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Abstract. Nova is a new type of recursive proof system that uses a
folding scheme as its core building block. This brilliant idea of folding
relations can significantly reduce the recursion overhead. In this paper,
we study some issues related to Nova’s soundness proof, which relies on
the soundness of the folding scheme in a recursive manner.

First, due to its recursive nature, the proof strategy inevitably causes
the running time of the recursive extractor to expand polynomially for
each additional recursive step. This constrains Nova’s soundness model to
only logarithmically bounded recursive steps. Consequently, the sound-
ness proof in this limited model does not guarantee soundness for a linear
number of rounds in the security parameter, such as 128 rounds for 128-
bit security. On the other hand, there are no known attacks on the arbi-
trary depth recursion of Nova, leaving a gap between theoretical security
guarantees and real-world attacks. We aim to bridge this gap in two op-
posite directions. In the negative direction, we present a recursive proof
system that is unforgeable in a log-round model but forgeable if used
in linear rounds. This shows that the soundness proof in the log-round
model might not be applicable to real-world applications that require
linearly long rounds. In a positive direction, we show that when Nova
uses a specific group-based folding scheme, its knowledge soundness over
polynomial rounds can be proven in the algebraic group model with our
modifications. To the best of our knowledge, this is the first result to
show Nova’s polynomial rounds soundness.
Second, the folding scheme is converted non-interactively via the Fiat-

Shamir transformation and then arithmetized into R1CS. Therefore, the
soundness of Nova using the non-interactive folding scheme essentially
relies on the heuristic random oracle instantiation in the standard model.
In our new soundness proof for Nova in the algebraic group model, we
replace this heuristic with a cryptographic hash function with a special
property. We view this hash function as an independent object of interest
and expect it to help further understand the soundness of Nova.

1 Introduction

Incrementally Verifiable Computation (IVC) [54] and its generalization, Proof-
Carrying Data (PCD) [25] are cryptographic primitives that facilitate the gen-
eration of proofs that convince the accurate execution of lengthy computations.
⋆ corresponding author
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These proofs enable efficient verification by a verifier for any prefix of the com-
putation. IVC schemes find applications in diverse domains, such as verifiable
delay functions (VDF) [7, 40], succinct blockchains [12, 26, 11, 38], and verifiable
state machines [45].

VDF schemes are one of the key tools for Ethereum’s consensus protocols,
and several studies have incorporated the IVC scheme into VDF [40]. VDF
involves recursive computation, and IVC enables efficient verification even when
the computation is computationally expensive.

There are also IVC-based succinct blockchain projects [12, 26, 11]. The IVC
scheme allows for avoiding the need to download the full history for verification.
Using the current state with IVC proof, a node can verify the validity of the
current state and all previous states. If the IVC scheme is applied to Ethereum,
which has a market capitalization of approximately hundreds of billions of dollars
and provides approximately 13.4 seconds for block generation times [29], it would
require approximately 6, 000 recursive computations per day. Therefore, the IVC
scheme for these applications should provide an appropriate level of security for
large recursive steps.

Although many proposals for IVC/PCD schemes [14, 18, 44] offer provable se-
curity, their knowledge soundness is proven only in a limited model with at most
O(log λ) recursive rounds, where λ is the security parameter. This is because
the common proof strategy applied in those proposals is to construct a recursive
extractor that blows up polynomially for each additional recursive step. Thus, re-
cursion can be performed only for O(log λ) rounds before the extractor’s running
time becomes super-polynomial in λ. In fact, there are PCD schemes achieving
polynomially-long chains [25, 6, 21], but those require additional strong assump-
tions such as hardware tokens or are relatively impractical compared to practical
constructions such as Nova [44], a new type of recursive proof system.

Nova uses a folding scheme as its core building block. This brilliant idea of
folding relations can significantly reduce the recursion overhead. Nova’s sound-
ness proof follows the common proof strategy of using a general recursive tech-
nique, and thus is also proven in the aforementioned limited model with O(log λ)
rounds. Therefore, Nova’s soundness proof does not guarantee soundness for lin-
ear rounds in the security parameter, for example, 128 rounds for 128 bit security,
which is too short to be used in various aforementioned applications. This limi-
tation of the current IVC model has been mentioned in several literature [44, 49].
Nevertheless, there are no known attacks on arbitrary depth recursion, leaving
a gap between theoretical security guarantees and real-world attacks.

Our Contribution. Our contribution is threefold, and we summarize them in
the Table 1. First, we identify the gap between the theoretical security guaran-
tees achievable in a limited IVC model with O(log λ) recursive rounds and the
knowledge soundness in an unrestricted IVC model without log-round bounds.
To address this, we introduce a variant of Nova, called Ephemeral-Nova, which
satisfies knowledge soundness in the limited IVC model with O(log λ) recursive
rounds, but becomes forgeable in the IVC model with a linear number of rounds
in λ. Thus, Ephemeral-Nova demonstrates the necessity for a stronger security
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notion to account for poly-round bounds, leading us to propose a knowledge
soundness for poly-round bounds, named poly-depth knowledge soundness.

The second contribution is a new security proof for the poly-depth knowl-
edge soundness of Nova, derived from a group-based folding scheme, whereas
the previous proof in [44] only covered at most logarithmic-round IVC. Notably,
the folding scheme proposed in the Nova paper [44] is a group-based construc-
tion; therefore, we attempt to prove it using the algebraic group model (AGM)
as defined in [31] for straight-line extraction [32]. However, to apply AGM to
soundness proof, we need to clearly define the adversary’s capabilities. To ad-
dress this, we first introduce a new adversarial model, called conditional AGM,
in a reasonable manner and complete the proof for the poly-depth knowledge
soundness of Nova. To the best of our knowledge, our security proof is the first to
demonstrate the knowledge soundness of Nova for polynomial rounds and par-
tially explains why there are no known attacks against Nova for arbitrary-depth
recursion.

Our final contribution is the introduction of a new cryptographic hash prop-
erty, which is a more relaxed requirement than the random oracle model. In
Nova’s construction, the non-interactive folding scheme (NIFS) is derived by ap-
plying the Fiat-Shamir transformation to its interactive version [44]. To construct
Nova IVC from NIFS, it is arithmetized into R1CS, making the random oracle
instantiation accessible to the adversary. In fact, many IVC schemes that use the
Fiat-Shamir transformation rely on a similar heuristic assumption. We introduce
a new property for cryptographic hash functions, called a general zero-testing
hash, which is related to computational hardness, similar to preimage resistance
and collision resistance. We then use this property in our new soundness proof
for Nova within the conditional AGM, without relying on random oracle instan-
tiation.

Security Notion KS (Def. 2,[44]) Poly-depth KS (Def. 3)

Model Adversary Standard CAGM (Def.9)
Hash RO instantiation GZT (Def.11)

Nova [44] ✓ ✗ ✓

Ephemeral-Nova (Sec.3) ✓ ✗ ✗

KS: knowledge soundness, CAGM: conditional algebraic group model, GZT: general
zero-testing hash, RO instantiation: random oracle instantiation that is accessible to
the adversary. The orange one represents a narrower and more limited notion compared
to the green one. This table presents the provability of two IVC schemes under the given
security notion in the model; ✓ indicates provability, while ✗ indicates non-provability.

Table 1. Comparision of Proofability

Our Idea for Designing Ephemeral-Nova. Together with an execution func-
tion F : Z × W → Z and two values z0, zn ∈ Z, a prover of an IVC scheme
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generates a succinct proof that proves the knowledge of ω0, . . . , ωn−1 that satisfy
the relations F (zi−1, ωi−1) = zi for i = 1, . . . , n. Nova’s idea for the new IVC
design is to use a folding scheme that can fold two instance-witness pairs into one
pair and apply the folding scheme to fold the instances for the augmented exe-
cution function F ′. Here, the augmented function F ′ includes several necessary
checks and computations, such as the execution of F and the folding procedure.

Although it is necessary for the augmented function F ′ to include the neces-
sary procedures for soundness, such as the execution of F , we found that adding
some redundant procedure may not harm the knowledge soundness of the IVC
scheme. From this observation, we can try injecting a trigger into F ′ such that
it only becomes activated after a sufficiently large number of rounds. For this
purpose, such a trigger should be controllable for the timing of activation and
also deterministic because the execution of F ′ should be arithmetized into R1CS.
For Ephemeral-Nova, we found an appropriate trigger that can be summarized
as the following recursive sequence:

Yn+1 := Y 2α
n ·An (mod q) and Y0 := 1,

where q is a prime with form α · 2k + 1, known as the Proth prime [13], for
k ≥ λ and odd arbitrary integer α and there are sufficient large Proth primes
used in the prime fields of elliptic curve parameter [20, 16]. Suppose that each
An is either 1 or chosen from a uniform distribution. If n < k, then Yn+1 = 1 is
almost equivalent to the case in which all A0, . . . , An are ones. This equivalence
is maintained until n is sufficiently smaller than k, but is suddenly broken if n
exceeds k. This sequence contains a sudden transition in the equivalence, the
timing of which can be controlled by selecting q, and the uniform distribution
of An can be replaced with a deterministic procedure such as a cryptographic
hash function. Using this special sequence, we can construct an Ephemeral-Nova
whose behavior is almost equivalent to the original Nova before the linear round
and satisfies the knowledge soundness in the constrained IVC model with a log-
round bound, but is forgeable after the linear round due to the activated trigger.

The design of Ephemeral-Nova allows us to find that unnecessary steps in
F ′ may cause a problem that cannot be captured by a general recursive proof
strategy. Therefore, new knowledge soundness proof strategies are needed that
can investigate all unexpected effects, including the above trigger.

Our Idea for New Knowledge Soundness Proof for Polynomial Rounds.
Nova’s soundness proof relies on the soundness of the underlying folding scheme
and uses a recursive proof strategy to extract the witness ωi in reverse order.
Let Ei be an extractor to extract ωi, Ãi be an adversary for the folding scheme,
and Ẽi be an extractor for the folding scheme. Then, the recursive proof strategy
leads to an inequality between the running time:

time(Ei) > time(Ẽi) + time(Ãi) > 2 · time(Ei+1), where the right inequality
holds if time(Ẽi) > time(Ãi). Therefore, the running time required to extract
all ωi increases exponentially in the final number of rounds.

To avoid recursive blowup, instead of relying on relying on the extractor
Ẽi for the folding scheme, we directly prove the soundness of the IVC scheme.
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This requires a direct procedure to extract all ωi from the attacker’s output
(F, (z0, z,Π)) only, where F is an execution function, z0 is an initial input of F ,
z is the final output of F , and Π is a valid IVC proof. Indeed, the adversary’s
output is too limited to extract all intermediate ωi without an additional resource
such as a folding extractor.

Therefore, we move to an ideal model to observe a partial history of group-
related operations performed by the adversary until the final result is out-
put, where the underlying folding scheme is group-based. There are two well-
established ideal models for handling group operations: the generic group model
(GGM) [48, 53, 47] and algebraic group model (AGM) [31].

GGM is devised to demonstrate the hardness of group-based problems and
the security of cryptographic schemes against attackers who are constrained
not to use group descriptions. In the AGM, all group elements that the attack
algorithm outputs are derived from known group elements via group operations.

In order to analyze the security of the Nova IVC scheme, both GGM and
AGM have limitations. The GGM has the advantage of tracking the history
of group operations because of its interactive feature. However, in the Nova
IVC scheme, the folding verifier is arithmetized into R1CS, meaning that group
operations should be instantiated in R1CS, which is not allowed in GGM. A
similar situation occurs when we use the random oracle model in the analysis of
the non-interactive folding scheme. That is, the cryptographic hash functions are
modeled as the random oracle, but the hash function should also be instantiated
in R1CS when the folding verifier is arithmetized into R1CS. Heuristically, one
might assume that these are securely possible, but we avoid these heuristics as
much as possible. (We will revisit the random oracle model later.)

In the AGM, the adversary should output a representation vector whenever
a group element is output. Using the provided representation vector, we can
construct a straight-line extrator [32] using the algebraic adversary. However,
the AGM has other limitations.

First, the group elements for which the adversary should provide representa-
tion vectors are not clearly defined. What if the adversary outputs elements that
are not part of the group but are encodable as group elements? In the knowl-
edge soundness proof in Nova, the adversary provides an R1CS witness that
contains elements that can be encoded as group elements, even though they are
field elements, because the R1CS circuit includes group operations. In this case,
the original AGM cannot ensure that the adversary provides representations for
these group-encodable field elements.

Second, for direct extraction, we expect the representations provided by the
adversary to form an R1CS witness. In other words, we require the algebraic
adversary to provide a specific representation, but AGM does not restrict the
form of the representation vectors provided by the adversary.

To circumvent these two limitations, we modify the AGM. We first let the
algebraic adversary provide representation vectors of some group-encodable out-
puts, not only explicitly group elements. Depending on the situation, part of the
adversary’s output ensures group encodability. In this case, the adversary may
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obtain the group-encodable part by constructing the group element algebraically
and then converting it to a non-group form. In this sense, the adversary knows
the representation for the group-encodable part, so it is reasonable to let the
adversary provide it, even if the group-encodable element does not form a group
explicitly.

Second, we let the adversary output a representation satisfying specific con-
ditions, e.g., a committed relaxed-R1CS (CR-R1CS) witness. We may assume
that if the adversary can construct a CR-R1CS instance, it also knows the cor-
responding witness, which is a representation of the instance. This concept is
similar to the knowledge of exponent (KOE) assumption [28], which is covered
by the definition of AGM [31]. Similar to the KOE assumption, we require the
adversary to provide a specific representation depending on the group element.

Our Idea for Nova construction without Random Oracle Instantia-
tion There are studies [22, 21] that aim to remove the heuristic instantiations
of random oracles by introducing new variants of random oracles. We propose a
different approach to avoid heuristic analysis because we do not want to change
the Nova IVC construction but rather provide a new soundness analysis. To
this end, we propose a new plausible property of cryptographic hash functions
such as SHA-256 that is sufficient for proving knowledge soundness in the AGM.
Note that the new property of the hash function we introduce is an intractabil-
ity property, such as preimgage-resistance and collision-resistance. That is, this
property of the hash function cannot solely replace the random oracles because
it cannot replace such a power of the random oracle to extract a witness by
rewinding algorithms. However, we use this property of hash functions with our
AGM refinement; Our AGM refinement is useful to extract something the ad-
versary used, and then this property of hash function can be used to show the
extracted ones satisfy some relations so that eventually are witness of R1CS.

Additional Related Works. A well-known approach for IVC is to recursively
utilize succinct non-interactive arguments of knowledge (SNARKs) [34, 35] for
arithmetic circuits. In this approach [4], at each incremental step i, the prover
generates a SNARK proving the correct execution of F to the output of step i
and that the SNARK verifier, represented as a circuit, has accepted the SNARK
for step i − 1. However, SNARK-based approaches are considered impractical
because they require a cycle of pairing friendly elliptic curves. Furthermore,
this approach requires a trusted setup that inherits from SNARKs. To address
this issue, there are alternative approaches using NARKs [14, 18] by deferring
expensive verification circuit per each step.

Organization. The next section describes Nova IVC and its folding method,
which is the core building block of Nova. In Section 3, we propose a new IVC
scheme called Ephemeral-Nova that has knowledge soundness in log-bounded
rounds but is forgeable in linear rounds. In Section 4, we review idealized models
for group-based systems and refine them to adapt to Nova IVC. In Section 5,
we introduce a new property of the hash function and show how to use it in
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the AGM to replace random oracles. In Section 6, we present a new knowledge
soundness proof for Nova from a group-based folding scheme in the refined AGM.
Finally, we provide concluding remarks in Section 7.

2 IVC from Folding Scheme

Notation. We first define the notations used in this paper. [m] denotes the set
of the integers from 1 to m, i.e., [m] := {1, · · · ,m}.

Let Zp be the ring of integers modulo p. Uniform sampling is denoted by $←.

For instance, a $← Zp indicates that a is uniformly chosen from Zp.
We use bold font to represent vectors such as a. For two vectors a =

(a1, . . . aℓ), b = (b1, . . . , bℓ) ∈ Zℓ
p, we define three binary operations: concate-

nation a∥b = (a1, . . . , aℓ, b1, . . . , bℓ), Hadamard product a ◦ b = (a1b1, . . . , aℓbℓ),
and inner product ⟨a, b⟩ =

∑ℓ
i=1 aibi.

The symbol H denotes the cryptographic hash function whose range will be
specified in the context.

Definition 1 (Commitment Scheme). A commitment scheme is defined by
two PPT algorithms: the setup algorithm Setup and commitment algorithm Com.
Let M, R, and C be message space, random space, and commitment space, re-
spectively. Setup and Com are defined by:

– Setup(1λ, ℓ) → ck : On the input security parameter λ and dimension of
message space ℓ, sample commitment key ck

– Com(ck,m; r) → C : Take commitment key ck, message m ∈ M, and ran-
domness r ∈ R, output commitment C ∈ C

We call (Setup,Com) a commitment scheme if the following two properties hold:
[Binding]: For any expected PPT adversary A,

Pr

[
Com(ck,m0; r0) = Com(ck,m1; r1),

∧ m0 ̸= m1

∣∣∣∣ ck← Setup(1λ, ℓ),
(m0, r0,m1, r1)← A(ck)

]
≤ negl(λ)

[Hiding]: For any expected PPT adversary A = (A1,A2)∣∣∣∣∣∣∣∣Pr
b = b′

∣∣∣∣∣∣∣∣
ck← Setup(1λ, ℓ),

(m0,m1, state)← A1(ck),

b
$←{0, 1}, r $←R, C ← Com(ck,mb; r),

b′ ← A2(ck, C, state),

− 1
2

∣∣∣∣∣∣∣∣ ≤ negl(λ)

Let M, R, and C be efficiently computable (additive) groups. Then, we call
a commitment scheme (Setup,Com) homomorphic if the (Setup,Com) satisfying
the following homomorphic property.
[Homomorphic]: For any commitment key ck ← Setup(1λ, N) and pairs of
message-randomness (m0, r0), (m1, r1) ∈ M× R, the following equation holds:

Com(ck,m0; r0) + Com(ck,m1; r1) = Com(ck,m0 +m1; r0 + r1)
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2.1 Definitions of IVC and (Refined) Folding Scheme

Definition 2 (IVC). An incrementally verifiable computation (IVC) scheme
is defined by four PPT algorithms: the generator G, key generation K, the prover
P, and the verifier V. We say that an IVC scheme (G,K,P,V) satisfies perfect
completeness if for any PPT adversary A

Pr

V(vk, i, z0, zi, Πi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
F, (i, z0, zi−1, ωi−1, Πi−1)← A(pp),

(pk, vk)← K(pp, F ),
zi = F (zi−1, ωi−1),

V(vk, i− 1, z0, zi−1, Πi−1) = 1,
Πi ← P(pk, i, z0, zi−1, ωi−1, Πi−1)

 = 1

where F is a polynomially efficient computable function. We say that an IVC
scheme satisfies knowledge-soundness if for any constant n, and expected poly-
nomial time adversaries P∗, there exists expected polynomial-time extractor E
such that for any input randomness ρ

Pr


zn ̸= z,

where zi ← F (zi−1, ωi−1)
∀i ∈ [n],

∧V(vk, n, z0, z,Π) = 1

∣∣∣∣∣∣∣∣
pp← G(1λ),

F, (z0, z,Π)← P∗(pp; ρ),
(pk, vk)← K(pp, F ),

(ωi)
n−1
i=0 ← E(pp, z0, z; ρ)

 ≤ negl(λ) (1)

Finally, we say that an IVC scheme satisfies succinctness if the size of the IVC
proof Π is independent from the number of applications n.

As mentioned in [44], IVC based recursive techniques [44, 14, 24, 18, 9, 42,
43, 17, 49] can cover at most logarithmically large n, i.e., n = O(log λ). For
a polynomial large n, the IVC schemes cannot provide PPT extractor E for
knowledge soundness because of exponential blow-up.

To cover knowledge soundness under the polynomial large number of ap-
plications n, we define poly-depth knowledge soundness by extending n to be
bounded by a polynomial function. In addditon, we refer to an IVC scheme
as log-bounded (poly-bounded) if the scheme satisfies knowledge soundness for
logarithmic n = O(log λ) (polynomial n = poly(λ), respectively).

Definition 3 (Poly-depth Knowledge Soundness of IVC). We say that
an IVC scheme (G,K,P,V) satisfies poly-depth knowledge soundness if for ar-
bitrary polynomial n = poly(λ), and expected polynomial time adversaries P∗,
there exists an expected polynomial-time extractor E such that for any input ran-
domness ρ, it satisfies the condition in Eq. (1).

To define a folding scheme, we consider a special relation R over tuples
consisting of public parameters ppFS , structure s, instance u, and witness v. We
use the notation RppFS ,s to denote the subset (ppFS , s, ·, ·) ⊂ R if ppFS and s are
fixed. Informally, the folding scheme has, beyond two interactive prover P and
verifier V, additional algorithms G and K that specify the first two terms of R,
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ppFS and s. After fixing ppFS and s, a folding scheme allows two instance-witness
pairs (u1, v1), (u2, v2) ∈ RppFS ,s to be folded into one pair (u, v) ∈ RppFS ,s and
the soundness of the folding scheme informally states that if two instances u1 and
u2 are folded and the folded instance-witness pair (u, v) is included in RppFS ,s,
then there are valid witness v1 and v2 satisfying (u1, v1), (u2, v2) ∈ RppFS ,s. The
formal definition of folding scheme is given below.

Definition 4 ((Refined) Folding Scheme). Consider a relation R over pub-
lic parameters, structure, instance, and witness tuples. A folding scheme for R
consists of three PPT algorithms, a generator G, a prover P and a verifier V,
and a deterministic key generation algorithm K, all defined as follows.

– G(1λ, N)→ ppFS: On input security parameter λ and the maximum size of
common structure N , samples public parameters ppFS

– K(ppFS , s) → pkFS: On input ppFS and a common structure s, of size N
between instances to be folded, outputs a prover key pkFS.

– P(pkFS , (u1, v1), (u2, v2))→ (u, v): On input two instance-witness pairs (u1, v1)
and (u2, v2), outputs a new instance-witness pair (u, v) of the same size and
folding proof Π to allow the verifier to update new instance.

– V(ppFS , u1, u2, Π) → u: On input two instances u1 and u2, outputs a new
instance u.

Although the final outputs of P and V are defined in the above description, both
are interactive algorithms; thus, the interactive procedure and the corresponding
transcript are denoted as follows.

(u, v)← ⟨P(pkFS , v1, v2),V(ppFS)⟩(u1, u2), tr = ⟨P(pkFS , v1, v2),V(ppFS)⟩(u1, u2)

A folding scheme for R satisfies the following requirements.
1. Perfect Completeness: For all PPT adversaries A, we have that

Pr

 (ppFS , s, u, v) ∈ R

∣∣∣∣∣∣∣∣∣∣
ppFS ← G(1λ, N),

(s, (u1, u2), (v1, v2))← A(ppFS),
(ppFS , s, u1, v1), (ppFS , s, u2, v2) ∈ R,

pkFS ← K(ppFS , s),
(u, v)← ⟨P(pkFS , v1, v2),V(ppFS)⟩(u1, u2)

 = 1.

2.Knowledge Soundness : For any expected PPT adversary Ã = (A,P∗), there
is an expected polynomial-time extractor E such that over all randomness ρ

Pr

 (ppFS , s, u1, v1) ∈ R,
(ppFS , s, u2, v2) ∈ R

∣∣∣∣∣∣
ppFS ← G(1λ, N),

(s, (u1, u2))← A(ppFS , ρ),
(v1, v2)← E(ppFS , ρ)

 c≈

Pr

 (ppFS , s, u, v) ∈ R

∣∣∣∣∣∣∣∣
ppFS ← G(1λ),

(s, (u1, u2))← A(ppFS , ρ),
pkFS ← K(ppFS , s),

(u, v)← ⟨P∗(pkFS , ρ),V(ppFS)⟩(u1, u2)


Definition 5 (Public Coin). A folding scheme (G,K,P,V) is called public coin
if all the messages sent from V to P are sampled from a uniform distribution.



10 H. Lee and J. H. Seo

Definitional Refinement. In our refined definition of folding scheme, the ver-
ifier V takes ppFS as input, unlike the prover P which takes pkFS as input. In
the original definition of folding scheme [44], V also takes vkFS as input, where
vkFS is generated by both ppFS and s. Our definition is a special case of the
original definition since vkFS can be set by ppFS . We argue that our refinement
is necessary if the folding scheme is used in the IVC design. Looking at the use
of folding scheme in the IVC design in [44], the folding verifier should be a part
of the augmented function F ′, which is arithmetized to the (committed relaxed)
R1CS. That is, the description of V should be contained in s and thus V should
not take s as input to avoid a circular contradiction. In particular, the concrete
group-based construction of folding scheme in [44] satisfies our refined definition
because its process does not require s.

Committed Relaxed R1CS. The committed relaxed R1CS is a variant of
the R1CS constraints system, which is widely used in proof system [52, 19, 23,
18]. In particular, the committed relaxed R1CS is a public parameter-dependent
relation defined over public parameters. Let us explain the committed relaxed
R1CS in terms of the folding scheme. The public parameter generator of the
folding scheme G takes the size parameter N as the input. We specify N to
have two positive integers m and ℓ with ℓ+ 1 < m. G outputs public parameter
ppFS that consists of the commitment keys of the homomorphic commitment
scheme Com for committing vectors over a finite field Zp. More precisely, ppFS =
(ckw, cke), which are two commitment keys of Com with dimensions m and
m− ℓ− 1, respectively. The structure s indicates the R1CS parameter matrices
A,B,C ∈ Zm×m

p , where there are at most Ω(m) non-zero entries in each matrix
and they specify the R1CS relation Ax ◦Bx = Cx. Note that the dimensions of
the matrices are already specified in N .

The committed relaxed R1CS relation is the relation with parameter ppFS =
(ckw, cke) and structure s = (A,B,C) defined by

RppFS ,s =


(
(E,W, s, x); (e, re,w, rw)

)
:

E = Com(cke, e; re)
W = Com(ckw,w; rw)
z = (w, x, s)

Az ◦Bz = sCz + e

 , (2)

where x is public inputs and outputs.
Note that if one adds conditions e = 0 and s = 1 in the above relation,

the resulting relation becomes equivalent to the R1CS relation specified by the
structure s.1

Non-Interactive Folding Scheme. Given a public-coin interactive folding
scheme can be transformed to a non-interactive folding scheme, defined below,
in the random oracle model via the Fiat-Shamir transform [30].
1 In [44], the alphabet u is used instead of s in this paper. We changed it to avoid

confusion because ui is used to denote an instance of the relation. Similarly, we use
v to denote witness.
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Definition 6 (Non-Interactive). We say that a folding scheme (G,K,P,V) is
non-interactive if the interaction between P and V consists of a single message
T from P to V. To clearly indicate the single message interaction, the input and
output of P and V can be rewritten as P(pkFS , (u1, v1), (u2, v2))→ (u,v), T and
V(ppFS , u1, u2, T )→ u.

In fact, the folding prover and verifier are implemented in the design of
Nova IVC; therefore, we must heuristically instantiate the random oracle us-
ing a cryptographic hash function. Therefore, we can only heuristically argue
for the security of the resulting non-interactive folding scheme in the standard
model. Recent existing IVC proposals in the standard model rely on the same
heuristics that require instantiating the random oracle with a cryptographic hash
function [44, 42, 43, 17, 49].

2.2 Nova: IVC from Folding Scheme

Given a function F , an IVC scheme iteratively invokes the computation of F
for each round. Nova [44] is an IVC scheme built from a folding scheme such
that the computation in each round is an augmented function F ′ that not only
invokes F but also folds two committed relaxed R1CS instances, where F ′ is
represented by the committed relaxed R1CS.

An informal description of the computation in each round is given in Figure 1,
where H is a cryptographic hash function and (u⊥, v⊥) is a trivial instance-
witness pair such that v⊥ is set by zeros. In addition, we define the trivial proof
Π0 = (u⊥, v⊥, u⊥, v⊥), which consists of two trivial instance-witness pairs.

Let NIFS = (G,K,P,V) be the non-interactive folding scheme for the com-
mitted relaxed R1CS of F ′. The formal descriptions of the augmented function
F ′ and Nova from NIFS are, respectively, provided in Figure 2 and Figure 3.
Here, trace is a compiler that converts an execution of F ′ on non-deterministic
advice (pp,Ui, ui, (i, z0, zi), ωi, T ) to the corresponding committed relaxed R1CS
instance-witness pair (ui+1, vi+1), where the advice is a part of vi+1 and the
output hash value of F ′ is only the public IO of ui+1, that is, ui+1.x.

Theorem 1 (Nova-IVC [44]). If the non-interactive folding scheme NIFS
satisfies perfect completeness and knowledge soundness, then Nova in the Fig-
ure 3 is a log-bounded round IVC scheme satisfying perfect completeness and
knowledge soundness in Definition 2.

3 Ephemeral-Nova: A New Log-bounded round IVC

This section explores whether the security proof for the log-bounded round IVC
scheme can provide an appropriate level of soundness guarantees for a linear
number of rounds. In particular, we demonstrate that not all log-bounded round
IVC schemes are knowledge-sound for a linear number of recursive rounds. To
this end, we design a variant of Nova, called Ephemeral-Nova, that satisfies
the knowledge-soundness definition of a log-bounded round IVC scheme but is
forgeable when used more than a linearly large number of recursive rounds.
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Round-0

1. N/A
2. N/A
3. U1 := u⊥

(U1 : empty)
4. z1 := F (z0, ω0)

Relation: (u1, v1)

check

Fold

F -invoke

Round-1

1. U1, z1 ∈ v1
2. u1 : ordinary R1CS
3. U2 := U1△u1

(U2 : z0
F→ z1)

4. z2 := F (z1, ω1)

Relation: (u2, v2)

Round-2

1. U2, z2 ∈ v2
2. u2 : ordinary R1CS
3. U3 := U2△u2

(U3 : z0
F (2)
→ z2)

4. z3 := F (z2, ω2)

Relation: (u3, v3)

Round-i

1. Ui, zi ∈ vi
2. ui : ordinary R1CS
3. Ui+1 := Ui△ui

(Ui+1 : z0
F (i)
→ zi)

4. zi+1 := F (zi, ωi)

Relation: (ui+1, vi+1)

Each step of Round-i means

1. Check if ui.x = H(pp, i, z0, zi,Ui).
2. Check if (ui.E, u.s) = (u⊥.E, 1).
3. Ui+1 ← Folded instance between Ui and ui

(Ui+1 implies z0
F (i)
→ zi)

4. zi+1 is set by F (zi, ωi).

Fig. 1. Informal Description of Relation (u, v) for Each Round of Nova

F ′(pp,Ui, ui, (i, z0, zi), ωi, T )→ x:
If i is 0, output H(pp, 1, z0, F (z0, ωi), u⊥);
otherwise,
1. check that ui.x = H(pp, i, z0, zi,Ui), where ui.x is the public IO of ui
2. check that (ui.E, ui.s) = (u⊥.E, 1)
3. compute Ui+1 ← NIFS.V(pp,Ui, ui, T ), and
4. output H(pp, i+ 1, z0, F (zi, ωi),Ui+1).

Fig. 2. Augmented Function F ′

Our Idea for Ephemeral-Nova. Basically, the Ephemeral-Nova scheme should
be knowledge sound in the log-bounded round model, and thus, we begin by look-
ing at the original proof of knowledge-soundness of Nova. We first notice that
the polynomial time extractor in the original proof of the knowledge soundness
can extract the witness in the last O(log λ) number of rounds, where λ is the
security parameter, because the running time of the extractor blows up expo-
nentially at the number of rounds for each additional recursion round. From this
observation, we find that to design a linearly-faulty-and-logarithmically-provable
scheme, the verification procedure of the Ephemeral-Nova scheme should be in
such a way of

– [Faulty] pardon for misbehavior before last log number of rounds, but
– [Provable] correctly checking the validity of the last log number of rounds.
– [Compile] deterministic to be compiled into the committed relaxed R1CS.
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G(1λ)→ pp: Output pp← NIFS.G(1λ, N).

K(pp, F )→ (pk, vk): 1. Run pkFS ← NIFS.K(pp, sF ′)
2. Output (pk, vk)← ((F, pkFS), (F, pp))

P(pk, (i, z0, zi), ωi, Πi)→ Πi+1:
Parse Πi as ((Ui,Vi), (ui, vi)) and then
1. if i is 0, compute (Ui+1,Vi+1, T )← (u⊥, v⊥, u⊥.E);

otherwise, compute (Ui+1,Vi+1, T )← NIFS.P(pk, (Ui,Vi), (ui, vi))
2. compute (ui+1, vi+1)← trace(F ′, (vk,Ui, ui, (i, z0, zi), ωi, T )), and
3. output Πi+1 ← ((Ui+1,Vi+1), (ui+1, vi+1)).

V(vk, (i, z0, zi), Πi)→ {0, 1}:
If i is 0, check that z0 = zi;
otherwise,
1. parse Πi as ((Ui,Vi), (ui, vi)),
2. check if ui.x = H(vk, i, z0, zi,Ui),
3. check if (ui.E, ui.s) = (u⊥.E, 1), and
4. check if (Ui,Vi), (ui, vi) ∈ Rpp,s, the committed relaxed R1CS induced by F ′.

Fig. 3. Nova IVC

Designing an IVC satisfying the above requirements is somewhat challenging
because the timing of the log number of rounds depends on the security param-
eter. Therefore, we need to devise a deterministic process of gradual change of
(un)soundness in the security parameter. To this end, we first devise a recursive
sequence with the above three features as follows.

Yn+1 := Y 2α
n ·An (mod q) and Y0 := 1, (3)

where q is a λ-bit prime number of the form α ·2k+1, known as Proth prime [13],
for some k ≥ λ and odd integer α and An is selected from one of two distributions,
either a constant 1 or uniform distribution on Zq. Suppose that for the values
Ai, we regard 1 as normal and use Yi to verify the normality of all A0, . . . , Ai−1.
Solving the recurrences of Eq. (3), we obtain

Yn+1 =

n∏
i=0

A
(2α)n−i

i (mod q). (4)

For time step n = O(log λ), if all previous Ai (i = 0, .., n) are normal, then we
have Yn+1 = 1. If at least one Ai is abnormal, then Yn+1 ̸= 1 except for the
negligible probability in λ since Ai is uniformly distributed over Zq with q > 2λ

but n is logarithmic O(log λ). Therefore, checking Yn+1 = 1 is a good verification
procedure for the normality of all previous Ai (i = 0, .., n). However, when time
step n becomes sufficiently large (e.g., n ≥ k), Yn+1 = 1 does not guarantee the
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normality of all previous Ai. This is due to the shape of the prime number q and
the Fermat’s Little Theorem as follows.

Yn+1 =

n∏
i=0

A
(2α)n−i

i (mod q)

=

n∏
i=n−k+1

A
(2α)n−i

i (mod q) (by Fermat’s Little Theorem)

Therefore, checking Yn+1 = 1 is a good verification procedure for the normality
of only the last k − 1 values An, . . . , An−k+1, so that using this sequence and
the verification of Yn+1 = 1 is a good candidate having the first two condi-
tions for linearly-faulty-and-logarithmically-provable scheme. Ai’s uniform dis-
tribution can be replaced with the random oracle, and thus the above sequence
satisfies the last "deterministic" condition heuristically by using a cryptographic
hash function in the standard model.

Our Ephemeral-Nova Construction. Using the above idea for the recursive
sequence and the verification procedure, we now construct the Ephemeral-Nova
by slightly modifying the augmented function F ′ and the IVC procedure. As
shown in Figure 1 and Figure 2, the execution of F ′ in each round consists of
checking, folding, and invoking procedures. Although all these internal proce-
dures of F ′ are necessary for proving knowledge-soundness, adding some redun-
dant procedures may not affect knowledge-soundness. We extend F ′ to have two
modes, which are determined by an additional input bi ∈ {0, 1}. We call this
extended F ′ a trapdoor augmented function F ′ and sometimes use the notation
F ′bi to denote F ′(·, bi). According to bit bi, the trapdoor F ′bi sets

zi+1 :=

{
F (zi, ωi) if bi = 1

zi if bi = 0 // zi can be replaced with any value except F (zi, ωi).

for some prime number q of the form α · 2k + 1 for some k ≥ λ and odd integer
α. If bi = 1, this process is equivalent to the original F ′. Otherwise, F ′ skips
the execution of F . Therefore, we call the cases of bi = 1 and bi = 0 a normal
mode and a trapdoor mode, respectively. The trapdoor F ′bi additionally takes Yi

as input and F ′bi updates Yi according to the following rule.

Yi+1 := Y 2α
i ·

(
bi + (1− bi) · ui.x

)
(mod q) and Y0 := 1.

Let Ai =
(
bi+(1−bi) ·ui.x

)
. If bi = 1, then we have Ai = 1. Otherwise, Ai has a

uniform distribution heuristically since ui.x is a hash output. From the analysis
of the recursive sequence in Eq. (3), we know that Yi+1 = 1 could be a good
verification procedure for linearly-faulty-logarithmically-provable IVC scheme.
We provide a concrete description of the trapdoor augmented function F ′ and
the ephemeral-Nova in Figure 4 and Figure 5, respectively.

Choice of Prime Number q. The Proth prime q = α · 2k + 1 is essential for
constructing the ephemeral Nova. Using the prime number theorem, for fixed
k = O(λ), one can find α · 2k + 1 prime by adjusting α in O(log λ) times.
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F ′
bi

:= F ′(pp,Ui, ui, (i, z0, zi), ωi, T, Yi, bi )→ x:

Compute zi+1 :=

{
F (zi, ωi) if bi = 1

zi if bi = 0 // Any value except F (zi, ωi) can be used.

If i is 0, output H(pp, 1, z0, F (z0, ωi), u⊥, Y1 ); otherwise,

1. check if ui.x = H(pp, i, z0, zi,Ui, Yi ), where ui.x is the public IO of ui,
2. check if (ui.E, ui.s) = (u⊥.E, 1),
3. compute Ui+1 ← NIFS.V(pp,Ui, ui, T ), and
4. output H(pp, i+ 1, z0, zi+1,Ui+1, Yi+1 ), where

Yi+1 := Y 2α
i ·

(
bi + (1− bi) · ui.x

)
(mod q) and Y0 := 1.

*We assume that appropriate deterministic encoding process is applied from the function value
H(·) into Zq for computing Yi+1.

** The box indicates the difference from the original augmented function F ′.

Fig. 4. Trapdoor Augmented Function F ′

3.1 Specific Attack to Ephemeral-Nova IVC

Now, we demonstrate a specific attack on the Ephemeral-Nova IVC scheme in
Figure 5. For the sake of simplicity, we abuse the notation F (t)(zi, ωi) to denote
an output of t times F execution with k local inputs ωi, . . . , ωi+t−1 sequentially,
i.e., F (t)(zi, ωi) = F (F (· · ·F (zi, ωi), ωi+1), · · · ), ωi+t−1). Suppose that q = α ·
2k + 1 is prime, the current time step is n = k, and collisions do not occur
among F function values: F (k)(zi, ωi) ̸= zj for all i ̸= j ≤ k.

The adversary creates a forgery Π̃k by running Pb for each round in the
following order (P1,P0,P1, . . . ,P1). That is, the trapdoor mode F ′0 is used only
in the i = 1 step and the normal mode F ′1 is used in all the other steps i = [k]\{1}.
Finally, after the last step, the IVC verifier V verifies forged proof Π̃k and the
final output zn.

It is clear that zn is not equal to the correct value F (k)(z0, ω0) since P0

skipped the execution of F and set z2 = z1 so that zn = F (k−1)(z0, ω0). Never-
theless, we argue that the IVC verifier accepts the proof Π̃k = ((Ũk, Ṽk), (ũk, ṽk)).
In fact, both the trapdoor mode and the normal mode of F are correct executions
of the augmented function F ′. Therefore, both (Ũk, Ṽk) and (ũk, ṽk) are correct
committed relaxed R1CS induced by F ′, where (Ũk, Ṽk) are also corrected folded
by the folding scheme for F ′. This allows Π̃k to pass the test in the third and
fourth lines of the IVC verifier procedure in Figure 5. Next, we check whether
Yk is equal to 1 or not. Because the current step is k by Fermat’s little theorem,
we can confirm that Yk = (Y α·2k

2 )α
k−1

= 1. Hence, the second line of the IVC
verifier procedure is passed.
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G(1λ)→ pp: Output pp← NIFS.G(1λ, N)

K(pp, F )→ (pk, vk): 1. Compute pkFS ← NIFS.K(pp, sF ′)
2. Output (pk, vk)← ((F, pkFS), (F, pp))

Pb(pk, (i, z0, zi), ωi, Πi, Yi )→ Πi+1:
Parse Πi as ((Ui,Vi), (ui, vi)) and then
1. if i is 0, set Y0 = 1 and compute (Ui+1,Vi+1, T )← (u⊥, v⊥, u⊥.E);

otherwise, compute (Ui+1,Vi+1, T )← NIFS.P(pk, (Ui,Vi), (ui, vi))

2. compute (ui+1, vi+1)← trace(F ′, (vk,Ui, ui, (i, z0, zi), ωi, T, Yi, b )), and
3. output Πi+1 ← ((Ui+1,Vi+1), (ui+1, vi+1)).

V(vk, (i, z0, zi), Πi)→ {0, 1}:
If i is 0, check that z0 = zi;
otherwise,
1. parse Πi as ((Ui,Vi), (ui, vi)),
2. check if ui.x = H(pp, i, z0, zi,Ui, 1 ),
3. check if (ui.E, ui.s) = (u⊥.E, 1), and
4. check if (Ui,Vi), (ui, vi) ∈ Rpp,s, the committed relaxed R1CS induced by F ′.

* The box indicates the difference from the original augmented function F ′

** The instance-witness pair (ui+1, vi+1) from the trace in P should follow the setting:
(ui+1.E, ui+1.s) = (u⊥.E, 1), .

Fig. 5. Ephemeral-Nova IVC

3.2 Knowledge Soundness Proof in the log-bounded round IVC
Model

We prove that Ephemeral-Nova has knowledge soundness in the log-bounded
round IVC model.

Theorem 2. The IVC scheme (G,K,P1,V) in Figure 5 satisfies perfect com-
pleteness and knowledge soundness (Definition 2) if the non-interactive folding
scheme NIFS satisfies perfect completeness and knowledge soundness.

Due to space limitations, the full proof of Theorem 2 is included in Ap-
pendix A. Instead, we here sketch the proof idea. The Ephemeral-Nova is de-
signed to be equivalent to Nova if the trigger is not activated. In particular, if
we set b = 1, the augmented function F ′1, the IVC prover P1, and verifier V
are essentially identical to the original Nova IVC, so the Ephmeral-Nova IVC
satisfies the completeness. For knowledge soundness, it would be sufficient to
show that passing the IVC verification guarantees that the trigger has not been
activated. If this is the case, all remaining proofs will be essentially equivalent
to the original knowledge-soundness proof by the design of the Ephemeral Nova.

Let us provide a brief idea about proving non-activation of the trigger. We
consider a log-round n ≤ λ

2 , where p is a λ-bit prime. We claim that if the IVC
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verifier V accepts the proof Πn then the skipping trigger cannot be activated
during n-times computation F (n). When the trigger is activated (that is, b = 0)
at i-th round, the additional indicator Yi is changed to an arbitrary value because
it is an output of H. On the other hand, to give an acceptance from V, the final
additional input Yn, which is an element in Πn, should be equal to 1. By the
construction of F ′bi and uniform distribution of H outputs, the additional value
Yi for all i ∈ [n] should be equal to 1 without negligible probability. (Refer to
Lemma 3 in Appendix A.) This means that the trigger has not been activated
during n times computation; therefore, we can rule out the case b = 0, and the
remaining soundness proof is equivalent to that of the original Nova.

4 Model for Security Analysis

In the previous section, we observed that an IVC satisfying Definition 2 may
not provide poly-depth knowledge soundness in Definition 3. However, to the
best of our knowledge, there is no known concrete forgery attack in the original
Nova IVC scheme [44]. The main reason that Nova cannot provide poly-depth
knowledge soundness is the construction of a polynomial time extractor.

To address this gap, we focus on how to prove the poly-depth knowledge
soundness of Nova IVC against restricted adversaries. First, we consider an ide-
alized model for a group-based scheme and then adapt the model on the poly-
depth knowledge soundness proof.

We first briefly review the features of popular idealized models for group-
based systems and then set up an appropriate model for security analysis of the
Nova IVC scheme.

Notation. We define notations for groups. Let G be an additive cyclic group of
prime order p. When the group generator G is fixed, we use the bracket notation
[a]G for a scalar a ∈ Zp to denote the group element a · G. If the generator is
clear from the context, we often omit the subscript G and write as [b] ∈ G. For
a = (a1, . . . aℓ) ∈ Zℓ

p and [b]G = ([b1]G, . . . , [bℓ]G) ∈ Zℓ
p, a multi-scalar addition

between a and [b]G is denoted by ⟨a, [b]G⟩ =
∑ℓ

i=1 ai · [bi]G.
Let h1, . . . ,hn ∈ Zℓ

p be representations of each component of group elements
H = (H1, . . . ,Hn) ∈ Gn over the basis G ∈ Gℓ, i.e., Hi = ⟨hi,G⟩ for all i ∈ [n].

Two Candidates: Generic Group Model and Algebraic Group Model
The generic group model (GGM) is an idealized model where all group oper-
ations are carried out by making oracle queries [48, 53, 47, 46]. This model is
designed to capture the behavior of natural general algorithms that operate in-
dependently of any particular group descriptions. In fact, this model is divided
by a way to handle group elements. The adversary in Shoup’s model [53] gets
random-encoded values of the additive group Zp which are considered as group
elements, but the adversary in Maurer’s model [47] cannot access the value
directly but obtains pointers indicating the line number in the oracle’s table.
Recently, Zhandry demonstrated the difference between these two models [55].
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The algebraic group model (AGM), another idealized model proposed by
Fuchsbauer, Kiltz, and Loss, requires that whenever an algorithm outputs a
group element G, it also outputs a representation c such that ⟨c,G⟩ = G, where
G is a vector of group elements the algorithm took as input [31]. In particular,
a specific group description is fixed and known to all algorithms, and there is
no oracle query for group operations in the AGM. The intuition of the AGM is
to restrict algorithms to output a new group element G only by deriving it via
group operations from known group elements. In fact, the concept of algebraic
adversary has already been studied in several literature [10, 27, 50, 15, 33, 2, 1, 5,
41] and the AGM of Fuchsbauer, Kiltz, and Loss [31] is the first formal framework
for security proofs with respect to algebraic adversaries.

GGM and AGM are the two most popular models for the analysis of group-
based systems. We now present some limitations of the two models, which have
been identified by either previous literature or our observations, and slightly
refine the definitions for setting up an appropriate model for our purpose.

Limitation of GGM. From the definition of GGM might cover a smaller
class of algorithms than those in the AGM because algorithms are not allowed
to use group descriptions. Another limitation of GGM, which is more critical
to our purpose, is that the ideal group oracle cannot be instantiated to the
arithmetic circuit. In Nova IVC, which uses a group-based folding scheme, the
folding process containing group operations is arithmetized, and the arithmetized
group operations are publicly accessible to all algorithms. In other words, the
adversary can access the specific group description from this arithmetization. In
fact, the same issue occurs when we use the arithmetized cryptographic hash
function, which is modeled as a random oracle. Then, the resulting security
analysis should rely on the heuristic GGM instantiation in the standard model.
We avoid heuristic analysis as much as possible so that we could move on to the
next candidate, the AGM.

Usefulness of AGM. The AGM is proposed as a model lying between the
standard model and the GGM, and it is one of main reasons why the AGM has
received so much attention recently [37, 3, 39, 8, 36]. As mentioned above, the
adversary should provide a representation of the output group elements.

AGM is a useful model for constructing a straight-line extractor that pro-
cesses the output of an algebraic adversary [31, 32]. In AGM, the extractor re-
ceives outputs along with their algebraic representations from the algebraic ad-
versary and extracts a witness from both the outputs and their representations.
In this scenario, the extractor does not need to rewind the adversary because the
provided outputs and their representation are sufficient for extracting a witness.

The main reason for the blow-up issue in the proof of Nova [44] is the necessity
to rewind a folding adversary at each step. To avoid this issue, we construct a
straight-line extractor using the algebraic adversary P∗. Therefore, we modify
AGM to suit our purposes more effectively.
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Limitation 1: Ambiguity of Group Elements. Fuchsbauer et al. pointed
out that the output group elements should be distinguishable from other inputs
syntactically [31]. However, in terms of the adversary against KS of Nova, the ad-
versary provides R1CS witness v, which contains group-convertible Zp-elements,
that correspond to NIFS.V inputs u,U. Syntactically, the group-convertible el-
ements in Zp are not group elements but can be regarded as group elements
following a publicly known conversion process. According to the AGM definition
in [31], it is unclear whether the algebraic adversary provides a representation
of group-convertible elements or not.

Modification 1: Representation of all Group-convertible Elements. Let
us consider group-convertible elements in R1CS for the augmented function F ′

(Figure 2). To construct F ′, one should instantiate the group operation over G
into a Zp-arithmetic circuit for the instantiation of the non-interactive folding
scheme NIFS.V. In this phase, the input and output group elements of NIFS.V
should be converted to Zp elements. Specifically, NIFS.V takes 4 group elements
Un−1.E, Un−1.W , un−1.E, and un−1.W , and outputs 2 group elements Un.E
and Un.W . To instantiate NIFS.V, one should convert these 6 group elements to
field elements.

If an algebraic algorithm outputs group-convertible elements, we let it pro-
vide representations of each group-convertible element, which are indeed group
elements generated from algebraic operations.

Limitation 2: Extracting a Specific Representation. Let us consider that
the adversary P∗ against KS of Nova outputs a proof Π = (Un,Vn, un, vn). If
P∗ is algebraic, it additionally provides representations for the group-convertible
elements in (Un−1, un−1), which can be extracted from vn. Because each group el-
ement of (Un−1, un−1) is formed as a Pedersen commitment, their representations
are indeed the opening messages of the commitments. If representations form
CR-R1CS witness (Vn−1, vn−1), we can extract previous instances (Un−2, un−2)
and recursively extract (Vi, vi) for all i = n − 2, . . . , 1. This is the core idea of
extraction.

However, the output representation may not form a CR-R1CS witness, mak-
ing it intractable to construct an extractor under the current AGM. If we require
the adversary to provide a representation that satisfies some conditions, such as
being a CR-R1CS witness of the given instance, we can construct an IVC ex-
tractor using an algebraic adversary. Therefore, we restrict the representation
provided by the algebraic adversary. Therefore, is it reasonable to restrict the
output representation from the algebraic adversary?

Modification 2: Conditional Representation. A knowledge of exponent
assumption (KOE) [28] is designed as an ideal assumption for analyzing a group-
based scheme. That is, if an adversary outputs a group element, its exponent
is extractible. Fuchsbauer et al. claim that KOE is covered by the definition of
AGM [31] so that we do not need to assume KOE because AGM covers it. In
this similar concept of KOE, we consider a kind of knowledge assumption based
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on the CR-R1CS relation; if an adversary outputs a CR-R1CS instance, then
its witness is extractible. The relation between the CR-R1CS instance (group
elements) and witness (representation) is similar to that between group element
and exponent. For this reason, restricting representation to CR-R1CS witness is
reasonable under AGM.

To formalize the above modifications, we define a new concept: algebraic
extended relation and algebraic verification.

Definition 7 (Algebraic Relation and Extension). Let R = {(pp, u; v)}
be a relation. We call R algebraic relation if the followings hold:

1. pp contains uniformly sampled group elements G
$←Gn for some integer n

2. Let (Hi)i∈[m] ∈ G be all group elements belonging to u. Then, v consists
of all representation vectors hi ∈ Zn

p of Hi such that Hi = ⟨hi,G⟩ for all
i ∈ [m].

For given algebraic relation R, we denote the algebraic extension of R as Rext =
{(pp, uext; vext)} which satisfies the followings:

1. The instance uext is defined by instance-witness pair respect to relation R,
i.e.,uext := (u, v) ∈ R.

2. For group elements (Hi)i∈[m] ∈ G that consist of all non-group but group-
converted elements belonging to (uext), vext consists of all representation vec-
tors hi ∈ Zn

p of Hi such that Hi = ⟨hi,G⟩ for all i ∈ [m]. If there are no
non-group but group-converted elements, then set common witness vext =⊥
for all instances uext := (u, v). In this case, we call R non-algebraic extend-
able relation.

Let us consider the algebraic extended relation of the CR-R1CS relationRpp,s

(Eq. (2)) for F ′ in Figure 2. Naturally, Rpp,s is an algebraic relation, and we
can consider its extension Rext

pp,s. The witness vexti for an instance uexti = (ui, vi)
consists of representation vectors for ui−1.E, ui−1.W,Ui−1.E, ui−1.W that are
group-convertible elements belonging to vi.

Definition 8 (Algebraic Verification). Let R = {(pp, u; v)} be an alge-
braic relation and Rext be the corresponding algebraic extended relation of R.
We define algebraic verification (Vout,Vrep)R, which is consists of two verifica-
tion algorithms: output verification Vout and representation verification Vrep.

1. Vout(pp, u, v)→ 0/1: It takes public parameter pp and instance-witness pair
(u, v) of R. If (pp, u, v) ∈ R, then it outputs 1. Otherwise, it outputs 0.

2. Vrep(pp, u
ext, vext) → 0/1: It takes public parameter pp and instance-witness

pair uext, vext of Rext, and returns 0 or 1. Additionally, if (pp, uext, vext) /∈
Rext, it outputs 0.

Note that Vrep may output 0 even if (pp, uext, vext) ∈ Rext. This means that
Vrep can be designed as an indicator of specific representations. For instance,
we can design Vrep(pp, u

ext
i , vexti ) to output 1 if the first coordinate of vexti is
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a ∈ Zp. Then, another witness vext∗i = (b, . . .) of Rext would be rejected by Vrep,
even though (pp, uext, vext) ∈ Rext. Later, to prove the KS property of Nova, we
construct Vrep to ensure that a representation provided by an adversary serves
as a witness of the CR-R1CS relation.

Using algebraic verification, we define a modification of the ordinary algebraic
adversary in reference to [31].

Definition 9 (Conditional Algebraic Adversary). Let pp be a public pa-
rameter and (Vout,Vrep)R be an algebraic verification of the algebraic relation R.
A conditional adversary algorithm A with respect to (Vout,Vrep)R takes a positive
integer n and pp, as defined in Definition 7, and it outputs (ui, vi)i∈[n], according
to the following process:

1. Vout(pp, un, vn) = 1.
2. For all i ∈ [n],

(a) Vrep(pp, (ui, vi), vi−1) = 1.
(b) If the (ui, vi) contains an instance ui−1 by the algebraic relation R, then

Vout(pp, ui−1, vi−1) = 1.

One-Shot Extraction. By designing algebraic verification (Vout,Vrep)R, we
can reflect our modifications following Definition 9. First, the first condition
(Item 2a in Definition 9) enforce A to provide representation vectors of group-
convertible elements. By the second condition (Item 2b in Definition 9), we let
representation vi−1 should be satisfied special condition; a witness of an instance
ui−1 which belongs to (ui, vi).

To prove the KS property of Nova, we set an algebraic relation RNova :=
{(pp, (U, u); (V, v)) : (U,V) ∈ Rpp,s ∧ (u, v) ∈ R∗pp,s}, where Rpp,s and R∗pp,s
are CR-R1CS and R1CS relations, respectively. Then, we design the algebraic
verification (Vout,Vrep)RNova

as follows:

1. Vout is defined as the IVC verifier V.
2. Vrep outputs 1 if the outputted representation vector (Vi−1, vi−1) is a witness

of the instance ((Ui, ui), (Vi, vi)) for the extended relation Rext
Nova.

Moreover, the R1CS witness vi contains the valid previous instances Ui−1, ui−1
due to the encapsulated NIFS.V in the execution F ′. Then, by Definition 9,
the representation vectors (vi)i∈[n] outputted by A are indeed R1CS witnesses
for the relation R∗pp,s. Using these representation vectors, we can construct a
straight-line IVC extractor.

Conditional AGM Covers Original AGM. The conditional AGM in Defi-
nition 9 can cover original AGM [31] by adjusting the algebraic verification. Let
R contain only algebraic constraints, i.e. R = {(pp, u, v) : Hi = ⟨hi,G⟩, Hi ∈
u ∧ hi ∈ v}, where (Hi)i are all group elements belonging to u. If R is a non-
algebraic extendable relation (Definition 7) and Vrep(pp, u

ext, vext =⊥) = 1 for all
valid instances uext = (u, v) ∈ R and set n = 1, then the conditional algebraic
adversary is equivalent to the algebraic adversary defined in [31]. In this case,
we can consider u and v as A’s outputs and representations, respectively, so that
(u, v) should belong to R.
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5 Zero-Testing Hash Functions

The group-based folding scheme in [44] is knowledge-sound under the DL as-
sumption, and it can be made non-interactive in the random oracle model using
the Fiat-Shamir transformation [30]. However, to use the non-interactive folding
scheme in the Nova IVC, the folding verifier should be arithmetized, and thus
the random oracle should be instantiated in the standard model using a concrete
hash function. There are studies [22, 21] that aim to remove the heuristic instan-
tiations of random oracles by introducing new variants. We propose a different
approach to avoid heuristic analysis because we do not want to change the Nova
IVC construction but rather provide a new soundness analysis. To this end, we
propose a new plausible property of cryptographic hash functions such as SHA-
256 that is sufficient for proving knowledge soundness in the AGM. Note that
the new property of the hash function we introduce is an intractability property,
such as preimgage-resistance and collision-resistance. That is, this property of
the hash function cannot solely replace the random oracles because it cannot
replace the power of the random oracle to extract a witness by rewinding algo-
rithms. However, it can be combined with the AGM to completely replace the
random oracles in the proof of the Nova IVC.

5.1 Zero-Testing Property of Hash Functions

In the context of proof systems, a polynomial is often used to prove several
relations at the same time. For example, to prove three equality ai = bi for
i = 0, 1, 2, one can claim that the polynomial p(X) =

∑
i(ai−bi)Xi is identical to

zero. In interactive protocols, the Schwartz-Zippel lemma enables to statistically
verify it; (1) Prover commits to the polynomial p(X), (2) a random challenge
r is chosen by the verifier, (3) check p(r)

?
= 0. In non-interactive protocols, the

Fiat-Shamir transformation is applied. The second step can be changed with H

evaluation and check if p(H(p)) ?
= 0, where H is considered as the random oracle.

In the random oracle model, we can rewind the prover multiple times with a fixed
commitment. Therefore, p passing the test implies that p vanishes at multiple
points larger than the degree of p, so that it is identical to zero. Although
this argument in the non-interactive protocol is well analyzed in the random
oracle model, we believe that even without the random oracle model, it is still
reasonable to expect that the cryptographic hash function also guarantees this
method of testing zero polynomial. We formalize this belief in Definition 10.Let
λ be the security parameter and H be a cryptographic hash function that maps
to Zp, where p is a prime of length O(λ).

Definition 10. (Zero-Testing) For a hash function H, we say that H has the
zero-testing property if it is infeasible for any PPT adversary to find a non-
zero polynomial p ∈ Zp[X] of degree at most poly(λ) that satisfies p(H(p)) = 0
(mod p) except a negligible probability.
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In fact, the above zero-testing property is too simple to apply directly to
various cryptosystems. We provide this information to help readers understand
the intuition behind the following generalization of the zero testing property.

Definition 11. (General Zero-Testing) Let C : D → C be a binding commitment
and D : D → Zp[X] be an arbitrary deterministic function where D is a domain
set and Zp[X] is a set of polynomials of degree at most poly(λ). For a hash
function H, we say that H has the general zero-testing property if no PPT
adversary can find d ∈ D and auxiliary input τ , with non-negligible probability,
such that D(d) is a non-zero polynomial and D(d)(H(C(d), τ)) = 0 (mod p).

Note that the general zero-testing property is equivalent to the zero-testing
property if we set D = Zp[X], both C and D to be identity maps, and τ = ∅.
To support the reliability of the (general) zero-testing property, we prove that
at least the random oracles satisfy the (general) zero-testing property.

Lemma 1. The random oracle H has the zero-testing property.

Proof. For each hash query p, the hash result H(p) is uniformly random, so that
the probability p(H(p)) = 0 (mod p) holds is at most deg(p)/p. For q ≤ poly(λ)
distinct queries, all query results are mutually independent; thus the probability
that at least one equality holds is bounded by the sum probability q deg(p)

p ≤
poly(λ)

2λ
, which is still negligible in λ.

Note that the above proof does not rely on the programmability of the ran-
dom oracle but uses only the uniform and independent distribution of the random
oracle outputs.

Lemma 2. If C is Pedersen commitments with binding property, then the ran-
dom oracle H has the general zero-testing property in the AGM.

Proof. The basic proof strategy is identical to Lemma 1, except that we addi-
tionally require the ability that for each query (c, τ), we can see d such that the
adversary used to compute C(d) = c. If we have such an ability, then for each
hash query (c, τ), we can specify d and thus the polynomial D(d) the adversary
used. The remaining analysis is the same as that in the proof of Lemma 1.

Now, we argue that we have such an ability against the algebraic adversary.
For each query c, c consists of group elements; therefore, the algebraic adver-
sary should output the corresponding representation based on the commitment
key of the Pedersen commitment. Because of the binding property, such a rep-
resentation is exactly opening d of the Pedersen commitment scheme such that
C(d) = c, and thus D(d) is the polynomial used by the adversary.

5.2 Schnorr’s NIZK in the AGM

As a warm-up example to show the effectiveness of the zero-testing property,
we present a new knowledge-soundness proof of Schnorr’s NIZK protocol [51],
which is one of the simplest proof knowledge protocol; it proves that (G,H) is
an instance of the relation R = {(G, [x]G;x ∈ Zp)}, i.e.,H = [x]G.
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Prover
1. chooses k

$←Zp and computes K := [k]G.
2. computes e← H(G,H,K).
3. computes s = k + ex mod p and outputs (s,K).

Verifier accepts if,
given (s,K), [s]G

?
= K + [e]H holds, where e← H(G,H,K).

Using the general zero-testing property, we can prove that Shnorr’s non-interactive
protocol is knowledge sound in the AGM. In particular, the extraction is tight
and random oracles are not required.

Theorem 3. If H has the general zero-testing property, then the Schnorr’s non-
interactive protocol satisfies the knowledge soundness in the AGM. In particular,
the running time of the extractor is equivalent to that of the algebraic prover,
except for constant operations.

Proof. Given an arbitrary algebraic prover P∗, we construct an extractor E that
extracts the witness x. P∗ begins with taking a pair of (G,H) as input. Suppose
that P∗ outputs a proof (s,K) that passes verification; that is, the equality
[s]G = K+[e]H holds where e← H(G,H,K). Since P∗ is an algebraic adversary,
it should output the representation (k1, k2) of the group element K such that
K = [k1]G+[k2]H . Thus, we have [s−k1]G = [k2+e]H , so we obtain the discrete
logarithm of H as x = (s− k1) · (k2 + e)−1 (mod p) unless k2 + e = 0 (mod p).

Now, we argue that k2 ̸= −e (mod p). Suppose that k2 = −e (mod p).
Then, H(G,H, [k1]G − [e]H) is a solution of a polynomial e − X = 0 (mod p).
Using the notations d,C, and D in the general zero-testing property, we can
set d = (k1,−e), where (G,H) is the commitment key of C, and D(k1,−e) =
e − X ∈ Zp[X], where D discards k1. Therefore, no PPT algorithm can find
d = (k1,−e) that satisfies D(d)(H(G,H,C(d))) = 0 (mod p) by the general zero-
testing property, so that k2 ̸= −e (mod p).

What the extractor did except running P∗ is only to compute constant op-
erations x = (s− k1) · (k2 + e)−1 (mod p).

6 New Soundness Analysis of Nova IVC with
Group-based Folding Scheme

Pedersen Commitment for Vectors. Pedersen commitment scheme is a ho-
momorphic commitment scheme with perfect hiding and computational bind-
ing properties under the discrete logarithm assumption. The setup algorithm
Setup(1λ, ℓ) takes the dimension variable ℓ and outputs the commitment key ck
consisting of a (ℓ+1)-dimensional vector Gℓ+1. The message x is an ℓ-dimensional
vector in Zℓ

p. The commitment to x with a random scalar r
$← Zp is computed

as a multi-scalar addition ⟨x∥r, ck⟩ ← Com(ck,x; r). The homomorphic property
is naturally induced by the characteristics of the cyclic group G.
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G(1λ, N = (m, ℓ))→ ppFS : Output commitment keys cke
$←Gm and ckw

$←Gm−ℓ−1.

K(ppFS , s = (A,B,C))→ pkFS : Output pkFS ← (ppFS , s).

NIFS.P(pkFS , (u1, v1), (u2, v2))→ (u, v), T :
1. For i = 1, 2, parse (ui, vi) = ((Ei, si,Wi, xi), (ei, rei ,wi, rwi)) and then set

zi = (wi, xi, si)
2. Compute t = Az1 ◦Bz2 +Az2 ◦Bz1 − s1 · Cz2 − s2 · Cz1.

3. Pick rt
$← Zp and compute T = ⟨(t, rt), cke⟩.

4. r ← H(u1, u2, T ).
5. Output T, u := (E, s,W, x) and v := (e, re,w, rw) where

E ←E1 + r · T + r2 · E2 W ←W1 + r ·W2 (5)
s←s1 + r · s2 x←x1 + r · x2 (6)

e←e1 + r · t+ r2 · e2 w ←w1 + r ·w2 (7)

re ←re1 + r · rt + r2 · re2 rw ←rw1 + r · rw2 (8)

NIFS.V(ppFS , u1, u2, T )→ u:
1. For i = 1, 2, parse ui = (Ei, si,Wi, xi)
2. r ← H(u1, u2, T )
3. Output u := (E, s,W, x) satisfying Eq. (5) and Eq. (6).

Fig. 6. Group-based Non-Interactive Folding Scheme in [42]

Group-based Folding Scheme from [44]. In [44], the group-based non-
interactive folding scheme NIFS = (G,K,P,V) for the committed relaxed R1CS
relation RppFS ,s in Eq. (2) is proposed, where the public parameter ppFS is
generated by G and the common structure s is taken as an input of K. The
folding prover NIFS.P takes two committed relaxed R1CS instance-witness pairs
and outputs a folded instance-witness pair (u, v), with the prover’s transcript T .
The folding verifier NIFS.V takes two committed relaxed R1CS instances u1, u2,
and T and then outputs a folded instance u. We have provided a full description
of this group-based folding scheme in Figure 6.

Looking at the Knowledge Soundness Proof of Nova [44]. In this para-
graph, we briefly review the knowledge soundness proof of Nova [44]. The premise
of the proof is the knowledge soundness of the internal non-interactive folding
scheme in the standard model, which assumes the existence of the extractor Ẽ
satisfying condition in Definition 4. To construct the IVC extractor E , which out-
puts (ω0, . . . , ωn−1), the proof follows a general recursive proof strategy. That is,
E inductively generates Ei that, given Ei+1, outputs (zi, . . . , zn−1), (ωi, . . . , ωn−1)
and Πn. In fact, Ei+1 directly implies an adversarial folding prover Ãi for the
i-th round and Ei can be constructed from Ãi. In the procedure of Ei, the fold-
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ing extractor Ẽi of Ãi is additionally called, so that the inequality between the
running times of the algorithms is as follows:

time(Ei) > time(Ẽi) + time(Ãi) > 2 · time(Ei+1)

if time(Ẽi) > time(Ãi). Then, time(E) increases exponentially in n. The sound-
ness proof of the Nova paper relies on the assumption of the knowledge soundness
of the non-interactive folding scheme in the standard model when the random
oracle is instantiated with a cryptographic hash function. Considering the cor-
responding interactive folding scheme (or non-interactive scheme in the random
oracle model), Ẽi uses the rewinding strategy with the forking lemma so that
time(Ẽi) > time(Ãi) holds. To avoid exponential growth, we do not apply the
folding scheme extractor to construct the IVC extractor, ensuring that time(Ei)
increases only incrementally without growing exponentially.

6.1 Knowledge Soundness of NIFS in the AGM

Before the proof of knowledge soundness Nova IVC based on the NIFS scheme
in Figure 6, we prove that NIFS with a general zero-testing hash satisfies knowl-
edge soundness in Definition 4. Although we avoid using the folding extractor
as a subroutine to construct the IVC extractor, we use the fact that the NIFS
scheme Figure 6 satisfies knowledge soundness in AGM to prove the knowledge
soundness of Nova IVC. In a nutshell, a representation provided by an condi-
tional algebraic adversary is indeed a witness of the instance. Concretely, by the
knowledge soundness of NIFS, an IVC adversary outputting a valid pair u, v
should know the original pairs u1, v1 and u2, v2 beforehand. In the view of the
adversary, u1 and u2 are group-convertible elements; therefore, it should output
their representation, but it may not witness for the instance. However, knowledge
soundness guarantees that the adversary knows a witness so that if the adversary
can obtain a representation different from the witness, the adversary can know
the discrete relation of the CRS, which contradicts the DL assumption. Now, we
prove the knowledge soundness of NIFS under the AGM with DL assumption.

Theorem 4 (Knowledge Soundness of NIFS in AGM). Let H be a general
zero-testing hash function. Then, the group-based non-interactive folding scheme
NIFS = (G,K,NIFS.P,NIFS.V) in Figure 6 satisfies knowledge soundness in AGM
with DL assumption.

Proof Sketch. For the knowledge soundness proof, we construct an extractor that
outputs witnesses for the given folded instances u1 and u2 using an algebraic
adversary. The extractor is designed to output algebraic representations from
the adversary. Note that the general zero-testing hash property guarantees that
these representations are indeed valid witnesses without rewinding the adversary.
The complete proof is deferred to Appendix B.
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6.2 Poly-depth Knowledge Soundness of Nova in Conditional AGM

In this section, we prove the poly-depth KS (Definition 3) of the Nova IVC
scheme (Figure 3) in the conditional AGM (Definition 9).

Theorem 5. If H has the general zero-testing property and the group-based
folding scheme NIFS satisfies knowledge soundness, then the Nova IVC scheme
(G,K,P,V) in Figure 3 combined with NIFS based on G and H (Figure 6) satis-
fies poly-depth knowledge soundness Definition 3 in the conditional AGM (Defi-
nition 9) with DL assumption.

Proof Sketch. To show poly-depth knowledge soundness (KS), we construct an
extractor E that outputs local inputs (ωi)i∈[n−1] from the valid outputs with
representations provided by the conditional algebraic adversary P∗. The main
idea is to extract ωi−1 from provided i-th R1CS witness vi for all i ∈ [n]. To
claim that P∗ should provide R1CS witnesses (vi)i∈[n], we design an algebraic
verification for the algebraic relation RNova = Rpp,s × R∗pp,s, which combines
the CR-R1CS relation and the R1CS relation. The algebraic adversary Vout is
defined following the IVC verifier V and Vrep is defined based on the extended
relation for Rext

Nova.
If P∗ outputs a valid proof Πn = (Un,Vn, un, vn), then its representation

(Vn−1, vn−1) should be provided. By the KS of NIFS, R1CS witness vn should
contain the previous instances (Ui−1, un−1). Then, the representation (Vn−1, vn−1)
should be a witness for the instance (Ui−1, un−1) according to condition Item 2b
in Definition 9. Since Πn−1 = (Un−1,Vn−1, un−1, vn−1) is an acceptable proof for
Vout, P∗ should provide vn−2 in the same way. By using this method recursively,
P∗ should output vi for all i ∈ [n]. We defer the full proof to Appendix C.

7 Concluding Remarks

In this paper, we showed that an unnecessary redundant procedure in the aug-
mented function F ′ may serve as a trigger for attacks that are activated only at a
predetermined time. To investigate this type of attack on the Nova IVC scheme,
it is necessary to prove the knowledge soundness for polynomial rounds. We pre-
sented the first provable security analysis of Nova IVC’s knowledge soundness
for polynomial rounds. In particular, our proof does not rely on heuristic random
oracle instantiation but on a newly introduced hash function with a general zero-
testing property. There are interesting open questions. Many other IVC schemes
also have soundness proofs only for logarithmic rounds, and it would be interest-
ing to study the polynomial round security of these schemes. In particular, our
AGM refinement may be helpful if the schemes are group-based. Furthermore,
it would also be interesting to find another security proof for Nova IVC in the
standard model.
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A Proof for Theorem 2

Proof. (Completeness): We argue that the P’s output Πi+1 from the execu-
tion F with (i + 1, z0, zi+1, Πi) is valid proof if the i-th proof Πi is valid. Let
pp← G(1λ), F , and (pk, vk)← K(pp, F ′) be the public parameters, an IVC exe-
cution, and prover/verifier key, respectively. Now, we claim that the IVC proof,
which satisfies V(vk, i, z0, zi, Πi) = 1 and P(pk, i, z0, zi, ωi, Πi) → Πi+1, implies
V(vk, i, z0, zi+1, Πi+1) = 1, where zi+1 = F (zi, ωi). We consider two cases in
which the step index i is equal to 0 or not.
Case (i = 0): According to our premise, we know that Π0 is a trivial valid proof
((u⊥, v⊥), (u⊥, v⊥)). Now, we consider the validity of the updated proof Π1. Let
P1 take the input (pk, (1, z0, z1, ω0, Π0, Y0) and then get Π1. From the P1 in
Figure 3, we obtain

Π1 = ((u⊥, v⊥), (u1, v1))

where (u1, v1) is R1CS instance-witness pair for F ′1 execution. Following the
execution F ′1 in Figure 4, we know

u1.x = H(vk, 1, z0, F (z0, ω0), u⊥, Y1) where Y1 = Y 2
0 = 1 (9)

(u1.E, u1.s) = (u⊥.E, 1) (10)

From Eq. (9) and Eq. (10), second and third verifier conditions in Figure 5
hold. To check the fourth condition, we only consider (u1, v1) ∈ RppFS ,sF′ be-
cause (U1,V1) = (u⊥, v⊥) is already belong in the relation. From the tracing
of F ′, (u1, v1) should belong to the committed relaxed R1CS relation. There-
fore, we can conclude that the IVC verifier accepts the following proof Π1,
V(pp, 1, z0, z,Π1) = 1.
Case (i ≥ 1): Suppose that Πi is a valid IVC proof for verification V and Πi+1

be a proof generated by P1 with input (pk, (i, z0, zi, ωi, Πi, Yi)
Based on the completeness of the underlying folding scheme and the premise

that (ui, vi) and (Ui,Vi) are satisfying instance-witness pairs of the relation,
we have (Ui+1,Vi+1) is a satisfying instance-witness pair of the relation, i.e.
(Ui+1,Vi+1) ∈ RppFS ,sF′ .

From the tracing of F ′ execution with input (Ui, ui, (i, z0, zi), ωi, T, Yi, 1), we
have that ui+1.x = H(pp, i + 1, z0, zi+1,Ui+1, Yi+1) where Yi+1 = Y 2

i = 1 and
(ui+1.E, ui+1.s) = (u⊥.E, 1). Therefore, the verifier V should accept the IVC
proof Πi+1 = ((Ui+1,Vi+1), (ui+1, vi+1)).

(Knowledge Soundness): For fixed step n, let the security parameter λ satisfy
the following inequality: λ

2 ≥ n and p be a λ-bit prime number. First, we claim
that if the IVC verifier accepts the proof Πn of n times execution F ′bi , then all
execution types of i-th step should be F ′1 with high probability.

Let j − 1 be the latest step of execution F ′ with the choice bit b = 0. In
this case, Yj = Y 2α

j−1 · ui.x can be viewed as a uniform random sample from Z∗p
because ui.x is an image of H. From our hypothesis regarding the latest step, Yn

can be described by the following equation:

Yn = Y
(2α)n−j

j (11)
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Due to the premise of acceptance by V in Figure 5, the following relation holds:
un.x = H(pp, n, z0, zn,Un, 1). On the other hand, the R1CS relation for F ′ con-
strains that the last input of H is Yn. Therefore, Yn = 1 holds with overwhelming
probability. To claim that the probability of Y (2α)n−j

j = 1 is negl(λ), let us con-
sider the following Lemma 3.

Lemma 3. Let p = α · 2λ be a prime with odd integer α. If integer n satisfies
λ
2 ≥ n, then the following probability equation holds.

Pr
x

$←Z∗
p

[x(2α)n = 1] ≤ 2−
λ
2 (12)

Proof. Since the multiplicative group Z∗p has order α ·2k, the αn-power subgroup
H := {xαn |x ∈ Z∗p} has 2k distinct elements. From the subgroup H, we can
describe the probability as:

Pr
x

$←Z∗
p

[x(2α)n = 1] = Pr
x

$←Z∗
p

[(xαn

)2
n

= 1] = Pr
y

$←H

[y2
n

= 1]

To get upper bound of the probability Pr
y

$←H

[y2
n

= 1], let us consider the upper

bound of total number of y ∈ H such that y2
n

= 1. If y ∈ H satisfies y2
n

= 1,
y should be a root of the polynomial X2n − 1 ∈ Zp[X]. By the fundamental
theorem of algebra, X2n −1 ∈ Zp[X] has at most 2n distinct roots, which means
that the number of ys is at most 2n. Therefore, the probability Pr

y
$←H

[y2
n

= 1] is

at most 2n

2λ
= 1

2λ−n ≤ 2−
λ
2

By Lemma 3 and our premise λ
2 ≥ n, we can conclude that the probability

of Y (2α)n−j

j = 1 is negligible. For this reason, the probability of the case b = 0
for any i-step is negl(λ). Then, we can consider that all execution types of i-th
step should be F ′1 with the exception of negligible probability.

Now, we only consider that augmented execution is F ′1. The following process
is similar to soundness proof of Nova-IVC [44].

Let pp ← G(1λ). Consider an expected polynomial-time adversary P∗ that
outputs a function F on input pp, and let (pk, vk) ← K(pp, F ). Suppose that,
for a constant n ≤ λ, P∗ outputs (z0, z,Π) such that

V(vk, n, z0, z,Π) = 1.

We must construct an expected polynomial-time extractor E that with input
(pp, z0, z), outputs (ω0, . . . , ωn−1) such that by computing for all i ≤ n

zi ← F (zi−1, ωi−1)

and zn = z with the exception of the probability negl(λ).
We show inductively that E can run an expected polynomial-time extractor

Ei(pp) that outputs ((zi, . . . , zn−1), (ωi, . . . , ωn−1), Πi) such that for all j ∈ {i+
1, . . . n},

zj = F (zj−1, ωj−1)
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and

V(vk, i, z0, zi, Πi) = 1 (13)

for zn = z with the exception of the probability negl(λ).
E run En first, and then using En, construct En−1 and repeat this process

until reaching E0.
First, En(pp, ρ) outputs (⊥,⊥, Πn), where Πn is the output of P∗(pp, ρ).

Assume that En succeeds to get valid proof Πn from IVC adversary P∗.
For i ≥ 1, suppose E can construct an expected polynomial-time extractor Ei

that outputs ((zi, . . . , zn−1), (ωi, . . . , ωn−1)), and Πi that satisfies the inductive
hypothesis. To construct an extractor Ei−1, E first constructs an adversary Ai−1
for the non-interactive folding scheme as follows:
Ãi−1(pp, ρ) :

1. Let ((zi, . . . , zn−1), (ωi, . . . , ωn−1), Πi)← Ei(pp, ρ).
2. Parse Πi as ((Ui,Vi), (ui, vi)).
3. Parse vi to retrieve (Ui−1, ui−1, Ti−1).
4. Output (Ui−1, ui−1) and ((Ui,Vi), Ti−1).

By the inductive hypothesis, we have that V(vk, i, z0, zi, Πi) = 1, where Πi ←
Ei(pp) with the exception of negligible probability negl(λ). Therefore, by the
verifier’s checks we have that (ui, vi) and (Ui,Vi) are satisfying instance-witness
pairs, and that

ui.x = H(vk, i, z0, zi,Ui, Yi)

Because V ensures that (ui.E, ui.u) = (u⊥.E), 1), we have that vi is indeed a
satisfying assignment for F ′. Then, by the construction of F ′ and the binding
property of the hash function, we have that

Ui = NIFS.V(vk,Ui−1, ui−1, Ti−1)

with the exception of negligible probability negl(λ). Thus, A succeeds in produc-
ing an accepting folded instance-witness pair (Ui,Vi), for instances (Ui−1, ui−1),
with the exception of negl(λ). Thus, A succeeds in producing an accepting folded
instance-witness pair (Ui,Vi), for instances (Ui−1, ui−1) in expected polynomial-
time.

Given an expected polynomial-time Ãi−1 and an expected polynomial-time
folding scheme extractor Ẽi−1, E constructs an expected polynomial time Ei−1 as
follows
Ei−1(pp, ρ) :

1. ((Ui−1, ui−1), (Ui,Vi), Ti−1)← Ãi−1(pp, ρ)
2. Retrieve ((zi, . . . , zn−1), (ωi, . . . , ωn−1), Πi) from the internal state of Ai−1
3. Parse Πi.vi to retrieve zi−1 and ωi−1
4. Let (vi−1,Vi−1)← Ẽi−1(pp, ρ).
5. Let Πi−1 ← ((Ui−1,Vi−1), (ui−1, vi−1))
6. Output ((zi−1, . . . , zn−1), (ωi−1, . . . , ωn−1), Πi−1)
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We first reason that the output (zi−1, . . . , zn−1), and (ωi−1, . . . , ωn−1) are
valid. By the inductive hypothesis, we already have that for all j ∈ {i+1, . . . , n},

zj = F (zj−1, ωj−1),

and that V(vk, i, z0, zi, Πi) = 1 with the exception of negl(λ). Because V addi-
tionally checks that

ui.x = H(vk, i, z0, zi,Ui, Yi) (14)

by the construction of F ′1 and the binding property of the hash function, we have

F (zi−1, ωi−1) = zi

with the exception of negl(λ). Next, we argue that Πi−1 is valid. Because (ui, vi)
satisfies F ′, and (Ui−1, ui−1) were retrieved from vi, by the binding property of
the hash function, and by Eq. (14), we have that

ui−1.x = H(vk, i− 1, z0, zi−1,Ui−1, Yi−1)

(ui−1.E, ui−1.s) = (u⊥.E, 1)

Additionally, in the case where i = 1, by the base case check of F ′1, we have
that zi−1 = z0. Because Ẽi−1 succeeds with the exception of negl(λ), we have
that

V(vk, i− 1, z0, zi−1, Πi−1) = 1

with the exception of at most negl(λ).

B Proof for Theorem 4

Proof. To prove knowledge soundness of NIFS, we construct extractor E which
outputs valid witnesses from the adversary output. Before the proof, we remind
the notation of instance and witness as following:

ui = (Ei, si,Wi, xi) ∈ G× Zp ×G× Zp

vi = (ei, rei
,wi, rwi

) ∈ Zm
p × Zp × Zm−ℓ−1

p × Zp, for i = 1, 2

where m and ℓ is pre-designated input of G.
Let (A,P∗) be a pair of algebraic adversaries, that take ppFS = (cke∥ckw)

outputted by G, against folding knowledge soundness.
Assume that A outputs structure s and two instance u1, u2 with representa-

tions ẽ1, ẽ2, w̃1, w̃2 for the group elements u1.E, u2.E, u1.W, u2.W respectively.
And P∗ outputs updated witness v and folding proof T with a representation t̃.

Let the tuple (u1, u2, T, u, v) be a valid input and output of NIFS.V circuit.
That is, NIFS.V(ppFS , u1, u2, T ) = u, (u, v) ∈ RppFS ,s, and u1, u2 ∈ L(Rs,ppFS

).
We construct an extractor E that outputs 4 representations ẽ1, ẽ2, w̃1, w̃2 out-
putted by A.
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Now we claim that (u1, ẽ1, w̃1), (u2, ẽ2, w̃2) ∈ RppFS ,s. By the Eq. (5) and
Eq. (6) in Figure 6, we know that the following relation holds.

E = E1 + rT + r2E2, s = s1 + rs2, W = W1 + rW2, x = x1 + rx2 (15)
E = ⟨e ∥ re, cke⟩, W = ⟨w ∥ rw, ckw⟩ where v = (e, re,w, rw) (16)

By algebraic relation between outputted group elements and their represen-
tations, we get the following equations:

E1 = ⟨ẽ1, cke∥ckw⟩, W1 = ⟨w̃1, cke∥ckw⟩,
E2 = ⟨ẽ2, cke∥ckw⟩, W2 = ⟨w̃2, cke∥ckw⟩
T = ⟨t̃, cke∥ckw⟩

(17)

We denote v1 := (ẽ1, w̃1), v2 := (ẽ2, w̃2). Now we claim that the extracted
witnesses v1 and v2 are valid witness for the instances u1 and u2 respectively.
Combining Eq. (15), Eq. (16) with Eq. (17). By DL assumption, we obtain the
following linear relations.

⟨e ∥ re, cke⟩
(16)
= E

(15)&(17)
= ⟨ẽ1 + rt̃+ r2ẽ2, cke∥ckw⟩

DL
= ⟨ẽ1 + rt̃+ r2ẽ2, cke⟩,

⟨w ∥ rw, ckw⟩
(16)
= W

(15)&(17)
= ⟨w̃1 + rw̃2, cke∥ckw⟩

DL
= ⟨w̃1 + rw̃2, ckw⟩

Let the representation vectors parse to two parts as follows:

ẽi = ēi∥r̄ei , t̃ = t̄∥r̄t ∈ Zm
p × Zp, w̃i = w̄i∥r̄wi ∈ Zm−ℓ−1

p × Zp (18)

Then, we can rewrite Eq. (17) as the commitment forms:

E1 = Com(cke, ē1; r̄e1), W1 = Com(ckw, w̄1; r̄w1),
E2 = Com(cke, ē2; r̄e2

), W2 = Com(ckw, w̄2; r̄w2
).

To complete the claim (u1, v1), (u2, v2) ∈ Rpp,s, we showed the opening-checks
and the R1CS-like relation is remained. From the hypothesis (u, v) ∈ Rpp,s, we
can derive the following equality.

0 = Az ◦Bz − sCz − e

= A(z̄1 + rz̄2) ◦B(z̄1 + rz̄2)− (s1 + rs2)C(z̄1 + rz̄2)− (ē1 + rt̄+ r2ē2)

= Az̄1 ◦Bz̄1 − s1Cz̄1 − ē1 + r2(Az̄2 ◦Bz̄2 − s2Cz̄2 − ē2) + rδ(z̄1, z̄2, A,B)

where z = (w, x, s), z̄i = (w̄i, xi, si) for i ∈ {1, 2} and δ(z̄1, z̄2, A,B) is a re-
dundant term consisting z̄1, z̄2, A, and B. We argue that the general zero
test property of H guarantees that each coefficient of rj-term should be zero
without negligible probability; The last term of the above equation can be
considered as a degree-2 polynomial in r whose coefficients are determined by
d := (z̄1, ē1, z̄2, ē2, t̄) with A,B,C. We also know that r is the hash value of
ui−1,Ui−1 and Ti−1, which can be considered as commitments to d with binding
property.

Therefore, we finally obtain the following equation:

Az̄1 ◦Bz̄1 − s1Cz̄1 − ē1 = 0 = Az̄2 ◦Bz̄2 − s2Cz̄2 − ē2

and we can conclude (u1, v1), (u2, v2) ∈ Rpp,s.
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C Proof for Theorem 5

Proof. Before constructing extractor E , we set the algebraic relation and alge-
braic verification to design the conditional algebraic adversary P∗.

First, we set an algebraic relation RNova by combined two relation CR-R1CS
Rpp,s and R1CS relation R∗pp,s for the execution F ′ as follows:

RNova := {(pp, (U, u); (V, v)) : (U;V) ∈ Rpp,s ∧ (u; v) ∈ R∗pp,s}

where pp = (cke, ckw) ∈ Zm+1
p × Zm−ℓ

p . Then, we set algebraic verification
(Vout,Vrep)RNova

as follows: for all i ∈ [n],

1. Vout(pp, (Ui, ui), (Vi, vi)) = 1 if V(vk, i, z0, zi, Πi = (Ui,Vi, ui, vi)) = 1.
2. Vrep(pp, (Ui, ui), (Vi, vi), (vi−1,Vi−1)) = 1 if Vout(pp, (Ui, ui), (Vi, vi)) = 1

and ((Ui, ui), (Vi, vi), (vi−1,Vi−1)) ∈ Rext
Nova.

To claim that vi contains a valid instance (Ui, ui), we apply Theorem 4. By KS of
the NIFS scheme, NIFS.V, encapsulated in F ′, outputs a valid instance ui for the
relationRpp,s, ensuring that NIFS.V’s inputs Ui−1 and ui−1 are valid instances for
the CR-R1CS relation Rpp,s. In addition, F ′ includes R1CS checks of ui−1, which
confirms that ui−1 is a valid instance of the R1CS relation R∗pp,s. Therefore, vi
contains a valid instance (Ui−1, ui−1) for the relation RNova. Furthermore, the in-
stance (Ui−1, ui−1) contains 4 group elements (Ui−1.E,Ui−1.W, ui−1.E, ui−1.W ),
so P∗ should provide their representations as (Vi−1, vi−1). By the second con-
dition in Item 2b of Definition 9, (Vi−1, vi−1) should be a witness for instance
(Ui−1, ui−1).

Let P∗ be an expected polynomial time conditional algebraic adversary with
respect to (Vout,Vrep)RNova

against poly-depth knowledge soundness for the arbi-
trary polynomial step n = poly(λ). Concretely, P∗ takes step length n and public
parameters pp = (cke, ckw) which is chosen uniformly, and outputs the initial
value z0, final value z, and IVC proof Π = (Un,Vn, un, vn) with representations.
The P∗’s output can be represented as (Ui, ui,Vi, vi)i∈[n]. The initial and final
values z0 and z belong to the R1CS witness vn. Moreover, all representation
vectors provided by P∗ belong to (Vi, vi) for some i ∈ [n − 1], as mentioned
in the previous paragraph. Because (Ui, ui,Vi, vi)i∈[n] should be acceptable to
the algebraic verification (Vout,Vrep)RNova

, we can conclude that (Ui,Vi) ∈ Rpp,s

and (ui, vi) ∈ R∗pp,s for all i ∈ [n]. Furthermore, since vi is an R1CS witness
for the execution F ′, we can derive inputs zi−1, ωi−1 and output zi of F that
satisfy F (zi−1, ωi−1) = zi from vi for all i ∈ [n]. Let the extractor E output
(ωi−1)i∈[n] from (vi)i∈[n]. Therefore, (ωi−1)i∈[n] must satisfy F (zi−1, ωi−1) = zi
and zn = z.


