
On the Untapped Potential of the Quantum FLT-based Inversion∗

Ren Taguchi† Atsushi Takayasu‡

February 19, 2024

Abstract

Thus far, several papers estimated concrete quantum resources of Shor’s algorithm for solving a binary
elliptic curve discrete logarithm problem. In particular, the complexity of computing quantum inversions
over a binary field F2n is dominant when running the algorithm, where n is a degree of a binary elliptic
curve. There are two major methods for quantum inversion, i.e., the quantum GCD-based inversion and
the quantum FLT-based inversion. Among them, the latter method is known to require more qubits;
however, the latter one is valuable since it requires much fewer Toffoli gates and less depth. When n =
571, Kim-Hong’s quantum GCD-based inversion algorithm (Quantum Information Processing 2023) and
Taguchi-Takayasu’s quantum FLT-based inversion algorithm (CT-RSA 2023) require 3, 473 qubits and
8, 566 qubits, respectively. In contrast, for the same n = 571, the latter algorithm requires only 2.3% of
Toffoli gates and 84% of depth compared to the former one. In this paper, we modify Taguchi-Takayasu’s
quantum FLT-based inversion algorithm to reduce the required qubits. While Taguchi-Takayasu’s FLT-
based inversion algorithm takes an addition chain for n − 1 as input and computes a sequence whose
number is the same as the length of the chain, our proposed algorithm employs an uncomputation step
and stores a shorter one. As a result, our proposed algorithm requires only 3, 998 qubits for n = 571,
which is only 15% more than Kim-Hong’s GCD-based inversion algorithm. Furthermore, our proposed
algorithm preserves the advantage of FLT-based inversion since it requires only 3.7% of Toffoli gates and
77% of depth compared to Kim-Hong’s GCD-based inversion algorithm for n = 571.

∗This is the full version of [TT24]. This research was in part conducted under a contract of JSPS KAKENHI Grant Numbers
JP21H03440, Japan.

†Graduate School of Information Science and Technology, the University of Tokyo, Japan. rtaguchi-495@g.ecc.u-tokyo.ac.jp
‡Graduate School of Information Science and Technology, the University of Tokyo, Japan, and National Institute of Advanced

Industrial Science and Technology, Japan. takayasu-a@g.ecc.u-tokyo.ac.jp

Contents
1 Introduction 1

1.1 Background . 1
1.2 Our Contribution . 1

2 Preliminaries 2
2.1 Binary Elliptic Curve Discrete Logarithm Problem . 2
2.2 Quantum Computation in F2n . 3
2.3 Shor’s Algorithm for Solving the Binary ECDLP . 3

3 Our Method 3
3.1 Register-Bounded Addition Chain . 4
3.2 Modified Quantum Point Addition Algorithm . 6
3.3 Depth Reduction of Quantum Multiple Squaring Circuits . 7
3.4 Proposed Inversion Algorithm . 9

4 Comparison 11
4.1 Our Choice of Register-Bounded Addition chains . 12
4.2 Quantum Resources Trade-off in Our Proposed Inversion Algorithm 12
4.3 Comparison with Previous Methods in Shor’s Algorithm . 13

5 Windowing 21

1 Introduction

1.1 Background
RSA [RSA78] and elliptic-curve cryptography (ECC) [Kob87, Mil85] are the most widely used public-key
cryptosystems in practice. The security of RSA and ECC relates to the computational complexity of the fac-
torization problem and the elliptic curve discrete logarithm problem (ECDLP). Since there are no algorithms
that solve the factorization problem/ECDLP in polynomial time, RSA and ECC are believed to be secure. In
1994, Shor [Sho94] proposed a quantum polynomial time algorithm for solving the problems. Thus, quantum
resource estimates and optimized quantum circuits of the algorithm has been actively studied.

In this paper, we focus on the ECDLP over a binary elliptic curve called the binary ECDLP. Banegas et
al. [BBvHL20] presented the first concrete quantum circuits for solving the problem. For this purpose, they
proposed a quantum elliptic curve point addition algorithm and two quantum inversion algorithms over F2n ,
where n is called a degree of a binary field and n = 163, 233, 283, 571 are recommended by NIST [CP13].
Banegas et al. estimated the concrete quantum resource, where they regarded required qubits as the main
optimization target. The number of Toffoli gates is their secondary one since the gates are much more
expensive than CNOT gates. Since the depth of circuits is also known to be cared as mentioned in [RNSL17],
we collectively call the required qubits, Toffoli gates, and the depth the main quantum resource throughout
the paper. Banegas et al.’s analysis indicates that the quantum resource varies greatly depending on which
of their two quantum inversion algorithms is used. They concluded that their GCD-based inversion algorithm
is better than their FLT-based one1since the former requires fewer qubits, while the latter requires much
fewer Toffoli gates and less depth. When n = 571, their GCD-based and FLT-based inversion algorithms
require 4, 015 and 9, 137 qubits, respectively, while the latter requires only 2.4% of Toffoli gates and 94%2

of depth to run Shor’s algorithm. A point to note is that the depth of a circuit is not an exact value but
an upper bound. In general, it is technically hard to analyze fully parallel quantum computation towards
minimizing the depth.

Afterward, there have been several subsequent works that updated the quantum resource estimate by
presenting improved quantum inversion algorithms. Kim and Hong [KH23] proposed a GCD-based inversion
algorithm that reduces all main quantum resources of Banegas et al.’s GCD-based algorithm. Although
Putranto et al. [PWLK22] proposed an FLT-based inversion algorithm that reduces the depth of Banegas
et al.’s FLT-based algorithm, it requires more qubits. Taguchi and Takayasu [TT23] proposed FLT-based
inversion algorithms that reduce the depth (resp. required qubits) of Banegas et al.’s (resp. Putranto et
al.’s) FLT-based algorithms. On the other hand, these works do not change the relationship between GCD-
based and FLT-based inversion algorithms. When n = 571, Kim-Hong’s GCD-based and Taguchi-Takayasu’s
FLT-based inversion algorithms require 3, 473 and 8, 566 qubits, respectively, while the latter requires only
2.3% of Toffoli gates and 84% of depth to run Shor’s algorithm. Therefore, it is desirable to develop
GCD-based (resp. FLT-based) inversion algorithms that drastically reduce required Toffoli gates and depth
(resp. required qubits) of Kim-Hong’s GCD-based (resp. Taguchi-Takayasu’s FLT-based) algorithms.

1.2 Our Contribution
In this paper, we break the relationship between GCD-based and FLT-based inversion algorithms by pre-
senting an FLT-based method that requires much fewer qubits. When n = 571, our method requires
3, 998 qubits to run Shor’s algorithm and reduces all main quantum resources of Banegas et al.’s GCD-based
algorithm [BBvHL20]. Although the required qubits are still more than Kim-Hong’s GCD-based algorithm,
they are competitive since ours are just 15% more than Kim-Hong. Furthermore, our method preserves the
advantage of FLT-based inversion since it requires only 3.7% of Toffoli gates and 77% of depth to run Shor’s
algorithm compared to Kim-Hong’s GCD-based inversion algorithm.

We briefly explain three technical ingredients to obtain the result.
Register-Bounded Addition Chain. Taguchi-Takayasu’s FLT-based inversion algorithm takes an addi-
tion chain as input and computes a sequence whose number is the same as the length of the chain. Briefly

1FLT is the abbreviation of Fermat’s little theorem.
2Although Banegas et al. [BBvHL20] used Hoof’s quantum multiplication algorithm [vH19], we replace it with more efficient

Kim et al.’s quantum multiplication algorithm [KKKH22] and update their analysis. We use the more efficient algorithm
throughout the paper.

1

speaking, the addition chain represents the sequence of computation. Unfortunately, this procedure wastes
the number of ancillary registers since there are several terms that are stored until the end of the compu-
tation, while they are used only at an early step of the computation. If we delete such terms, we can save
the required qubits; however, an addition chain does not indicate which terms should be deleted and when.
For this purpose, we introduce a register-bounded addition chain. A register-bounded addition chain is a
longer sequence than an addition chain and represents the sequence of computation/uncomputation. We
find register-bounded addition chains for NIST recommended degrees n = 163, 233, 283, 571 and reduce the
required qubits for inversions.
Modified Elliptic Curve Point Addition Algorithm. Although a register-bounded addition chain
enables us to reduce required qubits, the resulting inversion algorithm requires slightly more qubits than
Banegas et al.’s GCD-based inversion algorithm. Since our final target is not an inversion itself but Shor’s
algorithm, we modify Banegas et al.’s point addition algorithm [BBvHL20] and further reduce the required
qubits for running Shor’s algorithm. Interestingly, our proposed point addition algorithm itself does not
reduce the required qubits; however, it becomes effective when combined with our inversion algorithm.
Specifically, we design our point addition algorithm so that the proposed inversion algorithm and the point
addition algorithm share the same ancillary registers.
Depth Reduction of Quantum Multiple Squaring Circuits. The above two ingredients enable us to
run Shor’s algorithm with 3, 998 qubits for n = 571. However, the algorithm lost the advantage of FLT-based
inversion since it requires more depth than GCD-based inversion algorithms. To preserve the advantage,
we find how to perform parallel quantum computation during FLT-based inversion and reduce the depth.
Since FLT-based inversion is inherently required to compute 2k-th powers many times for large k, previous
FLT-based inversion algorithms applied a circuit for computing squaring k times for computing 2k-th power.
In contrast, we analyze quantum circuits for computing 2k-th powers directly and find that much less depth
is sufficient for any n. The circuits are effective for all FLT-based inversion algorithms and enable our
algorithm to preserve the advantage of FLT-based inversion.
Organization. In Section 3, we present our FLT-based method. In Section 4, we analyze the quantum
resource and compare it with previous ones.
Difference from Preliminary Version. In [TT24], the depth of spSQUAREk described in Section 3.3
which computes 2k-th power is roughly estimated. In this version, we compute the exact depth for spSQUAREk
and estimate quantum resources for Shor’s algorithm.

2 Preliminaries
In Section 2.1, we explain binary elliptic curves and a binary elliptic curve discrete logarithm problem (binary
ECDLP). In Section 2.2, we explain quantum computations and quantum basic arithmetics over F2n . In
Section 2.3, we describe Shor’s algorithm for solving the binary ECDLP.

2.1 Binary Elliptic Curve Discrete Logarithm Problem
Let n be a non-negative integer. A binary elliptic curve of degree n is given by y2+xy = x3+ax2+ b, where
a ∈ F2n and b ∈ F∗

2n . The set of rational points on an elliptic curve and a special point O form an abelian
group under point addition, where O is the identity element called a point at infinity. Let P = (x1, y1) and
Q = (x2, y2) denote rational points on a binary elliptic curve. If P ̸= Q, P +Q = (x3, y3) is given by

x3 = λ2 + λ+ x1 + x2 + a, y3 = (x2 + x3)λ+ x3 + y2,

where λ = (y1 + y2)/(x1 + x2). Otherwise, P + P = (x3, y3) is given by

x3 = λ2 + λ+ a, y3 = x2
1 + (λ+ 1)x3,

where λ = x1 + y1/x1. As the above formulas imply, we compute an inversion when we compute a point
addition. Hereafter, [k]P denotes a sum of k P ’s under point addition. The above two formulas indicate
that we can compute [k]P from P and k in polynomial time. However, there is no known polynomial time
algorithm that computes k from P and [k]P . This problem over a binary field is called the binary elliptic
curve discrete logarithm problem (binary ECDLP).

2

2.2 Quantum Computation in F2n

In classical computation, we use a “bit” represented by 0 or 1. In contrast, in quantum computation, we
use a “qubit” represented by |0⟩ , |1⟩ and their superposition. Let m(x) be an irreducible polynomial in F2[x]
of degree n and (m(x)) be an ideal generated by m(x) over F2[x]. To represent an element in f ∈F2n by
qubits, we use a polynomial representation based on a relation F2n ≃ F2[x]/(m(x)). Since f is represented
by a polynomial of degree less than n− 1, we represent it by n qubits and corresponding coefficients of the
polynomial as the quantum state of |0⟩ or |1⟩. Hereafter, we call the n qubits representing an element in F2n

a register.
We employs quantum circuits to describe quantum computations, where X gates, CNOT gates, Toffoli

(TOF) gates, and SWAP gates are basic quantum gates. An X gate exchanges the coefficients of |0⟩ and
|1⟩. Let a, b, and c denote |0⟩ or |1⟩. Then, CNOT, TOF, and SWAP operations are given by CNOT(a, b) =
(a, a⊕ b), TOF(a, b, c) = (a, b, c⊕ (a · b)), and SWAP(a, b) = (b, a), respectively. A TOF gate is believed to
be much more expensive than a CNOT gate. To explain our method in Section 3, we may use a SWAP gate;
however, we do not use the gate actually by designing subsequent circuits appropriately.

Next, we explain quantum basic arithmetics. Let f, g, and h denote quantum states of elements in F2n .
We use ADD (resp. SQUARE and spSQUARE) to denote Banegas et al.’s algorithm [BBvHL20] for addition (resp.
squaring) over F2n , where ADD (f, g) = (f, f+g), SQUARE (f) = f2, and spSQUARE (f, g) = (f, f2+g). We can
use ADD to compute a copy of a given element by ADD(f, 0) = (f, f). We use SQUARE−1 and spSQUARE−1 to
denote inverse operations of SQUARE and spSQUARE, respectively. Banegas et al.’s algorithms [BBvHL20] for
computing the operations are based only on CNOT gates, where ADD, SQUARE, and spSQUARE require n, at
most n2 − n, and at most n2 CNOT gates, respectively. Circuits for computing SQUARE−1 and spSQUARE−1

are reversed circuits for computing SQUARE and spSQUARE, respectively. We use MODMULT to denote Kim
et al.’s multiplication algorithm over F2n [KKKH22], where MODMULT (f, g, h) = (f, g, f ·g + h) which re-
quires TOF gates as well as CNOT gates. Indeed, we can compute multiplication of given two elements by
MODMULT (f, g, 0) = (f, g, f ·g). Since we consider the arithmetics over F2n , it holds that ADD (f, f) = (f, 0)
and MODMULT (f, g, f ·g) = (f, g, 0).

Finally, we describe INV which denotes the inversion computation over F2n , where INV (f, [0, . . . , 0], 0) =
(f, [r1, . . . , rm], f−1). Observe that INV requires m + 2 registers whose first one stores f ∈ F2n . The other
m+ 1 registers are ancillary registers that include the last one to store f−1. We call the register for output
and the m registers enclosed by [] inversion ancillary registers. Moreover, we call an inversion ancillary
register a dirty ancillary register if the output ri is non-zero. We use INV−1 to denote an inverse operation
of INV, where INV−1(f, [r1, . . . , rm], f−1) = (f, [0, . . . , 0], 0). We use INV−1 only when the input [r1, . . . , rm]
in the inversion ancillary registers is the same as the output of INV in the same registers.

In this paper, the above quantum computations also take registers as input, e.g., ADD(g1, g2), where g1
and g2 is a register which stores f ∈ F2n and 0, respectively. Then, ADD(g1, g2) describes ADD(f, 0) = (f, f).

2.3 Shor’s Algorithm for Solving the Binary ECDLP
Shor’s algorithm mainly consists of a point addition part and a quantum Fourier transform. Since the former
and the latter require O(n3) and O(n2) quantum gates, respectively, the point addition part is relatively
expensive. Banegas et al.’s point addition algorithm [BBvHL20] consists of quantum arithmetics over F2n

denoted by MODMULT, INV, INV−1, spSQUARE, const_ADD, ctrl_ADD, and ctrl_const_ADD. Although we
do not explain in detail, const_ADD, ctrl_ADD, and ctrl_const_ADD operate addition, where they require
at most n X gates, at most n TOF gates, and at most n CNOT gates, respectively. In this paper, we
count the numbers of TOF and CNOT gates and ignore X gates by following previous works [BBvHL20].
Banegas et al.’s point addition algorithm requires 3n+ 1 qubits except inversion ancillary registers. More
precisely, they require 2n+ 1 qubits for input and n qubits for an ancillary register of point addition which
we call a point addition ancillary register.

3 Our Method
In Section 3.1, we explain register-bounded addition chain. In Section 3.2, we propose a quantum point
addition algorithm. In Section 3.3, we describe the depth reduction of squaring. In Section 3.4, we show our

3

quantum FLT-based inversion algorithm.

3.1 Register-Bounded Addition Chain
Hereafter, we use a notation ⟨α⟩ := fα for simplicity for f ∈ F∗

2n . Then, the FLT-based inversion computes
⟨−1⟩ = ⟨2n − 2⟩. We focus on the computation of ⟨2n−1 − 1⟩ hereafter since we can compute ⟨2n − 2⟩ by
applying squaring to ⟨2n−1 − 1⟩.
Taguchi-Takayasu’s FLT-based Algorithm. At first, we summarize overvie- ws of Taguchi-Takayasu’s
quantum FLT-based inversion algorithm [TT23]. To be precise, Taguchi and Takayasu proposed two algo-
rithms, i.e., Basic algorithm and Extended algorithm. Hereafter, we only describe thier Extended algorithm
since their Extended algorithm requires fewer qubits than their Basic algorithm. Therefore, we call their
Extended algorithm simply Taguchi-Takayasu’s FLT-based algorithm.

We review an addition chain that is Taguchi-Takayasu’s FLT-based essential ingredient to improve pre-
vious FLT-based algorithms.

Definition 1 (Addition chain). Let ℓ and N denote non-negative integers. An addition chain for N of
length ℓ is a sequence p0 = 1, p1, p2, . . . , pℓ = N which satisfies the following condition:

• For all s = 1, 2, . . . , ℓ, there exist i and j which satisfy ps = pi + pj, where 0 ≤ i, j < s.

We call each term ps of an addition chain a doubled term or an added term. In particular, if there are no i
and j which satisfy 0 ≤ i, j < s, ps = pi+pj , and pi ̸= pj , and an added term otherwise. Taguchi-Takayasu’s
FLT-based algorithm takes ⟨2p0 − 1⟩ = f ∈ F∗

2n and an addition chain {ps}ℓs=0 for n− 1 of length ℓ as inputs
and computes ⟨2p1 − 1⟩, ⟨2p2 − 1⟩, . . . , ⟨2pℓ − 1⟩ = ⟨2n−1 − 1⟩ sequentially by the relation

⟨2α − 1⟩2
β

× ⟨2β − 1⟩ = ⟨2α+β − 1⟩. (1)

Taguchi-Takayasu’s FLT-based algorithm computes ⟨2ps−1⟩ in two distinct ways for all 1 ≤ s ≤ ℓ depending
on whether ps is an added term or a doubled term. If ps is an added term, we compute ⟨2ps−1⟩ = ⟨2pi+pj−1⟩
from ⟨2pi − 1⟩ and ⟨2pj − 1⟩ which have been stored distinct registers. In particular, we first apply SQUARE

pi times to ⟨2pj − 1⟩ and obtain ⟨2pi+pj − 2pi⟩. After that, we apply MODMULT to ⟨2pi+pj − 2pi⟩ and ⟨2pi − 1⟩
and obtain ⟨2pi+pj − 1⟩ = ⟨2ps − 1⟩. On the other hand, if ps is a doubled term, we first compute a copy of
⟨2pi − 1⟩ in another ancillary register by using ADD. Then, we apply SQUARE pi times to the copy and obtain
⟨2pi+pi − 2pi⟩. Finally, we apply MODMULT to ⟨2pi − 1⟩ and ⟨2pi+pi − 2pi⟩ and obtain ⟨2pi+pi − 1⟩ = ⟨2ps − 1⟩.
To reduce the qubits, we uncompute the copy of ⟨2pi−1⟩ by ADD. Theorem 1 describes the quantum resources
for Taguchi-Takayasu’s FLT-based algorithm.

Theorem 1 ([TT23], Theorem 2). Let f be an element in F∗
2n and {ps}ℓs=0 be an addition chain for n− 1

of length ℓ with pℓ is an added term. Taguchi-Takayasu’s FLT-based algorithm takes f = ⟨1⟩ and {ps}ℓs=0 as
input and outputs ⟨−1⟩ = ⟨2n − 2⟩ with ℓ ancillary registers and ℓ multiplications.

Taguchi-Takayasu’s FLT-based algorithm requires ℓ ancillary registers to store ⟨2ps − 1⟩ for all s =
1, 2, . . . , ℓ. Furthermore, every term of an addition chain for Taguchi-Takayasu’s algorithm appears only
once.
Our Proposed Algorithm. Now, we reduce even more qubits than Taguchi-Takayasu’s FLT-based algo-
rithm. Keen readers may notice that we can further reduce required qubits by uncomputing not only copied
⟨2ps − 1⟩ but also original ⟨2ps − 1⟩ itself. For an example of Taguchi-Takayasu’s FLT-based algorithm with
an addition chain {ps}9s=0 = {1, 2, 3, 6, 9, 18, 27, 54, 108, 162}, observe that {1, 2, 3, 6, 9, 18} will not be used
again after computing 27. In other words, after we compute 27, we can uncompute {2, 3, 6, 9, 18} if possible.
However, while an addition chain tells us a sequence of computation, it does not tell us which terms can be
uncomputed and when. Therefore, we need another method to analyze our proposed algorithm. For this
purpose, we introduce register-bounded addition chains.

Definition 2 (Register-Bounded Addition Chain). Let ℓ̃ and N denote non-negative integers. A register-
bounded addition chain for N of length ℓ̃ is a sequence p̃ := {p̃s}ℓ̃s=0 = p̃0 = 1, p̃1, p̃2, . . . , p̃ℓ̃ which satisfies
following conditions:

4

• For all s = 1, . . . , ℓ̃, there exist i and j which satisfy p̃i + p̃j = p̃s and p̃i ∈ S(p̃, s− 1), p̃j ∈ S(p̃, s− 1),
where S(p̃, t) := {p̃s | 0 ≤ s ≤ t, there exists no s′ such that 0 ≤ s′ ≤ t, s ̸= s′, and p̃s = p̃s′}.

• There exists ω which satisfies p̃ω = N .

• Every term appears once or twice.

Due to the first condition, a register-bounded addition chain {p̃s}ℓ̃s=0 is an addition chain. Therefore,
we can also define doubled terms and added terms for a register-bounded addition chain. Furthermore, a
sequence of different terms of {p̃s}ℓ̃s=0 is also an addition chain. A register-bounded addition chain explains
both computations and uncomputations. Specifically, the first and second time each term p̃s appear, we
compute and uncompute f2p̃s−1, respectively. Briefly speaking, S(p̃, t) is a set of p̃0, p̃1, . . . , p̃t that appear
only once. Thus, when we compute or uncompute p̃s for all 1 ≤ s ≤ ℓ̃, we choose former terms that appear
once in p̃0, p̃1, . . . , p̃s−1, while there is no condition for an addition chain. Then, we define a function C(p̃, t)
by C(p̃, t) := 1 when p̃t is a doubled term and C(p̃, t) := 0 otherwise. We also define r(p̃, t) which we call the
register counting function given by r(p̃, t) := #S(p̃, t) + C(p̃, t) − 1. Intuitively, r(p̃, t) denotes the number
of required ancillary registers when we compute or uncompute ⟨2p̃t − 1⟩. Moreover, we use the notation
R(p̃) := max1≤t≤ℓ̃ r(p̃, t) hereafter. Thus, R(p̃) describes the number of required ancillary registers for a
whole inversion computation. We explain quantum resources for a quantum FLT-based inversion algorithm
which we compute and uncompute based on a register-bounded addition chain by Theorem 2.

Theorem 2. Let f be an element in F∗
2n , {p̃s}ℓ̃s=0 be a register-bounded addition chain for n − 1 of length

ℓ̃, and ℓ denote the length of an addition chain which consists of different terms of {p̃s}ℓ̃s=0. There exists a
quantum algorithm that takes f = ⟨1⟩ and {p̃s}ℓ̃s=0 as input and outputs ⟨−1⟩ = ⟨2n− 2⟩ with R(p̃) ancillary
registers, ℓ̃ multiplications, and 2ℓ− ℓ̃ dirty ancillary registers at the end of the algorithm.

Proof. We compute or uncompute ⟨2p̃s − 1⟩ in the s-th procedure for all s = 1, . . . , ℓ̃. More precisely, we
compute ⟨2p̃s − 1⟩ if p̃s appears for the first time in {p̃s}ℓ̃s=0 and uncompute ⟨2p̃s − 1⟩ if it is the second time
to appear. By the second condition of Definition 2, we compute ⟨2n−1 − 1⟩ in the ω-th procedure, where
0 ≤ ω ≤ ℓ̃ in the same way as Taguchi-Takayasu’s FLT-based algorithm. Then, we explain uncomputations
of ⟨2p̃s − 1⟩. We only describe the case that p̃s is a doubled term.

Uncomputation of ⟨2p̃s − 1⟩: We have ⟨2p̃i − 1⟩ stored in the register gk1 , 0 stored in the register gk2 ,
and ⟨2p̃s − 1⟩ stored in the register gk3

, where p̃s = p̃i + p̃i and i ∈ S(p̃, s − 1). At first, we apply
ADD (gk1

, gk2
) and obtain ⟨2p̃i − 1⟩ in the gk2

. Next, we apply SQUARE p̃i times to the gk2
and obtain

⟨2p̃i − 1⟩2p̃i = ⟨2p̃i+p̃i − 2p̃i⟩. Then, we apply MODMULT (gk1
, gk2

, gk3
) and obtain ⟨2p̃i+p̃i − 2p̃i⟩ × ⟨2p̃i −

1⟩ + ⟨2p̃s − 1⟩ = ⟨2p̃i+p̃i − 1⟩ + ⟨2p̃s − 1⟩ = ⟨2p̃s − 1⟩ + ⟨2p̃s − 1⟩ = 0 in the gk3
by (1). By the same

procedure as the uncomputation of copy in Taguchi-Takayasu’s FLT-based algorithm, we uncompute
the gk2 .

Then, ⟨2p̃s−1⟩ is stored after the t-th procedure if and only if s ∈ S(p̃, t). Therefore, we can always compute or
uncompute ⟨2p̃s−1⟩ since there exist ⟨2p̃i−1⟩ and ⟨2p̃j−1⟩ in some registers such that 0 ≤ i, j < s, p̃s = p̃i+p̃j
by the first condition of Definition 2. Furthermore, #S(p̃, t) describes the number of registers that store non-
zero terms including input after the t-th procedure. However, we also require another register to copy ⟨2p̃t−1⟩
when p̃t is a doubled term. In other words, we use #S(p̃, t)+1 registers when p̃t is a doubled term and #S(p̃, t)
registers when p̃t is an added term for t-th procedure. Then, the number of required ancillary registers for
t-th procedure is #S(p̃, t) + C(p̃, t) − 1 = r(p̃, t). Therefore, we require max0≤t≤ℓ̃ r(p̃, t) = R(p̃) ancillary
registers. Moreover, each procedure requires a multiplication, in other words, we require ℓ̃ multiplications in
total. The third condition of Definition 2 ensures that we compute ℓ different terms only once, in other words,
we do not compute ⟨2p̃s − 1⟩ after we uncompute ⟨2p̃s − 1⟩. We require ℓ registers to store them. However,
there are r(p̃, ℓ̃) non-zero ancillary registers at the end of the algorithm. Therefore, we uncompute ℓ− r(p̃, ℓ̃)
times. Then, it holds that ℓ̃ = ℓ+ (ℓ− r(p̃, ℓ̃)) = 2ℓ− r(p̃, ℓ̃). By this relation, it holds r(p̃, ℓ̃) = 2ℓ− ℓ̃.

By Theorem 2, we use R(p̃)n qubits except for g0, and ℓ̃ = 2ℓ − r(p̃, ℓ̃) multiplications for our proposed
inversion algorithm. Then, when we fix ℓ and R(p̃), larger r(p̃, ℓ̃) is desired to reduce multiplications. On
the other hand, it holds that r(p̃, ℓ̃) ≤ R(p̃) by the definition of R(p̃).

5

Algorithm 1 Proposed quantum point addition algorithm

Input: An irreducible polynomial m(x) ∈ F2[x] of degree n, a coefficient of an binary elliptic curve a, single
qubit q, an elliptic curve point P1 = (x1, y1) stored in x, y, a fixed elliptic curve point P2 = (x2, y2), a
non-negative integer R, registers g1, g2, . . . , gR−1, gR = λ initialized to an all-|0⟩ state

Output: (x, y) = P1 + P2 = P3(x3, y3) if q = 1
(x, y) = P1 = (x1, x2) if q = 0

1: const_ADD (x2, x)
2: ctrl_const_ADDq(y2, y) // λ = 0
3: INV (x, [g2, . . . , gR−1, λ], g1)
4: MODMULT (g1, y, λ)
5: MODMULT (x, λ, y)
6: SWAP (y, λ) // λ = 0
7: INV−1(x, [g2, . . . , gR−1, λ], g1)
8: SWAP (y, λ)
9: spSQUARE (λ, y)

10: ctrl_const_ADDq(a+ x2, x)
11: ctrl_ADDq(λ, x)
12: ctrl_ADDq(y, x)
13: spSQUARE (λ, y)
14: SWAP (y, λ) // λ = 0
15: INV (x, [g2, . . . , gR−1, λ], g1)
16: SWAP (y, λ)
17: MODMULT (x, λ, y)
18: MODMULT (g1, y, λ) // λ = 0
19: INV−1(x, [g2, . . . , gR−1, λ], g1)
20: const_ADD (x2, x)
21: ctrl_ADDq(x, y)
22: ctrl_const_ADDq(y2, y)

3.2 Modified Quantum Point Addition Algorithm
As we explained in Section 2.3, there are two types of ancillary registers, i.e., inversion ancillary registers
and a point addition ancillary register to run Shor’s algorithm. We modify Banegas et al.’s quantum point
addition algorithm [BBvHL20] described as Algorithm 1 to reduce required qubits by combining with our
FLT-based inversion algorithm in Section 3.1, where we use R := R(p̃) to describe the number of inversion
ancillary registers for simplicity. Intuitively, we delete the point addition ancillary register and perform point
addition by using an inversion ancillary register. Briefly speaking, Algorithm 1 is the same as Banegas et
al.’s algorithm by deleting SWAP operations in lines 6 and 16, exchanging line 5 and line 7, and exchanging
line 15 and line 17. The modification changes the role of a register λ which is a point addition ancillary
register in Banegas et al.’s algorithm, while it is both a point addition ancillary register and an inversion
ancillary register in Algorithm 1. In other words, all R inversion ancillary registers are divided into the
registers for only inversion computation, i.e., g1, . . . , gR−1, and the register for both inversion computation
and point addition computation, i.e., λ. Then, the number of qubits for Shor’s algorithm with Algorithm 1
is (2 + R)n + 1 qubits, while (3 + R)n + 1 qubits with Banegas et al.’s point addition algorithm. We note
that Algorithm 1 itself does not purely improve Banegas et al.’s point addition algorithm since Algorithm 1
requires some conditions. Concretely, Algorithm 1 requires that INV and INV−1 satisfy two conditions,
i.e., (i) λ store 0 at the end of INV and (ii) x at the beginning of INV (INV−1) and x at the end of INV

(INV−1) must be the same state. Quantum FLT-based inversion algorithms always satisfy (ii). However,
previous FLT-based inversion algorithms do not satisfy (i) since they fully use all registers at the end of
algorihtm. Our proposed FLT-based inversion algorithm can prepare a clear register at the end of algorithm
by choosing {p̃s}ℓ̃s=0 properly. We explain the detail in Section 3.4. On the other hand, previous quantum

6

GCD-based inversion algorithms satisfy (i), while they do not satisfy (ii). GCD-based inversion algorithms
apply Euclidean algorithm to x and m, where m is an irreducible polynomial in Section 2.2. In Euclidean
algorithm, we compute x← x mod m or m← m mod x until it holds x = 1 or m = 1. Thus, x at the end
of quantum GCD-based inverion algorithms is different state to x at the beginning.

3.3 Depth Reduction of Quantum Multiple Squaring Circuits
We explain how to reduce the depth of quantum circuits for computing 2k-th powers. Let f = a0 + a1x +
· · · + an−1x

n−1 be a polynomial which represents an element in F2n with coefficients ai ∈ F2. For an
irreducible polynomial m(x) ∈ F2[x] of degree n, we have f2 = a0 + a1x

2 + · · · + an−1x
2n−2 mod m(x) =

a′0 + a′1x + · · · + a′n−1x
n−1 mod m(x). Since each a′i is a sum of a0, a1, . . . , an−1, there exists a matrix

Tn = (ti,j) ∈ GLn(F2) which satisfies

[a′0, a
′
1, a

′
2, . . . , a

′
n−1]

⊤ = Tn[a0, a1, a2, . . . , an−1]
⊤, (2)

where ti,j ∈ F2 for all 1 ≤ i, j ≤ n. The matrix Tn is uniquely determined for m(x); in other words, the
relation (2) holds for any f .
Banegas et al.’s Estimate. We explain how Banegas et al. [BBvHL20] constructed a quantum circuit of
SQUARE and spSQUARE by using the above matrix Tn. We also review their quantum resource estimation of
SQUARE and spSQUARE.
SQUARE. Let Tn = LnUnPn be an LUP decomposition, where Ln and Un are lower and upper triangular
matrices, respectively, and Pn is a permutation matrix. The multiplication by matrices Un and Ln (resp.
Pn) can be performed by CNOT (resp. SWAP) gates. In particular, Banegas et al. showed that the numbers
of CNOT gates are the number of ones in Ln and Un except their diagonal entries; thus, the circuits require
at most n(n− 1)/2 CNOT gates and the depth is at most n(n− 1)/2. In total, SQUARE(f) = f2 requires at
most n2 − n CNOT gates and the depth is at most n2 − n. Since we can compute the concrete number of
CNOT gates of SQUARE for every irreducible polynomial m(x), we use SQn to denote the number, where the
depth is at most SQn.
spSQUARE. For the above matrix Tn determined by an irreducible polynomial m(x), let spSQn ≥ n denote the
number of ones in Tn including diagonal entries. Let ai and bi be coefficients of f and g for xi, respectively.
Then, we can describe a computation spSQUARE (f, g) = (f, f2 + g) by[

In On

Tn In

]
[a0, a1, . . . , an−1, b0, b1, . . . , bn−1]

⊤, (3)

where In and On are an identity matrix and a zero matrix, respectively. As SQUARE, we can compute
spSQUARE with spSQn CNOT gates and the upper bound of depth of the circuit is spSQn.
Depth Reduction of spSQUARE. Observe that spSQn ≥ n holds due to Tn ∈ GLn(F2). However, we show
that a smaller depth is sufficient for computing spSQUARE with the following stronger claim.

Theorem 3. Let Ri(A) and Ci(A) denote a number of ones in i-th row of A and i-th column of A, respec-
tively, where A ∈ Mn(F2) and i = 1, . . . , n. Let L(A) := max(R1(A), . . . , Rn(A), C1(A), . . . , Cn(A)). For
a matrix Hn = (hi,j) ∈ Mn(F2), there exists a quantum circuit for computing a multiplication by a matrix[

In On

Hn In

]
with depth L(Hn).

Difference from Preliminary Version. In [TT24], we estimate the upper bound of the depth for the
quantum computation described in Theorem 3 is n. On the other hand, we estimate the exact depth in this
version.

Before providing a proof, we show an example for H3 =

 1 1 0
1 0 1
1 1 1

, where spSQ3 = 7. In this case,

we want to compute [
I3 O3

H3 I3

]
[a0, a1, . . . , an−1, b0, b1, . . . , bn−1]

⊤

= [a0, a1, a2, b0 + a0 + a1, b1 + a0 + a2, b2 + a0 + a1 + a2]
⊤.

7

It is easy to check that spSQ3 = 7 CNOT gates are sufficient for the purpose by adding a0 to the fourth,
fifth, and sixth bits, a1 to the fourth and sixth bits, and a2 to the fifth and sixth bits. We can design a
circuit with depth spSQ3 = 7 by applying the CNOT gates one by one. On the other hand, we find that the
depth n = 3 is sufficient by applying several CNOT gates simultaneously. In particular, the following design
of a circuit works with the claimed depth, while distinct CNOT gates do not share their working bits at the
same time:

• Add a0 and a2 to the fourth and sixth bits, respectively.

• Add a0, a1, and a2 to the sixth, fourth, and fifth bits, respectively.

• Add a0 and a1 to the fifth and sixth bits, respectively.

We express the design by matrices

Γ1 =

 1 0 0
0 0 0
0 0 1

 , Γ2 =

 0 1 0
0 0 1
1 0 0

 , Γ3 =

 0 0 0
1 0 0
0 1 0


such that H3 = Γ1 + Γ2 + Γ3 and every rows and columns have at most one 1. The three columns of
the matrices correspond to the first, second, and third bits, while the three rows correspond to the fourth,
fifth, and sixth bits. The condition H3 = Γ1 + Γ2 + Γ3 ensures that matrices Γ1,Γ2, and Γ3 represent the
computation by H3, while the other condition ensures that distinct CNOT gates do not share their working
bits at the same time. We show how to decompose Hn to at most L(Hn) Γi’s in general and provide a proof
of Theorem 3.

Proof. We construct a bipartite graph G = (V,E) as follows:

• Let U = {u1, . . . , un},W = {w1, . . . , wn} and V = U ∪W ,

• Let E = {(ui, wj) | hij = 1}.

Then, the degree of ui which is called d(ui) equals Ri(Hn) and d(wi) = Ci(Hn), where i = 1, . . . , n. Thus,
the maximum degree of G called ∆G equals L(Hn). Now, we give an edge coloring to G. Since G is a
bipartite graph, the edge chromatic number of G is determined by Theorem 4.

Theorem 4 ([Kön16]). The edge chromatic number of any bipartite graph equals its maximum vertex degree.

Therefore, the edge chromatic number of G is ∆G = L(Hn).
We consider the graph G which is colored with L(Hn) colors. Then, we construct matrices Γ1, . . . ,ΓL(Hn)

as follows:

• Let Es = {e ∈ E | e is colored by s-th color}, where s = 1, . . . , L(Hn),

• Let Γs = (ιi,j), where ιi,j = 1 if and only if Gs := (V,Es) contains an edge (ui, wj).

By the definition of edge coloring, it holds that Ri(Γs) = 1, Ci(Γs) = 1 for all i = 1, . . . , n, s = 1, . . . , L(Hn)
and Γ1 + · · ·+ ΓL(Hn) = Hn.

By Theorem 3, we reduce the depth for spSQUARE from SQn to n. However, this is only a small contri-
bution when we estimate the resources for Shor’s algorithm since Hn = Tn is a sparse matrix and SQn is
sufficiently close to n for all NIST-recommended n. On the other hand, if Hn is not sparse, we can drastically
reduce the depth.

We consider quantum FLT-based inversion algorithms. Let k be a non-negative integer. When we
compute a doubled term, i.e., ⟨22k − 1⟩ by using a register g1 which stores ⟨2k − 1⟩ and g2 which stores 0,
we employ a quantum computation called ADD-SQUAREk given by

1: ADD (g1, g2)

2: for s = 1, . . . , k do

8

3: SQUARE (g2)

Previous works estimated the depth for ADD-SQUAREk is 1 + kSQn. We give a tighter upper bound for
ADD-SQUAREk.

Let f in F2n and denote f = a0 + a1x + a2x
2 + · · · + an−1x

n−1, where ai ∈ F2. By observing (2), T k
n

satisfies
[a

(k)
0 , a

(k)
1 , a

(k)
2 , . . . , a

(k)
n−1]

⊤ = T k
n [a0, a1, a2, . . . , an−1]

⊤, (4)

where a(k)i is a coefficient of xi for f2k for i = 0, 1, . . . , n−1. Then, a quantum computation called spSQUAREk

given by [
In On

T k
n In

]
[a0, a1, . . . , an−1, 0, 0, . . . , 0]

⊤

also describes ADD-SQUAREk. Thus, let Hn = T k
n in Theorem 3, the depth for spSQUAREk is at most n. This is a

significantly large contribution since T k
n contains about n2/2 ones for almost all k for all n. In almost all k, the

upper bound of the depth for spSQUAREk is much smaller than the upper bound of the depth for ADD-SQUAREk
for all n, however, we choose the lesser way when we apply this in FLT-based inversion algorithms. We note
that we use an inverse of spSQUAREk or ADD-SQUAREk written by (spSQUAREk)−1 or (ADD-SQUAREk)−1 when
we uncompute ⟨22k − 1⟩. Then, we use a reversed circuit of spSQUAREk or ADD-SQUAREk. We repeatedly
claim that we can apply the above depth reduction to all quantum FLT-based inversion algorithms.

When we compute or uncompute an added term, we can use SQUAREk which is given by applying LUP
decomposition to T k

n . Let SQ
(k)
n denote the upper bound of the CNOT gates and the depth for SQUAREk.

In FLT-based inversion algorithms, we compare the depth of applying SQUARE k times, i.e., kSQn, and the
depth of SQUAREk, i.e., SQ(k)

n and choose the lesser way. Figure 1 compares kSQn (blue line) and SQ
(k)
n

(orange line) for all n. By Figure 1, we apply SQUARE k times when k is smaller than a threshold and apply
SQUAREk when k is larger than that.

3.4 Proposed Inversion Algorithm
In this section, we construct our proposed quantum inversion algorithm that is based on the idea in Sec-
tion 3.1. As we described in Section 3.1, larger r(p̃, ℓ̃) is desired to reduce multiplications and it follows
r(p̃, ℓ̃) ≤ R(p̃). However, to apply our proposed quantum point addition algorithm in Section 3.2, conditions
(i) and (ii) must be satisfied. Our proposed inversion algorithm always satisfies (ii). On the other hand,
(i) is satisfied if and only if r(p̃, ℓ̃) < R(p̃). For this reason, we consider the case of r(p̃, ℓ̃) = R(p̃) − 1
hereafter. We apply the depth reduction in squaring described in Section 3.3. Then, we prepare several
sequences that describe our proposed inversion algorithm. We define two sequences {ãs}ℓ̃s=1, {b̃s}ℓ̃s=1 that
satisfy p̃ãs

∈ S(p̃, s − 1) and p̃b̃s ∈ S(p̃, s − 1), and p̃s = p̃ãs
+ p̃b̃s for all 1 ≤ s ≤ ℓ̃, where {p̃s}ℓ̃s=0 is a

register-bounded addition chain for n − 1. We assume that ãs = b̃s if and only if p̃s is a doubled term of
{p̃s}ℓ̃s=0. For the register-bounded addition chain {p̃s}ℓ̃s=0, we define two sets

D := {s ∈ {1, 2, . . . , ℓ̃} | ãs = b̃s},
M := {s ∈ {1, 2, . . . , ℓ̃} | ãs ̸= b̃s}.

Now, we consider the general case of computation or uncomputation of ⟨2p̃s − 1⟩ by using ⟨2p̃ãs − 1⟩ and
⟨2p̃b̃s − 1⟩ for all 1 ≤ s ≤ ℓ̃ since we explained only a simple case. More precisely, we compute or uncompute
⟨2p̃s − 1⟩2γs in the h3-th register by using ⟨2p̃ãs − 1⟩2αs in the h1-th register and ⟨2p̃b̃s − 1⟩2βs in the h2-th
register, where αs, βs, γs are integers for all s = 1, . . . , ℓ̃. We decide that γs = 0 when we compute ⟨2p̃s − 1⟩
and αs = βs when p̃s is a doubled term. Then, we define the sequences {Q̃(a)

s }ℓ̃s=1, {Q̃
(b)
s }ℓ̃s=1, {Q̃s}ℓ̃s=1 such

that Q̃(a)
s , Q̃

(b)
s , Q̃s describe the times to apply squaring or its inverse to the h1-th register, the h2-th register,

h3-th register in the s-th procedure, respectively. In this case, it holds that Q̃
(a)
s = −αs, Q̃

(b)
s = p̃ãs

− βs,
and Q̃s = −γs by observing(

⟨2p̃ãs − 1⟩2
αs
)2−αs

×
(
⟨2p̃b̃s − 1⟩2

βs
)2p̃ãs

−βs

= ⟨2p̃ãs+p̃b̃s − 1⟩ = ⟨2p̃s − 1⟩,(
⟨2p̃s − 1⟩2

γs
)2−γs

= ⟨2p̃s − 1⟩.

9

(a) n = 163 (b) n = 233

(c) n = 283 (d) n = 571

Figure 1: The upper bound of the depth for computing 2k-th power

As we described in a proof of Theorem 2, we can construct a quantum algorithm that computes or uncomputes
by the above two relations based on a register-bounded addition chain {p̃s}ℓs=0.

We describe our proposed algorithm in Algorithm 2 which takes a register-bounded addition chain {p̃s}ℓ̃s=0

for n−1 of length ℓ̃ and sequences {ãs}ℓ̃s=1,{b̃s}ℓ̃s=1,{Q̃
(a)
s }ℓ̃s=1,{Q̃

(b)
s }ℓ̃s=1,{Q̃s}ℓ̃s=1 as input. caseOPTSQUARE(g, v)

applies ca- seSQUARE(g, v) if |v|SQn < SQ
(|v|)
n and applies caseSQUAREv(g) otherwise, where caseSQUARE (g, v)

applies SQUARE v times to g when v > 0, applies SQUARE−1 −v times to g when v < 0, and do nothing when
v = 0 and caseSQUAREv(g) applies SQUAREv(g) when v > 0, applies (SQUARE−v)−1(g) when v < 0, and do
nothing when v = 0. caseOPTspSQUARE(g1, g2, v) applies ADD(g1, g2) and caseSQUARE(g2, v) if 1+ |v|SQn < n
and applies casespSQUAREv(g1, g2) otherwise, where casespSQUAREv(g1, g2) applies spSQUAREv(g1, g2) when
v > 0, applies (spSQUARE−v)−1(g1, g2) when v < 0, and applies ADD(g1, g2) when v = 0. We note that a
(SQUAREv)−1 circuit, a (spSQUAREv)−1 circuit, and a caseOPTspSQUARE−1 circuit are a reversed circuit of
SQUAREv, a reversed circuit of spSQUAREv, and a reversed circuit of caseOPTspSQUAREv, respectively. pl[s]

stores the register number which stores f2p̃s−1 for all 1 ≤ s ≤ ℓ̃. pld[s] stores the register number which
stores the copy of f2p̃ãs −1 for all s ∈ D. The size of pld, i.e., d̃ equals #D. We note that p̃ℓ̃ does not always
equal n−1. In other words, gpl[ℓ̃] does not always store ⟨2n−1−1⟩. Then, we define the non-negative integer
ω such that gpl[ω] stores ⟨2n−1 − 1⟩ at the end of the loop from line 2 to line 16. By SWAP procedure in line
18, ⟨2n − 2⟩ = ⟨−1⟩ is always stored in g1. However, this procedure can be abbreviated because we can

10

Algorithm 2 Proposed inversion algorithm

Input: An irreducible polynomial m(x) ∈ F2[x] of degree n, a register-bounded addition chain {p̃s}ℓ̃s=0,
sequences {ãs}ℓ̃s=1, {b̃s}ℓ̃s=1, {Q̃

(a)
s }ℓ̃s=1, {Q̃

(b)
s }ℓ̃s=1, {Q̃s}ℓ̃s=1, a register g0 which stores a polynomial f ∈

F∗
2n of degree up to n − 1, registers g1, . . . , gR(p̃) initialized to an all-|0⟩ state, arrays pl[ℓ̃], pld[d̃], a

non-negative integer ω which satisfies p̃ω = n− 1
Output: g1 = f2n−2

1: dcount← 0
2: for s = 1, . . . , ℓ̃ do
3: if s ∈ D then
4: caseOPTspSQUARE (gpl[ãs], gpld[dcount], Q̃

(b)
s)

5: caseOPTSQUARE (gpl[ãs], Q̃
(a)
s)

6: caseOPTSQUARE (gpl[s], Q̃s)
7: MODMULT (gpl[ãs], gpld[dcount], gpl[s])
8: caseOPTspSQUARE−1 (gpl[ãs], gpld[dcount], p̃ãs

)
9: dcount← dcount+ 1

10: else // s ∈M
11: caseOPTSQUARE (gpl[ãs], Q̃

(a)
s)

12: caseOPTSQUARE (gpl[b̃s], Q̃
(b)
s)

13: caseOPTSQUARE (gpl[s], Q̃s)
14: MODMULT (gpl[ãs], gpl[b̃s], gpl[s])

15: SQUARE (gpl[ω])
16: SWAP (gpl[ω], g1)

change the registers in advance such that pl[ω] = 1. In Section 4, we explain our choices of ℓ and R(p̃) and
show {p̃s}ℓ̃s=0 for all n.

Finally, we describe the number of qubits of our method and Banegas et al.’s method for Shor’s algorithm.
Banegas et al. [BBvHL20] showed the number of qubits for Shor’s algorithm using their quantum point
addition algorithm with their quantum GCD-based inversion algorithm is 7n + ⌊log n⌋ + 9 for all n. Then,
we show the number of qubits for our method for Shor’s algorithm in Theorem 5

Theorem 5. The number of qubits for using Algorithm 1 as a point addition with Algorithm 2 as an inversion
algorithm which takes {p̃s}ℓ̃s=0 as an input is given by (2 +R(p̃))n+ 1.

Therefore, if we find a register-bounded addition chain with R(p̃) ≤ 5, our method achieves fewer qubits
than Banegas et al.’s GCD-based method.

4 Comparison
In Section 4.1, we explain our choice of register-bounded addition chains and compare the number of qubits
for an inversion. In Section 4.2, we describe the trade-off for our proposed inversion algorithm. In Section 4.3,
we compare the quantum resources in a whole Shor’s algorithm between our proposed method and previous
methods.
Difference from Preliminary Version. As mentioned in Section 1.2, we use the exact value of depth for
spSQUAREk while we use an upper bound in [TT24]. Thus, we update the Tables and Figures in this Section.

4.1 Our Choice of Register-Bounded Addition chains
As we showed in Theorem 2, the number of ancillary registers and the number of multiplications for our
proposed inversion algorithm depends on {p̃s}ℓ̃s=0 for n− 1. In particular, the number of ancillary registers

11

Table 1: Our choice of register-bounded addition chains {p̃s}ℓ̃s=0

n Register-bounded addition chains
163 {p̃s}14s=0 = {1, 2, 3, 6, 9, 6, 3, 2, 18, 27, 54, 27, 18, 108, 162}
233 {p̃s}16s=0 = {1, 2, 3, 4, 7, 4, 3, 2, 14, 28, 29, 28, 14, 58, 116, 58, 232}
283 {p̃s}18s=0 = {1, 2, 3, 6, 9, 15, 9, 6, 3, 30, 45, 47, 45, 30, 2, 94, 141, 94, 282}
571 {p̃s}20s=0 = {1, 2, 3, 4, 7, 4, 3, 2, 14, 28, 29, 57, 29, 28, 14, 114, 171, 285, 171, 114, 570}

Table 2: Comparison of ℓ, R and the number of qubits for an inversion between ours and prior works

n
Proposed algorithm BBHL21-GCD KH23-GCD TT23-FLT
ℓ R qubits ℓ R qubits ℓ R qubits ℓ R qubits

163 9 5 978 - - 830 - - 690 9 9 1, 630
233 10 5 1, 398 - - 1, 180 - - 970 10 10 2, 563
283 11 5 1, 698 - - 1, 431 - - 1, 174 11 11 3, 396
571 12 5 3, 426 - - 2, 872 - - 2, 330 12 12 7, 423

equals R(p̃), and the number of multiplications equal ℓ̃, where ℓ is the length of an addition chain {ps}ℓs=0 for
n− 1 which consists of the different terms in {p̃s}ℓ̃s=0. As we described in Section 3.1, we consider the case
of r(p̃, ℓ̃) = 2ℓ− ℓ̃ = R(p̃)−1. In this situation, we reduce the number of qubits as much as possible, in other
words, we find register-bounded addition chains {p̃s}ℓ̃s=0 with as small R(p̃) as possible. For this purpose,
we find the shortest addition chains for n−1 at first. After that, we add some terms to the shortest addition
chains and get register-bounded addition chains. Thus, we find some register-bounded addition chains with
as small R(p̃) as possible.

In Table 1, we show our register-bounded addition chains {p̃s}ℓ̃s=0 for NIST-recommended degrees n =
163, 233, 283, and 571. In Table 2, we show ℓ, R and the number of qubits for our proposed inversion
algorithm and previous quantum inversion algorithms, i.e., Banegas et al.’s quantum GCD-based inversion
algorithm which we call BBHL21-GCD, Kim-Hong’s quantum GCD-based inversion algorithm which we call
KH23-GCD, and Taguchi-Takayasu’s quantum FLT-based inversion algorithm which we call TT23-FLT for
all n. R for our proposed algorithm is minimum R(p̃). We do not compare quantum FLT-based inversion
algorithms proposed by Putranto et al. [PWLK22] and Banegas et al [BBvHL20] since Taguchi-Takayasu’s
FLT-based Basic and Extended algorithm reduce all quantum resources compared to them. We also do
not compare Taguchi-Takayasu’s Basic algorithm since their Extended algorithm requires fewer qubits than
Basic algorithm. The number of qubits in Table 2 includes an input f ∈ F∗

2n . Table 2 indicates the
minimum R = R(p̃) of register-bounded addition chains for n− 1 is 5 for all NIST-recommended n when we
use shortest addition chains for n − 1. Then, our proposed algorithm achieves the fewest qubits compared
to the previous quantum FLT-based inversion algorithms, however, it is still larger than the number of both
GCD-based algorithms for all cases.

4.2 Quantum Resources Trade-off in Our Proposed Inversion Algorithm
In Section 4.1, we showed register-bounded addition chains with R(p̃) = 5 for all n, where R(p̃) describes
the number of ancillary registers. On the other hand, TT23-FLT requires ℓ ancillary registers, where ℓ
is the length of shortest addition chains for n − 1. As we described in Table 2, ℓ = 9, 10, 11, 12 when
n = 163, 233, 283, 571, respectively. Then, we also consider all possible cases, i.e., R(p̃) = 5, 6, . . . , ℓ for our
proposed inversion algorithm for all n and estimate the quantum resources. We note that R(p̃) = ℓ is not the
case of TT23-FLT since r(p̃, ℓ̃) = R(p̃)− 1 = ℓ− 1 for our proposed algorithm. In other words, our proposed
algorithm has a clear ancillary register at the end of the algorithm, while TT23-FLT has no clear ancillary
register at the end of the algorithm. In Section 4.3, we show which R(p̃) is preferable in some parameters.

12

4.3 Comparison with Previous Methods in Shor’s Algorithm
In this section, we compare the quantum resources of our method for Shor’s algorithm, i.e., our proposed
quantum inversion algorithm in Section 3.3 with our proposed quantum point addition algorithm described
in Algorithm 1 and previous methods, i.e., BBHL21-GCD, KH23-GCD, and TT23-FLT with Banegas et al.’s
quantum point addition algorithm, since previous three algorithms do not satisfy the conditions (i) and (ii)
in Section 3.2.

Table 3: Quantum resources our proposed method for Shor’s algorithm in each R(p̃)

n = 163

qubits TOF depth CNOT

R(p̃)

5 1, 142 19, 682, 952 231, 367, 264 1, 672, 852, 808
6 1, 305 18, 381, 448 213, 817, 952 1, 537, 254, 984
7 1, 468 17, 079, 944 199, 044, 832 1, 431, 709, 832
8 1, 631 15, 778, 440 185, 195, 360 1, 330, 132, 168
9 1, 794 14, 476, 936 171, 799, 840 1, 230, 076, 424

n = 233

qubits TOF depth CNOT

R(p̃)

5 1, 632 46, 185, 516 530, 966, 124 5, 557, 595, 472
6 1, 865 43, 487, 964 498, 462, 588 5, 265, 803, 088
7 2, 098 40, 790, 412 466, 936, 236 4, 886, 412, 336
8 2, 331 38, 092, 860 435, 739, 356 4, 495, 044, 528
9 2, 564 35, 395, 308 405, 070, 380 4, 205, 086, 704
10 2, 797 32, 697, 756 374, 240, 412 3, 897, 577, 008

n = 283

qubits TOF depth CNOT

R(p̃)

5 1, 982 77, 493, 944 1, 163, 334, 432 10, 840, 880, 376
6 2, 265 73, 440, 696 1, 050, 009, 344 10, 086, 914, 904
7 2, 548 69, 387, 448 979, 225, 184 9, 376, 194, 680
8 2, 831 65, 334, 200 915, 836, 384 8, 853, 416, 568
9 3, 114 61, 280, 952 865, 461, 600 8, 324, 617, 656
10 3, 397 57, 227, 704 814, 003, 072 7, 810, 516, 312
11 3, 680 53, 174, 456 761, 247, 232 7, 298, 371, 160

n = 571

qubits TOF depth CNOT

R(p̃)

5 3, 998 368, 373, 720 9, 725, 226, 368 95, 224, 517, 960
6 4, 569 350, 925, 432 9, 007, 389, 248 89, 353, 935, 528
7 5, 140 333, 477, 144 7, 551, 521, 120 84, 233, 455, 592
8 5, 711 316, 028, 856 7, 258, 300, 192 78, 814, 533, 512
9 6, 282 298, 580, 568 6, 972, 789, 824 74, 298, 854, 344
10 6, 853 281, 132, 280 6, 470, 235, 200 70, 131, 687, 912
11 7, 424 263, 683, 992 6, 149, 658, 944 66, 146, 499, 848
12 7, 995 246, 235, 704 5, 866, 994, 848 62, 199, 223, 944

Here, we concretely estimate the quantum resources, i.e., the number of qubits, TOF gates, and depth
of our method and previous methods for Shor’s algorithm. We also compute the number of CNOT gates,
however, we note that a CNOT gate is much cheaper than a TOF gate. We note that Shor’s algorithm
requires 2n+ 2 point additions. As Roetteler et al. [RNSL17] mentioned, we can ignore the special cases of
point addition since it does not affect quantum Fourier transform. Moreover, we apply semiclassical Fourier

13

Table 4: Comparison of the number of qubits, TOF gates, depth, and CNOT gates for Shor’s algorithm
between ours and prior works

n
Proposed method

qubits TOF depth CNOT
163 1, 142 19, 682, 952 231, 367, 264 1, 672, 852, 808
233 1, 632 46, 185, 516 530, 966, 124 5, 557, 595, 472
283 1, 982 77, 493, 944 1, 163, 334, 432 10, 840, 880, 376
571 3, 998 368, 373, 720 9, 725, 226, 368 95, 224, 517, 960

n
BBHL21-GCD method

qubits TOF depth CNOT
163 1, 157 288, 641, 640 341, 963, 616 322, 348, 232
233 1, 647 772, 092, 828 945, 129, 276 926, 188, 848
283 1, 998 1, 359, 458, 584 1, 672, 107, 936 1, 644, 678, 648
571 4, 015 10, 156, 396, 536 12, 962, 714, 336 13, 091, 280, 488

n
KH23-GCD method

qubits TOF depth CNOT
163 1, 017 243, 048, 328 319, 284, 384 391, 632, 328
233 1, 437 694, 262, 556 898, 421, 004 1, 128, 567, 024
283 1, 741 1, 237, 627, 128 1, 594, 550, 944 2, 006, 665, 048
571 3, 473 9, 942, 884, 952 12, 608, 046, 880 16, 064, 737, 832

n
TT23-FLT method

qubits TOF depth CNOT
163 1, 957 13, 175, 432 182, 158, 080 1, 121, 173, 864
233 3, 030 30, 000, 204 421, 008, 588 3, 302, 850, 096
283 3, 963 49, 121, 208 940, 573, 920 6, 556, 415, 480
571 8, 566 228, 787, 416 6, 723, 013, 440 55, 292, 822, 728

transform [GN96] in Shor’s algorithm since it requires only 1 qubit. Our proposed inversion algorithm
uses the register-bounded addition chains of Table 1. For estimating the resources of TT23-FLT, we use
addition chains that Taguchi and Takayasu [TT23] used. Values of the depth are upper bounds because we
do not completely consider parallel quantum computation. Moreover, we compute the concrete number of
CNOT gates of SQUARE, SQUARE−1, and spSQUARE, and assume that const_ADD requires n/2 X gates on
average, ctrl_ADD requires n/2 TOF gates on average, and ctrl_const_ADD requires n/2 CNOT gates on
average. We estimate the upper bound of the depth of SQUARE as the number of CNOT gates for SQUARE,
while we estimate the depth of spSQUARE as described in Section 3.3. We also apply the depth reduction
for SQUARE and spSQUARE described in Section 3.3 to the TT23-FLT method and estimate the quantum
resources. When we estimate the upper bound of the depth for Shor’s algorithm, we simply add the upper
bound of the depth for each distinct quantum computation. Banegas et al. [BBvHL20] applied windowing
that reduces the number of TOF gates by using some lookups from a QROM and estimated the number of
TOF gates. We note that we can also apply windowing our proposed method while we do not estimate the
quantum resources. We provide a python code [Tag23] for computing quantum resources.

Table 3 compares the number of qubits, TOF gates, depth and CNOT gates for our proposed method in
each R(p̃) for all n. Table 4 compares the number of qubits, TOF gates, depth, and CNOT gates in all cases
for all n. In Table 4, we show the quantum resources in the case of R(p̃) = 5 for our proposed method. We
compare our proposed method with the previous GCD-based methods and the FLT-based method.
Comparison with the GCD-based Methods. The number of qubits for our proposed method is close to
the GCD-based methods, i.e., the BBHL21-GCD method and the KH23-GCD method for all n. Especially,
our proposed method achieves fewer qubits than the BBHL21-GCD method, while it does not for an inversion
as shown in Table 2. As described in Section 3.2, our proposed method for Shor’s algorithm requires
(2 + R(p̃))n + 1 qubits. Furthermore, we found register-bounded addition chains with R(p̃) = 5 for all n.

14

Table 5: Comparison of QD = “the number of qubits” × “depth” in Shor’s algorithm between ours and
prior works

n
QD

Proposed method BBHL21-GCD method KH23-GCD method TT23-FLT method
163 2.64 · 1011 3.96 · 1011 3.25 · 1011 3.56 · 1011
233 8.67 · 1011 1.56 · 1012 1.29 · 1012 1.28 · 1012
283 2.31 · 1012 3.34 · 1012 2.78 · 1012 3.73 · 1012
571 3.89 · 1013 5.20 · 1013 4.38 · 1013 5.76 · 1013

Table 6: Comparison of QT = “the number of qubits” × “the number of TOF gates” in Shor’s algorithm
between ours and prior works

n
QT

Proposed method BBHL21-GCD method KH23-GCD method TT23-FLT method
163 2.25 · 1010 3.34 · 1011 2.47 · 1011 2.58 · 1010
233 7.54 · 1010 1.27 · 1012 9.98 · 1011 9.09 · 1010
283 1.54 · 1011 2.72 · 1012 2.15 · 1012 1.95 · 1011
571 1.47 · 1012 4.08 · 1013 3.45 · 1013 1.96 · 1012

Then, the number of qubits is 7n + 1 and it is smaller than the number of qubits for the BBHL21-GCD
method, i.e., 7n + ⌊log n⌋ + 9. The KH23-GCD method requires fewer qubits than our proposed method,
however, the difference is less than n. Precisely, the KH23-GCD method requires 6n+ 4⌊log n⌋+ 11 qubits
and the difference to 7n + 1 is n − 4⌊log n⌋ − 10. Furthermore, our proposed method still achieves much
fewer TOF gates and less depth compared to the GCD-based methods while we halve the number of qubits
from the TT23-FLT method. The number of TOF gates of our proposed method is from only 2% to 5% of
the number of the GCD-based methods. As for the depth, the depth reduction of the squaring part in our
algorithm in Section 3.3 contributes to keeping fewer than the GCD-based methods.
Comparison with the TT23-FLT Method. Our proposed method drastically reduces the number
of qubits from the TT23-FLT method. Precisely, we halve the qubits for all n. Our proposed inversion
algorithm applies additional procedures for uncomputations which require TOF gates, depth, and CNOT
gates to TT23-FLT. When n = 571, our proposed inversion algorithm requires 8 additional procedures which
is about 70% of the number of procedures for TT23-FLT. As you can see in Table 4, the number of TOF
gates and CNOT gates for our proposed method is about 170% of the number for the TT23-FLT method.

By using the concrete number of quantum resources, we compute two values, i.e., “the number of qubits”
× “depth” called QD and “the number of qubits” × “the number of TOF gates” called QT. QD is a same
metric to “spacetime volume” by Gidney and Ekerå [GE21] and QT is a similar metric. Gidney and Ekerå
used spacetime volume to evaluate Shor’s algorithm for solving a factoring problem. Briefly speaking, QD
and QT describe how a quantum algorithm works better on both the number of qubits and the number of
TOF gates and both the number of qubits and depth, respectively. We show QD and QT for our proposed
method and previous methods for all n in Table 5, 6, respectively. We also illustrate the relation between
the number of qubits and depth and between the number of qubits and the number of TOF gates of our
proposed method and the previous methods for all n in Figures 2, 3, 4, 5. R(p̃) = 5, 6, . . . , from the left
point in Figures 2, 3, 4, 5. Blue lines in Figures 2, 3, 4, 5 describe the points that QD = const. and QT =
const. In Table 5, 6, R(p̃) = 5, 5, 5, 7 and R(p̃) = 5, 5, 5, 5 for our proposed method for n = 163, 233, 283, 571,
respectively. Our proposed method achieves the fewest QD and QT compared to the previous method for all
n. Thus, our proposed algorithm gives good trade-offs between the number of qubits and depth and between
the number of qubits and the number of TOF gates.

15

(a) qubits-depth

(b) qubits-TOF

Figure 2: Quantum resources trade-off in all methods for n = 163

16

(a) qubits-depth

(b) qubits-TOF

Figure 3: Quantum resources trade-off in all methods for n = 233

17

(a) qubits-depth

(b) qubits-TOF

Figure 4: Quantum resources trade-off in all methods for n = 283

18

(a) qubits-depth

(b) qubits-TOF

Figure 5: Quantum resources trade-off in all methods for n = 571

19

Comparison with the FLT-based methods without depth reduction of squaring.
Table 7 shows the upper bound of the depth and the number of CNOT gates of our proposed method and

the TT23-FLT method for Shor’s algorithm without depth reduction of squaring. Table 7 does not contain
the number of qubits and TOF gates since it does not depend on whether we apply the depth reduction or
not. By Table 4 and Table 7, our proposed squaring algorithms described in Section 3.3 reduce the total

Table 7: The depth and the number of CNOT gates for Shor’s algorithm of ours and the TT23-FLT method
without depth reduction

n
Proposed method TT23-FLT method

depth CNOT depth CNOT
163 329, 024, 672 1, 632, 333, 000 245, 155, 072 1, 114, 099, 560
233 732, 314, 700 5, 145, 976, 368 505, 737, 180 3, 363, 231, 456
283 1, 884, 653, 536 10, 624, 599, 608 1, 189, 712, 352 6, 709, 448, 312
571 16, 669, 416, 192 93, 673, 235, 656 10, 548, 613, 504 58, 217, 280, 264

depth by 17 ∼ 42%.

5 Windowing
Windowing is a way to skip several computations by using precomputed data. Häner et al. [HJN+20]
indicated that quantum point addition on elliptic curves using windowing by QROM is also possible, and
Banegas et al. [BBvHL20], Putranto et al. [PWLK22], and Taguchi-Takayasu [TT23] made use of that
method. Although we omit the details, if we apply windowing to point addition with window size w, the
number of point addition decreases from 2n + 2 to 2⌈n+1

w ⌉ + 1. However, we require 2(2w − 1) TOF gates
to construct QROM. Thus, there is a w which minimizes the total number of TOF gates. We call this w an
optimal window size. Table 8 shows an optimal window size and the number of TOF gates of our proposed
method and the previous methods for Shor’s algorithm for all n.

Table 8: Optimal window size w and the number of TOF gates for Shor’s algorithm

n
Proposed method TT23-FLT method

w TOF w TOF
163 10 2, 501, 073 9 1, 781, 025
233 10 5, 391, 359 9 3, 679, 975
283 11 8, 464, 129 10 5, 765, 145
571 12 35, 787, 477 11 23, 375, 349

n
BBHL21-GCD method KH23-GCD method
w TOF w TOF

163 13 26, 303, 013 13 22, 549, 905
233 14 64, 402, 483 13 58, 401, 627
283 15 108, 252, 597 15 99, 887, 409
571 16 704, 590, 641 16 690, 966, 213

References
[BBvHL20] Gustavo Banegas, Daniel J. Bernstein, Iggy van Hoof, and Tanja Lange. Concrete quantum

cryptanalysis of binary elliptic curves. IACR Trans.CHES, 2021(1):451–472, Dec. 2020.

20

[CP13] F.Kerry Cameron and D.Gallagher Patrick. FIPS PUB 186-4 Digital Signature Standard (DSS).
In NIST, pages 92–101, 2013.

[GE21] Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8 hours using 20 million
noisy qubits. Quantum, 5:433, 2021.

[GN96] Robert B. Griffiths and Chi-Sheng Niu. Semiclassical Fourier transform for quantum computa-
tion. Physical Review Letters, 76(17):3228–3231, apr 1996.

[HJN+20] Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and Mathias Soeken. Im-
proved quantum circuits for elliptic curve discrete logarithms. In Jintai Ding and Jean-Pierre
Tillich, editors, Post-Quantum Cryptography, pages 425–444, Cham, 2020. Springer International
Publishing.

[KH23] Hyeonhak Kim and Seokhie Hong. New space-efficient quantum algorithm for binary elliptic
curves using the optimized division algorithm. Quantum Information Processing, 22(6), 2023.

[KKKH22] Sunyeop Kim, Insung Kim, Seonggyeom Kim, and Seokhie Hong. Toffoli gate count optimized
space-efficient quantum circuit for binary field multiplication. Cryptology ePrint Archive, Paper
2022/1095, 2022.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209,
1987.

[Kön16] Dénes König. Über graphen und iher anwendung auf determinantentheorie und mengenlehre.
Math.Ann., 77, 1916.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor, CRYPTO
’85, volume 218 of Lecture Notes in Computer Science, pages 417–426, Cham, 1985. Springer.

[PWLK22] Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati, and Howon
Kim. Another concrete quantum cryptanalysis of binary elliptic curves. Cryptology ePrint
Archive, Paper 2022/501, 2022.

[RNSL17] Martin Roetteler, Michael Naehrig, Krysta M. Svore, and Kristin Lauter. Quantum resource
estimates for computing elliptic curve discrete logarithms. In ASIACRYPT 2017, pages 241–270,
2017.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[Sho94] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In FOCS
1994, pages 124–134, 1994.

[Tag23] Ren Taguchi. Quantum resource estimate for Shor’s algorithm for solving binary ECDLP.
Github, 2023.

[TT23] Ren Taguchi and Atsushi Takayasu. Concrete quantum cryptanalysis of binary elliptic curves
via addition chain. In Topics in Cryptology – CT-RSA 2023, pages 57–83, 2023.

[TT24] Ren Taguchi and Atsushi Takayasu. On the untapped potential of the quantum FLT-based
inversion. In Applied Cryptography and Network Security: 22th International Conference ACNS
2024, 2024 (to appear).

[vH19] Iggy van Hoof. Space-efficient quantum multiplication of polynomials for binary finite fields with
sub-quadratic Toffoli gate count. Cryptology ePrint Archive, Paper 2019/1170, 2019.

21

	Introduction
	Background
	Our Contribution

	Preliminaries
	Binary Elliptic Curve Discrete Logarithm Problem
	Quantum Computation in F2n
	Shor's Algorithm for Solving the Binary ECDLP

	Our Method
	Register-Bounded Addition Chain
	Modified Quantum Point Addition Algorithm
	Depth Reduction of Quantum Multiple Squaring Circuits
	Proposed Inversion Algorithm

	Comparison
	Our Choice of Register-Bounded Addition chains
	Quantum Resources Trade-off in Our Proposed Inversion Algorithm
	Comparison with Previous Methods in Shor's Algorithm

	Windowing

