
Application-Aware Approximate Homomorphic Encryption:
Configuring FHE for Practical Use

Andreea Alexandru1, Ahmad Al Badawi1, Daniele Micciancio1,2, and Yuriy Polyakov1

1Duality Technologies
2University of California, San Diego

Abstract
Fully Homomorphic Encryption (FHE) is a powerful tool for
performing privacy-preserving analytics over encrypted data.
A promising method for FHE over real and complex numbers
is approximate homomorphic encryption, instantiated with the
Cheon-Kim-Kim-Song (CKKS) scheme. The CKKS scheme
enables efficient evaluation for many privacy-preserving ma-
chine learning applications. While the efficiency advantages
of CKKS are clear, there is currently a lot of confusion on how
to securely instantiate the scheme for any given application,
especially after secret-key recovery attacks were discovered
by Li and Micciancio (EUROCRYPT’21) for the IND-CPAD

setting, i.e., where decryption results are shared with other
parties. On the one hand, the generic definition of IND-CPAD

is application-agnostic and often requires impractically large
parameters. On the other hand, practical CKKS implementa-
tions target specific applications and use tighter parameters.
A good illustration are the recent secret-key recovery attacks
against a CKKS implementation in the OpenFHE library by
Guo et al. (USENIX Security’24). These attacks misuse the
library by employing different circuits during parameter esti-
mation and run-time computation, yet they do not violate the
generic (application-agnostic) IND-CPAD definition.

To address this confusion, we introduce the notion of
application-aware homomorphic encryption and devise re-
lated security definitions, which correspond more closely to
how homomorphic encryption schemes are implemented and
used in practice. We then formulate the guidelines for im-
plementing the application-aware homomorphic encryption
model to achieve IND-CPAD security for practical applications
of CKKS. We also show that our application-aware model
can be used for secure, efficient instantiation of exact homo-
morphic encryption schemes.

1 Introduction

Homomorphic encryption is a cryptographic primitive that
enables the evaluation of certain computations over encrypted

inputs without intermediate decryptions. In its most powerful
form, Fully Homomorphic Encryption (FHE) allows the eval-
uation of arbitrary arithmetic or boolean circuits, and has seen
considerable improvements and extensions since Gentry’s
breakthrough in 2009 [23].

Today, there are several families of efficient FHE schemes,
which can be divided along several axes. One such axis
is whether the result of the encrypted computations is ex-
act or approximate. In the exact FHE family, we have
schemes which achieve a negligible correctness1 error when
homomorphically evaluating arithmetic circuits over finite
fields: Brakerski-Gentry-Vaikuntanathan (BGV) [8] and
Brakerski/Fan-Vercauteren (BFV) [7, 20], or when homo-
morphically performing bit-wise/small plaintext-space opera-
tions: Ducas-Micciancio (DM/FHEW) [18], Chillotti-Gama-
Georgieva-Izabachene (CGGI/ TFHE) [13], Lee-Micciancio-
Kim-Choi-Deryabin-Eom-Yoo (LMKCDEY) [38]. The ap-
proximate FHE family allows for small errors to corrupt the
least significant bits of the message.2 Cheon-Kim-Kim-Song
(CKKS) [12] is the main representative of this family and can
be seen as an FHE scheme over fixed-point numbers, which
enables significantly more efficient computations than exact

1We remark that the distinction between correctness and security prop-
erties is somehow artificial, because (as demonstrated by recent attacks
[10, 11, 25]) failure of correctness can have a major impact on security.
More substantial is the difference between computational and statistical
(security) properties, which associate different concrete interpretations to the
term negligible. In this introduction we use the word negligible informally,
and refer to Section 2.1 for details. The distinction between security and
correctness is relevant only to the extent that correctness is (almost) always a
statistical property because it does not depend on computational assumptions.
This remark applies throughout the paper whenever we talk about correctness
or negligible errors.

2In this sense, an approximate encryption scheme does not satisfy the
standard correctness property as it may never produce correct decryptions.
So, its correctness error is usually not negligible. On the other hand, “exact”
schemes with high correctness error probability are not good approximate
schemes because, when wrong, they may produce results that are very far
from the correct one. Neither approximate schemes nor exact schemes with
non-negligible correctness error should be considered secure encryption
schemes according to the standard definition, which implicitly assumes exact
correctness.

1

FHE schemes over real-valued data in privacy-preserving
large-scale applications such as secure genome-wide associ-
ation studies [4], logistic regression [28], and convolutional
neural network inference [37].

However, the efficiency of the CKKS scheme comes at a
cost. First, correct decryption now must be replaced by a more
involved notion of approximate correctness which requires
the scheme parameters to be set so that the decrypted output
is not “too far” from the expected cleartext output. Second, its
approximate nature makes CKKS depart from the exact FHE
schemes both conceptually and in terms of security, since the
error corrupting the decrypted output can be used in certain
passive attacks to recover the secret key.

IND-CPAD Security. The security model for FHE schemes is
passive, i.e., FHE schemes are proven secure against Chosen
Plaintext Attacks (CPA), where all ciphertexts are properly
computed (using the scheme’s algorithms) and the adversary
cannot submit arbitrary (maliciously chosen) ciphertexts to
decryption oracles. It is folklore that no FHE scheme can
achieve IND-CCA2 security (arbitrary decryption oracle ac-
cess), and only FHE schemes that do not rely on circular
security assumptions can achieve IND-CCA1 security (decryp-
tion oracle access only available before the challenge). Thus,
FHE schemes are not resilient to active attacks without ad-
ditional security measures, e.g., zero-knowledge proofs, and
should not be used in this scope.

Notwithstanding, the passive scenario needs to be extended
in the case of FHE schemes, as there are vulnerabilities arising
from incomplete security definitions. In particular, IND-CPA-
security (access only to an encryption oracle) is too weak for
approximate FHE schemes. Li and Micciancio [39] devised a
key recovery attack on the CKKS scheme when the plaintext
output of the computation is revealed to the adversary, i.e.,
when giving the adversary a very weak decryption oracle.
The Li-Micciancio attack runs in expected polynomial time
and exploits the fact that only from the input plaintext, output
ciphertext, and output plaintext, an adversary can retrieve the
error from the ciphertext and use it to compute the secret key
via linear algebra techniques. To better capture the security
of approximate FHE schemes, the authors introduced a new
definition for passive security, IND-CPAD, which additionally
gives the adversary access to an evaluation oracle and limited
access to a decryption oracle for outputs of the evaluation
oracle [39].

In terms of countermeasures to this attack, Li et al. [40]
showed how to postprocess the raw decryption output of the
CKKS scheme to achieve IND-CPAD security. The mitigation
adds Gaussian noise (or flooding noise), whose magnitude
depends on the worst-case3 error growth of the homomorphic
computation.

3Here, “worst-case” is over the choice of the input and computation to be
performed. Error growth can still be analyzed on the average with respect to
the (honest) encryption randomness.

As a response to the Li-Micciancio attack, most of the
FHE libraries that implement CKKS added practical miti-
gations and/or security disclaimers. For instance, Microsoft
SEAL [49] included a security disclaimer advising against
sharing the decrypted CKKS ciphertexts. OpenFHE [46], HE-
lib [30], and HEAAN [29] implemented the Gaussian flood-
ing technique, whereas Lattigo [36] implemented a rounding
procedure (equivalent to noise flooding). Two primary strate-
gies are employed to estimate the Gaussian noise used for
flooding: static noise estimation and dynamic noise estima-
tion [40]. Static noise estimation can be performed offline
and computes the flooding noise distribution parameter based
on publicly known bounds on the inputs and the function to
be evaluated. Doing this using theoretical worst-case bounds
can overestimate the actual noise by a large margin, and neg-
atively impacts performance. So, in practice, it is common
to use a more pragmatic approach, such as selecting a repre-
sentative input from the set of allowed inputs, executing the
computation, and observing the resulting noise bound, or by
using heuristic noise estimation expressions. This approach is
supported by the OpenFHE [46], HElib [30], Lattigo [36] and
HEAAN libraries [29] (under restricted conditions). Dynamic
noise estimation computes the approximation error during
decryption at run-time using input ciphertexts and secret key,
which may provide very tight approximation error estimates
but may still leak some (practically small) amount of infor-
mation about the secret key. The OpenFHE library supports
this approach as well. All libraries allow sophisticated users
to further enhance these protective measures by estimating
desired output precision and establishing tighter bounds for
the flooding noise.

The indiscriminate use of worst-case estimation to de-
termine the decryption noise achieves security, but it of-
ten leads to impractically large parameters. All the above
libraries implement noise estimation procedures based on
heuristics [15, 16, 45] to obtain practical parameters. Gener-
ally, the focus in practice is to design parameters for particular
applications specified by the users at run-time, rather than de-
sign parameters suitable for all applications.

Attacks by Guo et al. Recently, Guo et al. [25] claimed
that any non-worst-case countermeasure added as part of the
CKKS decryption is still vulnerable to the Li-Micciancio key
recovery attack. In [25], “worst-case” refers not only to the
input choice, but also to encryption randomness. The authors
focus on the OpenFHE library and illustrate two attacks that
we briefly explain below.

Their first attack employs two different circuits in order
to illustrate a worst-case versus average-case difference. The
attacker uses the circuit corresponding to the addition of n sep-
arate inputs in order to estimate the noise for decryption. How-
ever, in the computation phase, the attacker provides the addi-
tion circuit on n copies of the same ciphertext. Note that in-
deed, the error obtained by adding n independent encryptions
differs from the noise incurred by adding the same encryption

2

n times, and the latter is significantly larger, leading to a key
recovery attack. Notwithstanding, notice that from a circuit
perspective, although the circuits C(x1, . . . ,xn) = x1+ . . .+xn
and C′(x1, . . . ,xn) = x1 + . . .+ x1 have the same worst-case
error estimate and the same output when the inputs to the
first circuit are all equal to x1, their representations are not
the same and they are two different circuits. Hence, for each
of the two circuits, a different noise estimate should be com-
puted and employed, which is what FHE libraries seem to
assume in practice.

In the second attack, the authors of [25] specify a circuit
with n inputs in the noise estimation phase, and a circuit with
n′ >> n inputs in the evaluation phase. As mentioned before,
different circuits are expected to produce different errors, and
existing FHE libraries seem to assume that the noise added in
the decryption phase is only designed to be valid for a specific
circuit.

It is clear that there is a gap in the existing FHE libraries’
description of the supported application specifications for
which security is guaranteed during evaluation. For instance,
the OpenFHE library devises the noise flooding bounds for
classes of circuits using a tuned heuristic estimation with con-
fidence intervals, and assumes that during the evaluation phase
the user queries only allowed functions. However, there is also
a misunderstanding around the idea of worst-case noise esti-
mation and IND-CPAD-security. Generic IND-CPAD-security
requires that one should perform noise estimation over all
circuits which satisfy the desired level of correctness, and use
the obtained maximum bound in the decryption mechanism.
Therefore, note that even using the worst-case estimates for
the circuit C as suggested in [25] would not necessarily ensure
generic IND-CPAD-security, as there might be other circuits
satisfying correctness for which this noise is not sufficient.
Although [40]’s FHE with a differentially private mechanism
formulation hinted at a formalization for classes of allowed
circuits, IND-CPAD was still used in its application-agnostic
form; [25] also did not formalize this aspect, despite making
certain choices in how the noise estimates were computed.
This signals a second gap in the literature on the IND-CPAD-
security, which resulted in the attacks from [25]. In this work,
we help to bridge both gaps.

A broader perspective. These attacks can also be interpreted
as specifying a certain set of encryption parameters, com-
puted to achieve correctness for a given circuit, but then using
those parameters to evaluate a distinct circuit. Note that such
attacks are not specific to approximate FHE. We discuss a
folklore attack [3] on the family of exact FHE schemes, which
succeeds against any kind of noise estimation technique. In
the case of Learning with Errors (LWE)-based exact FHE,
evaluating a different circuit than the one for which the en-
cryption parameters were computed can lead to an overflow
in the ciphertext error, corrupting the underlying plaintext.
Such decryption failures can be used to mount a key recovery
attack; see also [17, 42]. Moreover, concurrent works [10, 11]

propose key recovery attacks similar to [3, 25] that take ad-
vantage of incorrect decryption results in exact FHE schemes.
Hence, a more refined definition for exact FHE schemes (ex-
act in the given applications class and inexact outside), which
accounts for an allowed class of circuits, is also of practical
interest.

A different, stronger notion for FHE security is function
privacy, which also hides the computation performed over the
encrypted inputs; in other words, all honestly produced cipher-
texts should have the same distribution. Achieving function-
privacy for the popular FHE schemes requires expensive pro-
cedures such as superpolynomial noise flooding or bootstrap-
ping [6, 19, 22, 34, 35]. The IND-CPAD definition does not
include function-privacy but can be extended to do so. Satis-
fying function-privacy would address the key recovery attack
outlined above as the noise added during decryption would
be large enough for any circuit in a specified class, but the
cost would be substantial.

We also note that the Li-Micciancio attack and the noise
flooding mitigation are also known to be applicable in the
threshold encryption setting for all FHE schemes, where dis-
tributed decryption is achieved by parties publishing a partial
decryption using their secret key shares [2, 35].

Finally, we remark that recent and concurrent works fo-
cusing on definitions towards active security for FHE such
as [1, 9, 41, 50] are orthogonal to our work, but also take in
consideration some concept of application specification. For
instance, the FuncCPA definition [1] is in a similar vein as
our application-aware model, but with the crucial difference
that the adversary submits a vector of potentially malicious
crafted ciphertexts (instead of plaintexts) and a function to an
oracle, which returns an encryption of the function applied
on the decryptions of the submitted ciphertexts. Achieving
this kind of malicious security requires a notion of circuit
privacy and a strong sanitization procedure [1]. The definition
of maliciously secure verifiable FHE from [50] also specifies
a function at key generation time. Moreover, works such [41]
assume schemes to be correct in the same way that we do,
explicitly prohibiting attacks such as [10].

1.1 Our Contribution

There is a major gap between the generic IND-CPAD defini-
tion and the use of approximate FHE in practice for scenarios
where decryption results may be publicly shared. To achieve
compliance with the generic definition, impractically large
parameters would need to be used. The practical implemen-
tations of approximate homomorphic encryption in common
FHE libraries typically work with more efficient parameter
sets and implicitly assume that these parameters can be used
only for specific applications. This leads to misinterpreta-
tion of the proper usage of FHE libraries, resulting in attacks
like [25].

The main goal of our work is to close this gap by introduc-

3

ing the notion of application-aware homomorphic encryption
scheme, related definitions, and guidelines for the practical use
of IND-CPAD-secure approximate homomorphic encryption.
Concretely, our contributions can be summarized as follows:

• We present the notion of application-aware homomor-
phic encryption scheme and devise related security def-
initions, which correspond more closely to how homo-
morphic encryption schemes are implemented and used
in practice. Application-aware FHE adds a description
of an application specification to be supported to the
correctness and security of the scheme. Our definition is
motivated by leveled FHE but we also show how it ex-
tends to scenarios with bootstrapping. Furthermore, the
application-aware model can be used with both worst-
case and average-case noise estimation.

• We formulate guidelines for implementing the
application-aware FHE model in practice. We also
discuss how these guidelines can be supported by
FHE libraries, for instance, by having validators for
checking the compliance of a given computation with
the application specification. We highlight that libraries
by themselves cannot prevent all possible misuses, but
can provide helper capabilities to minimize the risks of
unsafe use.

• We show that the attacks by Guo et al. [25] automat-
ically become invalid when properly formulated us-
ing our application-aware FHE model. Moreover, our
application-aware definitions provide a useful tool to un-
derstand the correct way to use FHE libraries, and detect
possible misuses.

• We demonstrate that our definitions are applicable to
both approximate and exact homomorphic encryption
schemes. In the exact case, the goal is to forbid the output
of incorrect decryption results, as the latter can be used
to mount secret key recovery attacks [10, 11]. We show
how our application-aware security model also addresses
these recent attacks. For instance, the BFV attacks in [10,
11] bypass the normal OpenFHE mechanism to generate
the parameters for a given application class and then
employ this user-chosen parameter set to yield incorrect
decryption results, which are then used for a successful
secret key recovery attack. This violates the application-
aware model.

1.2 Organization

We describe the foundational concepts in Section 2. Sec-
tion 3 introduces our new application-aware security model
and defines its properties. Section 4 proves the equivalence
of IND-CPA and IND-CPAD security notions for application-
aware FHE schemes. Section 5 proposes practical guidelines

for implementing the application-aware model. Section 6 ex-
amines the recent secret-key recovery attacks for both approx-
imate and exact FHE schemes from our model’s perspective
and discusses the implications of worst-/average-case esti-
mations. We summarize our contributions in Section 7 and
outline future research directions.

2 Preliminaries

We denote scalars as lowercase leters and vectors as lowercase
boldface letters. We denote general sampling as x← X for a
distribution X .

2.1 Measuring Security
Following [40], we measure the security of cryptographic
primitives using the bit-security framework of [44] and its
extension [40, 43] to computational/statistical bit-security.

Cryptographic primitives are usually parametrized by a
main security parameter κ, which can be either a discrete se-
curity level (e.g., Level 1-5 security) or a positive integer (in
the asymptotic setting). The number of bits of computational
c(κ) or statistical security s(κ) offered by a cryptographic
primitive is a function of the main security parameter κ. The
difference between c and s is that computational properties are
based on the assumption that some computational problem is
hard to solve, while statistical properties hold unconditionally.
To take into account possible algorithmic improvements in
solving the underlying problem (and the ability to improve the
success probability of an attack by investing computational
effort) it is common practice to use higher values for c than
for s. So, for example, “Level 1” security κ may correspond
to c = 128 and s = 64. For primitives that use both compu-
tational assumptions and statistical security techniques, one
needs to specify both parameters, but c and s can be differ-
ent. Thus, the concrete security level is specified by a pair
of numbers (c,s). If a (purely computational) cryptographic
primitives achieves c-bits of computational security, then it is
(c,s)-secure for any s. Similarly, s-bits of statistical security
imply (c,s)-security for any c. We refer the reader to [40, 43]
for details, and here we only recall some general properties
of this definition.

When we say that an adversary has negligible advantage in
breaking a primitive we mean that the primitive achieves (c,s)
security, for appropriately large values of c,s, e.g., (c,s) =
(128,64). In the asymptotic security setting this should be
interpreted as achieving (c(κ),s(κ))-security, for appropriate
functions c(κ),s(κ) = Ω(κ) at least linear in κ, e.g., c(κ) = κ

and s(κ) = κ/2. In particular, any attack should have either
running time exponentially large in κ, or success probability
exponentially small in κ (or a combination of the two.)

Within the context of computational/statistical security, the
distinction between correctness and security properties (and
acceptable error levels) is somehow artificial, and correctness

4

should be regarded as an integral part of a cryptographic
definition, alongside with other security properties. The only
difference is that correctness usually holds unconditionally,
and it is therefore a statistical property. In particular, it is
enough for correctness to achieve s-bits of security for some
s≤ c. On the other hand, computational security properties
require c-bits. In both cases, we can say that the properties
achieves (c,s)-bits of computational/statistical security.

In choosing the security level (c,s) of an application, one
should remember that even in the statistical setting, the ad-
versary can increase its success probability by repeating the
attack. However, this typically involves interaction with the
user (by issuing many encryption challenge queries), and can
be controlled by the application (e.g., by placing a bound on
the number/total size of encrypted messages before requiring
a rekeying). This should not be confused with computational
security, where the adversary can increase it success prob-
ability simply by investing computational resources locally,
without further interaction with the user. Still, for applications
making a large number of oracle calls, one should scale both
security parameters (c,s) appropriately. Formally, this can be
done using the hybrid theorem for computational/statistical
security from [43].

2.2 Correctness properties

Since we will describe several security notions, it is useful to
introduce some general notation and definitions for security
and correctness properties of encryption schemes. There are
two types of properties, described by either a decision game
(e.g., indistinguishability of ciphertexts) or a search game
(e.g., security against key recovery attacks), that we define
in Appendix A.1. We will use search games also to model
correctness properties, in which case we say that a scheme is
G-correct for a game G .

We first describe (homomorphic) encryption syntax, using
the notation from [39, 40]. For ease of exposition, we do not
distinguish between the notation of public encryption keys
and public evaluation keys, and denote all by pk.

Definition 1 (PK-FHE scheme). A public-key homomorphic
encryption scheme with plaintext space M , ciphertext space
C , public key space P K , secret-key space SK , and space
of evaluatable circuits L , is a tuple of four probabilistic
polynomial-time algorithms

KeyGen : 1N→ P K ×SK , Enc : P K ×M → C ,

Dec : SK ×C →M , Eval : P K ×L×C → C .

To illustrate some issues related to the probabilistic defi-
nition of correctness for (homomorphic) encryption, we first
describe a very strong notion of perfect correctness. For
any positive integer k, we write Lk for the set of all circuits
C(x1, . . . ,xk) ∈ L that take precisely k inputs.

Definition 2 (Perfect Correctness). An FHE scheme E =
(KeyGen,Enc,Dec, Eval) with message space M is perfectly
correct for some class of circuits L if for all x1, . . . ,xk ∈M ,
C ∈ Lk and security parameter κ,

Decsk (Evalpk(C,Encpk(x1), . . . ,Encpk(xk))) =C(x1, . . . ,xk)

with probability 1 over the choice of (pk,sk)← KeyGen(1κ)
and the randomness of Enc and Eval.

Requiring correctness to hold with probability 1 may seem
unrealistically strong, as a negligible failure probability is
usually acceptable. However, simply relaxing the above cor-
rectness property to hold except with negligible probability is
usually too weak to capture a meaningful notion of correct-
ness.4 In order to capture the adaptive selection of the input
messages xi and circuit C, correctness properties need to be
formulated as security games.

Definition 3 (Exact FHE Correctness). The correctness of
an FHE scheme E = (KeyGen,Enc,Dec,Eval) with message
space M and class of circuits L is defined by the following
search game:

Exprexact,E [A](κ) : (sk,pk)← KeyGen(1κ)

(x1, . . . ,xn)← A(1κ,pk)

cti← Encpk(xi) for i = 1, . . . ,n
C← A(ct1, . . . ,ctn)

ct← Evalpk(C,ct1, . . . ,ctn)

if Decsk(ct) ̸=C(x1, . . . ,xn)

then return 1 else return 0.

The above definition illustrates some adaptive choices, but
for simplicity we have considered an adversary that chooses
the messages x1, . . . ,xn non-adaptively from each other. (They
may still depend on the public key.) More generally, one
may let A choose the messages xi sequentially, one at a time,
after seeing the encryption of the previous messages, perform
multiple evaluation queries, etc. We provide the adaptive
definitions in full generality in Appendix A.2.

Remark 1. Since the definition for search games allows for
nonzero (but negligible) advantage, the definition of correct-
ness for exact FHE schemes also allows for some small prob-
ability that ciphertexts do not decrypt correctly. However, just
like any game based property, this failure probability is re-
quired to be negligible. If an FHE scheme has a non-negligible
correctness error, then it does not satisfy Definition 3, and it
is not considered a correct exact FHE scheme.

4Consider a pathological encryption scheme Encpk(x) that, if the input
message equals the public key, x = pk, outputs garbage. This satisfies the
definition, because for any message m, the probability that any specific public
key pk = m is chosen is negligible. Still, the scheme is not correct if messages
can be chosen after (and possibly depend on) pk. Similar issues arise if the
circuit C may depend on pk or the input ciphertexts.

5

In the case of an approximate FHE scheme, it is (almost)
never the case that the correctness property is satisfied. In
other words, any adversary will typically achieve advantage
close to 1 in the search game of Definition 3. Capturing ap-
proximate FHE schemes requires a different correctness defi-
nition, with respect to an error estimation function Estimate.
While there are multiple approximate correctness definitions
(see [40]), here we focus on the static approximate correct-
ness, where Estimate can be computed as a function of the
circuit C alone.

Definition 4 (Static Approximate Correctness). Let E =
(KeyGen,Enc, Dec,Eval) be an FHE scheme with normed
message space M . Let L be a space of circuits, and let
Estimate : L → R≥0 be an efficiently computable function.
The tuple Ẽ = (E ,Estimate) satisfies static approximate cor-
rectness if it is correct for the following search game:

Exprapprox,Ẽ [A](κ) : (sk,pk)← KeyGen(1κ)

(x1, . . . ,xn)← A(1κ,pk)

cti← Encpk(xi) for i = 1, . . . ,n
C← A(ct1, . . . ,ctn)

ct← Evalpk(C,ct1, . . . ,ctn)

x← Decsk(ct)

if ∥x−C(x1, . . . ,xn)∥> Estimate(C)

then return 1 else return 0.

In practice, the error estimation function Estimate is de-
fined in a modular way, starting from the error estimate of
the input ciphertexts cti (which are fresh encryptions of the
messages xi), and proceeding gate by gate, computing an error
estimate for each wire of the circuit C. The Estimate function
can be used to compute either a provable worst-case bound
on the error or a possibly heuristic average-case bound. In
this work, we will touch upon both cases. In either case, the
adversary advantage in the (approximate) correctness game
is always assumed to be negligible.

2.3 Generic Security Definitions
The standard definition of secure encryption (not only homo-
morphic) against passive adversaries is indistinguishability
against chosen plaintext attacks.

Definition 5 (IND-CPA Security). Let E = (KeyGen,Enc,
Dec,Eval) be a homomorphic encryption scheme. IND-CPA
security is defined by the following decision game:

Expr
cpa
b [A](1κ) : (sk,pk)← KeyGen(1κ)

(x0,x1)← A(1κ,pk)

ct← Encpk(xb)

b′← A(ct)

return(b′).

The above experiment defines a corresponding notion of se-
curity. For a scheme to be secure, efficient adversaries should
only achieve negligible advantage.

For simplicity, and as common in homomorphic encryption
schemes, we assume all messages belong to a fixed message
space M –all messages have (or can be padded to) the same
length. An enhanced definition, called IND-CPAD with decryp-
tion oracles, was proposed in [39] to properly model the secu-
rity of approximate homomorphic encryption schemes. We
remark that the decryption oracle introduced by the IND-CPAD

definition impacts the adversary’s advantage in the statistical
parameter. Here, we describe a simplified version of the def-
inition, corresponding to the common application scenario
where a dataset (x1, . . . ,xn) is encrypted at the outset, then
a homomorphic computation is performed on it, and finally
the result of the homomorphic computation is decrypted. The
general definition can be found in Appendix A.2.

Definition 6 (IND-CPAD Security). Let E = (KeyGen,
Enc,Dec,Eval) be a public-key homomorphic (possibly ap-
proximate) encryption scheme with plaintext space M and
ciphertext space C . IND-CPAD security is defined by the fol-
lowing decision game:

Expr
cpad
b [A](1κ) : (sk,pk)← KeyGen(1κ)

(x0,x1,C)← A(1κ,pk)

if x0,x1 /∈M n or C /∈ L then abort

if C(x0) ̸=C(x1) then abort

ct← Encpk(xb)

ct′← Evalpk(C,ct)

y← Decsk(ct′)

b′← A(ct,ct′,y)

return(b′).

3 Application-Aware Security Models

Ideally, the key generation procedure of a (fully) homomor-
phic encryption scheme would take as input a required se-
curity level, and produce a key that allows to perform arbi-
trary computations on ciphertexts. However, the only known
method to achieve FHE (i.e., the ability to perform arbi-
trary computations using a fixed key) requires the use of
a costly bootstrapping procedure. So, many schemes settle for
the weaker notion of “somewhat homomorphic” encryption,
where the user provides some information about the compu-
tation to be performed at key generation time, and obtains a
key that supports that type of computations.

In theory, computations (specified by circuits) are often pa-
rameterized by a “depth” d, and the corresponding keys can
be used to evaluate any depth-d arithmetic circuit C. Since
d can be set to any value, this allows to perform arbitrary
computations. However, the depth d needs to be specified at

6

key generation time. The circuit depth and the type of compu-
tation can have a big impact on the key generation parameters
and efficiency of the scheme. For example, it is often useful
to distinguish between the addition and multiplication oper-
ations, as the multiplicative depth of the computation has a
much bigger impact on efficiency than the additive depth, but
both need to be accounted for.

In practice, in most applications, the circuit C to be evalu-
ated is known in advance, and only the input data x is provided
at run-time. In fact, this is also the reason why the standard no-
tion of security for homomorphic encryption most commonly
used does not provide function privacy: only the encrypted
data is considered confidential, while the computation per-
formed on them is publicly known. For approximate schemes
(and some exact ones, like the GSW cryptosystem [24] and
its Ring LWE adaptation [18]), the size of the input messages
can also have an impact on the correctness and security prop-
erties of the scheme. To capture this, the application may
specify a set M̄ ⊆M k of possible inputs to the computation
C : M k→M . This allows even better fine-tuning of the key
generation parameters, producing an evaluation key ek (part
of the public keys pk) that supports the computation of in-
terest C(x) on the type of inputs x ∈ M̄ that can occur in
practice. Since FHE algorithms are naturally parameterized
by the (multiplicative) depth of the computation, and can en-
crypt arbitrary messages in M , ek is syntactically similar to
any key that supports the evaluation of arbitrary circuits of
the same depth as C on any input x ∈M k. However, it is
important to note that using ek to evaluate such circuits and
input data does not provide any correctness or even security
guarantees. Unfortunately, theoretical definitions of homo-
morphic encryption do not explicitly model restrictions on
the computation (beyond specifying the circuit depth), and
this has led to some confusion and misuse of homomorphic
encryption libraries.

In order to clarify the situation, we introduce the notion of
application-aware homomorphic encryption scheme and as-
sociated security notions which more closely correspond to
how homomorphic encryption schemes are implemented and
(should be) used in practice. Our definitions apply both to
exact and approximate homomorphic schemes. In this sec-
tion, we focus on the simplest yet general type of computa-
tions/applications, where the whole input data is provided
at the beginning of the computation, the circuit to be eval-
uated on it is chosen non-adaptively, and a single value is
provided as the final output of the computation. We refer to
Appendix A.2 for the fully adaptive definitions.

Definition 7. Let M and L be the message space and func-
tion space of a homomorphic encryption scheme. A compu-
tation C̄ is described by a circuit C : M k→M , and a subset
of its inputs dom(C̄) ⊆M k. The computation C̄ represents
the restriction of a circuit C ∈ L to the domain dom(C̄). We
write L̄ for the set of computations, i.e., circuits C̄ with re-
stricted domain dom(C̄). An application App⊆ L̄ is a set of

computations that admits a compact description.5

We define an application App to be a subset of L̄ to capture
scenarios where the user wants to generate a single set of
parameters that supports one of several possible computations
C̄ ∈ App, e.g., when the specific C̄ that needs to be evaluated is
not known at key generation time, or when the same keys are
used to perform multiple, different computations C̄1, . . . ,C̄i.
(This is also useful towards function-privacy.) However, a
common setting in practice is when there is a single com-
putation C̄ to be performed (possibly multiple times, but on
different inputs x ∈ dom(C̄)). In this case, App = {C̄} is a
singleton set, and one can think of the application being de-
scribed by a single circuit C and associated domain dom(C̄).
We now define the notion of application-aware homomorphic
encryption scheme.

Definition 8. An application-aware public-key homomor-
phic encryption scheme for application App ⊆ L̄ is a tu-
ple of four probabilistic polynomial-time algorithms E =
(KeyGen,Enc,Dec,Eval) as in Definition 1 with the only dif-
ference that the key generation algorithm takes an application
specification App⊆ L̄ as an additional parameter:

KeyGen : 1N×2L̄ → P K ×SK .

The intuition is that KeyGen(κ,App) will produce keys that
can be used to encrypt data in dom(C̄), and then evaluate C̄
homomorphically, only for C̄ ∈ App. In the common scenario
where App = {C̄} consists of a single computation which is
known at key generation time, one can think of KeyGen(κ,C̄)
as taking as input just C̄ ∈ L̄ rather than a subset of L̄ .

Naturally, the correctness and security definitions should be
modified accordingly. In the case of approximate homomor-
phic encryption, the estimation function Estimate(C̄) takes
as input not only a circuit C, but also a specification of the
application input domain dom(C̄). We provide a unified defini-
tion that applies both to exact and approximate homomorphic
encryption schemes. Exact schemes correspond to setting
Estimate(C̄) = 0, i.e., no approximation is allowed in the
final result of the computation.

Definition 9 (Static Approximate Correctness). Let E =
(KeyGen,Enc, Dec,Eval) be an (approximate) FHE scheme
with (normed) message space M and application space from
L̄ , and let Estimate : 2L̄ → R≥0 be an efficiently computable
function. We say that the tuple Ẽ = (E ,Estimate) satisfies
application-aware static approximate correctness if it is cor-
rect for the following search game:

Exprapprox,Ẽ [A](κ) : App← A(κ)

5For example, App may be specified by a pair of numbers (d,µ) to rep-
resent the set of all computations C̄ where C : M k →M is an arithmetic
circuit of depth at most d, and dom(C̄) is the set of all inputs x ∈M k such
that ∥xi∥ ≤ µ for all i.

7

(sk,pk)← KeyGen(κ,App)

x← A(pk)

cti← Encpk(xi) for i = 1, . . . ,n
C̄← A(ct1, . . . ,ctn)

if C̄ /∈ App or x /∈ dom(C̄) then abort

ct′← Evalpk(C̄,ct)

y← Decsk(ct′)

if ∥y−C̄(x)∥> Estimate(C̄)

then return 1 else return 0.

Definition 10 (Application-aware IND-CPAD Security). Let
E = (KeyGen, Enc,Dec,Eval) be an (approximate) FHE
scheme with (normed) message space M and application
space from L̄ . Application-aware IND-CPAD security is de-
fined by the following decision game:

Expr
cpad
b [A](κ) : App← A(κ)

(sk,pk)← KeyGen(κ,App)

(x0,x1,C)← A(pk)

ct← Encpk(xb)

C̄← A(ct)

if C̄ /∈ App or x0,x1 /∈ dom(C̄) then abort

if C̄(x0) ̸= C̄(x1) then abort

ct′← Evalpk(C̄,ct)

y← Decsk(ct′)

b′← A(ct′,y)

return(b′).

The exact FHE correctness and IND-CPA-security defini-
tions (Definitions 3 and 5) can be also trivially extended to
the application-aware model.

Function-privacy. While the IND-CPAD definition (both in
its application-agnostic and application-aware forms) as-
sumes public functions, it can be generalized to private func-
tions. In the application-aware model, the function-private
IND-CPAD definition allows the adversary to also specify two
distinct computations in the application class in the evalua-
tion query. However, function-privacy often requires security
even against adversaries that know the secret key, therefore
the corresponding definition needs to restrict the adversary to
only see ciphertexts that decrypt to equal messages.

Bootstrapping. So far, the bootstrapping procedure of an
FHE scheme, which resets the noise of a ciphertext, was im-
plicitly treated as a computation of a certain depth using an
evaluation key (which is the encryption of the secret key–in
Ring LWE-based FHE, all evaluation keys require circular
security). Here we detail how to represent bootstrapping in
the application-aware model.

FHE schemes are used in three main ways (we prefer an
itemized description for clarity): (i) pure leveled computa-

tions, (ii) leveled computations and bootstrapping, and (iii)
bootstrapping after each gate. For (i), typically used for BGV,
BFV and CKKS (and the main focus of our paper), the leveled
computations desired to be evaluated should represent the ap-
plication in the KeyGen algorithm, as described so far. For
(iii), chiefly used for DM, CGGI and LMKCDEY, the applica-
tion should be specified as a single gate with the bootstrapping
procedure, as well as the total number of gates. Informally,
because bootstrapping is performed after each gate–leading
to full composability–the circuit becomes a function of the se-
cret key rather than a function of the user inputs, thus only the
number of gates (rather than their type) needs to be specified.
The case of (ii) is a combination between (i) and (iii), where
the application should be specified as the computation(s) to
be performed before bootstrapping, the bootstrapping pro-
cedure, and the number of bootstrapping operations to be
performed. Ideally, the specification of the bootstrapping pro-
cedure (along with an associated probability of failure) should
be done by the library. We will revisit this in Section 5.

Finally, it is crucial to note that performing computations
that are not in App may result not only in incorrect results, but
also in security loss, including a total key recovery attack. An
adversary (to the correctness/security properties) that spec-
ifies a certain App during key generation, and then carries
out a computation C̄(x) for C̄ /∈ App or x /∈ dom(C̄) during
the attack is not a valid adversary to the application-aware
FHE. Showing that an encryption scheme can be broken using
an invalid adversary does not show that the scheme is inse-
cure, since no security (or even correctness) claim is made
about invalid adversaries. Rather, it should be considered as
a warning against misusing the encryption scheme to carry
out a homomorphic computation that it was not designed to
handle. In the subsequent sections, we show that the IND-CPA
and IND-CPAD security in the application-aware model hold
as expected against valid adversaries, describe how libraries
instantiate the application-aware model, and illustrate how
the recent attacks in the literature use adversaries that do not
follow the application-aware model.

4 Equivalence between IND-CPA and
IND-CPAD for Application-Aware Schemes

We now adapt the results of [39, 40] to the application-aware
model. The proofs are deferred to Appendix A.5.

4.1 Exact Schemes
The equivalence between IND-CPA and IND-CPAD security
for exact FHE schemes can be extended from its generic
formulation [39, Lemma 1] to the application-aware model.
As expected, for an allowed application class, as long as the
scheme satisfies exact correctness, then the decryption oracle
does not give any new information to the adversary.

8

Theorem 1. Let E be a correct6 application-aware exact ho-
momorphic scheme for application App⊆ L̄ . E is IND-CPA-
secure if and only if it is IND-CPAD-secure.

4.2 Approximate Schemes

The starting point of the transformation to achieve IND-CPAD-
security is an application-aware approximate FHE scheme
Ẽ = (E ,Estimate). The scheme is assumed to satisfy only an
IND-CPA-security notion and the correctness property. In our
setting, the relevant correctness notion is that of static approxi-
mate correctness (Definition 9). The transformation from [40],
described in Algorithm 1, uses a mechanism M to define
new KeyGen′ and Dec′ algorithms, producing a new scheme
M[Ẽ] = (KeyGen′,Enc, Eval,Dec′). The mechanism Mt is
simply a randomized algorithm that adds some flooding noise,
parameterized by t, to the output of the (IND-CPAD-insecure)
decryption function Decsk. The amount of noise required in
the decryption algorithm to achieve IND-CPAD-security is
quantified in [40] by the notion of ρ-KLDP (Kullback-Leibler
Differential Privacy, see Appendix A.3), for a sufficiently
small value of ρ.

Algorithm 1 Application-aware M[Ẽ] for App.
KeyGen′(κ,App) :=

1: (sk,pk)← KeyGen(κ,App)
2: t← Estimate(App)
3: sk′ = (sk, t)
4: return (sk′,pk)

Dec′sk′(ct) :=
1: return Mt(Decsk(ct))

We remark that the input scheme Ẽ is required to satisfy
the static notion of approximate correctness with respect to
the Estimate function given as input to the transformation,
in order for the output scheme M[Ẽ] to be secure. M[Ẽ] will
also satisfy approximate correctness, but with respect to a
different (typically larger) Estimate′ = Mt [Estimate] func-
tion, which includes the additional error introduced by the
mechanism Mt . However, since the definition of IND-CPAD

security (Definition 10) does not involve the estimation func-
tion, we will not be concerned with Estimate′. Determining
Estimate′ is important to assess the quality of the output and
usefulness of an application that performs secure approximate
computations on encrypted data, but it is not directly relevant
to security. What is critical for security is that the original
(IND-CPA-secure) scheme is correct with respect to the origi-
nal Estimate function, used to determine the parameter t used

6Recall that a scheme is correct if it satisfies Definition 3 or Definition 4
with Estimate(C̄) = 0, and that, like all search games, this requires decryp-
tion errors to have negligible probability. This theorem provides no security
guarantees for “exact” encryption schemes that are not correct.

by the security mechanism Mt . The formal security statement
is given in the following theorem.

Theorem 2. Let E = (KeyGen,Enc,Dec,Eval) be an approx-
imate FHE scheme with normed message space M and ap-
plication space from L̄ . Let Estimate : 2L̄ → R≥0 be an ef-
ficiently computable function such that Ẽ = (E ,Estimate)
be application-aware statically approximate. Let Mt be a
ρ−KLDP mechanism on M̃ , where ρ≤ 2−κ−7. If E is (κ+8)-
bit secure in the application-aware IND-CPA game, then M[Ẽ]
is κ-bit secure in the application-aware IND-CPAD-game.

Li et al. [40] illustrated how to use the notion of
bit-security [43, 44], described in Section 2.1, to achieve
IND-CPAD-security with a lower amount of DP noise than
in Theorem 2. The idea is that the statistical security level
s cannot be lowered by the adversary simply by investing
more running time: any adversary running in time T will have
advantage at most 2−min(s,c/ logT) in breaking the scheme. So,
it is often acceptable to use s < c. Since the statistical pa-
rameter s directly influences the additional noise used by the
mechanism Mt , this results in a scheme M[Ẽ] which is approx-
imately correct with respect to a better Estimate′ function,
and produces higher quality results.

However, it is important to understand that the adversary
running time does not affect the statistical security level s only
as long as the adversary makes the same number of decryption
queries. This is the case, for example, in Theorem 2, which
uses a security definition where the adversary is limited to a
single computation/decryption. This is typically not an issue
in applications of approximate FHE schemes, where the appli-
cation can control the number of decryption queries. Issuing
ℓ decryption queries (e.g., as in the fully adaptive security
definition) allows the adversary to gain a 2ℓ factor in both
statistical and computational security. So, while s = 64 (or
even lower values) may be acceptable in some applications
that make a single or small number of decryption queries, it
can result in a total break in applications where the same key
is used to perform a large number (say, 230) of homomorphic
evaluations.

Let CKKS denote an instantiation of the application-secure
scheme E = (KeyGen,Enc,Eval,Dec) with algorithms cor-
responding to the CKKS algorithms form [12, 32]. Practi-
cally, Mt from Theorem 2 is instantiated via a discrete Gaus-
sian mechanism (Definition 18 in Appendix A.3). Specifi-
cally, in Algorithm 1 for CKKS, for a positive σ, Dec′sk′(ct) =
Decsk(ct)+NZn(0,σ2 · t2 · In). To capture the dependency on
σ, we denote the corresponding CKKS scheme instantiation
from Algorithm 1 as M[C̃KKS]σ. Using the bit-security notion,
one can obtain the following result for an IND-CPAD-secure
instantiation, adapted from [40], which can be extended to
ℓ-decryptions queries in the fully adaptive model.

Theorem 3. If CKKS is (c+ log2 24)-bit application-aware

9

IND-CPA-secure, then, for σ =
√

12 ·2s/2, M[C̃KKS]σ is (c,s)-
bit application-aware IND-CPAD-secure.

5 Practical Guidelines for Application-Aware
Homomorphic Encryption

Recall that homomorphic encryption schemes are only pas-
sively-secure. Viewing the outsourced computation as a pro-
tocol between parties (with the roles of encryptor, evaluator
and decryptor), parties are assumed to be honest-but-curious,
meaning they do not deviate from the protocol design. Under
Definition 10, this translates to the attacker not being allowed
to submit invalid ciphertexts or functions not part of the appli-
cation App selected during key generation. Therefore, users
should ensure they adequately follow these specifications
when working with FHE schemes.

However, misuses of cryptography can occur in practice,
and one should make the use of FHE libraries less error-prone.
Instead of relying simply on the user expertise, the library can
make the application specification App an explicit parameter
of the key generation procedure, store App as part of the key or
evaluation context, and then implement the appropriate checks
when the user makes calls to the encryption, evaluation and
decryption functions. In the following, we provide a practical
description of the secure application-aware FHE schemes
from Section 4, as well as instructions for the FHE libraries’
users and developers.

5.1 Application-Aware Approximate FHE

Definitions 8–10 and Algorithm 1 assume (implicit) validators
which ensure the validity of the attacker’s queries. However, in
practice, homomorphic encryption implementations typically
do not include any validity checks and rely on the user’s
discipline to avoid improper use of the library.

Protocol 2 makes the presence of the validators explicit
and provides guidelines for the correct usage of approximate
FHE schemes in the IND-CPAD setting with respect to an ap-
plication class App. Compared to the notation of KeyGen′

from Section 4, in Protocol 2 we separate the part of deriv-
ing the public parameters pp and noise estimates {ti} from
the secret key sk sampling and public key pk computation.
Specifically, the protocol includes two phases: offline, when
the noise estimates are computed and scheme parameters are
found without using the secret key, and online, when the ac-
tual homomorphic computation is performed using the secret
key (the secret key is used to derive the evaluation keys and
to perform the decryption, and is not used by the evaluator).
This explicit split into phases removes the burden from the
user to compute the parameters and only requires the user to
specify the same application class in both offline and online
phases.

The offline phase may require multiple iterations to achieve

Protocol 2 Application-Aware FHE scheme for App.
Offline Noise Estimation and Parameter Generation
Input: κ,App.
Output: pp.

1: Initialize pp for the given application App (using an opti-
mistic value of lattice dimension).

2: Compute noise estimates t using current pp on represen-
tative inputs for all computations C̄, for each C̄ ∈ App:
{ti← Estimate(App)}i∈O(C).a

3: Update pp based on current t.
4: If current pp do not satisfy κ, update pp (increase the

lattice dimension) and go to Step 2.

Online Execution
Input: pp,App to all, C̄,{mi}i∈I(C) to the Encryptor.
Output: {Dec′sk(cti)}i∈O(C) to all.

1: The Decryptor runs KeyGen′(pp,App) and outputs the
public key pk (including the evaluation keys) and keeps
the secret key sk private.

2: The Encryptor checksb that {mi}i∈I(C) ∈ dom(C̄), and, if
so, computes the ciphertexts {cti← Encpk(mi)}i∈I(C) and
sends them to the evaluator, along with C̄.

3: The Evaluator checksc if C̄ ∈ App and if yes, runs {cti←
Evalpk(C̄,{ct j} j∈I(C))}i∈O(C) and outputs it. Otherwise,
it outputs ⊥.

4: The Decryptor outputs {Dec′sk(cti)}i∈O(C) (noise checks
may also be performed before outputting the result; the
decryptor may also output ⊥ if the current noise estimate
is above the bound t).d

aI(C) and O(C) denote all inputs and all outputs of the circuit C.
bThis check may be hard to enforce in practice if the messages mi are

provided as different encryption calls, unless the domain dom(C̄) = M|I(C)|

restricts each message independently to the same set M ⊆M .
cNotice that the evaluation cannot check that {mi}i∈I(C) ∈ dom(C̄) be-

cause it is only provided for encrypted messages, and it does not have the
decryption key. Any validity check on the encrypted messages needs to be
performed at encryption time, unless other inputs are provided.

dWe remark that if parameters are properly set, with negligible correctness
error, failure of a noise bound check should not happen in practice. If it does,
it should be interpreted as a critical error that the scheme parameters are not
set properly and the scheme may provide no security guarantees. Checking
for error bounds is good for security because it limits possible information
leakage to only one bit.

both the desired functionality/precision and the security work
factor; concretely for CKKS, to find the ciphertext modulus
Q and ring dimension N. The online phase may invoke one or
more validators to check whether the executed computation
belongs to App. Such validation can be performed during
evaluation and/or decryption. If needed, Protocol 2 can be run
for a set of representative samples, and the maximum noise
over all these runs can be used to instantiate the parameters.

Application Specification. In approximate FHE, the appli-
cation specification needs to include the description of sup-
ported computations as well as the bounds on the input mes-

10

sages, which makes it challenging to find a compact form for
the specification. When CKKS bootstrapping is used, one has
to also check that the probability of decryption failure during
bootstrapping is negligible (see [5] for more details) and to
stipulate the bootstrapping procedure as part of the application
specification. The multiplicative depth is often a useful pa-
rameter in guiding the parameter selection during the offline
phase, but it may often be insufficient by itself. Therefore, the
guidelines provided by libraries typically recommend running
full computations (in the estimation or execution mode) to
obtain tight noise bounds and generate scheme parameters.

Library-Specific Guidelines. The OpenFHE and HElib li-
braries provide guidelines [31, 48] for configuring IND-CPAD-
secure approximate homomorphic encryption, which infor-
mally correspond to Protocol 2. Both libraries follow the
two-phase approach and require running full computations
(step-by-step procedures) during the offline estimation phase.

During the offline phase, OpenFHE finds tight estimates for
approximation noise by computing the variance over the slots
corresponding to the imaginary part of the decrypted plaintext
vector (these slots are set to zero during encoding). OpenFHE
also implements the flooding noise estimation method pro-
posed in [40] based on differential privacy. HElib provides
a ciphertext-specific noise tracking functionality that can be
used to check whether the computation run during the online
phase belongs to the application class App. Although the HE-
lib validator cannot cover all possible ways of misusing the
library for IND-CPAD-secure approximate homomorphic en-
cryption, the validator can detect many instances of accidental
CKKS misconfiguration.

Library Tools. Ultimately, the FHE libraries are responsi-
ble for following the application-aware model formulated in
our work and providing clear guidelines for specifying the
allowed application class. In turn, the users are responsible
for complying with these specifications, as there is no cur-
rent design that can capture all possible invalid actions by an
adversary (e.g., submitting invalid ciphertexts or correlated
ciphertexts for independent inputs). To aid the latter, libraries
can provide helper capabilities, such as validators or noise
estimators for application specifications, that can make it sig-
nificantly easier to achieve the compliance in practice. One
such tool is a ciphertext-specific noise estimation capabil-
ity, similar to the one available in HElib, which can detect a
large approximation error before the output is presented to
the user. Another useful tool is a generator of a more com-
pact description of an application class, which could be then
used to validate whether a given computation satisfies the
application specification. Such a validator may be replaced
by static analysis of the user program, or, when App = {C̄}
contains just a single computation, one could store C̄ during
key generation as part of the evaluation key, and then use an
evaluation function EvalC̄ with the circuit C̄ hardwired in it
(while still checking that input data x ∈ dom(C̄)). Compilers

are a promising tool in aiding with application specification.

5.2 Application-Aware Exact FHE
Protocol 2 can also be applied in the case of the exact FHE
family. However, there are a couple of practical differences
between exact and approximate FHE settings. (i) The goal of
the protocol in the exact setting is to guarantee correct decryp-
tion with negligible probability of failure. The probability of
failure is taken as a parameter in application specification, in
the form of the statistical security parameter. (Note that in
the approximate setting, this particular probability of exact
decryption failure explicitly comes up only when bootstrap-
ping is needed.) (ii) The message bounds are not needed in
the application specification because all plaintext operations
are performed over finite fields (i.e., modulo the plaintext
modulus), which significantly simplifies the noise estimation.

Application Specification. As the message bounds are not
needed, compact descriptions of application specifications can
be used. For example, the BGV implementation of OpenFHE
takes three parameters to describe the application class: the
multiplicative depth, the maximum (over all levels) number of
additions per level, and the maximum number of key switch-
ing operations per level. Using these three input parameters,
OpenFHE finds all scheme parameters via the procedure de-
scribed in [33, Sec. 4]. The probability of failure is not set
by the user because the heuristic estimates used internally for
BGV/BFV estimation are conservatively chosen to achieve
negligible probability of failure. More concretely, the conser-
vative expansion factor bound of 2

√
N is used for all multi-

plications of random polynomials, for the ring dimension N
(see [26, Sec. 6]), resulting in the probability of decryption
failure below 2−100. OpenFHE finds all scheme parameters
for BGV and BFV using analytical expressions; there is no
need to run the full step-by-step procedure in contrast to the
approximate FHE setting.

In HElib, a more complicated representation of application
specification is supported for BGV. The concept of level is not
explicitly used and ciphertext-specific noise estimation using
the canonical embedding (see [27] for details) is employed
to make decisions on when to invoke modulus switching (or
bootstrapping) as well as to enforce the correctness of the
decryption output.

Library Tools. As before, although libraries cannot prevent
all possible ways of misuse, there are several tools that could
help users minimize the chances of unsafe library use.

First, libraries should clearly describe the application spec-
ifications in the user API to generate the parameter set. This
would minimize the risk of generating a parameter set that is
not compliant with the desired application class.

Second, libraries can implement validators to detect in-
valid computations during run-time. For instance, for BGV,
OpenFHE could check whether the depth, maximum number

11

of additions, or maximum number of key switching opera-
tions is exceeded. Alternatively, a ciphertext-specific noise
estimator, like the one implemented in HElib, could be used.

Third, the probability of decryption failure for a single
bootstrapping operation can be exposed as an input parameter
for certain schemes where the probability of failure has a
major impact on the efficiency, e.g., DM or CGGI. The moti-
vation for exposing this parameter is to support larger circuits
(where the default bootstrapping probability of failure may be
too high for the current application class). This application-
specific configurability can be used to achieve better efficiency
while still providing a negligibly small probability of failure
for a given application class (ensuring this is required to pre-
vent an attack described in Section 6.2). OpenFHE already
provides a parameter generation tool [47] for DM, CGGI,
and LMKCDEY that takes the bootstrapping probability of
failure as an input argument. Finally, in practice, the number
of evaluated gates (under a single key) should be accounted
for by choosing a smaller failure probability for the single
bootstrapping operation, such that the union bound over all
gates yields an acceptable failure probability.

6 Discussion of Key Recovery Attacks

We briefly summarize the Li-Micciancio key-recovery at-
tack [39], as all attacks on CKKS, BGV and BFV from [10,
11, 25] are based on the same methodology.

Let us consider a toy version of symmetric-key CKKS
based on the Ring LWE hardness problem (see Appendix A.4),
where the encoding and decoding are considered errorless (the
attack can be extended to the efficient CKKS scheme used
in practice [12, 32]). Let the secret key be sk = (1,s), where
s←{0,−1,1}N is sampled from the uniform ternary distribu-
tion. The encryption of a message is Encsk(m) = (a,b) ∈ R2

Q,
where a← RQ and b = a · s+ e+m, for e← N (0,σ) with
support RQ. To decrypt a ciphertext of form ct = (a,b) en-
crypting m, one performs Decsk((a,b)) = b−a ·s mod Q. An
attacker can specify m = 0 to the encryption oracle to obtain
ct = (a,b), where b = a · s+ e, then the identity function to
the evaluation oracle, and can finally request the decryption
of ct from the decryption oracle, which returns Decsk(ct) =
e mod Q. The attacker retrieves b− e = a · s mod Q. Making
N such queries allows the adversary to form a system of lin-
ear equations in the secret s with high probability. When a is
invertible, as few as a single query is sufficient to recover the
secret key.

The gist of the attack is retrieving the error from the decryp-
tion query, which can be used, along with public information
such as the ciphertexts, to recover the secret key. This im-
plies that the basic CKKS scheme is not IND-CPAD-secure.
Li et al. [40] further analyzed the IND-CPAD definition and
introduced a mechanism for achieving this security level for
CKKS, through estimating and adding Gaussian noise dur-

ing the decryption procedure such that the decryption query
output does not reveal any useful information, described in
Section 4.2. However, they did not formally include the es-
timation procedure and its relation to the evaluated function
class in the definition, something which is done by libraries
like OpenFHE and HElib that implement their security coun-
termeasures. In Sections 3 and 4, we clarified the IND-CPAD

definition in the context of practical use cases of user appli-
cations, and gave precise formulations of application-aware
security statements that support the use of the libraries.

Software libraries that implement approximate FHE
schemes with the countermeasures proposed in [40], or instan-
tiate exact FHE schemes with parameters that satisfy appro-
priate correctness bounds (Section 5), satisfy the application-
aware notion of IND-CPAD-security as described in Sections 3
and 4, and should be immune to the Li-Micciancio attack [39]
and its variants.

Recently, a number of other works have extended the attack
of [39] either (i) to defeat the security countermeasures for
approximate FHE [25] or (ii) to break exact FHE schemes
[10, 11]. As in the original attack [39], these works use an
IND-CPAD adversary that extracts the LWE encryption noise
via decryption queries, and then uses this information to re-
cover the secret key or break the indistinguishability of the
scheme. In [10, 11, 25], this is achieved by exploiting queries
to the evaluator or decryptor that are valid according to Def-
inition 6, but invalid according to Definition 10. In the case
of approximate FHE, this bypasses the intended effect of the
noise flooding mechanism proposed in [25]. In the case of
exact schemes [10, 11], this breaks the equivalence between
IND-CPA and IND-CPAD-security. Note that in both cases the
attack violates the assumptions of the security results from
Theorems 1 and 2.

In this section we describe the attacks [10, 11, 25] using
our application-aware security definitions. This serves two
purposes: one is to show that these attacks highlight the dan-
gers associated to using the libraries improperly rather than a
vulnerability in the schemes or in the implementations. The
other is to show how application-aware security can be used to
explain the security guarantees offered by FHE schemes and
provide robust guidelines on the use of the libraries to avoid
the pitfalls of [10,11,25]. We also stress that our formalism is
only one of the ways to withstand these attacks: one could al-
ways select larger parameters in a non-systematic way, but we
consider it to be more worthwhile to use a formalism tailored
towards the application, which limits the misuse of libraries
and leads to more efficient parameter sets.

6.1 Attacks on Approximate FHE

Guo et al. [25] proposed two attacks which have the goal of
injecting a smaller noise in the decryption procedure than
required by Theorem 2. This allows the attacker to retrieve
sufficient information about the original noise in order to

12

recover the secret key under some parameter settings.
We now translate the attacks from [25] to the language of

application-aware IND-CPAD from Section 3. The attacks are
not adaptive, meaning the attacker does not use the results of
previous queries before submitting new ones, so we can use
the simplified definition of IND-CPAD. (For completeness, in
Appendix A.6, we show the formulation under the adaptive
definition as well, which was how it was described in [25].)

In the case of the first attack (called “average-case es-
timation attack” in [25]), the attacker specifies an appli-
cation App = {C̄} on n inputs, described by the circuit
C(x1, . . . ,xn) = x1 + . . .+ xn, for which the parameters and
noise estimate for the differentially private mechanism are
being computed.7 The attacker then asks for the encryption of
inputs x1, . . . ,xn, but specifies the function8 C′(x1, . . . ,xn) =
x1+ . . .+x1 for evaluation. Despite the fact that when xi = x1,
for i = 2, . . . ,n, the outputs of the two computations are the
same, the computations C̄′ and C̄ are different, and, impor-
tantly, C̄′ /∈ App. This means C̄′ is not a valid query according
to Definition 10. We remark there is nothing wrong about the
circuit C′ itself, and a user may want legitimately evaluate
C′ on encrypted inputs. But, if so, it should include C̄′ in the
application specification App = {C̄,C̄′} during key/parameter
generation. (See below for additional discussion on this.) The
same holds for a different computation which computes the
addition recursively (in a tree shape), also explored in [25].

In the case of the second attack (called “empirical noise
attack” in [25]), the attacker now specifies for the run-time
evaluation the circuit C′′(x1, . . . ,xn′) = x1 + . . .+xn′ , for n′ ̸=
n, while still using App = {C̄} defined above. But C̄′′ ̸= C̄
and C̄′′ /∈ App, also rendering this query invalid according to
Definition 10.

The authors of [25] suggest that in order to avoid attacks,
one should always use worst-case noise estimates. But from
the description above it should be clear that the real issue
exploited by their attack is not the difference between average-
case and worst-case error estimates. Choosing the scheme pa-
rameters based on worst-case error estimates for C̄, and then
evaluating C̄′ homomorphically using the same key, based on
the ad-hoc analysis that C̄ and C̄′ produce similar worst-case
noise estimates, is error-prone and theoretically unjustified.
If the user also wants to evaluate C̄′, it is both easier and less
error-prone to include C̄′ in App at key generation time, and
let the library choose the parameters accordingly. Moreover,
while C̄ and C̄′ have the same worst-case noise bounds, this is

7The noise estimate for the encrypted computation is not performed worst-
case over the ciphertexts input to the homomorphic evaluation of C̄, but using
heuristics assuming independently honestly generated ciphertexts; however,
this is actually not relevant to our discussion of the application-aware model.

8Technically, the attack in [25] did not specify a function, but was de-
scribed informally as adding n copies of the first ciphertext ct1 = Encpk(x1)
obtained from the encryption queries. But since in an IND-CPAD attack the
adversary can only choose input messages xi and not ciphertexts cti, the
correct (and only) way to add a ciphertext to itself ct1 + . . .+ ct1 is to use a
circuit that reuses the same (encrypted) input like C′.

not the case for other circuits like C̄′′. In any case, if C̄′ /∈ App,
one cannot invoke Theorem 2 and claim generic IND-CPAD-
security. This is true even if the differentially-private mech-
anism applied in decryption uses worst-case noise bounds
over C̄ and C̄′. The reason for this is because the generic
IND-CPAD-security definition (Definition 6) requires noise
bounds over all possible circuits allowed by the scheme’s
parameters.

Instead, for application-aware IND-CPAD-security (Defini-
tion 10), one can clearly define and focus on a specific com-
putation class App. The practical significance of this model
is that one can thus compute smaller parameters (leading to
more efficient implementation), as long as only valid com-
putations are performed, and still achieve application-aware
IND-CPAD-security. Importantly, this also allows the use of
non-worst-case noise bound estimation, and refutes the claim
from [25] that any usage of non-worst-case estimates is inse-
cure. The estimation should be performed globally over the
class of allowed computations (with confidence intervals over
the noise introduced by the FHE schemes operations), but it
does not have to account for disallowed computations.

From the perspective of Section 5, these attacks violate
Protocol 2 as the computation they run during the online phase
does not belong to the application class App specified during
the offline estimation phase. Crucially, it is the responsibility
of the libraries such as OpenFHE to clarify the guidelines
for the application specification, if it should refer to the same
computation during offline and online phases.

Finally, another claim from [25] against non-worst-case
estimates is that “the user in possession of the secret key may
lack prior knowledge of the function to be evaluated, as could
occur in cases involving private circuits”. Presuming the func-
tion is private falls under the function-privacy model. We dis-
cussed in Section 3 that function-privacy requires a different
definition of IND-CPAD, both in the generic and application-
aware models. Satisfying these new definitions would require
different estimations than in the non-function-private model,
and the existing libraries do not claim security in the function-
private model.

6.2 Attacks on “Exact” FHE schemes

By definition, exact FHE schemes (Definition 3) are a special
case of approximate FHE schemes with a perfect estimation
function Estimate(App) = 0 that leaves no space for approxi-
mation errors. There is still a way in which decryption may de-
viate from recovering the input message: a decryption failure,
and the Li-Micciancio attack [39] extends to such schemes.
According to Definition 3, decryption failures should occur
with at most negligible probability (see Remark 1). However,
if a cryptographic library is misconfigured or improperly used,
decryption failures may occur with noticeable probability and
be exploited in attacks.

There are several folkore attacks on schemes such as

13

BGV/BFV where decryption is allowed despite an overflown
ciphertext error. We briefly describe in the following such an
attack from [3], as part of a discussion following the respon-
sible disclosure of the attack in [39].

Consider a toy version of the BGV scheme with plaintext
space Zp and ciphertext space RQ, with the secret key sk =
(1,s), where s← {0,−1,1}N is sampled from the uniform
ternary distribution. The encryption of a (possibly encoded)
message Encsk(m) = (a,b) ∈ R2

Q, where a← RQ and b =

a · s+ p ·e+m, for e←N (0,σ) with support RQ. To decrypt
a ciphertext of form ct = (a,b), one performs Decsk((a,b)) =
b−a ·s mod p. An attacker submits the message m = 0 to the
encryption oracle, resulting in a ciphertext ct = (a,b) with
randomly sampled a and b = a · s+ p · e mod Q. The attacker
then requests the evaluation of a circuit adding the input to
itself p−1−1 mod Q times and finally asks for the resulting
ciphertext ct′ = ct+ . . .+ ct = (a′,b′). Note that ct′ = (a ·
p−1 mod Q,(a ·s+ p ·e) · p−1 mod Q). As such,Decsk(ct′) =
(p ·e) · p−1 mod p= e mod p. It is clear that when e< p, then
one can recover the secret key via linear algebra. The attack
can also be extended for when e≥ p.

What makes this attack possible is allowing for as many ad-
ditions as to lead to an incorrect decryption result (and implic-
itly, to a scheme that does not satisfy exact correctness even
probabilistically, with negligible failure probability). Note
that in this attack, p and Q are specified first, and the number
of additions required depends on their values. However, in
Definitions 8–10, one specifies the application class in the
key generation algorithm. This would translate to the user
specifying the addition circuit, which fixes the number of in-
puts and the number of addition gates, and obtaining public
parameters that are correct with respect to this computation
(one can specify multiple circuits, but all have the number
of inputs and gates fixed). Then, during run-time, only the
evaluation of this computation would be allowed, which with
high probability, disallows adding a value for p−1−1 mod Q
times.

Recently, Checri et al. [10] and Cheon et al. [11] pro-
posed similar key recovery attacks against OpenFHE and
other libraries. Their attacks on BGV/BFV schemes fix the
parameters of the schemes–implicitly, by specifying a com-
putation class App which returns parameters for achieving
exact correctness for App–and then using these parameters
to perform a different computation C̄ /∈ App. This computa-
tion C̄ is chosen such that for cti ← Encpk(xi) , i = 1, . . . ,n,
it holds that Decsk(Evalpk(C̄,ct1, . . . ,ctn)) ̸= C̄(x1, . . . ,xn),
see [10, 11] for more concrete details. Since C̄ /∈ App, nei-
ther application-aware correctness nor IND-CPAD-security is
guaranteed. Therefore, there is no reason to expect encryp-
tion to be secure. The attacks in [10, 11] demonstrate that
this lack of security is not just a (well-known, but theoretical)
possibility, but a real threat in practice.

Concretely, this is a good example of the risks of not fol-
lowing Protocol 2. The attacks in [10, 11] against OpenFHE

go through not because of the use of average-case noise es-
timation instead of worst-case estimation (for addition in
BGV/BFV, OpenFHE uses worst-case estimation), but be-
cause the circuit to be evaluated is not specified correctly. In
the case of the attack in [11] the proper OpenFHE use of
BGV/BFV for this scenario would require the user to supply
the number of additions before generating the parameters us-
ing SETEVALADDCOUNT, or an equivalent multiplicative
depth using SETMULTIPLICATIVEDEPTH. One can check
that, when this is done correctly, a larger parameter set is
generated by OpenFHE than the one used for the attack. The
same can be done for the attack in [10] where the circuit is
purely made of addition gates. Additionally, to reduce the
number of additions, [10] uses an optimization involving ro-
tations, which should also be accounted for when specifying
the allowed application class via SETKEYSWITCHCOUNT,
as it affects the noise estimation bound.

The works [10, 11] also describe attacks against the
schemes implemented in the TFHE-rs [51] and TFHELib [14]
libraries, which fall in a different category. CGGI/TFHE is
a DM/FHEW-like cryptosystem that allows to evaluate arbi-
trary (boolean) circuits performing bootstrapping after each
gate. In this context, the set of functions L supported by the
scheme does not represent entire applications, but individual
gates, which are combined together to evaluate a complex
function. Since bootstrapping is applied after every gate, this
should make the library easier to use, and parameter configu-
ration less error-prone. The attacks in [10, 11] use the default
parameters of specific libraries. However, these attacks do
not necessary apply to custom parameters and/or other li-
braries, e.g., the FHEW/TFHE implementation in OpenFHE
allows the user to generate a custom parameter set with a user-
defined bootstrapping probability of failure that corresponds
to negligible decryption error even for large circuits.

The attack in [10] exploits the fact that TFHE (like essen-
tially all lattice-based cryptosystems) is linearly homomor-
phic and supports the evaluation of addition operations (in
fact, exclusive-or, or addition modulo 2) very efficiently, with-
out resorting to bootstrapping. Then, by evaluating a huge
number of additions (beyond what can be supported by the
selected scheme parameters–TFHELib [14] does not automat-
ically apply bootstrapping after a gate evaluation)–one can
trigger decryption errors and recover the secret key. Concep-
tually, this attack is similar to the attacks described before:
since addition is performed without bootstrapping, the maxi-
mum number of homomorphic additions before bootstrapping
should be specified at key generation time, and taken into ac-
count during parameter generation. Our application-aware
security definition allows only the evaluation of circuits that
respect that bound. Alternatively, as the number of additions
approaches the allowed limit, the library or user may inject a
bootstrapping operation to reset the noise to acceptable levels.

On the other hand, the attack in [11] exploits a weakness of
the TFHE-rs library: the choice of a fairly large correctness

14

error of 2−40 or even 2−17 (for Concrete-python). Note that
such parameters are not correct according to Definition 3,
which requires decryption errors to have negligible proba-
bility. Selecting such parameters to maximize performance
allows [10, 11] to trigger decryption errors and mount a key
recovery attack.

7 Concluding Remarks

In this work, we proposed a framework for secure and effi-
cient configuration of approximate FHE schemes by intro-
ducing the concept of application-aware FHE and its associ-
ated security definitions. Our framework addresses the cur-
rent confusion surrounding the secure instantiation of the
CKKS scheme in practice, especially after recent secret-key
recovery attacks which highlighted the practical limitations
of the generic IND-CPAD model. Unlike generic and poten-
tially hard-to-satisfy security models, our application-aware
security model reflects the real-world use of FHE. We provide
practical guidelines for FHE developers and users to achieve
IND-CPAD security in the application-aware setting. We also
demonstrate that our application-aware model can be used to
securely instantiate exact FHE schemes.

We see this work as a first step in establishing the prac-
tical procedures for the secure, efficient use of FHE in the
IND-CPAD setting. In the future, we envision multiple tools
that could help FHE users to enforce the application-aware
model. For instance, more compact application specifications
could be developed for approximate FHE. Automated val-
idators that check that a specific computation belongs to the
allowed application class could also be useful. Online noise
estimation tools could provide a mechanism to detect unsafe
use of a library. An important research problem is to reduce
the cost of noise flooding, which currently requires increasing
the CKKS scaling factor by 30 or more bits.

Note that while FHE has a great potential for privacy-
preserving computations, realizing it in practice brings about
many challenges. First, library developers aim for better
usability to hide complicated details of underlying FHE
schemes. However, these simplified interfaces might increase
the chance of library misconfiguration and misuse. Second,
the honest-but-curious assumption in the FHE security model
is hard to satisfy in practice. Although cryptography pro-
vides tools such as authentication, commitments, and zero-
knowledge proofs to ensure adherence to established proto-
cols, these solutions are often too computationally expensive
in the context of FHE applications [21], and are actively being
researched. A more practical alternative are legal auditing and
other non-cryptographic approaches, which can offer valuable
complementary measures.
Acknowledgements. The authors would like to thank
Nicholas Genise for helpful discussions on the CKKS noise
estimation and IND-CPAD security.

References
[1] AKAVIA, A., GENTRY, C., HALEVI, S., AND VALD, M. Achievable

CCA2 relaxation for homomorphic encryption. In TCC 2022, Part II
(Nov. 2022), E. Kiltz and V. Vaikuntanathan, Eds., vol. 13748 of LNCS,
Springer, Cham, pp. 70–99.

[2] ASHAROV, G., JAIN, A., LÓPEZ-ALT, A., TROMER, E., VAIKUN-
TANATHAN, V., AND WICHS, D. Multiparty computation with low
communication, computation and interaction via threshold FHE. In
EUROCRYPT 2012 (Apr. 2012), D. Pointcheval and T. Johansson, Eds.,
vol. 7237 of LNCS, Springer, Berlin, Heidelberg, pp. 483–501.

[3] BERGAMASCHI, F., CHEON, J. H., DAI, W., HALEVI, S., KIM, A.,
KIM, D., LAINE, K., LI, B., MICCIANCIO, D., PAPADIMITRIOU, A.,
POLYAKOV, Y., SHOUP, V., SONG, Y., AND VAIKUNTANATHAN, V.
Personal Communication, 2020. Email thread on October 30, 2020.

[4] BLATT, M., GUSEV, A., POLYAKOV, Y., AND GOLDWASSER, S. Se-
cure large-scale genome-wide association studies using homomorphic
encryption. Proceedings of the National Academy of Sciences 117, 21
(2020), 11608–11613.

[5] BOSSUAT, J.-P., MOUCHET, C., TRONCOSO-PASTORIZA, J. R., AND
HUBAUX, J.-P. Efficient bootstrapping for approximate homomorphic
encryption with non-sparse keys. In EUROCRYPT 2021, Part I (Oct.
2021), A. Canteaut and F.-X. Standaert, Eds., vol. 12696 of LNCS,
Springer, Cham, pp. 587–617.

[6] BOURSE, F., DEL PINO, R., MINELLI, M., AND WEE, H. FHE cir-
cuit privacy almost for free. In CRYPTO 2016, Part II (Aug. 2016),
M. Robshaw and J. Katz, Eds., vol. 9815 of LNCS, Springer, Berlin,
Heidelberg, pp. 62–89.

[7] BRAKERSKI, Z. Fully homomorphic encryption without modulus
switching from classical GapSVP. In CRYPTO 2012 (Aug. 2012),
R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of LNCS, Springer,
Berlin, Heidelberg, pp. 868–886.

[8] BRAKERSKI, Z., GENTRY, C., AND VAIKUNTANATHAN, V. (Leveled)
fully homomorphic encryption without bootstrapping. In ITCS 2012
(Jan. 2012), S. Goldwasser, Ed., ACM, pp. 309–325.

[9] CANARD, S., FONTAINE, C., PHAN, D. H., POINTCHEVAL, D., RE-
NARD, M., AND SIRDEY, R. Relations among new CCA security
notions for approximate FHE. Cryptology ePrint Archive, Report
2024/812, 2024.

[10] CHECRI, M., SIRDEY, R., BOUDGUIGA, A., AND BULTEL, J.-P. On
the practical CPAD security of “exact” and threshold FHE schemes
and libraries. In CRYPTO 2024, Part III (Aug. 2024), L. Reyzin and
D. Stebila, Eds., vol. 14922 of LNCS, Springer, Cham, pp. 3–33.

[11] CHEON, J. H., CHOE, H., PASSELÈGUE, A., STEHLÉ, D., AND SU-
VANTO, E. Attacks against the INDCPA-D security of exact FHE
schemes. Cryptology ePrint Archive, Report 2024/127, 2024.

[12] CHEON, J. H., KIM, A., KIM, M., AND SONG, Y. S. Homomorphic en-
cryption for arithmetic of approximate numbers. In ASIACRYPT 2017,
Part I (Dec. 2017), T. Takagi and T. Peyrin, Eds., vol. 10624 of LNCS,
Springer, Cham, pp. 409–437.

[13] CHILLOTTI, I., GAMA, N., GEORGIEVA, M., AND IZABACHÈNE, M.
Faster packed homomorphic operations and efficient circuit bootstrap-
ping for TFHE. In ASIACRYPT 2017, Part I (Dec. 2017), T. Takagi
and T. Peyrin, Eds., vol. 10624 of LNCS, Springer, Cham, pp. 377–408.

[14] CHILLOTTI, I., GAMA, N., GEORGIEVA, M., AND IZABACHÈNE,
M. TFHE: Fast fully homomorphic encryption library, August 2016.
https://tfhe.github.io/tfhe/.

[15] COSTACHE, A., CURTIS, B. R., HALES, E., MURPHY, S., OGILVIE,
T., AND PLAYER, R. On the precision loss in approximate homo-
morphic encryption. Cryptology ePrint Archive, Report 2022/162,
2022.

15

[16] COSTACHE, A., NÜRNBERGER, L., AND PLAYER, R. Optimisations
and tradeoffs for HElib. In CT-RSA 2023 (Apr. 2023), M. Rosulek, Ed.,
vol. 13871 of LNCS, Springer, Cham, pp. 29–53.

[17] D’ANVERS, J.-P., VERCAUTEREN, F., AND VERBAUWHEDE, I. The
impact of error dependencies on ring/mod-LWE/LWR based schemes.
In Post-Quantum Cryptography - 10th International Conference,
PQCrypto 2019 (2019), J. Ding and R. Steinwandt, Eds., Springer,
Cham, pp. 103–115.

[18] DUCAS, L., AND MICCIANCIO, D. FHEW: Bootstrapping homomor-
phic encryption in less than a second. In EUROCRYPT 2015, Part I
(Apr. 2015), E. Oswald and M. Fischlin, Eds., vol. 9056 of LNCS,
Springer, Berlin, Heidelberg, pp. 617–640.

[19] DUCAS, L., AND STEHLÉ, D. Sanitization of FHE ciphertexts. In
EUROCRYPT 2016, Part I (May 2016), M. Fischlin and J.-S. Coron,
Eds., vol. 9665 of LNCS, Springer, Berlin, Heidelberg, pp. 294–310.

[20] FAN, J., AND VERCAUTEREN, F. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144,
2012.

[21] FRANKLE, J., PARK, S., SHAAR, D., GOLDWASSER, S., AND
WEITZNER, D. J. Practical accountability of secret processes. In
USENIX Security 2018 (Aug. 2018), W. Enck and A. P. Felt, Eds.,
USENIX Association, pp. 657–674.

[22] GENTRY, C. A fully homomorphic encryption scheme. Stanford uni-
versity, 2009.

[23] GENTRY, C. Fully homomorphic encryption using ideal lattices. In
41st ACM STOC (May / June 2009), M. Mitzenmacher, Ed., ACM
Press, pp. 169–178.

[24] GENTRY, C., SAHAI, A., AND WATERS, B. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. Cryptology ePrint Archive, Report 2013/340, 2013.

[25] GUO, Q., NABOKOV, D., SUVANTO, E., AND JOHANSSON, T. Key
recovery attacks on approximate homomorphic encryption with non-
worst-case noise flooding countermeasures. In USENIX Security 2024
(Aug. 2024), D. Balzarotti and W. Xu, Eds., USENIX Association.

[26] HALEVI, S., POLYAKOV, Y., AND SHOUP, V. An improved RNS
variant of the BFV homomorphic encryption scheme. In CT-RSA 2019
(Mar. 2019), M. Matsui, Ed., vol. 11405 of LNCS, Springer, Cham,
pp. 83–105.

[27] HALEVI, S., AND SHOUP, V. Design and implementation of HElib: a
homomorphic encryption library. Cryptology ePrint Archive, Report
2020/1481, 2020.

[28] HAN, K., HONG, S., CHEON, J. H., AND PARK, D. Logistic regression
on homomorphic encrypted data at scale. In Proceedings of the AAAI
conference on artificial intelligence (2019), vol. 33, pp. 9466–9471.

[29] HEAAN v2.1. https://github.com/snucrypto/HEAAN, Dec 2020.
SNUCRYPTO.

[30] HElib v2.3. https://github.com/homenc/HElib, Jul 2023. IBM.

[31] Security of Approximate-Numbers Homomorphic Encrypt. https:
//github.com/homenc/HElib/blob/master/CKKS-security.md,
2024. [Online; accessed 7-Feb-2024].

[32] KIM, A., PAPADIMITRIOU, A., AND POLYAKOV, Y. Approximate
homomorphic encryption with reduced approximation error. In CT-
RSA 2022 (Mar. 2022), S. D. Galbraith, Ed., vol. 13161 of LNCS,
Springer, Cham, pp. 120–144.

[33] KIM, A., POLYAKOV, Y., AND ZUCCA, V. Revisiting homomorphic
encryption schemes for finite fields. In ASIACRYPT 2021, Part III (Dec.
2021), M. Tibouchi and H. Wang, Eds., vol. 13092 of LNCS, Springer,
Cham, pp. 608–639.

[34] KLUCZNIAK, K. Circuit privacy for FHEW/TFHE-style fully homo-
morphic encryption in practice. Cryptology ePrint Archive, Report
2022/1459, 2022.

[35] KLUCZNIAK, K., AND SANTATO, G. On circuit private, multikey and
threshold approximate homomorphic encryption. Cryptology ePrint
Archive, Report 2023/301, 2023.

[36] Lattigo v5. https://github.com/tuneinsight/lattigo, Nov
2023. EPFL-LDS, Tune Insight SA.

[37] LEE, E., LEE, J.-W., LEE, J., KIM, Y.-S., KIM, Y., NO, J.-S., AND
CHOI, W. Low-complexity deep convolutional neural networks on
fully homomorphic encryption using multiplexed parallel convolu-
tions. In International Conference on Machine Learning (2022), PMLR,
pp. 12403–12422.

[38] LEE, Y., MICCIANCIO, D., KIM, A., CHOI, R., DERYABIN, M., EOM,
J., AND YOO, D. Efficient FHEW bootstrapping with small evalua-
tion keys, and applications to threshold homomorphic encryption. In
EUROCRYPT 2023, Part III (Apr. 2023), C. Hazay and M. Stam, Eds.,
vol. 14006 of LNCS, Springer, Cham, pp. 227–256.

[39] LI, B., AND MICCIANCIO, D. On the security of homomorphic en-
cryption on approximate numbers. In EUROCRYPT 2021, Part I (Oct.
2021), A. Canteaut and F.-X. Standaert, Eds., vol. 12696 of LNCS,
Springer, Cham, pp. 648–677.

[40] LI, B., MICCIANCIO, D., SCHULTZ, M., AND SORRELL, J. Securing
approximate homomorphic encryption using differential privacy. In
CRYPTO 2022, Part I (Aug. 2022), Y. Dodis and T. Shrimpton, Eds.,
vol. 13507 of LNCS, Springer, Cham, pp. 560–589.

[41] MANULIS, M., AND NGUYEN, J. Fully homomorphic encryption
beyond IND-CCA1 security: Integrity through verifiability. In EU-
ROCRYPT 2024, Part II (May 2024), M. Joye and G. Leander, Eds.,
vol. 14652 of LNCS, Springer, Cham, pp. 63–93.

[42] MARINGER, G., FRITZMANN, T., AND SEPÚLVEDA, J. The influence
of LWE/RLWE parameters on the stochastic dependence of decryption
failures. In ICICS 20 (Aug. 2020), W. Meng, D. Gollmann, C. D. Jensen,
and J. Zhou, Eds., vol. 11999 of LNCS, Springer, Cham, pp. 331–349.

[43] MICCIANCIO, D., AND SCHULTZ-WU, M. Bit security: optimal adver-
saries, equivalence results, and a toolbox for computational-statistical
security analysis. Cryptology ePrint Archive, Paper 2024/1506, 2024.

[44] MICCIANCIO, D., AND WALTER, M. On the bit security of crypto-
graphic primitives. In EUROCRYPT 2018, Part I (Apr. / May 2018),
J. B. Nielsen and V. Rijmen, Eds., vol. 10820 of LNCS, Springer, Cham,
pp. 3–28.

[45] MURPHY, S., AND PLAYER, R. A central limit framework for ring-
LWE decryption. Cryptology ePrint Archive, Report 2019/452, 2019.

[46] OpenFHE v1.2. https://github.com/openfheorg/openfhe-
development, Dec 2023. OpenFHE Org.

[47] OpenFHE Lattice Estimator. https://github.com/openfheorg/
openfhe-lattice-estimator, 2024. [Online; accessed 7-Feb-
2024].

[48] CKKS Noise Flooding. https://github.com/openfheorg/
openfhe-development/blob/main/src/pke/examples/
CKKS_NOISE_FLOODING.md, 2024. [Online; accessed 7-Feb-2024].

[49] Microsoft SEAL v4.1. https://github.com/Microsoft/SEAL, Jan.
2023. Microsoft Research, Redmond, WA.

[50] VIAND, A., KNABENHANS, C., AND HITHNAWI, A. Verifiable fully
homomorphic encryption. arXiv preprint arXiv:2301.07041 (2023).

[51] ZAMA. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for
Boolean and Integer Arithmetics Over Encrypted Data, 2022. https:
//github.com/zama-ai/tfhe-rs.

A Appendix

A.1 More preliminaries
Definition 11 (Decision game). A decision game G is de-
fined by an experiment ExprG ,S

b [A] parameterized by a bit

16

https://github.com/snucrypto/HEAAN
https://github.com/homenc/HElib
https://github.com/homenc/HElib/blob/master/CKKS-security.md
https://github.com/homenc/HElib/blob/master/CKKS-security.md
https://github.com/tuneinsight/lattigo
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-lattice-estimator
https://github.com/openfheorg/openfhe-lattice-estimator
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/Microsoft/SEAL
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

b ∈ {0,1}, (encryption) scheme S and adversary A , that on
input a security parameter κ, runs a computation (using the
algorithms of S and A) and outputs a bit. The advantage
AdvS

G [A](κ) of A in breaking the G-security of S is

|Pr{ExprG ,S
0 [A](κ) = 1}−Pr{ExprG ,S

1 [A](κ) = 1}|.

The scheme S is G-secure if for any efficient (probabilis-
tic, polynomial time, stateful) adversary A , the advantage
AdvS

G [A](κ) is negligible in κ.

Definition 12 (Search game). A search game G is defined
by an experiment ExprG ,S [A] parametrized by a (encryption)
scheme S and adversary A , that on input a security parameter
κ, outputs a bit. The advantage of A is simply the probability

AdvS
G [A](κ) = Pr{ExprG ,S [A](κ) = 1}

that the experiment outputs 1. The scheme S is G-secure
if for any efficient (probabilistic, polynomial time, stateful)
adversary A , the advantage AdvS

G [A](κ) is negligible in κ.

As a standard convention, if at any point in an experiment
the adversary makes a syntactically incorrect query (e.g., in-
dices out of range) or an invalid query (e.g., a circuit C not
supported by the scheme), the experiment returns an error
symbol ⊥ in the case of a decision game and 0 in the case of
search game.

A.2 Fully adaptive definitions
For simplicity, in the main body of the paper, we have con-
sidered applications where all input data is specified (and
encrypted) in advance, and then a single homomorphic com-
putation is performed on it. In practice, homomorphic encryp-
tion schemes (and libraries) allow to interleave encryption,
evaluation and decryption queries, performing computations
incrementally (possibly based on the result of decryption
queries), reuse intermediate results of previous homomorphic
computations, etc. In this section, we provide general defi-
nitions of correctness and security properties for this more
general form of encrypted computations. We remark that,
while the mathematical formalization of the properties in this
general setting is somehow more complex (which is why we
postponed it to the appendix), the essence of the definition
is the same, and the main insights of our work can be al-
ready understood from the basic treatment of non-adaptive
definitions.

The first thing that we need to generalize our definitions of
application-aware correctness and security is a formalization
of adaptive, incremental computations. Here, the set L of
functions supported by a homomorphic encryption scheme
should be understood as the set of basic operations that can be
performed by a single call to Eval, and corresponding to the
functions associated to the individual gates of a larger circuit
representing the entire computation.

Definition 13. Let M and L be the message space and (basic)
function space of a homomorphic encryption scheme. A com-
putation trace is a sequence of basic operations [op1,op2, . . .]
where each opi can be one of the following:

• an encryption query E(m), where m ∈M

• an evaluation query H(f , i1, . . . , ik) where f : M k→M
is a function in L and i1, . . . , ik ∈ {1, . . . , i− 1} are in-
dexes corresponding to previous E or H operations

• a decryption query D(j) where j ∈ {1, . . . , i−1} is the
index of a previous E or H operations.

Let Ops∗ be the set of all computation sequences. An ap-
plication is specified by a subset App ⊆ Ops∗ of computa-
tion traces that is closed under prefixes, i.e., such that if
[op1, . . . ,opn] ∈ App, then [op1, . . . ,opi] is also in App for
all i < n.

As usual, we assume that the set App admits a compact
description, and not all possible applications (i.e., subsets of
Ops∗) may be supported by a scheme. For example, App may
be described by a single sequence of operations op1, . . . ,opn
where encryption operations opi = E(µi) carry not a single
message m ∈M but a bound µi on the message size. This
single sequence represents the set of all possible computation
traces obtained by replacing each µi by any message xi ∈M
satisfying the given size bound ∥xi∥ ≤ µi. Since the details of
how App may be specified are scheme and application depen-
dent, we formulate our definition using general set notation.

Remark 2. The basic applications App′ = {C̄1,C̄2, . . .} intro-
duced in Definition 8 correspond to a special case of Defini-
tion 13, where App is the set of all computation traces of the
form

[E(x1), . . . ,E(xk),H(Ci,1,2, . . . ,k),D(k+1)]

such that Ci : M k→M and (x1, . . . ,xk) ∈ dom(C̄i) for some
C̄i ∈ App′. Naturally, if Ci is specified by a circuit with gates
in L (rather than a single function Ci ∈L), then the operation
H(Ci,1,2, . . . ,k) should be replaced by a sequence of oper-
ations H(g j,1, . . . ,k j) corresponding to the individual gates
of Ci.

Using this definition of computation we can generalize the
definitions of correctness and security as follows.

Definition 14 (Approximate Correctness). Let E = (KeyGen,
Enc,Dec,Eval) be an (approximate) FHE scheme with
(normed) message space M and application space from L̄ ,
and let Estimate : 2L̄ → R≥0 be an efficiently computable
function. We say that the tuple Ẽ = (E ,Estimate) satisfies

17

application-aware static approximate correctness if it is cor-
rect for the following search game:

Exprapprox,Ẽ [A](κ) : App← A(κ)

(sk,pk)← KeyGen(κ,App)

AOps(·)(pk)

return 0

where Ops(·) is an oracle defined as follows. The oracle
accepts E,H and D queries, and stores a pair (xi,cti) ∈M ×
C for each E or H query. Each time A issues a new query opi:

• If the sequence of queries issued so far [op1, . . . ,opi] /∈
App, then abort the experiment with output 0

• if opi = E(xi), then let cti← Encpk(xi) and return cti to
A

• if opi =H(fi, i1, . . . , ik), then compute xi = fi(xi1 , . . . ,xik)
and cti← Evalpk(fi,ct1, . . . ,ctk) using previously stored
pairs (xi j ,cti j). Then store the new pair (xi,cti), and
return cti to A .

• if opi =D(j), then compute yi←Decsk(ct j) using previ-
ously stored pair (x j,ct j). If ∥yi− x j∥ ≤ Estimate(App)
return y to A . Otherwise terminate the experiment im-
mediately with output 1.

For simplicity, in the above definition we have used an
Estimate function that outputs the same bound for all decryp-
tion queries. This can be easily generalized to an estimate
function that allows difference decryption queries to be an-
swered with a varying degree of accuracy. As before, our def-
inition applies to both exact and approximate FHE schemes,
where a scheme is exact when Estimate(App) = 0 is the per-
fect accuracy estimation function, so that when answering
decryption queries it must be yi = x j.

Again, it can be seen that basic correctness from Defini-
tion 9 is a special case of Definition 14 when restricted to the
simple applications App′ described in Remark 2.

The definition of IND-CPAD security is generalized simi-
larly.

Definition 15 (IND-CPAD Security). Let E = (KeyGen,Enc,
Dec,Eval) be an (approximate) FHE scheme with (normed)
message space M and application space from L̄ , and let
Estimate : 2L̄ → R≥0 be an efficiently computable function.
Application-aware IND-CPAD security is defined by the fol-
lowing decision game:

Expr
cpad
b [A](κ) : App← A(κ)

(sk,pk)← KeyGen(κ,App)

b′← AOps(·)(pk)

return(b′).

where Ops(·) is an oracle defined as follows. The oracle
accepts E,H, and D queries. H and D queries are similar to
Definition 14. E queries take the form opi = E(x0

i ,x
1
i) instead

of E(xi). For each such query let opb
i be the corresponding

encryption operation E(xb
i). The oracle Ops(·) stores a triplet

(xi,0,xi,1,cti) ∈M 2×C for each E or H query. Each time A
issues a new query opi:

• If for either b = 0 or b = 1, the sequence of queries
issued so far [op1, . . . ,opi] satisfies [opb

1, . . . ,op
b
i] /∈ App,

then abort the experiment with output 0

• if opi = E(x0
i ,x

1
i), then compute cti← Encpk(xb

i), store
(x0

i ,x
1
i ,cti), and return cti to A

• if opi = H(fi, i1, . . . , ik), then compute xb
i =

fi(xb
i1 , . . . ,x

b
ik) for both b ∈ {0,1}, and cti ←

Evalpk(fi,ct1, . . . ,ctk) using previously stored pairs
(x0

i j
,x1

i j
, cti j). Then store the new triplet (x0

i ,x
1
i ,cti), and

return cti to A .

• if opi = D(j), then retrieve previously stored triplet
(x0

j ,x
1
j ,ct j) and check that x0

j = x1
j . If not, abort the exper-

iment. Otherwise, compute yi← Decsk(ct j) and return
y j to A .

A.3 Differential Privacy
Definition 16 (KL Divergence). Let P and Q be dis-
crete distributions with common support X . The Kullback-
Leibler (KL) divergence between P and Q is D(P ||Q) :=

∑x∈X P (x) ln
(

P (x)
Q (x)

)
.

Definition 17 (Norm KLDP [40]). For t ∈ R≥0, let Mt : B→
C be a family of randomized algorithms, where B is a normed
space with norm ∥·∥ : B→R≥0. Let ρ∈R be a privacy bound.
We say that the family Mt is ρ-Kullback-Leibler differentially
private (ρ-KLDP) if, for all x,x′ ∈B with ∥x−x′∥≤ t, it holds:

D
(
Mt(x)||Mt(x′)

)
≤ ρ.

Definition 18 (Gaussian Mechanism). Let ρ > 0 and n ∈ N.
Define the (discrete) Gaussian Mechanism Mt : Zn→ Zn be
the mechanism that, on input x ∈ Zn outputs a sample from
NZn(x, t2

2ρ
In).

A.4 Ring Learning With Errors
Let N be a power two. Then, the polynomial ring R :=
Z[X]/(XN + 1) is the 2N-th cyclotomic field’s ring of inte-
gers. Let RQ := R/QR be the ring with coefficients reduced
modulo Q.

The Ring Learning With Errors (Ring LWE) distribution
with secret s ∈ ZN under a distribution χs and error distri-
bution χ, denoted as RLWEs(N,Q,χ), outputs pairs of form
(a,b) ∈ R2

Q, where a← RQ and b := a · s+ e for e← χ. The

18

decisional Ring LWE assumption with error distribution χ,
secret distribution χs and m samples, states that for s← χs,
the product distribution RLWEs(N,Q,χ)m is computationally
indistinguishable from the uniform distribution over (R2

Q)
m.

A.5 Proofs of Section 4
Proof of Theorem 1. First, application-aware IND-CPAD-
security implies application-aware IND-CPA-security, since
for the application class App, the adversary in the IND-CPA
definition is an IND-CPAD adversary making an Encpk call,
and no other Evalpk or Decsk calls.9

In the reverse direction, assume towards a contradiction that
E is application-aware IND-CPA-secure but not application-
aware IND-CPAD-secure. Given an adversary A that breaks
the IND-CPAD-security of E for an application App, we
show how to build a series of adversaries B(i) breaking the
IND-CPA-security of E , for 1 ≤ i ≤ n, where n is the maxi-
mum number of inputs of computations inside App. We can
only have equivalence for the same application class App, so
both A and B(i) will select the same App and computations C̄
in the experiments.

The adversaries select an App based on the security pa-
rameter κ and receive pk← (κ,App). Then each B(i) runs
A(κ,App,pk) and answers its queries as follows:

• For each j’th encryption query (x0,x1), it stores the plain-
texts and the computed ciphertexts, and returns to A :

ct j←

Encpk(x1), if j < i
Encpk(x0), if j > i
Expr

cpa
b [B(i)], if j = i.

• For the query C̄, it lets ct′ ← Evalpk(C̄,ct) if C̄ ∈
App,C̄(x0) = C̄(x1) and x0,x1 ∈ dom(C̄), and returns
ct′ to A .

• For the decryption query for ct′, it returns C̄(x0) to A .

Finally, when A outputs bit b′, B(i) also outputs b′.
Define the following hybrid distributions H (i) =

Expr
cpa
0 [B(i)] for 1≤ i≤ n and H (n+1) = Expr

cpa
1 [B(n)]. Note

that by construction, H (i) = Expr
cpa
1 [B(i−1)] for 2≤ i≤ n. Us-

ing the exact correctness of E with respect to App, it holds that
the decryption response from B(i) to A are indistinguishable
from those received by A in Expr

cpad
b [A]. This leads to hav-

ing indistinguishability between H (1) and Expr
cpad
0 [A] and

between H (n+1) and Expr
cpad
1 [A]. Therefore, using a union

bound over the hybrid distributions gives that the advantage

9Technically, for the adversary to issue no evaluation and decryption
calls one needs to use the fully adaptive Definition 15. For the simplified
Definition 9, the adversary is required to make exactly one evaluation and
decryption call. In this case, one can require App to always contain a constant
function mapping all x ∈M to a fixed value C(x) = 0. This ensures C(x0) =
C(x1) is trivially satisfied. Then, the adversary can simply ignore the results
ct′,y of the trivial evaluation and decryption functions.

of A in the IND-CPAD game is smaller than the sum over the
advantages of the n adversaries B(i) in the IND-CPA game.
Given E was assumed to be IND-CPA-secure for App, the ad-
vantage of each B(i) is negligible and n is polynomial in κ,
therefore the advantage of A in the IND-CPAD game for App
is also negligible.

Sketch-proof of Theorem 2. The proof follows the same steps
as the proof in Theorem 2 in [40], using similar modifications
for the application-aware non-adaptive case as in the proof of
Theorem 1.

Sketch-proof of Theorem 3. The proof follows the
proof of Corollary 2 in [40], with the correction
mentioned in https://github.com/openfheorg/
openfhe-development/blob/main/src/pke/examples/
CKKS_NOISE_FLOODING.md.

For the fully adaptive version of the application-aware
IND-CPAD game, where the adversary can make multiple de-
cryption queries, one has to parameterize Theorem 2 and
Theorem 3 by the number of decryption queries ℓ, as done
in [40].

A.6 More on Section 6
In [25], the attack is described using the adaptive definition
of IND-CPAD (we gave the definition of application-aware
IND-CPAD in Definition 15). The attack specifies the same
circuit C(x1, . . . ,xn) = x1 + . . .+ xn in the estimation and run-
time evaluation, but in one the inputs are on different database
indices, and in the other they are all at the same database
index. This translates to using independent ciphertexts in the
estimations but using correlated ciphertexts at run-time. The
adversary does not have chosen-ciphertexts capabilities, so
below we illustrate how this is achieved through the language
of Definition 15.

Concretely, the computation trace specified by the at-
tacker when choosing App is not the same as the com-
putation trace specified to the evaluation oracle. In par-
ticular, the computation class is specified as App =
{E(x1), . . . ,E(xn), H(C̄,1,2, . . . ,n),D(n + 1)}. During the
IND-CPAD experiment, the attacker specifies a sequence of
calls {E(x1), . . . ,E(xn),H(C̄,1,1, . . . ,1),D(n+ 1)} which is
not allowed in the application-aware model, since it has a
different computation trace.

19

https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md
https://github.com/openfheorg/openfhe-development/blob/main/src/pke/examples/CKKS_NOISE_FLOODING.md

	Introduction
	Our Contribution
	Organization

	Preliminaries
	Measuring Security
	Correctness properties
	Generic Security Definitions

	Application-Aware Security Models
	Equivalence between IND-CPA and IND-CPAD for Application-Aware Schemes
	Exact Schemes
	Approximate Schemes

	Practical Guidelines for Application-Aware Homomorphic Encryption
	Application-Aware Approximate FHE
	Application-Aware Exact FHE

	Discussion of Key Recovery Attacks
	Attacks on Approximate FHE
	Attacks on ``Exact'' FHE schemes

	Concluding Remarks
	Appendix
	More preliminaries
	Fully adaptive definitions
	Differential Privacy
	Ring Learning With Errors
	Proofs of Section 4
	More on Section 6

