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Abstract. Typical results in multi-party computation (in short, MPC) capture faulty parties by assum-
ing a threshold adversary corrupting parties actively and/or fail-corrupting. These corruption types are,
however, inadequate for capturing correct parties that might suffer temporary network failures and/or
localized faults—these are particularly relevant for MPC over large, global scale networks. Omission
faults and general adversary structures have been proposed as more suitable alternatives. However, to
date, there is no characterization of the feasibility landscape combining the above ramifications of fault
types and patterns.
In this work we provide a tight characterization of feasibility of MPC in the presence of general
adversaries—characterized by an adversary structure—that combine omission and active corruption.
To this front we first provide a tight characterization of feasibility for Byzantine agreement (BA),
a key tool in MPC protocols—this BA result can be of its own separate significance. Subsequently,
we demonstrate that the common techniques employed in the threshold MPC literature to deal with
omission corruptions do not work in the general adversary setting, not even for proving bounds that
would appear straightforward, e.g, sufficiency of the well known Q3 condition on omission-only general
adversaries. Nevertheless we provide a new protocol that implements general adversary MPC under a
surprisingly complex, yet tight as we prove, bound. All our results are for the classical synchronous
model of computation.
As a contribution of independent interest, our work puts forth, for the first time, a formal treatment
of general-adversary MPC with (active and) omission corruptions in Canetti’s universal composition
framework.

1 Introduction

Multi-party computation (MPC) enables n parties to securely compute a function on their joint input. To
capture parties’ misbehavior one typically considers a central adversary corrupting parties and using them
to attack the protocol. The most common corruption type for such an adversary is active corruption—the
adversary takes full control of a corrupted party. Security against such an active adversary offers strong
guarantees, but allowing the adversary to take full control of corrupted parties is an overkill to capture more
benign types of misbehavior or just faults. In fact, this typically yields restrictions both in the feasibility—
e.g., tolerable number of corruptions—and in terms of efficiency. As a result, different types of corruption
have been investigated to capture such benign faults scenarios.

In the opposite extreme of active corruption, fail-corruption (aka fail-crash corruption or fail-stop cor-
ruption) allows the adversary to make a party crash (irrevocably) at any point of the protocol he chooses—
without having knowledge of the party’s internal state.3 Naturally, adversaries with fail-corruption allow for
better feasibility and efficiency bounds than active adversaries, but this corruption type is often criticized as
too benign. As an example, fail-corruption is too weak for capturing faults caused by temporary issues on
3 In the distributed computing literature, omission-corrupted parties are often considered also semi-honest. This

is suitable for classical distributed computing tasks, e.g., Byzantine agreement (see below), where input privacy
is a lesser issue. However, since here we are interested in MPC, we will follow the cryptographic convention of
considering it separate.



the network of otherwise correct—i.e., protocol abiding—parties. This gave raise to the study of the so called
omission-corruption, which allows the adversary to selectively drop incoming and/or outgoing messages of
the corrupted party, but obliviously of the message contents or the party’s internal state.

On a different dimension, the two standard ways to capture the adversary’s corruption patterns are via
threshold and general adversaries. A threshold adversary is specified by the maximum number (threshold)
of possible corruptions. This model can, again, be considered overly pessimistic, and therefore restrictive,
when one considers situations in which certain combinations of faulty parties are unlikely. The concept of
a general adversary (structure) is the alternative, fine-grained way which better captures such a situation:
Rather than the maximum number of corruptions, a general adversary structure Z enumerates all possible
combinations of corrupted parties, therefore giving more flexibility in describing the adversary’s capabilities.

Tight feasibility bounds have been established for both threshold and general adversaries in the context of
active corruptions and fail-corruptions, and even their combination (see Section 1.1 below for an overview).
However, to our knowledge, omission corruption has not been considered for general adversaries, neither in
isolation nor in conjunction with active corruption. Furthermore, all work on omission corruptions or general
adversaries uses the property-based security definition of MPC, as opposed to simulation based security
which is not only more general but, as we discuss is needed for completing the proofs of these works that
rely on composing smartly designed sub-protocols. In a nutshell, our work provides the first characterization
of the feasibility landscape of Byzantine agreement (BA)—the core primitive in fault-tolerant distributed
computation and standard building block of MPC—and of secure multi-party computation (MPC) for gen-
eral adversaries that might corrupt some parties actively (i.e., force byzantine faults) and, simultaneously,
omission corrupt other parties. Concretely, we prove a tight feasibility bound for both synchronous consensus
and broadcast in the perfect (security) setting, i.e., information theoretic security with zero error probability.
We then turn to the study of MPC in this model. As we show (see discussion of MPC results in Section 2),
translating threshold bounds to this setting is far from trivial—this reaffirms what the complex bounds
of Beerliova et al. [BFH+08] demonstrate for the active/passive/fail case. Furthermore, existing arguments
and techniques from the cryptographic literature are inadequate for proving even what one would consider
a simple and intuitive feasibility result. Notwithstanding, we provide a tight feasibility bound for MPC in
this setting by developing a new protocol for (publicly) detectable point-to-point secure communication and
proving a tight bound for this task. In fact, a look at the complexity in the associated (tight) bound (see
Eq. 11) serves as a perfect demonstration of the technical challenges associated with devising such a bound,
protocol, and associated tightness proof.

Finally, our results are proven secure in a simulation-based composable framework. Although we do not
consider this to be our key technical contribution, it is, to our knowledge, a first both for general (mixed)
adversary MPC and for MPC with omission corruptions. Our treatment demonstrates the challenges of a
composable treatment of omission-faults. Therefore we believe it to be a milestone in the literature which
can be of independent interest.

1.1 Related Literature

In this section we discuss the related literature, where we focus on synchronous4 protocols with perfect
security, i.e., with zero error probability, which is also the type of protocols we develop here.

Byzantine Agreement (BA). BA comes in two flavors: consensus and broadcast. In consensus, n parties,
each with its own input, wish to agree on a joint output, so that pre-agreement is preserved. In broadcast,
only one party, the sender, has input, and the goal is to distribute it in a consistent manner to all parties,
so that consistency is achieved even if some of the parties are actively corrupted (cf. Section 3.6, 3.7). The
seminal results by Lamport, Shostak, and Pease[PSL80,LSP82], showed that Consensus and Broadcast are
feasible if and only if at most t parties are byzantine, where t < n/3. Follow up work has extended the above
results to various models capturing different types of synchrony, alternative networks, and setup assumptions
such as a public key infrastructure.
4 We note that the feasibility questions discussed here have not been considered in any other model, e.g., asynchronous

or partially synchronous; we consider this an interesting future direction.
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Multi-party computation (MPC). In MPC we have n parties from a set P = {p1, . . . , pn}, each with
a private input xi who wish to securely compute a function on their joint input, even in the presence of
faulty parties. Faulty parties are captured by assuming a central adversary that corrupts parties and uses
them to orchestrate a coordinated attack to break the protocol’s security, where the two main security
goals are privacy—corrupted parties should learn nothing beyond their prescribed inputs and output, and
correctness—the adversary should not be able to affect the output of the computation in any other way
than choosing his own inputs independently of that of uncorrupted parties. The typical type of corruption
is active. Actively corrupted parties are often referred to as malicious or byzantine and the set containing
them is denoted as A.
MPC was introduced by Yao [Yao82] where feasibility of two-party computation was shown. The seminal
works of Ben-Or, Goldwasser, and Wigderson [BGW88] gave the first feasibility results for perfect security
(that is, information-theoretic with zero error probability) for a threshold adversary. In particular it was
shown that t < n/3 is both necessary and sufficient for perfectly secure MPC in the synchronous malicious
adversary model.

General adversary structures. General adversaries have also been studied for both BA and MPC. Here, for
the case of perfect security, Hirt and Maurer [HM97,HM00] proved that a necessary and sufficient condition,
if no setup5 is assumed, for a general adversary structure—with active corruptions—to be tolerable is that
the union of no three sets in the adversary structure Z covers the whole player set, a condition which is often
referred to as the Q3 condition:6

CP
(A)
CONS(P, Z) ⇐⇒ Q3

A(P, Z) ⇐⇒ ∀Ai, Aj , Ak ∈ Z : Ai ∪ Aj ∪ Ak ̸= P. (1)

The above tight condition holds for perfectly secure BA (both consensus and broadcast) and MPC. This
was later extended to the mixed setting adding fail-corruption faults in [AFM99] and a combination of fail-
corruption and passive corruption by Beerliova et al. [BFH+08] (We refer to [Zik10] for a comprehensive
survey of the relevant literature).

The results from [BFH+08] offer a first demonstration of the unstranslatability of threshold feasibility
results to the general adversary setting. Indeed, in the threshold setting, the active/passive/fail (tight) bound,
i.e., 3ta + 2tp + tf < n [FHM98], is a simple combination of the corresponding active-only (3ta < n), passive-
only (2tp < n), and fail-crash-only (tf < n) bounds. On the other hand, in the general adversary setting,
the tight (necessary and sufficient) bound is the combination of the following two conditions (each of them
is necessary) [BFH+08, Theorem 1]:

∀(Ai, Ei, Fi), (Aj , Ej , Fj), (Ak, Ek, Fk) ∈ Z : Ei ∪ Ej ∪ Ak ∪ (Fi ∩ Fj ∩ Fk) ̸= P (2)

and
∀(Ai, Ei, Fi), (Aj , Ej , Fj), (Ak, Ek, Fk) ∈ Z : Ei ∪ Aj ∪ Ak ∪ (Fj ∩ Fk) ̸= P. (3)

Each of the above triples (A, E, F ), so-called adversary classes, describes the choice of the adversary specified
by this class—namely the parties in A, E, and F , are actively, passively, and fail- corrupted, respectively.

In fact, the inability to translate threshold bounds to general adversaries is further demonstrated by the
fact that if one is interested in non-reactive (one-shot) computation of a function, a problem often referred
to as Secure Function Evaluation (SFE), then the following strictly weaker (and substantially more complex)
bound is necessary and sufficient [BFH+08, Theorem 2]: The bound from Equation 2 together with the
following condition

∃ an ordering (A1, E1, F1), ..., (Am, Em, Fm) of the maximal classes in Z s.t.
∀i, j, k ∈ {1, ..., m}, i ⩽ k : Ek ∪ Ai ∪ Aj ∪ (Fi ∩ Fj) ̸= P. (4)

5 Note that “no setup” implies that we cannot use cryptographic tools such as digital signatures.
6 Here we denote the classical Q3 condition as Q3

A to explicitly state that it only applies to active corruptions.
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The above results demonstrate the untranslatability of threshold to general adversary results in the ac-
tive/passive/fail setting. As we show in this work, a similar untranslatability—with even more counter-
intuitive phenomena (see Section 2 for a discussion)—is evident also in our active/omission corruptions
setting.

Omission Faults. The first variant of omissions was introduced to the distributed literature by Hadzila-
cos [Had85], where the notion of send-only omissions was introduced. There, and it was proven that t < n
(send-)omission faults are necessary and sufficient for BA. Full (send and receive) omission faults were pro-
posed by Perry and Toueg [PT86], who affirmed the t < n bound for that more general model. A long line of
follow-ups investigated the problem. As it can be seen in [AP99], the recovery of crashed components is often
considered a built-in feature of the distributed replication systems, meaning that crash failures are treated
in essence as omissions, making omissions appear frequently in the literature.
Importantly, in [Had85,PT86], a weaker variant of BA with omissions was considered, where the consistency
guarantee was limited to the output of the non-faulty (i.e., uncorrupted/honest) players—meaning that
omission-corrupted players were treated as malicious, and were not given any output guarantees. The case
where the output of both honest and omission-corrupted players should be guaranteed (whenever possible)
was treated by Raynal and Parvedy in [Ray02,PR03] where it was proved that the tight bound on omissions
with this requirement becomes t < n/2. We note in passing that this latter, more natural and challenging
way is also how we treat omissions in this work.

In the cryptographic literature omission faults (also referred to as omission corruption and denoted by
Ω) were first studied by Koo[Koo06] who proved that for a (mixed-corruption) adversary who can corrupt
up to ta parties actively and omission corrupt up to tω parties, 3ta + 2tω < n is sufficient for Consensus and
4ta + 3tω < n is sufficient for MPC. Follow-up work by Hauser, Maurer, and Zikas [ZHM09] provided the
first tight bounds proving that 3ta + 2tω < n is both necessary and sufficient for BA and MPC in the perfect
security (synchronous) setting. The results were extended in [Zik10] by adding fail corruption.

More recently, Eldefrawy, Loss, and Terner [ELT22] investigated computational security for the case where
send and receive omission faults have different thresholds ts and tr respectively. This case was also treated
in [ZHM09] but for perfect security only. As demonstrated in [ELT22] the shift to computational security
carries unexpected complications, which is yet another indication of the challenges associated with omission-
corruption. More concretely, [ELT22] proved that in this setting ts +tr +2tb < n is sufficient for MPC—where
tb is the threshold on byzantine parties. They also proved this bound tight, albeit for a weaker adversary that
performs what they termed “spotty” send-corruptions: messages from a send-(omission-)corrupted player in
any round are either all delivered or none of them is.

This lower bound was recently improved by Loss and Stern [LS23] to cover a worst-case adversary, i.e.,
without spotty send-omission corruptions. In fact, this seemingly simple generalization required developing
novel techniques to deal with omissions, an additional indication of the challenges related to feasibility in
the presence of active and omission corruptions.

We note in passing that although in the threshold case separating omissions to send-omissions and receive-
omissions helps to find tight feasibility bounds [ZHM09,ELT22,LS23], this does not appear to be the case in
the general adversary setting. Indeed, splitting omissions this way would complicate the description of the
adversary structure—one would need two sets in each class to describe just omissions—and we conjecture
this would also yield more complex and less intuitive bounds.

1.2 The Model

We consider n parties from a party set P = {p1, . . . , pn}. The parties can communicate via a complete
network of bilateral point-to-point secure (i.e., authenticated and private) channels [BGW88]. (We note in
passing that our BA protocol does not need privacy and can just rely on standard authenticated channels;
however, privacy is necessary for perfectly secure MPC results). We assume synchronous communication as
in [LSP82,BGW88,CCD88], i.e., all our protocols advance in rounds; every party is aware of the current
round and can send messages to all other parties, where messages sent in any round are delivered to their
intended recipients by the beginning of the following round.
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For simplicity in the exposition, for protocols that build on top of broadcast we assume that each of their
round is a broadcast round (i.e., a round where all parties can broadcast a message). This does not affect
composition of the total counting of rounds as our broadcast protocol is deterministic and therefore we do
not run into the known issues of probabilistic termination [CCGZ16]. Furthermore, to make the protocols
description simpler we will assume that each sub-protocol has a dedicated output round where the parties do
not send any messages to each other, but use messages they have received to compute their (sub-)protocol’s
output(s). This does add a constant overhead on sequentially composing protocols, but makes for a much
cleaner abstraction and does not affect the nature of our results which is targeted to feasibility. In fact, one
can easily get rid of this overhead by starting a next sub-protocol already during that output round of the
previous one.

Simulation-based (composable) security. We prove our protocols secure using the synchronous adaption
of Canetti’s UC framework [Can01] put forth by Katz et al. [KMTZ13]. We assume the reader has some
familiarity with UC, but we make our best effort to keep the technicalities of the framework insulated from
the protocol design and functionality description. In the following we discuss the above synchrony framework
and how it is utilized here.

In a nutshell, [KMTZ13] proposed a methodology for the design/embedding of synchronous protocols
within the (by-default asynchronous) UC framework. In this adaptation, protocols can be designed in a syn-
chronous manner, and [KMTZ13] defines how they can be executed assuming access to a clock functionality,
which ensures that (1) all parties get a chance to speak in each round, (2) parties can become aware when
the clock round switches. Proving security in such a framework means that the functionalities need to also
become round aware; this is taken care of in[KMTZ13] by adding to the functionality dummy rounds which
advance once every party has had a chance to ping the functionality in that round. This allows the environ-
ment to advance the ideal experiment if it wishes to, similar to what it can do in the real world. To keep the
description cleaner, we abstract away this pinging of functionalities as dummy (“do-nothing”) rounds in the
functionalities we define, and explicitly make the functionality aware of the underlying (broadcast) round.

To make the two-fold contribution of our work (protocol/proofs level vs. model/UC-treatment level)
clearer and isolate the techniques used in each of the two contribution types, we use the following method-
ology in proving our feasibility results: First we state and prove in separate claims key properties that our
(sub-)protocols achieve; this is useful for understanding the protocol ideas that go into the construction and
how these are used in the security proof. Then, we use these properties in the simulation proof to obtain our
end result.
Adversary. We consider a mix of active corruption and omission-corruption characterized by general adversary
structures. Concretely, the possible combinations of corruptions are described by a mixed (active/omission)
general adversary structure. Such an adversary is a collection Z of tuples of the type (Ai, Ωi) ∈ P2, often
referred to as classes. Intuitively, Z is intended to capture all possible scenarios of corrupted parties. In par-
ticular, a tuple/class (Ai, Ωi) ∈ Z, displays the scenario where all parties in Ai are actively corrupted and
all parties in Ωi are omission-corrupted. We will be using the terminology: “ the adversary corrupts (class)
Zi = (Ai, Ωi) ∈ Z” to refer to the above scenario and we denote it by using a ⋆ symbol at the exponent. This
means for example that the sets A⋆

i and Ω⋆
i denote the sets of actively corrupted and omission-corrupted

players, respectively. Similarly, we refer to an adversary who might corrupt any of the sets in Z as a (gen-
eral) Z-adversary. The set of uncorrupted/honest players will be denoted by H. Note that the class Z⋆ is
not known to the players and appears only in our security analysis. Furthermore an omission or actively
corrupted party might be allowed to send or receive all its messages, in which case he is indistinguishable
from an uncorrupted party. We refer to such a party as correct at a certain point in time if it was allowed
to behave this way (correctly) up until this certain point in time. Essentially, an omission-corrupted party
stops being correct the moment its first message is blocked. Finally, some of our protocol executions allow
omission-corrupted parties to realize that they are corrupted; when this detection occurs, the party under-
stands that it is in the discretion of the adversary whether or not it will be allowed to contributed inputs or
receive outputs in the protocol. Therefore, in such cases the parties step out of the computation and inform
all their peers about this decision; borrowing the terminology of [ZHM09] we will then say that this party
becomes a zombie, in contrast to the rest of non-actively-corrupted parties that are considered alive.

5



We will make the following standard conventions on the adversary structure Z: (1) For any Zi = (Ai, Ωi) ∈
Z, for every A′ ⊆ Ai and Ω′ ⊆ Ωi: Z ′ = (A′, Ω′) ∈ Z. This captures the intuitive fact that if a set of parties
might jointly fail in a certain way, then any subset of them failing is also a possible corruption scenario. This
convention allows us to describe Z by enumerating only its maximal elements. (2) For any Zi = (Ai, Ωi) ∈ Z
we will assume that Ai ⊆ Ωi; this is simply capturing the fact that active corruption is strictly more severe
(as a misbehavior strategy) than omission and can, behave as such.

Finally, we prove our statements here with respect to static adversaries, i.e., the set of corrupted parties
(and hence the set of possible corruptions) is decided at the beginning of the protocol and cannot depend on
the exchanged messages. We note that all properties we prove here will directly hold to the adaptive security
setting without changing the respective bounds [CDD+01,ACS22]. However, the simulation-based treatment
of adaptive security under parallel composition of, e.g., BA primitives is known to have several thorny issues
which are beyond the scope of this submission [HZ10,CGZ23].

1.3 Organization of the Paper

The remainder of the paper is organized as follows: Section 2 includes an exposition of our results and an
overview of the techniques and related challenges. Section 3 includes the details on our tight feasibility results
for BA and Section 4 our tight feasibility for MPC.

2 Technical Overview

Before diving into the technical part, it is useful to give an overview of our results and the associated
techniques and challenges.

Byzantine Agreement. As our first contribution towards our MPC feasibility we prove that the following
condition on the adversary structure is necessary and sufficient for perfect synchronous BA, both broadcast
and consensus:

C
(A,Ω)
BA (P, Z) ⇐⇒ ∀Zi, Zj , Zk ∈ Z : Ai ∪ Aj ∪ Ak ∪ (Ωi ∩ Ωj) ̸= P. (5)

Without loss of generality we provide protocols for binary consensus and broadcast, i.e. the inputs and
outputs of the protocol are from the field F = {0, 1}. This is sufficient for arbitrary valued BA, as we can
represent the inputs as bit-strings of appropriate (fixed) length and then we can invoke the bit-Consensus
protocol for each of those bits.

Our feasibility result is proven in two stages. First, in Section 3.2 we show how to tackle one of the core
challenges of omission-corruption, namely detection of dropped messages. In particular, the biggest thorn
with omissions is that a party pj who does not receive a message it expects does not know whether this
happened because the sender or itself (pj) is omission-corrupted. To tackle the above issue, we devise a
simple protocol, called FixReceive, which allows the receiver to take this decision. We prove (see Lemma 1)
that the decision will always be correct as long as the following condition7 is satisfied

C
(A,Ω)
F IXR(P, Z) ⇐⇒ ∀Zi, Zj ∈ Z : Ωi ∪ Ωj ̸= P, (6)

which is also proven necessary for the above task in Lemma 3.2. One can view FixReceive as a way to lift the
underlying communication network from a plain one to one with detection. When this detection is successful
and a player discovers that he suffers from omissions, he steps down—becomes a zombie—for the rest of the
protocol and sends a special message to let others know.

The underlying idea of FixReceive is simple, and similar to the corresponding protocol from [ZHM09]:
the sender sends to all parties, who relay to the receiver; then the receiver tries to “fit” the received messages
into the corruption pattern. However, in the threshold case, this “fitting” is rather straightforward. This
7 Due to our assumption from earlier, the condition can also be written as Ai ∪ Ωj ̸= P.
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is in contrast to the general-adversary case, where the right condition (and proof) is more involved. Yet,
the above simplicity of FixReceive stems from the fact that it makes the transmitted message public to the
adversary. This makes it suitable for BA but insufficient for MPC (see below) where we need detection on
top of private communication. Looking ahead, this combination turns out to be particularly challenging and
the private version of FixReceive (which we will call detectable secure message transmission) will be one of
the core contributions of our paper.

Let us return to our overview of our BA feasibility result: Having added FixReceive to our arsenal,
we can now use this to improve the communication properties that are disrupted by omission corruptions.
(This can be seen as “lifting” the underlying communication network by adding (partial) corruption aware-
ness/detection.) In particular, having improved the detection ability of communicating parties as above,
we proceed to our BA construction. For this, we use the phase-king approach of Berman, Garay, and
Perry [BGP89]–which was previously adapted to general adversary structures (with fail-corruption instead of
omissions) by Altmann, Fitzi, and Maurer [AFM99]. Concretely, we gradually build protocols with stronger
guarantees, from Weak Consensus (Section 3.3), to Graded Consensus (Section 3.4), to King Consensus (Sec-
tion 3.5), and then iterate through different parties as kings to achieve the consistency and validity conditions
of consensus (see Theorem 2).

The above similarity in the structure of our protocol to that from [AFM99] might mislead the reader to
believe that the search for the tight BA bound is straightforward given the above result. This is, however,
far from true. To demonstrate this, it is useful to discuss the main challenge in shifting from a combination
of active corruptions and fail-corruptions (for which we know tight bound both for BA [AFM99] and for
MPC [BFH+08]) to active and omission corruptions for which nothing is known in the general-adversary
setting: The main issue lies in the ability of an omission-corrupting adversary to create confusion by selectively
dropping messages to some and not other parties and in some specific rounds. For instance, a standard method
in the fail-corruption literature to limit the effect of fail-crashes is to embed a heartbeat after each step (or
in selective protocol rounds) that allows parties to detect whether or not some party has already crashed.
This approach does not work with omission corruptions, as a party might drop messages during the protocol
round, but send all messages in the heartbeat procedure as if nothing happened. Thus one needs to come
up with ways to counter the ability of the adversary to create such confusions. The challenge of our above
protocol design is to come up with protocols that either allow for public detection of an omission-corrupted
party not sending messages, or make the party aware that it is omission-corrupted—in the latter case, this
party can put itself in a crashed position (a possibility which the adversary would anyway have by blocking
all communication to/from that party) to allow the other parties to complete the protocol.

Having derived a consensus protocol as above, we then turn to broadcast. Interestingly, the standard
reduction of broadcast to consensus—i.e. have the sender send his input to everyone and run consensus on
the received values—does not work here. The reason is that a send-omission corrupted sender ps might fail
to send his input to some but not all non-actively corrupted parties, in which case consensus might end up
flipping his input, which violates our requirement on the output with a non-actively corrupted sender.

We fix this by using an additional round of consensus: To guarantee that an omission-corrupted ps never
broadcasts a wrong value (but he may broadcast ⊥ in case he is incorrect) we extend the above generic
protocol as follows: after running consensus on the received bit, we have ps send a confirmation bit to every
player, i.e. a bit b = 1 with the meaning that ps agrees with his output of the consensus or b = 0 otherwise.
The players then invoke consensus on the received bit to make sure that they have a consistent view on the
confirmation-bit and based on that they accept the output of the generic broadcast protocol only if b = 1.
In the opposite case, they output ⊥. This ensures that if they output anything, it will be the correct bit.

Finally, we prove the tightness of C
(A,Ω)
BA (P, Z) for BA by means of a delicate player simulation argument

(see Lemma 5).

Multi-Party Computation. Having proven a tight characterization of BA in our model, we turn to multi-
party computation (MPC). Here we first observe that translating bounds from the threshold literature, or
even the existing general adversary literature (i.e., without omission-corruptions) simply does not work. In
fact, there is a number of ways that we demonstrate such a translation fails. For example, it is known that
in the case of active-only general adversary structures, MPC is feasible if and only if the Q3

A(P, Z) condition
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(Eq. 1) holds [HM97]. Hence, in search of a feasibility result, one might be tempted to assume that since
active corruption is more severe than omission-corruption, the natural adaptation of the above condition to
the omission-only setting, i.e. the condition Q3

Ω

CP
(Ω)
CONS(P, Z) ⇐⇒ ∀Ωi, Ωj , Ωk ∈ Z : Ωi ∪ Ωj ∪ Ωk ̸= P, (7)

would be sufficient for MPC. This however is not necessarily the case, as MPC protocols for active corruptions
entirely give up the inputs and outputs of actively corrupted parties, something which we cannot do for
omission corruption.

Similarly, drawing intuition from existing impossibility results can derail the search for lower bounds.
Indeed, the general rule is that general-adversary impossibility results translate to threshold (though, not
always in a trivial manner) but not the other way. Intuitively, the underlying reason is that the asymmetry
of general adversary structures allows solutions which could never exist in a threshold setting. This untrans-
latability becomes ever more prominent when considering omission-corruptions (combined with active), and
makes finding the tight condition on general structures for this case a far more challenging task than in the
threshold case (in fact, it is challenging even given a tight threshold condition).

As an example, for active/passive adversaries, the tight condition 3ta +2tp < n [FHM98] was “translated”
in [FHM99] to the general adversary setting as:

∀(A1, E1), (A2, E2), (A3, E3) ∈ Z : E1 ∪ E2 ∪ A1 ∪ A2 ∪ A3 ̸= P, (8)

(where sets A and E in the above bound correspond to actively and passively corrupted parties, respectively).
But an analogous translation for active/omission adversaries of the tight threshold 3ta + 2tω < n [ZHM09]
as

∀(A1, Ω1), (A2, Ω2), (A3, Ω3) ∈ Z : Ω1 ∪ Ω2 ∪ A1 ∪ A2 ∪ A3 ̸= P, (9)
does not yield a bound necessary for MPC. In fact, in Section A of the appendix we describe a structure
that violates (an even more restrictive version of) the above condition but still allows for an MPC protocol.

In the same spirit, as we show in Section 4.1, common techniques used in the threshold MPC literature
to recover from corruptions, such as player elimination [BHR07], cannot be applied here either. A standard
example of player elimination is used in the case of MPC with (threshold) byzantine corruptions with
t < n/3. The idea is that if some pi blames another pj , then, as long as both pi and pj have had the
chance to share their inputs, we can simply eliminate both of them and continue the computation with the
remaining parties—and send pi and pj their outputs at the end; the t < n/3 condition will then ensure
that in the n′ = n − 2 remaining parties set, the number t′ of maximum active corruptions will still satisfy
t′ < n′/3. In fact, this technique was used in [ZHM09] to prove the first, and only to date, tight condition
on MPC with active and omission corruption. However, as we show, player elimination is inapplicable in
our general-adversary active/omission setting. In particular, we show that natural candidates for feasibility
bounds conditions are not preserved by player elimination. (see Section 4.1 Table 3 ). This situation calls for
new protocols/techniques beyond what is used in the threshold or previous general adversary literature.

To overcome this, we devise a novel protocol that aims at facilitating detectable (i.e., which might abort
with the identity of a corrupted party) perfectly secure (private and authenticated) message transmission
introduced in [DDWY93] (in short, DetSMT) between any two parties. Looking ahead, this will allow to
neutralize the effect of omissions in MPC.
The challenge in devising and proving security of the new detectable SMT primitive is evident by the new
associated condition C

(A,Ω)
SMT (P, Z, ps, pr), which in combination with C

(A,Ω)
BA (P, Z) gives us the condition

that is proven to be tight for DetSMT with sender ps and receiver pr. The C
(A,Ω)
SMT (P, Z, ps, pr) states that

for any three Zi, Zj , Zk ∈ Z :

if (ps ∈ Ωi ∩ Ωj ∧ pr ∈ Ωk) OR (pr ∈ Ωi ∩ Ωj ∧ ps ∈ Ωk)
then Ai ∪ Aj ∪ Ωk ∪ (Ωi ∩ Ωj) ̸= P.

(10)

The sufficiency of the above condition for detectable SMT and its necessity for (detectable) SMT (hence also
for MPC) are proven in Section 4.2 (Lemmas 6 and 7, respectively).
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Finally, we put everything together to prove our last main theorem (Theorem 4) of MPC feasibility
under the same combination of conditions (where the C

(A,Ω)
SMT (P, Z, ps, pr) needs to hold true for all pairs

ps, pr ∈ P). More concretely, we prove that perfectly secure MPC against a general adversary with mixed
active and omission corruptions is feasible if and only if the condition C

(A,Ω)
MP C (P, Z) holds, where

C
(A,Ω)
MP C (P, Z) ⇔ C

(A,Ω)
BA (P, Z) ∧ ∀ps, pr ∈ P : C

(A,Ω)
SMT (P, Z, ps, pr). (11)

The necessity of the above condition follows from the fact that both SMT and broadcast are special
cases of MPC. In fact, since both the above are non-reactive functionalities, our impossibilities (along with
the feasibility discussed below) imply that C

(A,Ω)
MP C (P, Z) is tight for both (reactive) MPC and for SFE

(i.e., non-reactive MPC.) Thus our results prove that unlike the active/passive/fail general adversary model
where [BFH+08] proved a separation between the (tight feasibility bounds) for MPC and SFE, such a
separation does not exist in the active/omission setting.

For the sufficiency we use the following idea: We modify the general adversary protocol from [BFH+08] by
first projecting it to the active-corruption-only case (recall that [BFH+08] works for a mixed active/passive/fail
adversary) and then doing the following:

– All point-to-point communication between any two parties pi and pj is done by the above detectable
SMT.

– All broadcasts are implemented by our detectable broadcast.
– All sub-protocols in [BFH+08] for computing individual circuit gates (input, addition, multiplication,

and output gates) are turned to detectable counterparts, i.e., they might abort and make the identity of
a corrupted party public.

– Importantly, instead of computing the actual circuit, our MPC computes a verifiable secret sharing of the
circuit’s output—we prove that such a robustly reconstructible sharing is feasible under our conditions.
The reason for this is that before its last reconstruction round, the MPC from [BFH+08] leaks no
information to the adversary. By switching the computation’s output to a secret sharing instead of
actual circuit value, we ensure that no matter if or when the protocol aborts, it will leak no information
on any of the non-actively corrupted player’s inputs.

The above construction gives a detectable MPC protocol which either computes a verifiable secret sharing
of the output of the intended circuit, or it aborts without leaking any information to the adversary while
exposing a corrupted party. Such a protocol can be bootstrapped to a fully secure MPC (with guaranteed
output delivery) by standard techniques: Whenever it aborts, remove the detected (corrupted) party from
the player set and re-start the computation—this can be repeated at most n times as each abort exposes a
new corruption. Once the protocol succeeds, use the reconstruction protocol of the verifiable secret sharing
to publicly reconstruct the outputs. We note in passing that the above only computes MPC with a public
output, but it can be tuned to allow for private outputs using standard techniques: every party inputs
in addition to its actual output a random key which is used to blind—by one-time-pad encryption—the
announced public output so that only this party can recover the plaintext [LP09].

UC Treatment. Last but not least, as discussed above, all our proofs are in the (synchronous) UC
framework, which we view as a contribution in its own sense. Although we do not consider this to be
our core technical contribution, to our knowledge, this is the first time that a general adversary protocol
is proven secure in such a composable manner. In particular, existing MPC protocols for general adver-
saries [HM97,BFH+08,ZHM09] also follow a modular design approach—i.e., they design sub-protocols for
each type of MPC gate (input/sharing, addition, multiplication, output/reconstruction)—and prove the se-
curity of each underlying sub-protocols separately in a property-based manner, i.e., prove the correctness
and privacy of each of these sub-protocols. They then argue that these sub-protocols can be combined in
the main MPC protocol. Although we believe this last statement to be true, an actual proof would require
a composition proof (which is generally problematic with property-based definitions), or, alternatively a
composable treatment of the whole construction, an approach which we take for the first time in this work.
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In fact, to our knowledge even without considering general adversaries, no work has considered (active and)
omission corruptions in UC. As it is evident by our functionalities, embedding omission corruptions in UC
requires new design choices for the relevant functionalities.

Because the core novelty of our results is in the protocol constructions and proofs, to eliminate the
technical burden put upon the reader in extracting the ideas from the simulation, we have employed a
special proof structure: First we prove properties that our protocols have, akin to the traditional property-
based approach used in the general adversary literature; subsequently, we describe our simulator and use the
above properties, along with additional arguments wherever necessary, to argue perfect indistinguishability
of real and ideal world.

3 Byzantine Agreement with Active and Omission Corruption

3.1 Security Conditions

In this section we present our first major result, a tight BA condition. Our results cover the case of mixed
active and omission-corruption under perfect security (i.e., zero error probability).

Theorem 1. In the model with both active and omission-corruption if no setup is assumed a set P of players
can perfectly Z-securely realize Consensus or Broadcast if and only if the condition C

(A,Ω)
BA (P, Z) holds where,

C
(A,Ω)
BA (P, Z) ⇐⇒ ∀Zi, Zj , Zk ∈ Z : Ai ∪ Aj ∪ Ak ∪ (Ωi ∩ Ωj) ̸= P. (12)

The proof of the theorem is in 3.7 and the condition is proven to be both sufficient and necessary for both
flavors of BA, i.e. Consensus and Broadcast. The theorem follows after all the necessary tools are created
(namely the primitives FixReceive, Weak, Graded and King Consensus).

3.2 Detection of Omission-Failures

The sender pi ∈ P has input x and the intended receiver is pj . The adversary corrupts Z⋆ = (A⋆, Ω⋆).

– Initially, set the output value mout to ⊥.
– In round ρ = 1:

• Upon receiving a message (input, sid, x) from the sender pi (or the adversary, if the sender is actively
corrupted), set mout = x and send (leakage, sid, pi, l(x) = x) to the adversary.

– In round ρ = 2:
• Upon receiving (adv-omit, sid, ⊥) from the adversary, if pi ∈ Ω⋆, set mout =⊥.
• Upon receiving (inform omission, pj) from the adversary, if pj ∈ Ω⋆, set mout =⊥ and output (omission, pj)

to pj .
• Otherwise, discard the message.

– In round ρ = 3 :
• Upon receiving (fetch-output, sid) from pj , send (output, sid, mout) to pj and (fetch-output, sid, pj) to the

adversary.

Functionality FF R(P, Z, pi, pj , x)

In this section we start by tackling the main problem of omission-corruption, namely the fact that detecting
such a corruption is not trivial. Indeed, when a player pj does not receive a message she was expecting
(because the channels are synchronous), and receives the default value ⊥ she cannot be certain if the sender
pi is actively corrupted and did not send a message, if the sender is omission-corrupted and his message was
blocked or if pj herself is omission-corrupted and was not able to receive the message (or a combination of
the above).
Our first goal is to implement a functionality FF R in order to reinforce our communication network and
render it able to detect omission-failures. Effectively, this functionality guarantees that either the adversary
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lets the message of the sender pi reach its recipient pj or it becomes known to everyone (first to pj herself
and then she will make it public) that pj is omission-corrupted, forcing her to become a zombie.
If pj becomes a zombie via the FixReceive protocol, she stops participating in any upcoming computations.
Also, she notifies all other players about that by sending a special message (she can send it at every round
to make sure that everyone receives it) saying that she “is out”. Those properties are captured by the
functionality FF R fully described above. For our functionalities we follow the template of [CCGZ16] for
canonical synchronous functionalities. The functionality proceeds in this way. Initially FF R sets the output
value equal to ⊥ and then waits for input from pi. This input is made known to the adversary through the
leakage function l(x). On the second round the adversary has the following choices. i) If pi ∈ Ω⋆ (the sender
is omission-corrupted), the adversary can drop the input message and turn it to ⊥ or let it be recorded as
normal. ii) If pj ∈ Ω⋆ the adversary can either inform pj of his omission status or let her receive the recorded
message mout.
As such, we can see that if pj remained alive then she outputs a value mout, which will be either pi’s input
or ⊥. Additionally, if pi is correct we are granted that it is the former case.

Our protocol which realizes this functionality does the following in more detail. When pi wants to send
a message x to pj , he sends x to all pk ∈ P to leverage all parties. Then, every pk who received the message
forwards it to pj . If pk did not receive a message (he denotes that by the symbol ⊥) he sends a special
message “n/v” /∈ F to pj , to let her know that no value was received.
After that, pj should have received a message from all pk ∈ P. If from some player she did not, she denotes
that by the default character ⊥. At that point, if there is no way according to the adversary structure Z that
the ⊥ symbols she received were sent by players that could be omission-corrupted or actively corrupted she
becomes a zombie. In other words, if there is some player who sent ⊥ but could never be corrupted, then it
is clear for pj that she has a problem in receiving messages.
In the opposite case, if there exists a value x′ which was sent to pj by people that could not be actively
corrupted, it would mean that this value cannot be an erroneous one being pushed by the adversary. As
such, pj can be certain that this is the message that pi sent, and she outputs this value x′.
Otherwise, in the case where no such value exists, meaning that pi was not consistent with the messages he
sent or he was blocked, pj outputs ⊥ to indicate that pi is not correct. The protocol FixReceive (P, Z, pi, pj , x)
starts with the sender sending x to everyone. In the second round all parties forward their messages to the
receiver, who tries to figure out what the message is. A notation that we will be using often is P

(⊥)
j to denote

the set of players that sent to pj the value ⊥ and similarly P
(x)
j , P

(“n/v”)
j . The procedure that the protocol

follows is along these lines.

1. For each pk ∈ P, pi sends x to pk. The value received is denoted by pk as xk (xk =⊥ if no value was
received).

2. Each pk ∈ P sends pj a message x′
k, where x′

k = xk if xk ̸=⊥ and x′
k = “n/v” otherwise. The value

received from pk is denoted by pj as x
(j)
k (x(j)

k =⊥ if no value was received).
3. Output: The receiver performs the following checks to determine the correct value to output, based on

the classes of the adversary structure that justify the received messages.
(a) If there exists no Z = (A, Ω) ∈ Z : P

(⊥)
j ⊆ (A ∪ Ω), where P

(⊥)
j := {pk : x

(j)
k =⊥} then pj becomes

a zombie and outputs (omission, pj).
(b) If there exists no Z = (A, Ω) ∈ Z : P

(“n/v”)
j ⊆ (A ∪ Ω), then pj outputs ⊥ (the sender is omission-

corrupted).
(c) Otherwise, pj considers all justifying (for any x) classes 8Zm.
(d) If there are no justifying classes (for either x or x) with pj /∈ Ωm then pj becomes a zombie and

outputs (omission, pj).
(e) If there exists unique x′ and Zm : Am ⊇ P

(x)
j and Am ⊉ P

(x)
j , for x ̸= x′ then pj outputs x′.

(f) Otherwise pj outputs ⊥.

8 A class Zm = (Am, Ωm) is justifying for x if (Ωm ⊇ P
(⊥)
j or pj ∈ Ωm) AND (Ωm∪ ⊇ P

(“n/v”)
j or pi ∈ Ωm) AND

Am ⊇ P
(x)
j AND Am ⊉ P

(x)
j , for all x ̸= x.
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Lemma 1. If the condition C
(A,Ω)
F IXR(P, Z) (see Eq. 6) holds, the protocol FixReceive perfectly Z-securely

realizes the functionality FF R.

Proof. We are going to give a simulation-based proof, meaning that we are going to devise a simulator and
prove that it creates an ideal world execution that is indistinguishable from a real world execution of our
protocol. To this direction we first prove the following useful lemma about the input/output properties of
the protocol.

Claim 1. If the condition C
(A,Ω)
F IXR(P, Z) (see Eq. 6) holds, the protocol FixReceive has the following prop-

erties: If pj is alive at the end of the protocol then pj outputs a value x′, where x′ ∈ {x, ⊥}, unless pi ∈ A⋆,
and x′ = x if pi is correct until the end of the protocol. Moreover, pj might become a zombie only if pj is
omission-corrupted.

Proof. According to the protocol, pj becomes a zombie when for every justifying Z = (A, Ω) ∈ Z we have
that P

(⊥)
j ⊈ A ∪ Ω (or when there are no justifying classes with pj not being omission-corrupted) and in no

other case. This would mean that there is no class in the adversary structure that would explain the ⊥ that
pj receives, unless she is omission-corrupted and the adversary is blocking messages that are addressed to
her. As a result, we can be certain that pj ∈ Ω⋆, indeed.

Now, if pj is not actively corrupted and is alive at the end of the protocol, we will show that she will
output a value x′ ∈ {x, ⊥}. Specifically, according to the claim, if pj ∈ P \ A⋆ and the sender pi is correct
until the end of the protocol, pj will output x′ = x.

Let us assume, towards contradiction that the choice of x′ is not unique and that there is another
candidate value x ̸= x. From the protocol for the value x we have that there exists9 a justifying for x class
Zℓ with

(Ωℓ ∪ Aℓ ⊇ P
(⊥)
j or pj ∈ Ωℓ) such that Aℓ ⊇ P

(x)
j for all x ̸= x. (13)

Now, if for all justifying classes Zℓ it was true that pj ∈ Ωℓ then pj would become a zombie. But since
pj stayed alive, there exists Zm : pj /∈ Ωm, hence Ωm ∪ Am ⊇ P

(⊥)
j and Am ⊇ P

(x)
j . Additionally, if we

assume that pi is correct we get that the “n/v” values must be coming from players that are indeed at least
omission-corrupted. Thus, Ωm ∪ Am ⊇ P

(“n/v”)
j .

Similarly, for x we have that there exists Zq such that

(Ωq ∪ Aq ⊇ P
(⊥)
j or pj ∈ Ωq) such that Aq ⊇ P

(x)
j , since x ̸= x. (14)

Now, according to the values that pj received we can write the whole player set as

P = P
(x)
j ∪P

(x)
j ∪P

(⊥)
j ∪P

(“n/v”)
j

⊆ Aq ∪Am ∪Ωm,
(15)

which is a contradiction to the condition C
(A,Ω)
F IXR(P, Z) because it states that Aq ∪ Ωm ⊉ P for any two

classes q, m. As Am ⊆ Ωm gives us the above expression, we reach a contradiction. This proves that the
choice for x′ is unique when pi is correct.

Finally, if pi ∈ Ω⋆, pi /∈ A⋆ the claim states that if pj remains alive he will output x′ ∈ {x, ⊥}.
Indeed, since for any two k, m from C

(A,Ω)
F IXR(P, Z) we have that Ωk ∪ Ωm ⊉ P we can be certain that even if

P
(“n/v”)
j ⊆ Ωk and P

(⊥)
j ⊆ Ωm there will still exist a ph ∈ P who will receive successfully the value x from pi

and forward it to pj . Otherwise, if pj would only receive the wrong value x it would mean that all parties
who received x are in P

(⊥)
j . This gives us

P = P
(“n/v”)
j ∪ P

(⊥)
j ∪ P

(x)
j ⊆ Ωk ∪ Ωm ∪ Am ⊆ Ωk ∪ Ωm, (16)

9 The actual class Z⋆ is always a justifying class. Also, since pi is correct, the correct value x will reach all correct
players in P and then pj . So the above class always exists.
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which contradicts C
(A,Ω)
F IXR(P, Z).

Now, if the adversary chose to send another value x to pj and there existed justifying classes Zm, Zk for
both x and x then pj would output ⊥, since none of them is unique. Still, there is no way that pj could
output a wrong value x ̸= x if pi /∈ A⋆.

Given that claim, we can now continue our simulation proof. Let A be an adversary attacking the protocol.
We define a simulator S (an efficient algorithm) that interacts with the functionality FF R and creates the
same effect as the real world adversary A, i.e. makes the environment’s/distinguisher’s view in the ideal
experiment identically distributed as the one in the real experiment with adversary A. A description of
a respective simulator for broadcast can be found in [Zik10], on which we base the core of our simulator.
We note here that our protocol is deterministic and thus the simulator in all cases learns all inputs to the
protocol (this happens in general in the next protocols as well, here only pi has input), so it is easy to
perfectly simulate all the messages sent by honest players. This means that the only thing that one needs to
verify is that the output of the protocol is identically distributed in the ideal and real world. To do this we
make use of the Claim 1 stated above. Our simulator is built in the following way.

Description of the Simulator. Firstly, the simulator invokes A. Given the corrupted class Z⋆, the adversary
A controls the corrupted parties pc ∈ A⋆ and which messages of any player pm ∈ Ω⋆ are blocked. The
simulator simulates all players taking part in the computation and corrupts the same parties as A. He
initiates an interaction where he uses A in a straight-line black-box manner, simulating the protocol messages
towards A and receiving from A the messages and/or actions (e.g., drop a message) of corrupted parties. In
more detail:
During the first round of the functionality, the simulator S learns the input value x through the leakage
function l(x) and the functionality sets mout = x. In the real world the adversary learns x from the corrupted
parties that receive it. (the case where no parties are actively corrupted at all is trivial and omitted).

• If the sender is honest, during the second round, we have two cases.
– If pj is honest, then pj in the ideal world remains alive, and receives the output mout that was

recorder by FF R, which as we see in Claim 1 is the same as what happens in the protocol in this
case.

– If the receiver pj is in Ω⋆ and the adversary decides to block more messages than what can be
justified, i.e. for any Z ∈ Z we have that P

(⊥)
j ⊈ (A ∪ Ω), then pj becomes a zombie. The simulator

observers that. To create the same effect, S sends (inform omission, pj) to the functionality, so pj

becomes a zombie and the output she gets is mout =⊥, as in the real world.
In the opposite case, if pj does not become a zombie, then from Claim 1 we are granted that pj will
output the correct value x′ = x. As the simulator observes that pj remained alive, in the ideal world
the functionality receives (fetch-output) from pj and outputs mout = x, creating the same effect again
as above, when pj was honest.

– If pj is actively corrupted, she is controlled by A and in both worlds outputs the value that A selects.
The adversary learns no additional information in both worlds, except from the input value, which
he already knew.

• If the sender pi is in A⋆, in the real world the adversary A has full control over what the receiver pj will
get as output x′. During the first round of the real world execution, all parties receive some xk (could
be that xk =⊥) and A already knows the value x′. During round 2 the real world adversary A decides
to deliver a value to pj or in the case that pj ∈ Ω⋆ make him a zombie. The simulator observes this and
if pj outputs x′, S sends (adv-input, sid, x′ ) to FF R, making FF R set mout = x′. So pj outputs the same
value in both worlds.
If pj became a zombie (he can only become a zombie if he is omission-corrupted according to Claim 1)
then S observes this and sends the message (inform omission, pj) to FF R, creating the same effect in both
worlds.

• If the sender pi is in Ω⋆, then the adversary can block sent messages from pi. This would make some
pk ∈ P send “n/v” to pj .
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– If pj outputs ⊥ during round 2 according to the protocol because she was not able to determine
the correct value for x, the simulator observers that. Then, in the ideal world the simulator sends
(adv-omit, sid, ⊥) during round 2 and the functionality sets mout =⊥. So, when the receiver sends
(fetch-output) she receives ⊥, as per in the real world. From Claim 1 we are granted that pj would
output ⊥ only if the sender is not correct.

– If pj is able to output a value x′, again from the above Claim, we are certain that this was the input
value of pi. Then the simulator lets the functionality deliver mout upon receiving (fetch-output) from
pj and the output is the same in both worlds.

As a result the view of the adversary and the outputs of the honest parties10 in the real world are distributed
identically as the respective view and outputs in the ideal world, making the two executions indistinguishable
for any environment/distinguisher.

Next, we will show that this bound is actually tight, meaning that the C
(A,Ω)
F IXR(P, Z) condition is also

necessary for FixReceive.

Claim. If the condition C
(A,Ω)
F IXR(P, Z) (see Eq. 6) does not hold, then no protocol can satisfy the properties

of the FixReceive protocol stated in Claim 1, as well.

Proof. Assuming that the condition C
(A,Ω)
F IXR(P, Z) does not hold we get that ∃ Z1 = (A1, Ω1), Z2 = (A2, Ω2) ∈

Z such that
Ω1 ∪ Ω2 = P (17)

which means that the whole player set is covered by the two corruptible sets.

p1 p2
Z1 ω
Z2 ω

Table 1. Either p1
or p2 is omission cor-
rupted in classes Z1, Z2
respectively.

Here, without loss of generality, we can assume that Ω1∩Ω2 = ∅. If not, we can reduce
the sets to the case above by considering a strictly weaker adversary structure and
still the condition holds. Now, we will use a player-simulation argument. If we create
a contradiction by considering only two players, p1, p2, and show that the condition
is broken there, then it is trivial that the proof is complete. For that reason, we
consider an adversary structure Z as seen in the table. Towards contradiction, we
will have the player p1 send a message to player p2 and we will examine two cases.

Scenario 1: The adversary chooses the corruptible set Z1 with A = ∅, Ω = {p1},
where p1 is omission-corrupted and p2 is honest. As such, the adversary can make p1
send nothing to p2 when he was instructed to send his input x to him. That would
make p2 receive the empty value ⊥, as is the case when the recipient receives nothing.
As a result, p2 should output ⊥, denoting that he did not receive a value from p1.

Scenario 2: The adversary chooses the corruptible set Z2, with A = ∅, Ω = {p2}, where p2 is omission-
corrupted and the sender p1 is honest. If in that case the adversary blocks all messages addressed to p2 then
he should become a zombie and step down from the computation process, because he cannot predict the
value he ought to output, since p1 is honest.

However, both scenarios are indistinguishable for p2 and we have used the same set up. As a result, the
output should be the same in both cases, which gives us a contradiction. We note that as an the actively
corrupted party could behave exactly like an omission-corrupted one, the same proof would hold true for
A1 ∪ Ω2 = P, as well. □

3.3 Weak Consensus

10 Even though this is a multiparty protocol, only pi and pj have effective input/output so for simplicity we only
mention that input/output can assume that all other parties output ⊥.
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The adversary corrupts Z⋆ = (A⋆, Ω⋆).

– Initially, set the input values x1, . . . , xn, the output values y1, . . . , yn to ⊥.
– In round ρ = 1:

• Upon receiving a message (input, sid, vi) from any pi ∈ P (or the adversary, if the player is actively
corrupted), set xi = vi and send (leakage, sid, pi, vi) to the adversary.

– In round ρ = 2 and 3: Do nothing.
– In round ρ = 4, FW C sets (y1, . . . , yn) = (vt, . . . , vt), where vt is the input value of the first honest party:

• Upon receiving (adv-omit, sid, pi, ⊥) from the adversary, if pi ∈ Ω⋆, set xi =⊥.
• Upon receiving (set y, (v1, . . . , vn)) from the adversary, where all vi ∈ {v, “n/v”},

if the inputs of all (alive) pi ∈ P \ A⋆ are not the same value v then set
(y1, . . . , yn) = (v1, . . . , vn).
Otherwise, ignore.

• Upon receiving (inform omission, pj) from the adversary, if pj ∈ Ω⋆, set yj =⊥ and output (omission, pj) to
pj .

• Upon receiving (fetch-output, sid) from pi ∈ P, send (output, sid, yi) to pi and (fetch-output, sid, pi) to the
adversary.

Functionality FW C(P, Z, x⃗ = (x1, . . . , xn))

By use of Fix Receive, we will now establish an initial, basic form of consensus, called Weak Consensus.
For this, we require the following properties. Persistency: If all alive, not actively-corrupted parties start
with the same input x then all of them should output y = x. Consistency: Additionally, there cannot be
disagreement between them. To do this, we allow them to output a special character “n/v” (no value) if they
are unsure. So, all of them can output either the common value y or “n/v”. However, no two correct players
should have contradicting values. Our functionality FW C above captures those requirements.
Initially, it sets everything to ⊥ and then receives input from the players. Again, the adversary learns those
values, as in FixReceive. Afterwards, once FixReceive is concluded, the adversary is allowed to affect the
output. However, he is bound by the consistency and persistency properties we mentioned. As such, he can
only set the outputs to either v or “n/v”, if there is no pre-agreement on the inputs. The only other action
he can perform is to make players in Ω⋆ become zombies, by informing them of their omission status.

Now, our WeakConsensus is realized as follows, using (as do all follow-up protocols) FixReceive for party-
to-party communication. First, we have every player send his input xi to all players (using FixReceive). Then,
each player looks at all the possible classes of the adversary structure for the following: 1) If there exists one
Z = (A, Ω) which gives him a value x ∈ F such that this value was sent to pj by some players who are not
corrupted and 2) the values he received which are different from both x and ⊥ can be justified by the set
of actively corrupted players, meaning that a malicious player sent the disagreeing value. Additionally, all ⊥
values should be coming from pk ∈ Ω, because FixReceive gives us the guarantee that an alive player only
outputs ⊥ if the sender is not correct. If that is the case, the player adopts this value x as his output.
Otherwise, he cannot be certain and outputs the message “n/v”. The protocol follows.

– In round ρ = 1: Each pi ∈ P sends xi, by invocation of FixReceive, to every pj ∈ P, who denotes the set of
players who sent him 0 as P

(0)
j , respectively P

(1)
j for 1 and those who he did not receive a value from as P

(⊥)
j .

– In round ρ = 2 and 3: Do nothing (waiting for FixReceive to conclude).
– In round ρ = 4: Each pj outputs yj , according to the following.

yj =:


0 if ∃(A, Ω) ∈ Z s.t. P \

(
P

(0)
j ∪ P

(⊥)
j

)
⊆ A ∧ P

(⊥)
j ⊆ Ω ∧ H ⊆ P

(0)
j

1 if ∃(A, Ω) ∈ Z s.t. P \
(

P
(1)
j ∪ P

(⊥)
j

)
⊆ A ∧ P

(⊥)
j ⊆ Ω ∧ H ⊆ P

(1)
j

“n/v” otherwise
If some pz ∈ Ω⋆ became zombie he outputs (omission, pz).

Protocol WeakConsensus(P, Z, x⃗ = (x1, . . . , xn))
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Lemma 2. If the condition C
(A,Ω)
BA (P, Z) (see Eq. 12) holds, the protocol WeakConsensus perfectly Z-securely

realizes the functionality FW C .
Proof. Instead of proving that protocol WeakConsensus securely realizes the functionality FW C , we will
do it for the hybrid protocol HybW C which instead of using protocol FixReceive, it makes ideal calls to
functionality FF R internally (by ideal call to FF R we mean an invocation of FF R as in the ideal world).
From there, the statement of the lemma follows using the composition lemma of Canetti [Can01]. Before
we give our simulation-based proof, we need to state the following useful claim about the input/output
properties of the protocol.

Claim 2. If the condition C
(A,Ω)
BA (P, Z) (see Eq. 12) holds, the protocol WeakConsensus has the following

properties: (weak consistency) There exists some y ∈ F such that every (alive) pj ∈ P \ A⋆ outputs yj ∈
{y, “n/v”}. (persistency) If every pi ∈ P \ A⋆ who is alive at the beginning of WeakConsensus has the same
input x, then all alive players at the end of the protocol output y = x.

Proof. First, we begin by observing that the choice of pj for yj is unique, meaning that there is no way that
he could select both 0 and 1 as his output.
To prove that, assume towards contradiction that there exist (A0, Ω0), (A1, Ω1) ∈ Z s.t.

P \ (P (0)
j ∪ P

(⊥)
j ) ⊆ A0 and P \ (P (1)

j ∪ P
(⊥)
j ) ⊆ A1,

as well as P
(⊥)
j ⊆ Ω0 and P

(⊥)
j ⊆ Ω1. This gives us that P

(1)
j ⊆ A0 and P

(0)
j ⊆ A1 together with P

(⊥)
j ⊆

Ω0 ∩ Ω1, which leads us to
P = P

(0)
j ∪ P

(1)
j ∪ P

(⊥)
j

⊆ A1 ∪ A0 ∪ (Ω0 ∩ Ω1),
(18)

which is covered by Ak ∪ A1 ∪ A0 ∪ (Ω0 ∩ Ω1) for some k and contradicts the C
(A,Ω)
BA (P, Z) condition. Hence,

the selection of yj is unique.
(Weak consistency) Now, let us assume towards contradiction, that there exist (alive) players pk, pm ∈

P \ A⋆ with outputs yk = y, ym = y′, respectively, and y ̸= y′. Without loss of generality due to the
observation above, we can assume that yk = 0 and ym = 1. We define the sets P

(0)
k , P

(1)
k and P

(⊥)
k for pk

and similarly the sets P
(0)
m , P

(1)
m , P

(⊥)
m for pm. Because both pk, pm /∈ A⋆ are alive and follow the protocol

WeakConsensus we get that

P
(1)
k ⊆ Ak and P

(⊥)
k ⊆ Ωk, as well as P (0)

m ⊆ Am and P (⊥)
m ⊆ Ωm, (19)

from where we can easily deduce that

P
(⊥)
k ∩ P (⊥)

m ⊆ Ωk ∩ Ωm, (20)

and then we can write

P =P
(⊥)
k ∪ P

(1)
k ∪ P

(0)
k (21)

=
(
P

(⊥)
k ∩ P

)
∪ P

(1)
k ∪

(
P

(0)
k ∩ P

)
(22)

=
(

P
(⊥)
k ∩

(
P (⊥)

m ∪ P (0)
m ∪ P (1)

m

))
∪ P

(1)
k ∪

(
P

(0)
k ∩

(
P (⊥)

m ∪ P (0)
m ∪ P (1)

m

))
(23)

=
((

P
(⊥)
k ∩ P (⊥)

m

)
∪

(
P

(⊥)
k ∩ P (0)

m

)
∪

(
P

(⊥)
k ∩ P (1)

m

))
∪ P

(1)
k ∪ (24)

∪
((

P
(0)
k ∩ P (⊥)

m

)
∪

(
P

(0)
k ∩ P (0)

m

)
∪

(
P

(0)
k ∩ P (1)

m

))
(25)

⊆(Ωk ∩ Ωm) ∪ Am ∪ Ak ∪ Ak (26)
∪ Am ∪ Am ∪ A⋆ (27)

=Ak ∪ Am ∪ A⋆ ∪ (Ωk ∩ Ωm), (28)
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where the inequalities on (26) follow along the lines of

i. P
(⊥)
k ∩ P

(⊥)
m ⊆ Ωk ∩ Ωm from relation (20),

ii. brackets involving P
(1)
k and P

(0)
m come from (19),

iii. for the case where the message to one player is ⊥ we know that this message was blocked from reaching
its recipient. If it was not, and the sender was following the protocol, he would have sent the same
message to pk and pm, giving us the above inequalities for the sets from (19), again. Otherwise, he would
not be following the protocol and he would belong in A⋆,

giving us the final relation, which contradicts the condition C
(A,Ω)
BA (P, Z).

(persistency) If all non-actively corrupted players pk ∈ P \ A⋆ who are alive at the beginning of Weak-
Consensus have the same input x, without loss of generality we can assume that x = 0. The case where
x = 1 is clearly symmetrical. Then for all receivers pj ∈ P \ A⋆ who are alive, we have that P

(⊥)
j ⊆ Ω⋆ and

P
(1)
j ⊆ A⋆, according to Claim 1. This means that the condition for yk = 0 at WeakConsensus Protocol is

satisfied. Hence all non-actively corrupted players who are still alive output x = 0, which is unique by the
weak consistency property.

Continuing with the proof of Lemma 2, a simulator for the security proof can be created similarly to
the one for FixReceive. Since our protocols for the whole BA section are deterministic and do not involve
randomness, once the simulator learns the inputs of the players and what players are becoming zombies,
he can perfectly simulate the view of the environment in the real and ideal world execution. Due to space
limitations we omit the rest of the simulators of this section.

3.4 Graded Consensus

The adversary corrupts Z⋆ = (A⋆, Ω⋆).

– Initially, set the input values x1, . . . , xn, the output values y1, . . . , yn, g1, . . . , gn to ⊥.
– In round ρ = 1:

• Upon receiving a message (input, sid, vi) from pi ∈ P (or the adversary, if the player is actively corrupted),
set xi = vi and send (leakage, sid, pi, vi) to the adversary.

– In round ρ = 2 up to 7: Do nothing. (Wait for WeakConsensus to conclude.)
– In round ρ = 8, FGC sets (y1, . . . , yn) = (vt, . . . , vt), where vt is the input value of the first honest party and

sets (g1, . . . , gn) = (1, . . . , 1):
• Upon receiving (adv-omit, sid, pi, ⊥) from the adversary, if pi ∈ Ω⋆, set xi =⊥.

Otherwise, discard the message.
• Upon receiving (set, z⃗ = (z1, . . . , zn)) where either zi = {vi, bi} or zi =⊥.

∗ If zi =⊥ for some pi /∈ Ω⋆, discard the message.
∗ If ∀ alive pi ∈ P \ A⋆ the functionality has recorded the same xi = x then ignore all messages (set ).
∗ Else if bk = 1 for some alive pk /∈ A⋆ then ignore all vi for pi /∈ A⋆ and set (y1, . . . , yn) = (vk, . . . , vk)

and (g1, . . . , gn) = (b1, . . . , bn).
∗ Else, set (y1, . . . , yn) = (v1, . . . , vn) and (g1, . . . , gn) = (b1, . . . , bn), for bi ∈ {0, 1}.

If zj =⊥ for some pj ∈ Ω⋆, set yj =⊥ and output (omission, pj) to pj .
Discard all other messages.

• Upon receiving (fetch-output, sid) from pi ∈ P, send (output, sid, {yi, gi}) to pi and (fetch-output, sid, pi) to
the adversary.

Functionality FGC(P, Z, x⃗ = (x1, . . . , xn))

The next step is GradedConsensus. Leveraging Weak Consensus to get a stronger type of agreement,
the players here also output a bit grade gi reflecting their certainty in their output. This is similar to the
Gradecast primitive in [FM88]. This is a graded version of persistence—i.e., if the players who are not
actively corrupted have pre-agreed on a value x, then we get that they all output x with grade g = 1 (graded
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persistency). Additionally, it ensures that if any non-actively corrupt party outputs yi = y with gi = 1, then
every non-actively corrupt alive party pj outputs yj = y (graded consistency). In the opposite case, where
the player is not certain about his output value, his grade of confidence is gi = 0.

Our functionality FGC above captures those properties. At its core it works in a similar manner to FW C .
The difference here is that if there exists pre-agreement then all grades are set to 1 and outputs to the same
value and the adversary is not allowed to change them. Else, if some grade is gi = 1, then all outputs have
to be the same, but the adversary can select the other grades. Otherwise, with all grades 0, the outputs are
allowed to be selected by the adversary.

In more detail, the protocol first calls the WeakConsensus protocol in order to reach an initial step of
agreement. Then all the players exchange the outputs they received, by invocation of FixReceive. After that,
each player collects that information and decides whether to output yj = 0 or yj = 1. If it can be seen from
the adversary structure that non-actively corrupted players have sent the value 1, then yj = 1 (as in this case
every non-actively corrupted player would have output x′

i ∈ {yj , “n/v”}, according to the previous Claim).
Otherwise, if she only received 0 and “n/v” from non-actively corrupted, she sets her output (by default) to
yj = 0.
Next, we have to determine the grade. If at least all non-actively corrupted players have sent to pj either
the same message as her output yj or ⊥ (from the players in Ω) and at least all uncorrupted players have
definitely sent yj , then pj sets her grade of confidence in the fact that all uncorrupted players have the same
output as gj = 1. Otherwise, she sets gj = 0, showing that there is no agreement from her point of view, yet.
The protocol follows. We only list rounds ρ = 1, 5, 8 because in the rest of the rounds the players are waiting
for WeakConsensus and FixReceive to give their output.

1. In round ρ = 1: Invoke WeakConsensus (P, Z, x⃗); Player pi denotes his output by x′
i.

2. In round ρ = 5: Each pi ∈ P sends x′
i, by invocation of FixReceive, to every pj ∈ P, who denotes the received

value by x
(i)
j .

3. In round ρ = 8: Each pj outputs (yj , gj) as follows:

yj =:

{
0 if ∃(A, Ω) ∈ Z s.t. P \

(
P

(0)
j ∪ P

(“n/v”)
j ∪ P

(⊥)
j

)
⊆ A ∧

(
P

(⊥)
j ⊆ Ω

)
1 otherwise

gj =:

{
1 if ∃(A, Ω) ∈ Z s.t. P \

(
P

(yj )
j ∪ P

(⊥)
j

)
⊆ A

0 otherwise
If some pz ∈ Ω⋆ became zombie he outputs (omission, pz).

Protocol GradedConsensus(P, Z, x⃗ = (x1, . . . , xn))

Lemma 3. If the condition C
(A,Ω)
BA (P, Z) (see Eq. 12) holds, the protocol GradedConsensus perfectly Z-

securely realizes the functionality FGC .

The claim stating the input/output properties of the protocol follows.

Claim. If the condition C
(A,Ω)
BA (P, Z) (see Eq. 12) holds, the protocol GradedConsensus has the following

properties: (graded consistency) If some pi ∈ P \A⋆ outputs (yi, gi) = (y, 1) for some y ∈ F, then every (alive)
pj ∈ P \ A⋆ outputs yj = y with some gj ∈ {0, 1}. (graded persistency) If every pi ∈ P \ A⋆ who is alive at
the beginning of GradedConsensus has input xi = x, then every (alive) pj ∈ P \ A⋆ outputs (yj , gj) = (x, 1).

Proof. To begin with, we will show that for any player pj ∈ P \ A⋆, yj = 1 only when ∃ Z = (A, Ω) ∈ Z s.t.

P \
(

P
(1)
j ∪ P

(“n/v”)
j ∪ P

(⊥)
j

)
⊆ A ∧

(
P

(⊥)
j ⊆ A ∪ Ω

)
.

In order to do that, let us consider under which case a player pj would not output yj = 0. This would only
happen when the first condition for yj = 0 would not hold true, i.e. ∀Z = (A, Ω) ∈ Z we would have that

P \
(

P
(0)
j ∪ P

(“n/v”)
j ∪ P

(⊥)
j

)
⊈ A OR

(
P

(⊥)
j ⊈ A ∪ Ω

)
,
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which means that one of the two statements (either the first or the second) will always hold. As such, we
can select any special Z = (A, Ω) with A ⊇ A⋆ and Ω ⊇ Ω⋆ of Z⋆ = (A⋆, Ω⋆) for which we know that the
second argument is false, as we know that P

(⊥)
j ⊆ A⋆ ∪ Ω⋆. We are allowed to make that selection because

the corruptible set Z⋆ that the adversary eventually chooses belong in Z and can be used for our analysis,
despite being unknown to the players. As a result, for that Z the first argument has to hold true, i.e. ∃ pk ∈ P
with

pk /∈ P
(0)
j ∪ P

(“n/v”)
j ∪ P

(⊥)
j , s.t. pk /∈ A⋆,

which means that pk is not actively corrupted. After the invocation of WeakConsensus pk’s output was
x′

k = 1 and consequently he sent this value 1 to pj . By the Weak Consistency property though, this would
mean that all non-actively corrupted players would output either 1 or “n/v”, as well, and none of them would
output 0. This leads us to

P
(1)
j ∪ P

(“n/v”)
j ∪ P

(⊥)
j ⊇ P \ A, (29)

which, together with the earlier result of P
(⊥)
j ⊆ A ∪ Ω can be written as

P \
(

P
(1)
j ∪ P

(“n/v”)
j ∪ P

(⊥)
j

)
⊆ A ∧

(
P

(⊥)
j ⊆ A ∪ Ω

)
,

completing our argument.
Now we can move on to the proof of the two properties.

(Graded consistency) Let us assume, towards contradiction, that there exist (alive) pk, pm ∈ P \ A⋆ with
(yk, gk) = (0, 1) and (ym, gm) = (1, gm), where gm ∈ {0, 1}, their respective outputs. We define the sets
P

(0)
k = {pi : x

(i)
k = 0}, P

(1)
k = {pi : x

(i)
k = 1}, P

(⊥)
k = {pi : x

(i)
k =⊥} and P

(“n/v”)
k = {pi : x

(i)
k = “n/v”} for pk

and the sets P
(0)
m , P

(1)
m , P

(⊥)
m , P

(“n/v”)
m for pm in the same manner. As both pk and pm are not malicious and

they follow the protocol we get that there exist sets (Ak, Ωk) and (Am, Ωm) for which we have that

P \
(

P
(0)
k ∪ P

(⊥)
k

)
⊆ Ak (30)

P \
(

P (1)
m ∪ P (“n/v”)

m ∪ P (⊥)
m

)
⊆ Am, (31)

due to the fact that gk = 1 and ym = 1. This can be written as

P
(1)
k ∪ P

(“n/v”)
k ⊆ Ak (32)

P (0)
m ⊆ Am, (33)

as those are the only possible sets that P can be divided into.
Now, we are ready to write that

P =P
(0)
k ∪ P

(⊥)
k ∪ P

(1)
k ∪ P

(“n/v”)
k

={P
(0)
k ∩ P} ∪ {P

(⊥)
k ∩ P} ∪ P

(1)
k ∪ P

(“n/v”)
k

=
{

[P (0)
k ∩ P (0)

m ] ∪ [P (0)
k ∩ P (1)

m ] ∪ [P (0)
k ∩ P (“n/v”)

m ] ∪ [P (0)
k ∩ P (⊥)

m ]
}

∪

∪

[P (⊥)
k ∩ P (0)

m ] ∪ [P (⊥)
k ∩ P (1)

m ] ∪ [P (⊥)
k ∩ P (“n/v”)

m ] ∪ [P (⊥)
k ∩ P (⊥)

m ]︸ ︷︷ ︸
⊆ Ωk ∩ Ωm

 ∪

∪ [P (1)
k ∪ P

(“n/v”)
k ]︸ ︷︷ ︸

⊆ Ak

⊆ Am ∪ A⋆ ∪ A⋆ ∪ A⋆ ∪
∪ Am ∪ Ak ∪ Ak ∪ (Ωk ∩ Ωm) ∪ Ak

=Ak ∪ Am ∪ A⋆ ∪ (Ωk ∩ Ωm),

(34)
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where we have used the relations (32),(33) from above and the fact that if pi ∈ P
(α)
k ∩ P

(β)
m with different

exponents α ̸= β it means that pi has sent different messages to the players pk, pm, i.e. he is actively
corrupted.
Also, when a player pk receives the value ⊥ from a player pi we know that this message was blocked from
reaching its recipient. If it was not, and the sender was following the protocol, he would have sent the same
message to pk and pm, giving us the above inequalities for the sets from (33). Otherwise, he would not be
following the protocol and he would belong in A⋆, in which case we get the same result. This is the reasoning
used in the blue underlined brackets.
This final result we reached contradicts the assumption of the C

(A,Ω)
BA (P, Z) condition, giving us the desired

result.
(Graded persistency) If we assume that every pi ∈ P\A⋆ who is alive at the beginning of GradedConsensus

has input xi = 0, we can use the Weak persistency property that we have established to deduce that every
non-actively corrupted pj (who is still alive) outputs x′

j = 0 in Step 1 (the case of pre-agreement on 1 can
be handled symmetrically).
Hence, for every pi we have that P \ (P (0)

i ∪ P
(⊥)
i ) ⊆ A⋆, and P

(⊥)
i ⊆ A⋆ ∪ Ω⋆ which means that pi outputs

0 with grade 1, i.e. (yi, gi) = (0, 1). The uniqueness of this decision follows from the graded consistency
property and this concludes our proof.

3.5 King Consensus

The last step towards Consensus is KingConsensus. Here, we select one player and give him the special role
of (phase) king. As before, if the players had pre-agreement on their inputs x, they all must output the same
value x (persistency). On top of that, if the king is correct, the players will reach agreement, no matter what
(king consistency).

The functionality FKC that captures that is described above It keeps the persistency if it is already
established. Otherwise, it could allow the adversary to change the output to a specific value v for all, subject
to the king being correct. Else, the adversary is allowed to select the outputs for all players.
The protocol realizing it first uses GradedConsensus and then has the king send his output to all players.
All players certain for their output keep their value, whereas all those who are uncertain adopt the value of
the king. This way, using graded consistency for the grades and persistency we make sure that if the king is
correct until the end of the protocol then all non-actively corrupted players will agree on the same output.
The protocol follows.

1. In round ρ = 1: Invoke GradedConsensus (P, Z, x⃗); pi denotes his output by (x′
i, gi).

2. In round ρ = 9: The king pk sends x′
k to every pj ∈ P by invocation of FixReceive.

3. In round ρ = 12: Each pj ∈ P outputs yj :=
{

x′
j if (gj = 1) or (pk sent x′

k /∈ F)
x′

k otherwise
If some pz ∈ Ω⋆ became zombie he outputs (omission, pz).

Protocol KingConsensus(P, Z, pk, x⃗ = (x1, . . . , xn))

Lemma 4. If the condition C
(A,Ω)
BA (P, Z) (see Eq. 12) holds, the protocol KingConsensus perfectly Z-securely

realizes the functionality FKC .

The claim stating the input/output properties of the protocol follows.

Claim 3. If the condition C
(A,Ω)
BA (P, Z) (see Eq. 12) holds, the protocol KingConsensus has the following

properties: (king consistency) If the king pk is correct, then every pj ∈ P \ A⋆ outputs yj = y. (persistency)
If every pi ∈ P \ A⋆ who is alive at the beginning of KingConsensus has input xi = x then every (alive) pj

outputs yj = x.

Proof. (Persistency) When the non-actively corrupt players who are alive pre-agree on some y then, by the
graded persistency property, they all output y with grade 1 and do not change it.
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(King consistency) When the king pk is correct, he sends the same x′
k to every player. We consider two cases:

(i) If some pi ∈ P \ A⋆ outputs some x′
i with grade gj = 1, then by graded consistency, all alive and correct

players output the same x′
i, including the king (x′

k = x′
i), who then sends this same value to everyone. (ii)

If all players have grade 0 then they all output the value they received from the king, the same x′
k for all,

completing our proof.

3.6 Consensus

The adversary corrupts Z⋆ = (A⋆, Ω⋆).

– Initially, set the input values x1, . . . , xn, the output values y1, . . . , yn to ⊥.
– In round ρ = 1:

• Upon receiving a message (input, sid, vi) from pi ∈ P (or the adversary, if the player is actively corrupted),
set xi = vi and send (leakage, sid, pi, vi) to the adversary.

– In round ρ = 2 up to 12n do nothing.
– In round ρ = 12n + 1, FCS sets (y1, . . . , yn) = (vt, . . . , vt), where vt is the input value of the first honest party:

• If ∀ alive pi ∈ P \ A⋆ the functionality has recorded the same xi = x then ignore all messages
(set y, (v1, . . . , vn)).

• Else, upon receiving (set y, (v1, . . . , vn)) from the adversary, if vj =⊥ only for some pj ∈ Ω⋆ and vi = vk

for any two pi, pk /∈ A⋆, set (y1, . . . , yn) = (v1, . . . , vn).
Otherwise, ignore all (set y) messages.

• If yj =⊥ for some pj ∈ Ω⋆, output (omission, pj) to pj .
• Upon receiving (fetch-output, sid) from pi ∈ P, send (output, sid, yi) to pi and (fetch-output, sid, pi) to the

adversary.

Functionality FCS(P, Z, x⃗ = (x1, . . . , xn))

Finally, we are now ready to present our Consensus primitive. The end goal of the parties is to terminate
with the same output y. On top of that, if there was pre-agreement on input x, the common output should
be y = x. Our functionality FCS , described above allows the adversary to change the common output value
only if there was no pre-agreement. Also, he is able to make a player in Ω⋆ zombie. All other messages are
ignored.

The way that the FCS is realized by the protocol Consensus is by repeatedly calling the KingConsensus
protocol. We use as inputs the outputs of the previous iteration and each time the king is a different player,
in turn for all players until we reach an honest one. Since every player becomes a king, we can be certain, as
long as not all players are corrupted (which is not allowed by our security condition) that at least one king
will be correct and, hence, we will achieve consistency on the output value. This point will be reached even
sooner if the non-actively corrupted players have pre-agreed on a value x. What is more, once this agreement
is achieved, by the persistency property of KingConsensus, we can be certain that it will not change, no
matter what the king sends (in case he is not correct) thus the agreement will be maintained.

To be more formal, below is the property-based definition of Consensus for our relevant corruption
types. A protocol perfectly Z-securely realizes Consensus among the players in P if it satisfies the following
properties in the presence of a Z-adversary:

– (consistency) Every non-actively corrupted pi ∈ P who is alive at the end of the protocol outputs the
same value y.

– (persistency) Assuming that every non-actively corrupted pi ∈ P who is alive at the beginning of the
protocol has input x, the output is y = x.

– (termination) For every non-actively corrupted pi ∈ P the protocol terminates after a finite number of
rounds.

The description of our Consensus protocol follows.
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1. In round ρ = 1: Each pi ∈ P sets x′
i := xi.

Then, for k = 1, . . . , n the following steps are run:
(a) Invoke KingConsensus(P, Z, pk, (x′

1, . . . , x′
n)); each pj denotes his output by z

(k)
j .

(b) Each pi ∈ P sets x′
i := z

(k)
i .

2. In round ρ = 12n + 1: Each pj ∈ P outputs yj := x′
j .

If some pz ∈ Ω⋆ became zombie he outputs (omission, pz).

Protocol Consensus(P, Z, x⃗ = (x1, . . . , xn))

Theorem 2. If the condition C
(A,Ω)
BA (P, Z) (see Eq. 12) holds, the protocol Consensus perfectly Z-securely

realizes the Consensus functionality FCS.

Proof. The proof of this theorem follows from the established protocols above. If C
(A,Ω)
BA (P, Z) holds true

we are granted that there exists an uncorrupted player in P, as P \ (Ai ∪ Aj ∪ Ak ∪ (Ωj ∩ Ωk)) ̸= ∅, for all
i, j, k selections of the three sets.
Then, applying both properties of KingConsensus in succession creates and then maintains the agreement
on the output for all iterations. This post-agreement can be achieved earlier still, if there is pre-agreement
between the non-actively corrupted players on their values.
Finally, for the termination property, we are certain that the protocol steps (a) and (b) will be run for exactly
n times, with each step being guaranteed to terminate. At this point, at least one honest player will have
successfully become king, after which point the pre-agreement and the eventual reaching of a common output
is reached according to the properties of KingConsensus.

3.7 Broadcast

The adversary corrupts Z⋆ = (A⋆, Ω⋆).

– Initially, set the input value x and the output values y1, . . . , yn to ⊥.
– In round ρ = 1:

• Upon receiving a message (input, sid, v) from p (or the adversary, if the player is actively corrupted), set
x = v and send (leakage, sid, p, v) to the adversary.

– In round ρ = 2 up to 24n + 6 do nothing.
– In round ρ = 24n + 7, FBC sets (y1, . . . , yn) = (v, . . . , v), where v is the input value of p.

• Upon receiving (inform omission, p) from the adversary, if p ∈ Ω⋆ set
(y1, . . . , yn) = (⊥, . . . , ⊥) and output (omission, p) to p.

• Upon receiving (set , ⊥, (v1, . . . , vn)) from the adversary, if vj =⊥ only for some pj ∈ Ω⋆ and vi = v for
any other pi /∈ A⋆, set (y1, . . . , yn) = (v1, . . . , vn).
Otherwise, ignore all (set ) messages.

• If yj =⊥ for some pj ∈ Ω⋆, output (omission, pj) to pj .
• Upon receiving (fetch-output, sid) from pi ∈ P, send (output, sid, yi) to pi and (fetch-output, sid, pi) to the

adversary.

Functionality FBC(P, Z, p, x, )

In this section we describe our Broadcast functionality FBC above. The idea is similar to the Consensus
functionality, with the difference that only the sender p has an input x. Additionally, if he remains alive, all
alive players will get the same output value y = x. The adversary can only make players pj ∈ Ω⋆ become
zombie and nothing more to alter the outputs. An honest p always broadcasts the correct value and the
output of broadcast is ⊥ only if p ∈ Ω⋆.

The formal property-based definition of Broadcast is as follows. A protocol perfectly Z-securely realizes
Broadcast with sender a player p whose input is x among the players in P if it satisfies the following properties
in the presence of a Z-adversary:

– (consistency) Every non-actively corrupted pi ∈ P who is alive at the end of the protocol outputs the
same value y.
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– (validity) Assuming that the sender p is not actively corrupted, the common output y satisfies y ∈ {x, ⊥}.
Specifically, y = x if p is alive and correct until the end of the protocol and y =⊥ if p has become a
zombie.

– (termination) For every non-actively corrupted pi ∈ P the protocol terminates after a finite number of
rounds.

Note that, as Broadcast invokes Consensus, the condition C
(A,Ω)
BA (P, Z) is needed for this protocol, as well.

We describe below our protocol for broadcast that realizes the functionality FBC .

1. In round ρ = 1: The sender p sends x to every pj ∈ P using FixReceive, who denotes the received value by xj .
(If pj received ⊥ he sets xj = 0).

2. In round ρ = 4: The players invoke Consensus(P, Z, (x1, . . . , xn)) on the received values. We denote pj ’s
output as yj .

3. In round ρ = 12n + 4: The sender p sends a confirmation bit b to every pi ∈ P using FixReceive, where b = 1
if the output of p after Consensus equals x and b = 0 otherwise; pi denotes the received bit by bi. (If pi

received ⊥ he sets bi = 0).
4. In round ρ = 12n + 7: Invoke Consensus(P, Z, (b1, . . . , bn)).
5. In round ρ = 24n + 7: For each pi ∈ P, if pi’s output after Consensus is 1, he outputs yi, otherwise he outputs

⊥.
If some pz ∈ Ω⋆ became zombie he outputs (omission, pz).

Protocol Broadcast(P, Z, p, x)

Theorem 3. If the condition C
(A,Ω)
BA (P, Z) (see Eq. 12) holds, the protocol Broadcast perfectly Z-securely

realizes the functionality FBC .

The claim stating the input/output properties of the protocol follows.

Claim. If the condition C
(A,Ω)
BA (P, Z) (see Eq. 12) holds, the protocol Broadcast has the following properties:

(consistency) All (alive) pj ∈ P \ A⋆ output the (same) value yj = y. (validity) When p ∈ P \ A⋆ we get that
y ∈ {x, ⊥}. Specifically, y = x when p is still correct (even if he is omission-corrupted) and he is alive at the
end of the protocol, and y =⊥ when p has become a zombie during the protocol.

The proof of the Claim can be derived from Consensus above, as a case study is enough to see that
consensus grants us the desired properties we need for broadcast, as well. Something to note here is the
addition of steps 3 and 4, which would initially seem surplus. The reason is that during Consensus, if there
is no pre-agreement, the adversary is allowed to select which value will be output and agreed upon. This can
be seen in FW C and FGC and it has already been mentioned in 2. More specifically, when the sender sends
his bit to everyone, if the sender is omission-corrupted it could be the case that some non-actively corrupted
parties do not receive his value. Then, according to step 1, they would set their input to 0. Hence, the second
stage, i.e. Consensus, could start without pre-agreement on the correct value of the sender, if his initial x
was equal to 1.
For this reason, we need the extra confirmation step of the bit send by the sender and the consensus run on
this bit in order to make sure that the output of Broadcast is the correct one, by having the sender agree.
Aside from those extra steps which we justified, the standard method of sending the senders bit to everyone
and then running consensus on the received values gives us the desired properties for broadcast.

Necessity of Conditions for Byzantine Agreement. Next, we will show that the C
(A,Ω)
BA (P, Z) con-

dition is also necessary for Broadcast. A strawman approach would be the following: Altman, Fitzi, and
Maurer [AFM99] proved that the following condition, denoted by CAF M (P, Z), is necessary and sufficient
for BA with general active/fail adversary structures, i.e., where the adversary characterized by a class
Z = (A, F ) can actively corrupt every party in A and fail-crash every party in F :

CAF M (P, Z) ⇐⇒ ∀Zi, Zj , Zk ∈ Z : Ai ∪ Aj ∪ Ak ∪ (Fi ∩ Fj ∩ Fk) ̸= P. (35)
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Since CAF M (P, Z) is necessary for active fail corruption, and fail-corruption is strictly weaker than omission
one might be tempted to use the above as a way to prove impossibility in our case, too. However, CAF M (P, Z)
is less strict than C

(A,Ω)
BA (P, Z), i.e., there are structures –indeed, the structure in the counter-example of

Lemma 5 is one– satisfying CAF M (P, Z) but not C
(A,Ω)
BA (P, Z).

Hence the above approach cannot work, which calls for a completely new impossibility proof. The following
lemma shows the impossibility that arises when C

(A,Ω)
BA (P, Z) is violated. The proof exploits adversarial

strategies which create an ambiguity in the view of the players, which prevents them from deciding which
corruptible class the adversary has actually chosen, contradicting correctness.

Lemma 5. If the condition C
(A,Ω)
BA (P, Z) does not hold, then the properties of the Broadcast protocol stated

in Theorem 3 cannot hold, as well.

Proof. Assuming that the condition C
(A,Ω)
BA (P, Z) (see Eq. 12) does not hold and that we have secure broad-

cast, i.e. the properties of the broadcast protocol hold true we will reach a contradiction. This means that
∃ Z1, Z2, Z3 ∈ Z such that

A1 ∪ A2 ∪ A3 ∪ (Ω2 ∩ Ω3) = P,

which means that the whole player set is covered by these three corruptible sets. Here, without loss of
generality, we can assume that the sets are not overlapping. If not, we can reduce the sets to the case above
by considering a strictly weaker adversary structure and still the condition holds.

p1 p2 p3 p4
Z1 α
Z2 α ω
Z3 α ω

Table 2. The classes
Z1, Z2, Z3 with
A1 ∪ A2 ∪ A3 ∪
(Ω2 ∩ Ω3) = P.

Now, we will use a player-simulation argument. If we create a contradiction by con-
sidering four players, p1, p2, p3, p4, assuming that they can securely communicate and
show that the condition together with the properties cannot hold there, then it is triv-
ial that the proof is complete. For that reason, we consider an adversary structure Z
as seen in Table 2. Here, for Z1, Z2, Z3 ∈ Z we have that A1∪A2∪A3∪(Ω2 ∩ Ω3) = P.
We assume that p1 is the designated sender and we want all other players to output
the same value, according to the broadcast property. We consider the following sce-
narios. In all cases, communication from p1 to p4 is cut entirely.
Scenario 1: The adversary chooses to corrupt Z1 (Fig. 1).
This means that p1 is actively corrupted and all other players are honest. The ad-
versary invokes the program π1 that p1 would normally run but for two different
inputs, 0 and 1, and he connects the first program with p2 and the second one with
p3, respectively. This means that p2 believes that the sender has input 0, p3 believes
that the sender has input 1 and p4 does not have any direct information from the sender.
Scenario 2: The adversary chooses to corrupt Z2. Furthermore, the sender p1 has input 1 (Fig. 2).
In that case, p2 is actively corrupted and p4 is omission-corrupted. The program π1 is invoked by the adver-
sary and it is run with input 0. Then, he connects that program with p2. At the same time p1 is normally
communicating his input 1 to p3 but his communication with p4 is blocked. This means that p2 believes that
the sender has input 0, p3 believes that the sender has input 1 and p4 does not have any direct information
from the sender.
Because the sender is not actively corrupted and is correct until the end of the protocol, due to validity, all
players should output 1 with overwhelming probability.
Scenario 3: The adversary chooses to corrupt Z3. Furthermore, the sender p1 has input 0 (Fig. 3).
In that case, p3 is actively corrupted and p4 is omission-corrupted, as before. The program π1 is invoked by
the adversary and it is run with input 1. Then, he connects that program with p3. At the same time p1 is
normally communicating his input 0 to p2 but his communication with p4 is blocked. This means that p2
believes that the sender has input 0, p3 believes that the sender has input 1 and p4 does not have any direct
information from the sender.
Because the sender is not actively corrupted and is correct until the end of the protocol, due to validity, all
players should output 0 with overwhelming probability.
For the players the three scenarios are indistinguishable. Hence, they should output the same value in all
cases, since all scenarios have the same set up, meaning that the distribution of the outputs should be iden-
tical.
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Fig. 1. p1 is actively corrupted.
Fig. 2. p2 is actively, p4 is omission-
corrupted.

Fig. 3. p3 is actively, p4 is omission-
corrupted.

Fig. 4. The scenarios 1, 2, 3 are indistinguishable for the non-actively corrupted players.

As the result is overwhelmingly different in all cases, this leads us to a contradiction. □

This proves that the condition C
(A,Ω)
BA (P, Z) consists a tight feasibility bound, meaning that the desired

properties hold true if and only if our condition holds.
In essence, this proof was done for the necessity of the Broadcast protocol. We claim that this is enough for
the necessity of the Consensus protocol, as well. Indeed, if there existed a consensus protocol that would work
while the condition C

(A,Ω)
BA (P, Z) does not hold, we could use this consensus protocol in the same manner

we have done earlier in order to build a new broadcast protocol. This in turn would break our impossibility
result, giving us a contradiction.
Hence, the necessity of the bound for Consensus is covered as well.

4 Multi-Party Computation

In this section we extend our study to multi-party computation. As a first step, in Section 4.1 we discuss the
challenges of such an extension, and show that existing techniques from the threshold literature either do not
work, or yield counter-intuitive results. There we discuss and prove the ineffectiveness of player elimination,
a technique frequently used in the general adversary literature.

This motivates us to introduce a new condition C
(A,Ω)
SMT (P, Z), which together with C

(A,Ω)
BA (P, Z) enables

us to create a Secure Message Transmission primitive in Section 4.2. This allows any two given parties to
exchange securely a message s and, specifically, the protocol either aborts while detecting a corrupted party
or it provides an alive receiver with the correct message of a sender, effectively creating a publicly detectable
private message functionality. In other words, either the message is delivered (keeping its privacy) or it can
be publicly detected which player failed/is corrupted.
With that idea we practically overcome the problem of omission corruptions and, thus, we could use any
MPC protocol for active corruption in general adversaries to accomplish the rest of our task. We present the
necessary tools and building blocks to do that in Section 4.3.
Next, we tackle one of the final problems, namely securely computing the gates in Section 4.4, with multiplica-
tion being the main difficulty while addition is pretty straight forward. There we present their functionalities
and how we can implement them in our setting.

Finally, after establishing that, we will be able to provide a tight characterization of the perfectly secure
MPC landscape (in terms of both feasibility and impossibility) in the remainder of the section. We compose
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all of our blocks and tools together in Section 4.5 to present our full MPC protocol and in Section 4.5 we
prove that our conditions are also necessary, i.e. tight.
As a side note, we remind here that our MPC assumes that the parties can broadcast messages (elements
from an appropriate arithmetic field F). As we can easily see, our MPC condition C

(A,Ω)
MP C (P, Z) implies

C
(A,Ω)
BA (P, Z) which means that we can use Broadcast for this purpose11.

4.1 The ineffectiveness of player elimination

Dealing with omission corruptions can be quite difficult. So far, the only known way to accomplish that in
information-theoretic MPC [ZHM09] is via player elimination (cf. Section 2). Recall that, player elimination
is used in the threshold adversaries setting, and the idea is that if a set of parties with sufficiently many faulty
parties is publicly identified—i.e., so that deleting all the detected parties does not destroy the corruption
threshold—then under the condition that all the detected parties have had their chance to share their input,
we can eliminate all of them, and have the remaining parties complete the computation (and later inform
the eliminated parties of their outputs).

In the following we show that player elimination cannot be used in the general adversary setting, even
for conditions that would seem natural to allow it. This will motivate us to focus on what we term strong
player elimination, where if a set of parties is detected, we have a guarantee that they are all corrupted.

p1 p2 p3 p4
Z1 ω ω
Z2 ω ω
Z3 ω

Table 3. The classes
Z1, Z2, Z3 that show
the ineffectiveness of
player elimination for
general adversaries.

In more detail, we will provide a counter-example to using player elimination
in the general adversary setting with omissions. Surprisingly, this specific example
would normally work in the threshold model. Here, we show that a player set that
respects the simple security condition

∀Zi, Zj ∈ Z : Ωi ∪ Ωj ̸= P

fails to do so once we remove a set of two publicly detected players, where the
guarantee is that at least one of them is (omission) corrupted. Let us assume that
the adversary structure Z is the following, as presented in Table 3:
Z1 = Ω1 = {p1, p3}, Z2 = Ω2 = {p1, p4}, Z3 = Ω3 = {p2}.
Assuming that the players p1, p2 are the pair that has the disagreement, meaning that
one of them is corrupted, if the weak player elimination was true, we could eliminate
both of them and obtain the structure Z: Z1 = Ω1 = {p3}, Z2 = Ω2 = {p4},
Z3 = Ω3 = {∅}. However, the residual player set consists only of p3, p4, meaning that Ω1 ∪ Ω2 = P, which
proves our argument that weak player elimination is not working with general adversaries, because the
security condition is not preserved.

We note in passing that it is straight-forward to extend the above simple counter-example to other natural
conditions on the adversary structure, e.g., ∀Zi, Zj , Zk ∈ Z : Ωi ∪Ωj ∪Ωk ̸= P by adding another party that
helps the three sets cover the player set. In fact, it is unclear which condition, if any, would allow us to use
this technique.

On the other hand, due to the symmetric nature of omission corruption (where a faulty sender or receiver
can have the same effect) it is unclear how one can derive a protocol with the stronger detection guarantees,
which would allow for strong player elimination. To tackle this problem we came up with a new protocol idea
which manages to establish a Secure Message Transmission primitive under the new condition C

(A,Ω)
SMT (P, Z).

In the following we prove that this condition together with C
(A,Ω)
BA (P, Z), is both sufficient and necessary for

MPC giving us a tight bound for the adversary structure.

4.2 Detectable Secure Message Transmission

11 As discussed in the introduction, we can trivially turn binary Broadcast to a string Broadcast by invoking it for
each bit of the string.
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The adversary corrupts Z⋆ = (A⋆, Ω⋆).

– In round ρ = 0: Initially, set the output value mout to ⊥.
Upon receiving a message (input, sid, s) from the sender Ps (or the adversary, if the sender is actively
corrupted), set mout = s and send (leakage, sid, Ps, l(s) = |s|) to the adversary.

– In rounds ρ = 1 to 7: Do nothing.
– At any point in time:

• Upon receiving (adv-omit-output, Pr) from the adversary, if Pr ∈ Ω⋆, set mout =⊥ and output (omission,
Pr) to Pr.

• Upon receiving (inform omission, pb) from the adversary for some pb ∈ P, if pb ∈ Ω⋆, output (omission, pb)
to pb and abort with B = {pb}.

• Otherwise, discard the message.
– In round ρ = 8: Upon receiving (fetch-output, sid) from Pr, send (output, sid, mout) to Pr and

(fetch-output, sid, Pr) to the adversary.

Functionality FdetSMT (P, Z, Ps, Pr, s)

The first step towards our MPC protocol is to enable any pair of parties with a sender Ps and a receiver Pr to
exchange a message s securely, i.e. with the privacy and correctness of the message preserved. Furthermore,
we want to accomplish that in a publicly detectable way, meaning that the protocol either succeeds or it
aborts having detected a corrupted party.

The functionality that captures our goal is presented above. It starts by taking some input s from the
designated sender. The adversary can input any value his chooses if the sender is actively corrupted.
Then this value is forwarded to Pr. Meanwhile, it allows the adversary to affect the output if the sender
or receiver are corrupted by in a detectable way. Also, he could cause an abort, but at the cost of making
publicly known the identity of a corrupted party.

Our protocol that realizes this functionality works in a way that resembles FixReceive, as discussed in
Section 3.2; The sender sends to all players and at the end all players forward the message to the receiver.
However, the difference is that now we have a reliable broadcast primitive and the players can use it complain
if they do not receive a message they were expecting. Also, we also ensure that the privacy of the message is
maintained, in contrast to FixReceive, which was done in public communication. This is done by the use of
a secret sharing scheme. The sharing is characterized by the sharing specification S, according to which the
shares of the message to be kept secret are distributed to the players, effectively stopping the adversary from
holding all shares. In our case we will be using a sum sharing, i.e. the secret value s is split in summands
s1, . . . , sm with

∑m
i=1 si = s, where m is the size of the sharing specification |S|.

For each player pj we call the vector of summands in his possession ⟨s⟩j = (sj1 , . . . , sjk
) as pj ’s share of s.

The complete vector of all shares is denoted as ⟨s⟩ = (⟨s⟩1, . . . , ⟨s⟩n) and is called a sharing of s. The vector
of summands of s is denoted as [s] = (s1, . . . , sm) and their sum is equal to s. We, also, say that such a
sharing ⟨s⟩ is a consistent sharing of s according to (P, S), if for each Sk ∈ S all (correct) players in Sk have
the same view on sk and s =

∑m
k=1 sk.

Our selection for S will be the natural sharing specification SZ associated with Z, i.e. (S1, . . . , Sm) =
(P \ A1, . . . , P \ Am), where m = |Z|, so that for each corruptible class Zi all the players not included in Ai

for that class will receive the share si. This way the adversary never obtains all summands.
Using that secret sharing scheme, Ps creates a sharing of his message s and sends each part sq to the

complement Sq of Aq. This process is done for each q = 1, . . . , m. Then the players who did not receive it
can complain through broadcast. Additionally, an extra round of cross checking and relay is added, during
which all parties in Sq send to one another the values they received from Ps. Again, complaints are raised
and the players try to see which classes of the adversary structure fit their view.
Finally, once the complaints are over, all players send their vector of received values to the designated receiver
of the message, Pr.

To make the counting of the rounds easier, we will assume that all rounds are Broadcast rounds (1 BCR).
This means that we give enough time from now on to what we consider a (BC) round, to allow the parties
to perform the Broadcast protocol. This assumption sacrifices peer-to-peer rounds during which nothing is
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done 12 while the parties wait for Broadcast to conclude, but this does not affect our study as we are in the
perfect security model. Looking ahead, once our SMT primitive is established, we will only use those two
“channels” to send messages, i.e. every message will be either a Broadcast message or a SMT message. As a
result, we will start counting our rounds similarly, either as Broadcast rounds (1 BCR) or SMT rounds (1
STR).

– In round ρ = 0: The sender Ps creates a random sharing [s] = (s1, s2, . . . , sm) for s according to the sharing
specification S by randomly selecting s2, . . . , sm and setting s1 = s −

∑m

i=2 si, where m = |S|. If a player fails
to share his input, a default value is used.

– Perform the following phases (in parallel) for q = 1, . . . , m:
1st Phase (spread). In round ρ = 1: Ps sends sq to every pk ∈ Sq ∪ {Pr}. Each pk denotes the received

summand as s
(k)
q (s(k)

q = “n/v” if pk received none or an invalid value for sq).
2nd Phase (complaints). In round ρ = 2: All players broadcast a special message OK if they received the

messages they were anticipating or a complaint NOK if a message was dropped.
We denote by P (OK) and P (NOK) the sets of players who broadcast OK and NOK respectively.
• If there exists some Zk = (Ak, Ωk) ∈ Z such that Ωk ⊇ P (NOK) then proceed to the next phase.
• Else the protocol aborts with the set B = {Ps} (i.e. Ps ∈ Ω⋆).

3rd Phase (cross-check and relay). Let Sq = {pq1 , pq2 , . . . , pqλ }.
• In round ρ = 3: Every pqi ∈ Sq sends the value s

(qi)
q to every pqj ∈ Sq ∪ {Pr}, who denotes the received

value as s
(qi,qj )
q .

• In round ρ = 4: For each pk, all players broadcast a special message OKk if they received the message
s

(k)
q they were anticipating from pk or a complaint NOKk if the message was dropped. We denote by

P
(OK)
k and P

(NOK)
k the sets of players who broadcast OKk and NOKk, respectively.

• If at any point some pqi ∈ Sq ∪ {Pr} receives contradicting values s
(qj ,qi)
q , s

(qℓ,qi)
q with s

(qj ,qi)
q ̸=⊥ and

s
(qℓ,qi)
q /∈ {s

(qj ,qi)
q , ⊥} for sq, then pqi broadcasts CONTRAST.

• If any pqi ∈ Sq broadcasts CONTRAST or for some pqj ∈ Sq ∪ {Ps} we have that:
pqj /∈ Ωq ∧ P

(NOK)
qj ⊈ Ωq then Ps broadcasts sq and Pr adopts this value (the class Sq is not

justifying the complaints).
• Else all parties consider the classes

Zq := {Zj ∈ Z s.t. ∀ pqi ∈ Sq ∪ {Ps} : (pqi ∈ Ωj ∨ P
(NOK)
qi ⊆ Ωj)}. If for some party pqi ∈ Sq for all

Zj = (Aj , Ωj) ∈ Zq we have pqi ∈ Ωj , then the protocol aborts with B = {pqi }.
If Zq /∈ Zq then Ps broadcasts sq and Pr adopts this value.
If there exists no Zk ∈ Zq such that the corresponding Ωk covers P (NOK) then the protocol aborts
with B = {Ps}.

4th Phase (output of Pr for each Sq ∈ S). In round ρ = 5: Each player pk ∈ Sq sends its unique received value
s

(k)
q over all s

(qi,k)
q (or “n/v” if pk has received no value for sq) to Pr.

• If there exists no Z = (A, Ω) ∈ Zq : P
(⊥)
r ⊆ Ω, where P

(⊥)
r := {pk : s

(k)
q =⊥}, then Pr becomes a

zombie and outputs (omission, Pr, ⊥).
• If Pr receives contradicting values s

(qj )
q ̸=⊥ and s

(qℓ)
q /∈ {s

(qj )
q , ⊥} for sq, then Pr broadcasts

CONTRAST. Upon that, the sender Ps broadcasts sq and Pr adopts this value (in rounds ρ = 6, 7).
• If Pr has received no (valid) value at all for sq from any pk ∈ Sq OR if for all Zj ∈ Zj we have that

Aj ⊇ P
(sq)
r then Pr broadcasts a special message REQUEST, upon which the sender Ps broadcasts sq

and Pr adopts this value (in rounds ρ = 6, 7).
• Else, Pr sets s

(r)
q as the unique value in the set {s

(q1,r)
q , s

(q2,r)
q , . . . , s

(qλ,r)
q } of received values (and wait

until round 7 finishes).
– In round ρ = 8: Finally, if there exists some justifying for all q class Zj = (Aj , Ωj) ∈ Zj such that for every

Sq ∈ S we have some unique s
(r)
q ∈ F for q = 1, . . . , m, then Pr outputs s =

∑m

q=1 s
(r)
q ;

else Pr outputs s = 0 (Ps is actively corrupted).

Protocol DetSMT(P, Z, S, Ps, Pr, s)

12 This creates a linear in the number of parties overhead of rounds.
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– Protocol-Wide Detection: The following procedure is followed if at any point in the protocol a party
broadcasts an invalid value or ⊥: If any player pf fails to broadcast a valid message when expected to do so,
then the protocol immediately aborts with B = {pf } (if there is more than one such players, then take the
one with the smallest index.).

Lemma 6. If the condition C
(A,Ω)
MP C (P, Z) (see Eq. 11) holds, the protocol DetSMT perfectly Z-securely

realizes the functionality FdetSMT .

Proof (Sketch). First we need to state the claim about the input/output properties of the protocol.

Claim 4. If the condition C
(A,Ω)
MP C (P, Z) (see Eq. 11) holds, the protocol DetSMT satisfies the following.

Either the protocol aborts with some set B of corrupted parties or it terminates with the properties: a) If the
receiver Pr is alive at the end of the protocol then he outputs a value sp ∈ F where sp = s unless Ps ∈ A⋆.
b) Also, Pr might become a zombie only if he is omission-corrupted. c) Furthermore, no information on s is
leaked to the adversary.

Proof. First claim: If the protocol aborts, the identified set B contains only omission-corrupted parties. There
are three cases where the protocol aborts. The first case is if the check during phase 2 fails and the protocol
aborts with B = {Ps}. This means that there is no class Zk such that all complaints are coming from players
in Ωk. Towards contradiction, we assume that the sender is correct. This implies that all the messages that
Ps sends are correctly received by all correct parties, hence all complaints, i.e. all players in P (NOK) are in
Ω⋆, giving us that P (NOK) ⊆ Ω⋆. However, this contradicts the fact that no Ωk covers P (NOK), meaning
that Ps is indeed in Ω⋆.
The second case is at the end of phase 3, where the protocol aborts with B = {pqi

} if some party pqi
belongs

in Ωj for all Zj ∈ Zq. Since Zq contains all classes that justify the view of the players and the chosen class
Z⋆ is also justifying that view (in reality it is causing it), we get that Z⋆ ∈ Zq. Thus pqi

∈ Ω⋆.
The third and final case that that protocol aborts is with a set B = {pf } from the protocol-wide detection.
In that case, pf failed to broadcast a valid message. By the properties of Broadcast, this directly implies
that pf ∈ Ω⋆.

Second Claim: A player (specifically Pr) becomes zombie only if he is omission-corrupted. According to
the protocol, the only instance of a player becoming a zombie is at phase 4 when Pr checks the ⊥ he received.
If there exists no class from the justifying set Zj that covers P

(⊥)
r , meaning that the set of players that did

not send a value to Pr is not covered by Ω, we can deduce that Pr received a ⊥ due to his own fault, hence
he is not correct. As a result, Pr becomes a zombie only if he is omission-corrupted.

Third Claim: If is Pr is alive and Pr outputs some y ̸=⊥ then y = s (unless Ps ∈ Ω⋆).
Towards contradiction, let us assume that for some set Sq, the receiver Pr receives and adopts some ŝq ̸= sq

(by definition of the protocol this means that through the protocol for this Sq and the corresponding share
sq the receiver Pr has only received ŝq and not the correct summand sq at any round. Otherwise, he would
have CONTRASTed). In this case we will show that the player set should be split as shown in Figure 5,
which is essentially similar to the counterexample for C

(A,Ω)
SMT (P, Z) of Lemma 7. Specifically, Ps will belong

in a set Vsq
and Pr in a set V¬sq

with all communication cut between them, i.e. no message is received from
a channel between a player in Vsq and a player in V¬sq . Similarly for the sets M and Q. This will then lead
us to a contradiction of C

(A,Ω)
SMT (P, Z).

Let us define the sets Vsq
as the set of (non-actively corrupted) parties in Sq that at some point saw sq

and never something different and V¬sq the rest of the non-actively corrupted parties in Sq. Formally, we
write:
Vsq

:= {pk : pk ∈ Sq \ A⋆} where pk that at some point saw sq and never something different and
V¬sq

:= {pk : pk ∈ Sq \ A⋆} and pk never saw sq throughout the protocol (either saw ŝq or no value for sq).
Since no CONTRAST was broadcast at any point, it means that no pk ∈ Sq \ A⋆ received both sq and ŝq,
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Fig. 5. An SMT execution with sender in Vsq and receiver in V¬sq , where any direct channel between them is blocked.
No message is received from a channel between a player in Vsq and a player in V¬sq . Same for sets M and Q. All
parties in K possess a value sq and parties is L a value ŝq.

i.e. Vsq ∩ V¬sq = ∅. By definition we also have that Ps ∈ Vsq and Pr ∈ V¬sq . Also, it is easy to see that
every communication between those two sets is blocked, because in the opposite case some player able to
communicate with the other set would have broadcast CONTRAST. In particular, we note that Pr must
have received ⊥ from all players in Vsq

. To explain this situation we must have either Vsq
⊆ Ω⋆ or V¬sq

⊆ Ω⋆.
The other two sets that exist in the player set are the set Q = Aq of all parties not participating in this
iteration for q by definition and finally the set M of actively corrupted parties. In the specific case that we
are studying, all communication from Q to Vsq , V¬sq is blocked.
From here we deduce that there are only two types of justifying classes, which are public and known to all
due to the public nature of the complaints.

– The justifying class of type 1) are the Zk with Ωk such that it covers the set V¬sq and Pr (i.e. Ωk ⊇ V¬sq ).
– The justifying class of type 2) are the Zm with Ωm such that it covers the set Vsq and Ps (i.e. Ωm ⊇ Vsq ).

Those classes can be divided further in two whether their respective A is the set Q = Aq or no. Let us denote
the former as type i) and the latter as type ii).
Only those types of classes survive the elimination of impossible classes during the protocol and are considered
justifying.

Now we observe the following.

– If no type 1) class exists then Ps becomes a zombie.
– If no type 2) class exists then Pr becomes a zombie, because Vsq

is the set of players that Pr received ⊥
from.

– If no type i) class exists then Ps broadcasts sq (it would mean that Zq is not justifying, hence the protocol
would stop and broadcast sq at the end of phase 3).

Hence we have the following surviving types of classes and only those, conditioned on the fact that no
broadcast of sq occurred.
Zki ∈ Zq := {Ak = Aq ∧ Vsq ⊆ Ωk} of type 1.i),
Zmi ∈ Zq := {Am = Aq ∧ V¬sq ⊆ Ωm} of type 2.i), and
Zm, Zk ∈ Zq of type 1,2 respectively.

Now, with those surviving classes we must try to explain the view of the players in the case that we
study. In particular, since a wrong value ŝq was created and forwarded to V¬sq

, it means that there exists
a class Zb = (Ab, Ωb) that is either Zkii

or Zmii
of either type 1 or 2 with Ab = M . Those are the only

two classes that we know (in the analysis of the protocol, the players do not know that) that can cause
the case we are studying. This means that some pc ∈ M either created the value ŝq and relayed it to some
pℓ who then forwarded it to Pr, or that pc directly forwarded it to Pr. In other words, for any s

(i,j)
q = ŝq

that Pr received we have that either pi ∈ M ⊆ A⋆ or pj ∈ M ⊆ A⋆ (we only care for the case where Ps is
not malicious, so any ŝq messages are not his creation). At this point, using a player simulation argument,
those sets Vsq

, M, V¬sq
together with Aq create the same player set and corruptible classes as in the counter

example in 4.2.
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Let us deal with the first case, i.e. the adversary actually controls some Zb = (Ab, Ωb) that is of type 1),
Zkii . This gives us that

Ωb ⊇ V¬sq
and Ab ⊇ M, (36)

which dictates that only type i) class available would be some Zq = (Aq, Ωq) of type 1 with

Ωq ⊇ V¬sq and Pr ∈ Ωq, (37)

Otherwise, if there existed some type 2.i) class, we would have that Ωq ⊇ Vsq
and this would imply

Aq ∪ Ωq ∪ Ab ∪ Ωb ⊇ Aq ∪ Vsq
∪ M ∪ V¬sq

= P, (38)

which contradicts C
(A,Ω)
F IXR(P, Z). Finally, in order to complete the problematic scenario which would confuse

the receiver, we know that a type 2 class Zℓ must exist, with Ωℓ ⊇ Vsq
.

Since we cannot allow any two Ω ∪ A’s to cover the whole player set (would contradict C
(A,Ω)
F IXR(P, Z)), Aℓ

cannot cover M due to the way that Zq is built. So this case ends up containing the following three classes:
Zb with Ωb ⊇ V¬sq , Ab ⊇ M and Pr ∈ Ωb.
Zq with Ωq ⊇ V¬sq , Aq and Pr ∈ Ωq

Zℓ with Ωℓ ⊇ Vsq
and Ps ∈ Ωℓ.

However, this contradicts the condition C
(A,Ω)
SMT (P, Z), due to

Ωℓ ∪ Ab ∪ Aq ∪ (Ωb ∩ Ωq) ⊇
Vsq

∪ M ∪ Aq ∪ (V¬sq
) = P,

(39)

with Pr ∈ Ωb, Pr ∈ Ωq and Ps ∈ Ωℓ, proving that this case cannot be occurring. The second and final case
with Zb being of type 2.i) is completely symmetrical and can be omitted.
From this contradiction we deduce that our claim is true, meaning that if Pr is alive and Pr outputs some
y ̸=⊥ then y = s (unless Ps ∈ Ω⋆).

Fourth Claim: No information is leaked to the adversary. Moving to proof of privacy, we will show
that no information on s is leaked to the adversary. By construction of the natural sharing specification
S = (P \ A1, . . . , P \ Am) and the fact that each sq is sent to the players in Sq and not Aq, we see that there
exists one class Z⋆ = Zc such that the adversary does not obtain the summand sc in the spread phase.
There are four operations that convey information on sq (indeed, all other communication consists of broad-
casting complaint messages): (1) parties in Sq sending sq to each other for consistency checks in Phase 2;
(2),(3),(4) sender Ps broadcasting sq as a result of a CONTRAST complaint in Phase 3 and 4, or due to
Zq /∈ Zq in Phase 3 or, finally, due to a REQUEST from Pr in Phase 4.
In case (1) no information is conveyed as the messages are between parties of Sq. This means that if any
party in Sq is actively corrupted the adversary already knows sq, otherwise he does not get to see any of
these messages.
For cases (2), (3) and (4), we argue that privacy is kept even after some sq is broadcast from Ps according
to the protocol. Indeed, we will show that Ps broadcasts sq only when the adversary already knows it, so no
information is leaked.
In case (2) a player in Sq ∪ {Pr} receives contrasting values during Phase 3 or 4.If the sender was correct,
then all values for sq would be the same for all players. This means that since some pk reached CONTRAST,
either the sender is actively corrupted or some actively corrupted party in Sq relayed the contrasting value
or pk is actively corrupted. In all cases, the adversary has learned the summand sq already, so broadcasting
it does not compromise the privacy of s.
Case (3) occurs when the value of sq is broadcast because Zq is not in the set Zq of justifying classes for sq.
Since by definition Z⋆ ∈ Zq

13, this directly implies that Zq ̸= Z⋆. Hence, the adversary already knows sq.
13 Remember that Zq is the set of classes that justify the view of the parties and Zq has created this view, so it

obviously justifies them.
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Case (4) is when Pr will broadcast REQUEST during the Pr output Phase 4, if no value at all is received.
In that scenario, all the messages from the players in P (OK) (who have received a value) towards Pr must
have been blocked. We will prove that this means that Zq cannot be the class that the adversary selected,
meaning that Ps can safely broadcast sq. Let us assume towards contradiction that Zq = Z⋆ (i.e. Aq = A⋆)
and that Pr remains alive and gets no value at all. The sender Ps is either correct or incorrect.
If Ps is correct, then P (NOK) ⊆ Ω⋆ and together with Aq = A⋆ we get that no Ωm can cover P (OK), in
order not to violate C

(A,Ω)
F IXR(P, Z), stating that for any two k, m : Ωk ∪ Ωm ⊉ P. This means that some

honest party exists in P (OK) and after phase 3 is completed all parties that are not omission-corrupted will
get some value and will forward it to Pr, who either receives it or becomes a zombie (since Ωm ⊉ P (OK) for
all Ωm).
If Ps is not correct, then from the check during phase 2 we know that there exists some Zk such that
Ωk ⊇ P (NOK) (otherwise the protocol aborts, having detected Ps). Given that Aq = A⋆, from C

(A,Ω)
F IXR(P, Z)

we get that Ω⋆ ⊉ P (OK), meaning that some honest party receives the correct value from Ps. Due to the
relay and cross-check, at this point we are essentially back in the previous case, where the “sender” is correct,
as this honest party will forward sq to all other parties in Sq ∪ {Ps, Pr}. This grants us that again Pr will
either receive some value or become zombie. As a conclusion, if Zq = Z⋆ we are certain that an alive Pr will
always receive some value. By this, we are allowed to safely ask for the broadcast of sq if for some q we have
that Pr received no value at all.

Now we are ready to give a sketch of the simulation proof. The simulator observes the real world execution
of the protocol. If the protocol aborts, according to the properties of Claim 4, we are guaranteed that it does
so while identifying some corrupted party pc ∈ B (sender included). As such, the simulator can create the
same effect in the ideal world by sending (inform omission, pc) to the functionality.
If the receiver becomes zombie from the same claim we are granted that he is indeed omission-corrupted. As
a result, the simulator sends (adv-omit-output, Pr) to the functionality to create the same effect.
If the receiver remains alive we know from the claim that he will output a value sp, where sp = s unless
Ps ∈ A⋆. We will show that this is indistinguishable from the ideal world. To do it, we break down the
simulation for each Sq ∈ S, where sq is sent to Sq and

∑m
q=1 sq = s.

– If the sender is correct we have two cases:
• If the adversary controls no party in Sq ∪ {Pr} the simulator just runs the protocol, as the adversary

learns no information about sq.
• If the adversary controls some party in Sq ∪ {Pr} the simulator samples a uniformly random rq for

sq and forwards it to the adversary. This way the rq variables follow the same distribution with the
sq.

– If the sender is actively corrupted, the simulator must use the value for sq that the real adversary used,
in order to make the two executions indistinguishable. Once the simulator learns this sq value, he can
send (input, sid, sq) to the functionality to set the value of the summand to the desired one (he can only
do that because Ps is actively corrupted).

– If the receiver is actively corrupted, the simulator makes certain that the sum of all sq is equal to s by
setting the last value that he has to sample accordingly.

Aside from that, everything is deterministic with no randomness affecting the protocol and there is no
private input that the simulator needs to extract. As a result, the simulator can simply run the protocol.

We will examine the following two cases, namely if the adversary controls some party pc ∈ Sq or not.
In the first case where the adversary has no such control and does not learn sq, the simulator just

replicates the broadcast of complaints as he observes them in the real world. This is sufficient because the
adversary sees nothing except from the public complaints, which he can choose.

In the second case where the adversary already knows sq, our argument about the real world execution
of the protocol and the ideal world being indistinguishable by any environment is based on the fact that the
adversary only learns a fraction of the summands and not all of them. Specifically, initially the simulator
observes if a party pb becomes zombie in the real world. From the properties of Claim 4 we know that pb
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is indeed omission-corrupted which allows the simulator to send (inform omission, pb) to the functionality,
creating the same effect. Then, the simulator samples a uniformly random value and forwards it to the
adversary for each summand that the adversary receives in the real world. Since they are random and the
adversary does not have access to all of them by construction of the adversary structure, the effect is the
same as in the ideal world, where uniformly random values are handed to the adversary.
To complete the argument that the two worlds are indistinguishable, the simulator also takes advantage of
the fact that the complaints are public and the actions of the real world adversary can be detected according
to Claim 4, together with the fact that each summand is uniformly random and independent of the rest,
subject to their sum being set. From the same claim we also get that an alive Pr will output the correct value
sq in the real world if the protocol does not abort. In the same manner, the functionality delivers the correct
sq to an alive Pr in the ideal world. As a result, the simulator is able to send the appropriate messages to
FdetSMT and the adversary to create the same view in the ideal world and in the real world execution of the
protocol.

Necessity of SMT condition. In this section, we prove that the condition C
(A,Ω)
SMT (P, Z, p1, p2) is actually

necessary for the FDetSMT functionality between a sender p1 and a receiver p2, making our result tight (both
sufficient and necessary). To show the impossibility of SMT when the condition does not hold, we distinguish
the following two cases. In the first case the sender is omission-corrupted and the receiver is honest (should
output “n/v”). In the second case the sender is honest and the receiver is omission-corrupted (should out-
put ⊥ – become a zombie). Note that consistently with our previous functionalities (and the natural MPC
functionality), the above two scenarios have distinct outputs.

p1 p2 p3 p4
Z1 ω α
Z2 ω α
Z3 ω

Table 4. p1 wants to securely
send a message to p2.

Indeed, in an MPC evaluation, a correct receiver should never output ⊥ when
the sender is correct; and if the receiver is omission-corrupted and correct (but
not actively corrupted), then he should never output a value other than the one
that the sender intended to send (or a special value in case it is clear the sender
failed to send his value). More formally, this allows to explicitly distinguish the
scenario p1 ∈ Ω⋆, p2 ∈ H with output “n/v” from the scenario p1 ∈ H, p2 ∈ Ω⋆

with output ⊥ from p2.
Our impossibility proof shows that in order to ensure that the above scenar-

ios can be faithfully followed, the parties (sender and receiver) need to reveal
information about the transmitted message to the adversary which contradicts
the security (specifically privacy) of SMT.

Lemma 7. If the condition C
(A,Ω)
SMT (P, Z, p1, p2) does not hold, then the functionality FDetSMT (P, Z, p1, p2, m)

cannot be securely realized.

Proof. Let us assume towards contradiction that there exist classes Z1, Z2, Z3 with

A1 ∪ A2 ∪ Ω3 ∪ (Ω1 ∩ Ω2) = P AND p1 ∈ Ω1 ∩ Ω2 ∧ p2 ∈ Ω3, (40)

then we will prove that we cannot perform a secure message transmission from p1 to p2.
We focus on the smallest instance violating this condition, consisting of 4 players p1, p2,p3,p4, with the
following adversary structure: (A1, Ω1) = ({p3}, {p1, p3}), (A2, Ω2) = ({p4}, {p1, p4}), and finally (A3, Ω3) =
(∅, {p2}), as shown in Table 4. Using a standard player simulation argument [HM97], the proof can be directly
extended to the general n-party case. In fact, we will prove that a restriction of the above adversary is not
tolerable, which implies that the above is also not tolerable. This restriction is as seen in the Figure 6):
Note that in all three classes the adversary controls one of p1 or p2, hence the adversary can always block the
communication between p1 and p2 through their direct channel, meaning that all communication between
them has to rely on p3 or p4.

To prove our impossibility, let us assume that p1 wants to send some message m ∈ F(̸= “n/v”) to p2 and
let’s assume that there exists a protocol Π that securely accomplishes that. We consider the following three
scenarios:
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Fig. 6. Impossibility of SMT with sender in K and receiver in L, when there exists no direct channel between them.

– Scenario 1: The adversary corrupts Z1. This means that communication between p1 and p2 is blocked
because the sender is omission-corrupted. Also, p3 is actively corrupted, so the adversary has full control
over what messages p3 sends to p2. Since p2 is honest, he should output either the correct value m or
“n/v” to indicate that p1 is faulty.

– Scenario 2: The adversary corrupts Z2. As before, communication between p1 and p2 due to p1’s fault.
Also, p4 is actively corrupted, so the adversary has full control over what messages p4 sends to p2. Since
p2 is honest, he should output either the correct value m or “n/v” to indicate that p1 is faulty.

– Scenario 3: The adversary corrupts Z3. This time, communication between p1 and p2 due to p2’s fault,
as only p2 is (omission) corrupted. Since the sender is correct, p2 should output either the correct value
m or ⊥ to indicate that the problem lies with the him, the receiver.

Since the adversary can perfectly replicate an honest execution of the protocol by his actively corrupted
party, all three scenarios are perfectly indistinguishable from the point of view of p2.
As a result, it is necessary that the output of p2 in all three scenarios is the same value, in common in all
three cases, meaning that p2 should output v = m.

Let us now focus on the first 2 scenarios and see how the necessity of the output being v = m creates
a problem. In the first scenario, the adversary has full control over p3 and this enables him to create any
transcript that he desires and gives him full information on all messages that go through p3. As a protocol that
securely realizes SMT should leak no information to the adversary, we deduce that any possible transcript
of the message history between p3 and p2, denoted as T3,2, should contain no information at all about m. In
a similar way, T4,2 should also be completely independent of m.

This leads us to the following observation. For any given m′ and for every T4,2, there exists some T ′
3,2

such that Π2(T ′
3,2, T4,2) = m′, i.e. p2 outputs m′ given those transcripts. To see why this is true, if for

any given m′ and T4,2, there existed no T ′
3,2 such that Π(T ′

3,2, T4,2) = m′, then the adversary could try all
possible combinations of transcripts and conclude that m ̸= m′. This means that this transcript T4,2 would
leak information about the message, specifically that it is not equal to m′.

Now, to complete our argument, let us assume that we are in the first scenario, where the adversary
controls p3, and p1 wants to send m to p2. Let the transcript of p4 be some T4,2, generated honestly by
following Π. In the case where the adversary replaces the program of p3 with a protocol that generates
random messages towards p2, there is the chance (which could be negligible, but still strictly positive) that
the transcript T ′

3,2 is generated.
This means that p2 will output Π2(T ′

3,2, T4,2) = m′, which is the wrong value, not the one that p1 intended
to send, contradicting our assumption that there exists some Π that securely realizes FDetSMT .

4.3 Building Blocks and Tools for MPC

Having established the DetSMT primitive to replace the network of point-to-point channels for the commu-
nication, we will now carry on with the construction of an MPC protocol by following the classic idea of
creating a secure MPC protocol in the presence of a general adversary using only active corruption. Given
any arithmetic circuit C—recall that this is a complete model of computation—the protocol evaluates the
circuit in a gate-by-gate fashion, where the invariant is that the inputs and outputs of each gate of C are
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kept secret shared, see below, so that no information leaks to the adversary. Importantly, the protocols that
process each gate, which we construct, might abort; however, when this happens: (1) no information leaks
to the adversary, and (2) a corrupted party p is identified. This means that we can exclude p, and reset
the computation without it. As we prove, the relevant sufficient condition, C

(A,Ω)
MP C (P, Z), is preserved when

eliminating such a corrupted party, which will ensure security in the reduced setting. As soon as an iteration
of the above processing of the gates of C terminates without an abort–which is bound to happen after at
most n resets—we invoke a reconstruction protocol to have every party (still alive) receive the output. We
note that without loss of generality, we assume that the function which is computed by C has one public
output. Using standard techniques, we can use a protocol for any such function to compute functions with
multiple and/or private outputs [LP09].

In the following, we start by describing and proving the security of sub-protocols that are used as building
blocks and then describe how these can be stitched together in an MPC protocol.

Heartbeat. A very important part of our results is based on the fact that if the adversary blocks enough
messages addressed to a player to make him reach a wrong conclusion, the player could be able to perceive
this loss of messages. Then, he could step down from the calculation by becoming a zombie, as he is (omission)
corrupted. The functionality FHb is taking as input by the player a bit b = 1 indicating that he is alive. The
adversary is able make a player in Ω⋆ aware of his omission status, effectively setting b = 0. Then this value
is communicated to all parties.The functionality is provided in detail below.

The adversary corrupts Z⋆ = (A⋆, Ω⋆).

– In round ρ = 0:
• Initially, set the input value z and the output values y1, . . . , yn to ⊥.
• Upon receiving a message (input, sid, v) from Ps (or the adversary, if the player is actively corrupted), set

z = v, v ∈ {0, 1}, and send (leakage, sid, Ps, v) to the adversary.
• Upon receiving (inform omission, Ps) from the adversary, if Ps ∈ Ω⋆, set z = 0 and output (omission, Ps) to

Ps.
– In round ρ = 1BCR:

• If z = 1, FHb sets (y1, . . . , yn) = (1, . . . , 1).
Otherwise, it sets (y1, . . . , yn) = (0, . . . , 0).

• Upon receiving (fetch-output, sid) from some pi ∈ P, send (output, sid, yi) to all pi and
(fetch-output, sid, pi) to the adversary.

Functionality FHb(P, Z, z, Ps)

We implement this through the broadcast of the bit b by the player. If b = 1 then all agree that the player
is alive. Otherwise, if a player fails to broadcast this bit to other players or broadcasts b = 0 it becomes
apparent to all that he is a zombie, as he is corrupted. According to the output of broadcast everyone agrees
whether p is alive or not.
It should be noted that omission-corrupted players who have not yet detected their problem can learn that
they are zombies from the output of the consensus protocol.

– In round ρ = 0: If p is alive (not a zombie), p sends a bit b = 1 to every pj ∈ P, by invoking
Broadcast(P, Z, p, b).

– In round ρ = 1BCR: Every pj ∈ P sets bj := 1 if the output of Broadcast was a 1-bit and bj := 0 otherwise.
Every pj ∈ P outputs “alive” when bj = 1 and “zombie” otherwise.
Additionally, if the output is 0, p becomes a zombie.

Protocol Heartbeat(P, Z, p)
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Lemma 8. If the condition C
(A,Ω)
BA (P, Z) (see Eq. 12) holds, the protocol Heartbeat perfectly Z-securely

realizes the functionality FHb.

Proof. The essence of the functionality above is a broadcast of an “alive indicator” bit. As such, the proof of
the lemma is less involved compared to the previous lemmas and we will only include a sketch of the intuition
of the simulator. This will follow after we state and prove the corresponding properties of the protocol in
the claim below.

Claim. If the condition C
(A,Ω)
BA (P, Z) (see Eq. 12) holds, the protocol Heartbeat has the following properties:

(consistency) All (correct) players agree on the output of the protocol. (correctness) If p has become a zombie
before the invocation of Heartbeat, then every (correct) player learns it and outputs “zombie”. Finally, a player
p might become a zombie only if he is omission-corrupted.

Proof. To begin with, the consistency is granted directly from the consistency property of broadcast 3.7 on
the values b.
Next, for the correctness, it is clear that if a player has noticed before the invocation of Heartbeat that he is
omission-corrupted, then he will follow the protocol instructions and broadcast the value b = 0 to all players
(or equivalently when it is time for him to carry out the protocol he will not send anything.) Again, from
the validity property of broadcast, we directly get the required correctness.

Finally, we will prove that if pc is not omission-corrupted, the output of the protocol will be “alive”. This
part is straight forward, as a sender who is not omission-corrupted is certain to succeed in the invocation of
Broadcast. Since pc is correct, when he broadcasts b = 1 all correct players pj will output bj = 1, due to the
properties of the broadcast, hence, the output of the protocol is 1 for “alive”.

Carrying on with the simulation proof, we provide a sketch of the simulator below: A simulator that would
make a real-world execution of the protocol indistinguishable from the ideal world would be described as
below.

– If the prescribed player Ps that invokes Heartbeat is correct, the simulator does nothing.
– If Ps is omission-corrupted and not correct, the simulator observes the real world execution. If Ps fails to

broadcast a value or broadcasts b = 0, then the simulator sends (inform omission, Ps) to the functionality.
– If Ps is actively corrupted, the simulator observers the real world execution and sets the respective value

(0 or 1) to the functionality.

By the properties of Claim 4.3 stated above together with the properties granted in the hybrid HybBC world
from the ideal Broadcast, we get that a correct sender is always able to successfully communicate his alive
bit b = 1 to all other parties, who all agree that Ps is “alive”.
In the opposite case, we have that an omission-corrupted sender that is not correct will either successfully
broadcast b = 0 according to the protocol or he will fail to broadcast a value, which is interpreted by
others as “zombie”. In both cases, the simulator observes that and sends the corresponding message to the
functionality, setting z = 0. As a result the functionality sets yi = 0 for all i and all players will agree on the
same output “zombie” for Ps.

Secret Sharing.

The adversary corrupts Z⋆ = (A⋆, Ω⋆).

– In round ρ = 0:
• Initially, set the input value s and the output values y1, . . . , yn to ⊥.
• Upon receiving a message (input, sid, v) from pd (or the adversary, if the player is actively corrupted), set

s = v.

Functionality Fshare(P, Z, S, pd, s)
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– (Sharing phase): If pd /∈ A⋆, for all Sk ∈ S (where |S| = m) sample uniformly random s1, . . . , sm such that∑m

k=1 sk = s. Then for all sk such that Sk ∩ A⋆ ̸= ∅, send sk to the adversary. Otherwise, if pd ∈ A⋆, upon
receiving (set rd-sum, (v1, . . . , vm)) from the adversary, set s1, . . . , sm = v1, . . . , vm.

– At any point in time:
• Upon receiving (inform omission, pd) from the adversary, if pd ∈ Ω⋆, set s =⊥, output (omission, pd) to pd

and abort with B = {pd}.
• Upon receiving (inform omission, pj) for some pj ∈ P from the adversary, if pj ∈ Ω⋆ output (omission, pj)

to pj and abort with B = {pj}. Otherwise ignore.
– In round ρ = 1ST R: Upon receiving (fetch-share, sid) from some pi ∈ Sk, where k ∈ {1, . . . , m} send

(share, sid, sk) to all pi ∈ Sk and (fetch-output, sid, pi) to the adversary.

A very important primitive that is essential in keeping the privacy of the players’ input is Secret Sharing.
Having split the message s in random summands sk using a sum share, we can then send each one of them
through DetSMT to the corresponding set Sk. This idea was first developed in [ISN89] and has since been
used in many MPC protocols.

The functionality that we want to instantiate is presented in detail above. To give a brief description, it
takes as input a value s that needs to be kept secret. Then, uniformly random shares s1, s2, . . . , sm where
m = |S|, are created such that s =

∑m
k=1 sk. Each one of those sk is sent to the respective set Sk (which is

the complement of Ak). This way no matter which class A⋆ the adversary corrupts, there exists a share s⋆

of the set S⋆ = P \ A⋆ that the adversary does not obtain. Hence the privacy of s is preserved.
In the case where the dealer is actively corrupted, the adversary is allowed to select the shares of s. If the
dealer pd is omission-corrupted, the adversary selects if the Sharing will succeed as normal or if it will abort
and pd will be identified as omission-corrupted.

What makes our implementation simple at this point is the existence of the SMT channel. Instead of send-
ing the messages using the existing network of point-to-point channels, our protocol sends them by invocation
of the Protocol DetSMT we built earlier. This grants us the detectability and privacy properties directly.
Finally, the players invoke a Heartbeat to communicate to all if someone became a zombie.

– In round ρ = 0: The dealer pd chooses the summands s2, . . . , sm randomly, where m = |S| and sets
s1 := s −

∑m

k=2 sk.
– (Sharing phase): For each set Sk where k ∈ {1, . . . , m}, the dealer pd sends sk by invocation of the protocol

DetSMT(P, Z, pd, pi, sk) to all players pi ∈ Sk.
– At any point in time:

• If any of the invoked sub-protocols aborts with B, Share also aborts with B.
• If pd broadcasts ⊥ at any point then Share aborts with B = {pd}.

– In round ρ = 1ST R: All players invoke the protocol Heartbeat to communicate if someone has become a
zombie. If a player pz is detected as a zombie the protocol aborts with B = {pz}.

Protocol Share(P, Z, S, pd, s)

Lemma 9. If the condition C
(A,Ω)
MP C (P, Z) (see Eq. 11) holds and additionally we have that for all Zi, Zj ∈ Z

and for all Sk ∈ S : Ai ∪Aj ∪(Ωi ∩ Ωj) ⊉ Sk, the protocol Share perfectly Z-securely realizes the functionality
Fshare.

Proof. Before providing the simulation proof, we state below the input/output properties of the protocol,
necessary for the lemma above.

Claim. If the condition C
(A,Ω)
MP C (P, Z) (see Eq. 11) holds and additionally we have that for all Zi, Zj ∈ Z and

for all Sk ∈ S : Ai ∪Aj ∪ (Ωi ∩ Ωj) ⊉ Sk, the protocol Share has the following properties: (correctness) Share
either outputs a consistent sharing ⟨ŝ⟩ of some ŝ, where ŝ = s unless the dealer pd is actively corrupted, or
it aborts with a set B of corrupted parties. (secrecy) No information on s leaks to the adversary.

Proof. First of all, we should point out that the second condition stating that each Sk is not being covered
by the union of two actively corrupted and the intersection of their respective omission-corrupted sets is
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implied by the condition C
(A,Ω)
BA (P, Z) of C

(A,Ω)
MP C (P, Z) when we use the natural sharing specification SZ .

This becomes apparent when we consider the BA condition, keeping in mind that for each Sk it holds
Sk = P \ Ak.
For the correctness property, we can see that if the dealer pd is correct and the recipients pi of the summand sk

are alive, then from the DetSMT protocol (Claim 4) we are granted the correctness of the value sk received.
In the opposite case where the dealer pd is not correct, if he broadcasts ⊥ or another player becomes a
zombie and causes a sub-protocol to abort, then the protocol aborts with B. Otherwise, if pd is incorrect
and no protocol aborts and he broadcasts the correct values, then Share works correctly (by the guarantees
of DetSMT ) and outputs a consistent sharing of ⟨ŝ⟩.

After that, the secrecy part is directly inherited from the properties of DetSMT and the fact that all sk

are random, subject to their sum being equal to s. From there, the natural sharing specification S ensures
that the adversary never learns all of the summands sk, giving us privacy on s.

Now we can continue with the simulation proof of the lemma above. Indeed, we can create a simulator
that makes an ideal execution of Fshare indistinguishable from a real world execution of Share in the hybrid
world where invocations of the DetSMT protocol are replaced by ideal calls to FDetSMT , as follows.
• If pd is correct and not actively corrupted, the simulator does nothing.
• If pd is incorrect (omission-corrupted), the simulator observes if any of the calls to FDetSMT fails or if pd

becomes a zombie. In that case, the simulator sends (inform omission, pd) to Fshare.
• If pd is actively corrupted, the real world adversary sends his input sk for every k to FDetSMT so the
simulator is handed all of these values. Then the simulator sends (set rd-sum, (s1, . . . , sm)) to Fshare as pd’s
input and computes s =

∑m
k=1 sk as the input value.

• The simulator observes the real world execution. If at any point a (sub)-protocol aborts with some B, the
simulator sends (inform omission, pz) to Fshare for the corresponding player pz ∈ Ω⋆.
• Besides that, the simulator sends to the adversary whatever the functionality outputs.

As in both worlds the adversary (when the dealer is not actively corrupted) receives uniformly random
shares but not all of them, the view of the adversary in the real world is identically distributed to the view
in the ideal world, making the two executions indistinguishable.

Announce and Reconstruct.

The adversary corrupts Z⋆ = (A⋆, Ω⋆).

– In round ρ = 0:
• Initially, set the input values x1, x2, . . . , xn and the output values y1, y2, . . . , yn to ⊥.
• Upon receiving a message (input, sid, vi) from some pi ∈ Sk (or the adversary, if the player is actively

corrupted), set xi = vi and send (leakage, sid, pi, l(xi) = xi) to the adversary.
– In round ρ = 1BCR:

• Set y1, y2, . . . = x1, x2, . . ., where the number of values is equal to the number of players in Sk.
• Upon receiving (fetch-share, sid) from some pi ∈ Sk, send (share, sid, (y1, y2 . . .)) to all pi ∈ Sk and

(fetch-output, sid, pi, (y1, y2 . . .)) to the adversary.
– At any point in time: Upon receiving (inform omission, pj) from the adversary, if pj ∈ Ω⋆, output (omission,

pj) to pj .

Functionality Fann(P, Z, Sk, sk)

The functionalities Fann and Frecn for the Announce and Reconstruct primitives are given above. The
protocols Announce and Reconstruct are closely related as the latter is essentially built on the former. The
first one is used to publicly announce the value of a specific summand (using Broadcast) and the second one
to publicly reconstruct a sharing of a value (using PublicAnnounce for all summands), respectively. Both
of those protocols are robust, meaning that if our condition holds true and the sharing of the values was
successful, those protocols cannot abort and they always succeed.
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– In round ρ = 0: Every pi ∈ Sk publishes his value for sk, denoted as s
(i)
k , by using Broadcast(P, Z, pi, sk).

– In round ρ = 1BCR: Every pj ∈ P, using the broadcast values, determines the set V ⊆ F of values that are
“explainable” by some adversary class in Z, i.e. set V := {v = s

(i)
k } if there exists Z = (A, Ω) ∈ Z such that

{pi ∈ Sk : s
(i)
k =⊥} ⊆ Ω and {pi ∈ Sk : s

(i)
k /∈ {v, ⊥}} ⊆ A.

• If pj cannot determine such a set, he becomes a zombie (pj ∈ Ω⋆).
– Every pj ∈ P outputs v ∈ V if |V | = 1. Otherwise, output a default value v = 0.

Protocol PublicAnnounce(P, Z, Sk, sk)

Lemma 10. If the condition C
(A,Ω)
MP C (P, Z) (see Eq. 11) holds, assuming that sk is a summand of a consistent

sharing of a value s, the protocol PublicAnnounce perfectly Z-securely realizes the functionality Fann.

Proof. Before providing the sketch of the simulation proof, we state the claim for the input/output properties
of the protocol below.

Claim. If the condition C
(A,Ω)
MP C (P, Z) (see Eq. 11) holds and additionally we have that for all Zi, Zj ∈ Z and

for all Sk ∈ S : Ai ∪ Aj ∪ (Ωi ∩ Ωj) ⊉ Sk, assuming that sk is a summand of a consistent sharing of a value
s, the protocol PublicAnnounce publicly announces the value of the summand sk.

Proof. For the proof of the claim, we will examine the possible cases for |V |. Since we assume a consistent
sharing that successful and it was done with respect to the natural sharing specification SZ , a correct
summand sk will be given to at least one honest party. This is because no Sk can be covered by some Ωi.
Indeed, assuming towards contradiction that this was the case, we would have that

Ωi ⊇ Sk =⇒ Ωi ⊇ P \ Ak =⇒ Ωi ∪ Ak ⊇ P, (41)

by the definition of Sk, contradicting C
(A,Ω)
F IXR(P, Z) and therefore C

(A,Ω)
MP C (P, Z). Hence, for each pj the set V

contains this summand. This happens because the check for the values in the set V is obviously satisfied by
sk and the honest party that has sk will correctly broadcast it. If |V | = 0, according to the above it means
that pj has no access to the outputs of Broadcast and to the right value sk and he becomes a zombie.

If |V | = 1 the protocol publicly announces the value of sk correctly, as there exists only one value which
is explainable and the correct value sk is guaranteed to be in V .

If |V | ⩾ 2 we will show that our security condition could not hold. Since |V | ⩾ 2 there exist v1, v2 with
v1 ̸= v2 both satisfying the condition for belonging in V , where only one of them could be the correct one
(because the and the protocol aborts. Let us assume that v1 is the correct one. This means that there exist
Z1 = (A1, Ω1), Z2 = (A2, Ω2), with A1 ⊆ A⋆, Ω1 ⊆ Ω⋆ such that all pi ∈ Sk with s

(i)
k =⊥ satisfy both

pi ∈ Ω1 ⊆ Ω⋆ and pi ∈ Ω2. Additionally, {pi ∈ Sk : s
(i)
k /∈ {v1, ⊥}} ⊆ A1 ⊆ A⋆ and {pi ∈ Sk : s

(i)
k /∈ {v2, ⊥

}} ⊆ A2. Putting all these together we get that all values from players in Sk are covered by the above sets
or more formally

A⋆ ∪ A2 ∪ (Ω⋆ ∩ Ω2) ⊇ Sk, (42)

which violates the assumption Ai ∪ Aj ∪ (Ωi ∩ Ωj) ⊉ Sk of the claim, a contradiction. This means that
assuming that the sharing of s was wrong, meaning that s was shared inconsistently by some actively-
corrupted party.
As such, the parties can output a default value v = 0 for the summand sk without compromising the
correctness of the output.

Now we are ready to give the description of the simulator. As per the previous proofs, we are working in
the HybBC Hybrid world were parties can make ideal calls to FBC . Since the adversary is deterministic and
does not use any randomness, the only thing that the simulator needs to know before being able to perfectly
replicate a real world execution of the protocol is what omission corrupted players are blocked from using
FBC and which/how actively corrupted parties deviate from following the protocol. In our case, the protocol
is just a call of FBCby each party in Sk, which makes the simulation more simple.
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– The simulator observes if some party pf broadcasts ⊥ or fails to broadcast in the real world execution.
Then, he sends the corresponding message (inform omission, pf ) to Fann.

– The simulator observes the broadcast values vc of every actively corrupted party pc and sends to Fann

the message (input, sid, vc) to set the corresponding inputs.
– The simulator outputs to the real world adversary externally whatever output was generated by the

program of the adversary that the simulator run internally.

As a result, the simulator can create a view for the real world adversary that is indistinguishable from the
ideal world, hence proving the lemma.

Since PublicAnnounce is robust and does not abort, it becomes apparent that Reconstruct is also robust and
if the protocols called up to that point have succeeded, it correctly reconstructs the desired value s from its
summands that are announced one by one.

The adversary corrupts Z⋆ = (A⋆, Ω⋆).

– In round ρ = 0:
• Initially, set the input values {x1, . . . , xm}, where xi = {xi1 , . . . , xiℓ }, and the output values s, y1, . . . , ym

to ⊥.
• Upon receiving a message (input, sid, ⟨s⟩i) with pi’s share ⟨s⟩i = (si1, si2, . . . , siℓ) from some pi ∈ Sk (or

the adversary, if the player is actively corrupted), set xk = vi and send (leakage, sid, pi, l(xk) = xk) to the
adversary.

– In round ρ = 1BCR:
• Set y1, . . . , ym = x1, . . . , xm and s =

∑m

k=1 sk.
• Upon receiving (fetch-share, sid) from some pi ∈ P, send (share, sid, (s, y1, . . . , ym)) to all pi and

(fetch-output, sid, pi, (y1, y2 . . .)) to the adversary.
– At any point in time: Upon receiving (inform omission, pj) from the adversary, if pj ∈ Ω⋆, output (omission,

pj) to pj .

Functionality Frecn(P, Z, S, ⟨s⟩)

– In round ρ = 0: For every Sk ∈ S, protocol PublicAnnounce(P, Z, Sk, sk) is invoked (can be done in parallel)
to announce to all players the correct summand sk.

– In round ρ = 1BCR: Every pi ∈ P locally computes s =
∑|S|

k=1 sk and outputs s.

Protocol Reconstruct(P, Z, S, ⟨s⟩)

Lemma 11. If the condition C
(A,Ω)
MP C (P, Z) (see Eq. 11) holds, assuming that sk is a summand of the correct

sharing of a value s, the protocol Reconstruct perfectly Z-securely realizes the functionality Frecn.

Proof. Following is the claim for the input/output properties of the protocol that we will need for the proof
of the lemma.
Claim. If the condition C

(A,Ω)
MP C (P, Z) (Eq. 11) holds and additionally we have that for all Zi, Zj ∈ Z and for

all Sk ∈ S : Ai ∪ Aj ∪ (Ωi ∩ Ωj) ⊉ Sk, assuming that sk is a summand of a consistent sharing of a value s,
the protocol Reconstruct publicly reconstructs s.

Proof. If the conditions of the claim hold true, we are granted that the properties of PublicAnnounce from
Claim 4.3 are also true. This means that no protocol PublicAnnounce aborts since they are robust and for
each Sk we have that the summand sk is correctly publicly announced. After that, all players pj who are
alive hold in their possession all summands sk, k = 1, . . . , |S| and due to the Broadcast properties, all of
them agree on those values. At this point, all that remains for each pj is to locally compute s :=

∑|S|
k=1 sk in

order to obtain the correct value for s.
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To continue our simulation proof, we can use the Hybann Hybrid world. This gives us that each ideal
call of Fann outputs the same value for sk to all alive parties. The adversary cannot cause the protocol to
abort and cannot block any messages, because the protocol is only calling Fann and then locally computing
the sum of the outputs. As a result, the simulator needs only to run internally the program of the real world
adversary and output to the actual adversary externally whatever the program outputs. This creates an
identical view between any real world and ideal world execution for the adversary.

4.4 Computing the gates

Addition. The first type of gate that we need to implement is the Addition gate. At each such gate, given
the sharing ⟨s⟩ and ⟨t⟩ of s, t the players need to compute a sharing of their sum s + t. The simplest way
to create this new sharing is to have each party pj locally compute the sum of his shares of the two values
and set ⟨s + t⟩j = ⟨s⟩j + ⟨t⟩j . This is way we create a sharing that is random (as the sum of two random
summands), hides the value of s + t as it did for s, t and is consistent, as long as the initial sharings were
consistent.

– In round ρ = 0:
• Initially, for every pj ∈ P set the input vectors ⟨s⟩j and ⟨t⟩j , as well as the output vector ⟨x⟩j to ⊥. a

• Upon receiving ⟨s⟩j and ⟨t⟩j from pj , set ⟨x⟩j = ⟨s⟩j + ⟨t⟩j .
• Upon receiving (fetch-output, sid) from pj ∈ P, send (output, sid, ⟨x⟩j) to pj .

a For each pj we have that ⟨s⟩j := (sj1 , . . . , sjℓ ) is pj ’s share, consisting of the summands of s held by pj .

Functionality Fadd(P, Z, S, ⟨s⟩, ⟨t⟩)

– In round ρ = 0:
• Input: A sharing ⟨s⟩ of the value s and ⟨t⟩ of the value t, previously shared to the parties. Every party

pj ∈ P holds his shares ⟨s⟩j and ⟨t⟩j .
• Each party pj in P (locally) computes his share of the sum s + t as the sum of his respective shares of s

and t.
Formally, set ⟨x⟩j = ⟨s⟩j + ⟨t⟩j , i.e. add for each Sk add the component of s with the respective
component of t.

• Output: a sharing of s + t, where each party pj ∈ P outputs his share
⟨x⟩j = ⟨s + t⟩j .

Protocol Add(P, Z, S, ⟨s⟩, ⟨t⟩)

Lemma 12. If the condition C
(A,Ω)
MP C (P, Z) (see Eq. 11) holds, the protocol Add perfectly Z-securely realizes

the functionality Fadd.

Proof. The proof for this specific protocol is trivial as no information is exchanged with other parties. Each
player locally performs the calculation that the trusted party would perform in the ideal world. Hence, the
protocol Add perfectly Z-securely realizes the functionality Fadd.

Multiplication.

The adversary corrupts Z⋆ = (A⋆, Ω⋆).

Functionality Fmult(P, Z, S, ⟨s⟩, ⟨t⟩)

41



– Initially, set the input8 values {s1, . . . , sm} and {t1, . . . , tm}, where si = {si1 , si2, . . .}, and the output values
[y] = (y1, . . . , ym), [st] = (s1t1, s1t2, . . . , smtm) and ⟨y⟩ = (⟨y⟩1, ⟨y⟩2, . . . , ⟨y⟩n) to ⊥.

– In round ρ = 0:
• Upon receiving a message (input, sid,v) from pk (or the adversary, if the player is actively corrupted) with

a vector v = (vk1 , vk2 , . . .) containing pk’s share of s, set the respective sℓk = vkℓ . Similarly, receive input
for t.

• If sℓi = sℓj = v for every two pi, pj ∈ Sℓ \ A⋆ then Fmult sets sℓ = v. Otherwise adopt sℓi from first honest
pi. Similarly for t. Then Fmult sets xℓ,q := sℓ · tq.

• In round ρ = 1ST R: For all (Sk, Sℓ) ∈ S × S repeat the following:
1. If (Sk ∩ Sℓ) ∩ A⋆ = ∅, for all q ∈ {1, . . . , m} with Zq = (Aq, Ωq) ∈ Z such that Sq ∩ A⋆ ̸= ∅, sample

uniformly random v1, . . . , vm summing up to xk,ℓ and forward vq to the adversary. Repeat for all
pr ∈ Sk ∩ Sℓ.
Then Fmult sets [xk,ℓ] = (v1, . . . , vm).

2. Else, if (Sk ∩ Sℓ) ∩ A⋆ ̸= ∅, additionally to the previous step, upon receiving (adv-share, (z1, . . . , zm))
from the adversary check the following:
If

∑m

i=1 zi = xk,ℓ, then set [xk,ℓ] = (z1, . . . , zm).
Else if their sum is not xk,ℓ, publicly announce sk as skg and tℓ as tℓg from the share of the first honest
player pg in Sk ∩ Sℓ and set
[xk,ℓ] := [sktℓ] = (skg · tℓg, 0, . . . , 0) as the way that xk,ℓ = sktℓ is split into m summands.

– Phase 3: Do nothing.
– In round ρ = 1ST R + 3BCR: For the output [y] = (y1, . . . , ym) Fmult sets

y1 =
[∑m

k,ℓ=1 xk,ℓ

]
1

, . . . , ym =
[∑m

k,ℓ=1 xk,ℓ

]
m

(for each yq we sum the q-th summand of all xk,ℓ).
• For all k = 1, . . . , m, upon receiving (fetch-output, sid) from pj ∈ Sk, send (output, sid, yk) to pj and

(fetch-output, sid, pj) to the adversary.
– Upon receiving (inform omission, pj) from the adversary for some pj ∈ P, if pj ∈ Ω⋆, output (omission, pj) to

pj and abort with B = pj .

Our next goal is to to securely compute a sharing of the product of two shared values. Its properties are that,
as long as our conditions hold, given two consistent sharings ⟨s⟩, ⟨t⟩ it securely creates a consistent sharing
of ⟨s · t⟩, or it aborts after detecting a set B of incorrect/corrupted players. Those properties are captured
by the functionality Fmult above.

Initially, the functionality receives input in the form of sharings, where each player pi inputs his shares
⟨s⟩i and ⟨t⟩i for s and t, respectively. The adversary can select the shares for the player he controls. After
that, the functionality checks whether the input of all non-actively corrupted parties for every summand
sk is the same, i.e. checks whether the sharing is consistent. If it is, sk is fixed to this value (similarly for
every tℓ). Otherwise, the values of the first honest player are adopted. Then, the product xk,ℓ of any two
summands sk, tℓ is calculated. Next each such product needs to be shared to all parties according to S. This
is performed by all players holding xk,ℓ. Once the sharing of all those products is completed, all parties can
locally add their shares of xk,ℓ over all combinations of k, ℓ to obtain a share of the final product y = st.

We note that if the adversary controls a party that can compute xk,ℓ, he is able to select how this product
is shared, i.e. how it is split into summands [xk,ℓ] = (z1, . . . , zm) and importantly, he can impose this choice
to the honest players, subject to the summands adding up to xk,ℓ. This was observed and dealt with in
detail in the work of Asharov, Lindell and Rabin [ALR11]. Alternatively, the adversary is able to completely
deviate from creating a sharing of the correct value and select summands that do not add up to xk,ℓ, but in
this scenario the functionality detects that and adopts the values for sk and tℓ from an honest player. Then,
a default sharing of xk,ℓ = sktℓ is created as [xk,ℓ] = (sktℓ, 0, . . . , 0). To argue that there always exists a
non-actively corrupted player having both sk and tℓ we can transform our security condition from Broadcast
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as follows.

C
(A,Ω)
BA (P, Z) ⇐⇒ Ak ∪ Aℓ ∪ Am ∪ (Ωk ∩ Ωℓ) ⊉ P

Ak ∪ Aℓ ⊉ P \ (Am ∪ (Ωk ∩ Ωℓ))
P \ (Ak ∪ Aℓ) ⊈ Am ∪ (Ωk ∩ Ωℓ)

(P \ Ak) ∩ (P \ Aℓ) ⊈ Am ∪ (Ωk ∩ Ωℓ)
(Sk ∩ Sℓ) ⊈ Am ∪ (Ωk ∩ Ωℓ),

which gives us that (Sk ∩ Sℓ) cannot be covered by Am ∪ (Ωk ∩ Ωℓ), and by extension (since that holds for
any m) cannot be covered by A⋆. Since there always exists an non-actively corrupted party in Sk ∩ Sℓ, the
adversary cannot tamper with the value of xk,ℓ and in this case both sk and tℓ are publicly announced to
all players so that all adopt the correct values.
If at some point the adversary decides to make a player aware of his omission status, the player is informed
and publicly steps down, while the functionality aborts having detected a corrupted party.

Our implementation of that functionality is protocol Mult and it is based on the respective protocols of
[Mau02,BFH+08]. The idea of the protocol is the following: As s and t are shared according to S, we can
use the summands s1, . . . , s|S| and t1, . . . , t|S| to compute the product st as the sum of the products of all
those si, tj , i.e.

st :=
|S|∑

k=1

|S|∑
ℓ=1

sktℓ =
|S|∑

k,ℓ=1
sktℓ. (43)

Each term xk,ℓ = sktℓ is shared by every player in Sk ∩ Sℓ. After that the players try to see if they agree
on the shared summands, by computing and reconstructing all the differences of the xk,ℓ shared. If they do
not agree, either the sharing was not consistent (due to the adversary inputting wrong values earlier on) or
the adversary controls some party in Sk ∩ Sℓ. In either case, it is safe to publicly announce both sk and tℓ

so that everyone agrees on the value of those summands and adopt a default sharing for their product xk,ℓ.
After doing this for all combinations of k, ℓ, the players compute the sum of the shared terms xk,ℓ, which

results in a sharing of st, as desired.

– For every (Sk, Sℓ) ∈ S × S, the following steps are executed:
i) In round ρ = 0:

Every pi ∈ (Sk ∩ Sℓ) computes the products xk,ℓ := sktℓ and invokes Share(P, Z, S, pi, xk,ℓ) ; denote the
resulting sharing as

〈
x

(i)
k,ℓ

〉
.

ii) In round ρ = 1ST R:
Let pi denote the player with the smallest index in (Sk ∩ Sℓ) . For every pj ∈ (Sk ∩ Sℓ) , the difference〈

x
(j)
k,ℓ

〉
−

〈
x

(i)
k,ℓ

〉
is computed and is reconstructed by invoking the protocol Reconstruct.

iii) In round ρ = 1ST R + 1BCR:
If all differences are 0, then the sharing

〈
x

(i)
k,ℓ

〉
of pi is adopted as sharing of xk,ℓ, i.e., ⟨xk,ℓ⟩ :=

〈
x

(i)
k,ℓ

〉
.

Otherwise (i.e., some difference is non-zero), Public Announce is invoked to have both sk and tℓ

announced, and a default sharing ⟨xk,ℓ⟩ of xk,ℓ = sktℓ is created (e.g., the first summand is set to xk,ℓ and
the other summands are set to 0).

– In round ρ = 1ST R + 2BCR:
All players invoke the protocol Heartbeat for all to see if someone has become a zombie. If a player pz is
detected as a zombie, Mult aborts with B = {pz}.

– In round ρ = 1ST R + 3BCR:
• Each player in P (locally) computes his share of the product s · t as the sum of his shares of all terms xk,ℓ.
• Output: a sharing of st, where each party pj ∈ P outputs his share ⟨st⟩j .

Protocol Mult(P, Z, S, ⟨s⟩, ⟨t⟩)
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– If any of the invoked sub-protocols aborts with B, then Mult aborts with B.

Lemma 13. If the condition C
(A,Ω)
MP C (P, Z) (see Eq. 11) holds, ⟨s⟩ and ⟨t⟩ are consistent sharings according

to S and the following properties hold: for all Zi = (Ai, Ωi), Zj = (Aj , Ωj) ∈ Z and Sk ∈ S : Ai ∪ Aj ∪
(Ωi ∩ Ωj) ⊉ Sk, as well as for all Sk, Sℓ ∈ S and for all Zi = (Ai, Ωi) ∈ Z : Sk ∩ Sℓ ̸⊆ Ai, the protocol Mult
perfectly Z-securely realizes the functionality Fmult.

Proof. Instead of proving that protocol Mult securely realizes the functionality Fmult, we will do it for the
hybrid protocol Hybmult which instead of using protocol Share and PublicAnnounce, it makes ideal calls
to the functionalities Fshare and Fann internally. From there, the statement of the lemma follows using the
composition theorem of [Can01]. Before we give our simulation-based proof, we need to state the following
useful claim about the input/output properties of the protocol.

Claim. If the condition C
(A,Ω)
MP C (P, Z) (see Eq. 11) holds, ⟨s⟩ and ⟨t⟩ are consistent sharings according to S and

the following properties hold: for all Zi = (Ai, Ωi), Zj = (Aj , Ωj) ∈ Z and Sk ∈ S : Ai ∪Aj ∪(Ωi ∩ Ωj) ⊉ Sk,
as well as for all Sk, Sℓ ∈ S and for all Zi = (Ai, Ωi) ∈ Z : Sk ∩ Sℓ ̸⊆ Ai the protocol Mult(P, Z, S, ⟨s⟩, ⟨t⟩)
has the following properties: (correctness) It either outputs a sharing of st according to S or it aborts with
a non-empty set B of incorrect players. (secrecy) No information leaks to the adversary.

Proof. To begin with, by selecting the SZ as our sharing specification we get that both other conditions are
implied by C

(A,Ω)
BA (P, Z). We have already proven that for the first one in Claim 4.3. We will show that the

second condition is implied, as well.
For all k by definition we have Sk = P \ Ak, so we get that Sk ∩ Sℓ = P \ (Ak ∪ Aℓ). Now it is easy to see
that Sk ∩ Sℓ ⊈ Ai, for all Ai is equivalent to P \ (Ak ∪ Aℓ) ⊈ Ai, which eventually can be written as

Ai ∪ Ak ∪ Aℓ ̸= P,

which is easily implied by C
(A,Ω)
BA (P, Z).

For proving the correctness we will show that for each pair sk, tℓ there exist a player who is not actively
corrupted that has access to both values. Indeed, the condition stating that for all k, ℓ, i we have Sk ∩ Sℓ ̸⊆ Ai

ensures that any pair sk, tℓ is known to at least one player who is not actively corrupted. As a result, if no
invocation of Share aborts and all differences are zero, then the shared values are correct and we have a
successful sharing of all xk,ℓ = sktℓ. Since the product st is defined as

st :=
m∑

q=1

m∑
r=1

sqtr,

when ⟨s⟩ = (s1, . . . , sm) and ⟨t⟩ = (t1, . . . , tm) (i.e. s =
∑m

q=1 sq and t =
∑m

r=1 tr) each player is able to
locally compute a sharing of the product st according to S by adding the values of the sharing of xk,ℓ that
he possesses.

For the secrecy of the protocol, from the secrecy of Claim 4.3 we get that no information is leaked from
an invocation of Share.
Next, the reconstruction of the differences

〈
x

(j)
k,ℓ

〉
−

〈
x

(i)
k,ℓ

〉
either outputs 0 and no information is leaked, or

it does not output 0, meaning that the adversary controls a (actively corrupted) player pb ∈ Sk ∩ Sℓ and he
already has knowledge of sk, tℓ.
Furthermore, PublicAnnounce is invoked to announce the summands sk, tℓ only when there are two players
in Sk ∩ Sℓ who contradict each other. This, again, means that the adversary is actively corrupting one of
them and has already access to the values to be announced. Hence, no information is leaked to the adversary,
completing our proof.

Now we can continue our simulation proof. Assuming that the sharings of s and t are consistent, according
to the properties of the Claim 4.4 that we proved above, we know that the protocol Mult either aborts while
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detecting a corrupted player or it outputs a consistent sharing. As a result, if in the real world the protocol
aborts at any time with a public set B of corrupted parties, then the simulator observes this and can create
the same effect in the ideal world by sending the corresponding (inform omission) message to Fmult.

The different cases that can occur with consistent sharings for s and t are the following two:
Case 1: If (Sk ∩ Sℓ) ∩ A⋆ = ∅. This case is the easier one because the adversary does not participate actively
in the step 4.4 so it is trivially simulated (i.e. the simulator does nothing). Indeed, only players in (Sk ∩ Sℓ)
create and share their values, while the adversary does not control a player in Sk ∩ Sℓ and does not know
xk,ℓ = sktℓ. Hence, in the real world the adversary observes only the output of the corrupted parties after
Share (or rather Fshare when we are in the Hybrid world) is invoked by all parties in Sk ∩ Sℓ, i.e. he obtains
a part of a sharing of xk,ℓ (only the shares that corrupted parties receive). After that, each party locally
(with no communication involved) computes its share of

〈
x

(i)
k,ℓ

〉
−

〈
x

(j)
k,ℓ

〉
. Afterwards, the adversary learns

the reconstruction of those differences for every j. However, this reveals no information as the reconstructed
differences should all be 0 for a consistent sharing, since the security condition holds and they are created by
non actively corrupted parties (i.e. all pq in Sk ∩ Sℓ agree on the value of the summands sk and tℓ, thus they
agree on xk,ℓ as well). Furthermore, what is reconstructed are differences of two random summands x

(i)
k,ℓ and

x
(j)
k,ℓ, none of which the adversary knows. So he does not obtain extra information.

Also, according to the properties of Fshare, all the shares that the adversary receives about those recon-
structed summands should be indistinguishable from random, due to the adversary being able to only see a
fraction of the summands.
Furthermore, during steps 2, 3 and 4 no information (except from the alive status) is exchanged between
parties. Now, the players have a sharing of xk,ℓ for all k, ℓ according to the sharing of some pi. For the output,
at step 4 all parties calculate their share of st as the sum of the local shares of each xk,ℓ that they received,
creating a sharing of st across all parties. Each summand of xk,ℓ was uniformly random, thus the sum of
those summands for every player creates a uniformly random summand for the sharing of st. The adversary
only gets the values that actively corrupted parties have access to and not the whole product.

Respectively, in the ideal world all players will input the same value vs for sk and vt for tℓ, since the
sharings are consistent. Hence, the functionality will set sk = vs and tℓ = vt and then, it will compute and set
xk,ℓ := sk · tℓ. Next, the adversary receives his shares (that are as many as in the real world) from randomly
sampled values v1, . . . , vm summing up to xk,ℓ. Obviously, no information is leaked here as the adversary
does not receive all of the vis.

Finally, the functionality outputs a sharing of y = st in the form of [y] = (y1, . . . , ym) for the summands
yq, where for each q = 1, . . . , m it sums all the random summands of xk,ℓ at the q-th position, i.e. [y]q =
yq =

∑m
k,ℓ=1 [xk,ℓ]q.

As the sum of uniformly random values, this is a uniformly random sharing of st, as required.
Thus, in both worlds, the messages that the adversary receives follow the same uniform distribution.
Case 2: If the adversary controls a player in Sk ∩ Sℓ, in the real world he is able to wait until all xi,j

except for the last one have been established and then select the summands that he will share for xk,ℓ such
that each of them defines the respective summand of sktℓ (all but one) to a value of his choice. Indeed, if
the corrupted party is the first player in Sk ∩ Sℓ it could be the case that his shares are the ones adopted
by all other players. This could create a big security problem and open up the possibility for an attack.
However, the adversary is still bound to have the summands add up to the correct value, since otherwise
the reconstructed differences will be non-zero. Fortunately, the simulator can observe the shares that the
adversary chooses and then he is able to create the same effect in the ideal world by sending (adv-share,
(z1, . . . , zm)) to Fmult, so the two worlds can not be distinguished at that point, either.

Alternatively, the adversary can also actively alter the value of the sharing of the difference
〈

x
(i)
k,ℓ

〉
−

〈
x

(j)
k,ℓ

〉
by using arbitrary values as his summands. Still, the only effect that this will have is to create a non-zero
difference between the sharing that the adversary created and the sharing that some non actively corrupted
party created (since not all players can be actively corrupted, this party always exists).

When the simulator observes this he can create the same effect in the ideal world by sending (adv-share,
(z1, . . . , zm)) for zi that don’t sum up to the correct xk,ℓ.
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Back in the real world, as a result of the differences not being 0, the values of sk and tℓ will be reconstructed
publicly and all parties will adopt the same value, hence the same value for xk,ℓ = sktℓ. The adversary already
knows them so no information is leaked. The same occurs in the ideal world, where the values for sk, tℓ are
adopted from the first hones player.
Then a sharing of xk,ℓ is assumed as [xk,ℓ] := [sktℓ] = (skg · tℓg, 0, . . . , 0). From then on, the same procedure
as in case 1 follows and the output stage is reached.

Since in both worlds the outputs of honest parties and the view of the adversary are following the same
distribution, the two worlds cannot be distinguished by any environment/distinguisher, making our protocol
secure.

4.5 The MPC protocol

We next proceed to the construction of our MPC protocol, which securely realizes the functionality FMP C .
The function to be computed will be represented by a circuit C. Our protocol will compute the desired
circuit on the inputs of the players. If none of the sub-protocols aborts, the protocol will succeed and give
the correct output. In the opposite case, where the adversary has misbehaved and caused a protocol to abort
we will identify a set B of corrupted parties. Then we will restart the computation of the protocol from
the beginning with a smaller structure, setting P := P \ B, using strong player elimination (see 4.1), as the
players in B are all problematic. Importantly, this action preserves the monotonicity of the condition, namely
that the MPC condition is also true in the new updated adversary structure. We should also point out that
even in the case of such an abortion no information about the players’ input is leaked to the adversary.
This is because all calculations are done with sharings of the inputs, hence the actual values are hidden.
The only time where a value is actually revealed is after the Reconstruct protocol. However, our Reconstruct
protocol is robust, meaning that it cannot abort and if the protocol has reached this point, it is guaranteed to
succeed. Additionally, after having identified some corrupted players, we no longer care for all the adversary
classes Z = (A, Ω) that we initially had. Instead, we are only interested in adversary classes Z which actually
contain the identified players in their Ω set. For writing convenience we will introduce the following notation,
where we will write Z|B⊆Ω to denote the restriction of the adversary structure Z to contain only the classes
Z = (A, Ω) where B ⊆ Ω. In plain words, we consider the restriction of the adversary structure where only
classes that assume the set B to be omission-corrupted are preserved.

Here, we should take a moment to discuss the issue of removing players from our player set. Indeed, we
will showcase the difference between the classic (weak) player elimination and our proposed strong variant.
Our main concern is to make sure that after every such removal of a set B, no information is leaked to
the adversary and, additionally, given that the condition C

(A,Ω)
BA (P, Z) was true for the initial structure and

player set, then it will hold true for the new updated player set, as well. The argument is as follows. We
know that by definition B ⊆ Ω holds for all Ω in Z|B⊆Ω . Since the adversary has made a choice of the
class Z⋆ = (A⋆, Ω⋆) that she will corrupt and since for the set of corrupted players that we are going to
discard it holds that B ⊆ Ω⋆ (because the players in B are indeed corrupted), for all Zi, Zj ∈ Z|B⊆Ω we
have that B ⊆ Ωi ∩ Ωj . Furthermore, for all relevant classes Z ∈ Z|B⊆Ω the element (player) p that makes
the condition C

(A,Ω)
BA (P, Z) hold true does not belong to Ai ∪ Aj ∪ Ak ∪ (Ωi ∩ Ωj) before removing B. This

means that it does not belong in Ωi ∩ Ωj , and since B ⊆ Ωi ∩ Ωj we can safely remove B and the element
p will still exist for all classes, making the condition C

(A,Ω)
BA (P, Z) hold true for the updated P and Z. This

ensures us that we can safely remove any corrupted players and still get the condition to hold with our new
player set and adversary structure.

As a result, we can restart the MPC protocol for as many times necessary, updating P and Z each time
it aborts and re-running it again with a smaller set, until it succeeds. Since the player set is decreasing every
time we repeat that and since the sets A, Ω are finite we can be certain that we will reach a point where this
loop will terminate and the invocation to MPC will succeed (after no more than n iterations). At this point,
all alive players will have received a sharing of the output, and given that the condition C

(A,Ω)
BA (P, Z) holds

true, this will be a valid sharing of the actual output. This means that it can be reconstructed and provide
to the players the intended output.
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As before, we use the natural sharing specification SZ associated with Z, setting SZ = (P \ A1, . . . , P \ Am),
to make sure that at least one summand of the sharing will not be available to the adversary and to guarantee
a private reconstruction of the sharing.

Each pi ∈ P has input xi. The function to be computed is denoted as f(·). The adversary can decide which of
the omission-corrupted players receive output from the functionality after receiving the outputs of actively
corrupted players. The adversary corrupts Z⋆ = (A⋆, Ω⋆).

– Input stage:
• Set the input values x1, . . . , xn and the output values y1, . . . , yn to ⊥.
• Upon receiving a message (input, sid, v) from pi (or the adversary, if the player is actively corrupted), set

xi = v and send (leakage, sid, pi, |v|) to the adversary.
– At any point in time: Upon receiving (inform omission, pj) from the adversary, if pj ∈ Ω⋆ set xj to a default

value (e.g. 0) and output (omission, pj) to pj .
– Computation stage: For every pj ∈ Ω⋆ that received (omission, pj) in the step above set yj =⊥.
– Output stage: FMP C computes f(x1, . . . , xn) = (y1, . . . , yn).

Upon receiving (fetch-output, sid) from pi ∈ P send (output, sid, yi) to pi and (fetch-output, sid, pi) to the
adversary.

Functionality FMP C(P, Z, S, x⃗ = (x1, . . . , xn))

Moving on to the description of the protocol, it involves three stages, the input, the computation and the
output stage.
For the input stage, we have all players share their inputs according to the sharing specification S. This
is done to make sure that the inputs remain private, while still being able to perform computations with
them. In the case that a player fails to share her input, e.g. if she is corrupted and the adversary blocks
her messages, all players adopt a default pre-agreed sharing for her input value. For the evaluation stage,
the procedure is the following. Depending on the gate of C that we want to evaluate, the players do the
following. If they need to evaluate an addition gate, each player locally computes the sum of his shares of
the two values, so the output is a sharing of the sum.
If they need to evaluate a multiplication gate for two values s, t, the players invoke the protocol Mult(P, Z, S, ⟨s⟩, ⟨t⟩)
for the sharings ⟨s⟩, ⟨t⟩ and the output is a sharing ⟨st⟩ of the product.
If they need to evaluate a random gate, each player sends a random value as input and the output is a
sharing of the sum of those values. Lastly, for the output stage where the players want to eventually get the
actual value of the output v, they invoke the protocol Reconstruct(P, Z, S, ⟨v⟩) in order to publicly robustly
reconstruct one by one the summands of v and after that each one gets the desired value by summing all
summands.

– Input stage:
• For every input gate in C, Share(P, Z, S, pi, xi) is invoked to have the input player pi share his input xi

according to S (or the adversary, if the player is actively corrupted). If a player fails to share his input, a
default value is adopted by all players.

• If the protocol Share (or any sub-protocol) aborts during some input gate with a set B of corrupted
players, set P := P \ B and Z := Z|B⊆Ω and restart the Input Stage.

– Computation stage: The gates in C are evaluated as follows:
• Addition gate: Every pi ∈ P locally computes the sum of his respective shares.
• Multiplication gate: To multiply (shared) values s and t, invoke Mult(P, Z, S, ⟨s⟩, ⟨t⟩) to compute a

sharing ⟨st⟩ of the product according to S.
• If the protocol Mult (or any sub-protocol) aborts during the computation stage with a set B of corrupted

players, set P := P \ B and Z := Z|B⊆Ω and restart from the Input Stage.
– Output stage: Invoke Reconstruct(P, Z, S, ⟨y⟩) for the sharing ⟨y⟩ of the public output.

Protocol MPC (P, Z, S, C, x⃗ = (x1, . . . , xn))
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Theorem 4. If the condition C
(A,Ω)
MP C (P, Z) (see Eq. 11) holds, the protocol MPC perfectly Z-securely realizes

the functionality FMP C .

Proof. To begin with, we formally state the input/output properties of our protocol below. Then we will
carry on with the simulation proof.
Let C be an arithmetic circuit where each non-byzantine party pi has input xi. For omission-corrupted but
non-byzantine parties pj ∈ Ω⋆ the adversary decides independently of the inputs of non-byzantine parties
if the correct input xj will be used and pj will receive the correct output or a default value ⊥ will be used
for pj ’s input and their output will be ⊥. For every byzantine pk the adversary chooses some x′′

k as input
independently of the inputs of non-byzantine parties.

Theorem 5. If the condition C
(A,Ω)
MP C (P, Z) (see Eq. 11) holds, then the protocol MPC securely computes C

on inputs xi from every pi /∈ A⋆ (except from those pj ∈ Ω⋆ that the adversary decided to set xj =⊥). In
particular, the protocol satisfies the following properties:
(Correctness): Every uncorrupted pi receives his correct output from the above evaluation and every omission
but non-byzantine party receives either his correct output or “n/v”. (Privacy): The protocols leaks no infor-
mation to the adversary, i.e., the adversary learns nothing beyond what he can compute from the specified
inputs and outputs of the byzantine parties. (Termination): The protocol terminates with the above outputs
after a finite number of rounds.

Proof. Since the condition C
(A,Ω)
MP C (P, Z) holds, all the protocols invoked inside the protocol MPC are guar-

anteed to be secure, i.e. they securely realize the respective functionalities.
As a result, we only need to prove the properties of Protocol MPC in the hybrid world where every invocation
of some underlying protocol is replaced by an ideal call of the respective functionality. After that, we get the
desired result from the composition theorem from [Can00]. As each stage consists of calls to functionalities
that we have already proven correct and terminating, the termination of MPC is a derivative of that. Also,
the maximum number of times that our protocol may restart due to an abort of some sub-protocol is less
than n and additionally the Output stage is robust (i.e. never aborts).
The privacy property is proven by the fact that Share (or rather Fshare), as well as Addition and Multi-
plication gates leak no information. Also, the outcome of those protocols/gates is a sharing of the intended
output, rather than the actual computed value, so no information is leaked about the values and consequently
the input values remain hidden. If there is an abort during the Computation stagethen the protocol restarts
at the Input Stage, where input shares are calculated anew and this keeps the privacy of the inputs of the
players. On top of that, as mentioned above, Reconstruct is robust and does not abort, meaning that once
the output stage is reached the adversary cannot disrupt the conclusion of the protocol and all parties receive
their outputs. This would be either the correct value or the value ⊥ if the adversary decides to exclude this
omission-corrupted party from the computation.
Along the same lines, for the correctness proof we have proven that Fshare (Share) either creates a consis-
tent sharing of the input (for non-actively corrupted dealers) or aborts. Given that, during the computation
stage (if no protocol aborts) the gates are guaranteed to compute the correct result, by their corresponding
correctness properties. If some party pz ∈ Ω⋆ is detected as zombie and after the underlying Heartbeat
the sub-protocol aborts with B = {pz}, the player is removed from the player set, P is updated and the
computation is restarted from the beginning, with new shares for the inputs.
Finally, if no sub-protocol aborts and the Output stage is reached, assuming that the sharings up to this
point are correct, we are guaranteed by Announce and Reconstruct through Fann and Frecn that the correct
output is robustly recreated towards all players (except from omission-corrupted players, if the adversary
decides to completely block them, but make them aware of their status). This completes the proof of the
theorem’s properties.

Moving on to sketch proof of Theorem 4 below we provide a description of the simulator.
Once more, we will use the hybrid world where every invocation of a sub-protocol is replaced with an ideal
call to the ideal functionalities that the protocol realizes.
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The environment gives input to the honest parties and the simulator begins his execution. The adversary
is trying to distinguish if he is interacting with the simulator in the ideal world or with the real world protocol
and the parties.
At the Input stage, the adversary needs to provide his input to the Share protocol, but since we are in
the hybrid world, we instead gives his input to the simulator. This enables the simulator to call the share
functionality Fshare with that input and at the same time run internally the real world adversary in a
protocol execution with that input. Whatever output this gives to the simulator he can use it to interact
externally with the functionality and create an execution in the ideal world indistinguishable from the hybrid
world.

By this, the share functionality Fshare is able to create a sharing of the inputs of all players (honest ones
are provided by the environment). Up to this point, the simulator observes the real world. If the adversary
makes some party pj ∈ Ω⋆ realize that it is omission-corrupted, pj let’s anyone know that during the
Heartbeat stage of the Share protocol. Then, the sub-protocol would abort and MPC would restart while
removing pj from P.
At the same time, the simulator sends (inform omission, pj) to FMP C to set pj ’s input to the default value
and his output to ⊥, creating the same effect.
Since the distribution of the sharings is the same in the real and ideal world, this means that the view of
the adversary is identically distributed in real and ideal world, up to this point. Due to that, the adversary
cannot distinguish between the two and proceeds with the execution.

Next, we have the Computation stage. The addition gates are trivial due to being locally computed.
For the Multiplication gates the simulator is calling the functionality Fmult with inputs the shared values
that have been already computed. According to the observation made in [ALR11], the adversary is able to
select the summands of the shares that he possesses. The adversary sends those to the simulator who sets
the corresponding summands in Fmult. Then, the functionality outputs a sharing of the desired product,
identically distributed with the real world sharing of the output, which is given to the adversary.
Again, the simulator observes any abort with some B = {pj} and sends the corresponding (inform omission, pj)
to FMP C , defaulting pj ’s input. This will result in the functionality performing the computation with this
default value and outputting ⊥ to pj .

Once every gate is computed, at the Output stage the sharing of the final output needs to be recon-
structed. At this point, Frecn is called by the simulator with inputs the shared values in order to robustly
reconstruct the output. By the properties of Frecn we know that in the hybrid world the correct output value
is reconstructed towards all parties from the sharing of the values computed.

In the ideal world, the functionality FMP C computes the desired function on the inputs of the alive
parties and the input that the adversary has provided for the parties that he controls, while for zombie
parties the default value is used.

After that, the functionality just sends to each honest party and to each omission-corrupted party pi that
is still alive the corresponding output value yi. By the properties of the MPC protocol stated above, we get
that the view of the adversary is indistinguishable between the real and the ideal execution, completing our
proof.

Necessity of condition for MPC Finally, in this last section we show that the condition C
(A,Ω)
MP C (P, Z) is

necessary to securely achieve MPC.

Lemma 14. If C
(A,Ω)
MP C (P, Z) is violated, then there exist n-party functions which cannot be securely evaluated

while tolerating (corruptions caused by) a Z-adversary.

Proof. (sketch) As we have already proven in 3.7 the condition C
(A,Ω)
BA (P, Z) is necessary for broadcast. Also,

in Section 4.2 we proved that the condition C
(A,Ω)
SMT (P, Z, pi, pj) is necessary to securely exchange a message

between a sender pi and pj . As our condition C
(A,Ω)
MP C (P, Z) considers all such pairs of players, and due to

the fact that MPC implies both Broadcast and SMT, we get that our condition C
(A,Ω)
MP C (P, Z) is necessary

for MPC.
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5 Conclusion and Open Problems

We put forth the study of Byzantine agreement (BA) and multi-party computation (MPC) in the presence
of (an adversary causing) omission and byzantine faults, (who is) described by a general adversary structure.
We provided a complete characterization for BA tolerating such an adversary. We also provide a full charac-
terization of MPC in this model, where we showed that existing techniques fall short in providing feasibility
results. Notwithstanding, by introducing a new condition for Secure Message Transmission we were able to
prove the first tight characterization for MPC in this setting. The above results makes an important step
forward in understanding the relevant landscape and opens the floor to important questions that have long
been resolved in the threshold adversary setting, e.g., allowing setup, error probability, and computationally
bounded adversaries.
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Appendix

A A Counter-Intuitive Feasibility Result

As discussed in Section 2, translating the threshold active/omission result from [ZHM09] (i.e., tight feasibility
of 3ta + 2tω < n for MPC) to the general adversary setting following the translation by [FHM99] of the
threshold result in [FHM98] would yield the following condition:

∀(A1, Ω1), (A2, Ω2), (A3, Ω3) ∈ Z : Ω1 ∪ Ω2 ∪ A1 ∪ A2 ∪ A3 ̸= P. (44)
In the following we show that this condition is not necessary for MPC by providing a feasibility result

for an adversary structure satisfying:

∃(A1, Ω1), (A2, Ω2), (A3, Ω3) ∈ Z : A1 ∪ A2 ∪ Ω3 = P, (45)

which violates Equation 44 in one of the strongest possible manners—and one would intuitively expect to
make MPC or SFE impossible.

p1 p2 p3
Z1 α/ω
Z2 α/ω
Z3 ω

Table 5. The classes
Z1, Z2, Z3 that cover
the whole player set
but still allow for secure
SFE.

Consider the following setting as seen in Table 5, where we have three players p1, p2,
p3 and three corruptible classes: Z1 = (A1, Ω1), Z2 = (A2, Ω2), Z3 = (A3, Ω3) with

• A1 = Ω1 = {p1},
• A2 = Ω2 = {p2}, and
• A3 = ∅, Ω3 = {p3}

In other words, the adversary can either actively or omission-corrupt exactly one
of p1 or p2, or omission corrupt p3. One can easily verify that the above adversary
structure satisfies the condition in Equation 45. Nonetheless, in the following we
describe a perfectly secure protocol that tolerates the above adversary.

First, given our tight broadcast bounds, we know that this adversary allows for
parties to broadcast. Now, assuming broadcast, we show a very simple SFE pro-
tocol which explores the asymmetry of general adversaries but would be rendered
impossible in the threshold setting. Throughout the protocol, if a party becomes
zombie in a broadcast, then he broadcasts ⊥ in any subsequent round. To make the
protocol easier to follow we include some comments in italics (starting with #) that outline the (rather
straight-forward) security arguments of the protocol. As with our feasibility result, for simplicity we assume
that all rounds in the protocol below are broadcast rounds (but not all of them use the broadcast primitive
necessarily).

– Round 1. p1 and p2 send their inputs to p3.
# This does not violate privacy as p3 is either honest or omission corrupted.

– Round 2. If p3 does not receive a value from pi (for i ∈ {1, 2}) he broadcasts a complaint including the
set of parties that he did not receive input from.

– Round 3.a) If complaints are raised from p3 for both messages of p1 and p2, or p3 broadcast ⊥, then
p3 is excluded and the computation restarts with p1 as a trusted party.
# p3 must be omission corrupted so both p1 and p2 are honest and they will not change their inputs.

– Round 3.b). If a complaint is raised from p3 for the message of only p1 (resp. p2) then restart the
computation with p2 (resp. p1) as a trusted party.
# No information on the inputs has leaked, and the trusted party has to be honest given the dispute
between the other two.
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– Round 3.c) If no complaint is raised, then p3 securely computes the desired function and broadcasts
the value.
# If the broadcast succeeds without p3 being detected then it must be the correct input. (Note that if p1
or p2 does not receive a value in this broadcast, then he must be actively corrupted).

It is not hard to verify that the above very simple protocol is a secure SFE protocol tolerating an adversary
violating the above conditions (Equations 44 and 45).

Remark 1 (On MPC vs. SFE). Given the above feasibility for SFE under a condition, which one would
have intuitively expected to make (reactive) MPC impossible, one might be tempted to assume that a
similar separation between MPC and SFE as in [BFH+08] (which was shown for the active/passive/fail
case) appears also in our (active/omission) case. As our results demonstrate, this is not true—since the
necessity proof of our tight MPC condition also includes SFE. Indeed, that proof relies on impossibilities for
Broadcast and SMT, both of which are non-reactive functionalities. This is yet another example of how an
attempt to extract patterns from the general adversary literature and apply them to our active/omissions
setting can derail the quest for a tight condition, which, in turn, demonstrates the challenges of our work.
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