠 ) ⟩,

where 𝑥𝑐=(com,tk), 𝑥𝑠=S∗ (com,data)


Definition 4.4 (Server-Fairness). Given an honest server S,

for all PPT C∗, there exists a PPT simulator SimC∗ with oracle access
to C∗ s.t. for all possible values data, the following probability is less
than 1

2
+ 𝜇 (𝜆) for a negligible function 𝜇 (·):

Pr


C∗ (com, 𝛼𝑏 ) = 𝑏

����������
pp←FDE.Setup(1𝜆 )

⟨C (com),S(data) ⟩←FDE.Com⟨C (data),S() ⟩
𝛼0←−tr(⟨C∗ (𝑦𝑐 ),S(𝑦𝑠 ) ⟩←−FDE.Exc⟨C∗ (𝑥𝑐 ),S(𝑥𝑠 ) ⟩),
where 𝑥𝑐=(com,tk), 𝑥𝑠=(com,data), 𝑦𝑐=data′ 𝑦𝑠=tk′,

𝛼1←−SimC∗ (pp,com,tk)
𝑏

𝑅←−{0,1}


Here, tr denotes the interactive protocol’s transcript. It includes all
public inputs (the public parameters pp and commitment com), the
exchanged bits, the payment tk′ server gets, and the data data′ client
C∗ obtains as outputs. In other words, C∗ does not learn anything
about the data other than FDE.Com(data) = com unless S receives a
payment of tk tokens.

Efficiency requirement. The asymptotic communication com-

plexity between the server and client in the FDE.Exc protocol is

linear in ℓ , the number of data blocks, as the client has to decrypt

every data block. Therefore, we will minimize the communication

complexity and size of the overhead of the FDE.Exc protocol on top
of the exchanged data. We also minimize the amount of amortized

computation made by the parties as part of the FDE.Exc protocol.

4.2 The FDE Protocol on Ethereum

Consider a client C interested in the output of a function 𝐹 (.)
applied on a sequence of data (denoted by data = (𝑚1, . . . ,𝑚ℓ ))
attested by the commitment com. In return, C offers some payment

tk to the server S that stores the data. To facilitate this exchange,

the FDE protocol uses a VECK scheme and a smart contract on

Ethereum, cf. Figure 1.
The algorithms FDE.Setup(1𝜆), FDE.Com⟨C(data),S()⟩, and

FDE.Vrfy(pp, data, com) are instantiated with Setup and Commit

algorithms of a non-interactive and binding commitment scheme:

FDE.Setup(1𝜆) = Setup(1𝜆) −→ pp.

FDE.Com⟨C(data),S()⟩: C runs Commit(pp, data) −→ com and

sends com to S.
6
We assume that the server S∗ cannot ever receive payment greater than tk.

FDE.Vrfy(data, com) −→ [Commit(pp, data) = com].
(When a polynomial commitment scheme is used, data ∈ Fℓ𝑝 is

encoded as a degree-ℓ polynomial 𝜙 (𝑋 ) that takes the values of the
data points𝑚𝑖 at inputs 𝑖 ∈ [ℓ]: 𝜙 (𝑖) =𝑚𝑖 .)

The protocol FDE.Exc⟨C(com, 𝑝),S(com, data)⟩ proceeds as:
1) The client C creates a smart contract called the bonding con-
tract on Ethereum that allows the spending of tk tokens to only

the address of the server S before a timelock expires. After it is

deployed, the contract takes as input a verification key vk, tokens of
amount tk and sends the tokens to S only if it receives the correct

decryption key sk such that Verkey (vk, sk) = 1. After the timelock

expires, the tokens are returned to C.
2) The server S encrypts the data using the VECK protocol for

the function 𝐹 determined by the FDE application (Section 3):

Enc(𝐹, com, data) −→ (vk, sk, ct, 𝜋). It then posts vk to the contract

and sends ct off-chain, along with the associated proof 𝜋 , to the

client C (steps 1 and 2 of Figure 1).

3) The client verifies the ciphertext ct: Verct (com, vk, ct, 𝜋) −→ 0/1.
It then locks tk tokens in the contract (step 3 of Figure 1).

4) The server S checks if C has locked the correct amount (tk) of
tokens. In this case, if the timelock has not expired yet, S posts the

decryption key sk to the contract. The contract sends the tk tokens

to S if Verkey (vk, sk) = 1 (steps 4 and 5 of Figure 1).

5) The client reads sk from the contract. Using sk, it decrypts ct
and obtains the data: Dec(sk, ct) −→ data (step 6 of Figure 1).

4.3 FDE Protocol on Bitcoin

FDE protocols do not require the full expressiveness of Turing-

complete smart contracts. To demonstrate this, we also build FDE

protocols for Bitcoin from adaptor signatures. We delegate the

protocol’s description to Appendix B.

4.4 Security Proof

Theorem 4.1. Suppose the VECK scheme satisfies correctness, se-
curity and computational zero-knowledge, and Ethereum (Bitcoin)
satisfies security with some finite latency. Then, for a sufficiently
long timelock period, the FDE protocol on Ethereum (Bitcoin) satisfies
correctness, client-fairness, and server-fairness.

The proof is given in Appendix E.1 and follows directly from the

security of the VECK scheme and the security of Ethereum / Bitcoin.

5 VECK CONSTRUCTIONS

In this section, we design efficient instantiations of VECK schemes

for selective openings of KZG polynomial commitments (Section 1).

We start with preliminaries and recall KZG polynomial commit-

ments. Section 5.1 describes a VECK protocol based on the Deci-

sional Diffie-Hellman (DDH) assumption and uses a symmetric

variant of exponential ElGamal encryption, whereas Section 5.1

describes a scheme based on the Decisional Composite Residuosity

(DCR) assumption and uses Paillier encryption.

Preliminaries. For a prime 𝑝 , we use F𝑝 to denote the finite

field of size 𝑝 . A bilinear operation 𝑒 : G1 × G2 → G𝑇 defined

over three elliptic curve groups G1,G2,G𝑇 of prime order 𝑝 and

generators 𝑔1, 𝑔2, 𝑔𝑇 , satisfies the following properties: for any

𝑎, 𝑏 ∈ F𝑝 , 𝑒 (𝑔𝑎
1
, 𝑔𝑏

2
) = 𝑒 (𝑔1, 𝑔2)𝑎𝑏 and generators are respected:

7
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𝑒 (𝑔1, 𝑔2) = 𝑔𝑇 . Denote by F𝑝 [𝑋 ] the ring of polynomials over F𝑝 ,
and by Fℓ𝑝 [𝑋 ] ⊂ F𝑝 [𝑋 ] the group of polynomials of degree ℓ , by

F≤ℓ𝑝 [𝑋 ] ⊂ Fℓ𝑝 [𝑋 ] – polynomials of degree at most ℓ . The Lagrange

basis polynomial for a given set 𝑆 ⊆ F𝑝 and 𝑥 ∈ 𝑆 , denoted by

𝐿𝑥,𝑆 (𝑋 ) ∈ F𝑝 [𝑋 ], is defined as follows:

𝐿𝑥,𝑆 (𝑋 ) =
∏
𝑖∈S
𝑖≠𝑥

𝑋 − 𝑖
𝑥 − 𝑖 .

𝐿𝑥,𝑆 (𝑋 ) has degree |𝑆 | − 1 and can alternatively be uniquely

defined by its |𝑆 | evaluations: 𝐿𝑥,𝑆 (𝑥) = 1 and 𝐿𝑥,𝑆 (𝑖) = 0 for

∀𝑖 ∈ 𝑆, 𝑖 ≠ 𝑥 . When the set 𝑆 = {0, 1, . . . , ℓ} consists of ℓ + 1 consec-
utive integers, we denote the Lagrange polynomial by 𝐿𝑥,ℓ (𝑋 ) :=
𝐿𝑥,𝑆 (𝑋 ) For a polynomial 𝜙 (𝑋 ), we let 𝜙𝑆 (𝑋 ) denote the unique
polynomial of degree at most |𝑆 | − 1 that agrees with 𝜙 (𝑋 ) on
the set 𝑆 : ∀𝑖 ∈ 𝑆, 𝜙 (𝑖) = 𝜙𝑆 (𝑖). It can be constructed as follows:

𝜙𝑆 (𝑋 ) :=
∑
𝑗∈𝑆 𝜙 ( 𝑗)𝐿𝑗,𝑆 (𝑋 ). For an integer 𝐵, we denote by [𝐵] =

{0, 1, . . . , 𝐵} the set of consecutive integers from 0 to 𝐵.

KZG Polynomial Commitments. The KZG [47] scheme com-

mits to univariate polynomials 𝜙 (𝑋 ) ∈ F≤𝑛𝑝 [𝑋 ] as follows:

Setup(1𝜆, 𝑛) → crs : trusted setup that generates the group struc-

ture G comprised of elliptic curve groups: G1,G2,G𝑇 of order

𝑝 ≥ 2
2𝜆

with generators 𝑔1, 𝑔2, 𝑔𝑇 respectively and bilinear pairing

operation 𝑒 : G1 ×G2 → G𝑇 . It samples a uniformly random secret

𝜏 ←𝑅 F𝑝 and computes the public parameters

crs = (G, {𝑔𝜏
𝑖

1
}𝑛𝑖=1, {𝑔

𝜏𝑖

2
}𝑛𝑖=1).

Such setup can also be run through an MPC ceremony [8, 13, 54].

Commit

(
crs, 𝜙 (𝑋 )

)
→ 𝐶 : computes the commitment 𝐶 := 𝑔

𝜙 (𝜏 )
1

using the public parameters crs and the coefficients of 𝜙 (𝑋 ).
VerifyPoly

(
crs, 𝜙 (𝑋 ),𝐶

)
→ 0/1 : outputs 1 ifCommit

(
crs, 𝜙 (𝑋 )

)
=

𝐶 , and outputs 0 - otherwise.

Open(crs, 𝑖, 𝜙 (𝑋 )) → 𝜋 : outputs the opening proof 𝜋 := 𝑔
𝑞 (𝜏 )
1

,

where 𝑞(𝑋 ) := (𝜙 (𝑋 ) − 𝜙 (𝑖))/(𝑋 − 𝑖) is a quotient polynomial,

computed as the commitment using the public parameters, crs.

VerifyEval

(
crs,𝐶, 𝑖, 𝜙 (𝑖), 𝜋

)
→ 0/1 : if 𝑒 (𝐶/𝑔𝜙 (𝑖 )

1
, 𝑔2) = 𝑒 (𝜋,𝑔𝜏

2
/𝑔𝑖

2
)

outputs 1, otherwise, outputs 0.

BatchOpen(crs, 𝑆 = (𝑖1, . . . , 𝑖𝑘 ), 𝜙 (𝑋 )) → 𝜋 : outputs the proof

𝜋 := 𝑔
𝑞 (𝜏 )
1

, where 𝑞(𝑋 ) is a quotient polynomial defined as

𝑞(𝑋 ) = 𝜙 (𝑋 ) − 𝜙𝐼 (𝑋 )∏
𝑖∈𝑆 (𝑋 − 𝑖)

,

where 𝜙𝑆 (𝑋 ) =
∑
𝑖∈𝑆 𝜙 (𝑖)𝐿𝑖,𝑆 (𝑋 ) is a polynomial of degree at most

𝑘 − 1 that agrees with 𝜙 (𝑋 ) on 𝑆 7
.

BatchVerify(crs,𝐶, (𝑚𝑖1 , . . . ,𝑚𝑖𝑘 ), (𝑖1, . . . , 𝑖𝑘 ), 𝜋) → 0/1 accepts
if the following holds:

𝑒

(
𝐶/𝑔𝜙𝑆 (𝜏 )

1
, 𝑔2

)
= 𝑒

(
𝜋,𝑔

∏𝑘
𝑗=1 (𝜏−𝑖 𝑗 )

2

)
Here, 𝜙𝑆 (𝑋 ) is as defined above for BatchOpen.

The scheme described above is polynomial- and evaluation-

binding provided that the t-BSDH assumption holds in (G1,G2,G𝑇 ).

7
Feist and Khovratovich [33] provide optimizations for BatchOpen when the set 𝑆 is

a set of consecutive powers of the root of unity, and it is commonly used in practice.

5.1 ElGamal-based VECK for KZG

Commitments

Next, we present a VECK protocol based on the DDH assumption

and prove its security in the Algebraic Group Model (AGM) [40]

(cf.Appendix A.1.3). First, we build VECK protocols for the function

defined from polynomials of degree ℓ ≤ 𝑛, i.e., 𝜙 (𝑋 ) ∈ F≤𝑛𝑝 [𝑋 ] (𝑛
is the length of the crs and also an upper-bound on the polynomials

that can be committed with this crs), to Fℓ+1𝑝 , that outputs their

evaluations at the ℓ + 1 points specified by the set [ℓ]:

𝐹 full-eval[ℓ ] (𝜙) = (𝜙 (0), 𝜙 (1), . . . , 𝜙 (ℓ)) ∈ Fℓ+1𝑝 (5.1)

For instance, when 𝜙 (𝑋 ) ∈ Fℓ𝑝 [𝑋 ], i.e., is of degree ℓ , 𝐹 full-eval[ℓ ]
outputs ℓ + 1 evaluations of 𝜙 (𝑋 ) at the points in [ℓ]. The function
is index by full-eval since its output uniquely determines the input

polynomial. We first show the protocol for polynomials where each

evaluation is within a small range ∀𝑖 ∈ [ℓ] : 0 ≤ 𝜙 (𝑖) < B,
and then we show how to generalize the protocol to arbitrary

polynomials 𝜙 (𝑋 ) ∈ Fℓ𝑝 [𝑋 ].
The high-level intuition of our protocol is as follows. We use

exponential ElGamal to encrypt the 𝜙 (𝑖) values: ∀𝑖 ∈ [ℓ] : ct𝑖 :=
ℎ𝑠
𝑖
· 𝑔𝜙 (𝑖 )

1
∈ G1 with independent generators 𝑔1, {ℎ𝑖 }ℓ𝑖=1, ℎ ∈ G1,

where the decryption key is sk = 𝑠 ∈ F𝑝 and the verification

key is vk = ℎ𝑠 . Recall that in a VECK scheme, we want to prove

that ∀𝑖 ∈ [ℓ], ct𝑖 indeed encrypts 𝜙 (𝑖) for a secret polynomial

𝜙 (𝑋 ) ∈ Fℓ𝑝 [𝑋 ] KZG-committed by 𝐶𝜙 = 𝑔
𝜙 (𝜏 )
1
∈ G1 for a trapdoor

𝜏 . For this purpose, a pseudo-random challenge 𝛼 ∈ F𝑝 is sampled,

and the polynomial commitment𝐶𝜙 is opened in the exponent at 𝛼

with a blinding factor 𝑠 (𝜏 − 𝛼) to yield blinded 𝑔
𝜙 (𝛼 )
1

. The verifier,

in turn, interpolates through the encryptions, combining them with

Lagrange coefficients to get the ElGamal encryption of 𝜙 (𝛼). It
then verifies that the value in the combined encryption matches the

blinded opening. The full protocol is described in detail in Figure 2.

Theorem 5.1. The protocol described in Figure 2 is a secure VECK in
the random oracle and algebraic group models for function 𝐹 defined
in Equation (5.1).

Correctness follows by inspection. Soundness intuitively holds

since we check the encryption of 𝜙 (𝑋 ) by a random linear shift

(𝑋 −𝛼), i.e., our succinct proof checks correct encryption at 𝜙 (𝑋 ) −
𝑠 (𝑋 − 𝛼), where 𝑠 is the encryption key of the prover. If the check

goes through, the Schwartz-Zippel lemma guarantees negligible

soundness error for the equality of the two polynomials. We give

the proof of this Theorem in Appendix E.2.

Alternative approach. We note that there is an alternative,

less efficient protocol that does not involve publishing 𝐶𝛼 as part

of the proof. The ciphertexts can be directly verified against the

commitment by checking that the discrete logarithm of 𝑄∗ with
respect to 𝑄 matches that of vk with respect to ℎ, for 𝑄 defined as

follows and 𝑄∗ = 𝑄𝑠 :

ℓ∏
𝑖=0

𝑒 (ct𝑖 , 𝑔𝐿𝑖,ℓ (𝜏 )
2

) = 𝑄𝑠 · 𝑒 (𝐶𝜙 , 𝑔2)

𝑄 =

ℓ∏
𝑖=0

𝑒 (ℎ𝑖 , 𝑔𝐿𝑖,ℓ (𝜏 )
2

)

8
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However, this alternative approach requires ℓ computationally

costly pairing operations and would be far less efficient for the

client who does the ciphertext verification in our FDE protocol (for

comparison, one pairing operation is 10x more expensive than one

exponentiation in G1 for the bn256 curve (see Table 15.1 of [12]),
and multi-exponentiations can be done even faster).

Exponential ElGamal encryption only works for a small or low-

entropy message space (e.g.,M = {0, 1}32), as the decryption proce-

dure outputs 𝑔𝑚
1
∈ G1, and obtaining the message𝑚 ∈ M requires

the decryptor to brute-force the discrete logarithm of 𝑔𝑚
1

to find𝑚.

Hence, we had to bound the evaluations of the polynomial. A com-

mon practice to adapt it to large messages is to split the message

(e.g.,M = {0, 1}256) into some 𝑘 chunks of size 𝐷 = log
2
( |M|)/𝑘

and encrypt these chunks separately, accompanying each encryp-

tion with a zero-knowledge range proof showing that the encrypted

value is within the range [0, . . . , 2𝐷 − 1], where 𝐷 is such that it

is efficient to brute force a discrete logarithm computation as in

the decryption algorithm of Figure 2. We explain this approach in

detail in Figure 3, and we show the parts of the protocol that need

to be modified.

5.2 ElGamal-based VECK for subset openings of

KZG commitments

We show how to extend the previous ElGamal-based VECK for

encrypting subvectors of evaluations of the committed polynomial,

namely VECK for the function 𝐹𝑆 : Fℓ𝑝 [𝑋 ] → F
|𝑆 |
𝑝 , where 𝑆 ⊆

F𝑝 , |𝑆 | ≤ ℓ + 1:

𝐹𝑆 (𝜙) = {𝜙 (𝑖)}𝑖∈𝑆 (5.2)

In the previous sections we showed constructions for the case of

𝑆 = [ℓ] = {0, 1, . . . , ℓ}, we note that they trivially generalize to any

arbitrary set 𝑆 of the same size |𝑆 | = ℓ + 1. We refer to such scheme

as a VECK for the full opening function 𝐹 full-eval. We now show how

to support smaller sets (compared to the degree of the committed

polynomial, ℓ) using the full opening VECK as subroutine.

At a high level, we generate a polynomial𝑉𝑆 (𝑋 ) =
∏
𝑖∈𝑆 (𝑋 − 𝑖)

of degree |𝑆 | − 1 which vanishes on the set 𝑆 , and we generate a

polynomial 𝜙𝑆 (𝑋 ) =
∑
𝑖∈𝑆 𝜙 (𝑖)𝐿𝑖,𝑆 (𝑋 ) of degree |𝑆 | − 1 that agrees

with 𝜙 (𝑋 ) on the set 𝑆 . We next sample a random 𝑡 ←𝑅 F𝑝 and

create a blinded polynomial 𝜙 ′
𝑆
(𝑋 ) = 𝜙𝑆 (𝑋 ) + 𝑡𝑉𝑆 (𝑋 ) of degree

|𝑆 | − 1. This polynomial agrees with 𝜙 (𝑋 ) on the set 𝑆 . Therefore

we can use full-opening VECK for polynomial 𝜙𝑆 (𝑋 ) on the set

𝑆 ′ = 𝑆 ∪ {−1} to get the encryptions of values 𝜙 (𝑖) for 𝑖 ∈ 𝑆 and,

additionally, an encryption of its value at (−1) (evaluation of 𝜙𝑆 (𝑋 )
on point (−1)) to assist with VECK ciphertext verification. By the

zero-knowledge property of the full-opening VECK, this encryption

would leak no additional information about the polynomial.

An important property of our scheme, is that the output of en-

cryption can also be computed without knowing the full polynomial

𝜙 (𝑋 ), but only knowing the subset of evaluations: {𝜙 (𝑖)}𝑖∈𝑆 and the
batch opening proof for this subset. It makes our scheme also appli-

cable to distributed data-storage, where independent servers store

the commitment 𝐶𝜙 , subsets of evaluations and the batch-proof

(e.g. Danksharding, see the discussion Section 8 and Appendix A.3

for more details).

Theorem 5.2. The protocol described in Figure 4 is a secure VECK
for function 𝐹 defined in Equation Equation (5.2).

Correctness follows from inspection. Soundness holds intuitively

by reducing the soundness of the protocol to that of the protocol

in Figure 2 with 𝐹 full-eval[ℓ ] . We give the proof in Appendix E.4.

5.3 Paillier-based VECK for KZG Commitments

The VECK based on exponential ElGamal has an inherent down-

side: while transmitting a message 𝑚 ∈ M, the ciphertext size

and accompanying proofs are blown up by a factor of log
2
( |𝑀 |)/𝐷 .

This section explores an alternative approach using Paillier encryp-

tion [56] to avoid the aforementioned ciphertext blow-up. Paillier

encryption allows encrypting arbitrary messages𝑚 ∈ Z𝑁 with a

ciphertext-to-message length ratio of two: |𝑐 |/|𝑚 | = 2. However, we

will be encrypting dlog values, so our ciphertext-to-message length

ratio would be: |𝑐 |/|𝑚 | = 2𝑁 /𝑝 . We recall how Paillier encryption

works in Appendix A.4, and in Figure 5, we show the VECK proto-

col that allows a server to prove in zero-knowledge that the Paillier

ciphertexts {ct𝑖 }𝑖∈[ℓ ] encrypt the evaluations {𝜙 (𝑖)}ℓ𝑖=0 of a KZG
committed polynomial 𝜙 .

We take inspiration from the Fouque and Stern construction [38]

of a one-round distributed key generation protocol, where they

show how to prove the recoverability of discrete logarithm values

from the Paillier ciphertext.

The high-level intuition for our protocol (it is a Σ-protocol) is
as follows. The verification key is vk = 𝑁 and the secret key is

the factorization of 𝑁 . The prover encrypts the evaluations of 𝜙

with ℓ + 1 Paillier ciphertexts: ct𝑖 = (𝑁 + 1)𝜙 (𝑖 )𝑈𝑁𝑖 mod 𝑁 2
for

𝑖 ∈ [ℓ], where 𝑈𝑖 ←𝑅 Z
∗
𝑁
. It then encrypts the evaluations of

ℓ + 1 randomly sampled values: 𝑇𝑖 = (𝑁 + 1)𝑟𝑖𝑆𝑁
𝑖

mod 𝑁 2
for

𝑟𝑖 ←𝑅 [0, 𝐴) and 𝑆𝑖 ←𝑅 Z
∗
𝑁
and generates a KZG commitment 𝑇

to the polynomial with evaluations 𝑟𝑖 . After computing a random

challenge 𝑐 = 𝐻 (vk, {ct𝑖 }, {𝑇𝑖 },𝑇 ), it finds𝑊𝑖 = 𝑆𝑖𝑈 𝑐𝑖 mod 𝑁 2
and

𝑧𝑖 = 𝑟𝑖 +𝑐𝜙 (𝑖) ∈ Z, and sends ct𝑖 , 𝑧𝑖 and𝑊𝑖 to the verifier. The veri-
fier reconstructs𝑇𝑖 and𝑇 , and then checks 𝑐 = 𝐻 (vk, {ct𝑖 }, {𝑇𝑖 },𝑇 ).
Note this protocol, for technical reasons, uses a crs that commits

to Lagrange-basis polynomials instead of the more common mono-

mial basis. It also uses an adaptation of standard discrete logarithm

equality proofs to the groups of unequal order.

Next, we prove that the protocol described above and formalized

by Figure 5 is a secure VECK protocol.

Theorem 5.3. The protocol in Figure 5 is a secure VECK in the
random oracle and algebraic group models for function 𝐹 defined
in Equation (5.1).

We give the proof of this theorem in Appendix E.3.

The protocol in Figure 5 has a negligible probability of correct-

ness failure. It can be modified to achieve perfect correctness by

restarting the encryptor until all of the 𝑧 values are in the range

[0, 𝐴). However, this process would result in a significant slow-

down of the encryption. For practicality, we suggest the version

with a negligible probability of correctness failure.

Concrete parameters. For an instantiation of this protocol at

𝜆-bits security level (e.g., 𝜆 = 128), we would set 𝐵 ≈ 2
2𝜆

to achieve

collision resistance for the hash function at 𝜆-bits security, and

𝑝 = 2
2𝜆

for the hardness of the discrete logarithm problem to be

9
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Gen(crs) → pp: On input crs = (G, {𝑔𝜏𝑖
1
}𝑛
𝑖=1
, {𝑔𝜏𝑖

2
}𝑛
𝑖=1
), generate random group elements with unknown discrete logarithms ℎ𝑖 ←𝑅

G1, ℎ ←𝑅 G1 for 𝑖 ∈ [𝑛]. In practice, these can be generated using a Hash-to-Curve [9] function𝐻curv : F𝑝 −→ G1, ℎ𝑖 := 𝐻curv (𝑖).
Output pp = (crs, {ℎ𝑖 }𝑛𝑖=0, ℎ).

Enc(𝐹 full-eval[ℓ ] ,𝐶𝜙 , 𝜙 (𝑋 )) −→ (vk, sk, ct, 𝜋) :

(1) Sample 𝑠 ←𝑅 F𝑝 , set sk := 𝑠 , vk = ℎ𝑠 .

(2) Compute the encryptions {ct𝑖 := ℎ𝑠𝑖 · 𝑔
𝜙 (𝑖 )
1
}ℓ
𝑖=0

.

(3) Generate a Fiat-Shamir pseudo-random challenge 𝛼 := H(𝐶𝜙 , ct0, . . . , ctℓ , [ℓ]).a

(4) Compute 𝐶𝛼 := 𝑔
𝜙 (𝛼 )+𝑠 (𝜏−𝛼 )
1

.

(5) Compute the opening proof for 𝛼 : 𝜋𝛼 := Open(crs, 𝛼, 𝜙 (𝑋 ) − 𝑠 (𝑋 − 𝛼)) (note that 𝜋𝛼 = 𝑔
(𝜙 (𝜏 )−𝜙 (𝛼 ) )/(𝜏−𝛼 )−𝑠
1

).
(6) Compute 𝜋LIN to prove that𝐶𝛼 is indeed of the form 𝑔1 raised to a known power, multiplied by 𝑔𝜏−𝛼

1
raised to the secret 𝑠

of the verification key, i.e., we compute the proof for the relation RLIN as described in Appendix A.2, Equation (A.4):

RLIN =

{
𝑔1,1 = 𝑔1 𝑔1,2 = 𝑔

𝜏−𝛼
1

𝑢1 = 𝐶𝛼
𝑔2,1 = 1 𝑔2,2 = ℎ 𝑢2 = vk

;

𝑥1 = 𝜙 (𝛼)
𝑥2 = 𝑠

���� 𝑔𝑥11,1𝑔𝑥21,2 = 𝑢1 ∧ 𝑔𝑥12,1𝑔𝑥22,2 = 𝑢2} .
(7) Compute 𝑄 :=

∏ℓ
𝑖=0 ℎ

𝐿𝑖,ℓ (𝛼 )
𝑖

· 𝑔−(𝜏−𝛼 )
1

.

(8) Compute discrete logarithm equality 𝜋DLeq with respect to (𝑄,𝑄𝑠 , ℎ, vk) for the witness 𝑠 , i.e., we compute the proof for

the relation RDLeq as described in Appendix A.2, Equation (A.3):

RDLeq := {((𝑔 = 𝑄,ℎ, 𝑎 = 𝑄𝑠 , 𝑏 = vk); 𝑥 = 𝑠) | 𝑎 = 𝑔𝑥 ∧ 𝑏 = ℎ𝑥 }.
(9) Output (sk, vk, ct = [ct0, . . . , ctℓ ], 𝜋 = (𝐶𝛼 , 𝜋𝛼 , 𝜋LIN, 𝜋DLeq)).

Verct (𝐹 full-eval[ℓ ] ,𝐶𝜙 , vk, ct, 𝜋) −→ 0/1 :

(1) Parse ct = (ct0, . . . , ctℓ ) and the server’s proofs 𝜋 = (𝐶𝛼 , 𝜋𝛼 , 𝜋LIN, 𝜋DLeq).
(2) Verify 𝜋LIN for 𝐶𝛼 against 𝑔1, 𝑔

𝜏−𝛼
1

, ℎ,𝐶𝛼 , vk.
(3) Compute the Fiat-Shamir challenge: 𝛼 := H(𝐶𝜙 , ct0, . . . , ctℓ ).
(4) Verify the opening proof 𝜋𝛼 : 𝑒 (𝐶𝜙/𝐶𝛼 , 𝑔2) = 𝑒 (𝜋𝛼 , 𝑔𝜏−𝛼2

).
(5) Compute 𝑄 as above for encryption.

(6) Compute ct :=
∏ℓ
𝑖=0 ct

𝐿𝑖,ℓ (𝛼 )
𝑖

∈ G1, and 𝑄∗ := ct/𝐶𝛼 .
(7) Verify 𝜋DLeq for the relation (𝑄,𝑄∗, ℎ, vk).
(8) If any of the verification checks fail, output 0. Otherwise, output 1.

Verkey (vk, sk) −→ 0/1 : For sk = 𝑠 ∈ F𝑝 , return 1 if and only if vk = ℎ𝑠 .

Dec(𝐹 full-eval[ℓ ] , sk, ct) −→ {𝜙 (𝑖)}ℓ
𝑖=0

: For sk = 𝑠 ∈ F𝑝 , for each 𝑖 ∈ [ℓ], recover the value 𝑥 = 𝜙 (𝑖) by brute-forcing 𝑥 ∈ [B] in
𝑔𝑥
1
= ct𝑖/ℎ𝑠𝑖 . Pollard’s rho algorithm for logarithms [59], Shank’s baby-step-giant-step algorithm [65] or brute-force with

pre-computed tables [22] could be helpful to find the right trade-off between decryption memory and time.

a
Generalizing to more general subsets 𝑆 other than [ℓ ], the description of the subset 𝑆 would be part of the input of H( ·) generating the Fiat-Shamir challenge.

Figure 2: A VECK protocol instantiated with the exponential ElGamal encryption and KZG polynomial commitment schemes

for the function 𝐹 defined in Equation (5.1).

at 𝜆-bits security level in the elliptic curve groups. Then, for any

practical vector length 𝑛 ≪ 2
𝜆
, we get 𝐴 ≥ 2

6𝜆
and 𝑁 ≥ 2

8𝜆+2
.

Therefore, for 𝜆 = 128, the length of the modulus 𝑁 should be at

least 2050 bits, which is a reasonable size RSA modulus widely used

in production today.

Optimizations: Note that computing (𝑁 + 1)𝑎 mod 𝑁 2 = 1+𝑎𝑁
mod 𝑁 2

is very cheap. Computing𝑈𝑁
𝑖

mod 𝑁 2
is expensive but

can be done in advance. Decryption can be calculated twice: once

mod 𝑝2 and once mod 𝑞2 instead of mod 𝑁 2
by using 𝐿𝑝 (𝑥) =

(𝑥 −1)/𝑝 and 𝐿𝑞 (𝑥) = (𝑥 −1)/𝑞 instead of normal 𝐿(·) respectively.
These two “partial decryptions” can be combined into𝑚 using the

Chinese Remainder Theorem.

6 PERFORMANCE EVALUATION

In this section, we report on the asymptotic and concrete perfor-

mance metrics of an implementation of our FDE protocols.

6.1 Theoretical performance

Our FDE protocols consist of three rounds: first, the server sends

the ciphertexts and proofs. Second, the client locks money on-chain,

and finally, the server reveals its VECK decryption key. Note that the

withdrawal rounds can be amortized over multiple protocol runs as

one does not necessarily need to withdraw their earned (or locked)

coins after each exchange. The server’s proofs are constant-sized in

the exponential ElGamal-based protocol, cf. Figure 2 and linear in

the Paillier-based protocol, cf. Figure 5. In both protocols, the client

needs to submit only a single signature. The on-chain footprint of
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Gen(crs) → pp: Let the bound be B = poly(𝜆).
Let 𝑘 be such that B = 2

⌈ log𝑝
𝑘
⌉
.

Generate ℎ𝑖, 𝑗 ←𝑅 G1 for 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘].

Enc(𝐹 full-eval[ℓ ] ,𝐶𝜙 , 𝜙 (𝑋 )) −→ (vk, sk, ct, 𝜋) :

(2) For ∀𝑖 ∈ [ℓ], let 𝜙 (𝑖) = 𝜙𝑖,0 + 𝜙𝑖,1B + . . . + 𝜙𝑖,𝑘B𝑘 ,
for 𝜙𝑖, 𝑗 ∈ [B] for ∀𝑗 ∈ [𝑘].
Compute {ct𝑖, 𝑗 := ℎ𝑠𝑖, 𝑗 · 𝑔

𝜙𝑖,𝑗
1
}𝑘
𝑗=0

.

Compute range-proof of encrypted values:

𝜋range (attesting to 𝜙𝑖, 𝑗 ∈ [B]).
(3) 𝛼 := H(𝐶𝜙 , {ct𝑖, 𝑗 }𝑖∈[ℓ ], 𝑗∈[𝑘 ] ).

(7) 𝑄 :=
∏ℓ
𝑖=0

(∏𝑘
𝑗=0 ℎ

B 𝑗

𝑖, 𝑗

)𝐿𝑖,ℓ (𝛼 )
· 𝑔−(𝜏−𝛼 )

1
.

(9) Output (sk, vk, ct = {ct𝑖, 𝑗 } (𝑖∈[ℓ ], 𝑗∈[𝑘 ] ) ,
𝜋 = (𝐶𝛼 , 𝜋𝛼 , 𝜋LIN, 𝜋DLeq, 𝜋range).

Verct (𝐹 full-eval[ℓ ] ,𝐶𝜙 , vk, ct, 𝜋) −→ 0/1 :

(6) Compute ct :=
∏ℓ
𝑖=0

(∏𝑘
𝑗=0 ct

B 𝑗

𝑖, 𝑗

)𝐿𝑖,ℓ (𝛼 )
,

𝑄∗ := ct/𝐶𝛼 ,
check 𝜋range against {ct𝑖, 𝑗 } (𝑖∈[ℓ ], 𝑗∈[𝑘 ] ) .

Figure 3: Modifications to Figure 2 to remove the bound on

the evaluations 𝜙 (𝑖) and support arbitrary polynomials of

degree ℓ . The precise relation for the range proofs is provided

in Appendix A.2, Equation (A.5).

Gen(crs) → pp: Output the result of FGen(crs).
Enc(𝐹𝑆 ,𝐶𝜙 , 𝜙 (𝑋 )) −→ (vk, sk, ct, 𝜋):

(1) Sample 𝑡 ←𝑅 F𝑝 and construct the following polyno-

mials in F𝑝 [𝑋 ]:
• 𝑉𝑆 (𝑋 ) :=

∏
𝑖∈𝑆 (𝑋 − 𝑖),

• 𝜙𝑆 (𝑋 ) :=
∑
𝑖∈𝑆 𝜙 (𝑖)𝐿𝑖,𝑆 (𝑋 )

• 𝜙 ′
𝑆
(𝑋 ) := 𝑡𝑉𝑆 (𝑋 ) + 𝜙𝑆 (𝑋 ),

(2) Compute 𝐶𝑆 := Commit(crs, 𝜙 ′
𝑆
(𝑋 )).

(3) Compute 𝜋𝑆 := Commit(crs, (𝜙 (𝑋 )-𝜙 ′
𝑆
(𝑋 ))/𝑉𝑆 (𝑋 )).

(4) Let 𝑆 ′ := 𝑆 ∪ {−1}
(5) Run Enc(𝐹 full-eval

𝑆 ′ ,𝐶𝑆 , 𝜙
′
𝑆
(𝑋 )) −→ (vk, sk, ct, 𝜋 ′)

(6) Output (vk, sk, ct, 𝜋 = (𝐶𝑆 , 𝜋𝑆 , 𝜋 ′)).
Verct (𝐹𝑆 ,𝐶𝜙 , vk, ct, 𝜋) −→ 0/1:

(1) Parse 𝜋 as (𝐶𝑆 , 𝜋𝑆 , 𝜋 ′).
(2) Verify 𝑒 (𝐶𝜙/𝐶𝑆 , 𝑔2) = 𝑒 (𝜋𝑆 , 𝑔

𝑉𝑆 (𝜏 )
2

).
(3) Run Verct (𝐹 full-eval𝑆 ′ ,𝐶𝑆 , vk, ct, 𝜋 ′), where 𝑆 ′ is de-

fined above.

Verkey (vk, sk) −→ 0/1: Output the result of FVerkey (vk, sk).
Dec(𝐹𝑆 , sk, ct) −→ {𝜙 (𝑖)}𝑖∈𝑆 : Output the result of

FDec(𝐹𝑆 ′ , sk, ct) (𝑆 ′ is defined above).

Figure 4: VECK protocol for encryptions of subsets of com-

mitted vectors, i.e., function of Equation (5.2).

our protocols consists of three signatures (two transactions from

the server, one from the client) and two group elements (sk and

vk of the underlying VECK scheme). We compare our asymptotic

performance with related work in Table 1.

6.2 Implementation performance

To measure concrete performance, we created a proof of concept

implementation of our protocols using Rust v1.74.0 and Solidity

v0.8.13. All our source code is publicly available
8
.

All experiments were run on a consumer-grade PC with an AMD

Ryzen 5 3600 (6-core) CPU and 8GB RAM. We used the Criterion

benchmarking crate
9
to measure the execution time of the prover

and the verifier in our protocols. Each measurement was repeated

10 times, and below, we report the mean of these protocol runs.

6.2.1 Off-chain costs.

Prover time. In the exponential ElGamal scheme, we used 𝑘 = 8,

that is, each BLS12-381 scalar is split into𝑘 smaller plaintexts. Range

proofs and exponential ElGamal encryptions are computed in 89

s for 4, 096 exchanged BLS12-381 points (cf. Figure 6). This is a

one-time cost for the prover and can serve multiple clients who

request the same data with amortized prover costs, cf. Section 7.

The prover’s amortized overhead for proving the consistency of

4, 096 BLS12-381 field elements (≈ 128KiB) with respect to ElGamal

ciphertexts takes less than 40ms. Prover time in the exponential

ElGamal protocol for a small number of exchanged points is domi-

nated by the computation of the FFTs (i.e., computing the quotient

polynomial𝑞(𝑋 ) in Step 5 of the protocol in Figure 2). Therefore, we
observe that the proving overhead is larger for transferring fewer

BLS12-381 scalar field elements. However, for larger exchanged

data, ElGamal encryption and the range proof generation dominate

our ElGamal prover time. On the other hand, proof generation in

the Paillier-based protocol (cf. Figure 5) is monotonically increasing

in the number of transferred data points. For 4, 096 BLS scalar field

elements, proof generation takes on average ≈ 5.09 s.

Proof size. We implemented our exponential ElGamal protocol

(Section 5.1) with the range proof derived from the homomorphic

polynomial commitment schemes by Boneh et al. [11]. These range

proofs can be batched to improve the proof size (two G1 elements

for any number of ranges) and the verifier’s concrete efficiency by

replacing O(𝑛) pairing computations with O(𝑛) MSMs in G1. We

leave this optimization for future work. To exchange 4, 096 BLS

scalar field elements (0.13 MB), the total bandwidth (ciphertexts and

proofs) is 1, 56 MB in the exponential ElGamal protocol (with 𝑘 = 8

chunks per BLS field element), while 6, 55 MB in the Paillier-based

protocol (𝜆 = 128, thus, log
2
(𝑁 ) = 3072). This yields a 11, 95× (and

50, 18×) factor bandwidth overhead in our protocols, respectively,

in comparison to the size of the exchanged data. In conclusion, we

see that the Paillier-based protocol does not improve concretely the

bandwidth costs of the exponential ElGamal protocol (cf. Figure 2)
due to its larger cryptographic groups and the linear-sized VECK

proofs (cf. Figure 5). It is an interesting future direction to design

constant-sized VECK proofs with the Paillier-encryption scheme.

Verifier time. Verifying the proofs is slightly more expensive

but still efficient. In particular, verifying the correctness of 4, 096

8
https://github.com/PopcornPaws/fde.

9
https://crates.io/crates/criterion.
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Gen(crs) → pp: On input crs = (G, {𝑔𝜏𝑖
1
}𝑛
𝑖=1
, {𝑔𝜏𝑖

2
}𝑛
𝑖=1
), where 𝜏 is the secret trapdoor, let H : {0, 1}∗ → [0, 𝐵) denote a hash function,

and 𝐴 := 𝐵𝑝ℓ2𝜆 .

Enc(𝐹 full-eval[ℓ ] ,𝐶𝜙 , 𝜙 (𝑋 )) −→ (vk, sk, ct, 𝜋) :

(1) Generate keys for Paillier encryption: let 𝑝′, 𝑞′ ←𝑅 Primes(1𝜆), and compute the modulus 𝑁 := 𝑝′𝑞′, s.t. 𝑁 ≥ 2

√
2𝐴𝐵. Let

𝜇 := lcm(𝑝′ − 1, 𝑞′ − 1), where lcm(·, ·) returns the least common multiple of two integers. We set the Paillier public key

vk := 𝑁 , and the secret key sk := (𝑝′, 𝑞′, 𝜇).
(2) Calculate the encryptions of {𝜙 (𝑖)}𝑖∈[ℓ ] : for each 𝑖 ∈ [ℓ] sample𝑈𝑖 ←𝑅 Z

∗
𝑁

and compute ct𝑖 := (𝑁 + 1)𝜙 (𝑖 )𝑈𝑁𝑖 mod 𝑁 2
.

(3) For each 𝑖 ∈ [ℓ] sample 𝑆𝑖 ←𝑅 Z
∗
𝑁
, 𝑟𝑖 ←𝑅 [0, 𝐴) and compute 𝑇𝑖 := (𝑁 + 1)𝑟𝑖𝑆𝑁𝑖 mod 𝑁 2

. Let 𝑇 :=
∏
𝑖∈[ℓ ]

(
𝑔
𝐿𝑖,[ℓ ] (𝜏 )
1

)𝑟𝑖
.

(4) Sample a random challenge 𝑐 := H(vk, ct0, . . . , ctℓ ,𝐶𝜙 ,𝑇0, . . . ,𝑇ℓ ,𝑇 ) using the Fiat-Shamir transformation.

(5) Compute ∀𝑖 ∈ [ℓ] :𝑊𝑖 := 𝑆𝑖𝑈 𝑐𝑖 mod 𝑁 2
and 𝑧𝑖 := 𝑟𝑖 + 𝑐𝜙 (𝑖) over the integers (𝑧𝑖 ∈ Z).

(6) Output (sk, vk, ct = (ct0, . . . , ctℓ ), 𝜋 = (𝑐,𝑊0, . . . ,𝑊ℓ , 𝑧0, . . . , 𝑧ℓ )).
Verct (𝐹 full-eval[ℓ ] ,𝐶𝜙 , vk, ct, 𝜋) −→ 0/1 :

(1) Parse the input ct = (ct0, . . . , ctℓ ) and 𝜋 = (𝑐,𝑊0, . . . ,𝑊ℓ , 𝑧0, . . . , 𝑧ℓ )).
(2) Reject the proof if any of the z values are not within [0, 𝐴).
(3) Compute ∀𝑖 ∈ [ℓ] : 𝑇𝑖 := (𝑁 + 1)𝑧𝑖𝑊 𝑁

𝑖
ct−𝑐
𝑖

mod 𝑁 2
, and 𝑇 :=

∏
𝑖∈[ℓ ]

(
𝑔
𝐿𝑖,[ℓ ] (𝜏 )
1

)𝑧𝑖
/𝐶𝑐
𝜙
.

(4) Accept if 𝑐 = H(vk, ct0, . . . , ctℓ ,𝐶𝜙 ,𝑇0, . . . ,𝑇ℓ ,𝑇 ).
Verkey (vk, sk) −→ 0/1 : Return 1 if and only if vk = 𝑁 = 𝑝′𝑞′ for sk = (𝑝′, 𝑞′).

Dec(𝐹 full-eval[ℓ ] , sk, ct) −→ {𝑚𝑖 }𝑖∈[ℓ ] : Compute ∀𝑖 ∈ [ℓ] : 𝑚𝑖 =
𝐿 (ct𝜇

𝑖
mod 𝑁 2 )

𝐿 ( (𝑁+1)𝜇 mod 𝑁 2 ) mod 𝑁 , where 𝐿(𝑥) = 𝑥−1
𝑁

for 𝑥 < 𝑁 2 ∧ 𝑥 ≡ 1

mod 𝑁 . Construct a polynomial𝑚(𝑋 ) = ∑
𝑖∈[ℓ ]𝑚𝑖𝐿𝑖,ℓ (𝑋 ) and check that C𝜙 = KZG.Commit(crs,𝑚(𝑋 )), if equality holds,

we are done. Otherwise, following [38] for each𝑚𝑖 , we search the values (𝜎1, 𝜎2) that constitute the smallest vector in the

lattice of dimension two with basis ((𝑁, 0), (𝑚𝑖 , 1)). The smallest vector can be found in time 𝑂 (log𝑁 ) using Gauss algorithm

(see [26], p.23). We then set𝑚𝑖 := 𝜎1/𝜎2 mod 𝑝 .

Figure 5: AVECKprotocol instantiatedwith the Paillier encryption and theKZGpolynomial commitment scheme for encrypting

polynomial’s evaluations.
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Figure 6: Prover and verifier times in the VECK schemes

described in Figure 2 and Figure 5. Interestingly, in the expo-

nential ElGamal VECK scheme, the prover time is dominated

by the FFT computations. Hence, if smaller sets 𝑆 ⊂ [1, 𝑛] are
opened, then we observe larger prover time due to the larger

degree of the quotient polynomial 𝑞(𝑋 ), cf. Step 5 in Figure 2.

ElGamal ciphertexts with respect to a KZG commitment using

the protocol in Figure 2 takes around 34.15 s. The verifier’s time

strictly increases in the number of opened points as it is dominated

by multi-scalar multiplications that have sizes proportional to the

number of exchanged data points. It should be noted that the veri-

fier time is dominated by the split scalar encryption verification,

meaning that the verifier needs to check whether an encrypted

field element is properly split into smaller field elements within the

brute-forceable range. With lookup tables, decryption of ElGamal

ciphertexts would be quick and negligible in terms of compute

costs. Verifying the proof of correctness in the Paillier-based pro-

tocol for 4, 096 BLS scalars takes roughly 19.45 s. Decrypting the

4, 096 Paillier ciphertexts takes ≈ 9.54 s.

6.2.2 On-chain costs.
Bitcoin. We include the Bitcoin Script corresponding to the bond-

ing contract of Section 4.3 in Appendix C.1. The script contains two

conditional executions. One execution uses a timelock and enables

the spending of the locked tokens by the client after a timeout

period. The other enables the spending of the funds by any trans-

action carrying the adaptor signature and the server’s signature.

We expect the transaction fee of the bonding contract (≈ 231 Bytes)

to be below $10 for a confirmation time of 1 hour on Bitcoin [10]

regardless of the data size.
Ethereum. All of our protocols in Section 4, except the protocol

in Section 4.3, rely on the same on-chain smart contract logic that

12
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guarantees the atomicity of our fair exchange protocols. We imple-

mented this FDE bonding logic for the Ethereum Virtual Machine

(EVM), compiled from Solidity (our full source is included in Ap-

pendix C.2). The smart contract implements four functionalities (

cf. Figure 1), and we report the EVM gas costs for each in Table 2.

First, the server registers its public key on the blockchain in a com-

Transaction Gas cost USD cost

ElGamal Paillier ElG. Pail.

serverSendsPubKey 158, 449 176, 296 5.11 $ 5.68 $

clientLocksPayment 30, 521 30, 521 0.98 $ 0.98 $

serverSendsSecKey 73, 692 82, 475 2.37 $ 2.65 $

withdrawPayment 43, 836 43, 836 1.41 $ 1.41 $

Table 2: EVM gas costs of the smart contract components

for 𝜆 = 128 bits of security. Note these costs are constant

in the size of the exchanged data, (cf. Appendix C.2), in the

Exponential Elgamal (cf. Figure 2) and Paillier encryption-

based FDE schemes (cf. Figure 5). For the USD costs, we used

the transaction fee 14 GWei and 2, 302.35 USD/ETH exchange

rate as of 2024 February 3rd.

pressed form, i.e., only the 𝑥-coordinate of its public key by calling

the serverSendsPubKey function. Additionally, the server sets the

agreed price of the exchanged data. Afterward, the client locks her

payment by calling the clientLocksPayment function according to

the previously agreed price. Third, the server sends the decryption

key of the VECK scheme and calls the serverSendsSecKey function.
This function ensures that the contract verifies that the provided

decryption key sk matches the public key vk the server submit-

ted in the first step. Finally, the parties can withdraw their money

with the withdrawPayment function: the server can withdraw if

it has provided the decryption key, while the client can withdraw

its locked payment after a timeout if the server fails to reveal the

decryption key sk for the data. We observe in Table 2, that all the

aforementioned operations are highly efficient and affordable on

today’s Ethereum in both of our protocols.

7 MULTI-CLIENT MODEL

In certain applications of the FDE protocol, the server is expected to

provide the same data to multiple clients over time. For instance, in

blockchain applications, light clients might query the same blocks

from the validators. The naive solution for the server is to run an

instance of the FDE protocol with each client, generating fresh

encryptions and proofs per client. To save the computation cost for

the server, we introduce a multi-client VECK (MC-VECK) model,

and design a corresponding MC-VECK protocol, which allows the

server to preprocess the data, making the generation of encryptions

and proofs per client substantially less expensive.

To avoid the high computation cost, the server could have also

sent the same encryptions and proofs to all of the querying clients.

However, when clients can communicate with each other, a client

can retrieve the (succinct) decryption key from another client and

decrypt the data without paying the server again. To prevent this,

we would like to guarantee that a client cannot obtain the messages

without getting the ciphertexts and in particular the decryption

key from the server, except when it downloads the data from one of

the other clients. In other words, we would like to ensure security

and an appropriate notion of zero-knowledge for the MC-VECK

protocol, when clients cannot download over 𝐿-bits from other

clients for 𝐿 = 𝑜 (𝑁 log( |M|) + 𝜆). Indeed, if clients were able

to convey each other the whole length 𝑁 message sequence, i.e.,
𝐿 = O(𝑁 log( |M|)) bits, the server could not expect to profit from

its interaction with the clients. However, this implicitly assumes

that the clients can act as servers themselves, which contradicts

the premise of the FDE problem in the first place, and justifies our

choice of a succinct 𝐿.

We leave the details of the problem setup to Appendix D.1 and

formalize the security properties for MC-VECK in Appendix D.2.

For this purpose, we define a notion of zero-knowledge called L-
bits zero-knowledge for the MC-VECK protocols. It implies that a

client Alice who successfully completed the data-exchange cannot

help another client Bob, who only downloaded the encryption,

to learn anything about the encrypted data, other than the bits

that Alice sent Bob directly. We present an MC-VECK protocol for

exponential ElGamal encryption that extends the VECK scheme

in Section 5.1 on Figure 2. Its security is stated below:

Theorem 7.1. Given 𝐻 modelled as a random oracle, the protocol
in Figure 7 is a secure MC-VECK protocol in the random oracle and
algebraic group models.

Proof is given in Appendix E.5. More details and discussion on

the protocol can be found in Appendix D.3.

8 DISCUSSION AND FUTURE DIRECTIONS

We leave the following open problems and improvements for future

work.More discussion is provided inAppendix F on distributed data-

storage, pricing and extension to other commitment and encryption

schemes.

Optimizations. If a client requests multiple batches of data under

different commitments, the server can reuse the same decryption

key for the ciphertexts, reducing the on-chain footprint of the pro-

tocol. In the multi-client model, the server currently generates and

remembers a different decryption key to interact with each client.

As an optimization, the server could instead use a PRF function

𝑓𝑘 (·), and compute the 𝑖-th client’s decryption key as sk𝑖 := 𝑓𝑘 (𝑖);
the server would then only store an index for each client.

Optimizing bandwidth. Both our protocols concretely incur at

least a 10×-factor of bandwidth blowup (i.e. ciphertexts and proofs)

in comparison to just sending the plaintext data, cf. Section 6. Thus,

it is an interesting open problem to design a VECK proof system

with smaller overhead. One possible approach could be “packing”

multiple data points into a single Paillier ciphertext.

Server griefing. In our current design, a malicious client could

grieve the server by having it produce the ciphertext (and the cor-

rectness proofs) but never request the decryption key. While this

can be mitigated in a similar way to standard denial-of-service

attacks, a promising alternative approach is to split the client’s

payment into two parts as follows: a first small payment is pro-

vided with the request, essentially to reimburse the server for its

computation cost; the second payment is provided as before—as an
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Construction 1: ElGamalMC-VECK for the function 𝐹 :=

𝐹 full-eval[𝑛] . It readily generalizes to subset openings since

the protocol for subset openings use a VECK protocol

for 𝐹 full-eval[𝑛] as blackbox.

Gen(crs) → pp : Output Setup(crs) −→ pp as in Figure 2.

Prep(𝐹,𝐶𝜙 , 𝜙) −→ (aux,msk) :

(1) Run Enc(𝐹,𝐶𝜙 , 𝜙) −→ (vk, sk, ct, 𝜋) as in Fig-

ure 2.

(2) Output aux = (vk, ct, 𝜋).
(3) Output msk = sk.

Enc(𝐹, aux,msk) −→ (vkC, skC, ct, 𝜋C) :

(1) Parse aux,msk −→ (vk, sk, ct, 𝜋).
(2) Sample 𝛿C ←𝑅 F𝑝 .

(3) Set 𝐷C = ℎ𝛿C , ℎC,𝑖 = (ℎ𝛿C𝑖 )𝑖∈[𝑛] .
(4) Set 𝑒𝑖 = 𝐻 (𝐷C, 𝑖) for all 𝑖 ∈ [𝑛].
(5) Calculate 𝑄 =

∏
𝑖∈[𝑛] ℎ

𝑒𝑖
𝑖
.

(6) Compute discrete logarithm equality 𝜋DLEq for

(𝑄,𝑄𝛿C , ℎ, 𝐷C) with the witness 𝛿C [23].

(7) Set vkC = vk · 𝐷C , skC = sk + 𝛿C and 𝜋C =

(𝜋, 𝐷C, 𝜋DLEq, (ℎC,𝑖 )𝑖∈[𝑛] ).
(8) Output (vkC, skC, ct, 𝜋C).

Verct (𝐹,𝐶𝜙 , vkC, ct, 𝜋C) −→ 0/1 :

(1) Parse 𝜋C −→ (𝜋, 𝐷C, 𝜋DLEq, (ℎC,𝑖 )𝑖∈[𝑛] ).
(2) Verify if Verct (𝐹,𝐶𝜙 , vkC/𝐷C, ct, 𝜋) −→ 1 as

in Figure 2.

(3) Set 𝑒𝑖 = 𝐻 (𝐷C, 𝑖) for all 𝑖 ∈ [𝑛].
(4) Compute 𝑄 as above.

(5) Compute 𝑄∗ =
∏
𝑖∈[𝑛] ℎ

𝑒𝑖
C,𝑖 .

(6) Verify 𝜋DLEq for the relation (𝑄,𝑄∗, ℎ, 𝐷C).
(7) Return 1 if the steps above succeed, 0 o.w.

Verkey (vkC, skC) −→ 0/1 : Return 1 if vkC = ℎskC , 0 o.w.

Dec(𝐹, skC, (ct, (ℎC,𝑖 )𝑖∈[𝑛] )) −→ 𝜙 (𝑖) :

(1) Parse ct −→ (ct𝑖 )𝑖∈[𝑛] .
(2) Set ctC = (ct𝑖 · ℎC,𝑖 )𝑖∈[𝑛] .
(3) Output Dec(𝐹, skC, ctC) as in Figure 2.

Figure 7: The MC-VECK protocol for ElGamal encryption.

The parameters with subscript C are generated per client C.

exchange for the VECK decryption key. While this can allow the

server to simply pocket the first payment, assuming that a compet-

itive market exists for providing the data, users will simply choose

a different server, and the servers will not risk their reputation to

steal the first payment, which would typically be small compared to

the price of the content. Moreover, faced with a grieving attack, the

server can reuse the same ciphertext, the proof, and the decryption

key in its interaction with different clients willing to buy the same

data, thus saving on compute.

Distributed data-storage. In Danksharding [16] the blockchain

data is erasure coded using Reed-Solomon codes [61] and stored on

multiple different servers. Hence, when a client wishes to pay for

certain data, it needs to fetch the data and the accompanying proofs

from multiple servers. Our FDE protocol with subset openings

readily generalizes to this setting; so that the client can engage

with multiple servers independently to reconstruct the original

data after obtaining all the fragments. An intermediate step towards

Danksharding is EIP-4844 [16], which provides the functionality of

persisting data on-chain for a predetermined period of 1-2 months.

After the data expires, the validators are no longer obliged to store it,

although they keep the KZG commitments to the data. Our protocol

can be used to pay archival nodes for accessing the expired data in a

fair and trust-minimized way, thus bringing in financial incentives

to ensure that the data continues to be available.
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A EXTENDED PRELIMINARIES

A.1 Cryptographic assumptions and models

For the sake of completeness, we enclose the definitions of the

applied cryptographic assumptions.

A.1.1 The DDH assumption.

Definition A.1. The Decisional Diffie-Hellman (DDH) assump-

tion holds for the group generator 𝐺𝐺𝑒𝑛(·) that outputs groups of
order 𝑝 if there is no efficient adversary A that can distinguish
the ensembles (𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏 ) and (𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑟 ), for group genera-
tor 𝑔 ←𝑅 G, and 𝑎, 𝑏, 𝑟 ←𝑅 F𝑝 . More formally, we require that the
following holds for the group G output by 𝐺𝐺𝑒𝑛(·):
| Pr[A(𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏 ) = 1] − Pr[A(𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑟 ) = 1] | ≤ negl(𝜆) .

(A.1)

The probability is over the random choice of 𝑔,G according to the
distribution induced by 𝐺𝐺𝑒𝑛(·), the random choice of 𝑎, 𝑏, 𝑟 ∈ F𝑝 ,
and the random bits used byA. The group familyG satisfies the DDH
assumption if there is no DDH algorithm for G.

A.1.2 The DCR assumption.

15

https://ethereum.org/roadmap/danksharding
https://filecoin.io/
https://impact.economist.com/perspectives/sites/default/files/ei233_msft_futuredata_report_-_v7.pdf
https://impact.economist.com/perspectives/sites/default/files/ei233_msft_futuredata_report_-_v7.pdf
https://robinlinus.com/bitstream.pdf
https://www.marketsandmarkets.com/Market-Reports/cloud-storage-market-902.html
https://www.marketsandmarkets.com/Market-Reports/cloud-storage-market-902.html
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://digital-strategy.ec.europa.eu/en/policies/data-act
https://scroll.io/
https://starkware.co/
https://zksync.io/


Ertem Nusret Tas, István András Seres, Yinuo Zhang, Márk Melczer, Mahimna Kelkar, Joseph Bonneau, and Valeria Nikolaenko

Definition A.2. Given the security parameter 𝜆, the set 𝑆 (𝑝)
of 𝑝 bit primes such that 𝑝 = 2𝑝′ + 1 for some prime 𝑝′ and some
𝜒 = poly(𝑝), the decisional composite residuosity (DCR) assump-

tion states that the tuples (𝑁,𝑢) and (𝑁, 𝑣) are computationally indis-
tinguishable for 𝑁 = 𝑝′𝑞′, where 𝑝′, 𝑞′ ←𝑅 𝑆 (𝑝), 𝑢 ←𝑅 QR𝑁 𝜒+1 =

{𝑎2 |𝑎 ∈ Z∗
𝑁 𝜒+1 } and 𝑣 ←𝑅 HC𝑁 𝜒+1 = {𝑎2𝑁 𝜒 |𝑎 ∈ Z∗

𝑁 𝜒+1 }. Here,
QR𝑁 𝜒+1 denotes the subgroup of quadratic residues and HC𝑁 𝜒+1 de-
notes the subgroup of 𝑁 𝜒

-th residues modulo 𝑁 𝜒+1.

A.1.3 The algebraic group model (AGM).

We prove the security of our schemes in the algebraic group

model introduced by Fuchsbauer, Kiltz, and Loss [40]. The algebraic

group model is an abstraction of an adversary that can only use

algebraic algorithms in its attacks.

Definition A.3 (Algebraic algorithm [40]). An algorithm A
is algebraic if ∀𝑧 ∈ G that is output byA (either as returned byA or
by invoking an oracle), A also provides the representation of 𝑧 with
respect to previously received group elements from G. More formally,
if elems ∈ G𝑛 a vector of previously received group elements, thenA
must be able to provide a vector r representing z in the group, i.e., it
holds that 𝑧 = ⟨elems, r⟩.

A.2 Applied Sigma-protocols and proof systems

In this section we state all the Σ-protocols used in our construc-

tions. We remind that a Sigma protocol for a relation R ⊆ X ×W
(X are the statements andW are the witnesses) is a three-move

protocol, where the prover 𝑃 holds (𝑥,𝑤) and starts the protocol,

the verifier 𝑉 holds 𝑥 and responds with a random message from

the challenge space 𝑐 ←𝑅 C, and after 𝑃 ’s response, 𝑉 accepts or

rejects. Although we describe interactive variants, in our protocols,

we use their non-interactive counterparts that can be obtained via a

standard Fiat-Shamir transformation, where the verifier’s challenge

is replaced with a hash of the prover’s first message.

We first introduce a protocol of Schnorr [63] as an identification

scheme to prove the knowledge of a discrete logarithm in a prime-

order group where the discrete logarithm problem is hard. More

formally, Schnorr is a protocol with special soundness and special

HVZK for the following relation in a group G ( |G| = 𝑝) with group

generator 𝑔←𝑅 G.

RDL := {(ℎ, 𝑥) |ℎ = 𝑔𝑥 }. (A.2)

The proof system proceeds as follows.

• The prover samples 𝑟 ←𝑅 F𝑝 , and sends 𝑅 := 𝑔𝑟 ∈ G to the

verifier.

• The verifier samples a random challenge 𝑐 ←𝑅 F𝑝 , and
sends it to the prover.

• The prover replies with 𝑧 = 𝑐𝑥 + 𝑟 ∈ F𝑝 .
The proof 𝜋DL consists of 𝜋DL = (𝑅, 𝑧). The verifier accepts the

proof if 𝑅ℎ𝑐 = 𝑔𝑧 holds. It can be shown that this proof system

satisfies correctness, (knowledge) soundness, and zero-knowledge.

Naturally, this proof system can be made non-interactive using the

Fiat-Shamir transformation [34].

The following protocol is used to prove that two group elements

have the same discrete logarithm with respect to different bases

𝑔 and ℎ [23]. We use the following protocol that satisfies special

soundness and special HVZK:

RDLeq := {((𝑔, ℎ, 𝑎, 𝑏), 𝑥) |𝑎 = 𝑔𝑥 ∧ 𝑏 = ℎ𝑥 }. (A.3)

The proof system proceeds as follows. The prover holds 𝑃 (𝑔, ℎ, 𝑎, 𝑏, 𝑥)
and the verifier holds 𝑉 (𝑔, ℎ, 𝑎, 𝑏).

• The prover samples 𝑟 ←𝑅 F𝑝 , and sends the group elements

(𝑅, 𝑅′) := (𝑔𝑟 , ℎ𝑟 ) ∈ G2 to the verifier.

• The verifier samples a random challenge 𝑐 ←𝑅 F𝑝 , and
sends it to the prover.

• The prover replies with 𝑧 = 𝑐𝑥 + 𝑟 ∈ F𝑝 .
The proof 𝜋DLeq consists of (𝑅, 𝑅′, 𝑧) ∈ G2×F𝑝 . The verifier accepts
the proof if 𝑔𝑧 = 𝑅𝑎𝑐 ∧ ℎ𝑧 = 𝑅′𝑏𝑐 holds.

We also use a generalization of the protocol above for proving

linear relations [12] (Section 19.5.3) with special soundness and

special HVZK:

RLIN :=

({𝑔𝑖, 𝑗 , 𝑢𝑖 }𝑖∈[𝑚] 𝑗∈[𝑛] ; {𝑥 𝑗 } 𝑗∈[𝑛] )
�������

∏𝑛
𝑗=1 𝑔

𝑥 𝑗
1, 𝑗

= 𝑢1 ∧
. . .

∧ ∏𝑛
𝑗=1 𝑔

𝑥 𝑗
𝑚,𝑗

= 𝑢𝑚


(A.4)

• The prover samples 𝛼 𝑗 ←𝑅 F𝑝 for 𝑗 ∈ [𝑛], sets 𝑣𝑖 :=∏𝑛
𝑗=1 𝑔

𝛼 𝑗

𝑖 𝑗
for 𝑖 ∈ [𝑚] and sends the elements {𝑣𝑖 }𝑖∈[𝑚] to

the verifier.

• The verifier samples a random challenge 𝑐 ←𝑅 F𝑝 , and
sends it to the prover.

• The prover computes 𝛽 𝑗 = 𝛼 𝑗 + 𝑥 𝑗 · 𝑐 for 𝑗 ∈ [𝑛] and sends

{𝛽 𝑗 } 𝑗∈[𝑛] to the verifier.

• The verifier checks that ∀𝑖 ∈ [𝑚], the following equations
hold:

∏𝑛
𝑗=1 𝑔

𝛽 𝑗
𝑖 𝑗

= 𝑣𝑖 · 𝑢𝑐𝑖 .

Definition A.4 (Special soundness ([12], Definition 19.4)). .
Let (𝑃,𝑉 ) be a Sigma protocol forR ⊆ X×W. We say that (𝑃,𝑉 ) pro-
vides special soundness if there is an efficient deterministic algorithm
Ext, called a witness extractor, with the following property: on input
𝑥 ∈ X and two accepting conversations (𝑡, 𝑐, 𝑧) and (𝑡, 𝑐′, 𝑧′) with
𝑐 ≠ 𝑐′, algorithm Ext always outputs𝑤 ∈ W such that (𝑥,𝑤) ∈ R.

Definition A.5 (Special Honest Verifier Zero Knowledge

(HVZK) ([12], Definition 19.5)). Let (𝑃,𝑉 ) be a Sigma protocol for
R ⊆ X ×W with challenge space C. We say that (𝑃,𝑉 ) is special
honest verifier zero knowledge, or special HVZK, if there exists an
efficient probabilistic algorithm Sim that takes as input (𝑥, 𝑐) ∈ X×C,
and satisfies the following properties:

(i) for all inputs (𝑥, 𝑐) ∈ X × C, algorithm Sim always outputs
a pair (𝑡, 𝑧) such that (𝑡, 𝑐, 𝑧) is an accepting conversation for
𝑥 ;

(ii) for all (𝑥,𝑤) ∈ R, if we compute

𝑐 ←𝑅 C, (𝑡, 𝑧) ← Sim(𝑥, 𝑐),
then (𝑡, 𝑐, 𝑧) has the same distribution as that of a transcript
of a conversation between 𝑃 (𝑥,𝑤) and 𝑉 (𝑥).

The word "special" in the definition means that (i) the simulator

may simulate around a given challenge 𝑐 , and (ii) the simulator

produces an accepting conversation even when the statement 𝑥

does not have a witness.
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In Figure 3, we created a VECK protocol with the exponential

ElGamal and the KZG commitment scheme that could support ar-

bitrary, i.e., high-entropy data, by using range proofs. Next, we for-

mulate the range-proof relation, necessary to support high-entropy

data.

Rrange := {(𝑔1, ℎ, {ℎ𝑖 }, {ct𝑖, 𝑗 }, ℎ𝑠 ); ({𝜙𝑖, 𝑗 }, 𝑠)) |

∀𝑖 ∈ [ℓ], 𝑗 ∈ [𝑘] : ct𝑖, 𝑗 = ℎ𝑠𝑖𝑔
𝜙𝑖,𝑗
1
∧ 0 ≤ 𝜙𝑖, 𝑗 < B},

(A.5)

where B ∈ F𝑝 is a predefined bound. An HVZK instantiation

of this proof system can be found in [11] that we apply in our

implementation, cf. Section 6.

A.3 Danksharding

Danksharding is a scaling solution for the data posted to Ethereum.

It enables each Ethereum block to have a capacity of up to 256

data blobs, each blob consisting of a vector of 4096 elements in

F𝑝 . The data availability sampling (DAS) method employed by

danksharding sets each row of 16 field elements as a single sample.
This data is organized into a 256 × 4096 data matrix 𝐵.

Danksharding uses a technique called data availability sampling
(DAS) [43], where no Ethereum validator downloads all of a pro-

posed block but instead verifies its availability by sampling pieces of

the data matrix. To ensure that the received samples can be verified

and the block can be recovered when a sufficient fraction of the

validators receive samples, DAS methods require encoding the data

with erasure-code and publishing commitments to the coded data.

Towards this goal, the block builder fits a degree (𝑑𝑥 , 𝑑𝑦) bivariate
polynomial 𝑓 (𝑋,𝑌 ) to the data matrix such that 𝑓 (𝑖, 𝑗) = 𝐵 [𝑖, 𝑗]
for 𝑖 = 0, . . . , 255 and 𝑗 = 0, . . . , 4095 for 𝑑𝑥 < 256 and 𝑑𝑦 < 4096. It

then expands the matrix 𝐵 towards the bottom and right to form

an extended 512 × 8192 data matrix 𝐸 of field elements, where

𝐸 [𝑖, 𝑗] = 𝑓 (𝑖, 𝑗) for 𝑖 = 0, . . . , 511 and 𝑗 = 0, . . . , 8191. Finally,

it publishes KZG commitments 𝐶𝑖 to the univariate polynomials

𝑓𝑖 (𝑌 ) = 𝑓 (𝑖, 𝑌 ), for all 𝑖 = 0, . . . , 255. These commitments are global

knowledge across all Ethereum clients.

Since 𝑑𝑥 < 256, for any given 𝑥 ≥ 256, there are constants

𝜆0 (𝑥), . . . , 𝜆255 (𝑥) depending only on 𝑥 such that the KZG commit-

ment to 𝑓𝑥 (𝑌 ), namely 𝐶𝑥 , can be computed as 𝐶𝑥 =
∑
255

𝑖=0 𝜆𝑖 (𝑥)𝐶𝑖 .
Hence, the block builder can publish 𝐶 = (𝐶0, . . . ,𝐶255) as the
commitment to all of the extended data matrix 𝐸.

The DAS method employed by danksharding sets each row of

16 field elements as a single sample. Thus, the matrix 𝐸 consists

of 512 × 512 samples arranged as a square matrix. To distribute

the block data to the validators, the builder splits the matrix 𝐸

into multiple groups (𝑃𝑖 )𝑖 , containing exactly two rows and two

columns of samples from 𝐸. Each group is sent to a distinct validator,

and upon receiving the assigned rows and columns, the validator

acts as a data provider to the Ethereum clients.

A.4 Paillier Encryption

In this section, we review the additively homomorphic Paillier

public-key encryption scheme [56]. In our application, a distin-

guishing feature of the Paillier scheme is that it has a low ciphertext

expansion, i.e., |ct| = 2|𝑚 |, in contrast to the Exponential Elgamal

encryption scheme, which for parameters of interest has |ct| ≈ 8|𝑚 |.

Paillier’s public key encryption scheme [56] consists of the fol-

lowing three efficient algorithms:

Gen(1ℓ ) : Generates two ℓ-bits safe primes 𝑝′ and 𝑞′, and sets the
RSA modulus as 𝑁 = 𝑝′𝑞′. Samples a uniformly random

𝑥 ←𝑅 Z𝑁 , and sets𝐺 := (𝑁 + 1) · 𝑥 mod 𝑁 2
(𝐺 has order

𝑁 in Z∗
𝑁 2

, i.e.,𝐺𝑁 = 1 mod 𝑁 2
). Sets 𝜆 to be Carmichael’s

lambda function: 𝜙 = lcm(𝑝′−1, 𝑞′−1). Outputs the public
key pk = (𝑁,𝐺) and the secret key sk = 𝜆.

Enc(pk,𝑚) : To encrypt a message𝑚 ∈ Z𝑁 , randomly chooses

𝑈 ←𝑅 Z
∗
𝑁
and outputs the ciphertext 𝑐 = 𝐺𝑚𝑈𝑁 mod 𝑁 2

.

Dec(sk, 𝑐) : To decrypt 𝑐 ∈ Z∗
𝑁 2

, computes 𝑚 =
𝐿 (𝑐𝜆 mod 𝑁 2 )
𝐿 (𝐺𝜆

mod 𝑁 2 )
mod 𝑁 , where 𝐿(𝑥) takes input from 𝑆 = {𝑥 < 𝑁 2 |𝑥 = 1

mod 𝑁 } and 𝐿(𝑥) = 𝑥−1
𝑁

.

Correctness: The following holds for any 𝑤 ∈ Z∗
𝑁 2

: 𝑤𝜆 = 1

mod 𝑁 and thus 𝑤𝜆𝑁 = 1 mod 𝑁 2
. Hence, (𝑐𝜆 mod 𝑁 2) and

(𝐺𝜆 mod 𝑁 2) are equal to 1 when they are raised to the power

𝑁 ; so they are 𝑁 -th roots of unity, and each of them can be repre-

sented as 1 + 𝛽𝑁 mod 𝑁 2
. Then, the function 𝐿 outputs the value

(𝛽 mod 𝑁 ). Therefore 𝐿((𝐺𝑚)𝜆 mod 𝑁 2) =𝑚 ·𝐿(𝐺𝜆 mod 𝑁 2)
mod 𝑁 . Note that 𝐿(𝐺𝜆 mod 𝑁 2) ≠ 0 mod 𝑁 as otherwise the

order of 𝐺 would be 𝜆 which is smaller than 𝑁 , and this would

contradict the way 𝐺 is chosen in the construction.

Security: The scheme is semantically secure based on the hardness

of breaking the DCR assumption.

A.5 Adaptor Signatures

Definition A.6 (Adaptor Signatures). Consider a signature
scheme Σ = (KeyGen, Sign,Verify) and a hard relation R. Let
(pk𝜎 , sk𝜎 ) ← KeyGen(1𝜆) and (𝑌,𝑦) ∈ R. An adaptor signature
Sig scheme with respect to Σ and 𝑌 consists of the following four
algorithms (cf. [28]):
�̂� ← pSign(sk𝜎 ,𝑚,𝑌 ) : The pre-signing algorithm is a PPT algo-
rithm that takes sk𝜎 , a message𝑚 ∈ {0, 1}ℓ and a statement 𝑌 , and
generates a pre-signature �̂� .
𝑏 ← pVerify(pk𝜎 ,𝑚, �̂�, 𝑌 ) : The pre-verification algorithm is a de-
terministic algorithm that takes pk𝜎 , a message𝑚 ∈ {0, 1}ℓ , a pre-
signature �̂� , a statement 𝑌 , and returns 0/1.
𝜎 ← Adapt(pk𝜎 , �̂�, 𝑦) : The adapt algorithm is a PPT algorithm
that takes pk𝜎 , a pre-signature �̂� and the witness 𝑦 for the statement
𝑌 in R, and generates an adapted signature 𝜎 .
𝑦 ← Extract(𝜎, �̂�, 𝑌 ) : The extract algorithm is a deterministic
algorithm that takes an adapted signature 𝜎 , a pre-signature �̂� and
the statement 𝑌 , and returns the witness 𝑦 such that (𝑌,𝑦) ∈ R or ⊥.

An adaptor signature scheme must fulfill the following security

and privacy requirements:

Definition A.7. (Security and Privacy for Adaptor Signatures) An
adaptor signature scheme Ξ𝑅,Σ = (pSign,Adapt, pVerify, Extract)
for a relation R and signature scheme Σ satisfies these properties:

• Pre-signature correctness: For ∀𝑚 ∈ {0, 1}∗,∀(𝑌,𝑦) ∈ R;

Pr

[
pVrfy(pk𝜎 ,𝑚,𝑌,�̂� )=1∧

Vrfy(pk𝜎 ,𝑚,𝜎 )=1∧(𝑌,𝑦′ ) ∈𝑅

��� (sk,pk𝜎 )←−Gen(1𝜆 ),�̂�←−pSign(sk,𝑚,𝑌 )
𝜎 :=Adapt(pk𝜎 ,�̂�,𝑦),𝑦′ :=Ext(pk𝜎 ,𝜎,�̂�,𝑌 )

]
= 1

• Existential unforgeability: The schemeΞ𝑅,Σ is aEUF-CMA
secure if for all PPT adversaries A = (A1,A2), it holds that
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Pr[aSigForgeA,Ξ𝑅,Σ
(𝜆) = 1] ≤ 𝜎 (𝜆), where the experiment

aSigForgeA,Ξ𝑅,Σ
is defined as follows:

1 aSigForgeA,Ξ𝑅,Σ
(𝜆)

2 Q := ∅, (sk𝜎 , pk𝜎 ) ←− Gen(𝜆), (𝑌, 𝑦) ←− RelationGen(𝜆)
3 (𝑚, st) ←− A

O𝑆 ( ·),O𝑝𝑆 ( ·,·)
1

(pk𝜎 , 𝑌 )
4 �̂� ←− pSign(sk,𝑚,𝑌 )
5 𝜎 ←− A

O𝑆 ( ·),O𝑝𝑆 ( ·,·)
2

(�̂�, st)
6 return (𝑚 ∉ Q ∧ Vrfy(pk𝜎 ,𝑚, 𝜎 ) )

1 O𝑆 (𝑚)
2 𝜎 ←− Sign(sk,𝑚)
3 Q := Q ∪ {𝑚}
4 return 𝜎

1 O𝑝𝑆 (𝑚,𝑌 )
2 �̂� ←− pSign(sk,𝑚,𝑌 )
3 Q := Q ∪ {𝑚}
4 return �̂�

• Pre-signature adaptability: For ∀𝑚 ∈ {0, 1}∗,∀(𝑌,𝑦) ∈
R,∀pk𝜎 ,∀�̂� ∈ {0, 1}∗ the following probability is 1:

Pr[Vrfy(pk𝜎 ,𝑚,Adapt(pk𝜎 , �̂�, 𝑦)) = 1|pVerify(pk𝜎 ,𝑚,𝑌, �̂�) = 1]
• Witness extractability: The scheme Ξ𝑅,Σ is witness ex-

tractable if for all PPT adversaries A = (A1,A2),
Pr[aWitExtA,Ξ𝑅,Σ

(𝜆) = 1] ≤ 𝜎 (𝜆), where the experiment
aWitExtA,Ξ𝑅,Σ

is defined as follows:

1 aWitExtA,Ξ𝑅,Σ (𝜆)
2 Q := ∅, (sk𝜎 , pk𝜎 ) ←− Gen(𝜆)
3 (𝑚,𝑌, st) ←− A

O𝑆 ( ·),O𝑝𝑆 ( ·,·)
1

(pk𝜎 )
4 �̂� ←− pSign(sk,𝑚,𝑌 )
5 𝜎 ←− A

O𝑆 ( ·),O𝑝𝑆 ( ·,·)
2

(�̂�, st)
6 return ( (𝑌, Ext(pk𝜎 , 𝜎, �̂�, 𝑌 ) ) ∉ 𝑅 ∧𝑚 ∉ Q ∧ Vrfy(pk𝜎 ,𝑚, 𝜎 ) )

1 O𝑆 (𝑚)
2 𝜎 ←− Sign(sk,𝑚)
3 Q := Q ∪ {𝑚}
4 return 𝜎

1 O𝑝𝑆 (𝑚,𝑌 )
2 �̂� ←− pSign(sk,𝑚,𝑌 )
3 Q := Q ∪ {𝑚}
4 return �̂�

B THE FDE PROTOCOL ON BITCOIN

In this section, we build FDE protocols for Bitcoin applying adaptor

signatures. First, we recall the syntax of adaptor signatures, and

then introduce our FDE protocol for Bitcoin.

B.1 Preliminaries

In the absence of smart contracts, we design a bonding contract on

Bitcoin using adaptor signatures. Consider a signature scheme Σ =

(KeyGen, Sign,Verify) and a hard relation R. Let (pk𝜎 , sk𝜎 ) ←
KeyGen(1𝜆) and (𝑌,𝑦) ∈ R. An adaptor signature scheme Sigwith
respect to Σ and 𝑌 consists of the following four algorithms: �̂� ←
pSign(sk𝜎 ,𝑚,𝑌 ),𝑏 ← pVerify(pk𝜎 ,𝑚, �̂�, 𝑌 ),𝜎 ← Adapt(pk𝜎 , �̂�, 𝑦)
and 𝑦 ← Extract(𝜎, �̂�, 𝑌 ). Here, �̂� is a presignature, 𝑏 denotes the

output of the verification for �̂� , and 𝜎 denotes the adapted signature

(that verifies against the public key pk𝜎 · 𝑌 ) from which 𝑦 can be

extracted. For the FDE protocol on Bitcoin, we use adaptor signa-

tures based on Schnorr signatures. For details on adaptor signatures,

cf. Appendix A.5 and [28].

B.2 Protocol

Algorithms FDE.Setup(1𝜆), FDE.Vrfy(data, com) and the proto-

col FDE.Com⟨C(data),S()⟩ are instantiated as in Section 4.2. The

adaptor signature scheme used by the protocol is based on the

relation satisfied by 𝑦 = sk and 𝑌 = vk with language 𝐿key =

{vk|Verkey (vk, sk) = 1}. The FDE protocol proceeds as follows:

1) This is the same step as step (2) in Section 4.2, except that S
sends both the verification key vk and the ciphertext ct to C.
2) The client verifies the ciphertext ct: Verct (com, vk, ct, 𝜋) −→ 1/0.
Then, it creates a bonding contract on Bitcoin that does the follow-

ing: Before a timelock expires, it allows the spending of tk tokens

by a transaction with two signatures: one must verify with respect

to S’s public key pkS , and the other must verify with respect to the

public key of the adaptor signature, i.e., pk𝜎 · vk. After the expiry,
the tokens can be spent to any address and returned to C with a

signature that is created with C’s signing key skC and that verifies

under C’s public key pkC .
3) If the verification above succeeds, C also sends a pre-signature

on a transaction tx: �̂� ← pSign(sk𝜎 , tx, vk), where tx transfers the
tokens in the bonding contract to S’s address.
4) If the timelock has not expired yet, there are tk tokens locked

in a correctly structured bonding contract and �̂� verifies, namely,

pVerify(pk𝜎 , tx, �̂�, vk) = 1, the server adapts the pre-signature us-
ing the decryption key sk to get a full signature 𝜎 on the transaction

tx: 𝜎 ← Adapt(pk𝜎 , �̂�, sk). It also signs txwith its signing key skS
corresponding to pkS and posts tx to Bitcoin with both signatures.

5) The client extracts sk from 𝜎 : sk← Extract(𝜎, �̂�, vk). Using sk,
it decrypts ct and retrieves the data: Dec(sk, ct) −→ data.
Note that the existence of both the adaptor signature and S’s signa-
ture on tx prevents C from frontrunning the server. If txwere signed
by only the adaptor signature, upon receiving the adaptor signature

from the mempool, C could have extracted the decryption key sk,
and created another transaction, signed by the adapted signature

and spending the tokens to C’s address, before S’s transaction is

confirmed on Bitcoin.

C THE SCRIPTS OF OUR ON-CHAIN BONDING

CONTRACTS

C.1 Bitcoin Script

Algorithm 1 The bonding contract. Here, ⟨client_public_key⟩,
⟨server_public_key⟩ and ⟨adaptor_signature_public_key⟩ denote the

client’s public key pkC , the server’s public key pkS and the adaptor

signature’s public key pk𝜎 respectively. Before the timelock expires (set

to 1 month here), it allows spending of the funds by any transaction with

two signatures that verify with respect to pkS and pk𝜎 . After the timelock

expires, it allows spending of the funds by any transaction with a signature

that verifies with respect to pkC .

OP_IF
<1 month>
OP_CHECKLOCKTIMEVERIFY OP_DROP
<client_public_key>
OP_CHECKSIGVERIFY

OP_ELSE
<server_public_key>
OP_CHECKSIGVERIFY
<adaptor_signature_public_key>
OP_CHECKSIGVERIFY

OP_ENDIF
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C.2 Solidity smart contract

Our Ethereum-based protocols, cf. Section 4.2, use smart contracts

to achieve fairness and atomicity. We enclose below our smart con-

tract code developed in Solidity for the Ethereum Virtual Machine.

The following contract is written for the protocol in Section 5.1.

A very similar contract works also for the Paillier-based protocol,

cf. Section 5.1. For brevity, we omit the elliptic curve cryptography

libraries, i.e., BN254 curve arithmetic, from the contract code.

1 // SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.13;

3

4 import { BN254 } from "./BN254.sol";

5 import { Types } from "./Types.sol";

6 import { Constants } from "./ Constants.sol";

7

8 contract FDE is BN254 {

9

10 struct agreedPurchase {

11 uint256 timeOut; // The protocol after this

timestamp , simply aborts and returns funds.

12 uint256 agreedPrice;

13 Types.G1Point sellerPubKey;

14 bool secretKeySent;

15 bool ongoingPurchase;

16 }

17

18 // We assume that for a given seller -buyer pair ,

there is only a single purchase at any given

time

19 // Maps seller (server addresses) to buyer (client

addresses) which in turn are mapped to tx

details

20 mapping(address => mapping(address => agreedPurchase)

) public orderBook; // Privacy is out of scope

for now

21 mapping(address => uint256) balances; // stores the

Eth balances of sellers

22

23 // Events

24 event BroadcastPubKey(address indexed _seller ,

address indexed _buyer , uint256 _pubKeyX ,

uint256 _timeOut , uint256 _agreedPrice);

25 event BroadcastSecKey(address indexed _seller ,

address indexed _buyer , uint256 _secKey);

26

27 constructor (

28 ) {

29 }

30

31 // Agreed price could be set by the contract akin to

Uniswap whereby price would be dynamically

changing

32 // according to a constant product formula given the

current number of sellers and buyers (assuming

33 // that each tx in the orderBook has the same volume)

34 function sellerSendsPubKey(

35 uint256 _timeOut ,

36 uint256 _agreedPrice ,

37 uint256 _pubKeyX ,

38 uint256 _pubKeyY ,

39 address _buyer

40 ) public {

41 require (! orderBook[msg.sender ][ _buyer ].
ongoingPurchase , "There can only be one

purchase per buyer -seller pair!");

42 orderBook[msg.sender ][ _buyer ]. timeOut = _timeOut;
43 orderBook[msg.sender ][ _buyer ]. agreedPrice =

_agreedPrice;

44 Types.G1Point memory _sellerPubKey = Types.

G1Point(_pubKeyX , _pubKeyY);

45 orderBook[msg.sender ][ _buyer ]. sellerPubKey =

_sellerPubKey;

46 orderBook[msg.sender ][ _buyer ]. ongoingPurchase =

true;
47

48 emit BroadcastPubKey(msg.sender , _buyer , _pubKeyX

, _timeOut , _agreedPrice);

49 }

50

51 // If buyer agrees to the details of the purchase ,

then it locks the corresponding amount of money.

52 function buyerLockPayment(

53 address _seller

54 ) public payable {

55 require (! orderBook[_seller ][msg.sender ].
secretKeySent , "Secret keys have been

already revealed!");

56 require(msg.value == orderBook[_seller ][msg.
sender ]. agreedPrice , "The transferred money

does not match the agreed price!");

57 }

58

59 function sellerSendsSecKey(

60 uint256 _secKey ,

61 address _buyer

62 ) public {

63 require (! orderBook[msg.sender ][ _buyer ].
secretKeySent , "Secret key has been already

revealed.");

64 require(mul(P1(),_secKey).x == orderBook[msg.
sender ][ _buyer ]. sellerPubKey.x, "Invalid

secret key has been provided by the seller!"

);

65 orderBook[msg.sender ][ _buyer ]. secretKeySent =

true;
66 balances[msg.sender ]+= orderBook[msg.sender ][

_buyer ]. agreedPrice;

67 orderBook[msg.sender ][ _buyer ]. ongoingPurchase =

false;
68 // There is no need to store the secret key in

storage

69 emit BroadcastSecKey(msg.sender , _buyer , _secKey)

;

70 }

71

72 // This function allocates funds to the server from

previous accrued purchase incomes

73 function withdrawPayment(

74

75 ) public {

76 payable(msg.sender).transfer(balances[msg.sender
]);

77

78 balances[msg.sender ]=0;
79 }

80

81 // Buyer can withdraw its money if seller does not

reveal the correct secret key.

82 function withdrawPaymentAfterTimout(

83 address _seller

84 ) public {

85 require (! orderBook[_seller ][msg.sender ].
secretKeySent , "The encryption secret key

has already been sent by the seller!");

86 require(block.timestamp >= orderBook[_seller ][msg
.sender ].timeOut , "The seller has still time

to provide the encryption secret key!");
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87 orderBook[_seller ][msg.sender ]. ongoingPurchase =

false;
88 payable(msg.sender).transfer(orderBook[_seller ][

msg.sender ]. agreedPrice);
89 }

90 }

D MULTI-CLIENT MODEL

In certain applications of the FDE protocol, the server is expected to

provide the same data to multiple clients over time. For instance, in

blockchain applications, light clients might query the same blocks

from the validators. We next formulate a model for this setting and

construct a VECK protocol that minimizes the server’s work.

D.1 Problem Setup

Consider a single server S with the messages (𝑚𝑖 )𝑖∈[𝑛] from some

message spaceM, and multiple clients (C𝑖 )𝑖=1,...,𝐾 that query S
for the messages. In the multi-client model, we would like to guar-

antee that a client cannot obtain the messages without getting the

ciphertexts and the decryption key from the server, except when

it downloads the data from one of the other clients. Clients can

communicate with each other, but the total number of bits, received

by a client from the other clients cannot exceed a constant 𝐿.

In the setting of multiple clients, we can save the server some

work bymoving parts of the proof generation to a preprocessing step
that is amortized across all clients querying the same data. Thus,

we distinguish between the preprocessing phase of the protocol

and the online phase that is repeated for each client. To illustrate

this distinction, consider an example with 𝐿 = 0. In this case, S has

to generate an encryption of the messages and the proof only once,

and can reuse the same ciphertexts and the proof across all clients.

Since the proof is generated only once, S can pick a symmetric key

encryption scheme with secret key 𝛼 (succinct in 𝑛)10 that has an

efficient decryption algorithm and a small message complexity for

the ciphertexts, but not necessarily a fast algorithm for generating

a VECK proof. Then, it can leverage the power of a generic SNARK

with an efficient constant time verifier and a small constant size

proof (e.g., [41, 42]) to generate the proof. As the encryption and the

proof generation are not repeated per client, this scheme achieves a

small amortized proving cost for large 𝐾 and reduces the ciphertext

decryption time and proof verification time.

In practice, clients do communicate with each other. When they

are able to convey each other the whole length𝑁 message sequence,

i.e., 𝐿 = O(𝑁 log( |M|)) bits,S cannot expect to profit from its inter-

action with the clients, since the first client to receive the messages

could broadcast it to the others, making any further communica-

tion obsolete. However, this implicitly assumes that clients can act

as servers themselves, which contradicts the premise of the FDE

problem in the first place. Thus, in this section, we assume that

𝐿 = 𝑜 (𝑁 log( |M|) + 𝜆). Note that a small 𝐿 still yields a non-trivial

problem, asS can no longer use the same secret key 𝛼 for all clients,

lest they share the key with each other.

D.2 Security Definition

We now define the security properties for MC-VECK.

10
Otherwise, the scheme violates the succinctness assumption.

Definition D.1 (multi-client-VECK). A non-interactive Multi-
Client-VECK (MC-VECK) scheme for a function 𝐹 augments a VECK
scheme fromDefinition 3.1 with an additional preprocessing algorithm
that outputs a secret and a public state for the server that is used
in the encryption. Namely, MC-VECK is a tuple of algorithms Π =

(Gen, Prep, Enc,Verct,Verkey,Dec) defined for a class of functions
F = {𝐹 :W → V} and a commitment scheme (Setup,Commit)
over the spaceW. The only algorithms whose input-output formats
are different are Prep and Enc defined as follows:

• Prep(pp,𝐶𝑤 ,𝑤) −→ (aux,msk): Probabilistic polynomial-
time algorithm that outputs a public value aux and a server’s
master secret keymsk (ppwill be omitted from the algorithms
for brevity).

• Enc(pp, 𝐹 , aux,msk) −→ (vk, sk, ct, 𝜋) : Probabilistic polynomial-
time algorithm run by the server, it takes as input the value
aux and a master secret key msk, and outputs a verification
key vk, a secret key sk, an encryption ct of 𝐹 (𝑤) and a proof
𝜋 .

An MC-VECK protocol Π = (Gen, Prep, Enc,Verct,Verkey,Dec)
is correct and sound if the VECKΠ′ = (Gen, Enc′,Verct,Verkey,Dec)
where encryption is derived as follows is correct and sound.
Enc′ (pp, 𝐹 ,𝐶𝑤 ,𝑤) :

• Run Prep(pp, 𝐹 ,𝐶𝑤 ,𝑤) → (aux,msk).
• Run Enc(pp, 𝐹 , aux,msk) → (vk, sk, ct, 𝜋)
• Output (vk′ = (vk, aux), sk, ct, 𝜋).

We additionally require the MC-VECK scheme to satisfy computa-

tional L-bits zero-knowledge. This property implies that one client,
Alice, who successfully completed the data-exchange, won’t be able
to help the other client, Bob, who only downloaded the encryption,
learn anything about the encrypted data, other than the bits that Alice
sends Bob directly. With this property, it is guaranteed that in order
to obtain the data, Bob has to either complete the data-exchange with
the server or download full data from Alice, as no partial help from
Alice would help Bob avoid paying the server for the decryption key
in our FDE protocol.

Computational L-bits Zero-Knowledge:We generalize zero-
knowledge in order to prevent the attacker who learns some L-bits
from other clients from learning anything else about the data. For any
PPT algorithmsA1,A2, whereA1 outputs at most L-bits hint, there
exists a PPT simulator Sim, there is a negligible function 𝜇 (·) such
that for all𝑤 ∈ W, the following probability is less than 1

2
+ 𝜇 (𝜆):

Pr



A2 (pp, 𝐹 ,𝐶𝑤 , hint
vk𝑏 , ct𝑏 , 𝜋𝑏 ) = 𝑏

����������������������

crs← Setup(1𝜆)
𝐶𝑤 ← Commit(crs,𝑤)
𝑝𝑝 ← Gen(crs)
(aux,msk) ← Prep(𝐹,𝐶𝑤 ,𝑤)

(vk∗, sk∗, ct∗, 𝜋∗) ← Enc(𝐹, aux,msk)
hint← A1 (vk∗, sk∗, ct∗, 𝜋∗)

(vk0, sk0, ct0, 𝜋0) ← Enc(𝐹, aux,msk)
(vk1, ct1, 𝜋1) ← Sim(pp,𝐶𝑤 , hint)
𝑏 ←𝑅 {0, 1}


D.3 MC-VECK for ElGamal Encryption

We next describe an MC-VECK protocol for exponential ElGamal

encryption that extends the VECK scheme in Section 5.1 (Figure 2).
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The protocol consists of an offline phase and an online phase (Fig-

ure 7). Recall that (ℎ𝑖 )𝑖∈[𝑛] ∈ G𝑛+11
denote the public parameters

of the ElGamal encryption.

Preprocessing Step. In the preprocessing step, S runs the Enc

algorithm of the original VECK scheme (cf. Definition D.1) and

outputs the verification key vk, the ciphertexts ct and the VECK

proof 𝜋 for the function 𝐹 as part of the preprocessing output aux
and outputs the decryption key sk as the master secret key msk
(cf. Figure 2 and Figure 7). Let 𝐻 : {0, 1}∗ → F𝑝 be a hash function

modelled as a random oracle.

Online Step of MC-VECK. When S starts interacting with a

new client C, it samples a new key 𝛿C u.a.r., and calculates the

commitments

𝐷C = ℎ𝛿C and ℎC,𝑖 = (ℎ𝛿C𝑖 )𝑖∈[𝑛] .
It then calculates 𝑄 = ℎ

𝑒𝑖
𝑖
, where 𝑒𝑖 = 𝐻 (𝐷C, 𝑖) for all 𝑖 ∈ [𝑛], and

computes a single discrete logarithm equality proof 𝜋DLEQ with

respect to (𝑄,𝑄𝛿C , ℎ, 𝐷C). Informally, the values {ℎC,𝑖 }will be used
to rerandomized the ElGamal encryption so that the corresponding

decryption key becomes skC = msk + 𝛿C . The proof 𝜋DLEQ , on the

other hand, will attest to the correct rerandomization. The final

proof 𝜋C includes 𝜋 , 𝐷C , 𝜋DLEq and (ℎC,𝑖 )𝑖∈[𝑛] .
Upon receiving vkC , ct and 𝜋C = (𝜋, 𝐷C, 𝜋DLEq, (ℎC,𝑖 )𝑖∈[𝑛] ),

the client C first verifies the VECK proof 𝜋 with respect to 𝐶𝜙 ,

vkC/𝐷C and ct. It then finds (𝑒𝑖 )𝑖∈[𝑛] and 𝑄 as described above

and checks the proof 𝜋DLEQ against (𝑄,∏𝑖∈[𝑛] ℎ
𝑒𝑖
C,𝑖 , ℎ, 𝐷C). If the

steps succeed in C’s view, it accepts the proof 𝜋C .
Once the decryption key skC is published, its correctness is

verified by checking if ℎskC = vkC .
Finally, to decrypt ct, C calculates ctC = (ct𝑖 · ℎC,𝑖 )𝑖∈[𝑛] as

the rerandomized ciphertexts in the target group, and outputs

Dec(skC, ctC) as in Figure 2 by running the decryption algorithm

in the target group.

Discussion. TheMC-VECK protocol enables the prover to reuse the

original ciphertexts and the VECK proof 𝜋 across all clients (e.g., the
proofs 𝜋𝛼 , 𝜋LIN, 𝜋DLeq and most importantly the range proofs). As

generating the ciphertexts and the range proofs constitute the bulk

of the proving time, this saves the prover considerable computation

(cf. Section 6).

To minimize the client’s verification work and the server’s com-

munication complexity, the server S could also post 𝐶𝜙 , the veri-

fication key vk, ciphertexts ct and proof 𝜋 to a smart contract on

the blockchain after the preprocessing step. The contract then runs

Verct (𝐶𝜙 , vk, ct, 𝜋), thus removing the need for the clients to later

individually verify the proof 𝜋 . Moreover, in any future interaction

with a client C, S would no longer have to send ct and 𝜋 to C;
since 𝜋 would already be verified by the contract, and C would be

able to retrieve ct and 𝜋 from the blockchain. This would improve

applications where the total cost of server’s communication and

the clients’ verification dominates the cost of verifying the data

once on the blockchain.

Finally, the MC-VECK protocol above can be readily modified to

support subset openings of KZG commitments as the protocol in

Section 5.2 makes use of a VECK protocol for the function 𝐹 full-eval

as blackbox.

Analysis. Security of MC-VECK protocols is stated below.

Theorem D.1 (Theorem 7.1). Given 𝐻 modelled as a random oracle,
the protocol in Figure 7 is a secure MC-VECK protocol in the random
oracle and algebraic group models.

Proof is given in Appendix E.5. Intuitively, correctness and sound-

ness follow from the same properties of the VECK protocols used

in the preprocessing step.

One important property inherited from the zero-knowledge of

VECK protocols is that given any two values𝑤0 ≠ 𝑤1 committed

by the same 𝐶𝑤 , no PPT adversary would be able to distinguish

their encryptions. Although many such values exist, certainly no

PPT algorithm can break binding and actually find them (assuming

that the crs was generated securely), so we talk about them as

barely hypothetical values. Then, even if the adversary knows the

value 𝑤0, it would not be able to distinguish the encryption of

𝐹 (𝑤0) from the encryption of 𝐹 (𝑤1) until the decryption keys

are revealed. Since this is true for the adversary that might know

𝑤0, it is also true for the adversary that holds partial information

about 𝐹 (𝑤0) or𝑤0 itself, e.g., a hint based on𝑤0. Then, assuming

multiple (possibly colluding) clients downloading the same data, if

one client, who already holds 𝐹 (𝑤), tries to help the other client,

who only downloaded the encryption of 𝐹 (𝑤) from the server

without yet obtaining the decryption key, it won’t be able to do

so, since the communicated hint reveals no additional information

about 𝐹 (𝑤). This would imply 𝐿-bits zero-knowledge for the MC-

VECK protocols.

E PROOFS

E.1 Proof of security of BDE based on VECK’s

security, Theorem 4.1

Proof of Theorem 4.1. Throughout the proof, we assume that

FDE.Setup(1𝜆) −→ pp and

FDE.Com⟨C(data),S()⟩ −→ ⟨C(𝐶𝜙 ),S(data)⟩.
We first show correctness (Definition 4.2). When both client

C and server S are honest, S runs Enc(𝐶𝜙 , data) to generate

(vk, sk, ct, 𝜋). By the correctness of the VECK protocol (Defini-

tion 3.1), with probability 1, it holds that Verct (𝐶𝜙 , vk, ct, 𝜋) = 1

and Verkey (vk, sk) = 1. Then, before the timelock expires, C locks

tk tokens in the bonding contract on Ethereum, and in the case of

Bitcoin, creates a bonding contract and sends a pre-signature to S.
By the pre-signature correctness of the adaptor signature scheme,

C’s signature is verified by S. Afterwards, S posts the decryption

key sk to the bonding contract on Ethereum, upon which the con-

tract sends tk tokens to S within finite time, as Ethereum is safe

and live, Verkey (vk, sk) = 1, and the timelock has not expired yet.

Similarly, S adapts the pre-signature with sk and posts the signed

spending transaction tx to Bitcoin, after which it receives tk tokens
within finite time, as Bitcoin is safe and live, the adaptor signature

scheme satisfies pre-signature adaptability, Verkey (vk, sk) = 1, and

the timelock has not expired yet. Finally, C reads sk either from

the bonding contract, or from the adaptor signature (by witness

extractibility), decrypts ct using sk and obtains the data. Thus, with
probability 1, C receives the data, and S receives tk tokens.

We next show client-fairness (Def. 4.3). Consider an FDE pro-

tocol instance between an honest client C and a PPT server S∗,
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⟨C(data′),S(tk′)⟩ ← FDE.Exc⟨C(𝐶𝜙 , 𝑝),S∗ (𝐶𝜙 , data)⟩ such that

tk′ > 0. Since S∗ receives a positive payment tk′ > 0, in the

case of Ethereum, C must have posted tk tokens to the bond-

ing contract. Thus, by the existential unforgeability of C’s sig-

natures, C must have verified the proof 𝜋 returned by S∗, i.e.,
Verct (𝐶𝜙 , vk, ct, 𝜋) = 1, except with negligible probability. Simi-

larly, in the case of Bitcoin, by the existential unforgeability of

the adaptor signatures, C must have sent a presignature to S∗, i.e.,
Verct (𝐶𝜙 , vk, ct, 𝜋) = 1, except with negligible probability. Since

the bonding contract allowsS∗ to receive positive amount of tokens,

Bitcoin and Ethereum are safe and live, and the adaptor signatures

satisfy existential unforgeability, S∗ must have posted a decryption

key sk or a signature adapted with sk, to the bonding contract such
that Verkey (vk, sk) = 1.

Now, for contradiction, assume that given an honest client C,
there exists a PPT S∗ such that the following probability is not
negligible in 𝜆:

Pr

FDE.Vrfy(data
′,com)=0
∧ tk′>0

������
pp←FDE.Setup(1𝜆 )

⟨C (com),S(data) ⟩←FDE.Com⟨C (data),S() ⟩
Inputs: C(com,tk),S∗ (com,data)

⟨C (data′ ),S∗ (tk′ ) ⟩←FDE.Exc⟨C,S∗ ⟩


However, FDE.Vrfy(data′, com) = 0 implies thatDec(sk, ct) = 𝑦 ≠

data = 𝐹 (𝜙 (·)) = 𝐹 (𝑤), where the witness 𝑤 is the polynomial

𝜙 (·) and 𝐹 (.) outputs the sequence of its evaluations. Consequently,
the following probability is not negligible in 𝜆 either:

Pr


Verct (𝐶𝑤 , vk, ct, 𝜋) = 1 ∧
Verkey (vk, sk) = 1 ∧

𝑦 ≠ 𝐹 (𝑤)

����������
crs← Setup(1𝜆)
𝐶𝑤 ← Commit(crs,𝑤)
pp← Gen(crs)
(sk, vk, ct, 𝜋) ← A(pp,𝐶𝑤)
𝑦 ← Dec(sk, ct)


However, this contradicts the security of the VECK protocol (Defi-

nition 3.1).

We last show server-fairness (Def. 4.4). Consider an FDE pro-

tocol instance between an honest server S and a PPT client C∗,
⟨C(data′),S(tk′)⟩ ← FDE.Exc⟨C(𝐶𝜙 , tk),S(𝐶𝜙 , data)⟩ such that

tk′ < tk. Note that the server S posts sk to the bonding contract

only if C∗ locks tk tokens, in which case it would have received

tk tokens. As S receives only tk′ < tk, it must be that S has not

posted sk. Similarly, in the case of Bitcoin, it would have posted tx
with an adapted signature and its signature, only if C∗ has created
a bonding contract that allows the spending of tk tokens by a trans-
action with the adaptor and the server’s signature. In this case, S
would have received tk tokens by the existential unforgeability of

its signature scheme. Consequently, as S receives only tk′ < tk, it
must be that it has not sent an adapted signature. This implies that

the only information sent by S consists of a verification key (vk),
the ciphertexts (ct) and a proof (𝜋 ) that verifies.

Now, by the computational zero-knowledge property of the

VECK scheme (Definition 3.1), for any PPT C∗, there exists a PPT
simulator SimC∗ with oracle access to C∗ such that there is a negli-

gible function 𝜇 (·) for which the following probability is less than

1

2
+ 𝜇 (𝜆):

Pr


A(pp,𝐶𝑤 , vk𝑏 , ct𝑏 , 𝜋𝑏 ) = 𝑏

��������������

crs← Setup(1𝜆)
𝐶𝑤 ← Commit(crs,𝑤)
pp← Gen(crs)
(vk0, sk0, ct0, 𝜋0)

↱ Enc(pp,𝐶𝑤 ,𝑤)
(vk1, ct1, 𝜋1) ← SimC∗ (pp,𝐶𝑤)
𝑏 ←𝑅 {0, 1}



Finally, consider the PPT simulator Sim with oracle access to C∗
that simulates vk, ct, and 𝜋 using the simulator SimC∗ above and
equipped with them, simulates a trace 𝛼1 for the interaction of C∗
andS with tk′ < tk. Then, using the bound on the probability above
and the fact that S only sends a verification key vk, ciphertexts ct
and a verifying proof 𝜋 when tk′ < tk, we can conclude that the

following probability is less than
1

2
+𝜇 (𝜆) (otherwise, the probability

above would not be less than
1

2
+ 𝜇 (𝜆), implying a contradiction):

Pr


C∗ (com, 𝛼𝑏 ) = 𝑏

�����������
pp←FDE.Setup(1𝜆 )

⟨C (com),S(data) ⟩←FDE.Com⟨C (data),S() ⟩
Inputs: C∗ (com,tk),S(com,data)

𝛼0←−tr(⟨C∗,S⟩←−FDE.Exc⟨C∗,S⟩)
Outputs: C∗ (data′ ),S(tk′ ) s.t. tk′<tk

𝛼1←−SimC∗ (pp,com,tk)
𝑏

𝑅←−{0,1}


Since this holds for any honest server S and all PPT C∗, this con-
cludes the proof of server-fairness. □

E.2 Proof of security for ElGamal-based VECK,

Theorem 5.1

In Section 5.1, we gave the intuition behind the proofs; here, we

elaborate and give more details.

Proof. Correctness. The proof 𝜋𝛼 verifies correctly due to the

correctness of the KZG commitment scheme. The Chaum-Pedersen

discrete logarithm equality proof [23] 𝜋DLEq for the quadruple

(𝑄,𝑄∗, 𝑔1, vk) verifies correctly since vk = 𝑔𝑠 , and the following

holds

𝑄∗ =

ℓ∏
𝑖=0

ct𝐿𝑖,𝑆 (𝛼 )
𝑖

𝐶𝛼
=

ℓ∏
𝑖=0
(ℎ𝑠
𝑖
· 𝑔𝜙 (𝑖 ) )𝐿𝑖,ℓ (𝛼 )

𝐶𝛼
=

𝑄𝑠
ℓ∏
𝑖=0

𝑔𝜙 (𝑖 )𝐿𝑖,ℓ (𝛼 )

𝑔𝜙 (𝛼 )
= 𝑄𝑠 .

The 𝜋LIN proof for the linear relation verifies correctly since 𝐶𝛼 =

(𝑔1)𝜙 (𝛼 )
(
𝑔
(𝜏−𝛼 )
1

)𝑠
and vk = (1)𝜙 (𝛼 ) · (ℎ)𝑠 . It is easy to see that

Verkey would trivially accept and Dec would output 𝜙 (𝑖) as ex-
pected.

Soundness. Let C𝜙 be a commitment to polynomial 𝜙 (𝑋 ) ∈
F𝑝 [𝑋 ] of degree ℓ . Suppose there is a PPT adversaryA that breaks

the security, i.e., with non-negligible probability, the adversary

generates (sk, vk, ct = [ct0, . . . , ctℓ ], 𝜋 = (C𝛼 , 𝜋𝛼 , 𝜋LIN, 𝜋DLEQ )), s.t.
the key and ciphertext verifications are successful, yet the decryp-

tion of ct with sk outputs (𝑦0, . . . 𝑦ℓ ) ≠ (𝜙 (0), . . . , 𝜙 (ℓ)). Successful
key verification Verkey implies that for sk = 𝑠 , vk = ℎ𝑠 . Further-

more, since the ciphertext verification Verct also holds, we have:

𝑒 (C𝜙/C𝛼 , 𝑔2) = 𝑒 (𝜋𝛼 , 𝑔𝜏−𝛼2
) (E.1)

ℓ∏
𝑖=0

(
ℎ
𝐿𝑖,ℓ (𝛼 )
𝑖

)𝑠
· 𝑔−𝑠 (𝜏−𝛼 )

1
=

ℓ∏
𝑖=0

ct𝐿𝑖,ℓ (𝛼 )
𝑖

/C𝛼 (E.2)

Since 𝜋𝐿𝐼𝑁 is valid, the adversary must know some value𝑤 such

that 𝐶𝛼 = 𝑔
𝑤+(𝜏−𝛼 )𝑠
1

(this helps guarantee that𝑤 does not depend

on 𝜏). Furthermore, in the algebraic group model (AGM), without

loss of generality, we can assume that 𝜋𝛼 = 𝑔
𝑢 (𝜏 )
1

, where 𝑢 (𝜏) is a
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polynomial of degree at most ℓ over the 𝜏 . Therefore, equation E.1

becomes:

𝑒 (𝑔𝜙 (𝜏 )−𝑤−𝑠 (𝜏−𝛼 )
1

, 𝑔2) = 𝑒 (𝑔𝑢 (𝜏 )
1

, 𝑔𝜏−𝛼
2
) (E.3)

Assuming AGM, we must then have the following identity:

𝜙 (𝑥) −𝑤 − 𝑠 (𝑥 − 𝛼) = 𝑢 (𝑥) · (𝑥 − 𝛼) (E.4)

We thus deduce that𝑤 = 𝜙 (𝛼), and C𝛼 = 𝑔
𝜙 (𝛼 )+(𝜏−𝛼 )𝑠
1

. Therefore,

if 𝜙 (𝑋 ) is of degree ℓ , equation E.2 becomes:

ℓ∏
𝑖=0

(
ℎ
𝐿𝑖,ℓ (𝛼 )
𝑖

)𝑠
· 𝑔−𝑠 (𝜏−𝛼 )

1
=

ℓ∏
𝑖=0

ct𝐿𝑖,ℓ (𝛼 )
𝑖

/
(
𝑔
(𝜏−𝛼 )𝑠
1

· 𝑔𝜙 (𝛼 )
1

)
⇔

𝑔
𝜙 (𝛼 )
1

=

ℓ∏
𝑖=0

(ct𝑖/ℎ𝑠𝑖 )
𝐿𝑖,ℓ (𝛼 )

(E.5)

Finally, we show that 𝜙 (𝑋 ) is of degree ℓ . Let’s denote by Φ𝑖 =
ct𝑖/ℎ𝑠𝑖 ∈ 𝐺1, and define the degree ℓ polynomial Φ(𝑥) ∈ 𝐺1 [𝑥],
where Φ(𝑖) = Φ𝑖 for 𝑖 ∈ [0, ℓ]. Rewriting Equation (E.5), we have

𝑔
𝜙 (𝛼 )
1

= Φ(𝛼). Since the polynomials 𝑔
𝜙 (𝑥 )
1

and Φ(𝑥) agree on a

randompoint𝛼 , and the degree of𝑔
𝜙 (𝑥 )
1

,Φ(𝑥) is at mostmax(𝑛, ℓ) =
𝑛, by Schwartz-Zippel lemma, if the two polynomials are not the

same, then they agree at a random point with all but 𝑛/𝑝 probability.
Therefore if the verifier accepts with probability greater than 1−𝑛/𝑝 ,
we must have that 𝑔

𝜙 (𝑥 )
1

,Φ(𝑥) are the same polynomial. As a result,

we have Φ(𝑖) = 𝑔𝜙 (𝑖 )
1

for all 𝑖 ∈ [0, ℓ], and both polynomials have

degree exactly ℓ . This implies ct𝑖 = 𝑔
𝜙 (𝑖 )
1
· ℎ𝑠
𝑖
is indeed the correct

encryption for the full evaluations of 𝜙 (𝑥) over full evaluation
domain 𝑖 ∈ [0, ℓ].

Computational Zero-Knowledge We build an efficient simu-

lator that takes as input: (ℎ, {ℎ𝑖 },𝐶𝜙 , 𝛼, crs) and outputs indistin-

guishably distributed tuple (vk, {ct𝑖 }, 𝜋 = (𝐶𝛼 , 𝜋𝛼 , 𝜋DLeq, 𝜋LIN))
without the knowledge of 𝜙 . We start by sampling ℓ random co-

efficients 𝛽1, . . . , 𝛽ℓ ←𝑅 F𝑝 , and ∀𝑖 ∈ [ℓ], we set 𝐵𝑖 := 𝑔
𝛽𝑖
1
. We

sample a random 𝑠 ←𝑅 F𝑝 and set vk := ℎ𝑠 . We generate the

proofs in a way similar to honest execution, but for a polynomial

𝜙 (𝑥) = 𝛽ℓ𝑥 ℓ + . . . 𝛽1𝑥 + 𝛽0, where we only know 𝐵0 = 𝑔
𝛽0
1

and not

the value in the exponent (𝛽0); 𝐵0 is generated so that 𝜙 commits

to the same value as given to the simulator: 𝑔
𝜙 (𝜏 )
1

= 𝐶𝜙 , for which

we set 𝐵0 := 𝐶𝜙/𝑔
𝛽ℓ𝜏

ℓ+...+𝛽1𝜏
1

. For all 𝑖 ∈ [ℓ], we compute

ct𝑖 :=ℎ𝑠𝑖 ·𝐶𝜙 · 𝑔
𝛽ℓ (𝑖ℓ−𝜏 ℓ )+...+𝛽1 (𝑖−𝜏 )
1

= ℎ𝑠𝑖 · 𝑔
𝜙 (𝑖 )
1

𝐶𝛼 :=
(
𝑔𝜏−𝛼
1

)𝑠 ·𝐶𝜙 · 𝑔𝛽ℓ (𝛼ℓ−𝜏 ℓ )+...+𝛽1 (𝛼−𝜏 )
1

= 𝑔
𝜙 (𝛼 )+𝑠 (𝜏−𝛼 )
1

𝜋𝛼 :=𝑔−𝑠
1
· 𝑔 (𝛽ℓ (𝜏

ℓ−𝛼ℓ )+...+𝛽1 (𝜏−𝛼 ) )/(𝜏−𝛼 )
1

= 𝑔−𝑠
1
· 𝑔 (𝜙 (𝜏 )−𝜙 (𝛼 ) )/(𝜏−𝛼 )

1

The verification equations are satisfied. Note that the values that

involve 𝜏 are computed using the group elements in the crs, since
the simulator does not know the trapdoor 𝜏 . The 𝜋DLeq proof is

computed the same way as in the honest execution. The proof 𝜋LIN
is simulated since we do not know the witness, yet the respec-

tive statement is in the language (has the witness). Therefore, its

distribution is indistinguishable from the real one. We note that

𝐶𝛼 = 𝐶𝜙 · 𝜋
−(𝜏−𝛼 )
𝛼 is uniquely determined by 𝜋𝛼 in both the real

and our simulated executions. Hence, the correct distribution of 𝜋𝛼

implies the correct distribution for 𝐶𝛼 . Next, the DDH assumption

in G1 guarantees that given the generators (ℎ, {ℎ𝑖 }, 𝑔1), the distri-
bution of (ℎ𝑠 , {(ℎ𝑖 )𝑠 }, 𝑔𝑠

1
) is indistinguishable from random both in

the simulated and in the real executions, even given 𝜋DLeq which

could be simulated and would verify correctly even when there is

no witness 𝑠 (which is due to its special-HVZK property).

□

E.3 Proof of security for Paillier-based VECK,

Theorem 5.3

Proof of Theorem 5.3. We show that the protocol described

in Figure 5 satisfies correctness, security and zero-knowledge as

defined in Definition 3.1.

Correctness. Correctness of decryption and key verification is

due to the correctness of the Paillier cryptosystem. The ciphertext

verification could fail when either of the 𝑧 values fall out of the

range [0, 𝐴). For our protocol, the probability that a single 𝑧𝑖 falls

out of the range [0, 𝐴) is smaller than (𝑝 ·𝐵/𝐴). Then, the probability
of failure due to at least one 𝑧𝑖 ≥ 𝐴 being out of range is smaller

than 1 − (1 − (𝑝 · 𝐵/𝐴))ℓ ≤ ℓ ·𝑝 ·𝐵
𝐴
≤ 1

2
𝜆 , which is negligible in 𝜆.

Soundness. Suppose there is a PPT adversary A that breaks

the security, i.e., with non-negligible probability, the adversary gen-

erates (sk, vk, ct = (ct0, . . . , ctℓ ), 𝜋 = (𝑐,𝑊0, . . . ,𝑊ℓ , 𝑧0, . . . , 𝑧ℓ )), s.t.
the key and ciphertext verifications are successful, yet the decryp-

tion outputs an invalid witness. Successful key verification Verkey
implies that for sk = (𝑝′, 𝑞′, 𝜇), vk = 𝑁 = 𝑝′𝑞′.

For any value of 𝑔 ∈ Z∗
𝑁 2

whose order is a non-zero multiple

of 𝑁 the following function is bijective (see Lemma 1, [56]) E𝑔 :

Z𝑁 ×Z∗𝑁 → Z
∗
𝑁 2

, defined as E𝑔 : (𝑥,𝑦) → 𝑔𝑥𝑦𝑁 mod 𝑁 2
. We use

𝑔 = (𝑁 + 1), since (𝑁 + 1)𝑁 = 1 mod 𝑁 2
. Given a factorization

of 𝑁 = 𝑝′ · 𝑞′ or given a Carmichael’s lambda function of 𝑁 : 𝜇 =

lcm(𝑝′, 𝑞′), it is easy to invert E𝑔 to recover 𝑥 .

We will now show that if the ciphertext verification Verct holds,

the decryption procedure will recover correct values of 𝜙 (𝑖) of the
committed polynomial 𝐶𝜙 . Without loss of generality we can as-

sume that there exists 𝑥𝑖 ∈ Z𝑁 ,𝑈𝑖 ∈ Z∗𝑁 , s.t. ct𝑖 = (𝑁 +1)𝑥𝑖𝑈𝑁𝑖 . We

run the adversary twice in order to obtain two proofs (𝑐,𝑊0, . . . ,𝑊ℓ ,

𝑧0, . . . , 𝑧ℓ ) and (𝑐′,𝑊 ′
0
, . . . ,𝑊 ′

ℓ
, 𝑧′

0
, . . . , 𝑧′

ℓ
) that pass the verification

with non-negligible probability. We then obtain the following equa-

tions:

1 = (𝑁 + 1)𝑧𝑖−𝑧
′
𝑖 (𝑊𝑖/𝑊 ′𝑖 )

𝑁 ct−𝑐+𝑐
′

𝑖 =

= (𝑁 + 1) (𝑧𝑖−𝑧
′
𝑖 )−(𝑐−𝑐′ )𝑥𝑖 (𝑈 −𝑐+𝑐

′
𝑖 𝑊𝑖/𝑊 ′𝑖 )

𝑁
mod 𝑁 2

1 =
∏
𝑖∈[ℓ ]

crs
𝑧𝑖−𝑧′𝑖
𝑖
/𝐶𝑐−𝑐

′

𝜙
=

∏
𝑖∈[ℓ ]

crs
(𝑧𝑖−𝑧′𝑖 )−𝜙 (𝑖 ) (𝑐−𝑐′ )
𝑖

∈ G1

In the AGM, it follows that the equations below must hold for some

Δ𝑧𝑖 = 𝑧𝑖 − 𝑧′𝑖 , Δ𝑧𝑖 ∈ [−𝐴,𝐴) and Δ𝑐𝑖 = 𝑐 − 𝑐′, Δ𝑐𝑖 ∈ [−𝐵, 𝐵):
Δ𝑧𝑖 = Δ𝑐𝑖 · 𝑥𝑖 mod 𝑁 (E.6)

Δ𝑧𝑖 = Δ𝑐𝑖 · 𝜙 (𝑖) mod 𝑝 (E.7)

By construction, if 𝑥𝑖 ≠ 𝜙 (𝑖) for some 𝑖 (which is checked by recom-

mitting to the decrypted vector), the lattice reduction algorithm is

run for each 𝑖 ∈ [ℓ] to find (𝜎𝑖 , 𝜈𝑖 ) – the shortest vector in the inte-

ger lattice with basis ((𝑁, 0), (𝑥𝑖 , 1)), and the decryption outputs

𝑥 ′
𝑖
= 𝜎𝑖/𝜈𝑖 mod 𝑝 . We now argue why 𝜎𝑖/𝜈𝑖 = Δ𝑧𝑖/Δ𝑐𝑖 mod 𝑝 ,
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and hence why the decryption procedure outputs the correct eval-

uations: 𝑥 ′
𝑖
= 𝜙 (𝑖). We follow Poupard and Stern [60] approach

(see proof of Theorem 1), where the inner product for the Gauss

algorithm is defined to be (𝑥,𝑦) · (𝑥 ′, 𝑦′) ⇋ 𝑥𝑥 ′ +𝐴2/𝐵2 ×𝑦𝑦′, the
norm is defined in the standard manner: | | (𝑥,𝑦) | | =

√︁
(𝑥,𝑦) · (𝑥,𝑦).

The unknown vector (Δ𝑧𝑖 ,Δ𝑐𝑖 ) is also in the lattice according to

equation Equation (E.6), therefore, since it might not be the shortest,

| | (𝜎𝑖 , 𝜈𝑖 ) | | ≤ | | (Δ𝑧𝑖 ,Δ𝑐𝑖 ) | | <
√︁
𝐴2 +𝐴2/𝐵2 × 𝐵2 =

√
2𝐴. From the

definition of inner product, |𝜎𝑖 | ≤ | | (𝜎𝑖 , 𝜈𝑖 ) | |, hence |𝜎𝑖 | <
√
2𝐴.

Also from the definition |𝜈𝑖 | ≤ 𝐵
𝐴
| | (𝜎𝑖 , 𝜈𝑖 ) | |, therefore |𝜈𝑖 | <

√
2𝐵.

Δ𝑐𝑖 · 𝑥𝑖 −Δ𝑧𝑖 = 0 mod 𝑁 and 𝜈𝑖 · 𝑥𝑖 −𝜎𝑖 = 0 mod 𝑁 , therefore

𝜈𝑖 · Δ𝑧𝑖 = Δ𝑐𝑖 · 𝜎𝑖 mod 𝑁 . Since |𝜈𝑖 · Δ𝑧𝑖 − Δ𝑐𝑖 · 𝜎𝑖 | ≤ |𝜈𝑖 | |Δ𝑧𝑖 | +
|Δ𝑐𝑖 | |𝜎𝑖 | < 2

√
2𝐴𝐵 and 𝑁 ≥ 2

√
2𝐴𝐵, then the equation must hold

over integers: 𝜈𝑖 · Δ𝑧𝑖 = Δ𝑐𝑖 · 𝜎𝑖 in Z. The since 𝑝 is prime, the

equation must also hold modulo 𝑝: 𝜈𝑖 · Δ𝑧𝑖 = Δ𝑐𝑖 · 𝜎𝑖 mod 𝑝 .

Therefore 𝜎𝑖/𝜈𝑖 = Δ𝑧𝑖/Δ𝑐𝑖 = 𝜙 (𝑖) mod 𝑝 . Hence the decryption

would correctly output committed values.

Statistical Zero-knowledge.We build a simulator that takes

as input the commitment𝐶𝜙 and the public parameter crs. The sim-

ulator produces the transcript of the interaction by first generating

a correct Paillier public key vk, then choosing random 𝑐 ←𝑅 [0, 𝐵),
ct𝑖 ←𝑅 𝑁 2

, 𝑧𝑖 ←𝑅 [0, 𝐴) and𝑊𝑖 ←𝑅 Z
∗
𝑁

for all 𝑖 ∈ [ℓ], and
finally programming the random oracle as H(vk, {ct𝑖 }ℓ𝑖=1, {(𝑁 +
1)𝑧𝑖𝑊 𝑁

𝑖
ct−𝑐
𝑖
}ℓ
𝑖=1
, C𝑐/∏ℓ

𝑖=1 crs[𝑖]𝑧𝑖 ) := 𝑐 . The simulator outputs

vk as the verification key, ct𝑖 , 𝑖 ∈ [𝑛], as the ciphertexts and 𝜋 =

(𝑐,𝑊1, . . . ,𝑊ℓ , 𝑧1, . . . , 𝑧ℓ ) as the simulated proof. For
𝑝𝐵ℓ

𝐴
< negl(𝜆),

the distribution of this transcript is statistically indistinguishable

from the real transcript (since the probability that any 𝑧𝑖 is not in

[0, 𝐴) in the real execution is negligible in 𝜆).

□

E.4 Proof of security of VECK for subsets,

Theorem 5.2

Correctness holds by construction.

Soundness. Let 𝐶𝜙 be the commitment to polynomial 𝜙 (𝑋 ) ∈
F𝑝 [𝑋 ] of degree ℓ and let 𝑆 ⊆ F𝑝 and |𝑆 | ≤ ℓ + 1. Suppose there is a
PPT adversary A that breaks the security, i.e., with non-negligible

probability, the adversary generates (sk, vk, ct, 𝜋 = (𝐶𝑆 , 𝜋𝑆 , 𝜋 ′)), s.t.
the key and ciphertext verifications are successful, yet the decryp-

tion outputs an invalid value. Here, (sk, vk, ct, 𝜋 ′) correspond to

the output of Enc(𝐹 full-eval
𝑆

,𝐶𝑆 , 𝜙𝑆 (𝑋 )). Since the ciphertext verifi-
cation Verct holds, we have:

𝑒 (𝐶𝜙/𝐶𝑆 , 𝑔2) = 𝑒 (𝜋𝑆 , 𝑔
𝑉𝑆 (𝜏 )
2

) (E.8)

In the algebraic group model, without loss of generality, we

can assume that 𝜋𝑆 = 𝑔
𝑢 (𝜏 )
1

, 𝐶𝜙 = 𝑔
𝜙 (𝜏 )
1

and 𝐶𝑆 = 𝑔
𝑣 (𝜏 )
1

, where

𝑢 (𝑥), 𝜙 (𝑥), 𝑣 (𝑥) are polynomials of degree atmost𝑛. Therefore, Equa-

tion (E.8) becomes:

𝑒 (𝑔𝜙 (𝜏 )−𝑣 (𝜏 )
1

, 𝑔2) = 𝑒 (𝑔𝑢 (𝜏 )
1

, 𝑔
𝑉𝑆 (𝜏 )
2

) (E.9)

Assuming AGM, and the fact that the adversary has to satisfy Equa-

tion (E.9) without knowing 𝜏 , we must have the following identity:

𝜙 (𝑥) − 𝑣 (𝑥) = 𝑢 (𝑥) ·
∏
𝑖∈𝑆
(𝑥 − 𝑖) (E.10)

Therefore, ∀𝑖 ∈ 𝑆 : 𝑣 (𝑖) = 𝜙 (𝑖). Finally, since we apply a full-

opening VECK on the commitment 𝐶𝑆 = 𝑔
𝑣 (𝜏 )
1

, we must have the

encryptions correctly encrypt the values 𝜙 (𝑖) over the subset 𝑆 .
Computational Zero-Knowledge.Webuild an efficient simula-

tor that takes as input pp and outputs indistinguishably distributed

tuple (vk, ct, 𝜋) without the knowledge of 𝜙 (𝑋 ). We simulate by

sampling a random 𝑦 ←𝑅 F𝑝 and setting 𝐶𝜙𝑆 := 𝐶𝜙/𝑔
𝑦𝑉𝑆 (𝜏 )
1

and

𝜋𝑆 := 𝑔
𝑦

1
. Note that there is a one-to-one relationship between

𝐶𝜙𝑆 and 𝜋𝑆 that guarantees acceptance by the verifier: 𝐶𝜙𝑆 =

𝐶𝜙𝜋
−𝑉𝑆 (𝜏 )
𝑆

, so the correct distribution on 𝜋𝑆 implies correct dis-

tribution on 𝐶𝜙𝑆 . We note that in the honest execution 𝜋𝑆 = 𝑔𝑡
1
·

𝑔
(𝜙 (𝜏 )−∑𝑖∈𝑆 𝜙 (𝑖 )𝐿𝑖,𝑆 (𝜏 ) )/𝑉𝑆 (𝜏 )
1

, and in here in the simulated execu-

tion 𝜋𝑆 = 𝑔
𝑦

1
. Since both 𝑡 and 𝑦 are sampled uniformly at random,

the distributions are equivalent.

E.5 Proof of security of Multi-Client VECK,

Theorems 7.1 and D.1

Proof of Theorems 7.1 and D.1. We prove correctness, sound-

ness and computational L-bits zero-knowledge for the MC-VECK

protocol in Appendix D.3, Figure 7.

Correctness: When Prep(𝐶𝜙 , 𝜙) = Enc(𝐶𝜙 , 𝜙) −→ (sk, vk, ct, 𝜋)
and𝐷C = ℎ𝛿C ,Verct (𝐹,𝐶𝜙 , vkC/𝐷C, ct, 𝜋) returns 1 by the correct-
ness of the VECK protocol of Section 5.1, and vkC = ℎsk+𝛿C = ℎskC .

Moreover, given ℎC,𝑖 = (ℎ𝛿C𝑖 )𝑖∈[𝑛] , the discrete logarithm equality

proof𝜋DLEq verifies for (𝑄 :=
∏
𝑖∈[𝑛] ℎ

𝑒𝑖
𝑖
, 𝑄∗ :=

∏
𝑖∈[𝑛] ℎ

𝑒𝑖
C,𝑖 , ℎ, 𝐷C)

for any (𝑒𝑖 )𝑖∈[𝑛] ∈ Z𝑛𝑝 by the correctness of [23]. Therefore, veri-

fication for honestly generated keys and ciphertexts will always

succeed.

Soundness: Consider an adversary A(𝐶𝜙 ) −→ (skC, vkC, ct, 𝜋C)
for which Verct (𝐹,𝐶𝜙 , vkC, ct, 𝜋C) = 1 and Verkey (vkC, skC) = 1,

yet 𝐹 (𝜙) ≠ Dec(skC, ct) for 𝐹 := 𝐹 full-eval[𝑛] . Let 𝜋C = (𝜋, 𝐷C, 𝜋DLEq
, (ℎC,𝑖 )𝑖∈[𝑛] ). Let sk denote the discrete logarithm between vkC/𝐷C
andℎ (thus, by definition,Verkey (vkC/𝐷C, sk) = 1), and 𝛿C the dis-
crete logarithm between𝐷C andℎ. Note thatVerct (𝐹,𝐶𝜙 , vkC, ct, 𝜋C)
= 1 implies (i) 𝜋DLEq verifies against (𝑄 :=

∏
𝑖∈[𝑛] ℎ

𝑒𝑖
𝑖
,

𝑄∗ :=
∏
𝑖∈[𝑛] ℎ

𝑒𝑖
C,𝑖 , ℎ, 𝐷C) for (𝑒𝑖 )𝑖∈[𝑛] = (𝐻 (𝐷C, 𝑖))𝑖∈[𝑛] , and (ii)

Verct (𝐹,𝐶𝜙 , vkC/𝐷C, ct, 𝜋) = 1. Then, by (i) and the security of

the scheme in [23], ∏
𝑖∈[𝑛]

ℎ
𝑒𝑖
C,𝑖 =

∏
𝑖∈𝑛

ℎ
𝛿C𝑒𝑖
𝑖

for (𝑒𝑖 )𝑖∈[𝑛] = (𝐻 (𝐷C, 𝑖))𝑖∈[𝑛] , where 𝐻 (.) is modelled as a ran-

dom oracle. In the Random Oracle model, this equality must hold

for a random (𝑒𝑖 )𝑖∈[𝑛] ←𝑅 Z
𝑛
𝑝 , with all but 1/𝑝 probability, and

we must have ℎC,𝑖 = ℎ
𝛿C
𝑖

for all 𝑖 ∈ [𝑛]. Since vkC = ℎsk+𝛿C ,
Verkey (vkC, skC) = 1 implies skC = sk + 𝛿C mod 𝑝 . Therefore, if

Dec(skC, (ct𝑖 , ℎC,𝑖 )𝑖∈[𝑛] ) succeeds, it outputs (𝑚𝑖 )𝑖∈[𝑛] such that

𝑔
𝑚𝑖

1
= ct𝑖 · ℎC,𝑖/ℎsk+𝛿C𝑖

= ct𝑖 · ℎ𝛿C𝑖 /ℎ
sk+𝛿C
𝑖

= ct𝑖/ℎsk𝑖 ,
which impliesDec(skC, ctC) = Dec(sk, ct). As 𝐹 (𝜙) ≠ Dec(skC, ct),
it holds that 𝐹 (𝜙) ≠ Dec(sk, ct).
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Finally, for contradiction, suppose the following probability is

not negligible for the MC-VECK protocol:

Pr


Verct (𝐹,𝐶𝜙 , vkC, ct, 𝜋C) = 1 ∧

Verkey (vkC, skC) = 1 ∧
𝑦 ≠ 𝐹 (𝜙)

������������

crs← Setup(1𝜆)
𝐶𝑤 ← Commit(crs, 𝜙)
pp← Gen(crs)
(skC, vkC, ct, 𝜋C)

↱ A(pp, 𝐹 ,𝐶𝜙 )
𝑦 ← Dec(sk, ct)


Then, for (sk, vk, ct, 𝜋) ← A′ (𝐶𝜙 ) that outputs a subset ofA’s out-

put, it holds that Verct (𝐹,𝐶𝜙 , vk, ct, 𝜋) = 1, Verkey (vk, sk) = 1 and

𝐹 (𝜙) ≠ Dec(sk, ct) with non-negligible probability in 𝜆. However,

this conflicts with the security of the VECK protocol of Section 5.1.

ComputationalL-bits zero-knowledge:To prove computational

L-bits zero-knowledge for the MC-VECK protocol, we first observe

that the distributions

{(aux,msk) | (aux,msk) ←− Prep(𝐹,𝐶𝑤 ,𝑤)}
{(vk, ct, 𝜋, sk) | (vk∗, sk∗, ct∗, 𝜋∗) ← Enc(𝐹, aux,msk)}

are statistically indistinguishable. Thus, computational L-bits zero-
knowledge for the original VECK protocol (defined below) implies

computational L-bits zero-knowledge for the MC-VECK protocols:

Computational L-bits zero-knowledge for the VECK protocols: Con-
sider a normal VECKprotocolΠ′ = (Gen, Enc′,Verct,Verkey,Dec).
We say that it satisfies computational L-bits zero-knowledge, if
for any PPT algorithms A1 and A2, there exists a PPT simula-

tor Π · Sim such that there is a negligible function 𝜇 (·), s.t. for all
𝑤 ∈ W,∀𝐹 ∈ F the following probability is less than 1/2 + 𝜇 (𝜆):

Pr



A2 (pp, 𝐹 ,𝐶𝑤 ,
hint, aux𝑏 ) = 𝑏

����������������������

crs← Setup(1𝜆)
𝐶𝑤 ← Commit(crs,𝑤)
pp← Gen(crs)
(vk∗, sk∗, ct∗, 𝜋∗)

↱ Π′ · Enc′ (pp, 𝐹 ,𝐶𝑤 ,𝑤)
hint← A1 (vk∗, sk∗, ct∗, 𝜋∗)
(aux0 = (vk0, ct0, 𝜋0),msk0 = sk0)

↱ Π′ · Enc′ (pp, 𝐹 ,𝐶𝑤 ,𝑤)
aux1 = (vk1, ct1, 𝜋1)

↱ Π′ · Sim(pp, 𝐹 ,𝐶𝑤 , hint)
𝑏 ←𝑅 {0, 1}


Note that no PPT adversary would be able to distinguish the encryp-

tions of any two values𝑤0 ≠ 𝑤1 with the same commitment𝐶𝑤 by

the computational zero-knowledge property of the original VECK

protocol Π′. Although many such values exist, given an honestly

generated crs, no PPT algorithm can break binding and actually find

them. Then, even if the adversary knows the value𝑤0, it would not

be able to distinguish the encryption of 𝐹 (𝑤0) from the encryption

of 𝐹 (𝑤1) until the decryption keys for the ciphertexts of 𝐹 (𝑤0) and
𝐹 (𝑤1) are revealed. Since this is true for the adversary that might

know𝑤0, it is also true for the adversary that holds partial infor-

mation about 𝐹 (𝑤0) or𝑤0 itself, e.g., a hint based on𝑤0. Now, let

Π · Sim be simply the PPT simulator of the original VECK protocol

Π′ (cf. computational zero-knowledge definition, Definition 3.1). By

the argument above, given any hint generated by the PPT adversary

(A1) based on𝑤 , the output (vk1, ct1, 𝜋1) generated by the simula-

tor cannot be distinguished from a correctly generated output by

any PPT distinguisher (A2) except with negligible probability. This

implies 𝐿-bits zero-knowledge for the VECK protocol Π′ as well as
the MC-VECK protocols above.

□

F ADDITIONAL DISCUSSIONS

Below, we provide additional discussions on promising future di-

rections and possible extensions.

Market pricing. We envision a marketplace for committed data

with multiple servers and clients, where servers compete to fulfill

clients’ requests for data. In our proof of concept implementations,

the server S sets explicitly the agreed price for the data exchange.

We envision that real-world deployments of our protocols will

employ other (automated) market-making mechanisms, e.g., the
constant product formula of Uniswap [2], to establish automati-

cally and trustlessly the price of the subsequent fair data exchange.

Specifically, the pricing function is 𝑓 (𝑥,𝑦) = 𝑥 · 𝑦 = const, where 𝑥
is the amount of data waiting to be exchanged in the FDE protocol,

while 𝑦 is the number of clients wishing to download committed

data. Future FDE applications could also apply more sophisticated

market-making mechanisms.

Other commitment and encryption schemes. We believe that

we only scratched the surface of FDE protocols’ design space. In

particular, we leave it to future work to explore other combinations

of encryption (or functional encryption) and commitment schemes,

such as a recent FRI-based commitment schemes for distributed data

storage [43]. The design principles behind VECK schemes and FDE

protocols can also be generalized to functions beyond data exchange

such as exchanging the result of a generic computation; however,

the applications explored in this paper focus on functions with

non-succinct outputs, enabling the use of more communication-

permissive techniques.
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