
Exponent-VRFs and Their Applications

Dan Boneh1, Iftach Haitner2,3, and Yehuda Lindell3

1 Stanford University
2 Tel-Aviv University

3 Coinbase

Abstract. Verifiable random functions (VRFs) are pseudorandom functions with the addition that
the function owner can prove that a generated output is correct (i.e., generated correctly relative to a
committed key). In this paper we introduce the notion of an exponent-VRF (eVRF): a VRF that
does not provide its output y explicitly, but instead provides Y = y · G, where G is a generator of
some finite cyclic group (or Y = gy in multiplicative notation). We construct eVRFs from DDH and
from the Paillier encryption scheme (both in the random-oracle model). We then show that an eVRF
is a powerful tool that has many important applications in threshold cryptography. In particular, we
construct (1) a one-round fully simulatable distributed key-generation protocol (after a single two-round
initialization phase), (2) a two-round fully simulatable signing protocol for multiparty Schnorr with a
deterministic variant, (3) a two-party ECDSA protocol that has a deterministic variant, (4) a threshold
Schnorr signing protocol where the parties can later prove that they signed without being able to frame
another group, and (5) an MPC-friendly and verifiable HD-derivation. All these applications are derived
from this single new eVRF abstraction. The resulting protocols are concretely efficient.

Table of Contents

1 Introduction . 3

2 Preliminaries . 6
2.1 Pseudorandom Functions . 6
2.2 Secure Computation . 8

3 eVRFs . 8
3.1 Game-based Definition . 8
3.2 Ideal Definition . 9

4 Applications . 12
4.1 One-Round Simulatable Distributed Key Generation 13
4.2 One-Round Simulatable Threshold Distributed Key Generation 15
4.3 The Transformation Methodology for Signing Protocols 18
4.4 Two-Round Simulatable Multiparty Schnorr Signing 19
4.5 Two-Round Simulatable Two-Party ECDSA Signing 24
4.6 Verifiable and MPC-Friendly Hierarchical Key Derivation 27

5 An eVRF from Compatible Public-Key Encryption 29
5.1 Compatible Encryption Schemes . 29
5.2 The Basic eVRF Construction . 30
5.3 Public Key Encryption Scheme with Efficient Equality Proofs 33
5.4 An Instantiation Using Paillier Encryption 34

6 A DDH-Based eVRF . 37
6.1 An Argument System for the Relation RH 39
6.2 The full DDH eVRF . 44

7 Conclusions and Open Problems . 47

A A Chaum-Pedersen style ZK proof system for the relation Req 52

B A proof system for the relation R′eq . 52

C The R1CS matrices A,B,C used in Section 6.1 55

2

1 Introduction

A pseudorandom function (PRF) [34] F (k, x) is a keyed function whose outputs are indistinguish-
able from random elements in the range of the PRF. In some applications, it is important to force
the secret-key owner to always use the same key and to generate correct outputs. A verifiable ran-
dom function (VRF) [50] associates a public verification key vk with the secret key k, and enables
the owner to output a proof π, together with y = F (k, x), that attests to the fact that y is correct.

In this paper, we introduce a VRF enhancement that we call an exponent VRF, or eVRF,
which is a variant of a VRF that does not provide the VRF’s output y explicitly, but rather provides
Y = y ·G where G is a group generator of some finite cyclic group G, together with a proof π that Y
was computed correctly by computing y ← F (k, x) and Y ← y · G. We use the term “exponent
VRF”, since the VRF output is provided in the exponent and not in the clear.4

eVRFs are useful in settings where the discrete log problem (or DDH) is hard over the group,
and a party needs to generate a pseudorandom value r, and send R ← r · G to other parties. If
the sender generates (r,R) using an eVRF, the receiving parties can verify that R is consistent
with an initially committed key k. Concretely, consider a very basic setting where two parties wish
to generate a random group element R in G, where the parties hold shares r1 and r2 such that
(r1 + r2) ·G = R, and no party knows r = r1 + r2. This basic building block is used in distributed
key generation, and in ECDSA and Schnorr/EdDSA signing. The naive way of generating R is
for each party Pi, for i ∈ {1, 2}, to choose a random ri and send Ri ← ri · G to the other party.
In such a protocol, however, a cheating P2 can wait to obtain R1 from P1, choose a random r,
and send R2 ← r · G − R1 back to P1. This enables P2 to single handedly determine the output
R := R1 + R2 = r · G, while knowing the discrete log r of R. This can be mitigated by forcing
P1 and P2 to each provide a zero-knowledge proof of knowledge of the discrete log together with
their values R1 and R2, respectively. A cheating P2, however, can still receive R1 and then locally
try many values r2 and set R2 ← r2 ·G until R = R1 +R2 has some predetermined structure. For
example, if P2 wishes the ten least significant bits of R to equal zero, then it would need to try
approximately 210 values of r2. In order to prevent such bias, protocols employ a commit-and-open
approach: the parties first send commitments to their Ri values, and open them in the next round
(for simulatability, proofs of knowledge are also included). This approach adds an extra round to
the protocol.

An eVRF provides a much simpler construction for this basic building block. Suppose the parties
have already generated and shared eVRF public verification keys vk1 and vk2. Then they can choose
R1 and R2 as the eVRF outputs on some agreed-upon nonce, such as a simple counter. Neither
party has any freedom in choosing its value Ri. This means that the first naive protocol described
above becomes fully secure. In particular, each party sends Ri together with a proof that Ri is the
output of its eVRF. The parties then set R := R1+R2. This way they can generate R with a single
message and using only one round, and no party can bias the output in any way, since they are
already fully committed to their VRF value. Thus, an eVRF eliminates the need for commit-and-
open and enables us to save a full round of communication in threshold signing and key generation
protocols.

Applications. Using an eVRF, we provide several results in threshold signing using a unified
framework. Specifically, we construct

4 The use of the term exponent comes from multiplicative notation where g is the group generator and Y = gy.
However, throughout the paper we use additive notation for the group operation.

3

1. A concretely efficient, two-round, fully simulatable multiparty Schnorr signing protocol. Previ-
ous two-round protocols are either proven via a game-based definition (e.g., [40]) or are not
concretely efficient (e.g., [31]). The resulting construction is a generalization of the MuSig-DN
scheme of Nick, Ruffing, Seurin, and Wuille [54,55], discussed in related work below.

2. The first concretely efficient, two-round, two-party ECDSA signing protocol with full simulata-
bility. Previous work achieving two-round two-party ECDSA signing did not use a standard
signing functionality [26].

3. A concretely efficient, two-round, deterministic signing protocols for multiparty Schnorr and
two-party ECDSA. Previous protocols use garbled circuits and so have more rounds and are less
efficient [32]. Very recently Komlo and Goldberg [41] proposed a protocol for Schnorr signatures
with similar properties, but using very different techniques.

4. A distributed key generation protocol that requires only a single round to generate a key, after
a one-time two-round initialization phase. A recent work of Katz [38, §8] presents a protocol
with similar properties using generic tools such a general NIZK proof system.

5. A hierarchical-deterministic (HD) key derivation method analogous to Bitcoin’s BIP032 [63]
that also enables parties to efficiently prove that a public key was derived correctly from the
root secret. Unlike the standard BIP032, our derivation method is MPC friendly.

All these applications follow directly from the new eVRF abstraction.

Our multiparty (probabilistic) Schnorr and distributed key generation protocols also have
threshold variants, with the above number of rounds as long as the set of participating parties
is known at the onset. These protocols fulfill a new property that we call proof of quorum identity:
the participating parties can later prove that they are the ones who participated, but are unable
to frame any other subset. We achieve this while still generating a full standard Schnorr signature.

All of our protocols are UC secure [15] for static malicious adversaries and a dishonest majority,
and are proven under standard assumptions in the random-oracle model. The use of simulation-
based MPC definition, like UC security [15], has many advantages. In particular, security under
composition with any protocol is guaranteed, as well as security even when related keys are used
(like when BIP032 derivation is used) or when keys are generated with poor entropy. In such cases,
the MPC protocol provides the same level of security as a locally computed signature, which is of
course optimal. Our results provide an option to those who need two-round signing protocols, but
still want to maintain full simulatability and composition.

We next construct two eVRF schemes, both in the random-oracle model. Here we give a brief
overview of the constructions. Fix a “target group” G of order q and a generator G of G. An eVRF
is a triple of PPT algorithms (KGen,Eval,Verify), where (i) KGen → (k, vk) samples the (secret)
key k and public verification key vk, (ii) Eval(k, x)→ (y, Y, π) outputs a pseudorandom y ∈ Zq, its
value in the exponent Y ← y ·G, and a proof π, and (iii) Verify(vk, x, Y, π)→ {0, 1} verifies that Y
is consistent with vk and x.

A construction from Paillier. Assume for a moment that the eVRF key owner has a secret
trapdoor that lets it efficiently compute discrete logarithms in the target group G. In such a case,
we could let H be a random oracle mapping arbitrary strings to uniform values in G. Then, the
eVRF evaluation would involve hashing the input x into a random group element, Y ← H(x), and
then computing y ← log Y . The verification procedure would simply verify that H(x) = Y . This
would be a perfect eVRF, where every party uses a different group G.

4

Since we have no trapdoors to enable the efficient computation of the discrete log in groups of
interest, we take a similar approach using an intermediate hard problem for which the secret-key
owner has a trapdoor. Specifically, let H be a hash function H : X 7→ [N], for some N ≥ |G|. Now, we
could take any trapdoor permutation f on the domain [N], and have the secret key owner invert the
permutation on H(x) to get y ∈ [N] and set Y := y ·G. It would then prove that f−1(H(x)) ·G = Y .
The challenge with this approach is finding an efficient zero-knowledge proof for this relation. To
handle this challenge we use the additively homomorphic Paillier encryption scheme [57] instead
of a trapdoor permutation. The key generation algorithm outputs a Paillier public and secret key
pair (sk, pk). The evaluation algorithm Eval(sk, x) acts as follows:

1. Hash the input x into a Paillier ciphertext ct, using a hash function H : X → Zn2 , where Zn2 is
the set of Pallier ciphertexts for pk;

2. Decrypt ct using sk to get the plaintext y ∈ [n], and set Y := y ·G in G;
3. Generate a zero-knowledge proof π that the Pallier decryption of ct ∈ Zn2 modulo q is equal to

the discrete log of Y ∈ G base G.

The value y is pseudorandom since ct is a random ciphertext, when H is modeled as a random
oracle. Furthermore, since encryption is binding and the proof is sound, it is not possible to cheat
and provide some different Y ′ ̸= Y and prove that it is consistent with pk and x. The challenge is
to design an efficient zero-knowledge proof, which we do in Section 5.

A construction from DDH. Our second construction uses the classic DDH-based PRF [52]
defined as F (k, x) := k · H(x) ∈ GS, where GS is a finite cyclic group and H is a hash function
H : X → GS. This PRF can be proved secure when the DDH assumption holds in GS and H is
modeled as a random oracle. Concretely, GS can be the group of points of an elliptic curve E defined
over some prime field Fq, where q is the order of our target group G. The eVRF will output F (k, x)
“in the exponent” of the target group G. To do so we treat a point P in the group GS = E(Fq) as
a pair (xP , yP) in F2

q . Now, for a given key k and input x ∈ X the evaluation algorithm Eval(k, x)
works as follows:

1. Compute P := k · H(x) in GS and let xP in Fq be the x-coordinate of P ;
2. Set Y := xP ·G in the target group G;
3. Generate a zero-knowledge proof π that Y ∈ G is computed correctly with respect to the input x

and a commitment to k.

Then Eval(k, x) outputs (xP , Y, π). As described, the PRF output xP only ranges over about half
of Fq, namely the x-coordinates of points on the curve E(Fq). In Section 6 we show how to augment
the construction using the left over hash lemma so that the range of the PRF is all of Fq. The
challenge is to design an efficient zero-knowledge proof that Y is computed correctly. We design
such a proof in Section 6. Our proof is concretely practical; we estimate that it takes only a few
tens of milliseconds to generate and verify the proof on a single thread on a modern processor.

Related work. The MuSig-DN scheme, proposed by Nick, Ruffing, Seurin, and Wuille [54,55],
is an elegant two-round Schnorr multisignature scheme. Their scheme uses the DDH-based eVRF
discussed above, but without abstracting it out as standalone primitive. We therefore attribute the
DDH-based eVRF to Nick et al. [54,55]. The construction we present in Section 6 is a little simpler
in that we avoid using quadratic extensions.

Katz [38, §8] presents a single round distributed key generation protocol that is structurely
similar to the one obtained from an eVRF. That protocol uses a general NIZK proof system to
prove that a general PRF is evlauated correctly in the exponent.

5

Recently, Kondi, Orlandi, and Roy [42,43] gave a two-round deterministic two-party Schnorr
signing protocol. Their protocol is based on pseudorandom correlation functions (PCFs), and is
quite different from our eVRF abstraction. Interestingly, their construction also uses the decryption
of random Paillier ciphertexts.

Finally, we note that a classic one-round distributed key generation protocol, due to Fouque
and Stern [29], requires a quadratic number of messages and relies on a synchronous network.
Another one-round distributed key generation protocol, due to Groth [35], makes use of pairings
and chunked encryption.

Overview of the rest of the paper. After some preliminary definitions in Section 2, we formally
define exponent VRFs in Section 3. We give two definitions: a game based definition and an ideal-
functionality based definition. The game based definition is useful for constructing an eVRF, while
the simulation based definition is useful for describing and proving security of the applications.
Theorem 2 proves that the two definitions are equivalent (assuming a zero-knowledge proof-of-
knowledge of the private key). In Section 4, we present the many applications of eVRFs and prove
their security. Then the Paillier-based eVRF is presented in Section 5, and the DDH-based eVRF
is presented in Section 6. Our work leaves a number of important open questions for future work
described in Section 7.

2 Preliminaries

Notation. We use λ ∈ Z(>0) to denote the security parameter, and
c≈ to denote computational

indistinguishability. We write x ← y to denote the assignment of the value of y to x, and x ←$ S
to denote sampling an element from the set S independently and uniformly at random. Similarly,
for a randomized algorithm A, we write y ←$ A(x) to denote that y is distributed according to
the output of A(x) (over uniformly sampled random coins). For integers n,m we use [n] for the
set {1, . . . , n} and use [n,m] for the set {n, n+ 1, . . . ,m}. We use additive notation for the group
operation, and 0 for the group identity.

2.1 Pseudorandom Functions

We define pseudorandom functions and verifiable pseudorandom functions in a way that is con-
venient for the presentation in this paper. Since our eVRF constructions are given in the ROM,
the following definitions are given for oracle-aided constructions. In such constructions, all enti-
ties (including the adversary) have oracle access to the same function, and they are secure in the
ROM, if they are secure with respect to the all-function ensemble (the ensemble O according to
the following definition). We start with formally defining ensemble of function families.

Definition 1 (Function families). A function family with respect to domain/range (X ,Y) is
a family of functions F = {f : X 7→ Y}. We let OX ,Y denote the all-function family from X to Y. A
function-family ensemble with respect to domain/range ensemble {(Xλ,Yλ)}λ∈N is an ensemble
of function families {Fλ}, where each Fλ is a subset of OXλ,Yλ.

Definition 2. A pseudorandom function (PRF) with respect to the domain/range ensemble
{(Xλ,Yλ)}λ∈N and function-family ensemble H, is a pair of oracle-aided PPT algorithms (KGen,Eval)
such that for all λ ∈ N and h ∈ Hλ:

6

– KGenh(1λ)→ k: outputs a secret key k ∈ K.
– Evalh(1λ, k, x)→ y: on key k and input x ∈ Xλ, deterministically outputs y ∈ Yλ.

When clear from the context, we omit 1λ from the input list of Eval. The PRF is secure if for all
oracle-aided PPT A: ∣∣∣Pr[Ah,Evalh(k,·)(1λ) = 1

]
− Pr

[
Ah,o(·)(1λ) = 1

]∣∣∣ ≤ negl(λ), (1)

where h←$Hλ, k ←$ KGenh(1λ), and o←$ OXλ,Yλ.

We next define verifiable pseudorandom functions (VRFs). Our definition strengthens the standard
definition of VRFs, by (naturally) demanding simulatability, meaning that the verifiability proof
does not leak significant information beyond correctness.

Definition 3. A simulatable verifiable random function (VRF) with respect to domain/range
ensemble {(Xλ,Yλ)}λ∈N and function-family ensemble H, is a triple of oracle-aided PPT algorithms
(KGen,Eval,Verify) such that for every λ ∈ N and h ∈ Hλ:

– KGenh(1λ)→ (k, vk).

– Evalh(1λ, k, x) → (y, π). We let Evalh1(1
λ, k, x) → y be the same as Eval, but only outputs its

first output (i.e., y).

– Verifyh(1λ, vk, x, y, π)→ {0, 1}.
When clear from the context, we omit 1λ from the inputs to Eval and Verify. The VRF is secure if

– Correctness. For all PPT A:

Pr
[
¬Verifyh(vk, x, y, π)

]
≤ negl(λ),

where h←$Hλ, (k, vk)←$ KGenh(1λ), x←$ Ah,Evalh(k,·)(1λ, vk), and (y, π)←$ Evalh(k, x). Here
the oracle Evalh(k, ·) given to A takes as input x′ and returns (y′, π′)←$ Evalh(k, x′).

– Pseudorandomness. (KGen,Eval1) is a secure PRF with respect to the domain/range ensemble
{(Xλ,Yλ)}λ∈N and H.

– Verifiability. For all PPT A: if h←$Hλ and
(
vk, x, (y0, π0), (y1, π1)

)
←$ Ah(1λ) then

Pr
[
y0 ̸= y1 ∧ (∀i ∈ {0, 1} : Verifyh(vk, x, yi, πi) = 1)

]
≤ negl(λ).

– Simulatability. There exists a PPT simulator Sim such that for every PPToracle-aided distin-
guisher D: ∣∣∣Pr[Dh,Evalh(k,·)(vk) = 1

]
− Pr

[
Dh,OSim(·)(vk) = 1

]∣∣∣ ≤ negl(λ) (2)

where h←$Hλ, (k, vk)←$ KGenh(1λ), and OSim(x) := Simh
(
vk, x,Evalh1(k, x)

)
is Sim’s (simu-

lated) Eval responses to D.

For simulatability, the distinguisher D is given access to the random oracle h, and to a second
oracle that either returns the output of the “real” Evalh(k, ·) algorithm (that on input x returns the
PRF output y and a real proof π), or returns the simulator’s responses to evaluation queries. This
therefore means that Simh

(
vk, x, y) needs to output pairs (y, π) that are indistinguishable from real

pairs, where y = Evalh1(k, x) is the correct VRF output with key k (where k is unknown to Sim).

7

2.2 Secure Computation

For our ideal-model definition of exponent VRFs and for our applications, we prove security for
the stand-alone definition of secure multiparty computation [14,33] for security with abort (where
some honest parties may have output and some may abort) and with no honest majority. In this
model, all parties send their inputs to the ideal functionality (computed by a trusted party). The
ideal functionality then sends the (ideal-model) adversary the corrupted parties’ outputs, and the
adversary then instructs the ideal functionality as to which honest parties should receive output.
We denote the set of honest parties sent by the ideal adversary to the ideal functionality to receive
output by Oout.

Although we prove security in the stand-alone model that guarantees security under sequential
composition only, we are really interested in UC security [15]; i.e., security under concurrent general
composition. This is achieved by all our protocols since they all have straight-line simulation (i.e.,
no rewinding). As shown in [44], this implies UC security if the protocol is perfectly secure or there
is start synchronization (meaning that all parties have their input before the protocol begins).

Network model. In all of our protocols, we consider security with abort. As such, parties can just
wait to receive a message, and “hang” if they do not (in practice, they can just abort if they wait
too long, which is also fine). This means that we don’t need to assume a synchronous network, as
parties proceed to the next round only after receiving all messages from the previous round.

3 eVRFs

In this section, we formally define the concept of an eVRF. We begin by defining a game-based
definition for the security of an eVRF. Next we define an eVRF ideal functionality, and prove
that a simple protocol using the game-based definition, together with a zero-knowledge proof of
knowledge of the private key, securely realizes the ideal functionality. The game-based definition
will be used to argue that our eVRF constructions are secure, and the ideal functionality will be
used for constructing our applications utilizing an eVRF.

3.1 Game-based Definition

Let G be a finite cyclic group with generator G ∈ G. The evaluation algorithm Eval(k, x) of an
eVRF outputs a triple (y, Y, π) such that Y = y · G, with the property that Eval1(k, x) := y is
a pseudorandom function, and Eval2(k, x) := (Y, π) is a (simulatable) VRF. Stated differently,
the output y is pseudorandom, and there exists a (simulatable) proof that Y has been generated
correctly from y as Y ← y · G. The formal game-based definition, suited for constructions in the
ROM, is given below.

Definition 4. Let {(Xλ,Yλ)}λ∈N be an ensemble of domains/ranges, where each Yλ is a finite
cyclic group with a specified generator Gλ. An exponent verifiable random function (eVRF)
with respect to domain/range ensemble {(Xλ,Yλ)}λ∈N and function-family ensemble H, is a triple
of oracle-aided PPTalgorithms called (KGen,Eval,Verify) such that for every λ ∈ N and h ∈ Hλ:

– KGenh(1λ)→ (k, vk).

– Evalh(1λ, k, x) → (y, Y, π) with x ∈ Xλ, y ∈ Z|Yλ|, and Y ∈ Yλ. We define two auxiliary

algorithms Eval1(1
λ, k, x) → y and Eval2(1

λ, k, x) → (Y, π) that are the same as Eval, but only
output the first output (i.e., y) or the second and third outputs (i.e., (Y, π)) of Eval, respectively.

8

– Verifyh(1λ, vk, x, Y, π)→ {0, 1}.
When clear from the context, we omit 1λ from the inputs to Eval and Verify. An eVRF is secure if

– Consistency. For every PPT A:

Pr

[
y ·Gλ ̸= Y :

h←$Hλ, (k, vk)← KGenh(1λ)

x←$ Ah,Evalh(k,·)(1λ, vk), (y, Y, π)←$ Evalh(k, x)

]
≤ negl(λ).

– Pseudorandomness. (KGen,Eval1) is a secure PRF with respect to the domain/range ensemble{(
Xλ,Z|Yλ|

)}
λ∈N and function family ensemble H.

– Simulatable verifiability. (KGen,Eval2,Verify) is a simulatable VRF with respect to the en-
semble {(Xλ,Yλ)}λ∈N and function family ensemble H.

In some cases it will be convenient to define an eVRF where the output of Eval1 is pseudorandom
with respect to a subset Sλ of Z|Yλ|. The following definition captures the notion of a subset eVRF.

Definition 5. Using the notation in Definition 4, let {Sλ}λ∈N be an ensemble of subsets, where
Sλ ⊆ Z|Yλ| for all λ ∈ N. We say that an eVRF (KGen,Eval,Verify) is subset secure with respect to
domain/range ensemble

{(
Xλ,Yλ

)}
λ∈N, subset ensemble {Sλ}λ∈N, and function family ensemble H,

if the eVRF has consistency and simulatable verifiability as in Definition 4, and is pseudorandom
in the following sense: (KGen,Eval1) is a secure PRF with respect to the domain/range ensemble{(
Xλ,Sλ

)}
λ∈N and function family ensemble H.

3.2 Ideal Definition

We now define the ideal functionality for an eVRF and prove that it is implied by the game-based
definition, together with a zero-knowledge proof of knowledge of the private key. To simplify the
notation we refer to an explicit domain/range (X ,Y) rather than an ensemble.

Definition 6 (eVRF functionality). Let (X ,Y) be as in Definition 4, where Y defines a group
G of order q with generator G. The eVRF ideal functionality for (X ,Y), denoted FX ,Y

eVRF or just
FeVRF for short, is defined as follows:

1. Upon receiving (init, i, ∗) from some Pi.

(a) If Pi is honest and the input is (init, i), then receive a value sid from the (ideal) adversary,
verify that it’s unique and store (sid, i)

(b) If Pi is corrupted and the input is (init, i, sid, f) where f is the description of a deterministic
polynomial-time computable function sid has not been stored, then store (sid, i, f)

Send (init, i, sid) to all parties

2. Upon receiving (Eval, i, sid, x) from Pi, where x ∈ X :
(a) If (sid, i) or (sid, i, f) is not stored then ignore

(b) If Pi is honest:

i. If there does not exist a stored tuple (sid, i, x, y, Y) with x, then choose a random y ←$ Zq,
compute Y ← y ·G and store (sid, i, x, y, Y)

ii. Send (Eval, i, sid, x, y, Y) to party Pi and (Eval, i, sid, x, Y) to all parties

(c) If Pi is corrupted, then compute Y ← f(x) ·G and send (Eval, i, sid, x, Y) to all parties

9

In order to prove that the game-based definition implies the ideal functionality, we define a
protocol that utilizes the game-based definition, and then prove that it securely realizes FeVRF. Our
protocol requires a ZK proof of knowledge for the relation REF :=

{
(vk, (k, r)) : KGen(1λ; r) =

(k, vk)
}
. We denote the ideal functionality for this proof by FREF

zk ; the functionality receives
(prove, i, j, vk, k, r) from Pi and sends (prove, i, j, vk, 1) to Pj if (vk, (k, r)) ∈ REF. We note that
by including this proof of knowledge, it is not possible for a party to copy an eVRF instance from
another party (practically, the identity i of the prover is just included in the hash in the proof).

The ideal functionality FeVRF needs a sid in order to distinguish different eVRF instances. In
the protocol, we use the verification key vk for this purpose and so do not require any additional sid.

The πEF protocol. For any eVRF EF = (KGen,Eval,Verify), we define the protocol πEF with
parameters (X ,Y) as follows:

Protocol 1 (πEF)

– Initialize:
1. Message 1 from Pi: Party Pi with input (init, i),

(a) (k, vk)← KGen(1λ,X ,Y)
(b) Send (init, i, vk) to all parties P1, . . . , Pn

(c) Send (prove, i, j, vk, k, r) to FREF
zk for all j ∈ [n]

2. Message 2: Each party Pj upon receiving (init, i, vk) from party Pi

(a) If (prove, i, j, vk, 1) is received from FREF
zk then proceed; else ignore

(b) Send (init, i, vk) to all parties P1, . . . , Pn

3. Output: Upon receiving (init, i, vk) from all parties,
(a) Party Pi: Output (init, i, vk, k)
(b) All other parties Pj (j ̸= i): if the same message (init, i, vk) is received from all parties

then store (init, i, vk); else ignore
– Evaluate:

1. Message from Pi: Party Pi with input (Eval, i, vk, x),
(a) (y, Y, π)← Eval(k, x)
(b) Send (Eval, i, vk, x, Y, π) to all parties P1, . . . , Pn

2. Output:
(a) Party Pi: Output (Eval, i, vk, x, y, Y)
(b) All other parties Pj (j ̸= i): Upon receiving (Eval, i, vk, x, Y, π) from Pi

i. Verify that (init, i, vk) has been stored (i.e., vk is associated with Pi)
ii. If Verify(vk, x, Y, π) = 0 then ignore
iii. Else, output (Eval, i, vk, x, Y)

We stress that in the two-party case, the initialize phase consists only of Pi sending (init, i, vk) to
Pj , who stores it (i.e., there is no need for a second message in order to obtain consensus). We now
prove that πEF securely realizes FeVRF.

Theorem 2. Let EF = (KGen,Eval,Verify) be an exponent verifiable random function with respect
to (X ,Y). Then πEF securely realizes with abort FeVRF with respect to (X ,Y) in the FREF

zk -hybrid
model, in the presence of a static malicious adversary corrupting any number of parties.

Proof. Let P1, . . . , Pn be the parties, let I ⊂ [n] be the set of corrupted parties, and let A be a
real-world adversary running protocol πEF. We construct an ideal-model adversary/simulator S as
follows:

10

1. Initialize:

(a) Upon receiving (init, i) from FeVRF for an honest Pi, the simulator S runs KGen(1λ,X ,Y)
to obtain (k, vk), and sends sid = vk to FeVRF. Next, S simulates honest party Pi sending
(init, i, vk) to all corrupted parties, and simulates FREF

zk sending (prove, i, j, vk, 1) to all cor-
rupted parties. S then simulates message 2 of the initialization protocol and defines Oout

to be the set of honest parties who would not abort (i.e., who all received the same correct
messages from all corrupted parties). S sends Oout to FeVRF, instructing it to send output
to the honest parties in Oout.

(b) Upon a corrupted party receiving (init, i) for input, S obtains the message (init, i, vk) sent
by A to all honest parties and the messages (prove, i, j, vk, k, r) sent to FREF

zk for all j /∈ I.
Then, S simulates the honest parties actions exactly according to the protocol, and defines
Oout to be the set of honest parties who would not abort (i.e., who all received the same
correct messages from all corrupted parties, and who received correct proofs). If Oout is not
empty, then S defines f(x) = Eval1(k, x) where k is from the message sent by A to FREF

zk ,
and sends (init, vk, i, f) to FeVRF together with Oout, instructing it to send output to the
honest parties in Oout.

2. Evaluate:

(a) Upon receiving (Eval, i, vk, x, Y) from FeVRF for an honest Pi (vk is the sid as generated
during initialize), the simulator S runs Sim(vk, x, Y) to obtain π and simulates the honest
Pi sending (Eval, i, vk, x, Y, π) to all corrupted parties for the associated vk.

(b) Upon a corrupted party receiving (Eval, i, vk, x) for input (as above, vk is the sid), S sends
(Eval, i, vk, x) to FeVRF and obtains the messages

{
(Eval, i, vk, x, Y j , πj)

}
j /∈I sent by A to

the honest parties Pj for j /∈ I; observe that nothing forces A to send the same message to
all parties and so we denote by (Y j , πj) denote the values received by honest Pj .

5 For each
j /∈ I, S verifies that Verify(vk, x, Y j , πj) = 1. If no, it ignores the message. Else, it adds Pj

to Oout, and sends Oout to FeVRF.

We separately consider the case that Pi is honest and that Pi is corrupted.

Let Pi be honest. Then, the simulation in the initalize phase is perfect (in the FREF
zk -hybrid

model) since S generates (k, vk) like an honest party and perfectly simulates the message from
FREF
zk to the corrupted parties. Regarding the evaluation phase, there are two differences between

the simulation and a real execution: (a) the value Y is truly random in the ideal execution (and in
particular is independent of (k, vk) generated by S in the initialization phase) and equals Eval1(k, x)·
G in the real execution, and (b) the proof π is simulated in the ideal execution and is output from
Eval(k, x) in the real execution. We prove indistinguishability in three hybrid steps:

1. Hybrid 1: In this hybrid execution, we modify FeVRF so that upon receiving (init, i) from an
honest Pi it computes KGen(1λ,X ,Y) to obtain (k, vk), and sends (init, i, vk) to S setting sid =
vk, instead of receiving sid from S. Furthermore, S uses vk as it received from FeVRF instead
of generating it by itself. Everything else remains the same, and in particular the evaluation is
random.

It is clear that the output distributions of this hybrid and the ideal execution are identical. The
only difference is who chooses vk, which makes no difference.

5 We consider different Y j , πj values but not different x values. This is because a different x is considered a different
evaluation and is treated separately.

11

2. Hybrid 2: In this hybrid execution, we further modify FeVRF so that upon receiving (Eval, i, sid, x)
from an honest Pi, instead of choosing a random y, it computes y ← Eval1(k, x) with the k
generated after receiving (init, i). (The computation of Y ← y · G is unchanged.) Everything
else remains the same as the first hybrid, including S.
The only difference between the first and second hybrid execution is how y is generated. In
order to show that this is indistinguishable, we rely on the fact that Eval1 is a pseudorandom
function. Observe that it is possible to simulate both hybrid executions without ever receiving
k (in particular, because the proof π is simulated). Thus, if it is possible to distinguish between
hybrid 2 and hybrid 1, then it is possible to distinguish Eval1 from random.

3. Hybrid 3: In this hybrid execution, we modify FeVRF so that upon receiving (Eval, i, sid, x),
instead of just sending (Eval, i, sid, x, Y) to S, it also sends π where Eval(k, x) = (y, Y, π). The
simulator S is the same as for hybrid 2 except that instead of computing Sim(vk, x, Y) to obtain
π, it sends the proof π received from FeVRF. Indistinguishability of hybrid 2 and hybrid 3 follows
from Definition 4 and in particular that the output of the simulator is indistinguishable from
Eval2(k, x). We stress that in order to simulate these hybrids, the distinguisher needs to generate
an ideal execution where all proofs are either real or simulated, where the inputs x are chosen
dynamically by the adversary. This is achieved using the oracles given to the distinguisher in
Definition 4.

Finally, we observe that hybrid 3 is identical to a real execution. The only difference is that FeVRF

computes the honest parties’ messages according to protocol πEF instead of the parties themselves,
but this does not affect the output distribution.

We now consider the case that Pi is corrupted. In this case, the simulator S perfectly detects who
will receive output and who not in terms of receiving consistent messages during initialization and
a valid proof via FREF

zk . Furthermore, S perfectly detects who will receive output in the evaluation
phase, based on the proof π being valid. However, in the ideal execution, the output received by
honest parties during evaluation is always f(x) = Eval1(k, x). Thus, there can only be a difference
between the ideal and real executions if A sends a value Y ′ ̸= Eval1(k, x) · G together with an
accepting proof π. This would contradict the verifiability property of (KGen,Eval2,Verify) as a
VRF. In particular, it is always possible to generate an accepting proof for Y = Eval1(k, x) · G.
If A generates an accepting proof also for some Y ′ ̸= Eval1(k, x) · G, then we could construct an
adversary who outputs two distinct Y, Y ′ with respective accepting proofs π, π′. This completes the
proof. ⊓⊔

UC security. The simulator in the proof of Theorem 2 is straight line. Therefore, by [44], the
protocol is UC secure assuming start synchronization (all parties have their input before the protocol
starts). However, in both the initialize and evaluate phases, the only party with input is Pi and
therefore start synchronization holds always. We therefore have:

Corollary 1. Let EF = (KGen,Eval,Verify) be an exponent verifiable random function by Defini-
tion 4. Then πEF UC realizes FeVRF with abort in the FREF

zk -hybrid model, in the presence of a static
malicious adversary corrupting any number of parties.

4 Applications

In this section, we present the many applications for eVRFs discussed in the introduction. All the
protocols we present are “fully simulatable” meaning that they securely realize the plain algorithm

12

functionality (e.g., Schnorr signing), as opposed to some modified functionality. All of our protocols
are concretely efficient, and are secure under standard assumptions in the random-oracle model.

4.1 One-Round Simulatable Distributed Key Generation

This protocol works by defining each party’s key share to be the result of a pseudorandom function
applied to a unique nonce. In order to ensure that each party uses its committed pseudorandom
function, we use the FeVRF functionality to derive each party’s key share. Intuitively, this enables
us to generate a key in a single round since the only message the parties need to send is their single
eVRF value. This suffices since each party can simply sum the public key-share values (we call
Ki = ki ·G a party’s public share) to obtain the final public key. The crucial difference between this
key generation and standard key generation protocols is that since each party is already committed
to its value via the FeVRF (after running a single initialization step), the corrupted parties cannot
bias the output key. In particular, if a key was generated by each party simply choosing a random
ki and sending Ki = ki · G to all other parties, then a single corrupted party P1 can completely
determine the key by obtaining all the honest parties shares K2, . . . ,Kn and then setting K1 =
K −

∑n
i=2Ki, where P1 has chosen K = k · G where k is known to it. This trivial attack can be

prevented by having each party add a zero-knowledge proof of knowledge of the discrete log of its
Ki; this would prevent P1 from carrying out this attack since it cannot know the discrete log of K1.
However, the protocol is still not simulatable since P1 could bias the output. In particular, if P1

wanted the public key K to have a certain property that holds in 1/1000 keys then it can receive
K2, . . . ,Kn and then repeatedly choose random k1 and compute K1 = k1 · G and K =

∑n
i=1Ki

until K has the required property. All of this isn’t possible with our protocol since the corrupted
parties are committed to the PRF output via FeVRF.

We remark that generating a new key requires a unique nonce. In particular, if the same nonce
is used twice then the same key will be output. This holds in both the ideal and real models, and
therefore the security of the protocol does not rely on the nonce necessarily being unique. However,
using the protocol to generate a new key does require ensuring a unique nonce (which could be a
timestamp, a counter, etc.).

The additive DKG functionality Fdkg: Let G be a group of order q with generator G. The
distributed key-generation functionality Fdkg for G running with parties P1, . . . , Pn and corrupted
parties I ⊆ [n] is defined as follows:

1. Wait to receive (gen, nonce) from all honest parties and (gen, nonce, ki) from all corrupted parties
Pi with i ∈ I

2. If (gen, nonce, k1, . . . , kn) has already been stored
– Retrieve k1, . . . , kn
Else
– Choose random kj ←$ Zq for every j ∈ [n] \ I
– Store (gen, nonce, k1, . . . , kn)

3. For i = 1, . . . , n, compute Ki = ki ·G
4. Compute K =

∑n
i=1Ki

5. For i = 1, . . . , n, send (gen, nonce, ki,K1, . . . ,Kn,K) to Pi

We are now ready to present the protocol. Let X = {0, 1}λ and let Y = G as desired for Fdkg.

Protocol 3 (Πdkg for additive DKG)

13

– Initialize:

1. In parallel, each Pi sends (init, i) to FeVRF (for X ,Y)
2. Wait to receive (init, j, sidj) from FeVRF for all j ∈ [n]

– Generate (one round): upon input (gen, nonce), each party Pi

• Message:

1. Send (Eval, i, sidi, nonce) to FeVRF and receive back (Eval, i, sidi, nonce, ki,Ki)

• Output:

1. Wait to receive (Eval, j, sidj , nonce,Kj) from FeVRF for all parties Pj (all with the correct
nonce)

2. Compute K =
∑n

i=1Ki

3. Output (gen, nonce, ki,K1, . . . ,Kn,K)

The rationale behind the security of the protocol has already been described above and so we
proceed directly to the proof of security.

Theorem 4. Protocol 3 securely realizes Fdkg with perfect security with abort, in the presence of
a static malicious adversary corrupting up to n parties. Furthermore, after a single two-round
initialization phase, each generation consists of a single round.

Proof. If all n parties or no parties are corrupted, then the statement is trivial (if no parties are
corrupted, then since the ideal functionality and honest parties communicate over ideal private
channels, nothing is revealed). Let A be the adversary and let I be the set of corrupted parties
with 0 < |I| < n. We construct a simulator S with “internal communication” to A and “external
communication” to Fdkg, as follows:

– Initialize:

1. Simulate FeVRF sending {(init, j)}j /∈I to A, and receive back {sidj}j /∈I as A would send to
FeVRF

2. Simulate FeVRF sending (init, j, sidj) to all parties, for all j /∈ I
3. For all i ∈ I, internally receive (init, i, sidi, fi) from A as sent to FeVRF from Pi, and simulate
FeVRF sending back (init, i, sidi) to all parties

– Generate: to simulate an execution of generate for nonce,

1. For every i ∈ I, compute ki = fi(nonce), where fi is as received for Pi in the initialize phase

2. Send (gen, nonce, ki) externally to Fdkg for every i ∈ I, and receive back a set of tuples
{(gen, nonce, ki,K1, . . . ,Kn,K)}i∈I

3. Simulate FeVRF sending (Eval, j, sidj , nonce,Kj) to all corrupted parties, for every j ∈ [n] \I
4. Define the set Oout of honest parties to receive output by the set of parties for which A

instructs FeVRF to provide output from all i ∈ I
5. Send Fdkg the set Oout

6. Output whatever A outputs

The initialization phase in the simulation is identical to the real execution in the FeVRF-hybrid
model. Regarding the generate phase, in the FeVRF-hybrid model, the view of the adversary in the
ideal execution is also identical to its view in a real execution. This is because in the FeVRF model
all that it sees is the Kj values for the honest parties. Furthermore, these values are uniformly
distributed in the real execution by the definition of FeVRF, and uniformly distributed in the ideal

14

execution by the definition of Fdkg. Finally, the ki values of the corrupted parties is the same, since
S sends Fdkg the same values that A is committed to by the definition of FeVRF.

The round complexity statement in the theorem follows by observation that each FeVRF initial-
ization operation is two rounds and each evaluation operation is just a single round (as described
in Protocol 1, and these can all be sent in parallel. This completes the proof. ⊓⊔

4.2 One-Round Simulatable Threshold Distributed Key Generation

The protocol in Section 4.1 works for a set of n parties who all participate and wish to generate a
key that is additively distributed amongst themselves. This can easily be extended to a threshold
setting (and even to a more general access structure of a tree of AND, OR, and threshold gates)
by simply having each party in a quorum generate a VSS sharing of its key share defined by the
eVRF. This would work but would not be a single round only since a consensus round would be
needed to ensure that all parties receive the same sharing (a simple echo-broadcast suffices, as
shown in [21]). Fortunately, we can use the eVRF to achieve this as well, and have each party
define all the coefficients in its polynomial for Feldman VSS [27] via the eVRF. Since each party is
already committed to its values and therefore its polynomial via the eVRF, and since all parties can
verify that the eVRF output values sent are correct, there is no need for an additional consensus
round. Indeed, no party can send a value that isn’t correct. We describe the protocol for a simple
threshold only; the extension to a tree of AND, OR and threshold gates is immediate.

We describe the protocol with a quorum of t + 1 online parties who generate the key for all n
parties. We stress that there is no security benefit in having all n parties generate the key, since
any quorum of t+ 1 parties will anyway have the entire key.

The quorum-specific threshold DKG functionality Fn,t
dkgQ: Let G be a group of order q with

generator G, let α1, . . . , αn be fixed distinct elements in Zq, and let t < n. The distributed key-
generation functionality Fn,t

dkgQ for G running with parties P1, . . . , Pn, a quorum Q ⊆ [n] of t + 1
online parties, and corrupted parties I ⊆ [n] with |I| ≤ t is defined as follows:

1. Wait to receive (gen, nonce,Q) from all t+ 1 parties
2. If (gen, nonce,Q, p(x)) has already been stored

– Retrieve p(x)
– Store (gen, nonce,Q, p(x))
Else
– Choose a random degree-t polynomial p(x)←$ Fq[x]
– Store (gen, nonce,Q, p(x))

3. For j = 1, . . . , n, compute kj = p(αj)
4. Let a0, . . . , at be the coefficients of p; i.e., p(x) =

∑t
i=0 ai · xi

5. For i = 0, . . . , t, compute Ai = ai ·G
6. Compute k = p(0) and K = k ·G
7. For i = 1, . . . , n, send (gen, nonce,Q, ki, A0, . . . , At,K) to Pi

Observe that in the case of additive DKG, the functionality allowed each corrupted party to choose
its own share (and the honest parties’ shares were randomly chosen by the functionality). In con-
trast, here the functionality chooses all of the shares. The reason for this difference is that here
each party’s share is the sum of the shares received from all parties. Since each party is a priori
committed to its values after the initialization phase, this means that no party can influence even
its own share and so there is no need to give this extra power to the adversary.

15

Protocol 5 (Πn,t
dkgQ for threshold DKG)

– Initialize (all n parties):
1. In parallel, each Pi sends (init, i) to FeVRF (for X ,Y)
2. Wait to receive (init, j, sidj) from FeVRF for all j ∈ [n]

– Generate(a quorum Q of t+ 1 parties): upon input (gen, nonce,Q) with a nonce and with
Q ⊆ [n] of size t+ 1, each party Pi with i ∈ Q
1. Message (all parties in Q): Each party Pi with i ∈ Q,

(a) For ℓ = 0, . . . , t, send (Eval, i, sidi, nonce∥Q∥ℓ) to FeVRF and receive back a six tuple
(Eval, i, sidi, nonce∥Q∥ℓ, aℓi , Aℓ

i). Note that the nonce used for the evaluation includes the
identities of the t participating parties.

(b) Let pi(x) =
∑t

ℓ=0 a
ℓ
i · xℓ

(c) Compute ki→j = pi(αj) for j = 1, . . . , n
(d) Send ki→j to Pj for j = 1, . . . , n

2. Output (all n parties):
(a) Wait to receive {(Eval, j, sidj , nonce∥Q∥ℓ, Aℓ

j)}tℓ=0 from FeVRF for all parties Pj with j ∈
Q (all with the correct nonce and Q)

(b) Wait to receive kj→i for all j ∈ Q
(c) Verify that kj→i ·G =

∑t
ℓ=0(αi)

ℓ ·Aℓ
j, for all j ∈ Q. Abort if any equality does not hold.

(d) Compute ki =
∑

j∈Q kj→i

(e) Compute Aℓ =
∑

j∈QAℓ
j for ℓ = 0, . . . , t

(f) Compute K = A0

(g) Output (gen, nonce,Q, ki, A0, . . . , At,K)

Theorem 6. Protocol 5 securely realizes Fn,t
dkgQ with perfect security with abort, in the presence

of a static malicious adversary corrupting up to t parties. Furthermore, after a single two-round
initialization phase, each generation consists of a single round only.

Proof. The idea behind the proof is that the simulator can generate all of the corrupted parties’
values itself (using f obtained in the initialization phase of FeVRF). Then, for all but one honest
party, the simulator chooses their values at random. Finally, for a single specified honest party, its
polynomial (in the exponent; i.e., it’s Aj

ℓ values) are computed by subtracting all the other parties’

polynomials from the polynomial received from Fn,t
dkgQ. This ensures that all the polynomials of the

parties add up to the random polynomial sent by Fn,t
dkgQ. This is identical to a real execution in the

FeVRF-hybrid model since only “public values” are revealed.
We now proceed with the proof. If no parties are corrupted, then the statement is trivial. Let A

be the adversary and let I be the set of corrupted parties with 0 < |I| ≤ t. We construct a simulator
S with “internal communication” to A and “external communication” to Fn,t

dkgQ, as follows:

– Initialize (all n parties):6

1. Simulate FeVRF sending {(init, j)}j /∈I to A, and receive back {sidj}j /∈I as A would send to
FeVRF

2. Simulate FeVRF sending (init, j, sidj) to all parties, for all j /∈ I
3. For all i ∈ I, internally receive (init, i, sidi, fi) from A as sent to FeVRF from Pi, and simulate
FeVRF sending back (init, i, sidi) to all parties

6 The simulation of this phase is exactly as in the proof of Theorem 4.

16

– Generate (a quorum Q of t + 1 parties): to simulate an execution of generate for nonce with
quorum Q,
1. Send (gen, nonce,Q) to Fn,t

dkgQ for every i ∈ I∩Q, and receive back {(gen, nonce,Q, ki, A0, . . . , At,K)}i∈I
2. For every i ∈ I ∩Q, compute aℓi = fi(nonce∥Q∥ℓ) for ℓ = 0, . . . , t, where fi is as received for

Pi in the initialize phase, and set pi(x) =
∑t

ℓ=0 a
ℓ
i · xℓ

3. For every i ∈ I ∩ Q, compute Aℓ
i = aℓi ·G

4. For every i ∈ I ∩ Q and every j ∈ Q \ I, compute ki→j = pi(αj)
5. Let j′ ∈ Q \ I be a specific honest party (since |I| ≤ t there exists such a party)
6. For all j ∈ Q\I with j ̸= j′, choose a random pj(x) =

∑t
ℓ=0 a

ℓ
j ·xℓ and compute Aℓ

j = aℓj ·G
for ℓ = 0, . . . , t

7. For all j ∈ Q \ I with j ̸= j′, and for all i ∈ I, compute kj→i = pj(αi)
8. For every i ∈ I, compute kj′→i = ki −

∑
j∈Q\{j′} kj→i, where ki is as received from Fn,t

dkg
(this ensures that for every corrupted party Pi it holds that

∑
j∈Q kj→i = ki)

9. For ℓ = 0, . . . , t, compute Aℓ
j′ = Aℓ −

∑
j∈Q\{j′}A

j
ℓ , where A0, . . . , At are as received from

Fn,t
dkg

10. Simulate FeVRF sending (Eval, j, sidj , nonce∥Q∥ℓ, Aℓ
j) to all corrupted parties, for every j ∈

Q \ I and ℓ = 0, . . . , t
11. For each j ∈ Q \ I and i ∈ I, simulate honest Pj sending kj→i as computed above to

corrupted Pi

12. Define the set Oout of honest parties to receive output by the set of parties for which A
instructs FeVRF to provide output from all i ∈ I, and for which all ki→j values are sent from
corrupted parties to honest parties, and they are all valid (S can check validity as in the
protocol)

13. Send Fn,t
dkgQ the set Oout

14. Output whatever A outputs

First observe that (a) for every i ∈ I it holds that
∑

j∈Q kj→i = ki, and (b) for every j ∈ Q \ I
and i ∈ I it holds that kj→i ·G =

∑t
ℓ=0(αi)

ℓ ·Aℓ
j . The former follows immediately from how kj′→i is

chosen. Regarding the latter, this also holds trivially for all j ̸= j′. Regarding j′, observe that kj′→i

is defined by ki −
∑

j∈I\{j′} kj→i and each Aℓ
j′ is defined by Aℓ

j′ = Aℓ −
∑

j∈Q\{j′}A
j
ℓ . Now, for all

kj→i with j ̸= j′ we have that kj→i · G =
∑t

ℓ=0(αi)
ℓ · Aℓ

j and by the Fn,t
dkg functionality definition

we have that ki ·G =
∑t

ℓ=0(αi)
ℓ ·Aℓ. It therefore follows that

kj′→i ·G =

ki −
∑

j∈Q\{j′}

kj→i

 ·G =
t∑

ℓ=0

(αi)
ℓ ·Aℓ −

∑
j∈Q\{j′}

t∑
ℓ=0

(αi)
ℓ ·Aℓ

j

=
t∑

ℓ=0

(αi)
ℓ ·

Aℓ −
∑

j∈Q\{j′}

Aℓ
j

 =
t∑

ℓ=0

(αi)
ℓ ·Aℓ

j′ ,

as required. Furthermore, since Fn,t
dkgQ chooses the polynomial to be random, and so do the honest

parties, the distribution over these values is identical in the real and ideal execution. Finally, the
simulation of the initialization phase is computationally indistinguishable from a real execution
(as shown in Theorem 4) with the only difference being if there is a collision in the sid, and the
simulation of the generate phase yields a distribution that is identical to the protocol (in the

17

FeVRF model) since the only thing that the corrupted parties sees are the Aj
ℓ values, and they are

committed to their Aj
i and ki→j values by FeVRF.

The round complexity statement in the theorem follows by observation that each FeVRF initial-
ization operation is two rounds and each evaluation operation is just a single round (as described
in Protocol 1, and these can all be sent in parallel. This completes the proof. ⊓⊔

On knowing the set of generating parties Q: Protocol Πn,t
gen assumes that all parties know

(and agree upon) the set of t + 1 participants Q ahead of time. This is needed to ensure that an
independent key is generated for each nonce and subset, which is needed since each party has a
different eVRF, and so different subsets would generate different keys, even for the same nonce.
The set Q is included to therefore ensure complete independence of keys generated with different
subsets. (If we only include the nonce, then it is possible that two different keys will be generated
for which the adversary knows the “difference” between them; e.g., consider a case of t honest
parties running the execution twice on the same nonce, each time with a different corrupted party
who is the (t+1)th party.) This limitation can be removed by simply having all parties participate
in key generation, or by having a fixed set of parties who generate keys, or by adding an additional
round to agree on the set of parties.

One-round threshold DKG without knowing Q ahead of time: As we have discussed, the
DKG of Section 4.2 requires the parties to know the set Q ahead of time. In practice, this is not
always a given, and the desired functionality is that after the first t + 1 parties respond, the key
is generated.7 This can be achieved by using a threshold eVRF, which is an eVRF for which any
authorized quorum of parties Q can compute the output Y and receive a sharing of y (where
Y = y · G). This solves the problem of knowing Q ahead of time since any t + 1 parties can
participate in computing the eVRF output, which can be used directly as the generated key. We
leave the construction of a threshold eVRF as an open question (see Section 7). However, for a
(very) small n, it is possible to achieve the desired result by simply calling Fn,t

dkgQ separately for
every authorized subset Q ⊂ [n] and taking the result using the Q that defines the set of t+1 parties
who actually participated (i.e., sent first round messages). This is not efficient for a large number of
parties, but can certainly be used for thresholds of the type 2-out-of-3 (requiring 3 computations)
or 3-out-of-5 (requiring 10 computations).

4.3 The Transformation Methodology for Signing Protocols

ECDSA and Schnorr signing both involve generating a random nonce k and revealing R = k ·G. In
ECDSA, the signature is (r, s), where r is derived from the x-value of R and s = k−1 · (H(m)+r ·x)
with x being the private key and m the message to be signed. In Schnorr (using comparable
notation), the signature is (R, s) where s = k − e · x mod q (or some variant of this equation) and
e = H(Q,R,m), where Q = x ·G is the public key.

Many protocols that achieve simulation – e.g., [45,26,25] for ECDSA and [46,48] for Schnorr –
work by having each party choose a random ki and commit to Ri = ki ·G (sometimes also including
a zero-knowledge proof of knowledge of the discrete log) and then having the parties decommit and
define R =

∑n
i=1Ri as the nonce. This methodology ensures that R is uniformly distributed (since

7 Consider the case of human participants who receive an “invite” to participate in a DKG, and who connect to run
the operation and then disconnect. It is much easier to not have to know who the parties that join are ahead of
time, and whoever the first t+ 1 parties are, the DKG will go through.

18

no party can make their Ri depend on the others due to the commitments). When extractable and
equivocal commitments are used this is also fully simulatable, since a simulator can choose the
honest parties’ Ri values after seeing the corrupted parties values, and can therefore make the sum
equal the value R received externally in the ideal model. Stated differently, many protocols generate
R by running a simulatable distributed key generation protocol. When looked at in this light, a
natural transformation is to use our one-round DKG protocols (Protocols 3 and 5) to generate R
(applying the eVRF to the message to be signed and/or a unique nonce), with the initialization
phase being run together with the signing key generation protocol. This enables us to collapse
two rounds (commit and open) into a single round, thereby reducing the number of rounds in the
signing protocol from three to two, while still achieving simulatable DKG. This enables us to reduce
the number of rounds from three to two, without sacrificing on full simulatability. Furthermore,
by applying the eVRF to the message to be signed only, we have the all signatures on the same
message will have the same nonce, and so deterministic signing is achieved at no additional cost.

On achieving a black-box transformation. Ideally, we would like to prove a theorem that says
something like any protocol that has a “coin tossing phase” where parties exchange R1, . . . , Rn (e.g.,
by committing and opening) and the nonce is R =

∑n
i=1Ri and transform it into a deterministic

protocol where the Ri values are generated via the eVRF. However, this actually isn’t possible when
constructing deterministic signing. In order to see this, take any secure ECDSA or Schnorr protocol
for probabilistic signing and modify it so that if any of the parties guesses in the first round what the
nonce R will be, then all parties send them their private key share. Such a protocol will completely
break when deterministically generating R from the message, like with our eVRF, when the same
message is signed twice. This does not rule out the possibility of constructing probabilistic signing
via a general transformation, but such a transformation is unlikely to be very useful since most
existing protocols are not proven with the nonce generation as a separate modular operation. In the
following, we therefore present specific protocols which are derived from taking existing protocols
and replacing the commit-and-open phase with an eVRF computation.

4.4 Two-Round Simulatable Multiparty Schnorr Signing

In this section, we construct two-round multiparty Schnorr signing from the protocol by [46],
by replacing the commit-and-open rounds by eVRF evaluations, as described above. We begin by
constructing n-out-of-n deterministic signing, and then describe how to achieve probabilistic signing
and threshold signing.

Deterministic signing with additive shares: We first consider the case where the parties hold
additive shares of the signing key, and all n-of-n parties participate in signing. We begin by defining
the signing functionality. This functionality computes the standard Schnorr signature for a set of
parties with additively shared keys. The functionality does not mandate how the key is generated,
and it works for any set of inputs held by the parties. This guarantees the same level of security
as locally computed Schnorr no matter how keys are generated (using some HD scheme, poorly
derived from passwords, or anything else).

Functionality 7 (Deterministic Schnorr Signing Fdet-schnorr)

Let G be a group of order q with generator G, and let H be the Schnorr hash function. Upon
receiving (Sign,m,Q,Q1, . . . , Qn, xi) from all n different parties Pi, functionality Fdet-schnorr works
as follows:

19

1. Verifies that all parties sent the same (m,Q,Q1, . . . , Qn) , that Q =
∑n

i=1Qi and that Qi = xi ·G
for all i ∈ [n]. If no, then it does nothing. Else, it proceeds to the next step.

2. Computes x =
∑n

i=1 xi mod q.

3. If some (m, k) is stored then retrieves k. Else, chooses a random k ←$ Zq and stores (m, k).

4. Computes R = k ·G, e = H(Q∥R∥m) and s = k − e · x mod q.

5. Sends (m, e, s) to all parties.

Securely computing Fdet-schnorr. The idea behind the protocol for Schnorr is simple, due to the
fact that the Schnorr signing equation is linear. Specifically, the parties use an eVRF to generate
partial nonces (ki, Ri) where Ri = ki · G and to share all R1, . . . , Rn with all parties. Then, each
party can locally compute R =

∑n
i=1Ri, e = H(Q∥R∥m) and si = ki − e · xi mod q. This implies

that
∑n

i=1 si = k − e · x mod q, and so (e, s) is a valid signature. The fact that the signing is
deterministic is achieved by applying the eVRF to the (hash of the) message as input. Essentially,
this is exactly the same as for the standard EdDSA signing scheme [4], except that a different
pseudorandom function is used.

Protocol 8 (Multiparty Schnorr signing – n-out-of-n parties)

– Input:

1. Group parameters: Let G be a group of order q with generator G, and let H be the Schnorr
hash function with output length λ′

2. Key shares: Each party Pi holds (m,xi, Q,Q1, . . . , Qn) where Qi = xi ·G and
∑n

i=1Qi = Q

3. eVRF shares: Each party Pi holds (ski, vk1, . . . , vkn) where ski is the eVRF private key as-
sociated with vki, for an eVRF with domain {0, 1}λ′

and range G. These are generated in
parallel using Protocol 1 (πEF).

– The protocol:

1. Round 1: Each party Pi computes (ki, Ri, πi) ← Eval(ski, H(m)), and sends (Ri, πi) to all
parties

2. Round 2: Upon receiving (Rj , πj) from all parties j ∈ [n], each Pi:

(a) Proceeds if Verify(vkj , H(m), Rj , πj) = 1 for all j ∈ [n] and aborts otherwise
(b) Computes R =

∑n
j=1Rj, e = H(Q∥R∥m) and si = ki − xi · e mod q

(c) Sends si to all parties

3. Output: Upon receiving (s1, . . . , sn), each party computes s =
∑

i∈S si mod q and checks that
VerifyQ(m, (s, e)) = 1. If yes, then it outputs (s, e); otherwise it aborts.

Our protocol assumes that the parties hold valid and consistent inputs, meaning that all parties
hold the same vectors (Q,Q1, . . . , Qn) and (vk1, . . . , vkn), and in addition Q =

∑n
i=1Qi, and Qi =

xi ·G and vki = ski ·G for every i ∈ [n]. If this is not guaranteed from a previous protocol execution,
then each Pi can simply verify that xi ·G = Qi and Q =

∑n
i=1Qi at the beginning of the protocol.

In addition, all parties can send hq ← H(Q1, . . . , Qn, vk1, . . . , vkn) to all other parties in the first
round, and proceed in the second round only if the same hash value hq is received from all.

The protocol for two parties. In the specific case of two parties, and where only one party needs
to receive output, Protocol 8 can be converted into a protocol where P1 sends a single message to
P2, and P2 replies with a single message to P1 (i.e., a single round trip), and P1 can then generate
output.

20

Security. We prove the protocol secure in the FeVRF-hybrid model (assuming that the initialize
phase is carried out during key generation). We stress that the “perfect security” in the theorem
statement only holds in the FeVRF-hybrid model, but when instantiating the protocol with a real
eVRF, the protocol is computationally secure. In addition, we remark that security holds for all
valid and consistent inputs {(xi, Q,Q1, . . . , Qn)}i∈[n] irrespective of how they are generated. In
contrast, it is crucial that the eVRF inputs are securely generated; this is reflected in the proof by
the fact that we consider the FeVRF-hybrid model.

Theorem 9. Assume that the parties hold valid and consistent inputs. Then, Protocol 8 securely
computes functionality Fdet-schnorr in the FeVRF-hybrid model with perfect security with abort, in the
presence of a malicious static adversary controlling any subset of the parties.

Proof. The idea behind the proof of security is simple. Using the simulatability of the eVRF (as
demonstrated in the proof of Theorem 4) the simulator can force the sum of all Ri’s to equal the
R value it receives in the signature from the ideal functionality Fdet-schnorr. Then, the values si sent
by the honest parties in the protocol can be derived perfectly by choosing the honest Rj values
carefully for all but one honest party, and using the signature for the last honest party, exactly as
in [46].

Let A be an adversary corrupting a (strict) subset of parties I ⊂ [n] of size at most n−1 (if all n
are corrupted, then the protocol is vacuously secure), and let J denote the set of honest parties (and
so I ∪J = [n]). Without loss of generality, assume that 1 ∈ J (i.e., P1 is an honest participant). We
are now ready to construct the simulator S, with input {(Sign,m,Q,Q1, . . . , Qn, xi)}i∈I , as follows:

1. S externally sends (Sign,m,Q,Q1, . . . , Qn, xi) to Fdet-schnorr and receives back (m, e, s). S com-
putes R = s ·G+ e ·Q. Then, S invokes A in an execution of the protocol.

2. Let fi be the stored function from the FeVRF initialization phase for party Pi, for every i ∈ [n]
(as in the proof of Theorem 4, the simulator S has these functions), and let sid be the identifier.

3. For all i ∈ I, simulator S computes ki = fi(H(m)) and Ri = ki ·G.
4. For all j ∈ J \ {1}, simulator S chooses a random sj ← Zq and sets Rj = sj ·G+ e ·Qj (where

e is from the signature received from Fschnorr). Then, S sets R1 = R−
∑

i∈I Ri −
∑

j∈J\{1}Rj ,
using R computed from the signature received from Fdet-schnorr.

5. S simulates FeVRF sending (Eval, sid, j,H(m), Rj) to A for every j ∈ J , using the Rj values
computed in the previous step.

6. S receives (Eval, sid, i,H(m)) from A as sent to FeVRF for every i ∈ I. S waits for all messages
to be sent.

7. S computes si = ki − xi · e mod q for every i ∈ I (S can do this since it knows the ki values for
each corrupted party from Step 3 above, and it is given the xi values of the corrupted parties
as input). Then, S computes

s1 = s−
∑
i∈I

si −
∑

j∈J\{1}

sj (mod q)

using the sj values chosen above.
8. S simulates Pj sending sj to all parties, for every j ∈ J .
9. S receives {si}i∈I values sent by A to the honest parties. If the sum of all of the values sent to

an honest Pj is correct (computed by
∑

i∈I si where the si values are as above), then S adds
Pj to Oout.

21

10. S sends Oout to Fdet-schnorr to instruct which honest parties should receive output.

This completes the simulation. We argue that the simulation is perfect. In order to see this, we
show that the (Rj , sj) values sent by the simulator to the adversary are identically distributed to
the values sent by the honest parties to the corrupted parties in a real protocol execution. In order
to see this, first note that for every j ∈ J \ {1} the values are generated as follows:

– Real: kj ∈R Zq is random, Rj = kj ·G, and sj = kj − e · xj mod q
– Simulation: s̃j ∈R Zq is random, R̃j = s̃j ·G+ e ·Qj (we write s̃j and R̃j to differentiate from

the real)

Let k̃j be such that R̃j = k̃j ·G. We remark that the simulator S does not know k̃j , but the value
is well defined. It follows that k̃j = s̃j + e · xj mod q and so s̃j = k̃j − e · xj mod q, exactly like in
a real execution. Furthermore, choosing k̃j at random and computing s̃j = k̃j − e · xj mod q yields
the exact same distribution as choosing s̃j at random and computing k̃j = s̃j + e · xj mod q.

Next, regarding (R1, s1), we have that

R1 = R−
∑
i∈I

Ri −
∑

j∈J\{1}

Rj = k ·G−
∑
i∈I

ki ·G−
∑

j∈J\{1}

kj ·G

where k is the discrete log of R (as computed from the signature), {ki}i∈I are the corrupted parties’
values from the eVRF (enforced by the fi functions), and {kj}j∈J\{1} are the implicit values defined
above. This therefore defines k1 = k −

∑
i∈I ki −

∑
j∈J\{1} kj mod q. Similarly, we have

s1 = s−
∑
i∈I

si −
∑

j∈J\{1}

sj = k − e · x−
∑
i∈I

(ki − e · xi)−
∑

j∈J\{1}

(kj − e · xj) (mod q)

which holds for i ∈ I by how the simulator computes {si}i∈I and for j ∈ J \ {1} by the above
analysis. Writing k =

∑
ℓ∈I∪J kℓ and d =

∑
ℓ∈I∪J xℓ we have that

s1 =
∑

ℓ∈I∪J
kℓ − e ·

∑
i∈I∪J

xℓ −
∑
i∈I

(ki − e · xi)−
∑

j∈J\{1}

(kj − e · xj) (mod q)

and so s1 = k1 − e · x1 mod q, as required. (We stress that S does not know these values, and in
particular it does not know the xj values of the honest parties including x1, and yet is able to
generate the correct distribution, as described above.)

Finally, since S is able to perfectly verify whether or not the corrupted parties send correct
values, since it knows all of the corrupted (kj , xj) values and so can detect if the sum over all si
values sent by A is correct. (Note that only the sum matters for C computing a correct signature.)
Thus, the distribution over C receiving or not receiving output is exactly the same in the real and
ideal executions. ⊓⊔

Security under concurrent composition. As shown by [44], perfect security without rewinding
implies UC security. As such, assuming that FeVRF is implemented using a UC-secure protocol (as
in Protocol 1), we have that the protocol is UC-secure and so secure under concurrent composition.

The final result. Using any two-round distributed key generation protocol (e.g., as described
in [46]) in parallel with the two-round initialization in Protocol 1, we have the following corollary:

22

Corollary 2. There exists a multiparty n-of-n protocol with two rounds for each of key generation
and signing that UC computes the deterministic signing functionality Fdet-schnorr with abort, in the
presence of a malicious static adversary controlling any subset of the parties.

Probabilistic signing. We can achieve two-round probabilistic signing assuming that the parties
hold the same unique nonce8 before the protocol begins by having the parties apply the eVRF
to H(H(m), nonce). This will result in the eVRF output being (computationally) independent for
every different nonce. Practically, the nonce can be a timestamp, with the observation that if
two protocol executions use the same timestamp, then the result will just be the same and so no
harm can be done. Formally, the functionality computed here Fschnorr would either choose k ←$ Zq

randomly each time (when a unique nonce is guaranteed) or would receive a nonce from all parties in
the input and would choose a new k ←$ Zq for every unique nonce (in which case, the functionality
works in the same way that the same nonce in different execution would yield the same result, while
different nonces would yield a different random R in the signing).

Threshold probabilistic signing. In order to achieve probabilistic threshold signing, the parties
can include the set of participating parties Q into the eVRF computation, together with H(m) and
the nonce, in the same way as in Protocol 5 for securely computing Fn,t

dkgQ. As long as the set of
participating parties is known ahead of time (since Q needs to be input into the eVRF evaluation),
this achieves a two-round protocol. In the same way as for Fn,t

dkgQ, if n is very small then it is
possible for the parties to provide eVRF values for all possible Q subsets, and so the set of parties
need not be known ahead of time. However, this is only practical for very small n.

Proof of quorum identity. The threshold probabilistic signing protocol described above (that
works by including Q into the eVRF) has a unique property that is of independent interest.
The signature generated by the quorum of parties is a standard signature with no changes at
all. However, the quorum of parties who signed can at a later time provide a proof that they
and only they generated the signature, assuming a public record of the eVRF verifications keys.
This proof for a signature (e, s) is simply the set {(Ri, πi}i∈Q, and it is verified by checking that
Verify(vki, H(m), Ri, πi) = 1 for all i ∈ Q and that

∑
i∈QRi = R, where R = s ·G+ e ·Q. The fact

that the proof is sound (i.e., it isn’t possible to frame another subset of parties) follows from the
fact that if a party Pj did not compute Eval on this input then their (Rj , πj) value is unknown, and
furthermore even if they did (at some later time) the probability that the sum of Rj ’s for any given
subset Q′ will equal a given R is 1/q (in the FeVRF-hybrid model).9 Consider for example a setting,
where like in a proof of stake, there is a reward for generating a signature and a penalty (slash) for
generating a signature when you shouldn’t. In such a setting, a proof of quorum identity provides
a perfect solution. Furthermore, our protocol can enhance privacy by not revealing the identities
of who signed except when needed, or except to entities who need to see it.

Precomputation for the nonce. Functionally speaking, the parties could precompute the nonceR
before the message m is known (of course, this makes sense only for probabilistic signing). However,
security wise, such a protocol would not securely realize Fschnorr since the functionality provides

8 Not to be confused with the “nonce” R in the Schnorr signing, here we mean a unique value nonce which can be
a counter, timestamp, or anything.

9 If t, n are very large, and so
(
t
n

)
is not much smaller than q, then given all {(Rj , πj)}j∈[n]’s it may be possible to

find an appropriate subset (this would require solving a type of subset sum problem, which may or may not be
hard). However, if

(
t
n

)
≪ q, then the probability that there exists any such subset is negligible.

23

a full signature (e, s), which fully determines R = s · G + e · Q, only upon receiving m. Not only
does the resulting protocol no realize Fschnorr, a recent attack due to Navot [53] suggests that
precomputation of the nonce can compromise security.

Threshold deterministic signing. As we have mentioned, we do not achieve deterministic signing
for the threshold setting. This is because different subsets of parties compute a different R value.
In order to achieve this, we need to construct a threshold eVRF, which is left as an open question.

4.5 Two-Round Simulatable Two-Party ECDSA Signing

In a similar way to Section 4.4, in this section we construct a two-round two-party ECDSA signing
protocol by replacing the commit-and-open phase in the protocol of [45] with an eVRF evaluation.
The result is a protocol with a single round from P1 to P2, and a single response from P2 to P1.

Functionality 10 (Two-party deterministic ECDSA Signing Fdet-ecdsa) Let G be a group
of order q with generator G, and let H be the ECDSA hash function. Upon receiving (Sign,m,Q, xi)
from both parties P1 and P2, functionality Fdet-ecdsa works as follows:

1. Verifies that both parties sent the same (m,Q) , and that (x1 + x2) ·G = Q. If no, then it does
nothing. Else, it proceeds to the next step.

2. Computes x = x1 + x2 mod q.
3. If some (m, k) is stored then retrieves k. Else, chooses a random k ←$ Zq and stores (m, k).
4. Computes R = k ·G and r = rx mod q where R = (rx, ry)
5. Computes s = k−1 · (H(m) + r · x) mod q.
6. Sends (m, r, s) to party P1 and to the ideal adversary S.10

We have defined the functionality so that only P1 receives output. It is always possible to have P1

send P2 the output, if both are supposed to received the signature.

The protocol idea and differences from [45]. The protocol of [45] uses the Paillier additively
homomorphic encryption scheme to enable the parties to generate a signature. In the key generation
phase, the parties obtain x1, x2 such that x = x1 + x2 mod q (although [45] refers to multiplicative
sharing, the protocol works for additive sharing in the same way). In addition, P1 generates a
Paillier key, and sends an encryption ckey of x1 to P2, together with a proof that ckey is correctly
formed.

Next in order to sign, the parties first generate R = k1 · k2 ·G, where ki is known to party Pi.
Then, given the encryption ckey of x1 and given R (and thus r), it is possible for P2 to generate an
encryption of an “almost” signature. In particular, it can compute an encryption of k−12 ·(H(m)+r·x)
by adding x2 to x1 inside ckey, and then multiplying the result by r, adding H(m), and finally
multiplying again by k−12 (since the operations inside Pailier are over the integers, it also adds ρ · q
for a random ρ of the appropriate size). Finally, given this ciphertext, party P1 can decrypt and
multiply the result by k−11 , yielding a “full” signature k−1 · (H(m) + r · x).

The main difference between our protocol here and that of [45] is that we generate k1 and k2
(for R = k1 · k2 ·G) using the eVRF. In this way, instead of doing commit-and-open, we are able to
reduce the protocol to two messages (a single message in each direction), like Protocol 8 for Schnorr

10 We need the functionality to provide the signature to S for the case that P2 is corrupted since R is revealed to P2

during the protocol execution, but only P1 receives the signature for output. Thus, we give the signature to the
adversary as well (in any case) in order to simulate.

24

signatures. In addition, the protocol of [45] achieves only a game-based definition of security under
standard assumptions, and requires an ad-hoc assumption regarding Paillier to achieve simulation-
based security. In addition, it requires P1 to refuse to run additional executions with P2 if it is caught
cheating in the last message. This limits the ability to run concurrent independent executions with
the same key, making some deployment scenarios difficult. (As pointed out in [49], this is necessary
since it is possible to actually extract the key one bit at a time if executions are not halted upon
cheating.) In order to avoid the requirement to halt if someone attempts to cheat, we add a zero-
knowledge proof from P2 to P1 (as recommended in [49]) that the ciphertext ckey is correctly
computed. We have implemented this proof, and it takes 17ms to compute and 11ms to verify (on
a 2019 MacBook Pro with a 2.3 GHz 8-Core Intel Core i9 processor). This adds to the running
time but is not a problem for most applications.

Protocol 11 (Two-party ECDSA signing)

– Input:
1. Group parameters: Let G be a group of order q with generator G, and let H be the ECDSA

hash function with output length λ′

2. Key shares: Each party Pi holds (xi, Q). In addition, P1 holds a Paillier key (N,ϕ(N)), and
P2 holds ckey = Paillier-encN (x1); these are generated exactly as in [45]

3. eVRF shares: Each party Pi holds (ski, vk1, vk2) where ski is the eVRF private key associated
with vki, for an eVRF with domain {0, 1}λ′

and range G. These are generated in parallel
using Protocol 1 (πEF).

– The protocol:
1. Round 1 – P1 to P2: Party Pi computes (k1, R1, π1) ← Eval(sk1, H(m)), and sends (R1, π1)

to party P2

2. Round 2 – P2 to P1: Upon receiving (R1, π1) from P1, party P2 works as follows,
(a) Aborts if Verify(vk1, H(m), R1, π1) = 0
(b) Computes (k2, R2, π2)← Eval(sk2, H(m))
(c) Computes R = k2 ·R1 and r = rx mod q where R = (rx, ry)
(d) Chooses a random ρ← Zq2 and random r̃ ∈ Z∗N (verifying explicitly that gcd(r̃, N) = 1),

and computes

c = Paillier-encN
(
[k−12 ·H(m) mod q] + [k−12 · r mod q] · (x2 + x1) + ρ · q

)
using the Paillier homomorphic operations, including ciphertext rerandomization.

(e) Sends a proof πc that c is generated correctly, as in [49]
(f) Sends (R2, π2, c, πc) to P1

3. Output: Upon receiving (R2, π2, c, πc), party P2 works as follows,
(a) Aborts if Verify(vk2, H(m), R2, π2) = 0.
(b) Aborts if πc is not an accepting proof that c was generated correctly.
(c) Computes R = k1 ·R2 and r = rx mod q, where R = (rx, ry).
(d) Computes s′ = Paillier-decϕ(N)(c) and s′′ = k−11 · s′ mod q. (Also sets s = min{s′′, q− s′′}

to ensures that the signature is always the smaller of the two possible values.)
(e) Verifies that (r, s) is a valid signature on m with public key Q. If yes, outputs the signature

(r, s); otherwise, outputs abort.

Security. We now prove security of the protocol; the ideas are a combination of the proof of
Theorem 9 (for the generation of R) together with the proof of the original protocol in [45].

25

Theorem 12. Protocol 11 securely computes functionality Fdet-ecdsa, in the presence of a malicious
static adversary controlling any subset of the parties.

Proof. We separately prove security for the case of a corrupted P1 and a corrupted P2. Let A be an
adversary who has corrupted P1; we construct a simulator S. We prove only the signing protocol, as
the key generation protocol is exactly as from [45] together with the eVRF key generation already
proven in πEF (Protocol 1). We prove security in the FeVRF-hybrid model, as in Theorem 9.

Simulating signing – corrupted P1: The idea behind the security of the signing protocol is
that a corrupted P1 cannot do anything since all it does is participate in the generation of R and
then decrypts the ciphertext c from P2. Thus, the prove merely requires proving that a simulator
can generate the corrupted P1’s view of the decryption of c, given only the signature (r, s) from
Fdet-ecdsa.

1. Upon input (Sign,m,Q, x1), simulator S sends (Sign,m,Q, x1) to Fdet-ecdsa and receives back a
signature (r, s) on the message m.

2. S computes the point R from the signature (r, s), using the ECDSA verification procedure.

3. Let f1 be the stored function from the FeVRF initialization phase with identifier sid (S has this
function and sid).

4. S invokes A with input (Sign,m,Q, x1) and receives (Eval, sid, 1, H(m)) from A as sent to FeVRF.

5. S computes k1 = f1(H(m)), R1 = k1 ·G, and R2 = k−11 ·R.

6. S simulates FeVRF sending (Eval, sid, 2, H(m), R2) to A
7. S chooses a random ρ ← Zq2 , computes c ← Paillier-encN ([k1 · s mod q] + ρ · q), where s is the

value from the signature received from Fdet-ecdsa,

8. S generates a simulated proof πc that the message c is generated correctly.

9. S internally hands (c, πc) to A.

The only difference between the view of A in a real execution and in the simulation in the FeVRF-
hybrid model is the way that c and πc are generated. Specifically, R2 is distributed identically in
both cases due to the fact that R is randomly generated by Fdet-ecdsa in the signature generation
(once for each m) and thus k−11 ·R has the same distribution as k2 ·G.

Regarding the ciphertext c, in the simulation it is an encryption of the value [k1 ·s mod q]+ρ ·q,
whereas in a real execution it is an encryption of the value s′ = k−12 · (m′+r · (x1+x2))+ρ ·q, where
ρ ∈ Zq2 is random (we stress that all additions here are over the integers and not modq, except
for where it is explicitly stated in the protocol description). The fact that these two distributions
of values are statistically close has been shown in the proof of security in [45].

Finally, regarding πc, this is indistinguishable by the zero-knowledge property. (Formally, one
replaces the generation of c wjth an honest generation, and then the only difference is the proof.
This means that the ability to distinguish a real signing execution from a simulated one can be
translated into the ability to distinguish a real proof from a simulated one. The other messages
in the signing can be executed by the zero-knowledge distinguisher by providing it all secrets as
auxiliary input.) This completes the proof of this simulation case.

Simulating signing – corrupted P2: The simulator for the signing phase works as follows:

1. Upon input (Sign,m,Q, x2), simulator S sends (Sign,m,Q, x2) to Fdet-ecdsa and receives back a
signature (r, s) on message m.

2. S computes the point R from the signature (r, s), using the ECDSA verification procedure.

26

3. Let f2 be the stored function from the FeVRF initialization phase with identifier sid (S has this
function and sid).

4. S computes k2 = f2(H(m)), R2 = k2 ·G, and R1 = k−12 ·R.

5. S invokesA with input (Sign,m,Q, x1) and simulates functionality FeVRF sending (Eval, sid, 1, H(m), R1)
to A, as the message from P1 to P2.

6. S receives (Eval, sid, 1, H(m)) from A as sent to FeVRF.

7. S receives (c, πc) from A as the message to be sent from P2 to P1.

8. S verifies πc, and simulates P1 aborting if it is not accepting (and instructs Fdet-ecdsa to not
provide output to P1).

9. If πc is accepting, then S instructs Fdet-ecdsa to provide output to P1 and outputs whatever A
outputs.

In the FeVRF-hybrid model, the message seen by P2 in the simulation is identical to its view in the
real execution. Furthermore, there can only be a difference in the result (whether P1 outputs a valid
signature (r, s) or aborts) if πc is an accepting proof and yet c was not generated correctly. This
contradicts the soundness of the zero-knowledge proof and thus occurs with negligible probability
only. This concludes the proof. ⊓⊔

Security under concurrent composition. The simulator in the proof is straight-line (no rewind-
ing) assuming straight-line simulation of the zero-knowledge proofs. As such, by [44], the protocol
is UC secure assuming “start synchronization” (meaning that all parties have their input before
the protocol begins).

Extensions. Probablistic signing can be achieved in the same way as for Schnorr, by providing
an additional nonce as input. We remark that if the same nonce is used, then the same signature
is obtained and there is no negative security ramification. As such, a timestamp or the like can
be used, and this should be sufficient. Regarding precomputation of the first message as discussed
for Schnorr, for ECDSA this is more problematic since ECDSA itself has no proof in any standard
model. As such, it is not possible to justify (in a standard model) that ECDSA remains secure
when m can be chosen after r is known.

Two-round multiparty ECDSA. We leave the question of achieving two-round multiparty
ECDSA open. Our techniques can be used to remove a round of communication of commit-and-
open in generating R. However, existing protocols require more than two rounds irrespective of
this step (the protocol of [25] has only three rounds, but their first round requires additional steps
beyond just committing to Ri values).

4.6 Verifiable and MPC-Friendly Hierarchical Key Derivation

BIP032/BIP044 [63,58] hierarchical-deterministic (HD) key derivation works by deriving multiple
keys from a single root secret, utilizing a tree structure. The method includes hardened derivation
and normal derivation. A hardened derivation takes a node’s private key and path information
and applies a pseudorandom function in order to derive a pseduorandom private key for the child
node. In contrast, a normal derivation is applied to a node’s public key and public path information
only. Normal derivations enable anyone to generate new addresses that can be used, given a public
key/address. In addition, it is possible to link different keys that have been normally derived from
a single key, and delegation on normally derived keys is not possible (since given the private key

27

of one normally derived key, it is possible to find the private key of all of its siblings in the tree).
In contrast, hardened derivations can only be computed by the private key owner, different keys
derived via hard derivation from a single node cannot be linked, and given the private key of a
hardened derived node it is not possible to find the private key of any of its siblings in the tree.

Although BIP032 prescribes a unified method for hardened and normal derivations, any pseudo-
random function can be used in its place, and this does not affect the public method used for normal
derivation. In this section, we propose a new paradigm for hardened derivations using an eVRF
instead of a standard pseudorandom function. Concretely, hardened derivation in BIP032/BIP044
works by applying SHA512 to a node’s private key and path information, and the output is used
as the child’s private key. (The exact details of how this is carried out is not important here, but
this is the basic idea.) Instead of using this method, we propose adding an eVRF private key to
the node of the tree, and deriving descendants in the tree by applying the eVRF to the path and
taking the result as the private key. Concretely, for a given path (say, determined as in BIP044),
we define the key associated with the node for that path by computing Eval(k, path) = (x,Q, π),
and take x to be the private key and Q to be the public key.11 This guarantees that all hardened
keys are pseudorandom, and cannot be linked. In addition, given any hardened derived key, it is
not possible to find any other hardened derived key (by uniqueness of the eVRF output), and so
hardened-derived keys can be delegated. This therefore makes it a suitable replacement to BIP032
derivation. We will now explain why this is advantageous, and what feature of BIP032 is lost. (We
stress that normal derivations remain unchanged. As such, this method is indistinguishable from
standard BIP032, since hardened-derived keys are indistinguishable from random in both methods.)

Before proceeding we remark that the use of HD wallets via BIP032/BIP044 is very popular
since it enables parties to backup one seed, and to derive many keys from that seed for different
purposes.

Derivation verifiability. Standard BIP032 derivation does not provide any validation that a
public key in the tree has indeed been correctly derived from the initial seed. In contrast, by the
properties of an eVRF, the public key of any derived key can be provably validated (since the eVRF
outputs the public key and a proof, by definition). This can be useful in many settings. Consider
an institutional wallet, for example, where keys are derived and public keys provided externally
for deposit. The party transferring the funds to those addresses actually has no way of knowing
that they are correct, barring being “told so”. This opens the door to phishing and other attacks,
where parties are fooled into transferring funds to malicious addresses. However, using our eVRF
method, it suffices to generate a certificate on vk once and for all, and then any address derived
can be linked cryptographically to the issuing institution.

MPC-friendly derivation. Consider a Blockchain wallet that uses BIP032/ BIP044, while back-
ing up only the seed (almost all such wallets work this way). If one wishes to construct an MPC
wallet so that the user’s key is split between the user and an institution, then standard BIP032
derivation becomes very expensive. In particular, securely computing SHA512 operations using
techniques like garbled circuits is possible, but expensive (especially, over a low bandwidth com-
munication channel). In such cases, an eVRF based hardened derivation can be much more useful.
Specifically, each of the user device and server can generate an eVRF instance, backing them both
up, and then new keys can be derived by independently computing eVRF output; each party holds
its own share of the private key, and the public key is obtained by adding the public output in both

11 We stress that this is different to BIP032 where the input to SHA512 contains private data.

28

eVRF computations. This preserves the property that only the root eVRF keys need to be backed
up (since given them it is possible to derive all keys), and each party can work independently and
efficiently to derive a key that is additively shared between them. (Multiplicative sharing is possible
in the same way.)

Of course, the above method could be achieved by just applying any local pseudorandom func-
tion to the path, and having the parties announce the public result to the other (P1 generates
x1 ← PRFk1(path) and announces Q1 ← x1 · G, and likewise P2). However, a malicious P1 could
just generate a random x1 that is independent of k1, and this cannot be detected. Such behavior
would make the backup of k1 useless, since the private key in this “derivation” cannot be obtained
from it. In order to prevent such behavior, we want P1 and P2 to each provide a zero-knowledge
proof that Q1 and Q2 are indeed generated correctly from the backed-up root keys. This ensures
that the address Q = Q1+Q2 can be used safely, since the private keys needed to derive them have
been backed up. An eVRF provides exactly this property.

Delegation of a sub-tree. We conclude by noting that our method does not support delegating
an entire subtree of hardened derivations. This is because the root key is needed to carry out any
hardened derivation, and revealing this would reveal all keys. As such, a hardened-derived key can
be delegated safely, but the party receiving that private key can only carry out normal derivations.
This is not a limitation in the way current wallets work, but this difference from the standard
BIP032 is worth noting.

5 An eVRF from Compatible Public-Key Encryption

In the following sections we turn to constructing efficient eVRFs. In the current section (Section 5),
we show how to construct an efficient eVRF from compatible public-key encryption scheme. In
Section 6, we present a different construction of eVRF from the (classic) PRF based on the Decision
Diffie-Hellman (DDH) assumption.

Compatible encryption schemes are defined in Section 5.1. The construction itself is presented
in Section 5.2. In Section 5.3, we show that some of the required properties hold (in particular,
have efficient equality proofs) for any linearly homomorphic encryption scheme, and in Section 5.4
we exploit that to give an efficient construction using the Paillier encryption scheme.

5.1 Compatible Encryption Schemes

Recall that a public-key encryption scheme E is a tuple of algorithms E = (KGen,Enc,Dec),
where KGen(1λ)→ (sk, pk), Enc(pk,m)→ ct, and Dec(sk, ct)→ m or ⊥. By convention, we assume
that the public key pk contains the description of the plaintext space, that the secret key sk contains
the corresponding public key pk, and that both contain the security parameter 1λ. For ease of
notation we assume that the plaintext space is Zn for some n ∈ N. Let Rpk be the randomness
domain used by Enc(pk, ·), and let Cpk be the set of all valid ciphertexts associated with pk = (n, ·),
namely

Cpk :=
{
Enc(pk,m; r) : m ∈ Zn, r ∈ Rpk

}
.

Our construction uses an encryption scheme that is compatible with the required eVRF domain
in the following sense.

29

Definition 7 (Compatible encryption schemes). Let {(Xλ,Gλ)}λ∈N be an ensemble of do-
mains and ranges for an eVRF, where each Gλ is a finite cyclic group with generator Gλ ∈ Gλ.
We say that a public key encryption scheme E = (KGen,Enc,Dec) is compatible if it satisfies the
following properties:

– Compatible domain: for all λ ∈ N, the plaintext space associated with every pk output by
KGen(1λ) is Z|Gλ|. That is, the plaintext space is the same as the group of eVRF exponents.

– Perfectly binding: There are no decryption errors, namely Pr
[
Dec

(
sk,Enc(pk,m)

)
= m

]
= 1

for all (pk, sk) in the support of KGen(1λ) and all m ∈ Z|Gλ|. This implies that E is a perfectly

binding encryption scheme, that is, for every pk output by KGen(1λ) and every distinct m1,m2 ∈
Z|Gλ|, the support of Enc(pk,m1) is disjoint from the support of Enc(pk,m2).

– Uniform ciphertexts: for every (sk, pk) output by KGen with corresponding plaintext space
Z|Gλ|, if m is uniform in Z|Gλ|, then Enc(pk,m) is statistically close to uniform in Cpk. Because E
is perfectly binding, this property is equivalent to the dual property we call uniform plaintexts,
which says that if c is uniform in Cpk, then Dec(sk, c) is statistically close to uniform in Z|Gλ|.

– Samplable ciphertexts: There is a set ensemble {Zλ}λ∈N of samplable sets such that for
every λ ∈ N and every (sk, pk) output by KGen(1λ), it holds that Cpk = Zλ. While this property
simplifies the exposition, it does not always hold since in many public key encryption schemes
the set Cpk is different for every pk output by KGen(1λ). Our eVRF construction works equally
well with a relaxed notion of samplable ciphertexts given in Definition 8.

– Proof of valid public key: there is a non-interactive zero-knowledge proof (Ppub, Vpub) for
the instance-witness relation Rpub defined as

Rpub := {(pk; sk) : (pk, sk) ∈ Lpub} (3)

where Lpub is the set of all pairs (sk, pk) that can be output by KGen.

– Proof of equality: there is a non-interactive zero knowledge proof (Peq, Veq) for the instance-
witness relation Req defined as

Req :=

{(
(pk, Y, ct) ; (sk, y)

)
:

Y ∈ Gλ, y ∈ Z|Gλ|, (pk, sk) ∈ Lpub,
Y = y ·Gλ, Dec(sk, ct) = y

}
(4)

We will construct a public key system with an efficient proof system for (Peq, Veq) in Section 5.3.

5.2 The Basic eVRF Construction

We now present the eVRF from a compatible public-key encryption scheme.

Construction 13 (an eVRF from compatible encryption) Let {(Xλ,Gλ)}λ∈N be an ensem-
ble of domains and ranges for an eVRF, where each Gλ is a finite cyclic group with generator
Gλ ∈ Gλ. Let E := (KGen,Enc,Dec) be a compatible public key encryption scheme with ciphertext
space {Zλ}λ∈N. The eVRF derived from E using a hash function ensemble H = {OXλ,Zλ

}λ∈N,
and a non-interactive proof system (Peq, Veq) for Req, is defined for every λ ∈ N and hash function
H : Xλ → Zλ in H as follows:

30

– KGeneVRF(1
λ): output (sk, pk)←$ KGen(1λ). // then Cpk = Zλ by the samplable ciphertexts property.

– EvalH(sk, x):

1. Let ct← H(x) ∈ Cpk, y ← Dec(sk, ct) ∈ Z|Gλ|, Y ← y ·Gλ ∈ Gλ.

2. Let π ←$ Peq(pk, Y, ct, sk, y).

3. Output (y, Y, π).

– VerifyH
(
pk, x, Y, π): Let ct← H(x) and output Veq

(
pk, Y, ct, π

)
.

Theorem 14. Let {(Xλ,Gλ)}λ∈N be an ensemble of domains and ranges for an eVRF, where each
Gλ is a finite cyclic group with generator Gλ ∈ Gλ. Suppose that E is a compatible and semantically
secure public key encryption scheme, and has ciphertext space {Zλ}λ∈N. Then Construction 13 is
a secure eVRF (as in Definition 4) with respect to the domain/range ensemble {(Xλ,Gλ)}λ∈N and
function-family ensemble {OXλ,Zλ

}λ∈N.

Proof. We argue that the four eVRF properties hold:

– Consistency: Holds by construction.

– Verifiability of Eval2 as a VRF: This follows directly from the soundness of the proof system
(Peq, Veq) and the binding property of E . Fix pk, H, and x ∈ Xλ. By the binding property there
is a unique (y, r) ∈ Z|Gλ|×Rpk such that Enc(pk, y; r) = H(x). Then the soundness of (Peq, Veq)
implies that the probability of efficiently finding a pair (Y ′, π) with Y ′ ̸= y ·Gλ that makes the
verifier accept is negligible.

– Simulatability as a VRF: The simulator SimH(pk, x, Y) works as follows: (1) compute ct← H(x),
(2) sample a proof π for the Req statement (pk, Y, ct) using the zero knowledge simulator for
the proof system (Peq, Veq), and (3) output (Y, π).

It remains to prove the Pseudorandomness of Eval1. We show that this follows from the semantic
security of E and its uniform ciphertext property from Definition 7. Let A be a PRF adversary as
in (1). We define the following sequence of hybrid distributions.

– Game 0: This game is the left hand side of (1). Recall that during the game A can query two
oracles: a random oracle H : Xλ → Zλ and an eVRF evaluation oracle Eval1(sk, ·) : Xλ → Z|Gλ|
defined as Eval1(sk, x) := Dec(sk,H(x)).

– Game 1: We replace the random oracle H : Xλ → Zλ in (1) with an oracle that responds to
a query for an x ∈ Xλ by sampling a random yx ←$ Z|Gλ| and returning H(x) := Enc(pk, yx).
The oracle responds consistently to repeated queries for the same x. By the uniform ciphertext
property of E from Definition 7, this Game 1 is statistically indistinguishable from Game 0.

– Game 2: We replace the eVRF evaluation oracle in Game 1 with an oracle that responds to a
query for an x ∈ Xλ with yx ∈ Z|Gλ|, where yx was sampled in response to a query for H(x).
Since E is perfectly binding, A’s view is identical in Games 1 and 2. Note that in Game 2 the
secret key sk is never used.

– Game 3: We replace the eVRF evaluation oracle in Game 2 with an oracle that responds to a
query for an x ∈ Xλ by sampling y′x ←$ Z|Gλ| and responding with Eval(x) := y′x. The oracle
responds consistently to repeated queries for the same x. Observe that the answer to Eval(x) is
independent of the answer to H(x). We will argue that Game 3 is indistinguishable from Game 2
by the semantic security property of E .

31

– Game 4: This game is the right hand side of (1). The only difference from Game 3 is that
H : Xλ → Zλ is once again computed by a random function. This Game 4 is statistically indis-
tinguishable from Game 3 by, once again, the uniform ciphertext property of E .

It now follows that Game 0 is indistinguishable from Game 4 as required.

It remains to argue that Games 2 and 3 are indistinguishable. Suppose that adversary A can
distinguish these games while making at mostQ random oracle queries. We construct an adversary B
that breaks semantic security of E . It is convenient to use a semantic security game where B can
request up to Q encryption challenges. This game is equivalent to the standard semantic security
game [8, Thm 11.1]. The semantic security challenger is initialized with 1λ and a bit b ∈ {0, 1} and
then runs (sk, pk)←$ KGenpal(1

λ). Now B(1λ, pk) runs A(1λ) and responds to its queries as follows:

whenever A issues a random oracle query for some H(x) our B does:

(1) y
(0)
x , y

(1)
x ←$ Z|Gλ|

(2) issue an encryption query (y
(0)
x , y

(1)
x) to its semantic security challenger

and the challenger responds with ctx ← Enc(pk, y
(b)
x)

(3) B sends ctx back to A, meaning that H(x) := ctx

whenever A issues an eVRF evaluation query for some x ∈ Xλ our B responds with y
(0)
x .

eventually A outputs a bit b′ ∈ {0, 1} and B outputs the same b′.

Observe that when b = 0 our B emulates a Game 2 challenger to A. When b = 1 our B emulates
a Game 3 challenger to A. Therefore, B guesses its challenger’s bit b with the same advantage
that A distinguishes Game 2 from Game 3. Hence, since E is semantically secure, the two games
are indistinguishable. This completes the proof of the theorem. ⊓⊔

A relaxed samplable ciphertext property. Recall that our eVRF in Construction 13 assumed
the samplable ciphertext property in Definition 7, which says that the ciphertext space Cpk is the
same for all pk generated by KGen(1λ). This property does not hold for cryptosystems where Cpk is
a different set for every pk. However, this is not a problem because Construction 13 can easily be
adapted to work with the following relaxed samplable ciphertexts property.

Definition 8. A public key encryption scheme E = (KGen,Enc,Dec) satisfies the relaxed sam-
plable ciphertexts property, if there a set ensemble {Zλ}λ∈N and a pair of algorithms I(pk, z)→ ct
and I−1(pk, ct) → z, where I is deterministic poly-time and I−1 is a PPT. For every λ and every
(sk, pk) output by KGen(1λ) these algorithms must satisfy

– if z is uniform in Zλ then I(pk, z) is statistically close to uniform on Cpk;
– if c is uniform in Cpk then I−1(pk, c) is statistically close to uniform on Zλ;

– for all c ∈ Cpk, the condition I(pk, I−1(pk, c)) = c holds with overwhelming probability.

Now, in Construction 13 we can replace all occurrences of H(x) with I
(
pk,H(x)

)
, which outputs

an element in Cpk, as required for the construction to work. The algorithm I−1 is only used in the
security proof: we replace every response ct to a random oracle query in the proof of Theorem 14
with I−1(pk, ct).

32

5.3 Public Key Encryption Scheme with Efficient Equality Proofs

It remains to construct a public key encryption scheme that has relaxed samplable ciphertexts
and satisfies the other compatibility properties from Definition 7. The main challenge is to build
an efficient NIZK for the relation Req from (4). Such a NIZK exists for a linearly homomorphic
encryption scheme.

Recall that a linearly homomorphic encryption scheme is a public-key encryption scheme
E = (KGen,Enc,Dec), where the plaintext space is Zn for some n, and there is a fourth algorithm
called Eval that is invoked as Eval(ct1, ct2, a1, a2) → ct. The Eval algorithm takes as input two
ciphertext ct1, ct2 ∈ Cpk, and two scalars a1, a2 ∈ Zn and outputs a ciphertext ct, such that if
Dec(sk, ct1) = m1 and Dec(sk, ct2) = m2, where m1,m2 ∈ Zn, then Dec(sk, ct) = a1m1+a2m2 ∈ Zn.
It will be convenient to use the notation ct← a1 · ct1 + a2 · ct2 to mean ct← Eval(ct1, ct2, a1, a2).

For a linearly homomorphic encryption scheme E there is an efficient Chaum-Pedersen [20] style
honest verifier zero-knowledge interactive proof system for the relation Req from (4). Recall that
the Chaum-Pedersen protocol proves in zero knowledge that a tuple (P, αG,Q, βQ) ∈ G4

λ satisfies
α = β. We use the fact that the protocol similarly applies when the group elements are replaced with
linearly homomorphic ciphertexts. For completeness, we describe the proof system in Appendix A.
The proof system is public coin and can be made non-interactive using the Fiat-Shamir transform.

Instantiating the linearly homomorphic encryption scheme. The next question is how to
instantiate the linearly homomorphic encryption scheme with a compatible encryption scheme (as
in Definition 7) that supports the relaxed samplable ciphertexts property. There are many linearly
homomorphic encryption systems to choose from, such as [3,51,56,57,22,30,17,37,18] to name a few.
The two that are most relevant to us are the Paillier encryption scheme [57] and the scheme of
Castagnos and Laguillaumie [18]. However, neither one satisfies all the compatibility properties
that we need.

– Paillier encryption satisfies all the compatibility requirements in Definition 7 except one: the
plaintext domain is a large modulus that is a product of two large primes. For Construction 13
we need the plaintext domain to be the same as the domain of the eVRF (the compatible
domain property in Definition 7).

– The Castagnos-Laguillaumie encryption scheme [18] has the required plaintext domain, but the
ciphertext space is sparse in its ambient space. As a result we cannot map a random oracle
output in Zλ to a uniform ciphertext in the set Cpk of valid ciphertexts, using a reversible map.
More precisely, we do not know how to construct algorithms (I, I−1) as needed for the relaxed
samplable ciphertexts property (Definition 8).

Nevertheless, we show in Section 5.4 that by slightly tweaking Construction 13 we can make it work
with Paillier encryption. First, let us show that Paillier satisfies the relaxed samplable ciphertexts
property from Definition 8. Recall that the plaintext domain associated with a Paillier public key
(pk, sk) ←$ KGen(1λ) is Zn for some integer n, and the ciphertext space is Cpk := Zn2 . Moreover n
is in the set [2γλ−2, 2γλ] for some universal constant γ ∈ N. To show that Paillier has the relaxed
samplable ciphertexts property, let us set Zλ := {0, . . . , B}, where B := 2(2γ+1)λ. Then B > 2λn2

and we can define

– Ipal(pk, z) = (z mod n2) for z ∈ Zλ, and

– I−1pal(pk, c) = v · n2 + c for c ∈ Zn2 and v ←$
[
0, ⌊B/n2⌋

]
.

33

It is not difficult to see that these functions satisfy the properties needed for the relaxed samplable
ciphertexts property. We will argue this more precisely in the next section.

5.4 An Instantiation Using Paillier Encryption

In this section we adapt Construction 13 to use Paillier encryption, despite the fact that the
plaintext domain of Paillier is different from the exponent group of the eVRF.

As usual, let {(Xλ,Gλ)}λ∈N be a domain and a range for an eVRF with security parameter λ.
HereGλ is a cyclic group of prime order q with generatorGλ ∈ Gλ. Let Epal = (KGenpal,Enc,Dec,Eval)
be the Paillier linearly homomorphic encryption scheme, and let pk be a Paillier public key gener-
ated by KGenpal(1

λ). We use Zn to denote the plaintext domain associated with pk, and we will use
the fact that n is much larger than q. The Paillier ciphertext space Cpk associated with pk is the
set Cpk := Zn2 . Strictly speaking, Paillier ciphertexts are in Z∗n2 , but we will adopt the convention
that all ciphertexts in Zn2 that are outside of Z∗n2 decrypt to 0.

The eVRF derived from Paillier is the same as Construction 13, except that we reduce the
decryption of ct← H(x) modulo q and use the resulting value as the eVRF exponent. To do so we
make a small, but important, modification to the relation Req from (4). Define the relation R′eq as

R′eq :=

{(
(pk, Y, ct) ; (sk, y)

)
:

Y ∈ Gλ, y ∈ [0, q − 1], (pk, sk) ∈ Lpub,
Y = y ·Gλ, Dec(sk, ct) = y

}
(5)

The difference from (4) is that now y is an integer and the equality Dec(sk, ct) = y is interpreted
as an equality of two integers in the set [0, n − 1], whereas in (4) this was an equality of elements
in Z|Gλ|. A proof system for R′eq proves that the discrete log of Y base Gλ, as an integer in [0, q−1],
is equal to the decryption of ct, as an integer in [0, n − 1]. This problem is closely related to the
problem of proving equality of discrete log across two finite cyclic groups of different sizes, one
has order q and the other has order n. Protocols for this task were proposed by Camenisch and
Lysyanskaya [13], by Agrawal, Ganesh, and Mohassel [1] using bit decomposition, and by Chase,
Orrù, Perrin, and Zaverucha [19] using range proofs and rejection sampling. In Appendix B we
adapt these techniques to give a proof system for R′eq.

Using a proof system forR′eq we obtain the following concrete construction. We use the set ensemble

{Zλ} and functions (Ipal, I
−1
pal) defined at the end of Section 5.3.

Construction 15 (Paillier based eVRF) The eVRF derived from Paillier using a non-
interactive proof system (Peq, Veq) for R′eq in (5) and a hash function ensemble H = {OXλ,Zλ

}λ∈N,
is defined for every λ ∈ N and hash function H : Xλ → Zλ in H as:

– KGeneVRF(1
λ): Sample (sk, pk)←$ KGenpal(1

λ) and output (sk, pk).

– EvalH(sk, x): Let q := |Gλ| and let Zn be the plaintext space of pk.

1. Let ct← (H(x) mod n2) and α← Dec(sk, ct) ∈ [0, n− 1].

2. Let y ← α mod q and w ← ⌊α/q⌋ ∈
[
0, ⌊n/q⌋

]
// remainder and quotient mod q.

3. Let cty ← ct− Enc(pk, w · q; 0), Y ← y ·Gλ ∈ Gλ // cty is an encryption of y.

4. Let π ←$ Peq(pk, Y, cty, sk, y) // proof that Dec(sk, cty) = y.

5. Output
(
y, Y, (w, π)

)
.

34

– VerifyH
(
pk, x, Y, (w, π)

)
: Let ct← H(x) mod n2, cty ← ct− Enc(pk, w · q; 0),

accept if 0 ≤ w < ⌊n/q⌋ and Veq

(
pk, Y, cty, π

)
.

Note that the evaluation algorithm outputs the quotient w in the clear as part of the evaluation
proof. It can do that without compromising the secret y because w is almost independent of y
whenever n is sufficiently larger than q. We show this more precisely in the proof of the following
theorem. We assume without loss of generality that the n associated with every pk output by
KGen(1λ) is in the set

[
|Gλ| · 2λ, 2γλ

]
, for some universal constant γ > 1.

Theorem 16. Suppose that the Paillier scheme is semantically secure, that KGenpal(1
λ) outputs

public keys for which the plaintext space has size in the range
[
|Gλ| · 2λ, 2γλ

]
for some universal

constant γ > 1, and that (Peq, Veq) is a non-interactive zero-knowledge proof system for R′eq. Then
Construction 15 is a secure eVRF with respect to the domain/range ensemble {(Xλ,Gλ)}λ∈N and

function-family ensemble {OXλ,Zλ
}λ, where Zλ := [0, 2(2γ+1)λ].

Proof. In the following, we fix the security parameter λ and set q := |Gλ|. By assumption, if (pk, sk)
is in the support of KGen(1λ) and Zn is the plaintext domain associated with pk, then n ∈ [2λq, 2γλ]
for some universal constant γ ∈ N. Set B := 2(2γ+1)λ so that B > 2λn2. Then H is a hash function
H : Xλ → [0, B]. Because B > 2λn2 we know that if z is uniform in [0, B] then ct ← (z mod n2) is
statistically close to uniform over Zn2 .

We argue that the four eVRF properties hold: consistency, verifiability, simulatability, and pseudo-
randomness.

Consistency. Holds by construction, as long as the adversary cannot find an x ∈ Xλ such that
(H(x) mod n2) is outside of Z∗n2 . But this follows immediately from the sparseness of this set and
the fact that H : Xλ → [0, B] is a random function.

Verifiability of Eval2 as a VRF. Fix pk, H, and x ∈ Xλ. Let ct ← (H(x) mod n2). By the perfect
binding property of Epal there is a unique (α, r) ∈ [0, n − 1] × Rpk such that ct = Enc(pk, α; r).
Moreover, there is a unique quotient 0 ≤ w < ⌊n/q⌋ such that y ← α − w · q is in the set
[0, q − 1]. Suppose that the adversary could find a triple (Y ′, w′, π) such that Y ′ ̸= y · Gλ, but
VerifyH

(
pk, x, Y ′, (w′, π)

)
accepts. We know that 0 ≤ w′ < ⌊n/q⌋. Set ct′y ← ct − Enc(pk, w′ · q; 0).

Then there are two cases.
• First, if w = w′ then ct′y is an encryption of y ∈ [0, q − 1]. But since Y ′ ̸= y · Gλ, the tuple

(pk, Y ′, ct′y, π) violates the soundness of (Peq, Veq).
• Second, if w ̸= w′ then ct′y is an encryption of y′ ̸∈ [0, q − 1]. But then again (pk, Y ′, ct′y, π)
violates the soundness of (Peq, Veq).

Simulatability as a VRF. Consider the following simulator SimH(pk, x, Y) that outputs
(
Y, (w, π)

)
and works as follows:

1 : ct← (H(x) mod n2)

2 : w ←$

[
0,
⌊

n−1
q

⌋]
// sample a uniform quotient w

3 : cty ← ct− Enc(pk, w · q; 0)
4 : Sample a simulated proof π for the R′

eq statement (pk, Y, cty)

// using the zero knowledge simulator for the proof system (Peq, Veq)

5 : Output
(
Y, (w, π)

)
.

To argue that this is a valid simulator, fix (x, pk, sk) and choose a uniform random oracle H. Next,
define a hybrid (inefficient) simulator SimH

0 (pk, x, Y, sk) that is the same as SimH(pk, x, Y) except

35

that we replace Line 2 of Sim with the following:

2 : w ←
⌊
Dec(sk, ct)/q

⌋
// compute the correct quotient w

First, we show that there is no PPT distinguisher D
H,OSim(·)
0 (pk) as in equation (2) of Definition 3

that can distinguish an oracle OSim(x) := SimH
(
pk, x,EvalH3 (sk, x)

)
from an oracle OSim(x) :=

SimH
0

(
pk, x,EvalH3 (sk, x), sk

)
. Here EvalH3 (sk, x) runs EvalH(sk, x) to get

(
y, Y, (w, π)

)
and outputs

only Y .

Let D
H,OSim(·)
0 (pk) be such a distinguisher. We construct an adversary B0 that breaks semantic

security of Epal with about the same advantage as D0’s distinguishing advantage. This B0 is given

pk as input. It runs D
H,OSim(·)
0 (pk) and responds to its oracle queries as follows:

whenever D0 issues a query for H(x) do:

(1) sample wx,0, wx,1 ←$
[
0, ⌊(n− 1)/q⌋

]
(2) sample y ←$ [0, q − 1] and set Yx ← y ·Gλ

(3) set α0 := wx,0 · q + y and α1 := wx,1 · q + y // both are close to uniform in [0, n− 1]

(4) B0 asks its semantic security challenger to encrypt α0 or α1,

gets back ctx ←$ Enc(pk, αb) for some b ∈ {0, 1}
(4) return zx := I−1

pal(pk, ctx) to D0 meaning that H(x) := zx

whenever D0 issues a query for OSim(x) do:

(1) cty ← ctx − Enc(pk, wx,0 · q; 0) // ctx, wx,0, Yx were generated during a query for H(x)

(2) sample a simulated proof π for the R′
eq statement (pk, Yx, cty)

(3) return (Yx, (wx,0, π)) to D0

eventually D0 outputs a bit b′ ∈ {0, 1} and B0 outputs the same b′

Observe that when b = 1 then B0 is simulating an oracle OSim = Sim. When b = 0 then B0 is
simulating an oracle OSim = Sim0. Therefore, B0’s advantage in breaking semantic security of Epal
is the same as D0’s advantage in distinguishing the two oracles. Hence, if Epal is semantically secure,
then the two oracles are indistinguishable.

Second, suppose that an adversary D
H,O(·)
1 (pk) could distinguish an oracle O(x) for the function

SimH
0

(
pk, x,EvalH3 (sk, x), sk

)
from an oracle O(x) for EvalH2 (sk, x). The only difference between these

two oracles is that Sim0 outputs a simulated proof, while Eval2 outputs a real proof. Hence, if D1

had non-negligible advantage, then it would break the ZK simulator of (Peq, Veq). Since the ZK
simulator of (Peq, Veq) is a valid simulator, it follows that an oracle for Sim0 is indistinguishable
from an oracle for the real Eval2.
Putting these two steps together, we obtain that no PPT oracle-aided distinguisher can distinguish
an oracle for OSim(x) := SimH

(
pk, x,EvalH3 (sk, x)

)
from an oracle for O(x) := EvalH2 (sk, x), as

required by equation (2) of Definition 3. This completes the proof of simulatability.

Pseudorandomness of Eval1. The proof from Theorem 14 carries over with only minor changes.
The only difference is that we replace every response ct to a random oracle query with I−1pal(pk, ct).
Similarly, responses to evaluation queries are first reduced modulo q.

This completes the proof of the theorem. ⊓⊔

Knowledge of secret key. Uplifting the security of the scheme from a game-based one (Defini-
tion 4) to realizing the ideal functionality (Definition 6), requires a ZK-POK proof for the relation
Rpub from (3). Since the Paillier secret key is easy to deduce from the factors of the public key, one
can use the ZK-POK proof from [16, Section 6.3.1].

36

6 A DDH-Based eVRF

In this section we show how to construct an eVRF from a classic secure PRF based on the Decision
Diffie-Hellman (DDH) assumption. A variant of the eVRF in this section was previously used
implicitly in MuSig-DN [54,55]. We first review the classic DDH PRF.

The DDH PRF. This PRF FDDH = (KGen,Eval) is defined with respect to an ensemble of domains
and ranges {(Xλ,Gλ)}∞λ=1, where Gλ is a group of some prime order s(λ) with generator Gλ ∈ Gλ.
In addition, the PRF uses a function-family ensemble {Hλ : Xλ → Gλ}∞λ=1 and works as follows

– KGen(1λ)→ k: output k ←$ Zs(λ).

– EvalHλ(k, x)→ y: for x ∈ Xλ output y ← k · Hλ(x) ∈ Gλ.

Naor, Pinkas, and Reingold [52] showed that FDDH is a secure PRF whenever DDH holds in the
groups {Gλ}∞λ=1 and Hλ is sampled unifomly from OXλ,Gλ

, that is, Hλ is modeled as a random
oracle. Papadopoulos et al. [59] observe that this PRF can be made into a VRF by publishing
vk := k · Gλ, and attaching to every evaluation y ← Eval(k, x) a non-interactive zero-knowledge
proof π that

(
Gλ, vk,Hλ(x), y

)
is a DDH tuple.

From here on, when there is no confusion, we will drop the index λ and simply refer to the
group Gλ as G. We use s to denote its order and G its generator.

We construct an eVRF by embedding the output of the DDH PRF “in the exponent” of another
group. To do so, we will need an explicit representation of the group G as an elliptic curve group.
Such groups are parameterized by a prime field Fq, where q = q(λ), along with two scalars a, b ∈ Fq.
The group is the set of all pairs (x, y) ∈ F2

q such that y2 = x3 + ax + b, along with the point at
infinity. The group operation is defined using the cord-and-tangent rule discussed below [8].

Since we embed the group G in the exponent of another group, it is convenient to introduce the
following notion of a group pair, or more precisely, a group pair ensemble.

Definition 9. We say that
{
(G(λ)

S ,G(λ)
T)

}∞
λ=1

is a group pair ensemble if for every (GS,GT) in
the ensemble we have that

– The group GT, called the target group, has some prime order q. We use G = (GT,1, . . . , GT,n)
to denote a vector of n generators in GT. For a vector x ∈ Fn

q we write

⟨x,G⟩ = x1GT,1 + · · ·+ xnGT,n ∈ GT.

– The group GS, called the source group, is a group of some prime order s with generator
GS ∈ GS. This group GS is a group of points of an elliptic curve defined over the field Fq,
where q is the order of GT. Let G∗S := GS \ {0}. Elements in G∗S are represented as pairs in F2

q

so that G∗S ⊆ F2
q.

We say that the group pair ensemble is secure if DLOG holds in {G(λ)
T }∞λ=1 and DDH holds in

{G(λ)
S }∞λ=1. To simplify the notation, we will often drop the index λ and say that (GS,GT) is a

group pair or a secure group pair.

In our eVRF construction, we will use the source group, GS, for the output of the DDH PRF.
We will use the target group, GT, to hide the PRF output “in the exponent” of an element in GT.
To do so, we need an explicit representation of elements in GS. Requiring that GS is an elliptic
curve group is sufficient.

37

The challenge is to design a proof system that proves that the DDH PRF was evaluated correctly,
despite being given the value of the PRF in the exponent. Towards this goal, we will make use of
the following instance-witness relation RH defined with respect to a function H : X → GS as

RH :=
{(

(Q, x, Y) ; k
)}
⊆ (GT ×X ×GT)× [s− 1] where

(1) Q = k ·GT,1,

(2) Y = xP ·GT,2 for P = (xP , yP) := k · H(x) ∈ G∗S ⊆ F2
q .

(6)

Here we are treating GT,1 and GT,2 as generators of GT that are part of the description of the group.
As usual, we let LRH

denote the language of all triples (Q, x, Y) for which there exists a witness
k ∈ [s− 1] such that RH

(
(Q, x, Y); k

)
is true.

In addition, to uplift the security of our eVRF from a game-based one (Definition 4) to real-
izing the ideal functionality (Definition 6), we require a non-interactive zero-knowledge proof-of-
knowledge (ZK-POK) for the discrete log relation

Rdlog :=
{(

(Q,G) ; k
)

: Q = k ·G
}
⊆ G2

T × [s− 1] (7)

One can use Schnorr’s protocol [61] for Rdlog. However, to realize the ideal functionality we require
a straight line (non-rewinding) knowledge extractor, for example, as presented by Fischlin [28].

The basic DDH eVRF. We can now present our eVRF. The construction uses a non-interactive
zero-knowledge argument system (P,V) for the relation RH from (6). We will present the required
argument system in Section 6.1. It also uses the Schnorr ZK-POK (Pdlog,Vdlog) for the relation
Rdlog from (7). As we explain below, the range of this eVRF is only about half of GT. In Section 6.2
we enhance this eVRF so that its range is the full group GT.

Construction 17 (The basic DDH-based eVRF) Let (GS,GT) be a group pair where s is the
size of GS and q is the size of GT. Let GT,1, GT,2 be two generators of GT. Let H be a function
H : X → G∗S, where G∗S := GS \ {0}. The DDH eVRF with domain X and range GT is defined as
follows:

– KGenH(1λ): Sample k ←$ [s−1] and set Q← k ·GT,1. Use the prover Pdlog for Rdlog to generate
a proof πQ ←$ Pdlog(Q,GT,1; k) and set vk := (Q, πQ). Output (k, vk).

– EvalH(k, x): for x ∈ X , let P ← k · H(x) ∈ G∗S.

with P = (xP , yP) ⊆ F2
q set y ← xP ∈ Fq and Y ← y ·GT,2 ∈ GT.

Next, run the prover P for RH to construct a proof π that the triple
(
vk, x, Y

)
is in the lan-

guage LRH
from (6). The proof system for RH is described in Section 6.1. Output (y, Y, π).

Recall that EvalH1 (k, x) is the same as algorithm EvalH(k, x) but only outputs y ∈ Fq.

– VerifyH(vk, x, Y, π): for vk = (Q, πQ), the algorithm accepts if (1) π is a valid proof that (Q, x, Y)
is in LRH

, and (2) πQ is a valid proof for (Q,GT,1) as an instance of Rdlog.

At the heart of this eVRF construction is the non-interactive zero-knowledge proof for the lan-
guage LRH

. Before we develop this proof system, let us first briefly argue that the eVRF is secure
when H : X → G∗S is modeled as a random oracle.

38

Algorithm EvalH1 (k, x) in Construction 17 outputs the x-coordinate of a point P in G∗S. Let
S ⊆ Fq be the set of all x-coordinates of points in G∗S. Then the size of S is about half the size
of Fq. Consequently, the range of the basic DDH eVRF is about half of GT. The following theorem
shows that it is a secure eVRF with respect to this subset. In Section 6.2 we enhance this basic
eVRF so that its range is the full group GT.

Theorem 18 (subset eVRF security). Let (GS,GT) be a secure group pair, so that DDH
holds in GS. Let (P,V) be a non-interactive zero-knowledge argument system for the relation RH

from (6). Let GS be defined over Fq and let S ⊆ Fq be the set of all x-coordinates of points in G∗S.
Then the eVRF in Construction 17 is a subset secure eVRF (as in Definition 5) with respect to the
domain/range (X ,GT), subset S, and function family OX ,G∗

S
.

Proof. Consistency holds by construction. Pseudorandomness follows from the fact that the DDH
PRF is a secure PRF when DDH holds inGS and H is sampled at random fromOX ,G∗

S
. Therefore, the

x-coordinate of the output of the DDH PRF is pseudorandom over the subset S ⊆ Fq. Verifiability
as a VRF follows from the soundness of the proof system for RH. Simulatability as a VRF follows
from the zero knowledge property of the proof system for RH. ⊓⊔

Looking ahead, soundness of our proof system for RH relies on the hardness of discrete log in
GT and the knowledge soundness of the proof system for Rdlog. It also relies on GT,1, GT,2 being
random generators of GT so that there is no known discrete log relation between them.

6.1 An Argument System for the Relation RH

To complete the construction, we need an efficient non-interactive zero-knowledge argument for the
relationRH from (6). There are several ways to proceed. One option is to use a generic zkSNARK [6]
to produce a succinct proof. However, since RH uses arithmetic in both GS and GT, this will require
non-native arithmetic in the zkSNARK, which will result in an efficient prover.

Another option is to use the Bulletproofs argument system [9,12], which is especially well suited
for proving statements about Fq field elements that are given “in the exponent.” This is precisely
what is needed for the relation RH: the verifier is given k and x′ in the exponent — they are
provided as Q = k · GT,1 and Y = xP · GT,2 — along with x ∈ X , and we need a proof that
xP is the x-coordinate of P := k · H(x) ∈ GS. We show how to use Bulletproofs to construct an
efficient argument system for RH. The resulting the proof size is only O(log log s) group elements,
and prover and verifier times are dominated by a O(log s) multi-scalar multiplication in GT.

A brief overview of Bulletproofs. Bünz [11, §2.6] shows that Bulletproofs give an argument
system for a rank-1 constraint system (R1CS), when the statement is given in the exponent. Specif-
ically, Bulletproofs is well suited as an argument system for the following exponent R1CS relation:

ReR1CS :=
{(

A,B,C, T
)
;
(
x,w

)}
where

(1) A,B,C ∈ Fn×m
q , T ∈ GT, x ∈ Fr

q, w ∈ Fm−r
q ,

(2) (Az) ◦ (Bz) = (Cz) where z := (x,w) ∈ Fm
q ,

(3) T = ⟨x,G⟩.

(8)

Here G ∈ Gr
T is a public tuple of r generators of GT. The notation u ◦ v used on line (2) refers to

the component-wise multiplication of the vectors u and v (also called the Hadamard product of u
and v).

39

Note that the R1CS statement x ∈ Fr
q is provided as a Pedersen commitment T = ⟨x,G⟩,

exactly as in our settings. Indeed, for an RH-instance (Q, x, Y) we will set T := Q+ Y ∈ GT. The
vector z on line (2) is often called the extended witness. Each row in the matrices A,B,C is
called a constraint, so that the R1CS above has n constraints. In the Bulletproofs argument, the
prover sends to the verifier a Pedersen commitment T ′ := ⟨ẑ,Gz⟩ for a vector ẑ derived from z. An
inner-product argument is then used to prove that z := (x,w) satisfies the condition on line (2).

The Bulletproofs argument system is complete, computationally sound, and zero knowledge.
Here computational soundness means that either the system is sound, or there is a PPT algorithm
that can find a non-trivial linear relation among the generators in (G,Gz). The latter implies that
discrete log is easy in GT. The argument system can be made non-interactive using the Fiat-Shamir
transform, and retains its soundness and zero knowledge properties in the random oracle model [2].

The length of the proof is 2 log2(n + m) + 4 group elements in GT. The running times of the
verifier is dominated by the time to compute a multi-scalar multiplication (MSM) for a vector
dimension about 2(n + m). Using Pippenger’s algorithm [60], computing such an MSM is faster
than computing the exponentiations one by one. In addition, the Bulletproofs verifier can batch
verify multiple proofs at once much faster than verifying the proofs one at a time [12]. We summarize
these facts in the following theorem.

Theorem 19 ([11]). Bulletproofs (PBP,VBP) is a zero knowledge non-interactive argument system
for the relation ReR1CS in the random oracle model, assuming discrete log in GT is hard. The length
of the proof is 2⌈log2(n+m)⌉+ 3 group elements in GT.

The proof system for RH. Given the above, it remains to design an efficient rank-1 constraint
system (R1CS) — namely three matrices A,B,C ∈ Fn×m

q — for the relation RH from (6). Consider

an RH instance
(
(Q, x, Y) ; k

)
where k is in [s − 1]. Let (k0, k1, . . . , kℓ) ∈ {0, 1}ℓ+1 be the binary

representation of k, so that k =
∑ℓ

i=0 2
i · ki. In addition, we use a fixed sequence of elements

c0, . . . , cℓ ∈ Zs satisfying

∀i ∈ [ℓ− 1] :

i−1∑
j=0

cj ̸∈ {0,±ci} and

ℓ∑
j=0

cj = 0. (9)

For example, when s > ℓ2 one can set ci := (i+ 2) for i = 0, . . . , ℓ− 1 and cℓ := −
(
ℓ+2
2

)
+ 1.

Let X := H(x). Our plan for proving that (Q, x, Y) is in LRH
is to have the prover compute a

sequence of elements P0, . . . , Pℓ ∈ GS defined by{
P0 := k0 ·X + c0 ·GS

Pi := Pi−1 +∆i where ∆i := (2iki) ·X + ci ·GS (for i = 1, . . . , ℓ).
(10)

These points will become part of the extended witness z for our R1CS program. Observe that
because

∑ℓ
i=0 2

iki = k and
∑ℓ

j=0 cj = 0, the final point Pℓ satisfies Pℓ = k ·X ∈ GS. Now the R1CS
program only needs to check that if Y = x ·GT,2, then the x-coordinate of Pℓ is equal to x, which
is just one constraint in R1CS. The main challenge is to verify that the point Pℓ was constructed
correctly. We will do so by verifying inductively that Pi is correct given that all P0, . . . , Pi−1 are
correct (for all i = 1, . . . , ℓ).

Looking ahead, the purpose of the term ciGS in the definition of ∆i in (10) is to ensure that
∆i is not equal to ±Pi−1. This ensures that none of the Pi are the point at infinity in GS, and that

40

the addition always adds distinct points in GS. This lets us always use the “cord” rule for addition,
and never need the “tangent” rule.

Let us describe the R1CS program for LRH
in more detail. We begin by describing the extended

witness z. Recall that (k0, k1, . . . , kℓ) is the binary representation of the secret key k ∈ [s− 1]. For
i = 0, . . . , ℓ we let Pi = (xPi

, yPi
) ∈ G∗S ⊆ F2

q be the points constructed in (10). Further, define

wi :=
(
ki, xPi

, x2Pi
, x3Pi

, yPi
, y2Pi

, t1, t2

)⊺
∈ F8

q for i = 1, . . . , ℓ. (11)

We will explain what are t1, t2 ∈ Fq soon below. Then, with P = (xP , yP) = kX ∈ GS, the extended
witness is defined as the column vector

z :=
(
1, k, xP︸ ︷︷ ︸
the R1CS
statement

, k0, xP0
, yP0

, w1, . . . ,wℓ

)⊺
∈ F8ℓ+6

q . (12)

Now, the R1CS program, which consists of three matrices A,B,C ∈ Fn×m
q , needs to verify three

claims:

– claim 1: k0, . . . , kℓ is the binary representation of k, that is k =
∑ℓ

i=0 2
iki and ki ∈ {0, 1} for

i = 0, . . . , ℓ.

– claim 2: The points P0, . . . , Pℓ are constructed according to (10).

– claim 3: The point Pℓ = (xPℓ
, yPℓ

) satisfies xPℓ
= xP , where P := kX.

If all three claims hold then the verifier is convinced that (Q, x, Y) is in LRH
.

Claims 1 and 3 are easy to check in an R1CS: checking that k =
∑ℓ

i=0 2
iki takes one constraint

(i.e., one row in A,B,C); checking that ki ∈ {0, 1} for i = 0, . . . , ℓ is done by checking that
ki(1 − ki) = 0, and this takes ℓ + 1 constraints, one for each ki; checking that xPℓ

= xP takes one
constraint. Hence, Claims 1 and 3 require a total of ℓ+ 3 constraints in A,B,C.

Checking Claim 2 in R1CS is more interesting. First, note that while the verifier has X,GS ∈ GS,
it does not know the bits ki of k and therefore cannot construct the points ∆i in (10) by itself.
However, we observe that given X and GS, all the ∆i ∈ GS can be expressed as a public linear
function of ki. Indeed, since ki is binary, we know that ∆i takes one of two values:

∆i = ∆ := 2iX + ciGS or ∆i = ∆′ := ciGS.

Let (x, y) ∈ F2
q be the elliptic curve point representing ∆ and let (x′, y′) ∈ F2

q be the point repre-
senting ∆′. Then we can express ∆i as

∆i = ki(x− x′, y − y′) + (x′, y′) = (kiδx + x′, kiδy + y′) ∈ F2
q (13)

where δx := x− x′ and δy := y − y′. The verifier can construct x′, y′, δx, δy ∈ Fq on its own. Hence,
∆i can be expressed as a public linear function of ki. Since Po = ∆0 this method also lets us express
P0 as a public linear function of k0.

Now, to verify claim 2, the R1CS program will verify that Pi = Pi−1 +∆i for all i = 1, . . . , ℓ.
The program does so by checking two things:

41

– First, for i = 1, . . . , ℓ verify that the point Pi = (xPi
, yPi

) in z is a point in G∗S. That is, (xPi
, yPi

) ∈
F2
q satisfies y2Pi

= x3Pi
+ axPi

+ b where a and b are the constants that define the curve GS.

This takes four constraints in the matrices A,B,C: two constraints to verify that x3Pi
in z is

computed correctly (i.e., it is the cube of xPi
); one constraint to verify that y2Pi

in z is computed
correctly (i.e., it is the square of yPi

); and one linear constraint to verify the elliptic curve relation
y2Pi

= x3Pi
+ axPi

+ b.

– Second, for i = 1, . . . , ℓ verify that the points Pi−1, ∆i and −Pi = (xPi
,−yPi

) are co-linear.
When Pi−1 ̸= ±∆i this is sufficient to prove that Pi = Pi−1 +∆i in GS. Moreover, we show in
Theorem 21 that indeed Pi−1 ̸= ±∆i must always hold. To check that Pi−1, ∆i and −Pi are
co-linear, the R1CS program verifies that the slope of the line through Pi−1 and −Pi is equal to
the slope of the line through ∆i and −Pi. That is, the program verifies that

(yPi−1
+ yPi

) · (x∆i
− xPi

) = (y∆i
+ yPi

) · (xPi−1
− xPi

) (14)

This is where the values t1 and t2 in (11) are used. The R1CS verifies that t1 is equal to the left
hand side of (14), that t2 is equal to the right hand side, and that t1 = t2. This takes a total
of three constraints in A,B,C. Recall that x∆i

and y∆i
used in (14) are expressed as a linear

function of ki using (13).

The explicit matrices A,B,C are shown in Figure 3 in the appendix. Together, the two checks
above prove that P1, . . . , Pℓ in z are computed as in (10). It remains to verify that P0 is constructed
correctly, and this is done using (13), which takes two constraints.

Putting it all together. We can now describe the complete proof system for RH from (6). The
proof system uses a proof system (PBP,VBP) for the relation ReR1CS from (8), and a proof system
(Pdlog,Vdlog) for the relation Rdlog from (7).

Construction 20 Let
(
(Q, x, Y); k

)
be an RH instance-witness pair with respect to a hash function

H : X → GS, so that Q = k · GT,1 and Y = xP · GT,2, as in (6). The proof system (P,V) for RH

works as follows:

– Prover PH(Q, x, Y ; k): Calculate the R1CS matrices (A,B,C) constructed from H(x) and GS as
described above. Set T := Q+ Y and x := (k, xP) ∈ [s− 1]× Fq. Calculate the witness w for the
ReR1CS instance (A,B,C, T), and generate proofs

π0 ←$ PBP

(
A,B,C, T ;x,w

)
, πQ ←$ Pdlog(Q,GT,1; k), πY ←$ Pdlog(Y,GT,2;xP).

Output π := (π0, πQ, πY).

– Verifier VH(Q, x, Y ;π0, πQ, πY): Calculate the R1CS matrices (A,B,C) constructed from H(x)
and GS as described above. set T := Q+Y and accept if VBP

(
A,B,C, T ;π0) and Vdlog

(
Q,GT,1;πQ)

and Vdlog

(
Y,GT,2;πY).

The running time of the proof system is determined by the dimensions of the matrices A,B,C.
All the linear constraints in the R1CS (A,B,C) can be collapsed into a single constraint by taking
a random linear combination of the constraints using verifier randomness. Consequently, the total
number of the constraints in our R1CS is: (ℓ+1) constraints for claims 1 and 3; another 3ℓ constraints
to verify that all Pi are in G∗S; and 2ℓ constraints to verify co-linearity. This is a total for 6ℓ + 1
constraints, plus one more constraint to verify all the linear constraints at once. An observation
in Figure 3 in the appendix reduces the number of constraints to 5ℓ + 2. Therefore, the matrices
A,B,C ∈ Fn×m

q have dimension n = 5ℓ+ 2 and m = 8ℓ+ 6.

42

Remark 1 (an optimization). It is not difficult to generalize (13) and process two bits of the key
k at every iteration, instead of one bit as in (13). This will halve the number of iterations, at the
cost of two additional constraints per iteration.

Theorem 21. Suppose that discrete log is hard in both GS and GT, and that GT,1 and GT,2 are in-
dependent generators of GT. Moreover, suppose that the proof system (PBP,VBP) is a non-interactive
zero-knowledge argument for ReR1CS, and (Pdlog,Vdlog) is a non-interactive zero-knowledge proof
of knowledge for the relation Rdlog. Then the proof system (P,V) from Construction 20 is a non-
interactive zero knowledge argument system for RH, when the hash function H : X → GS is sampled
uniformly from OX ,GS

. The length of the proof is 2⌈log2(ℓ)⌉+ 12 group elements in GT.

Concretely, for ℓ = 256 we obtain a non-interactive proof that contains about 28 group elements
in GT. For a 256-bit elliptic curve this comes out to about 900 bytes.

Proof of Theorem 21. The proof system is complete by construction and inherits its zero
knowledge property from the proofs for ReR1CS and Rdlog. It remains to prove computational
soundness.

Since discrete log in GT is hard and the generators GT,1, GT,2 ∈ GT are sampled independently,
the proof system for ReR1CS is sound. Therefore if the verifier accepts, then (A,B,C, T) is in
LReR1CS

. We already showed that our R1CS (A,B,C) verifies that the three claims about the
points P0, . . . , Pℓ hold, and this implies that (Q, x, Y) is in LRH

, as required.

The only part that remains to argue is that when verifying that Pi = Pi−1 +∆i it suffices to
use the cord rule, as we did in (14). That is, we need to argue that Pi−1 ̸= ±∆i for i = 1, . . . , ℓ.
To do so, consider an adversary A that outputs (Q, x, Y, π0, πQ, πY) such that (1) the RH verifier
accepts, and (2) if Q = k · GT,1, then the derived points P0, . . . , Pℓ in GS satisfy that Pi−1 = ±∆i

for some i. We use this adversary A to break discrete log in GS.

Let us construct an algorithm B that computes discrete log in GS. This B takes as input R ∈ GS

and needs to output an α ∈ Zs such that R = αGS. Algorithm B runs A and responds to its
random oracle queries for H(xi) by choosing a random ri ←$ Zs and responding with H(xi) := riR.
Eventually, algorithm A outputs (Q, x, Y, π0, πQ, πY). Since the RH verifier accepts this tuple, we
obtain three things:

– First, thanks to the proof πQ, our B can run the extractor for the proof system for Rdlog to
extract from A an integer k ∈ [s− 1] such that Q = kGT,1. As usual, we let (k0, . . . , kℓ) be the
binary representation of k.

– Second, if we set T := Q+Y , then we know that (A,B,C, T) is in LReR1CS
. This is because the

Bulletproofs proof π0 is accepted by the verifier.

– Third, since A must have queried for H(x), it follows that B knows an r ∈ Zs such that
H(x) = rR.

Next, by assumption on A we know that the points P0, . . . , Pℓ, derived from H(x) and GS via (10)
satisfy that P0 = 0 or Pi−1 = ±∆i for some i ∈ [ℓ]. If P0 = 0 then k0(rR) + c0GS = 0. Then since
c0 ̸= 0 it must be that k0r ̸= 0, and this immediately reveals the discrete log α such that R = αGS.

Next, if P0 ̸= 0, let i∗ be the smallest index i in [ℓ] such that Pi∗−1 = ±∆i∗ . For now, let us
assume that Pi∗−1 = −∆i∗ . The case Pi∗−1 = ∆i∗ is handled the same way. Since (A,B,C, T) is in

43

LReR1CS
we know that P0, . . . , Pi∗−1 must be computed as in (10). Therefore,

2i
∗
ki∗(rR) + ci∗GS = ∆i∗ = −Pi∗−1 = −

i∗−1∑
j=0

(2jkj)(rR) +
i∗−1∑
j=0

cjGS


which leads to

r
i∗∑
j=0

(2jkj) ·R =
i∗∑
j=0

cj ·GS. (15)

When i∗ < ℓ we know by construction of ci in (9) that
∑i∗

j=0 cj ̸= 0. It follows that the left hand
side is non-zero, and then (15) reveals the discrete log α. The case i∗ = ℓ is not possible because
then the left hand side of (15) is non-zero since k ̸= 0, but the right hand side is zero because
c0 + · · ·+ cℓ = 0. The case Pi∗−1 = ∆i∗ is the same and relies on the fact that ci∗ ̸=

∑i∗−1
j=0 cj .

Hence, we conclude that if discrete log in GS is hard, then P0 ̸= 0 and Pi−1 ̸= ±∆i for all i ∈ [ℓ],
as required for (14) to properly verify addition in GS. This completes the proof of the theorem. ⊓⊔

Practical considerations. For the applications to ECDSA discuss in Section 4, the target group
GT needs to be the standard group of points on the elliptic curve Secp256k1. This curve is defined
by the elliptic curve equation y2 = x3 + 7 in Fp for a specific prime p. This curve has q point in Fp

for some prime q. Remarkably, for such curves, a theorem due to Silverman and Stange [62, Cor.
22], shows that the same curve y2 = x3+7, but this time defined over Fq, has prime order p. Hence,
we can take as our source group the curve y2 = x3 + 7 defined over Fq.

Suppose that instead we use the curve Ed25519 [5] as the target group GT, as needed for EdDSA.
The curve is defined over Fp where p := 2255 − 19 and has order 8q for some prime q. In this case
we would choose some prime order elliptic curve defined over Fq and use it as our source group.

The running time of the verifier is dominated by the time to do a multiscalar multiplication
(MSM) of a vector of dimension 2 × (13ℓ). For ℓ = 256 this gives an MSM of length about 6,600.
This drops to about 4,000 using Remark 1. The running time of the prover is comparable.

The cost of multiscalar multiplications (MSM) for these dimensions is about a sixth of a sequence
multiplications done one at a time. In addition, the bases are all fixed ahead of time, and so the
multiplications can be sped up pre-computing the required tables. We therefore estimate the cost
of the MSM by considering the cost of multiplications and dividing by six. A crypto library for
the curve secp256k1 computes 140,000 generator multiplications per second, and for Ed25519 it
computes 55,000 generator multiplications per second (running a single thread on a 2.3 GHz 8-Core
Intel Core i9). This yields an estimated running time for proving and verifying of approximately just
5ms for secp256k1 and 14ms for Ed25519. Of course, this can be further accelerated by employing
multiple threads in parallel.

6.2 The full DDH eVRF

Recall that the output of the eVRF in Construction 17 is restricted to about half the group GT.
In particular, the output of EvalH1 (k, x) is only pseudorandom over half of Fq, namely the set S
of x-coordinates of points G∗S. While this is fine for our distributed key generation application in
Section 4.1, it is insufficient for the threshold Schnorr protocol in Section 4.4 where the generated
nonce must be uniform over all of Fq.

44

In this section we show how to enhance the basic DDH eVRF so that the output of EvalH1 (k, x)
is pseudorandom over all of Fq. There are two ways to do it. The MuSig-DN [54,55] scheme does
so by working with a product of the elliptic curve G∗S and its twist. This ensures that the final
x-coordinate is distributed over all of Fq, but at the cost of making the intermediate elliptic curve
points constructed in the proof for RH live in a quadratic extension of Fq.

Instead, to avoid working in a quadratic extension, we simply evaluate the basic DDH PRF
twice, and extract entropy from the two x-coordinates of the resulting points. That is, we use two
independent hash functions H1,H2 : X → GS and define the PRF value as

EvalH1 (k, x) := ext(x1, x2) where k · H1(x) = (x1, y1) and k · H2(x) = (x2, y2).

Here ext : F2
q → Fq is an entropy extraction map that takes as input two elements, each uniformly

distributed in S, and outputs a statistically close to uniform element in Fq. One can treat x1 and
x2 as two independent samples from a biased source, and construct ext as a deterministic 2-source
extractor [10]. However, the resulting extractors are not strong enough to ensure that the output
is statistically close to uniform in Fq without additional assumptions on the structure of S.

Instead, we construct ext as a simple randomized extractor using the leftover hash lemma [36].
First, let us review the lemma. For a random variable r distributed in a finite set R, we define
the guessing probability of r as maxz∈R Pr[r = z]. In addition, a function ext : K × R → Fq

is said to be a universal hash if Prk←$K
[
ext(k, z) = ext(k, z′)

]
≤ 1/q for all distinct z, z′ ∈ R.

Finally, the statistical distance between two distributions P1 and P2 defined over R is defined
as ∆ := 1

2

∑
z∈R|P1(z)− P2(z)|. Then ∆ ∈ [0, 1].

Lemma 1 (Leftover Hash Lemma [36]). Let ext : K × R → Fq be a universal hash. Let
k, r1, . . . , rm be mutually independent random variables, where k is uniformly distributed over K, and
each ri is distributed over R with guessing probability at most γ. Let ∆ be the statistical distance
between

(
(k, ext(k, r1), . . . , ext(k, rm)

)
and the uniform distribution on K ×Rm. Then

∆ ≤ m

2

√
γ · q ⊓⊔

In our setting, we have R := Fq × Fq and each random variable ri is a pair (x1, x2) uniformly
distributed over S × S ⊆ R. Moreover, since the number of points in G∗S is at least q − 2

√
q, we

know that |S| ≥ (q − 2
√
q)/2. Therefore, the guessing probability of ri is

γ = 1/|S|2 ≤ 4/(q − 2
√
q)2 = 4/q(

√
q − 2)2

We will use a hash function ext : Fq × F2
q → Fq defined as

ext
(
k′, (x1, x2)

)
:= k′ · x1 + x2.

It is not difficult to show that this hash function is a universal hash. Then by the leftover hash
lemma, if (x1, x2) is uniform in S × S and k′ is uniform in Fq then (k′, k′x1 + x2) is statistically
close to uniform over F2

q with statistical distance

∆ ≤ 0.5
√
γq ≤ 1/(

√
q − 2). (16)

which is negligible in the security parameter. If we extract from m samples, then the statistical
distance increases by at most a factor of m. Therefore, if m is polynomial in security parameter,
then the statistical distance to uniform of all the samples remains negligible.

45

In our construction, the universal hash key k′ will be sampled by the KGen algorithm and
become a part of the eVRF verification key vk. In addition, the relation RH from (6) is replaced
by the following two-time relation

R2
H1,H2

:=
{(

(Q, k′, x, Y) ; k)
)}
⊆ (GT × Fq ×X ×GT)× [s− 1] where

(1) Q = k ·GT,1,

(2) Y = y ·GT,2 for y := k′ · xP1
+ xP2

∈ Fq where

P1 = (xP1
, yP1

) := k · H1(x) and P2 = (xP2
, yP2

) := k · H2(x).

(17)

Here P1, P2 ∈ G∗S are the two evaluations of the DDH PRF at input x, and y := k′ · xP1
+ xP2

is leftover hash extractor applied to the x-coordinates of P1 and P2. The proof system for R2
H1,H2

contains twice as many constraints as the proof system for RH in Section 6.1: one set of constraints
to prove that xP1

is computed correctly and another to prove xP2
. There is one more constraint to

prove that y = k′ · xP1
+ xP2

. The resulting construction for a DDH eVRF is as follows.

Construction 22 (The full DDH-based eVRF) Let (GS,GT) be a group pair where s is the
size of GS and q is the size of GT. Let GT,1, GT,2 be two generators of GT. Let H1,H2 be two
functions H1,H2 : X → G∗S, where G∗S := GS \ {0}. The full DDH eVRF with domain X and
range GT is defined as follows:

– KGen(1λ): Sample k ←$ [s− 1] and set Q← k ·GT,1. Sample k′ ←$ Fq. Use the prover Pdlog for
Rdlog to generate a proof πQ ←$ Pdlog(Q,GT,1; k). Set vk := (Q, k′, πQ) and sk := (k, k′). Output
the pair (sk, vk).

– EvalH1,H2
(
(k, k′), x

)
: for x ∈ X , let P1 ← k · H1(x) and P2 ← k · H2(x) so that P1, P2 ∈ G∗S.

with P1 = (xP1
, yP2

) and P2 = (xP1
, yP2

) both in F2
q

set y ← k′ · xP1
+ xP2

∈ Fq and Y ← y ·GT,2 ∈ GT.

Next, run the prover P for R2
H1,H2

to construct a proof π that the triple
(
Q, k′, x, Y

)
is in the

language of the relation R2
H1,H2

from (17). Output (y, Y, π).

– VerifyH1,H2(vk, x, Y, π): for vk = (Q, k′, πQ), the algorithm accepts if (1) π is a valid proof that
(Q, k′, x, Y) is in the language of the relation R2

H1,H2
, and (2) πQ is a valid proof for (Q,GT,1)

as an instance of Rdlog.

Recall that soundness of our proof system for R2
H1,H2

relies on the hardness of discrete log in
GT and the knowledge soundness of the proof system for Rdlog. It also relies on GT,1, GT,2 being
random generators of GT so that there is no known discrete log relation between them. If we take
the soundness and zero knowledge of R2

H1,H2
as a given, then the following theorem shows the

security of Construction 22 as an eVRF.

Theorem 23 (eVRF security). Let (GS,GT) be a secure group pair, so that DDH holds in GS.
Let (P,V) be a non-interactive zero-knowledge argument system for the relation R2

H1,H2
from (17).

Then the eVRF in Construction 22 is a secure eVRF (as in Definition 4) with respect to the
domain/range (X ,GT) and function family OX ,(G∗

S)
2.

46

Proof. Consistency holds by construction. Verifiability and Simulatability as a VRF follow from
the soundness and zero knowledge properties of the proof system for R2

H1,H2
. It remains to argue

Pseudorandomness, which we do with a sequence of hybrid games with an adversary A.
Let Game 0 be the usual pseudorandomness game from Definition 4 with respect to the PRF

(KGen,EvalH1,H2
1). Recall that EvalH1,H2

1

(
(k, k′), x

)
makes use of two DDH PRFs with domain/range

(X ,S), where S ⊆ Fq is the set of x-coordinates of points in G∗S. In Game 1 we replace both these

PRFs by truly random functions. That is, in Game 1 we define EvalH1,H2
1

(
(k, k′), x

)
as

EvalH1,H2
1

(
(k, k′), x

)
:= k′ · f1(x) + f2(x) ∈ Fq

where f1 and f2 are sampled at random from OX ,S . Since DDH holds in GS and the functions
H1,H2 are sampled at random from OX ,G∗

S
, we know that the both DDH PRFs are secure over the

range S ⊆ Fq. Therefore, replacing these two PRFs in EvalH1,H2
1 by truly random functions f1, f2,

changes the adversary’s advantage by at most a negligible amount.
In Game 2 we replace EvalH1,H2

1

(
(k, k′), x

)
by a truly random function f with domain/range

(X ,Fq). If the adversary makes at most m queries to Eval1, then by (16), the statistical distance
between the adversary’s view in Game 1 and Game 2 is at most m/(

√
q − 2), which is negligible.

Hence, the adversary’s advantage in Game 2 is at most negligibly different from its advantage in
Game 1. Now, since adversary A has advantage zero in Game 2, it must also have at most negligible
advantage in Game 0, as required. ⊓⊔

7 Conclusions and Open Problems

In this paper, we have introduced a new primitive called an exponent VRF (eVRF), and shown that
it has many applications in the field of threshold cryptography and signing. In particular, it enables
us to achieve one-round simulatable key generation, two-round signing for Schnorr (multiparty)
and ECDSA (two-party), and it provides a hierarchical key derivation method like BIP032 with
additional properties like MPC friendliness and public verifiability. We also provided constructions
under both the DDH and Paillier (DCRA) assumptions.

Our work leaves open a number of interesting questions. An important open question raised by
this work is the construction of an efficient key homomorphic eVRF, namely an eVRF that satisfies

Eval1(k1 + k2, x) ·G = Eval1(k1, x) ·G+ Eval1(k2, x) ·G

where G is a generator of a standard cryptographic group used for Schnorr signatures. This will
enable deterministic two round threshold Schnorr signing, by constructing a threshold eVRF itself
so that any subset Q of the parties will compute the same Eval result on the same message. In
addition, it will enable threshold Schnorr signing without knowing the set of parties ahead of time.
Finally, it will enable the parties to refresh their secrets and achieve (static) proactive security.

One possible approach to constructing a key homomorphic eVRF is to explore building an
efficient eVRF from a lattice-based random oracle PRF, described in [7], whose security is based
on the learning with rounding problem (LWR). This PRF is almost key homomorphic, which is
sufficient for the applications in Section 4. One would build an eVRF by encoding the output of this
PRF in the exponent of another group, as we did in the constructions in this paper. The challenge
then is to devise an efficient non-interactive zero-knowledge proof that the PRF was evaluated
correctly.

47

Another important open question is to construct a simulatable two-round multiparty protocol
for ECDSA (our ECDSA protocol is only for two parties).

Acknowledgments. We thank the authors of MuSig-DN for pointing out a mistake in the initial
description of our DDH-based eVRF. The first author was supported by NSF, DARPA, the Simons
Foundation, and NTT Research. Opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of DARPA.

References

1. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for composite statements. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 643–673. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 19–23, 2018). https://doi.org/10.1007/978-3-319-96878-0_22

2. Attema, T., Fehr, S., Klooß, M.: Fiat-shamir transformation of multi-round interactive proofs. In: Kiltz, E.,
Vaikuntanathan, V. (eds.) TCC 2022, Part I. LNCS, vol. 13747, pp. 113–142. Springer, Heidelberg, Germany,
Chicago, IL, USA (Nov 7–10, 2022). https://doi.org/10.1007/978-3-031-22318-1_5

3. Benaloh, J.: Verifiable secret-ballot elections. Ph.D thesis (1988)

4. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. Cryptology
ePrint Archive, Report 2011/368 (2011), https://eprint.iacr.org/2011/368

5. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. Journal of
Cryptographic Engineering 2(2), 77–89 (Sep 2012). https://doi.org/10.1007/s13389-012-0027-1

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again. In: Goldwasser, S. (ed.) ITCS 2012. pp. 326–349. ACM, Cambridge,
MA, USA (Jan 8–10, 2012). https://doi.org/10.1145/2090236.2090263

7. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic PRFs and their applications.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 18–22, 2013). https://doi.org/10.1007/978-3-642-40041-4_23

8. Boneh, D., Shoup, V.: A graduate course in applied cryptography (version 0.6). Cambridge University Press
(2023), cryptobook.us

9. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits
in the discrete log setting. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 327–357. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12, 2016). https://doi.org/10.1007/
978-3-662-49896-5_12

10. Bourgain, J.: More on the sum-product phenomenon in prime fields and its applications. International Journal
of Number Theory 1(01), 1–32 (2005)

11. Bünz, B.: Improving the privacy, scalability, and ecological impact of blockchains. Ph.D. thesis, Stanford Univer-
sity (2023)

12. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for confidential
transactions and more. In: 2018 IEEE Symposium on Security and Privacy. pp. 315–334. IEEE Computer Society
Press, San Francisco, CA, USA (May 21–23, 2018). https://doi.org/10.1109/SP.2018.00020

13. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous
credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 18–22, 2002). https://doi.org/10.1007/3-540-45708-9_5

14. Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13(1), 143–
202 (Jan 2000). https://doi.org/10.1007/s001459910006

15. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS. pp.
136–145. IEEE Computer Society Press, Las Vegas, NV, USA (Oct 14–17, 2001). https://doi.org/10.1109/
SFCS.2001.959888

16. Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N., Peled, U.: UC non-interactive, proactive, threshold
ECDSA with identifiable aborts. Cryptology ePrint Archive, Report 2021/060 (2021), https://eprint.iacr.
org/2021/060

17. Castagnos, G., Chevallier-Mames, B.: Towards a DL-based additively homomorphic encryption scheme. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 362–375. Springer, Heidelberg,
Germany, Valparáıso, Chile (Oct 9–12, 2007)

48

https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-031-22318-1_5
https://eprint.iacr.org/2011/368
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
cryptobook.us
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2021/060

18. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 487–505. Springer, Heidelberg, Germany, San Francisco, CA, USA (Apr 20–24, 2015).
https://doi.org/10.1007/978-3-319-16715-2_26

19. Chase, M., Orrù, M., Perrin, T., Zaverucha, G.: Proofs of discrete logarithm equality across groups. Cryptology
ePrint Archive, Report 2022/1593 (2022), https://eprint.iacr.org/2022/1593

20. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO’92. LNCS, vol. 740,
pp. 89–105. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 1993). https://doi.org/10.
1007/3-540-48071-4_7

21. Chen, Y.H., Lindell, Y.: Feldman’s verifiable secret sharing for a dishonest majority. Cryptology ePrint Archive,
Paper 2024/031 (2024), https://eprint.iacr.org/2024/031, https://eprint.iacr.org/2024/031

22. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-
key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg, Germany, Cheju
Island, South Korea (Feb 13–15, 2001). https://doi.org/10.1007/3-540-44586-2_9

23. Devevey, J., Fallahpour, P., Passelègue, A., Stehlé, D.: A detailed analysis of fiat-shamir with aborts. Cryptology
ePrint Archive, Report 2023/245 (2023), https://eprint.iacr.org/2023/245

24. Devevey, J., Libert, B., Peters, T.: Rational modular encoding in the DCR setting: Non-interactive range proofs
and paillier-based naor-yung in the standard model. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022,
Part I. LNCS, vol. 13177, pp. 615–646. Springer, Heidelberg, Germany, Virtual Event (Mar 8–11, 2022). https:
//doi.org/10.1007/978-3-030-97121-2_22

25. Doerner, J., Kondi, Y., Lee, E., abhi shelat: Threshold ECDSA in three rounds. Cryptology ePrint Archive,
Paper 2023/765 (2023), https://eprint.iacr.org/2023/765, https://eprint.iacr.org/2023/765

26. Doerner, J., Kondi, Y., Lee, E., shelat, a.: Secure two-party threshold ECDSA from ECDSA assumptions. Cryp-
tology ePrint Archive, Report 2018/499 (2018), https://eprint.iacr.org/2018/499

27. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 28th FOCS. pp. 427–437. IEEE
Computer Society Press, Los Angeles, CA, USA (Oct 12–14, 1987). https://doi.org/10.1109/SFCS.1987.4

28. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with online extractors. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 14–18, 2005). https://doi.org/10.1007/11535218_10

29. Fouque, P.A., Stern, J.: One round threshold discrete-log key generation without private channels. In: Kim,
K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 300–316. Springer, Heidelberg, Germany, Cheju Island, South Korea
(Feb 13–15, 2001). https://doi.org/10.1007/3-540-44586-2_22

30. Galbraith, S.D.: Elliptic curve paillier schemes. Cryptology ePrint Archive, Report 2001/050 (2001), https:
//eprint.iacr.org/2001/050

31. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. J. ACM 69(5)
(2022). https://doi.org/10.1145/3566048, https://doi.org/10.1145/3566048

32. Garillot, F., Kondi, Y., Mohassel, P., Nikolaenko, V.: Threshold Schnorr with stateless deterministic sign-
ing from standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825,
pp. 127–156. Springer, Heidelberg, Germany, Virtual Event (Aug 16–20, 2021). https://doi.org/10.1007/

978-3-030-84242-0_6

33. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge,
UK (2004)

34. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the ACM 33(4), 792–807
(Oct 1986). https://doi.org/10.1145/6490.6503

35. Groth, J.: Non-interactive distributed key generation and key resharing. Cryptology ePrint Archive, Report
2021/339 (2021), https://eprint.iacr.org/2021/339

36. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions (extended abstracts).
In: 21st ACM STOC. pp. 12–24. ACM Press, Seattle, WA, USA (May 15–17, 1989). https://doi.org/10.1145/
73007.73009

37. Joye, M., Libert, B.: Efficient cryptosystems from 2k-th power residue symbols. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 76–92. Springer, Heidelberg, Germany, Athens, Greece
(May 26–30, 2013). https://doi.org/10.1007/978-3-642-38348-9_5

38. Katz, J.: Round optimal fully secure distributed key generation. Cryptology ePrint Archive, Paper 2023/1094
(2023), https://eprint.iacr.org/2023/1094, https://eprint.iacr.org/2023/1094

39. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir signatures in the quantum
random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp.
552–586. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018). https://doi.org/10.1007/
978-3-319-78372-7_18

49

https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-319-16715-2_26
https://eprint.iacr.org/2022/1593
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://eprint.iacr.org/2024/031
https://eprint.iacr.org/2024/031
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://eprint.iacr.org/2023/245
https://doi.org/10.1007/978-3-030-97121-2_22
https://doi.org/10.1007/978-3-030-97121-2_22
https://doi.org/10.1007/978-3-030-97121-2_22
https://doi.org/10.1007/978-3-030-97121-2_22
https://eprint.iacr.org/2023/765
https://eprint.iacr.org/2023/765
https://eprint.iacr.org/2018/499
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/3-540-44586-2_22
https://doi.org/10.1007/3-540-44586-2_22
https://eprint.iacr.org/2001/050
https://eprint.iacr.org/2001/050
https://doi.org/10.1145/3566048
https://doi.org/10.1145/3566048
https://doi.org/10.1145/3566048
https://doi.org/10.1007/978-3-030-84242-0_6
https://doi.org/10.1007/978-3-030-84242-0_6
https://doi.org/10.1007/978-3-030-84242-0_6
https://doi.org/10.1007/978-3-030-84242-0_6
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://eprint.iacr.org/2021/339
https://doi.org/10.1145/73007.73009
https://doi.org/10.1145/73007.73009
https://doi.org/10.1145/73007.73009
https://doi.org/10.1145/73007.73009
https://doi.org/10.1007/978-3-642-38348-9_5
https://doi.org/10.1007/978-3-642-38348-9_5
https://eprint.iacr.org/2023/1094
https://eprint.iacr.org/2023/1094
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-319-78372-7_18

40. Komlo, C., Goldberg, I.: FROST: Flexible round-optimized Schnorr threshold signatures. In: Dunkelman, O.,
Jr., M.J.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 34–65. Springer, Heidelberg, Germany, Halifax,
NS, Canada (Virtual Event) (Oct 21-23, 2020). https://doi.org/10.1007/978-3-030-81652-0_2

41. Komlo, C., Goldberg, I.: Arctic: Lightweight and stateless threshold schnorr signatures. Cryptology ePrint
Archive, Paper 2024/466 (2024), https://eprint.iacr.org/2024/466, https://eprint.iacr.org/2024/466

42. Kondi, Y., Orlandi, C., Roy, L.: Two-round stateless deterministic two-party Schnorr signatures from pseudo-
random correlation functions. In: CRYPTO 2023, Part I. pp. 646–677. LNCS, Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 2023). https://doi.org/10.1007/978-3-031-38557-5_21

43. Kondi, Y., Orlandi, C., Roy, L.: Two-round stateless deterministic two-party schnorr signatures from pseudo-
random correlation functions. Cryptology ePrint Archive, Report 2023/216 (2023), https://eprint.iacr.org/
2023/216

44. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols and security under composition.
In: Kleinberg, J.M. (ed.) 38th ACM STOC. pp. 109–118. ACM Press, Seattle, WA, USA (May 21–23, 2006).
https://doi.org/10.1145/1132516.1132532

45. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 613–644. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24, 2017).
https://doi.org/10.1007/978-3-319-63715-0_21

46. Lindell, Y.: Simple three-round multiparty schnorr signing with full simulatability. Cryptology ePrint Archive,
Report 2022/374 (2022), https://eprint.iacr.org/2022/374

47. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg, Germany, Tokyo, Japan (Dec 6–10,
2009). https://doi.org/10.1007/978-3-642-10366-7_35

48. Makriyannis, N.: On the classic protocol for MPC schnorr signatures. Cryptology ePrint Archive, Report
2022/1332 (2022), https://eprint.iacr.org/2022/1332

49. Makriyannis, N., Yomtov, O., Galansky, A.: Practical key-extraction attacks in leading mpc wallets. Cryp-
tology ePrint Archive, Paper 2023/1234 (2023), https://eprint.iacr.org/2023/1234, https://eprint.iacr.
org/2023/1234

50. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS. pp. 120–130. IEEE Computer
Society Press, New York, NY, USA (Oct 17–19, 1999). https://doi.org/10.1109/SFFCS.1999.814584

51. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues. In: Gong, L., Reiter, M.K.
(eds.) ACM CCS 98. pp. 59–66. ACM Press, San Francisco, CA, USA (Nov 2–5, 1998). https://doi.org/10.
1145/288090.288106

52. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs. In: Stern, J. (ed.) EURO-
CRYPT’99. LNCS, vol. 1592, pp. 327–346. Springer, Heidelberg, Germany, Prague, Czech Republic (May 2–6,
1999). https://doi.org/10.1007/3-540-48910-X_23

53. Navot, S.: Insecurity of musig and bn multi-signatures with delayed message selection. Cryptology ePrint Archive,
Paper 2024/437 (2024), https://eprint.iacr.org/2024/437, https://eprint.iacr.org/2024/437

54. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: Schnorr multi-signatures with verifiably deterministic
nonces. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp. 1717–1731. ACM Press, Virtual
Event, USA (Nov 9–13, 2020). https://doi.org/10.1145/3372297.3417236

55. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: Schnorr multi-signatures with verifiably deterministic
nonces. Cryptology ePrint Archive, Report 2020/1057 (2020), https://eprint.iacr.org/2020/1057

56. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring. In: Nyberg, K. (ed.) EURO-
CRYPT’98. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg, Germany, Espoo, Finland (May 31 – Jun 4,
1998). https://doi.org/10.1007/BFb0054135

57. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EURO-
CRYPT’99. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg, Germany, Prague, Czech Republic (May 2–6,
1999). https://doi.org/10.1007/3-540-48910-X_16

58. Palatinus, M., Rusnak, P.: Multi-account hierarchy for deterministic wallets (2014), https://github.com/

bitcoin/bips/blob/master/bip-0044.mediawiki

59. Papadopoulos, D., Wessels, D., Huque, S., Naor, M., Včelák, J., Reyzin, L., Goldberg, S.: Making NSEC5 practical
for DNSSEC. Cryptology ePrint Archive, Report 2017/099 (2017), https://eprint.iacr.org/2017/099

60. Pippenger, N.: On the evaluation of powers and monomials. SIAM Journal on Computing 9(2), 230–250 (1980)
61. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (Jan 1991).

https://doi.org/10.1007/BF00196725

62. Silverman, J.H., Stange, K.E.: Amicable pairs and aliquot cycles for elliptic curves. Experimental Mathematics
20(3) (2011). https://doi.org/10.1080/10586458.2011, link

50

https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-030-81652-0_2
https://eprint.iacr.org/2024/466
https://eprint.iacr.org/2024/466
https://doi.org/10.1007/978-3-031-38557-5_21
https://doi.org/10.1007/978-3-031-38557-5_21
https://eprint.iacr.org/2023/216
https://eprint.iacr.org/2023/216
https://doi.org/10.1145/1132516.1132532
https://doi.org/10.1145/1132516.1132532
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-319-63715-0_21
https://eprint.iacr.org/2022/374
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://eprint.iacr.org/2022/1332
https://eprint.iacr.org/2023/1234
https://eprint.iacr.org/2023/1234
https://eprint.iacr.org/2023/1234
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1145/288090.288106
https://doi.org/10.1145/288090.288106
https://doi.org/10.1145/288090.288106
https://doi.org/10.1145/288090.288106
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/3-540-48910-X_23
https://eprint.iacr.org/2024/437
https://eprint.iacr.org/2024/437
https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1145/3372297.3417236
https://eprint.iacr.org/2020/1057
https://doi.org/10.1007/BFb0054135
https://doi.org/10.1007/BFb0054135
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://eprint.iacr.org/2017/099
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1080/10586458.2011
https://doi.org/10.1080/10586458.2011
https://arxiv.org/abs/0912.1831

63. Wuille, P.: Hierarchical deterministic wallets (2012), https://github.com/bitcoin/bips/blob/master/

bip-0032.mediawiki

51

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

A A Chaum-Pedersen style ZK proof system for the relation Req

Fig. 1 gives a standard Chaum-Pedersen [20] style honest verifier zero knowledge (HVZK) interactive
proof system for the relation Req from (4). The proof system uses a non-interactive zero knowledge
(NIZK) proof system (Pzero, Vzero) for the relation Rzero defined as

Rzero :=
{(

(pk, ct) ; sk
)

: Dec(sk, ct) = 0 AND (pk, sk) ∈ Lpub
}

(18)

It also uses an NIZK proof system (Ppub, Vpub) for the relation Rpub from (3).

Theorem 24 ([20]). The proof system (Peq, Veq) in Fig. 1 is an HVZK for the relation Req,
assuming (Pzero, Vzero) is a NIZK for for the relation Rzero, and (Ppub, Vpub) is a NIZK for the
relation Rpub.

Prover(pk, Y, cty ; sk, y) Verifier(pk, Y, cty)

ρ←$ Z|Gλ|

R← ρ ·Gλ, ctρ ←$ Enc(pk, ρ) R ∈ Gλ, ctρ ∈ Cpk

c c←$ Z|Gλ|

z ← c · y + ρ ∈ Z|Gλ|

ct0 ← c · cty + ctρ − Enc(pk, z; 0) // use the lin. homomorphism

π0 ←$ Pzero(pk, ct0, sk) // prove ct0 is an enc. of zero

πpub ←$ Ppub(pk, sk)
z, π0, πpub

ct0 ← c · cty + ctρ − Enc(pk, z; 0)

accept if

(1) cty, ctρ ∈ Cpk, // valid ciperhtexts

(2) Vzero(pk, ct0, π0),

(3) z ·Gλ = c · Y +R, and

(4) Vpub(pk, πpub). // valid pk

Fig. 1. A Chaum-Pedersen style ZK proof system for the relation Req from (4).

B A proof system for the relation R′
eq

We construct a proof system for the relation R′eq from (5) by adapting the protocol of Chase, Orrù,
Perrin, and Zaverucha [19] to our settings. The resulting proof system is shown in Fig. 2. It can be
made non-interactive using the Fiat-Shamir transform.

The proof system in Fig. 2 uses a range proof for Paillier ciphertexts, namely a non-interactive
zero-knowledge proof system for the instance-witness relation

Rrange :=
{(

(pk, ct, B) ; sk
)

: 0 ≤ Dec(sk, ct) < B
}

(19)

52

There are several ways to build such a range proof for Paillier ciphertexts. One approach uses bit
decomposition. Another approach, by Devevey, Libert, and Peters [24], generates a range proof that
contains only a constant number of Paillier ciphertexts, but requires a trusted setup.

In addition, The proof system in Fig. 2 uses a non-interactive zero knowledge proof system
(Pzero, Vzero) for the relation Rzero from (18), and a non-interactive zero knowledge proof system
(Ppub, Vpub) for the relation Rpub from (3).

Rejection sampling. The proof system uses rejection sampling to reduce the size of the transcript,
which may cause the prover to abort. By [19, Lemma 2], the probability that the prover aborts is
exactly 1/A, where A is a parameter used in the proof system. Setting A := 256 is a reasonable
choice so that aborting is infrequent. After applying Fiat-Shamir, an abort simply causes the prover
to try again with different randomness ρ. Moreover, when the protocol does not abort, the same
lemma from [19] shows that the quantity z is uniform in the set [q2, q2A− 1].

A proof system where the prover can abort [47,23] often fails to be honest-verifier zero-knowledge
(HVZK) because it may not be possible to simulate aborted transcripts. Nevertheless, such protocols
can satisfy a weaker notion called no-abort honest-verifier zero-knowledge, or naHVZK, where the
simulator returns a valid transcript or ⊥, and indistinguishability need only hold for non aborted
transcripts [39]. This is a useful notion because naHVZK is sufficient to simulate non-interactive
proofs after the Fiat-Shamir transform is applied.

Security. The following theorem states the security property of the proof system in Fig. 2. Recall
that q is the order of the group Gλ and n is the size of the Paillier plaintext space.

Theorem 25. For every A > 0, the proof system (Peq, Veq) in Fig. 2 is an naHVZK for the
relation R′eq from (5), provided that 2q2A < n, (Pzero, Vzero) is a NIZK for the relation Rzero,
(Ppub, Vpub) is a NIZK for the relation Rpub, and (Prange, Vrange) is a NIZK for the relation Rrange.

Proof. We need to prove completeness, zero knowledge, and soundness.

Completeness. As explained above, an honest prover aborts with probability 1/A, and if it doesn’t
abort then the verifier accepts the proof. Therefore, the protocol has (1/A)-completeness.

Zero knowledge. We construct a simulator Sim(pk, Y, cty) → (R, ctρ, c, z, π0, πy, πpub) that matches
the distribution of an accepting transcript between the honest prover and honest verifier, when the
prover does not abort. As explained above, when the honest prover does not abort, the quantity z
is uniform in the set [q2, q2A− 1]. Then Sim(pk, Y, cty) works as follows:

1 : c←$ [0, q − 1], z ←$ [q2, q2A− 1]

2 : R← zGλ − c · Y
3 : ctρ ←$ ReRand

(
pk, Enc(pk, z; 0)− c · cty

)
// re-randomize the ciphertext

4 : ct0 ← (c · cty + ctρ)− Enc(pk, z; 0)

5 : π0 ←$ Simzero(pk, ct0), πy ←$ Simrange(pk, cty, q), πpub ←$ Simpub(pk)

6 : return (R, ctρ, c, z, π0, πy, πpub)

This simulator generates the required distribution.

Soundness. Let (pk, Y, cty) be an R′eq instance where Y ∈ Gλ and cty ∈ Cpk such that Y = yq ·Gλ

and yn = Dec(sk, cty) for some yq ∈ [0, q− 1] and yn ∈ [0, n− 1]. Let (R, ctρ, c, z, π0, πy, πpub) be an

53

accepting transcript, where R = ρq ·Gλ and Dec(sk, ctρ) = ρn for some integers ρq ∈ [0, q − 1] and
ρn ∈ [0, n− 1]. Then by soundness of (Prange, Vrange) and (Pzero, Vzero) we know that

z = c · yq + ρq + wq · q, z = c · yn + ρn + wn · n, yn ∈ [0, q − 1]

for some wq, wn ∈ Z. Since cyn < z < n and ρn ∈ [0, n − 1] it follows that z − cyn − ρn is in
[−(n−1), n−1] and therefore wn = 0. Then equating the right hand sides of the first two equalities
leads to

c · yq + ρq + wq · q = c · yn + ρn

Reducing this equality modulo q gives

c(yq − yn) ≡ ρn − ρq (mod q). (20)

Now, if yq ̸= yn (mod q) then there is a unique c ∈ [0, q − 1] for which (20) holds. The probability
that the verifier chooses that c is 1/q which is negligible. Therefore, if the verifier accepts, then
with high probability we have yq ≡ yn (mod q). But since both yq and yn are in [0, q − 1], they
must be equal as integers, as required. ⊓⊔

Prover(pk, Y, cty ; sk, y) Verifier(pk, Y, cty)

πy ←$ Prange(pk, cty, q, sk) // prove that y ∈ [0, q − 1]

ρ←$ [0, q2A− 1]

R← ρ ·Gλ, ctρ ←$ Enc(pk, ρ) R ∈ Gλ, ctρ ∈ Cpk

c c←$ [0, q − 1]

z ← c · y + ρ ∈ Z

abort if z ̸∈ [q2, q2A− 1]

ct0 ← (c · cty + ctρ)− Enc(pk, z; 0) // enc. of cy + ρ− z

π0 ←$ Pzero(pk, ct0, sk) // prove ct0 is enc. of zero

πpub ←$ Ppub(pk, sk)
z, π0, πy, πpub

ct0 ← (c · cty + ctρ)− Enc(pk, z; 0)

accept if

(1) Y,R ∈ Gλ, cty, ctρ ∈ Cpk,
(2) Vzero(pk, ct0, π0), Vrange(pk, cty, q, πy),

(3) z ·Gλ = c · Y +R,

(4) z ∈ [q2, q2A− 1],

(5) Vpub(pk, πpub). // valid pk

Fig. 2. A ZK proof system for the relation R′
eq from (5). The system is parameterized by A ∈ [n] that determines

the abort probability. Recall that q is the order of the group Gλ and Gλ is its generator.

54

C The R1CS matrices A,B,C used in Section 6.1



0 1 0 0 0 0 0 0 0 0 0
1
1

1
b a 1 −1
x′ δx −1

−1 1
1 −1


︸ ︷︷ ︸

the matrix A



1

ki

xPi

x2
Pi

x3
Pi

yPi

y2
Pi

t1

t2

xPi−1

yPi−1



⃝



1 −1 0 0 0 0 0 0 0 0 0
1

1
1

1
1 1

y′ δy 1
1


︸ ︷︷ ︸

the matrix B



1

ki

xPi

x2
Pi

x3
Pi

yPi

y2
Pi

t1

t2

xPi−1

yPi−1



?
=



0 0 0 0 0 0 0 0 0 0 0
1

1
1

0 0 0 0 0 0 0 0 0 0 0
1

1
0 0 0 0 0 0 0 0 0 0 0


︸ ︷︷ ︸

the matrix C



1

ki

xPi

x2
Pi

x3
Pi

yPi

y2
Pi

t1

t2

xPi−1

yPi−1



Fig. 3. The R1CS matrices A,B,C used in Section 6.1 for the i’th block of checks for some i ∈ [ℓ]. Empty cells
are set to 0. The first row confirms that ki × (1 − ki) = 0. The second row confirms that xPi

× xPi
= x2

Pi
. The

third row confirms that xPi
× x2

Pi
= x3

Pi
. The fourth row confirms that yPi

× yPi
= y2

Pi
. The fifth row confirms that

x3
Pi

+axPi
+ b− y2

Pi
= 0. The sixth row confirms that (δxki +x′−xPi

)× (yPi
+ yPi−1

) = t1. The seventh row confirms
that (xPi−1

− xPi
)× (δyki + y′ + yPi

) = t2. The final row confirms that t1 − t2 = 0. The prover and verifier compute
the values δx, δy, x

′, y′ using (13). Note that the 5th and 8th rows check a linear relation and can be combined into a
single row by taking a linear combination using verifier randomness. The same holds for the second and third rows.

55

	Exponent-VRFs and Their Applications
	Introduction
	Preliminaries
	Pseudorandom Functions
	Secure Computation

	eVRFs
	Game-based Definition
	Ideal Definition

	Applications
	One-Round Simulatable Distributed Key Generation
	One-Round Simulatable Threshold Distributed Key Generation
	The Transformation Methodology for Signing Protocols
	Two-Round Simulatable Multiparty Schnorr Signing
	Two-Round Simulatable Two-Party ECDSA Signing
	Verifiable and MPC-Friendly Hierarchical Key Derivation

	An eVRF from Compatible Public-Key Encryption
	Compatible Encryption Schemes
	The Basic eVRF Construction
	Public Key Encryption Scheme with Efficient Equality Proofs
	An Instantiation Using Paillier Encryption

	A DDH-Based eVRF
	An Argument System for the Relation RH
	The full DDH eVRF

	Conclusions and Open Problems
	A Chaum-Pedersen style ZK proof system for the relation Req
	A proof system for the relation Req'
	The R1CS matrices A,B,C used in Section 6.1

