
Single-Input Functionality against a Dishonest Majority:
Practical and Round-Optimal*

Zhelei Zhou† Bingsheng Zhang‡ Hong-Sheng Zhou§ Kui Ren¶

June 30, 2024

Abstract

In this work, we focus on Single-Input Functionality (SIF), which can be viewed as a special case of MPC.
In a SIF, only one distinguished party called the dealer holds a private input. SIF allows the dealer to perform
a computation task with other parties without revealing any additional information about the private input.
SIF has diverse applications, including multiple-verifier zero-knowledge, and verifiable relation sharing.

As our main contribution, we propose the first 1-round SIF protocol against a dishonest majority in the
preprocessing model, which is highly efficient. The prior works either require at least 2-round online com-
munication (Yang and Wang, Asiacrypt 2022; Baum et al., CCS 2022; Zhou et al., Euro S&P 2024) or are only
feasibility results (Lepinski et al., TCC 2005; Applebaum et al., Crypto 2022). We show the necessity of using the
broadcast channels, by formally proving that 1-round SIF is impossible to achieve in the preprocessing model,
if there are no broadcast channels available. We implement our protocol and conduct extensive experiments
to illustrate the practical efficiency of our protocol.

As our side product, we extend the subfield Vector Oblivious Linear Evaluation (sVOLE) into the multi-
party setting, and propose a new primitive called multiple-verifier sVOLE, which may be of independent
interest.

*Corresponding authors: Bingsheng Zhang bingsheng@zju.edu.cn, and Hong-Sheng Zhou hszhou@vcu.edu.
†The State Key Laboratory of Blockchain and Data Security, Zhejiang University & Hangzhou High-Tech Zone (Binjiang) Institute of

Blockchain and Data Security.
‡The State Key Laboratory of Blockchain and Data Security, Zhejiang University & Hangzhou High-Tech Zone (Binjiang) Institute of

Blockchain and Data Security.
§Virginia Commonwealth University.
¶The State Key Laboratory of Blockchain and Data Security, Zhejiang University & Hangzhou High-Tech Zone (Binjiang) Institute of

Blockchain and Data Security.

1

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Our Techniques . 4

1.2.1 Previous Approaches. 4
1.2.2 Our Approach. 5

2 Preliminaries 6
2.1 Notations . 6
2.2 Security Model . 6
2.3 (Programmable) Subfield VOLE . 7
2.4 Single-Input Functionalities . 8

3 Multiple-Verifier Subfield VOLE 8
3.1 Security Definition . 8
3.2 Efficiently Realizing Fp,rmv-sVOLE . 9

3.2.1 A Template Construction . 9
3.2.2 Security Analysis . 10
3.2.3 Instantiating Fp,rpsVOLE . 12

4 SIF against a Dishonest Majority 13
4.1 Preprocessing Phase . 13

4.1.1 Functionality for Preprocessing Phase . 13
4.1.2 Efficiently Realizing Fp,rPrep . 13

4.2 Main Protocol . 14

5 Impossibility on 1-round SIF without Broadcast Channels 16

6 Implementation and Evaluation 18
6.1 Comparison with Related Works . 18

7 Related Work 20

A Additional Preliminaries 25
A.1 Random Oracle . 25
A.2 Coin-Tossing . 25

B Security Proofs 25
B.1 Proof of Theorem 2 . 25
B.2 Proof of Theorem 3 . 28
B.3 Proof of Theorem 4 . 28
B.4 Proof of Theorem 5 . 30

2

1 Introduction

MPC vs. SIF. In secure multi-party computation (MPC) [Yao82,GMW87], multiple mutually distrustful play-
ers, (P1, . . . ,Pn), are allowed to jointly compute any efficiently computable function f of their private in-
puts (x1, . . . , xn). Concretely, let circuit C be the representation of the function f such that (y1, . . . , yn) ←
C(x1, . . . , xn). After an execution of the MPC protocol for circuit C, each party Pi shall obtain its output yi.
Since its introduction in the early 1980s, secure MPC has been extensively studied and become one of the
cornerstones of modern cryptography.

Single-Input Functionality (SIF) is a special case of MPC. In SIF, only a distinguished party, called dealer D,
is allowed to have a private input w, while all other parties, called verifiers V1, . . . ,Vn, have no private inputs.
After an execution of the SIF protocol, the dealer D receives no output value while the i-th verifier obtains yi
as its output value. That is, the circuit C is now specifically defined as follows: (∅, y1, . . . , yn)← C(w, ∅, . . . , ∅).
For simplicity, we often ignore the empty (input/output) values ∅’s and write it as (y1, . . . , yn)← C(w).

Applications of SIF. As an important cryptographic primitive, SIF was initially studied by Gennaro et al. [GIKR02];
this line of research has received lots of attention [AKP20, AKP22, YW22, BJO+22, ZZZR24] very recently. Be-
low, we will give a high-level description of the applications of SIF. More concretely, as already pointed out
by Applebaum et al. [AKP22], from SIF, two immediate applications can be obtained: Multiple-Verifier Zero-
Knowledge (MVZK) and Verifiable Relation Sharing (VRS).

MVZK. In an MVZK protocol, a distinguished party called prover P, who holds a statement-witness pair (x,w),
wishes to convince n verifiers V1, . . . ,Vn that R(x,w) = 1 at once for an NP relation R. It is easy to see that
SIF implies MVZK directly: let C be the circuit that evaluatesR(x,w), then the parties can jointly invoke SIF to
evaluate C.

MVZK can be used in normal ZK scenarios as long as the identities of the verifiers are known ahead of time.
It can also be used in some real life cryptographic systems, e.g., private aggregation system [CB17]. More con-
cretely, in the private aggregation system like Prio [CB17], a set of servers collect and aggregate the clients’ data;
and each client needs to prove to servers that its data is valid using Secret-shared Non-Interactive Proof (SNIP).
Notice that, the SNIP in [CB17] assumes the client (acting as the prover) not to collude with the servers (acting
as the verifiers) to ensure soundness; for zero-knowledge property, the SNIP can tolerate all-but-one malicious
servers. Hence, if there exists an efficient 1-round MVZK protocol against a dishonest majority (which allows
the malicious prover to collude with verifiers), it could be a significantly better alternative technique to SNIP
in [CB17].

VRS. In [AKP22], Applebaum et al. introduce a new primitive called VRS, which generalizes MVZK. In a VRS
protocol, we consider a distinguished party called dealer D, who holds a secret input s, and n parties called
verifiers V1, . . . ,Vn, who have no secret inputs. The dealer D wishes to share the secret s to the verifiers first;
for simplicity, we denote by xi the share received by the i-th verifier. Then the dealer D wishes to prove that the
shares satisfying an NP relation R to the verifiers, i.e., D proves that R(x1, . . . , xn, s) = 1 in a zero-knowledge
way. Clearly, SIF also implies VRS: let (y1, . . . , yn)← C(x1, . . . , xn, s) be a circuit such that yi = xi for i ∈ [n] if
R(x1, . . . , xn, s) = 1; otherwise, yi = ⊥ where ⊥ is a failure symbol. Then the parties can jointly invoke SIF to
evaluate such a circuit C to realize VRS.

VRS has various applications, including Verifiable Secret Sharing (VSS) [CGMA85, NMO+04, DMQO+11,
KMM+23, CL24, CD24], Distributed Key Generation (DKG) [GJKR07, DYX+22, CL24, CD24, Kat24] and so on. In
particularly, here we describe how to use VRS for the purpose of DKG. We assume the public key of a DKG
protocol is additive homomorphic, for instance, pk = gsk, where (pk, sk) is the public-secret key pair and g is a
cyclic group generator. We assume there are n parties P1, . . . ,Pn, for each i ∈ [n], we let Pi sample a random
sk(i), secret-share sk(i) into {sk(i)

j }j 6=i, and compute pk(i) := gsk
(i)

. Then we let Pi be the dealer of a VRS: Pi
broadcasts pk(i), sends sk

(i)
j to Pj , and proves that sk(i) =

∑
j sk

(i)
j and pk(i) = gsk

(i)

by invoking a VRS. It
is easy to see that the final public key can be obtained by pk :=

∑
i pk

(i), and the corresponding secret key
sk :=

∑
i sk

(i) is distributed among P1, . . . ,Pn.

SIF with an honest majority. We now introduce a beautiful line of works [AKP22, YW22, BJO+22] on SIF in
the honest majority setting. The work by Applebaum et al. [AKP22] mainly focuses on the theoretical side and
gives a 2-round feasibility result for SIF in the plain model. In particular, as claimed by Applebaum et al., the

1

first round of their protocol is input independent; thus, their work can also be interpreted as a 1-round protocol
in the preprocessing model.

On the other hand, both the work by Yang and Wang [YW22] and the work by Baum et al. [BJO+22] focus
on constructing practical 2-round SIF (in the context of MVZK). In [BJO+22], Baum et al. design two types of
MVZK protocols with different corruption thresholds in the preprocessing model: the one with t < n

4 and
another one with t < n

3 , where n denotes the total number of verifiers while t denotes the number of corrupted
verifiers1. In [YW22], Yang and Wang design their protocols in the Random Oracle (RO) model; they employ
Shamir’s secret sharing [Sha79] to construct a protocol with t < n

2 . Yang and Wang also show how to utilize
packed secret sharing [FY92] to improve the communication complexity at the cost of degrading the corruption
threshold from t < n

2 to t < (1
2 − ε)n, where ε is a positive constant.

SIF against a dishonest majority. We also introduce some interesting results in the dishonest majority setting.
Lepinski et al. study how to strength the security of MVZK by adding the fairness among the verifiers [LMs05],
i.e., the malicious verifiers who collude with the prover learn nothing except the validity of the statement if the
honest verifiers accept the proof. Notice that, their work is only a feasibility study and is not practical at all.

When it comes to practical efficiency, a recent work by Zhou et al. [ZZZR24] constructs a practical 2-round
SIF protocol against a dishonest majority in the preprocessing model. More precisely, they utilize a similar
preprocessing phase as [BDOZ11] and show how to check the multiplication gates in merely 2 rounds by
using Beaver’s triples technique [Bea92].

Our main research question. As mentioned above, it is known that, by assuming the preprocessing model,
1-round SIF (and MVZK) can be constructed [AKP22, LMs05]; however, these works are primarily theoretical
studies and provide no practical solutions. Current practical solutions [YW22, BJO+22, ZZZR24], on the other
hand, all necessitate a minimum of 2-round online communication. This discrepancy presents a gap in the field
of SIF protocol design. It makes us wonder if it is possible to bridge this gap by constructing a 1-round SIF
protocol with practical efficiency? Furthermore, if so, can we build such a protocol with optimal corruption
threshold (i.e., t < n)?

We note that constructing such a protocol with practical efficiency is a non-trivial task. One may suggest
using practical MPC protocols against a dishonest majority to realize SIF, for example, the constant-round
BMR-style protocols [BMR90]. However, to the best of our knowledge, the BMR-style MPC protocols in the lit-
erature require at least 2-round online communication [LSS16,HSS17]. Therefore, naively using MPC protocols
to realize SIF is not a solution. Given these difficulties, we ask the following research question:

In the preprocessing model, is it possible to construct a practical 1-round SIF protocol with optimal corruption
threshold (i.e., t < n)?

1.1 Our Contributions

In this work, we will give an affirmative answer to our research question. Our contributions can be summa-
rized as follows.

The first practical 1-round SIF with optimal corruption threshold. We present the first 1-round practical
protocol for SIF against a dishonest majority in the preprocessing model, and our protocol can be proven
secure in the Universal Composability (UC) framework [Can01]. Our protocol is optimal in two aspects: (i) for
round complexity, our protocol achieves round-optimal in the online phase; (ii) for corruption threshold, our
protocol does not assume an honest majority and can tolerate up to 1 corrupted dealer and n − 1 corrupted
verifiers, which is optimal. Table 1 depicts a comparison between our work and other recent and related works.

As shown in Table 1, our work is the only one that achieves 1-round online communication as well as the
practical efficiency in the dishonest majority setting. The full descriptions of our protocol are put in Section 4.

1In this work, unless otherwise stated, we assume the adversary can corrupt the dealer/prover and some of the verifiers.

2

Table 1: Comparison of our work and the state-of-the-art relevant works.

Ref. Primitive #Round†
Corruption
Threshold‡

Setup
Assumption§

Practical?

[LMs05] MVZK 1 t < n Prep. %

[YW22] MVZK 2 t < n
2

RO "

[BJO+22] MVZK 2 t < n
3

Prep. "

[AKP22] SIF 1 t < n
2+ε
¶ Prep. %

[ZZZR24] SIF 2 t < n Prep. "

Ours SIF 1 t < n Prep. "

† Refer to the number of rounds in the online phase.
‡ In [YW22, BJO+22], the authors proposed protocols with different corrup-

tion thresholds. Here, we report the maximum corruption thresholds that
[YW22, BJO+22] can achieve.
§ Prep.: preprocessing model; RO: random oracle model.
¶ Here, ε is a small positive constant.

An impossibility result on 1-round SIF without using broadcast channels. The online phase of our 1-round
SIF protocol requires broadcast channels as well as secure point-to-point channels; we remark that broadcast
channels are also used in the online phase of the existing designs [LMs05, AKP22, YW22, BJO+22, ZZZR24].
Given that broadcast channels are more expensive than secure point-to-point channels, it is natural ask the
following question: Are broadcast channels a must for constructing 1-round SIF protocols?

In Section 5, we formally prove that: in the UC framework [Can01], 1-round SIF is impossible to achieve
without using broadcast channels, even if a preprocessing model is assumed. Our impossibility result holds
no matter how many verifiers the adversary can corrupt, as long as the adversary is allowed to corrupt the
dealer; hence, our impossibility result holds in both honest majority and dishonest majority settings.

A new form of correlation: mv-sVOLE. We extend the two-party subfield Vector Oblivious Linear Evalua-
tion (sVOLE) [BCG+19a,BCG+19b,WYKW21] into the multi-party setting, which is an essential tool in our SIF
construction. More precisely, we propose a new primitive called multiple-verifier sVOLE (mv-sVOLE). In Sec-
tion 3, we formally define the mv-sVOLE through an ideal functionality; we also give an efficient construction
and prove the security in the UC framework.

We note that, there are several works in the literature that also try to extend sVOLE into the multi-party
setting (e.g., [QYYZ22, RS22]). We compare the difference between those works and our mv-sVOLE primitive
in Section 3.1.

Implementation and benchmark. We implement our protocol in C++ and conduct comprehensive experi-
ments. We present a brief concrete efficiency comparison between our work and other constant-round relevant
works in Table 2.

In Table 2, we compare our protocols with three types of related works: (i) SIF against a dishonest ma-
jority [ZZZR24]; (ii) SIF (in the context of MVZK) with an honest majority [BJO+22]; and (iii) (constant-
round) MPC against a dishonest majority [WRK17]. It turns out that, our improvement for running time
ranges from 4.0×-6.9× over different network configurations, when the number of corrupted parties T is
fixed to be 7. When T = 7 (including 1 corrupted prover/dealer and 6 corrupted verifiers), both our work
and [ZZZR24, WRK17] can have 8 parties in total; in contrast, [BJO+22] requires at least 26 total parties, since
its corruption threshold is t < n

4 , where t, n are the number of corrupted verifiers and total verifiers2. Notice
that, this comparison approach (i.e., fixing the number of corrupted parties when make comparisons among
protocols with various corruption thresholds) is also taken in the recent MPC work [EGP+23]. We also make
comparisons when the total party number is fixed; and we refer readers to see more discussions and compar-
isons in Section 6.

2The authors of [BJO+22] open-sourced their codes in [con22]. However, in [con22], they implemented their older version protocol
with t < n

3
and it is less efficient than the published version protocol. In this work, when it comes to comparing concrete efficiency, we

refer [BJO+22] to the protocol with t < n
4

since we measure the results of this protocol.

3

Table 2: Concrete efficiency comparison of our work and other constant-round relevant works. All numbers
are obtained by ourselves for evaluating an AES-128 boolean circuit with the same hardware configurations.

Ref. Primitive (T,N)†
Running Time Per AND Gate (us)

LAN WAN‡

[BJO+22] MVZK (7, 26) 165.6 238.3
[WRK17] MPC (7, 8) 140.5 332.7
[ZZZR24] SIF (7, 8) 123.0 291.8

Ours SIF (7, 8) 24.1 60.3
† Here, T and N refer to the number of corrupted parties and total

parties, respectively.
‡ LAN (1Gbps with 6ms delay); WAN (200Mbps with 20ms delay).

1.2 Our Techniques

Here we provide a technique overview of our protocols. We start by recapping the previous works’ approaches,
then we describe our intuitions and how we achieve round-optimal SIF construction.

1.2.1 Previous Approaches.

We start by recapping a recent work by Zhou et al. [ZZZR24], which provides a practical SIF construction
against a dishonest majority. More precisely, Zhou et al. showed how to “transform” the BDOZ-style MPC [BDOZ11],
whose number of online round depends on circuit depth, into a SIF with 2 online rounds. In a BDOZ-
style MPC, the parties use additive shares to share their private inputs and employ the Beaver’s triples tech-
nique [Bea92] to check the correctness of the multiplication gates, i.e., for each multiplication gate, the parties
have to prepare a random multiplication triple (a, b, c) such that c = a · b; to ensure the security, the multipli-
cation triple (a, b, c) needs to be secret-shared and authenticated among the parties. For a multiplication gate
with input values wα, wβ , the parties need to open d1 := wα − a and d2 := wβ − b and then locally compute
the share of the output value wγ by the identity wγ = d1 · d2 + d1 · b + d2 · a + c. Zhou et al. observed that in
the SIF setting, the whole multiplication triple (a, b, c) can be revealed to the dealer, since these triples are used
for protecting the private input which is already known by the dealer. In this way, for each multiplication gate
whose input values are denoted by wα, wβ , the dealer can simply compute and broadcast d1 and d2, then the
verifiers can open d̃1 := wα − a and d̃2 := wβ − b using their own shares to check if d1

?
= d̃1 and d2

?
= d̃2. It is

easy to see that all the multiplication gates can be executed in parallel; thus, they are able to achieve 2-round
online communication.

Besides BDOZ-style MPC protocol, other practical MPC protocols which are not constant-round may also
be “transformed” into constant-round SIF using the ideas in [ZZZR24]. For instance, as already discussed
in [ZZZR24], SPDZ-style MPC [DPSZ12] can be chosen, but the resulting SIF protocol will have an additional
online round. Our first attempt is to “transform” the recent MPC protocol [EGP+23], which combines Beaver’s
triples technique with packed secret sharing to obtain better communication complexity, into a practical SIF;
however, the resulting SIF protocol requires at least 2-round online communication, and cannot achieve optimal
corruption threshold due to the use of packed secret sharing.

In addition to [ZZZR24], we observe that other current practical solutions [YW22, BJO+22] also follow the
same (online) communication pattern: the dealer sends the computed results and the corresponding “proofs”
to the verifiers in the first round, then the verifiers communicate with each other in the following round(s) to
check whether the “proofs” are correct. It seems that the communication among the verifiers are necessary. For
better expression, let us take MVZK, a direct application of SIF, as an example. In a MVZK, if verifiers have no
chance to communicate with each other, a malicious prover may cause honest verifiers to output inconsistent
results (e.g., some of the honest verifiers may output acceptance while others may output rejection). That is
why the current practical solutions [YW22,BJO+22,ZZZR24] all require at least 2-round online communication.

4

1.2.2 Our Approach.

To reduce the round complexity, we have to break the online communication pattern in previous practical
solutions [YW22, BJO+22, ZZZR24]. Our key observation is that the communication among the verifiers could be
pushed into the preprocessing phase; in this way, we have the chance to obtain 1-round online communication
while ensuring the verifiers to have consistent outputs.

In the following, we first talk about the preprocessing phase of our SIF construction; jumping ahead, we
propose a new primitive called multiple-verifier sVOLE (mv-sVOLE), which is an essential building block for
the preprocessing phase.

Preprocessing phase: using mv-sVOLE as correlations. In our design, we make extensive use of a partic-
ular form of correlation, called subfield Vector Oblivious Linear Evaluation (sVOLE) [BCG+19a, BCG+19b,
WYKW21]. In the two party setting, sVOLE correlations capture the well-known primitive, i.e., Information-
Theoretic Message Authentication Codes (IT-MACs) [BDOZ11, NNOB12]. Let Fpr be the extension field of a
field Fp. In sVOLE, there are two parties involved, i.e., a dealer D and a verifier V, and V holds a MAC key
∆ ∈ Fpr . In order to authenticate the vector x ∈ F`p held by D to V, we let D have the MAC tag m ∈ F`pr
and let V have another MAC key k ∈ F`pr s.t. m = k − ∆ · x. For different x, V will use different k and the
same ∆. For this reason, we call k the “local” MAC key and ∆ the “global” MAC key. It is easy to see that
a malicious D∗ who does not know the MAC keys, cannot produce another valid m′ for x′ 6= x except for
negligible probability when |Fpr | is sufficiently large.

In the setting of SIF, we are dealing with n+1 parties, i.e., a dealer D and n verifiers V1, . . . ,Vn, so we have to
extend the (two-party) sVOLE correlations into the multi-party setting, which we call multiple-verifier sVOLE
(mv-sVOLE). More precisely, we let each verifier Vi privately hold a global MAC key ∆(i) ∈ Fpr . For each
vector x ∈ F`p held by the dealer D, for each i ∈ [n], we let the dealer D have the MAC tagm(i) ∈ F`pr and let the
verifier Vi have the local MAC key k(i) ∈ F`pr such that k(i) = m(i) + ∆(i) ·x. For better expression, we use the
notation JxK to denote the authenticated vectorx. In this way, the vector held by the dealer can be authenticated
to each verifier. Then, how to generate these mv-sVOLE correlations? One might suggest invoking n instances
of sVOLE naively; however, this naive solution is not secure at all: a malicious dealer might use inconsistent
values x′ 6= x in different instance of sVOLE procedure. To address this security issue, we let the verifiers
to pose some lightweight consistency checks to detect the malicious behaviors of the dealer. This ensures the
verifiers can obtain the correct mv-sVOLE correlations; jumping ahead, it also guarantees the honest verifiers
can output the consistent results in the online phase. More concretely, we generalize the technique in [WRK17]
(which is originally designed for binary field) to adapt to our setting. Informally speaking, we first let the
dealer to use the same x in different sVOLE instances with different verifiers. Then the verifiers will jointly
sample a random s and ask the dealer to reveal u := s> · x and the corresponding MAC tags. In this way, the
verifiers can check whether the dealer uses the same x. We defer the details of our mv-sVOLE constructions
and the security analysis in Section 3.2.1.

Online phase: checking all multiplication gates in 1-round. Our online protocol is designed in the “commit-
and-prove” paradigm. More concretely, we first let the dealer D commit to his witness w ∈ Fmp using the
random mv-sVOLE correlations JµK generated in the preprocessing phase; that is, D broadcasts δ := w − µ ∈
Fmp to verifiers, and all parties compute JwK := JµK + δ. Then we let D “prove” that all the gates of the circuits
are processed properly.

It is easy to see that addition gates can be processed for free. For multiplication gates, we avoid the use
of Beaver’s triples technique; instead, we extend the techniques in [DIO21, YSWW21], which require sVOLE
correlations and are designed for the two-party setting, into the multi-party setting. More concretely, for the
i-th multiplication gate with input wires α, β and output wire γ, we denote by wα, wβ the input wire values
and denote by wγ the output wire values. We let D broadcast di := wα · wβ − ηi ∈ Fp, where ηi is random
and JηiK is generated in the preprocessing phase, then all parties can compute JwγK := JηiK + di. In this way,
D holds wa,m

(j)
a and Vj holds ∆(j), k

(j)
a such that k(j)

a = m
(j)
a + wa ·∆(j) for a ∈ {α, β, γ} and j ∈ [n]. By the

5

following identity:

B
(j)
i := k(j)α · k

(j)
β − k

(j)
γ ·∆(j)

= (m(j)
α + wα ·∆(j)) · (m(j)

β + wβ ·∆(j))− (m(j)
γ + wγ ·∆(j)) ·∆(j)

= m(j)
α ·m

(j)
β︸ ︷︷ ︸

Denote by A(j)
i,0

+ (m
(j)
β · wα +m(j)

α · wβ −m(j)
γ)︸ ︷︷ ︸

Denote by A(j)
i,1

·∆(j)

+ (wα · wβ − wγ) · (∆(j))2,

(1)

we conclude that if D behaves honestly (i.e., wγ = wα · wβ), then we have B(j)
i = A

(j)
i,0 + A

(j)
i,1 ·∆(j). It is easy

to see that B(j)
i (resp. A(j)

i,0 , A
(j)
i,1) can be locally computed by D (resp. Vj); therefore, the correctness of the i-th

multiplication gate can be checked by letting D sendA(j)
i,0 , A

(j)
i,1 to Vj and letting Vj checkB(j)

i
?
= A

(j)
i,0 +A

(j)
i,1 ·∆(j)

for each j ∈ [n]. Notice that, the multiplication gates can be checked together; that is the reason why we can
achieve 1-round online communication. We defer the details of improving the efficiency of the above checks
in Section 4.2.

2 Preliminaries

2.1 Notations

We use λ ∈ N to denote the security parameter. We say a function negl : N→ N is negligible if for every positive
polynomial poly(·) and every sufficiently large λ, negl(λ) < 1

poly(λ) holds. We say two distribution ensembles
U = {Uλ}λ∈N andW = {Wλ}λ∈N are statistically (resp. computationally) indistinguishable, which we denote
by U

s
≈ W (resp., X

c
≈ Y), if for any unbounded (resp., PPT) distinguisher D there exists a negligible function

negl s.t. |Pr[D(Uλ) = 1] − Pr[D(Wλ) = 1]| = negl(λ). We use x ← S to denote by the event that sampling a
uniformly random x from a finite set S. For n ∈ N, we to [n] to denote by a set {1, . . . , n}. For a, b ∈ Z with
a ≤ b, we use [a, b] to denote by a set {a, . . . , b}. We use bold lower-case letters, e.g. x, to denote by the vectors,
and we use xi to denote by the i-th component of vector x.

We consider both arithmetic circuit and boolean circuit. Basing on a finite field Fp with a prime order p,
a circuit C : Fmp → Fnp consists of a set of input wires Iin and a set of output wires Iout, where |Iin| = m and
|Iout| = n. In addition to that, the circuit C also contains a list of gates of the form (α, β, γ, T), where α, β (resp.
γ) are the indices of the input wires (resp. output wire), and T ∈ {Add,Mult} is the gate type. If p = 2, then
C is a boolean circuit where Add = ⊕ and Mult = ∧. If p > 2, then C is an arithmetic circuit where Add/Mult
corresponds to addition/multiplication in Fp.

We use Fpr to denote by an extension field of a finite field Fp, where p ≥ 2 is a prime and r ≥ 1 is an integer.
We can write Fpr ∼= Fp[X]/f(X), where f(X) is a some monic, irreducible polynomial with degree r. It is easy
to see that, every w ∈ Fpr can be written uniquely as w =

∑r
i=1 vi ·Xi−1 with vi ∈ Fp for all i ∈ [r]. Thus, the

elements over Fpr can be regarded as the vectors in (Fp)r equivalently.

2.2 Security Model

We design our protocols and prove their security in the Universal Composability (UC) framework by Canetti [Can01].
In the UC framework, we define a protocol Π to be a computer program (or several programs) which is

intended to be executed by multiple parties. Every party has a unique identity pair (pid, sid), where pid refers
to the Party ID (PID) and sid refers to the Session ID (SID). Parties running with the same code and the same
SID are viewed to be in the same protocol session. The adversarial behaviors are captured by the adversary A,
who is able to control the network and corrupt the parties. When a party is corrupted byA,A obtains its secret
input and internal state.

The UC framework is based on the “simulation paradigm” [GMW87], a.k.a., the ideal/real world paradigm.
In the ideal world, the inputs of the parties are sent to an ideal functionality F who will complete the com-
putation task in a trusted manner and send to each party its respective output. The corrupted parties in the
ideal world are controlled by an ideal-world adversary S (a.k.a., the simulator). In the real world, parties com-
municate with each other to execute the protocol Π, and the corrupted parties are controlled by the real-world

6

adversary A. There is an additional entity called environment Z , which delivers the inputs to parties and
receives the outputs generated by those parties. The environment Z can communicate with the real-world ad-
versaryA (resp. ideal-world adversary S) and corrupt the parties through the adversary in the real (resp. ideal)
world. Roughly speaking, the security of a protocol is argued by comparing the ideal world execution to the
real world execution. More precisely, for every PPT adversary A attacking an execution of Π, there is a PPT
simulator S attacking the ideal process that interacts with F (by corrupting the same set of parties), such that
the executions of Π with A is indistinguishable from that of F with S to Z . We denote by EXECF,S,Z (resp.
EXECΠ,A,Z) the output of Z in the ideal world (resp. real world) execution. Formally, we have the following
definition.

Definition 1. We say a protocol Π, UC-realizes the functionality F , if for any PPT environment Z and any PPT
adversary A, there exists a PPT simulator S s.t. EXECΠ,A,Z

c
≈ EXECF,S,Z .

We then describe the modularity which is appealing in the UC framework: when a protocol calls subroutines,
these subroutines can be treated as separate entities and their security can be analyzed separately by way of
realizing an ideal functionality. This makes the protocol design and security analysis much simpler. Therefore,
we introduce the notion of “hybrid world”. A protocol Π is said to be realized “in the G-hybrid world” if Π
invokes the ideal functionality G as a subroutine. Formally, we have the following definition.

Definition 2. We say a protocol Π, UC-realizes the functionality F in the G-hybrid world, if for any PPT environment
Z and any PPT adversary A, there exists a PPT simulator S s.t. EXECGΠ,A,Z

c
≈ EXECF,S,Z .

Adversarial model. As in [AKP22,YW22,BJO+22,ZZZR24], in this paper, we consider a malicious, static and
rushing adversary. We also assume that the adversary is allowed to corrupt the dealer and up to t number of
verifiers where t < n.

Secure communication model. In this work, we consider simultaneous communication. We also assume the
parties are connected by pairwise secure channels and a broadcast channel. We remark that, these secure com-
munication channels are also required in the relevant works [AKP22, YW22, BJO+22, ZZZR24]. The broadcast
channel can be implemented by using a standard echo-broadcast protocol [GL05].

2.3 (Programmable) Subfield VOLE

We first introduce the subfield Vector Oblivious Linear Evaluation (sVOLE) [BCG+19a, BCG+19b, YWL+20,
WYKW21, YSWW21], which works over an extension field Fpr . More precisely, in sVOLE, the verifier V holds
a global MAC key ∆ ∈ Fpr which can be used for multiple times. For a vector x ∈ F`p held by the dealer D,
we let the dealer D have the MAC tag m ∈ F`pr and let the verifier have the local MAC key k ∈ F`pr such that
m = k − ∆ · x. In this way, the vector x is authenticated to the verifier V. Notice that, D cannot lie about x,
because the probability of D computing a valid MAC tag m′ for a chosen x′ 6= x is at most p−r, which would
be negligible if p, r are chosen properly.

We note that, most of the recent and popular approaches for generating subfield VOLE are based on Pseu-
dorandom Correlation Generators (PCGs), e.g., [BCGI18, BCG+19a, WYKW21]. Informally speaking, a PCG
allows two parties take a pair of short and correlated seeds, then expand them to produce a much larger
amount of correlation randomness. However, typically, the sVOLE correlations generated by PCGs are ran-
dom, meaning that the dealer D cannot chose the authenticated vector x. This is troublesome when the dealer
D wants to use the same u to run different instances of sVOLE generation procedures with different verifiers.
We note that, given a random sVOLE correlation (x′,m′,∆,k′) such thatm′ = k′−∆ ·x′, the dealer D can eas-
ily convert it to a sVOLE correlation with chosen x by sending δ := x−x′ to the verifier and settingm := m′,
the verifier V then sets k := k′ + δ ·∆; in this way,m = k−∆ ·x holds. However, this approach requires O(`)
communication cost, where ` is the vector length; when a large amount of sVOLE correlations are needed, this
approach is not efficient enough.

To address the above issue, Rachuri and Scholl propose the programmable sVOLE in [RS22]; we model this
primitive through an ideal functionality Fp,rpsVOLE, which is adapted from [RS22] and is depicted in Figure 1.
The programmability means that the dealer D can choose a seed sd and expand it to a vector of ` field elements
x := Expand(sd, `), where Expand : S×Z→ F∗p is a deterministic expansion function that takes a seed sd from a

7

The functionality interacts with a dealer D, a verifier V and an adversary S. It is parameterized with a finite
field Fp and its extension field Fpr , and a deterministic expansion function Expand : S × Z→ F∗p.

Initialization: Upon receiving (INIT, sid) from D and V, do:

• If V is honest, sample ∆← Fpr ; otherwise, receive ∆ ∈ Fpr from the adversary S.

• Store ∆ and send (INIT, sid,∆) to V. Ignore any subsequent INIT commands.

Authentication over subfield: Upon receiving (AUTHSUB, sid, `, sd) from D and (AUTHSUB, sid, `) from V, where
s ∈ S, do:

• Compute x := Expand(sd, `) ∈ F`p.

• If both parties are honest, sample k← F`pr , then compute m := k −∆ · x ∈ F`pr .

• If both parties are malicious, halt.

• If D∗ is malicious and V is honest, receive m ∈ F`pr from S, then compute k := m+ ∆ · x ∈ F`pr .

• If D is honest and V∗ is malicious, receive k ∈ F`pr from S, then compute m := k −∆ · x ∈ F`pr .

• Send (CONTINUE, sid) to S. For each honest party H ∈ {D,V}, upon receiving an input from S,

– If it is (CONTINUE, sid,H), send the respective output to H. More precisely, if H is the dealer D, send
(AUTHSUB, sid,m) to D; if H is the verifier V, send (AUTHSUB, sid,k) to V.

– If it is (ABORT, sid,H), send (ABORT, sid) to H.

Functionality Fp,rpsVOLE

Figure 1: The Functionality Fp,rpsVOLE

seed space S and the output length ` ∈ Z as inputs and outputs a `-length vector x ∈ F`p. This allows the dealer
to use the same authenticated vector x (by choosing the same seed) in different instances of Fp,rpsVOLE. As noted
in [RS22], in practice, the expansion function Expand may correspond to some kind of secure Pseudo Random
Generators (PRGs)3. Rachuri and Scholl also provide a PCG-style protocol that can efficiently realize Fp,rpsVOLE,
and we refer interested readers to see that in [RS22].

We also note that, the sVOLE correlation satisfies an appealing property, i.e., additive homomorphism. More
precisely, given authenticated vectors x1, . . . ,xn ∈ F`p (i.e., for i ∈ [n]: the dealer D holds xi and mxi and the
verifier V holds ∆ and kxi such thatmxi = kxi −∆ ·xi) and the public coefficients c1, . . . , cn ∈ Fp and c ∈ F`p,
the dealer D can locally compute y := c +

∑n
i=1 ci · xi and the corresponding MAC tag my :=

∑n
i=1 ci ·mxi

while the verifier V can locally compute the corresponding local MAC key ky :=
∑n
i=1 ci ·kxi + ∆ · c such that

my = ky −∆ · y.

2.4 Single-Input Functionalities

In [AKP22], Applebaum et al. formally define SIF, and their SIF functionality is defined to capture full security.
Later, in [ZZZR24], Zhou et al. consider a relaxed version of SIF, capturing security with abort. In this work,
we take the definition from [ZZZR24], which is depicted in Figure 2, since we focus on the dishonest majority
setting. As shown in Figure 2, there are a dealer D and n verifiers V1, . . . ,Vn. The parties hold a circuit
C : Fmp → Fnp while the dealer D additionally holds a private input w where |w| = m. The functionality FSIF

takes w from the dealer D, then it computes y := C(w) and delivers yi to Vi for i ∈ [n], where yi is the i-th
component of y.

3 Multiple-Verifier Subfield VOLE

3.1 Security Definition

Here we extend the (two-party) sVOLE into the multi-party setting, and we call this new form of correlated
randomness multiple-verifier subfield VOLE (mv-sVOLE). More precisely, in mv-sVOLE, there are a dealer D and

3Typically, PRGs are referred as randomized algorithms that can generate pseudorandom strings. However, when the seed (which
contains the randomness) and the output length are fixed, we can view a PRG as a deterministic algorithm.

8

The functionality interacts with a dealer D, n verifiers V1,. . . ,Vn and an adversary S. It is parameterized by a
circuit C where C : Fmp → Fnp . Let H denote the set of honest parties.

Upon receiving (INPUT, sid,w) from D and (INPUT, sid) from Vi for all i ∈ [n] where w ∈ Fmp , do

• Compute y := C(w), and send (OUTPUT, sid, yi) to V∗i for each malicious verifier V∗i /∈ H.

• Send (CONTINUE, sid) to the adversary S. For each honest verifier Vi ∈ H, upon receiving an input from S,

– If it is (CONTINUE, sid,Vi), send (OUTPUT, sid, yi) to Vi.

– If it is (ABORT, sid,Vi), send (ABORT, sid) to Vi.

Functionality FSIF

Figure 2: The Functionality FSIF

n verifiers V1, . . . ,Vn, and each verifier Vi privately holds a global MAC key ∆(i) ∈ Fpr . For each vector x ∈ F`p
held by the dealer D, for each i ∈ [n], we let the dealer D have the MAC tag m(i) ∈ F`pr and let the verifier Vi
have the local MAC key k(i) ∈ F`pr such that k(i) = m(i) + ∆(i) · x. In this way, the vector held by the dealer
can be authenticated to each verifier. Formally, we present our mv-sVOLE functionality in Figure 3.

Comparison with other works. Notice that, there are several works in the literature that also try to extend
sVOLE into the multi-party setting; in the following, we will describe the difference between those works and
ours. In [QYYZ22], Qiu et al. also consider the setting with one dealer and multiple verifiers; however, they
do not consider the consistency of the authenticated values. In other words, their malicious dealer can use
inconsistent x for different verifiers. As a result, their multi-verifier sVOLE can be implemented by running
two-party sVOLE n times directly, while our mv-sVOLE functionality cannot be realized through this native
approach. In [RS22], Rachuri and Scholl extend sVOLE into the multi-party setting in a different way: they
let each party play the role of the dealer in turn, and each parties’ private values will be authenticated to all
other parties. Therefore, there is no distinguished party in their setting, and their multi-party sVOLE primitive
is much more complex than our mv-sVOLE. We conjecture that our mv-sVOLE primitive might be used as
a basic building block to realize the multi-party sVOLE in [RS22]. In some constant-round MPC protocols
that tailored for boolean circuits (e.g., [WRK17, YWZ20]), they make use of a primitive called multi-party
authenticated bits. Our mv-sVOLE can be viewed as a generalization of multi-party authenticated bits, since
multi-party authenticated bits are specifically designed for the case over binary field (i.e., p = 2) while our
mv-sVOLE can cover both binary field and large filed (i.e., p > 2).

3.2 Efficiently Realizing Fp,rmv-sVOLE

In this subsection, we first give a template construction that efficiently realizes Fp,rmv-sVOLE. Then we will show
that, by carefully choosing the parameters, our construction remains secure for both p = 2 and large p > 2.

3.2.1 A Template Construction

Before formally presenting our protocol, we give a high-level description. Let ρ1 and ρ2 be parameters. In
order to authenticate the same `-length vector to all verifiers respectively, we first let all parties set `′ := `+ ρ1

and let the dealer D pick a random seed sd from the seed space S. We denote by x := Expand(sd, `′) ∈ F`′p .
We note that, the last ρ1 components of the vector x are used to prevent a potentially malicious verifier from
learning the first ` components of x. Then for each i ∈ [n], we let D and Vi invoke an instance of Fp,rpsVOLE,
where D sends s to Fp,rpsVOLE, and Fp,rpsVOLE returns x,m(i) to D and returns k(i) to Vi such that k(i) = m(i) +

x · ∆(i). Next, we let the parties perform the following consistency checks for ρ2 times to ensure that, if a
potentially malicious dealer D∗ uses inconsistent seeds in different instances of Fp,rpsVOLE with different verifiers,
D∗ will be caught with overwhelming probability. We say the dealer uses inconsistent seeds, if it uses sd1, sd2

such that Expand(sd1, `
′) 6= Expand(sd2, `

′). Notice that, if the dealer uses sd1, sd2 such that sd1 6= sd2 but
Expand(sd1, `

′) = Expand(sd2, `
′), we still say that the dealer uses consistent seeds.

Our consistency checks work as follows: We let parties sample a uniformly random s ← F`′p and let the
dealer D broadcast u := s> · x ∈ Fp. Then for each i ∈ [n]: the dealer D will send the corresponding MAC tag

9

The functionality interacts with a dealer D, n verifiers V1, . . . ,Vn and an adversary S. It is parameterized with a
finite field Fp and its extension field Fpr . Let H be the set of honest parties.

Initialization: Upon receiving (INIT, sid) from D and V1, . . . ,Vn:

• For each i ∈ [n], if Vi is honest, sample ∆(i) ← Fpr ; otherwise, receive ∆(i) ∈ Fpr from the adversary S.

• Store {∆(i)}i∈[n] and send (INIT, sid,∆(i)) to Vi. Ignore any subsequent INIT commands.

Authentications over subfield: Upon receiving (AUTHSUB, sid, `) from D and V1, . . . ,Vn, do:

• If all parties are honest, sample x← F`p. For each i ∈ [n]: sample k(i) ← F`pr and compute
m(i) := k(i) −∆(i) · x ∈ F`pr .

• If all parties are malicious, halt.

• If D∗ is malicious and some of the verifiers are honest, receive x ∈ F`p from the adversary S. For each honest
verifier Vi ∈ H: receive m(i) ∈ F`pr from the adversary S, and compute k(i) := m(i) + ∆(i) · x ∈ F`pr .

• If D is honest and some of the verifiers are malicious, sample x← F`p. For each malicious verifier V∗i /∈ H:
receive k(i) ∈ F`pr from the adversary S; for each honest verifier Vi ∈ H: sample k(i) ← F`pr . Then compute
m(i) := k(i) −∆(i) · x ∈ F`pr for each i ∈ [n].

• Send (CONTINUE, sid) to the adversary S. For each honest party H ∈ H, upon receiving an input from S,

– If it is (CONTINUE, sid,H), send the respective output to H. More precisely, if H is the dealer D, send
(AUTHSUB, sid,x, {m(j)}j∈[n]) to D; if H is i-th verifier Vi, send (AUTHSUB, sid,k(i)) to Vi.

– If it is (ABORT, sid,H), send (ABORT, sid) to H.

Functionality Fp,rmv-sVOLE

Figure 3: The Functionality Fp,rmv-sVOLE

w(i) := s> ·m(i) ∈ Fpr for u to Vi, and Vi will compute the corresponding local MAC key v(i) := s> ·k(i) ∈ Fpr
and checks if v(i) ?

= w(i) + ∆(i) · u. Later, we will show that by carefully choosing parameters, if D uses the
inconsistent seeds, then D will be caught with overwhelming probability. Finally, if all consistency checks
pass, all parties output the first ` objects. That is, D outputs the first ` components of x, {m(j)}j∈[n] and Vi
outputs the first ` components of k(i) for each i ∈ [n]. Formally, we present our protocol construction Πρ1,ρ2

mv-sVOLE

in Figure 4. Note that, in Figure 4, we will make use of the coin-tossing procedure, and we put the formal
description of the coin-tossing functionality Fp,rCOIN in Appendix A.

3.2.2 Security Analysis

Case I: for p = 2. Here, we are dealing with the case where p = 2 and r = λ, where λ is the security
parameter; thus, this can support SIF over boolean circuits, which we will describe in the later sections. In
this case (p = 2 and r = λ), the parameters should be set as ρ1 := 2ρ and ρ2 := ρ where ρ = Θ(λ). Notice
that, for these parameters, our protocol Π2ρ,ρ

mv-sVOLE directly yields the multi-party authenticated bits protocol
in [WRK17, Figure 5]4. Next, we explain why the parameters are set in this way.

Let us first consider the case where D∗ is corrupted. We need to ensure that if D∗ uses inconsistent seeds,
for instance, sd1, sd2 such that Expand(sd1, `

′) 6= Expand(sd2, `
′), then D∗ would be caught with overwhelming

probability. We denote by x1 := Expand(sd1, `
′) and x2 := Expand(sd2, `

′). Since D∗ cannot forge a MAC tag
except for a negligible probability, the probability of D∗ passing the consistency check is the probability that
s> · x1 = s> · x2, where s is the random vector returned by F2,1

COIN. If we instantiate Expand with a secure
PRG and we denote by I the set of indices where x1 6= x2, then it is easy to see that Pr[s> · x′1 = s> · x′2] =
Pr[⊕i∈Isi = 0] = 1

2 + ε(λ), where ε(λ) is the negligible distance between the pseudorandom random strings
generated by PRGs and the uniformly random strings. In other words, in each consistency check, a cheating
D∗ can pass the check with probability 1

2 + ε(λ). Thus, we need to let the parties perform ρ = Θ(λ) times, so
that a cheating D∗ can pass the check with probability O(2−ρ).

4In [WRK17, Figure 5], the authors actually set the parameters as ρ1 = ρ2 := 2ρ. However, according to their proof, we believe that it
is their tiny typo error and the parameters should be set as ρ1 := 2ρ and ρ2 := ρ.

10

Parameter: ρ1, ρ2.

Initialization: On input (INIT, sid), for each i ∈ [n], D and Vi send (INIT, sid) to the i-th instance of Fp,rpsVOLE,
which returns ∆(i) ∈ Fpr to Vi.

Authentications over subfield: On input (AUTHSUB, sid, `), D and V1, . . . ,Vn do the followings:

1. All parties set `′ := `+ ρ1. Then D picks a random seed sd← S, where S is the seed space of the expansion
function Expand.

2. For each i ∈ [n], D sends (AUTHSUB, sid, `′, sd) to the i-th instance of Fp,rpsVOLE while Vi sends (AUTHSUB, sid, `′)

to the same instance. Then Fp,rpsVOLE returns x ∈ F`
′
p ,m

(i) ∈ F`
′
pr to D, where x := Expand(s, `′), and returns k(i)

to Vi such that k(i) = m(i) + x ·∆(i).

3. For each i ∈ [ρ2], all parties perform the following consistency check:

(a) D and V1, . . . ,Vn send (TOSS, sid, `′) to Fp,1COIN, which returns si ∈ F`
′
p to all parties.

(b) D broadcasts ui := s>i · x ∈ Fp to all verifiers. Then for each j ∈ [n]: D sends w(j)
i := s>i ·m(j) ∈ Fpr to Vj

privately.

(c) For each j ∈ [n]: Vj computes v(j)i := s>i · k(j) ∈ Fpr . Then Vj checks if v(j)i
?
= w

(j)
i + ∆(j) · ui. If not, Vj

aborts.

4. D outputs the first ` components of x, {m(j)}j∈[n] and Vi outputs the first ` components of k(i) for each
i ∈ [n].

Protocol Πρ1,ρ2
mv-sVOLE

Figure 4: Protocol for multiple-verifier subfield VOLE in the {Fp,rpsVOLE,F
p,1
COIN}-hybrid world

Then we consider the case where the dealer is honest and some verifiers are corrupted. We need to ensure
that the malicious verifiers cannot learn any information about the dealer’s output, i.e., the first ` components
of x. In the i-th consistency check, for each random si ∈ F`′2 returned by F2,1

COIN, we denote by ai the first `
components of si and denote by bi the last ρ1 components of si. We also denote by x̃ the first ` components
of x and denote by y the last ρ1 components of x. Then we have the equation ui = a>i · x̃ + b>i · y. Notice
that, there are ρ2 such equations since we need to perform ρ2 consistency checks. Therefore, we have to prove
that {bi}i∈[ρ2] are linearly independent so that b>i · y can act as “one-time pad” to a>i · x̃; otherwise, the
malicious verifiers may learn the linear combination of x̃. By [WRK17, Lemma A.4], Wang et al. proved that
the probability of {bi}i∈[ρ2] being linearly dependent is at most 2−(ρ1−ρ2). In order to make this probability
negligible, we have to set ρ1 := 2ρ since ρ2 is already as set as ρ2 := ρ, where ρ = Θ(λ). Formally, we have the
following theorem, and we refer interested readers to see the proof in [WRK17, Theorem A.3].

Theorem 1 (Adapted from [WRK17]). Let λ be the security parameter. Let F2λ be the extension field. Set ρ1 := 2ρ

and ρ2 := ρ where ρ = Θ(λ). Let Expand be a secure PRG. Then the protocol Π2ρ,ρ
mv-sVOLE depicted in Figure 4 UC-realizes

F2,λ
mv-sVOLE depicted in Figure 3 in the {F2,λ

sVOLE,F
2,1
COIN}-hybrid world, in the presence of a static malicious adversary

corrupting up to the dealer and n− 1 verifiers.

Case II: for large p > 2. It is easy to see that the efficiency of our protocol Πρ1,ρ2
mv-sVOLE would be improved, if

the parameters ρ1, ρ2 could be set smaller. Jumping ahead, we find that, when p−1 = negl(λ) and r = 1, the
parameters can be set as minimum, i.e., ρ1 = ρ2 := 1.

Let us first focus on ρ2, which is the number of consistency checks. Recall that, when p = 2, the probability
of a malicious D∗ passing each consistency check is 1

2 + ε(λ), where ε(λ) is a negligible error that caused by
PRGs; therefore, ρ = Θ(λ) repetitions are needed. We observe that, if we could lower the probability of a
malicious D∗ passing each consistency check, then the parameter ρ2 could be set smaller. By Theorem 3, we
can prove that the probability of a malicious D∗ passing each consistency check can be reduced to p−1 + ε(λ).
Thus, if p is a large prime such that p−1 = negl(λ), we only need to perform the consistency check once. In
other words, the parameter ρ2 can be set as ρ2 := 1.

Now let us focus on ρ1, which is the length of the random mask vector y. For the random vector s ∈ F`′p
returned by Fp,1COIN, we denote by a the first ` components of s and denote by b the last ρ1 components of s. We

11

also denote by x̃ the first ` components of x and denote by y the last ρ1 components of x. Then we have the
equation u = a> · x̃ + b> · y. Unlike the previous case where p = 2 and there are ρ such equations, here we
only have one such equation. Thus, we observe that ρ1 = 1 is sufficient to mask a> · x̃ with b> · y, since the
probability of b> · y being zero is negligible. That is why we can set the parameter ρ1 as ρ1 := 1. Formally, we
prove the security through the following theorems.

Theorem 2. Let Fpr be the extension field where p is a large prime and r = 1. Set ρ1 := 1 and ρ2 := 1. Let Expand
be a secure PRG. Then the protocol Π1,1

mv-sVOLE depicted in Figure 4 UC-realizes the functionality Fp,1mv-sVOLE depicted in
Figure 3 in the {Fp,1psVOLE,F

p,1
COIN}-hybrid world, in the presence of a static malicious adversary corrupting up to the dealer

and n− 1 verifiers.

Proof. The proof can be found in Appendix B.1.

Theorem 3. Let Fp be the field with a prime order p. Let s be the column vector over field Fkp whose elements are all
non-zero, Let t be the column vector that is uniformly sampled from Fkp . Then we have Pr[s> · t = 0] = 1

p .

Proof. The proof can be found in Appendix B.2.

3.2.3 Instantiating Fp,rpsVOLE

Notice that, our protocol Πp,r
mv-sVOLE makes block box use of Fp,rpsVOLE. Here we describe two approaches to

instantiate Fp,rpsVOLE in the following.

Approach I: PCG-style. Recently, many works (e.g., [BCGI18, BCG+19a, WYKW21]) employ Pseudorandom
Correlation Generators (PCGs) to generate sVOLE correlations, i.e., they let two parties take a pair of short
seeds, then expand them to a large amount of sVOLE correlations. One of the most appealing features of the
PCG-style approach is that: it only requires sublinear communication cost. However, typically, the correlations
generated by PCGs are random; therefore, traditional PCGs cannot be used to realize Fp,rpsVOLE directly.

Basing on the PCG construction in [WYKW21], Rachuri and Scholl give a PCG-style protocol that can ef-
ficiently realize Fp,rpsVOLE in [RS22]; their protocol can cover both p = 2 and p > 2. More precisely, the main
building block in [WYKW21] is a primitive called single-input sVOLE (spsVOLE), where only one component
of the authenticated vector x is non-zero while other components are zero. Rachuri and Scholl modify the
spsVOLE protocol in [WYKW21] to support programmable inputs, i.e., the authenticated vector x can be ex-
panded from a chosen seed; they also show that the modified spsVOLE can be used to realize Fp,rpsVOLE with
essentially the same steps as [WYKW21]. We refer interested readers to see that in [RS22].
Approach II: IKNP-style. For binary field, it is known that sVOLE is equivalent to a primitive called Corre-
lated Oblivious Transfer (COT) [ALSZ13]. More precisely, at the end of a COT protocol, the sender obtains `
pairs of messages {m(i)

0 ,m
(i)
1 }i∈[n] ∈ Fr2 such that m(i)

0 ⊕m
(i)
1 = ∆, where ∆ ∈ Fr2 is chosen by the sender

and m(i)
0 ,m

(i)
1 ,∆ can be also viewed as elements in the extension field F2r ; meanwhile, the receiver obtains

{b(i)}i∈[`] ∈ F2 and {m(i)

b(i)
}i∈[n] ∈ Fr2. If we set u := (b(1), . . . , b(`)) ∈ F`2, m := (m

(1)

b(1)
, . . . ,m

(`)

b(`)
) ∈ F`2r and

k := (m
(1)
0 , . . . ,m

(`)
0) ∈ F`2r , it is easy to see that the sender holds ∆,k and the receiver holds u,m such that

k = m⊕ u ·∆, which is in the form of sVOLE correlations.
One approach for generating a large amount of COTs is to employ the Oblivious Transfer Extension (OTE)

techniques by Ishai, Kilian, Nissim and Petrank (hereafter, IKNP) [IKNP03], i.e., given a small number of OTs,
then extend them to a large number of OTs using only symmetric-key operations. Compared to PCG-style
approach, IKNP-style approach is more computation-efficient, although IKNP-style approach requires more
communication cost. When only a middle number of COTs (e.g., thousands of COTs) are needed or a local area
network is employed, it turns out that IKNP-style approach may outperform PCG-style approach with respect
to total end-to-end time, since in both case the communication cost is no longer the performance bottleneck. For
this reason, sometimes, one may prefer to choose the IKNP-style approaches. We note that, the receiver’s choice
bits {b(i)}i∈[`] (a.k.a, the authenticated vector u as explained previously) are chosen all by itself; therefore, we
can easily instantiate Fp,rpsVOLE with the maliciously secure IKNP-style OTE protocols [KOS15, Roy22] by letting
the receiver sample a random seed sd and expand it to {b(i)}i∈[`] through PRGs.

12

The functionality interacts with a prover D, n verifiers V1, . . . ,Vn and an adversary S. Let H be the set of the
honest parties.

Initialization/Authentications over subfield: The same as in Figure 3.

Authentications over extension field: Upon receiving (AUTHEXT, sid, d) from D and V1, . . . ,Vn, do:

1. If all parties are honest, sample u(1), . . . ,u(n) ← Fdpr . For each i ∈ [n]: sample k(i) ← Fdpr and compute
m(i) := k(i) −∆(i) · u(i) ∈ Fdpr .

2. If all parties are malicious, halt.

3. If D∗ is malicious and some of the verifiers are honest, for each honest verifier Vi ∈ H: receive u(i),m(i) ∈ Fdpr
from the adversary S, and compute k(i) := m(i) + ∆(i) · u(i) ∈ Fdpr .

4. If D is honest and some of the verifiers are malicious, sample u(1), . . . ,u(n) ← Fdpr . For each malicious verifier
V∗i /∈ H: receive k(i) ∈ Fdpr from the adversary S; for each honest verifier Vi ∈ H: sample k(i) ← Fdpr . Then
compute m(i) := k(i) −∆(i) · u(i) ∈ Fdpr for each i ∈ [n].

5. Send (CONTINUE, sid) to the adversary S. For each honest party H ∈ H, upon receiving an input from S,

• If it is (CONTINUE, sid,H), send the respective output to H. More precisely, if H is the dealer D, send
(AUTHSUB, sid, {u(j),m(j)}j∈[n]) to D; if H is i-th verifier Vi, send (AUTHSUB, sid,k(i)) to Vi.

• If it is (ABORT, sid,H), send (ABORT, sid) to H.

Functionality Fp,rPrep

Figure 5: The Functionality Fp,rPrep

4 SIF against a Dishonest Majority

4.1 Preprocessing Phase

4.1.1 Functionality for Preprocessing Phase

Here we describe the functionality for preprocessing phase, which is denoted by Fp,rPrep. Our Fp,rPrep is very
similar to our previously defined mv-sVOLE Fp,rmv-sVOLE, except that Fp,rPrep additionally allows the dealer D to
authenticate his secret values over extension field to each verifier respectively. Note that, for authentications
over extension field, the dealer D is allowed to use inconsistent values to generate correlations. More precisely,
given n vectors over the extension field u(1), . . . ,u(n) ∈ Fdpr held by the dealer D, for each i ∈ [n], we let D have
the MAC tag m(i) ∈ Fdpr and let each Vi have the local MAC key k(i) ∈ Fdpr such that k(i) = m(i) + ∆(i) · u(i).
Formally, we present the functionality for preprocessing phase Fp,rPrep in Figure 5.

Notation J·K. For better expression, for a vector u over the subfield F`p or the extension field F`pr , we introduce
the following notation JuK to denote the values held by parties:

JuK := {{u, {m(i)}i∈[n]}, {∆(i),k(i)}i∈[n]} ,

where u, {m(i)}i∈[n] (resp. ∆(i),k(i)) are the private information held by the dealer D (resp. the i-th verifier
Vi). We use JuK as shorthand when there is need to explicitly talk about the MAC tags and MAC keys. We also
note that, J·K is additively homomorphic. More precisely, given Ju1K, . . . , JunK and the public coefficients c1, . . . , cn
and c, the parties can locally compute JyK := c +

∑n
i=1 ci · JuiK. This property is inherited from the additive

homomorphism of sVOLE, which is described in Section 2.3.

4.1.2 Efficiently Realizing Fp,rPrep

Here we show how to construct a protocol that efficiently realizes the functionality for preprocessing phase
Fp,rPrep. Since we have already described how to generate mv-sVOLE correlations in Section 3.2.1, here we focus
on the authentication for values over extension field.

By the characteristic of extension field Fpr ∼= Fp[X]/f(X), i.e., for every value over extension field u ∈ Fpr ,
it can be written uniquely as u =

∑r
i=1 vi · Xi−1 where vi ∈ Fp for all i ∈ [r]. Inspired by [YSWW21], we

13

Initialization/Authentications over subfield: The same as in Figure 4.

Authentications over extension field: On input (AUTHEXT, sid, d), D and V1, . . . ,Vn do the followings:

1. For each i ∈ [d] and h ∈ [n], D and Vh do the followings:

(a) D picks a random seed s← S, where S is the seed space of the expansion function Expand. Then D sends
(AUTHSUB, sid, r, s) to the h-th instance of Fp,rpsVOLE while Vh send (AUTHSUB, sid, r) to the same instance.

Finally, Fp,rpsVOLE returns {v(h)i,j ,m
(h)
i,j }j∈[r] to D, where (v

(h)
i,1 , . . . , v

(h)
i,r) := Expand(s, r), and returns {k(h)i,j }j∈[r] to

Vh such that k(h)i,j = m
(h)
i,j + v

(h)
i,j ·∆

(h) for each j ∈ [r].

(b) For each h ∈ [n]: D computes u(h)
i :=

∑r
j=1 v

(h)
i,j ·X

j−1 ∈ Fpr , M (h)
i :=

∑r
j=1m

(h)
i,j ·X

j−1 ∈ Fpr and each

verifier Vh computes K(h)
i :=

∑r
j=1 k

(h)
i,j ·X

j−1 ∈ Fpr . Note that, K(h)
i = M

(h)
i + u

(h)
i ·∆

(h) holds.

2. D outputs {u(j)
i ,M

(j)
i }i∈[d],j∈[n] and Vj outputs {K(j)

i }i∈[d] for each j ∈ [n].

Protocol ΠPrep

Figure 6: Protocol for preprocessing phase in the {Fp,rpsVOLE,F
p,1
COIN}-hybrid world

find that we can pack some authenticated values over subfield Fp into the desired authenticated values over
extension field Fpr . More precisely, D and Vi first invoke the programmable sVOLE functionality Fp,rpsVOLE to

generate r copies of random sVOLE correlations, i.e., D obtains v(i)
j ,m

(i)
j and Vi obtains ∆(i), k

(i)
j such that

k
(i)
j = m

(i)
j + u

(i)
j ·∆(i) for each j ∈ [r]. Then, the dealer D locally computes u(i) :=

∑r
j=1 v

(i)
j ·Xj−1, M (i) :=∑r

j=1m
(i)
j ·Xj−1 and Vi locally computes K(i) :=

∑r
j=1 k

(i)
j ·Xj−1. It is easy to see that K(i) = M (i) +u(i) ·∆(i)

holds.
Formally, we present our protocol ΠPrep for preprocessing phase in Figure 6 and prove the security through

Theorem 4.

Theorem 4. Let Fpr be the extension field. Let Expand be a secure PRG. Then the protocol ΠPrep depicted in Figure 6
UC-realizes the functionality Fp,rPrep depicted in Figure 5 in the {Fp,rpsVOLE,F

p,1
COIN}-hybrid world, in the presence of a static

malicious adversary corrupting up to the dealer and n− 1 verifiers.

Proof. The proof can be found in Appendix B.3.

4.2 Main Protocol

Here we will provide a main protocol for SIF. Since we have already described how to realize the preprocessing
phase in Section 4.1, here we focus on the online phase.

We first let the dealer D commit to his witness w ∈ Fmp using the random mv-sVOLE correlations JµK
generated by Fp,rPrep in the preprocessing phase; that is, D broadcasts δ := w − µ ∈ Fmp to verifiers, and all
parties compute JwK := JµK+δ. It is easy to see that the addition gates of the circuit can be processed locally for
free, due to the additive homomorphism of J·K. For multiplication gates, we extend the techniques in [DIO21,
YSWW21] which are designed for (s)VOLE correlations to our mv-sVOLE correlations. More precisely, for the
i-th multiplication gate (α, β, γ,Mult), given the random JηiK generated by Fp,rPrep in the preprocessing phase, D
broadcasts di := wα · wβ − ηi ∈ Fp to verifiers, then all parties compute JwγK := JηiK + di. As a result, D holds
wa,m

(j)
a and Vj holds ∆(j), k

(j)
a such that k(j)

a = m
(j)
a + wa ·∆(j) for a ∈ {α, β, γ} and j ∈ [n]. By Equation 1,

we conclude that if D behaves honestly (i.e., wγ = wα · wβ), then we have B(j)
i = A

(j)
i,0 + A

(j)
i,1 ·∆(j). It is easy

to see that B(j)
i (resp. A(j)

i,0 , A
(j)
i,1) can be locally computed by D (resp. Vj); therefore, the correctness of the i-th

multiplication gate can be checked by letting D send A(j)
i,0 , A

(j)
i,1 to Vj and letting Vj check if B(j)

i
?
= A

(j)
i,0 +A

(j)
i,1 ·

∆(j) holds for each j ∈ [n]. We can check t multiplication gates in a batch to reduce the communication cost,
using the random linear combination technique [YSWW21]. That is, we let the parties sample a uniformly
random χ ← Fpr , then we let D send A

(j)
0 :=

∑t
i=1A

(j)
i,0 · χi and A

(j)
1 :=

∑t
i=1A

(j)
i,1 · χi to Vj and let Vj check

if B(j) ?
= A

(j)
0 + A

(j)
1 · ∆(j) for j ∈ [n], where B(j) :=

∑t
i=1B

(j)
i · χi. Notice that, A(j)

0 , A
(j)
1 may leak some

information about the wire values; thus, we use random u(j), v(j), z(j) such that z(j) = v(j) +u(j) ·∆(j) to mask

14

Inputs: D and V1, . . . ,Vn hold a circuit C over a field Fp. The circuit C has m input wires and t multiplication
gates. D additionally holds a private input w ∈ Fmp . Let H : {0, 1}∗ → Fpr be a hash function, which is modeled
as a RO.

Preprocessing Phase: The circuit and the private input are unknown.

1. D and V1, . . . ,Vn send (INIT, sid) to Fp,rPrep, which returns ∆(i) ∈ Fpr to Vi for each i ∈ [n].

2. D and V1, . . . ,Vn send (AUTHSUB, sid,m+ t) to Fp,rPrep, which returns JµK and JηK to the parties.

3. D and V1, . . . ,Vn send (AUTHEXT, sid, 1) to Fp,rPrep, which returns {u(j), v(j)}j∈[n] to D and returns z(j) to each
verifier Vj such that z(j) = v(j) + u(j) ·∆(j).

Online Phase: The circuit and the private input are known by the parties.

1. For each i ∈ Iin: D broadcasts δi := wi − µi ∈ Fp. All the parties locally computes JwiK := JµiK + δi.

2. For each gate (α, β, γ, T) in a pre-defined topology order:

(a) If T = Add, all the parties locally compute JwγK := JwαK + JwβK.

(b) If T = Mult and it is the i-th multiplication gate, D broadcasts di := wα · wβ − ηi ∈ Fp. All parties compute
JwγK = JηiK + di.

3. D and V1, . . . ,Vn compute χ := H({δi}i∈[m], {di}i∈[t]) ∈ Fpr .

4. D and V1, . . . ,Vn perform the followings to ensure the multiplication gates are processed correctly:

(a) For i-th multiplication gate (α, β, γ,Mult), the parties holds JwαK, JwβK, JwγK; more precisely, for a ∈ {α, β, γ}
and j ∈ [n], D holds wa,m

(j)
a while Vj holds k(j)a ,∆(j) such that k(j)a = m

(j)
a + wa ·∆(j). Then for each

j ∈ [n]: D locally computes A(j)
i,0 := m

(j)
α ·m(j)

β ∈ Fpr and A
(j)
i,1 := m

(j)
β · wα +m

(j)
α · wβ −m(j)

γ ∈ Fpr while Vj

locally computes B(j)
i := k

(j)
α · k(j)β − k

(j)
γ ·∆(j) ∈ Fpr .

(b) For each j ∈ [n]: D computes and sends V (j) :=
∑t
i=1A

(j)
i,0 · χ

i + v(j) ∈ Fpr , U (j) :=
∑t
i=1A

(j)
i,1 · χ

i + u(j) ∈ Fpr
to Vj privately.

(c) For each j ∈ [n]: Vj computes Z(j) :=
∑t
i=1B

(j)
i · χ

i + z(j) ∈ Fpr and checks if Z(j) ?
= V (j) + U (j) ·∆(j). If

not, Vj aborts.

5. For each i ∈ Iout (without loss of generality, we assume this output wire belongs to Vi), D sends the output
wire value yi and its corresponding MAC tag myi to Vi who holds the local MAC key kyi . Then Vi checks if
kyi

?
= myi + yi ·∆(i). If not, Vi aborts.

Protocol ΠSIF

Figure 7: Main Protocol for SIF in the {Fp,rPrep,FRO}-hybrid world

A
(j)
0 , A

(j)
1 . We note that, the online protocol we describe above requires a coin-tossing procedure, which results

in the interaction between the dealer and the verifiers. To remove the interaction and achieve one-round online
communication, we can replace the coin-tossing with a Random Oracle (RO) to generate the random element
χ. More precisely, given a hash function H : {0, 1}∗ → Fpr which is modeled as a RO, we let D compute
χ := H({δi}i∈[m], {di}i∈[t]). Since {δi}i∈[m], {di}i∈[t] are broadcasted by D, verifiers can locally compute χ. Note
that, we put the formal description of the RO functionality FRO in Appendix A.

Formally, we present our main protocol ΠSIF in Figure 7 and prove the security through Theorem 5.

Theorem 5. Let Fpr be the extension field. Let C be the circuit with t multiplication gates. Then the protocol ΠSIF

depicted in Figure 7 UC-realizes FSIF depicted in Figure 2 with statistical security in the {Fp,rPrep,FRO}-hybrid world, in
the presence of a static malicious adversary corrupting up to the dealer and n− 1 verifiers.

Proof. The proof can be found in Appendix B.4.

Towards better efficiency. In Step 4 of our online phase protocol, the parties need to compute χi for i ∈ [t].
When p is a large prime, the computation of χi for i ∈ [t] can be very expensive. To obtain better computa-
tional efficiency, it was suggested in prior work [YSWW21] that we can replace χi with independent uniform
coefficients χi for i ∈ [t]. More concretely, instead of querying RO to obtain χ and then computing χi for i ∈ [t],

15

The functionality interacts with a prover P, n verifiers V1,. . . ,Vn and an adversary S. It is parameterized by a
circuit C where C : Fmp → {0, 1}. Let H denote the set of honest parties.

Upon receiving (INPUT, sid,w) from P and (INPUT, sid) from Vi for all i ∈ [n] where w ∈ Fmp , do

• Compute b := C(w).

• Send (CONTINUE, sid, b) to the adversary S. For each honest verifier Vi ∈ H, upon receiving an input from S,

– If it is (CONTINUE, sid,Vi), send (OUTPUT, sid, b) to Vi.

– If it is (ABORT, sid,Vi), send (ABORT, sid) to Vi.

Functionality FMVZK

Figure 8: The Functionality FMVZK

we can query RO to directly obtain χ1, . . . , χt and use χi to replace χi for i ∈ [t]. Notice that, this approach will
slightly increase the soundness error, but the resulting soundness error is still negligible. We refer interested
readers to see [YSWW21] for more details.

5 Impossibility on 1-round SIF without Broadcast Channels

Our 1-round SIF protocol depicted in Figure 7 requires a broadcast channel. It is natural to ask: if the broadcast
channels are necessary for constructing 1-round SIF?

In this section, we prove that even if the preprocessing model is assumed, 1-round MVZK is impossible
to achieve without the broadcast channels. Since MVZK is captured by SIF and VRS, our impossibility can
naturally be extended for SIF and VRS. Therefore, we show that the broadcast channels are necessary for
constructing 1-round SIF/VRS/MVZK.

MVZK functionality. We have described MVZK in the introduction, here we provide the formal MVZK
functionalityFMVZK in Figure 8, which is taken from [YW22]. From Figure 8, we know that there is an important
feature in MVZK: for those honest verifiers who do not abort, they should reach a consensus (i.e., they should
output the same results). This feature is important for our impossibility proof; please see the proof intuition
below.

Proof intuition. We use the method of proof by contradiction to prove our impossibility result. First of
all, we assume there exists a non-interactive MVZK using only secure private channels (i.e., point-to-point
channels); note that, “non-interactive” means that: in the online phase of the non-interactive protocol, the
prover is allowed to send messages to the verifiers, and the verifiers are not allowed to communicate with
each other. Let us consider the case where only the prover is corrupted. Let w,w′ be two distinct witnesses
such that C(w) = 1 and C(w′) = 0. Let msgi (resp. msg′i) be the messages that an honest prover should sent to
the i-th verifier on input w (resp. w′); upon receiving msgi (resp. msg′i), the i-th honest verifier should output
1 (resp. 0), since the online phase is restricted to be non-interactive. Then the corrupted prover can simply
send msg1 to the first honest verifier and send msg′2, . . . ,msg′n to the remaining honest verifiers respectively.
Then the first honest verifier will output 1 while the remaining honest verifiers will output 0, which violate
the consensus requirement of MVZK functionality. Notice that, the above proof intuition holds, (i) no matter
how many verifiers the adversary can corrupt, as long as the adversary is allowed to corrupt the prover; (ii) a
preprocessing model is assumed5. Formally, we have the following theorem.

Theorem 6. Let the communication channels be secure point-to-point channels, and no broadcast channels are available.
Let n be the number of verifiers such that n ≥ 2. Then there exists no non-interactive MVZK protocol Π that UC-realizes
FMVZK depicted in Figure 8 in the preprocessing model, in the presence of a static and malicious adversary who is allowed
to corrupt the prover.

Proof. We use the method of proof by contradiction to prove this theorem. We assume there exists such a non-
interactive MVZK protocol Π that UC-realizes FMVZK in the preprocessing model. Then for any PPT adversary

5The preprocessing model implies RO model and CRS model.

16

A and any PPT environment Z , there should exist a PPT simulator S such that the real-world execution is
computationally indistinguishable from the ideal-world execution.

First of all, let us describe some notions that will be used in this proof. We use OPrep to denote the pre-
processing model; when a party makes a query to OPrep, OPrep takes the session identifier (SID) and the party
identifier (PID) pid of the querying party as inputs, and it returns the corresponding preprocessing informa-
tion infopid to the party. Notice that, OPrep may return different preprocessing information to different parties,
and each party can not learn other parties’ preprocessing information by querying OPrep. In the same protocol
session, OPrep should return the same response to the same party, no matter the party is honest or gets cor-
rupted. Notice that, we make a restriction on OPrep’s inputs, i.e., OPrep cannot use anything other than the SID
and the PID as inputs; in this way, we guarantee the preprocessing information returned by OPrep is “input-
independent”. Without loss of generality, we assume the prover P’s PID is 0, and the i-th verifier Vi’s PID is
i for i ∈ [n]. we let PrfAlg be the (honest) prover algorithm, which takes the preprocessing information info0

and the witnessw as input and outputs the prover’s messages (pmsg1, . . . , pmsgn), where pmsgi is the message
that should be sent to Vi. Let DecAlgi be the (honest) decision algorithm for Vi, which takes the preprocessing
information infoi and the received message pmsgi as inputs and outputs the decision bit b or a special symbol
⊥ indicating abort.

Let A be a dummy adversary that simply forwards the protocol flow between the corrupted parties and
the environment Z . Let us consider the case where Z only corrupts the prover. Let w(0),w(1) be two dis-
tinct witnesses such that C(w(0)) = 0 and C(w(1)) = 1. We consider the following adversary’s strategy.
The environment Z first instructs P∗ to query OPrep to obtain info0 and honestly run (pmsg

(0)
1 , . . . , pmsg

(0)
n) ←

PrfAlg(info0,w
(0)) and (pmsg

(1)
1 , . . . , pmsg

(1)
n)← PrfAlg(info0,w

(1)). Notice that, both (pmsg
(0)
i)i∈[n] and (pmsg

(1)
i)i∈[n]

are honestly generated; hence, by completeness, for each honest Vi, we have DecAlgi(infoi, pmsg
(b)
i) = b for

b ∈ {0, 1}. Next, for each honest Vi, Z samples a bit bi from {0, 1} and instructs P∗ to send pmsg
(bi)
i to Vi, and an

honest Vi should output the decision bit bi. In the real-world execution, since Pr[b1 = b2 = · · · = bn] = 2−(n−1),
the probability of the honest verifiers reaching a consensus (i.e., all honest verifiers output 0 or 1) is 2−(n−1).
On the other hand, in the ideal-world execution, the simulator S can extract the witnessesw(0),w(1) by simu-
lating OPrep; however, S can only instruct the dummy P̃∗ in ideal-world to send either w(0) or w(1) to FMVZK,
which results in a consensus among the dummy honest verifiers in ideal-world. Therefore, Z can distinguish
the real-world from the ideal world with probability at least 1 − 2−(n−1) ≥ 1

2 , contradicting our assumption
that Π is UC-secure.

Extending to the simultaneous communication model. Here we discuss how to extend our impossibility
results depicted in Theorem 6 to the simultaneous communication model. Recall that, in the simultaneous
communication model, parties are allowed to send messages to each other in the same round; however, their
messages should be independent of each other. Hence, in the context of 1-round MVZK, when the prover
sends its messages to the verifiers, the verifiers may also send their messages to each other at the same time.
Then each verifier outputs the result based on the prover’s messages and other verifiers’ messages. We note
that, we do not consider the situation where the verifiers send to the prover during the online phase, since the
prover has no output and its proof messages should not depend on the verifiers’ messages.

Now we show that even in the simultaneous communication model, 1-round MVZK protocol is still im-
possible to achieve without the broadcast channels, in the presence of a static, malicious and rushing adversary.
Note that, a rushing adversary is often considered in the simultaneous communication model. A rushing ad-
versary can delay sending messages on behalf of corrupted parties in a given round, until the messages sent
by all the uncorrupted parties in that round have been received. We consider the case where the adversary
corrupts the prover. Letw,w′ be two distinct witnesses such that C(w) = 0 and C(w′) = 1. The adversary first
instructs the prover to wait until each honest verifier has received other verifiers’ messages, and we denote by
vmsg

(i)
j the message that the i-th verifier send to the j-th verifier. Then the adversary instructs the prover to

honestly run the prover’s algorithm on input w (resp. w′) to produce {pmsgi}i∈[n] (resp. {pmsg′i}i∈[n]), where
pmsgi (resp. pmsg′i) is the message that the prover should send to the i-th verifier. Notice that, upon receiv-
ing pmsgi (resp. pmsg′i) and (vmsg

(j)
i)j 6=i, the i-th verifier should output 0 (resp. 1), since pmsgi (resp. pmsg′i)

and (vmsg
(j)
i)j 6=i are honestly generated. Finally, the adversary instructs the prover to send pmsg1 to the first

verifier and send pmsg′2, . . . , pmsg′n to the remaining honest verifiers respectively. Then the first honest verifier
will output 1 while the remaining honest verifiers will output 0, which violate the consensus requirement of

17

MVZK functionality.
Formally, we have the following theorem. We omit the proof here, since the proof is analogous to the proof

of Theorem 6.

Theorem 7. Let the communication channels be secure point-to-point channels which allows simultaneous communi-
cation, and no broadcast channels are available. Let n be the number of verifiers such that n ≥ 2. Then there exists no
1-round MVZK protocol Π that UC-realizes FMVZK depicted in Figure 8 in the preprocessing model, in the presence of a
static, malicious and rushing adversary who is allowed to corrupt the prover.

Since SIF implies MVZK [AKP22], we have the following corollary.

Corollary 1. Let the communication channels be secure point-to-point channels which allows simultaneous communi-
cation, and no broadcast channels are available. Let n be the number of verifiers such that n ≥ 2. Then there exists no
1-round SIF protocol Π that UC-realizes FSIF depicted in Figure 2 in the preprocessing model, in the presence of a static,
malicious and rushing adversary who is allowed to corrupt the dealer.

6 Implementation and Evaluation

We implement a prototype of our protocols in C++ using EMP toolkip [WMK16]. We simulate the network
configurations using Linux netem package. In this section, we refer LAN (resp. WAN) to the 1Gbps (resp.
200Mbps) network with 6ms (resp. 20ms) delay. All experiments are executed on a machine with Intel(R)
Core(TM) i7-12700 at 2.10 GHz and 512 GB Memory, running Ubuntu 22.04.3 LTS. Each experiment is run 20
times and the median is taken.

For arithmetic circuits, we use a 61-bit field (i.e., p = 261 − 1 and r = 1); while for boolean circuits, we use
a binary field (i.e., p = 2 and r = 128). For large-scale circuits (e.g., a circuit with 107 gates), we instantiate
psVOLE with recent PCG-style protocols [RS22,WYKW21,YWL+20]. For widely used benchmark circuits (e.g.
the AES-128 circuit), which are typically small or median size boolean circuits, we instantiate the psVOLE with
the IKNP-style COT protocol [KOS15]. All implementations achieve at least 40-bit statistical security.

6.1 Comparison with Related Works

Here we compare the efficiency of our protocols with different types of related works. In some cases, for better
comparison, we will measure the cost of the preprocessing phase and the online phase separately.

Comparison with SIF against a dishonest majority. To the best of our knowledge, the only work in the
literature that constructs SIF against a dishonest majority is [ZZZR24], which we denote by ZZZR protocol.
Both ZZZR protocol and our work can tolerate up to one malicious dealer and t < n malicious verifiers.
We conduct experiments of our protocol and ZZZR protocol on an AES-128 circuit with different total party
number N ∈ {3, 8, 16, 32} and different network configurations, and plot the results in Figure 9.

5 10 15 20 25 30
#Party

0

2500

5000

7500

10000

12500

15000

17500

Ru
nn

in
g

Ti
m

e
(m

s)

ZZZR-LAN
Ours-LAN
ZZZR-WAN
Ours-WAN

(a) Preprocessing Time

5 10 15 20 25 30
#Party

0

200

400

600

800

1000

1200

1400

Ru
nn

in
g

Ti
m

e
(m

s)

ZZZR-LAN
Ours-LAN
ZZZR-WAN
Ours-WAN

(b) Online Time

5 10 15 20 25 30
#Party

0

10

20

30

40

50

60

Co
m

m
un

ica
tio

n
(M

B)

ZZZR-Prep
Ours-Prep
ZZZR-Online
Ours-Online

(c) Communication

Figure 9: Comparison between our protocol and ZZZR protocol [ZZZR24]. Results are evaluated on an AES-
128 circuit.

18

As shown in Figure 9, our protocol outperforms ZZZR protocol in both running time and communication.
Our improvement for preprocessing time (resp. communication) over ZZZR protocol ranges from roughly 5.2×
to 14.5× (resp. 11.6× to 17.2×). The reason is: ZZZR preprocessing protocol makes black-box use of BDOZ-
style preprocessing protocol [BDOZ11], which is expensive; in contrast, our preprocessing protocol makes use
of psVOLE, which is much more efficient. The cost of our online phase is less; the reason is: our online protocol
requires one less communication round, and removes the peer-to-peer communication among the verifiers.

Comparison with SIF with an honest majority. Among three recent and related work with an honest ma-
jority [AKP22, BJO+22, YW22], Feta [BJO+22] is the only one that implements their protocols; hence, here we
compare the efficiency of our protocol with Feta. We conduct the experiments and report the comparison result
in Table 3.

Table 3: Comparison between Feta [BJO+22] and ours. The results are evaluated on an AES-128 circuit under
a WAN network.

Fix the number of total parties N

Ref. (T,N) Prep. Time (ms) Online Time (ms)

Feta [BJO+22] (2,6) 108.9 64.4

This Work (5,6) 250.4 45.8

Fix the number of total corrupted parties T

Ref. (T,N) Prep. Time (ms) Online Time (ms)

Feta [BJO+22] (7,26) 872.3 653.0

This Work (7,8) 336.8 48.9

In Table 3, we compare Feta and our protocol in two setting: (i) when the number of total parties N is fixed;
(ii) when the number of total corrupted parties T is fixed. In the first setting, our preprocessing time is slower
than that of Feta, but our online time is faster. Notice that, our work can tolerate all-but-one corruptions among
verifiers, but Feta assumes an honest majority among verifiers. In the second setting, both our preprocessing
time and online time are faster than Feta. More precisely, our preprocessing time is 2.6× faster and our online
time is 13.4× faster.

Comparison with generic MPC against a dishonest majority. To further demonstrate the efficiency of our
protocols, we compare our protocol with the state-of-the-art constant-round BMR-style MPC protocols in the
dishonest majority setting, i.e., the WRK protocol by Wang et al. [WRK17] and the YWL protocol by Yang et
al. [YWZ20]. Notice that, the numbers of WRK protocol are measured by ourselves, while the numbers of YWL
protocol are estimated according to the improvements over WRK protocol that reported in [YWZ20]. We plot
the results in Figure 10.

As shown in Figure 10, our protocol outperforms both WRK and YWL protocols in both running time and
communication. Our improvement for total running time (resp. total communication) ranges from 2.3× to
15.1× (resp. 12.1× to 15.7×).

Comparison with generic zk-SNARK. Here we compare with two types of zero-knowledge succinct non-
interactive argument of knowledge (zk-SNARK) schemes: (i) zk-SNARK schemes with trusted setups; (ii)
and zk-SNARK schemes with transparent setups. For the first type zk-SNARK schemes, we compare with
HyperPlonk [CBBZ23,CBBZ22]; as reported in [CBBZ22, Table 6], the proving time of HyperPlonk is 9.2 us/gate.
For the second type zk-SNARK schemes, we compare with Ligetron [WHV24]; as reported in [WHV24, Section
4.2], the end-to-end time of Ligetron is roughly 0.8 us/gate. The running time of these two zk-SNARKs are ob-
tained by running over a large-scale arithmetic circuit (e.g., a circuit with 220 gates). To make a fair comparison,
we report the end-to-end performance of our protocols over a large-scale arithmetic circuit.

Table 4 illustrate the end-to-end time of our protocol with respect to a randomly generated arithmetic
circuit with 107 multiplication gates. The number of end-to-end time consists of both computation time and
communication time.

19

3 8 32
#Party

0

1000

2000

3000

4000

5000

6000

7000

8000
Ru

nn
in

g
Ti

m
e

(m
s)

WRK-Prep
WRK-Online
YWL-Prep
YWL-Online
Ours-Prep
Ours-Online

(a) Running Time under LAN

3 8 32
#Party

0

2500

5000

7500

10000

12500

15000

17500

20000

Ru
nn

in
g

Ti
m

e
(m

s)

WRK-Prep
WRK-Online
YWL-Prep
YWL-Online
Ours-Prep
Ours-Online

(b) Running Time Under WAN

3 8 32
#Party

0

10

20

30

40

50

60

Co
m

m
un

ica
tio

n
(M

B)

WRK-Prep
WRK-Online
YWL-Prep
YWL-Online
Ours-Prep
Ours-Online

(c) Communication

Figure 10: Comparison among WRK [WRK17], YWL [YWZ20] and our protocol. Results are evaluated on a
AES-128 circuit.

Table 4: Our end-to-end performance. The results are evaluated on a random circuit with 107 multiplication
gates.

Network #Party
Running Time
Per Gate (us)

LAN
3 0.5
8 1.2

16 2.5

WAN
3 0.8
8 1.8

16 3.6

As shown in Table 4, for three-party SIF running over an arithmetic circuit and a LAN network, our end-to-
end time is 0.5 us/gate. Our running time is roughly 1.6× faster than Ligetron and is at least 18.4× faster than
HyperPlonk. We admit that, when the number of total parties scales to a large one, our performance may not be
as good as generic zk-SNARKs; however, this is a common drawback of current SIF (in the context of MVZK)
protocols [YW22, BJO+22, ZZZR24].

7 Related Work

Here we provide a comprehensive literature overview on the related work in both honest majority and dis-
honest majority settings.
In the honest majority setting. The study of SIF was initialized by Gennaro et al. [GIKR02]. More precisely,
they proposed a 2-round SIF protocol in the plain model with t < n

6 , where t, n are the numbers of corrupted
verifiers and total verifiers, and their protocol achieves perfect security. Applebaum et al. improved the corrup-
tion threshold to t < n

3 while keep the same round complexity, at the cost of degrading the perfect security to
computational security [AKP20]. Later, the same authors further improved the corruption threshold to t < n

2+ε ,
where ε is a small positive constant [AKP22].

As mentioned before, MVZK is a direct application of SIF, and the notion of MVZK can be traced back
to the work by Burmester and Desmedt [BD91]. Abe et al. proposed a 2-round MVZK protocol for circuit
satisfiability with t < n

3 [ACF02]; the corruption threshold of their protocol can be improved to t < n
2 at

the cost of increasing round complexity. The ZK protocols by Groth and Ostrovsky [GO07, GO14] can be
transformed into the 2-round MVZK protocols with t < n

2 . These works [ACF02, GO07, GO14] require heavy
public-key operations and are not concretely efficient. Very recently, there are two papers [YW22, BJO+22]
studying 2-round MVZK protocols in the honest majority setting, and they avoided the use of public-key
operations. Yang and Wang [YW22] proposed 2-round MVZK protocols in the RO model with t < n

2 . Baum
et al. [BJO+22] employed a stronger assumption (i.e., the preprocessing model) to construct two types of the

20

2-round MVZK protocols: the first protocol tolerates n
3 malicious verifiers and the second protocol tolerates n

4
malicious verifiers.

Distributed Zero-Knowledge (dZK) is a related cryptographic primitive, and it was proposed by Boneh et
al. [BBC+19]. In dZK, there is a distinguished prover holding (x,w) ∈ R and the statement x is shared among
the verifiers; the prover wishes to convince the verifiers that x is correct in zero-knowledge even if the verifiers
do not know the entire x. The main difference between dZK and MVZK is that: in dZK, no verifier knows
the entire statement x; in contrast, in MVZK, each verifier knows the entire statement x. Boneh et al. [BBC+19]
gave a 2-round dZK construction in the RO model with t < n

2 . Very recently, Hazay et al. strengthen the
formalization of [BBC+19] by adding strong completeness [HVW23], which prevents the malicious verifiers from
framing the honest prover, i.e., causing the proof of a correct claim to fail. They constructed their dZK with
t < n−2

6 .
In the dishonest majority setting. In [LMs05], Lepinski et al. propose a notion called fair ZK, which can be
viewed as a strengthened version of MVZK. Fair ZK ensures that the malicious verifiers can learn nothing
beyond the validity of the statement if the honest verifiers accept the proof. However, their work is far from
being practical. To the best of our knowledge, the only prior work that focuses on constructing practical SIF
protocols against a dishonest majority is the work by Zhou et al. [ZZZR24]. More precisely, they build highly
efficient 2-round SIF protocols in the preprocessing model.

In terms of dZK, Boneh et al. give a 2-round dZK construction in the RO model [BBC+19]; however, they
assume the adversary can corrupt the prover or up to t < n verifiers. In other words, they do not allow the
malicous prover to collude with the malicious verifiers.

References

[ACF02] Masayuki Abe, Ronald Cramer, and Serge Fehr. Non-interactive distributed-verifier proofs and
proving relations among commitments. In Yuliang Zheng, editor, ASIACRYPT 2002, volume
2501 of LNCS, pages 206–223. Springer, Heidelberg, December 2002.

[AKP20] Benny Applebaum, Eliran Kachlon, and Arpita Patra. The resiliency of MPC with low interac-
tion: The benefit of making errors (extended abstract). In Rafael Pass and Krzysztof Pietrzak,
editors, TCC 2020, Part II, volume 12551 of LNCS, pages 562–594. Springer, Heidelberg, Novem-
ber 2020.

[AKP22] Benny Applebaum, Eliran Kachlon, and Arpita Patra. Verifiable relation sharing and multi-
verifier zero-knowledge in two rounds: Trading NIZKs with honest majority - (extended ab-
stract). In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510
of LNCS, pages 33–56. Springer, Heidelberg, August 2022.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious
transfer and extensions for faster secure computation. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 535–548. ACM Press, November 2013.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In Alexandra Boldyreva and Daniele Miccian-
cio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 67–97. Springer, Heidelberg,
August 2019.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter
Scholl. Efficient two-round OT extension and silent non-interactive secure computation. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 291–308. ACM Press, November 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
pseudorandom correlation generators: Silent OT extension and more. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518.
Springer, Heidelberg, August 2019.

21

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages
896–912. ACM Press, October 2018.

[BD91] Mike Burmester and Yvo Desmedt. Broadcast interactive proofs (extended abstract). In Don-
ald W. Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages 81–95. Springer, Heidelberg,
April 1991.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic en-
cryption and multiparty computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011, vol-
ume 6632 of LNCS, pages 169–188. Springer, Heidelberg, May 2011.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum,
editor, CRYPTO’91, volume 576 of LNCS, pages 420–432. Springer, Heidelberg, August 1992.

[BJO+22] Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. Feta: Effi-
cient threshold designated-verifier zero-knowledge proofs. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 293–306. ACM Press, November 2022.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of aggre-
gate statistics. In 14th USENIX symposium on networked systems design and implementation (NSDI
17), pages 259–282, 2017.

[CBBZ22] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with linear-
time prover and high-degree custom gates. Cryptology ePrint Archive, Report 2022/1355, 2022.
https://eprint.iacr.org/2022/1355.

[CBBZ23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with linear-
time prover and high-degree custom gates. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part II, volume 14005 of LNCS, pages 499–530. Springer, Heidelberg, April 2023.

[CD24] Ignacio Cascudo and Bernardo David. Publicly verifiable secret sharing over class groups and
applications to DKG and YOSO. EUROCRYPT 2024, 2024.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret sharing
and achieving simultaneity in the presence of faults (extended abstract). In 26th FOCS, pages
383–395. IEEE Computer Society Press, October 1985.

[CL24] Yi-Hsiu Chen and Yehuda Lindell. Feldman’s verifiable secret sharing for a dishonest majority.
Cryptology ePrint Archive, Paper 2024/031, 2024. https://eprint.iacr.org/2024/031.

[con22] Feta contributiors. Feta implementation, 2022.

[DIO21] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and its applica-
tions. ITC 2021, 2021.

[DMQO+11] Rafael Dowsley, Jorn MULLER-QUADE, Akira Otsuka, Goichiro Hanaoka, Hideki Imai, and An-
derson CA Nascimento. Universally composable and statistically secure verifiable secret sharing
scheme based on pre-distributed data. IEICE transactions on fundamentals of electronics, communi-
cations and computer sciences, 94(2):725–734, 2011.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012.

22

https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2024/031

[DYX+22] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew K. Miller, Lefteris Kokoris-Kogias, and Ling
Ren. Practical asynchronous distributed key generation. In 2022 IEEE Symposium on Security and
Privacy, pages 2518–2534. IEEE Computer Society Press, May 2022.

[EGP+23] Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, Yifan Song, and Chenkai Weng. Super-
Pack: Dishonest majority MPC with constant online communication. In Carmit Hazay and Mar-
tijn Stam, editors, EUROCRYPT 2023, Part II, volume 14005 of LNCS, pages 220–250. Springer,
Heidelberg, April 2023.

[FIS14] Stephen H Friedberg, Arnold J Insel, and Lawrence E Spence. Linear algebra, volume 4. Pearson
Essex, 2014.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (ex-
tended abstract). In 24th ACM STOC, pages 699–710. ACM Press, May 1992.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure multi-
party computation. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 178–193.
Springer, Heidelberg, August 2002.

[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, January 2007.

[GL05] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement. Jour-
nal of Cryptology, 18(3):247–287, July 2005.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC,
pages 218–229. ACM Press, May 1987.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In Alfred Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 323–341. Springer, Heidelberg, August 2007.

[GO14] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. Journal of Cryptology,
27(3):506–543, July 2014.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC com-
bining BMR and oblivious transfer. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part I, volume 10624 of LNCS, pages 598–628. Springer, Heidelberg, December
2017.

[HVW23] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. Your reputation’s
safe with me: Framing-free distributed zero-knowledge proofs. In Guy N. Rothblum and
Hoeteck Wee, editors, Theory of Cryptography - 21st International Conference, TCC 2023, Taipei, Tai-
wan, November 29 - December 2, 2023, Proceedings, Part I, volume 14369 of Lecture Notes in Computer
Science, pages 34–64. Springer, 2023. https://eprint.iacr.org/2022/1523.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer, Heidelberg,
August 2003.

[Kat24] Jonathan Katz. Round optimal fully secure distributed key generation. CRYPTO 2024, 2024.

[KMM+23] Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, Hamza Saleem, and Sri Aravinda Kr-
ishnan Thyagarajan. Non-interactive VSS using class groups and application to DKG. Cryptol-
ogy ePrint Archive, Paper 2023/451, 2023. https://eprint.iacr.org/2023/451.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal
overhead. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume
9215 of LNCS, pages 724–741. Springer, Heidelberg, August 2015.

23

https://eprint.iacr.org/2022/1523
https://eprint.iacr.org/2023/451

[LMs05] Matt Lepinski, Silvio Micali, and abhi shelat. Fair-zero knowledge. In Joe Kilian, editor,
TCC 2005, volume 3378 of LNCS, pages 245–263. Springer, Heidelberg, February 2005.

[LSS16] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient constant-round
multi-party computation from BMR and SHE. In Martin Hirt and Adam D. Smith, edi-
tors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 554–581. Springer, Heidelberg, Octo-
ber / November 2016.

[NMO+04] Anderson C. A. Nascimento, Jörn Müller-Quade, Akira Otsuka, Goichiro Hanaoka, and Hideki
Imai. Unconditionally non-interactive verifiable secret sharing secure against faulty majorities
in the commodity based model. In Markus Jakobsson, Moti Yung, and Jianying Zhou, editors,
ACNS 04, volume 3089 of LNCS, pages 355–368. Springer, Heidelberg, June 2004.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
new approach to practical active-secure two-party computation. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer, Heidelberg,
August 2012.

[QYYZ22] Zhi Qiu, Kang Yang, Yu Yu, and Lijing Zhou. Maliciously secure multi-party PSI with lower
bandwidth and faster computation. In Cristina Alcaraz, Liqun Chen, Shujun Li, and Pierangela
Samarati, editors, ICICS 22, volume 13407 of LNCS, pages 69–88. Springer, Heidelberg, Septem-
ber 2022.

[Roy22] Lawrence Roy. SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the
minicrypt model. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I,
volume 13507 of LNCS, pages 657–687. Springer, Heidelberg, August 2022.

[RS22] Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid MPC for dishonest majority. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS,
pages 719–749. Springer, Heidelberg, August 2022.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal
of the ACM (JACM), 27(4):701–717, 1980.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612–613, November 1979.

[WHV24] R. Wang, C. Hazay, and M. Venkitasubramaniam. Ligetron: Lightweight scalable end-to-end
zero-knowledge proofs. post-quantum zk-snarks on a browser. In 2024 IEEE Symposium on Secu-
rity and Privacy (SP), pages 85–85, Los Alamitos, CA, USA, may 2024. IEEE Computer Society.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty computa-
tion toolkit. https://github.com/emp-toolkit, 2016.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computation.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 39–56. ACM Press, October / November 2017.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In 2021 IEEE
Symposium on Security and Privacy, pages 1074–1091. IEEE Computer Society Press, May 2021.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd FOCS, pages 80–91. IEEE Computer Society Press, November 1982.

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In Giovanni Vigna and Elaine
Shi, editors, ACM CCS 2021, pages 2986–3001. ACM Press, November 2021.

24

https://github.com/emp-toolkit

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It is parameterized by the output
length `out(λ). It maintains an initially empty list List.

Query. Upon receiving (QUERY, sid, x) from a party Pi ∈ P , or the adversary S:

• Check if ∃ v ∈ {0, 1}`out(λ) s.t. (sid, x, v) ∈ List. If not, select v ← {0, 1}`out(λ) and record the tuple (sid, x, v) in List.

• Return (QUERYCONFIRM, sid, v) to the requestor.

Functionality FRO

Figure 11: Functionality FRO for Random Oracle

[YW22] Kang Yang and Xiao Wang. Non-interactive zero-knowledge proofs to multiple verifiers. In
Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part III, volume 13793 of LNCS,
pages 517–546. Springer, Heidelberg, December 2022.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast extension for cor-
related OT with small communication. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 1607–1626. ACM Press, November 2020.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from improved triple generation
and authenticated garbling. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM CCS 2020, pages 1627–1646. ACM Press, November 2020.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In International symposium on
symbolic and algebraic manipulation, pages 216–226. Springer, 1979.

[ZZZR24] Zhelei Zhou, Bingsheng Zhang, Hong-Sheng Zhou, and Kui Ren. Practical constructions for
single input functionality against a dishonest majority. IEEE EURO S&P, 2024.

A Additional Preliminaries

A.1 Random Oracle

Here we introduce the functionality for Random Oracle (RO), which is denoted by FRO. As depicted in Fig-
ure 11, upon receiving (QUERY, sid, x) from any party, FRO first checks whether the query (sid, x) has been
queried before. If not, FRO selects a random value of pre-specified length v ← {0, 1}`out(λ), answers with the
value v and records the tuple (sid, x, v); otherwise, the previously chosen value v is returned again, even if the
earlier query was made by another party.

A.2 Coin-Tossing

Here we introduce the functionality for coin-tossing, and it allows all parties to receive the same uniformly
random string. Throughout the paper, we only consider the security with abort; therefore, here we let the
functionality capture the security with abort. Formally, we present the functionality for coin-tossing in Fig-
ure 12.

B Security Proofs

B.1 Proof of Theorem 2

Theorem 2. Let Fpr be the extension field where p is a large prime and r = 1. Set ρ1 := 1 and ρ2 := 1. Let Expand
be a secure PRG. Then the protocol Π1,1

mv-sVOLE depicted in Figure 4 UC-realizes the functionality Fp,1mv-sVOLE depicted in
Figure 3 in the {Fp,1psVOLE,F

p,1
COIN}-hybrid world, in the presence of a static malicious adversary corrupting up to the dealer

and n− 1 verifiers.

25

The functionality interacts with a prover P, n verifier V1, . . . ,Vn. It is parameterized with a finite field Fp and
its extension field Fpr . Let H be the set of the honest parties.

Upon receiving (TOSS, sid, `) from P and V1, . . . ,Vn, do:

• Sample s← F`pr and send (TOSS, sid, s) to all corrupted parties.

• Send (CONTINUE, sid) to the adversary S. For each honest party H ∈ H, upon receiving an input from S,

– If it is (CONTINUE, sid,H), send (TOSS, sid, s) to H.

– If it is (ABORT, sid,H), send (ABORT, sid) to H.

Functionality Fp,rCOIN

Figure 12: Functionality for coin-tossing

Proof. We prove the security of the protocol Π1,1
mv-sVOLE by showing it is a UC-secure realization of Fp,1mv-sVOLE.

We will first describe the workflow of the simulator S in the ideal-world with Fp,1mv-sVOLE, the dummy dealer
D̃ and the dummy verifiers Ṽ1, . . . , Ṽn, then give a proof that for any A and any Z , EXECFp,1mv-sVOLE,S,Z

c
≈

EXEC
Fp,1psVOLE,F

p,1
COIN

Πmv-sVOLE,A,Z holds, where EXECFp,1mv-sVOLE,S,Z
is the ideal-world execution and EXEC

Fp,1psVOLE,F
p,1
COIN

Πmv-sVOLE,A,Z is the real-
world execution.

When the dealer is honest. In this case, up to n− 1 verifiers are corrupted and the malicious verifiers attempt
to learn the information about the dealer’s output, i.e., the first ` components of the vector x := Expand(s, `′).
We denote byH the set of honest parties. We describe the simulation strategy of S in the following:

1. S emulates Fp,1psVOLE,F
p,1
COIN honestly for the adversaryA. Therefore, S knows ∆(i) and k(i) for each malicious

verifier V∗i /∈ H. Then S sends ∆(i) and k(i) to Fp,1mv-sVOLE on behalf of each malicious dummy verifier Ṽi.

2. S picks a uniformly random x̃ ← F`′p . Then for each malicious verifier V∗i /∈ H, S computes m̃(i) := k(i) −
x̃ ·∆(i) ∈ F`′p ; notice that, S is able to compute m̃(i) since S knows ∆(i) and k(i).

3. S executes the step 3 in Figure 4 honestly on behalf of the honest parties.

4. Whenever A wants to make a honest party H ∈ H abort, S simply stops simulating this party and returns
(ABORT, sid,H) to Fp,1mv-sVOLE when Fp,1mv-sVOLE sends (CONTINUE, sid).

We then prove the indistinguishability through the following hybrids.

• Hybrid Hyb0: This is the real-world execution EXEC
Fp,1psVOLE,F

p,1
COIN

Πmv-sVOLE,A,Z .

• Hybrid Hyb1: Same as Hyb0, except that S emulates Fp,1psVOLE and Fp,1COIN honestly for the adversary A, sends
the corrupted dummy parties’ respective output to Fp,1mv-sVOLE, picks x̃ ← F`′p and uses x̃ to complete the
protocol execution with A.

Lemma 1. Let Fpr be the extension field where p is a large prime and r = 1. Let Expand be a secure PRG. Then hybrid
Hyb1 is computationally indistinguishable from hybird Hyb0.

Proof. Here we will show that any adversary A cannot know any information about x in the real-world
execution (i.e., Hyb0), so that A will not distinguish Hyb0 from Hyb1 when S uses a randomly selected x̃ in
Hyb1.

We denote by s̃ the value returned by Fp,1COIN in hybrid Hyb1 and we set ũ :=
∑`′

i=1 s̃i · x̃′i. We denote by
y (resp., ỹ) the last component of x (resp. x̃). With the above notations, it is easy to observe that u =

(
∑`
i=1 si · xi) + s`+1 · y and ũ = (

∑`
i=1 s̃i · x̃i) + s̃`+1 · ỹ. Notice that, since Expand is a secure PRG, y and

ỹ are computationally indistinguishable and the probability of y (or ỹ) being non-zero is 1 − p−r, which is
overwhelming. We also note that, since s are sampled byFp,1COIN and s̃ are uniformly sampled, the probability
of s`+1 (or ˜s`+1) being non-zero is also 1−p−1. Therefore, the probability of s`+1 ·y (or s̃`+1 · ỹ) being non-zero

26

is (1−p−1), which is overwhelming. When s`+1 ·y (resp. s̃`+1 · ỹ) is non-zero, it serves as a “one-time pad” to∑`
i=1 si · xi (resp.

∑`
i=1 s̃i · x̃i). In other words, if s`+1 · y and s̃`+1 · ỹ are non-zero, then u and ũ are perfectly

indistinguishable. In conclusion, Hyb1 is computationally indistinguishable from Hyb0.

• Hybrid Hyb2: Same as Hyb1, except that whenever A wants to make a honest party H ∈ H abort, S simply
stops simulating this party and returns (ABORT, sid,H) to Fp,1mv-sVOLE when Fp,1mv-sVOLE sends (CONTINUE, sid).
Perfect indistinguishability is trivial.

Hybrid Hyb2 is the ideal world execution EXECFp,1mv-sVOLE,S,Z
. In conclusion, EXECFp,1mv-sVOLE,S,Z

c
≈ EXEC

Fp,1psVOLE,F
p,1
COIN

Πmv-sVOLE,A,Z
holds when the dealer is honest.

When the dealer is malicious. In this case, the malicious dealer D∗ may use inconsistent s (therefore, this
will result in inconsistent x) when running different instances of Fp,1psVOLE with different honest verifiers. We
need to prove that if the malicious dealer D∗ cheats, D∗ would be caught with overwhelming probability. The
simulation strategy of the simulator S is straightforward: S simply acts as honest verifiers and follows the
protocol honestly. For completeness, we describe the simulation strategy of S in the following:

1. S emulates Fp,1psVOLE,F
p,1
COIN honestly for the adversary A. In this way, S receives s from malicious D∗, and S

knows whether D∗ uses the inconsistent s.

2. S completes the protocol execution honestly on behalf of the honest verifiers.

3. If the malicious D∗ uses the inconsistent s and passes the consistency check, S would abort.

4. If the malicious D∗ uses the consistent s and passes the consistency check (i.e., D∗ sends the correct m(i) to
each honest verifier Vi), S sends s and {m(i)}i s.t. Vi∈H to Fp,1mv-sVOLE on behalf of the malicious dummy D̃∗.

5. Whenever A wants to make a honest party H ∈ H abort, S simply stops simulating this party and returns
(ABORT, sid,H) to Fp,1mv-sVOLE when Fp,1mv-sVOLE sends (CONTINUE, sid).

We then prove the indistinguishability through the following hybrids.

• Hybrid Hyb0: This is the real-world execution EXEC
Fp,1psVOLE,F

p,1
COIN

Πmv-sVOLE,A,Z .

• Hybrid Hyb1: Same as Hyb0, except that S emulates Fp,1psVOLE and Fp,1COIN honestly for the adversaryA, follows
the protocol honestly on behalf of the honest verifiers, and S aborts if the malicious D∗ uses the inconsistent
s and D∗ passes the consistency check.

Lemma 2. Let Fpr be the extension field where p is a large prime and r = 1. Let Expand be a secure PRG. Then hybrid
Hyb1 is computationally indistinguishable from hybird Hyb0.

Proof. It is easy to see that the adversary A would distinguish Hyb0 from Hyb1 if S aborts. Here we will
show that the probability of a cheating D∗ passing the consistency check is negligible, so the probability of
S aborting is also negligible.

If D∗ uses inconsistent s, for instance, s1, s2 such that s1 6= s2. We denote by x1 := Expand(s1, `
′) and

x2 := Expand(s2, `
′). We also denote by x̃1, x̃2 the uniformly sampled vectors from F`′p . Since Expand is a

secure PRG, x1 (resp. x2) is computationally indistinguishable from x̃1 (resp. x̃2). By Theorem 3, we know
that Pr[s> ·x̃1 = s> ·x̃2] = Pr[s> ·(x̃1−x̃2)] = p−1 = 0, which is negligible. By the union bound, we conclude
that the probability of s> · (x1 − x2) = 0 is also negligible. In other words, unless D∗ is able to forge a MAC
tag which happens with probability p−1, the cheating D∗ can pass the consistency check with negligible
probability. In conclusion, hybrid Hyb1 is computationally indistinguishable from hybird Hyb0.

• Hybrid Hyb2: Same as Hyb1, except that if the malicious D∗ uses the consistent s and passes the consistency
check (i.e., D∗ sends the correct m(i) to each honest verifier Vi), S sends s and {m(i)}i s.t. Vi∈H to Fp,1mv-sVOLE

on behalf of the malicious dummy D̃∗. Perfect indistinguishability is trivial.

27

• Hybrid Hyb3: Same as Hyb2, except that whenever A wants to make a honest party H ∈ H abort, S simply
stops simulating this party and returns (ABORT, sid,H) to Fp,1mv-sVOLE when Fp,1mv-sVOLE sends (CONTINUE, sid).
Perfect indistinguishability is trivial.

Hybrid Hyb3 is the ideal world execution EXECFp,1mv-sVOLE,S,Z
. In conclusion, EXECFp,1mv-sVOLE,S,Z

c
≈ EXEC

Fp,1psVOLE,F
p,1
COIN

Πmv-sVOLE,A,Z
holds when the dealer is malicious.

B.2 Proof of Theorem 3

Theorem 3. Let Fp be the field with prime order p. Let s be the column vector over field Fkp whose elements are all
non-zero, Let t be the column vector that is uniformly sampled from Fkp . Then we have Pr[s> · t = 0] = 1

p .

Proof. We will use some knowledge of linear algebra to prove this lemma. Let s> · x = 0 be a linear equation,
that is, we let s> be the coefficients and let x be the variables. The null space of s> is defined as a set {y ∈
Fkp : s> · y = 0} and we denote by N (s>) the null space of s> for better expression. The dimension of N (s>)

is also called the nullity of s>. It is easy to see that the rank of s> is 1. Due to the rank-nullity theorem [FIS14]
which states that given any coefficient matrix A, the rank of A plus the nullity of A is equal to the total number
of columns in A, we can easily conclude that the nullity of s> is k − 1. In other words, given the first k − 1

components of x, there exists a unique xk such that xk = −
∑k−1
i=1 s

−1
k · si · xi.

Now let us look back to equation that we want to prove. Notice that, s> · t = 0 if and only if t ∈ N (s>).
Therefore, we have

Pr[s> · t = 0] = Pr[t ∈ N (s>)]

=
∑

(v1,v2,...,vk−1)∈Fk−1
p

Pr[tk = −
k−1∑
i=1

s−1
k · si · vi | t1 = v1, t2 = v2, . . . ,

tk−1 = vk−1] · Pr[t1 = v1, t2 = v2, . . . , tk−1 = vk−1]

= pk−1 · (1

p
· 1

pk−1
) =

1

p
.

The penultimate equation holds because t is uniformly sampled from Fkp . This completes the proof.

B.3 Proof of Theorem 4

Theorem 4. Let Fpr be the extension field. Let Expand be a secure PRG. Then the protocol ΠPrep depicted in Figure 6
UC-realizes the functionality Fp,rPrep depicted in Figure 5 in the {Fp,rpsVOLE,F

p,1
COIN}-hybrid world, in the presence of a static

malicious adversary corrupting up to the dealer and n− 1 verifiers.

Proof. The security of Initialization and Authentications over subfield is trivial; thus, here we only focus on
Authentications over extension field. We will first describe the workflow of S, then give an proof to show that

the EXECFp,rPrep,S,Z ≡ EXEC
Fp,rpsVOLE,F

p,1
COIN

ΠPrep,A,Z , where EXECFp,rPrep,S,Z is the ideal-world execution and EXEC
Fp,rpsVOLE,F

p,1
COIN

ΠPrep,A,Z is
the real-world execution; notice that, the perfect security only holds for the Authentications over extension
field part.

When the dealer is honest. In this case, up to n − 1 verifiers are corrupted and the malicious verifiers want
to learn some information about the dealer’s input. We denote by H the set of honest parties. We describe the
simulation strategy of S in the following:

1. S emulates Fp,rpsVOLE honestly for A.

2. For each i ∈ [d] and for each malicious verifier V∗h /∈ H:

(a) S receives k(h)
i ∈ Frpr from V∗h by emulating Fp,rpsVOLE.

(b) S computes K(h)
i :=

∑r
j=1 k

(h)
i,j ·Xj−1 ∈ Fpr .

28

3. S sendsK(h) := (K
(h)
1 , . . . ,K

(h)
d) ∈ Fdpr to Fp,rPrep on behalf of each malicious dummy Ṽh.

4. Whenever A wants to make a honest party H ∈ H abort, S simply returns (ABORT, sid,H) to Fp,rPrep when
Fp,rPrep sends (CONTINUE, sid).

We then prove the indistinguishability through the following hybrids.

• Hybrid Hyb0: This is the real-world execution EXEC
Fp,rpsVOLE,F

p,1
COIN

ΠPrep,A,Z .

• Hybrid Hyb1: Same as Hyb0, except that S emulates Fp,rpsVOLE honestly for A, receives {k(h)
i }i∈[d] from each

malicious verifier V∗h /∈ H, and sends K(h) := (K
(h)
1 , . . . ,K

(h)
d) ∈ Fdpr to Fp,rPrep on behalf of each malicious

dummy Ṽi, where K(h)
i :=

∑r
j=1 k

(h)
i,j ·Xj−1 for all i ∈ [d]. Perfect indistinguishability holds, because there

is no communication among the parties and A cannot learn anything about the dealer’s input due to the
security of Fp,rpsVOLE.

• Hybrid Hyb2: Same as Hyb1, except that whenever A wants to make a honest party H ∈ H abort, S returns
(ABORT, sid,H) to Fp,rPrep when Fp,rPrep sends (CONTINUE, sid). Perfect indistinguishability is trivial.

Hybrid Hyb2 is the ideal world execution EXECFp,rPrep,S,Z . In conclusion, when the dealer is honest, EXEC
Fp,rpsVOLE,F

p,1
COIN

ΠPrep,A,Z ≡
EXECFp,rPrep,S,Z holds.

When the dealer is malicious. In this case, some of the verifiers are honest. Denote by H the set of honest
parties. We describe the simulation strategy in the following:

1. S emulates Fp,rpsVOLE honestly for A.

2. For i ∈ [d]:

(a) S receives s(h)
i ∈ S and {m(h)

i }h s.t. Vh∈H from the malicious D∗ by emulating Fp,rpsVOLE.

(b) S computes (v
(h)
i,1 , . . . , v

(h)
i,r) := Expand(s

(h)
i , r), u(h)

i :=
∑r
j=1 v

(h)
i,j ·Xj−1 and M (h)

i :=
∑r
j=1mi,j ·Xj−1 for

each honest verifier Vh ∈ H.

3. S sets u(h) := (u
(h)
1 , . . . , u

(h)
d),M (h) := (M

(h)
1 , . . . ,M

(h)
d) for each honest Vh ∈ H.

4. S sends {u(h),M (h)}h s.t. Vh∈H to Fp,rPrep on behalf of the corrupted dummy D̃∗.

5. Whenever A wants to make a honest party H ∈ H abort, S simply returns (ABORT, sid,H) to Fp,rPrep when
Fp,rPrep sends (CONTINUE, sid).

We then prove the indistinguishability through the following hybrids.

• Hybrid Hyb0: This is the real-world execution EXEC
Fp,rpsVOLE,F

p,1
COIN

ΠPrep,A,Z .

• Hybrid Hyb1: Same as Hyb0, except that S emulates Fp,rpsVOLE honestly for A, receives {s(h)
i ,m

(h)
i }h s.t. Vh∈H

from the malicious D∗, computes (v
(h)
i,1 , . . . , v

(h)
i,r) := Expand(s

(h)
i , r), u(h)

i :=
∑r
j=1 v

(h)
i,j · Xj−1 and M

(h)
i :=∑r

j=1mi,j ·Xj−1 for each honest verifier Vh ∈ H. Then S setsu(h) := (u
(h)
1 , . . . , u

(h)
d),M (h) := (M

(h)
1 , . . . ,M

(h)
d)

for each honest Vh ∈ H, and sends {u(h),M (h)}h s.t. Vh∈H toFp,rPrep on behalf of the corrupted dummy D̃∗. Per-
fect indistinguishability is trivial.

• Hybrid Hyb2: Same as Hyb1, except that whenever A wants to make a honest party H ∈ H abort, S simply
returns (ABORT, sid,H) to Fp,rPrep when Fp,rPrep sends (CONTINUE, sid). Perfect indistinguishability is trivial.

Hybrid Hyb2 is the ideal world execution EXECFp,rPrep,S,Z . In conclusion, when the dealer is malicious, EXECF
p,r
sVOLE,F

p,1
COIN

ΠPrep,A,Z ≡
EXECFp,rPrep,S,Z holds.

29

B.4 Proof of Theorem 5

Theorem 5. Let Fpr be the extension field. Let H : {0, 1}∗ → Fpr be a hash function, which is modeled as a RO. Let C be
the circuit with t multiplication gates. Then the protocol ΠSIF depicted in Figure 7 UC-realizes FSIF depicted in Figure 2
with statistical security in the {Fp,rPrep,H}-hybrid world, in the presence of a static malicious adversary corrupting up to
the dealer and n− 1 verifiers.

Proof. Similar to the proof of Theorem 2, we will first describe the workflow of S, then give an proof to show
that the ideal-world execution EXECFSIF,S,Z is statistically indistinguishable from the real-world execution

EXEC
Fp,rPrep,H

ΠSIF,A,Z .

When the dealer is honest. In this case, up to n − 1 verifiers are malicious, and we need to ensure that the
malicious verifiers cannot learn the dealer’s input w. We prove this by constructing a simulator S who does
not hold w, but is able to generate the “fake proof” that would make a honest verifier accept. We denote byH
the set of honest parties. We describe the simulation strategy of S as follows:

1. S emulates Fp,rPrep for the adversary A.

2. S picks a random w̃ ← Fmp and uses w̃ to execute the step 1-4 in the online phase of ΠSIF honestly on behalf
of the honest dealer D.

3. In the final step of the online phase, for each malicious verifier V∗i /∈ H, if S receives (OUTPUT, sid, yi) from
FSIF, then S sends yi,myi := kyi − yi ·∆(i) to V∗i ; notice that, S knows kyi and ∆(i) by emulating Fp,rPrep.

4. Whenever A wants to make a honest party H ∈ H abort, S simply returns (ABORT, sid,H) to FSIF when FSIF

sends (CONTINUE, sid).

We then prove the indistinguishability through the following hybrids.

• Hybrid Hyb0: This is the real-world execution EXEC
Fp,rPrep,H

ΠSIF,A,Z .

• Hybrid Hyb1: Same as Hyb0, except that S emulates Fp,rPrep honestly for A, picks a random w̃ ← Fmp and uses
w̃ to execute the step 1-4 in the online phase of ΠSIF honestly on behalf of the honest dealer D, and in the
final step of the online phase, for each malicious verifier V∗i /∈ H, if S receives (OUTPUT, sid, yi) from FSIF,
then S sends yi,myi := kyi − yi ·∆(i) to V∗i .

Lemma 3. Hybrid Hyb1 is perfectly indistinguishable from hybrid Hyb0.

Proof. Due to the security ofFp,rPrep,A cannot know anything about random vectors µ,η that are used to mask
the wire values. Therefore, even if S uses a randomly selected w̃ as the dealer’s input, A cannot be aware of
that in the step 1-4 in the online phase of ΠSIF. In the final step of the online phase, since S sends yi,myi such
that myi = kyi −yi ·∆(i) to V∗i if S receives (OUTPUT, sid, yi) from FSIF, V∗i is convinced to output acceptance.
In conclusion, hybrid Hyb1 is perfectly indistinguishable from hybrid Hyb0.

• Hybrid Hyb2: Same as Hyb1, except that whenever A wants to make a honest party H ∈ H abort, S simply
returns (ABORT, sid,H) to FSIF when FSIF sends (CONTINUE, sid). Perfect indistinguishability is trivial.

Hybrid Hyb2 is the ideal world execution EXECFSIF,S,Z . In conclusion, when the dealer is honest, EXEC
Fp,rPrep,H

ΠSIF,A,Z ≡
EXECFSIF,S,Z holds.

When the dealer is honest. In this case, S has to extract the malicious dealer’s input. We describe the simula-
tion strategy of S in the following:

1. S emulates Fp,rPrep for the adversary A.

2. S acts as honest verifiers to interact with D∗ and completes the protocol execution.

3. If D∗ makes at least one of the honest verifiers output yi, then S computes w := µ+ δ; notice that, S knows
µ since S emulates Fp,rPrep for the adversary A. Then S uses the extracted w to compute ỹ := C(w). If ỹi = yi

holds for all honest verifiers Vi who outputs yi, S sends w to FSIF on behalf of the malicious dummy D̃∗;
otherwise, S aborts.

30

4. Whenever A wants to make a honest party H ∈ H abort, S simply returns (ABORT, sid,H) to FSIF when FSIF

sends (CONTINUE, sid).

We then prove the indistinguishability through the following hybrids.

• Hybrid Hyb0: This is the real-world execution EXEC
Fp,rPrep,F

p,r
COIN

ΠSIF,A,Z .

• Hybrid Hyb1: Same as Hyb0, except that S emulates Fp,rPrep honestly for A, extracts the dealer’s input w, and
computes ỹ := C(w). If ỹi = yi holds for all honest verifiers Vi who outputs yi, S sends w to FSIF on behalf
of the malicious dummy D̃∗; otherwise, S aborts.

Lemma 4. Let Fpr be the underlying extension field with p−r = negl(λ). Let C be the circuit with t multiplica-
tion gates. Let Q be the maximum number of RO queries made by the adversary. Then hybrid Hyb1 is statistically
indistinguishable from hybrid Hyb0 with adversarial advantage at most n(1+Q(t+2))

pr .

Proof. Here we prove that the probability of a cheating D∗ using w and convincing a honest verifier Vi that
yi is the correct output, where ỹ := C(w) and ỹi 6= yi, is negligible. It is easy to see that the cheating D∗ is
able to do that if D∗ can forge the MAC tags for at least one honest verifier, which happens at probability n

pr .

Now let us focus on the case where D∗ cannot forge the MAC tags. We will prove that if D∗ commits to
w using µ, then D∗ cannot convince a honest verifier a false yi is the correct output, except with negligible
probability. It is easy to see that the wire values that are associated with addition gates must be computed
correctly. For the i-th multiplication gates, we assume that the output wire values of the former i − 1 mul-
tiplication gates are always correct. For the i-th multiplication gates, the parties holds JwαK, JwβK, JwγK with
wγ = wα · wβ + ei, where ei ∈ Fp is an error chosen by D∗. Then for each honest Vj ∈ H, we have

B
(j)
i = k(j)α · k

(j)
β − k

(j)
γ ·∆(j)

= (m(j)
α + wα ·∆(j)) · (m(j)

β + wβ ·∆(j))− (m(j)
γ + (wγ + ei) ·∆(j)) ·∆(j)

= A
(j)
i,0 +A

(j)
i,1 ·∆

(j) − ei · (∆(j))2 .

Then in the step 4 of online phase, D∗ sends Û (j) := U (j) + e
(j)
U and V̂ (j) := V (j) + e

(j)
V , where e(j)

U , e
(j)
v are

the errors chosen by D∗. Furthermore, for each honest Vj , we have

Z(j) =

t∑
i=1

B
(j)
i · χ

i + z(j)

=

t∑
i=1

(A
(j)
i,0 +A

(j)
i,1 ·∆

(j) − ei · (∆(j))2) · χi + v(j) + u(j) ·∆(j)

= U (j) + V (j) ·∆(j) − (

t∑
i=1

ei · χi) · (∆(j))2

= (Û (j) − e(j)U) + (V̂ (j) − e(j)V) ·∆(j) − (

t∑
i=1

ei · χi) · (∆(j))2 .

If the check passes, then we have Z(j) = Û (j) + V̂ (j) ·∆(j). In this case, we have the following equation:

e
(j)
U + e

(j)
V ·∆

(j) + (
t∑
i=1

ei · χi) · (∆(j))2 = 0 . (2)

Notice that, D∗ can choose different ei (thus different broadcast message di) to bias χ, since χ is obtained via
querying RO with the broadcast messages. However, in each adversary’s attempt, by the famous Schwartz-
Zippel lemma [Sch80, Zip79], we know that if

∑t
i=1 ei · χi 6= 0, then the probability of the above equation

holds is at most 2 · p−r, and the probability of
∑t
i=1 ei · χi = 0 holds is at most t · p−r. Since the adversary

can attempt for up to Q times, for each honest Vj , the probability that Equation 2 holds is at most Q(t+2)
pr .

By the union bound of the probability, we conclude that Hyb1 is statistically indistinguishable from hybrid
Hyb0 with adversarial advantage at most n(1+Q(t+2))

pr .

31

• Hybrid Hyb2: Same as Hyb1, except that whenever A wants to make a honest party H ∈ H abort, S simply
returns (ABORT, sid,H) to FSIF when FSIF sends (CONTINUE, sid). Perfect indistinguishability is trivial.

Hybrid Hyb2 is the ideal world execution EXECFSIF,S,Z . In conclusion, when the dealer is malicious, EXECFSIF,S,Z

is statistically indistinguishable from EXEC
Fp,rPrep,H

ΠSIF,A,Z with adversarial advantage at most n(1+Q(t+2))
pr .

32

	Introduction
	Our Contributions
	Our Techniques
	Previous Approaches.
	Our Approach.

	Preliminaries
	Notations
	Security Model
	(Programmable) Subfield VOLE
	Single-Input Functionalities

	Multiple-Verifier Subfield VOLE
	Security Definition
	Efficiently Realizing Fmv-sVOLEp,r
	A Template Construction
	Security Analysis
	Instantiating FpsVOLEp,r

	SIF against a Dishonest Majority
	Preprocessing Phase
	Functionality for Preprocessing Phase
	Efficiently Realizing FPrepp,r

	Main Protocol

	Impossibility on 1-round SIF without Broadcast Channels
	Implementation and Evaluation
	Comparison with Related Works

	Related Work
	Additional Preliminaries
	Random Oracle
	Coin-Tossing

	Security Proofs
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

