
The LaZer Library:
Lattice-Based Zero Knowledge and

Succinct Proofs forQuantum-Safe Privacy
Vadim Lyubashevsky
IBM Research Europe
Zurich, Switzerland
vad@zurich.ibm.com

Gregor Seiler
IBM Research Europe
Zurich, Switzerland
gseiler@posteo.net

Patrick Steuer
IBM Research Europe
Zurich, Switzerland
ick@zurich.ibm.com

Abstract
The hardness of lattice problems offers one of the most promising
security foundations for quantum-safe cryptography. Basic schemes
for public key encryption and digital signatures are already close to
standardization at NIST and several other standardization bodies,
and the research frontier has moved on to building primitives with
more advanced privacy features. At the core of many such primi-
tives are zero-knowledge proofs. In recent years, zero-knowledge
proofs for (and using) lattice relations have seen a dramatic jump
in efficiency and they currently provide arguably the shortest, and
most computationally efficient, quantum-safe proofs for many sce-
narios. The main difficulty in using these proofs by non-experts
(and experts!) is that they have a lot of moving parts and a lot of
internal parameters depend on the particular instance that one is
trying to prove.

Our main contribution is a library for zero-knowledge and suc-
cinct proofs which consists of efficient and flexible C code under-
neath a simple-to-use Python interface. Users without any back-
ground in lattice-based proofs should be able to specify the lattice
relations and the norm bounds that they would like to prove and the
library will automatically create a proof system, complete with the
intrinsic parameters, using either the succinct proofs of LaBRADOR
(Beullens and Seiler, Crypto 2023) or the linear-size, though smaller
for certain application, proofs of Lyubashevsky et al. (Crypto 2022).
The Python interface also allows for common operations used in
lattice-based cryptography which will enable users to write and pro-
totype their full protocols within the syntactically simple Python
environment.

We showcase some of the library’s usefulness by giving protocol
implementations for blind signatures, anonymous credentials, the
zero-knowledge proof needed in the recent Swoosh protocol (Gaj-
land et al., Usenix 2024), proving knowledge of Kyber keys, and an
aggregate signature scheme. Most of these are the most efficient,
from a size, speed, and memory perspective, known quantum-safe
instantiations.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government purposes only.
Request permissions from owner/author(s).
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690330

CCS Concepts
• Security and privacy→ Cryptography; Privacy-preserving
protocols.

Keywords
Lattice Cryptography, Zero-Knowledge, Succinct Proofs, Implemen-
tation, Privacy, Quantum-Safe

ACM Reference Format:
Vadim Lyubashevsky, Gregor Seiler, and Patrick Steuer. 2024. The LaZer Li-
brary: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe
Privacy. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3658644.
3690330

1 Introduction
With NIST having recently released standards for the next genera-
tion of public key cryptography [8, 12, 16, 31? ? ?], the information
security community is currently in the middle of a (mandated) tran-
sition to quantum-safe encryption and digital signature schemes.
While the focus of the current transition is on encryption and digi-
tal signatures, it’s fairly clear that in the near future one will have
to transition other types of algorithms as well. With more advanced
privacy-based cryptography gaining traction in applications, the
cryptography research community has been working on creating
more efficient advanced cryptographic schemes which should still
remain secure against quantum attacks.

A research area that has seen a lot of recent activity in terms
of moving from theory to practice (or at least to prototypes) is
privacy-enhancing cryptography which includes protocols such as
blind signatures, anonymous credentials, private digital currency,
ring signatures, electronic voting, etc. Another related area which
has gained importance due to the rise of distributed ledgers and
blockchains is succinct proofs. A simple example of the latter is
aggregate signatures, where the prover can combine a lot of sig-
natures into a short proof that all the messages have been signed
by the respective parties. Most of the above-mentioned protocols
have zero-knowledge proofs, or succinct proofs, as the key compo-
nent, and so a lot of research has focused on making this important
building block faster and more compact.

Since three out of the four NIST standards have algebraic lattices
as their underlying hardness assumption, it is natural to wonder
whether lattices can be the most optimal quantum-safe foundation
for zero-knowledge proofs as well. Algebraic lattices are extremely
fast, allowing for faster encryption and signature schemes than

https://orcid.org/0009-0003-5149-264X
https://orcid.org/0009-0005-5024-5123
https://orcid.org/0009-0002-6760-5146
https://doi.org/10.1145/3658644.3690330
https://doi.org/10.1145/3658644.3690330
https://doi.org/10.1145/3658644.3690330

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Vadim Lyubashevsky, Gregor Seiler, and Patrick Steuer

even their classical counterparts based on discrete log and factoring.
Since speed is often a limiting factor when it comes to succinct
proofs, it makes the appeal of lattices interesting even apart from
their presumed quantum-safety.

Research in lattice-based zero-knowledge proofs has, however,
lagged behind other quantum-safe (and non-quantum-safe) ap-
proaches. For example, in 2018, Ligero [3] and Aurora [7] were
already highly-promising succinct proof systems for arbitrary cir-
cuits,1 whereas lattice-based proofs were still in their infancy, being
extremely inefficient both theoretically and concretely. Proofs for
the most basic cryptographically-interesting lattice relations re-
quired several megabytes [25, 26].

In the last few years, however, research on improving the state
of the art progressed rapidly. Improvements of linear-sized proof
systems [28] has resulted in advanced cryptographic schemes like
blind signatures [11], anonymous credentials [4, 11], verifiable ran-
dom functions[17, 18], ring signatures [27], etc. having outputs
ranging between a dozen and a few dozen kilobytes. And the more
recent LaBRADOR [9] succinct proof system promises proof sizes
of around 60KB for arbitrarily-large witnesses, which is shorter
than all other quantum-safe constructions.

The one area in which lattice-based proof systems have yet to
catch up is usability in applications. While there are available soft-
ware libraries that allow users to create proofs for various relations
using other quantum-safe foundations (e.g. [14, 15, 20]), such a tool
is non-existent for lattice-based proofs. There are papers in the
literature implementing some version of the proofs, but they are
all created from scratch and are very specific to the primitive being
constructed in the paper. As of yet, we are not aware of any tool
which helps protocol designers use lattice-based proofs as a black
box.

1.1 The Challenge with Incorporating ZK
Proofs

The main challenge with instantiating lattice-based zero knowledge
proofs is that they consist of several steps and each of the steps may
require different parametrization based on the concrete statement
that is being proved. It is therefore up to the protocol designer to
create the parameters that will optimize the run-time of the whole
protocol. For example, the most basic proof system that one could
generate for a lattice-based protocol is, for a public matrix 𝐴 and
vector 𝑡 , a proof of knowledge of a vector ®𝑠 such that

𝐴®𝑠 = ®𝑡 mod 𝑝 such that ∥𝑠 ∥ ≤ 𝛽 (1)

over a polynomial ring 𝑅𝑝 = Z𝑝 [𝑋]/(𝑋𝑑 + 1).
Just being able to efficiently prove this equation, and some slight

variations of it,2 is enough to construct various advanced crypto-
graphic primitives like blind signatures, anonymous credentials,
and aggregated signatures. But even if we restrict ourselves to the
most basic equation in (1), and only ask for linear-size (as opposed
to succinct) ZK proofs, the solutions are already rather non-trivial.
For example, the steps in [28] for proving (1) are as follows:

(1) Commit to ®𝑠 using a lattice-based commitment scheme over
𝑅𝑞 for 𝑞 ≥ 𝑝 .

1Pairing-based schemes were already almost fully-mature by then
2For example, prove different bounds on various parts of the witness 𝑠 .

(2) Convert the equation 𝐴®𝑠 = ®𝑡 mod 𝑝 into an equation 𝐴®𝑠 +
𝑝®𝑣 = ®𝑡 over 𝑅𝑞 , with an additional secret polynomial vector
®𝑣 with small coefficients such that proving it implies proving
(1) (i.e. one needs to make sure there is no overflow modulo
𝑞 and this equation is in essence being proved over Z).

(3) For a random small challenge integer matrix 𝑇 , commit to a
masking vector 𝑦 and output ®𝑢 =𝑇 [®𝑠; ®𝑣] + ®𝑦. If ®𝑢 has small
coefficients, then so do ®𝑠, ®𝑢 and there is no overflow modulo
𝑞.

(4) Prove the above set of linear equations by first creating linear
combinations of them so that one only needs to prove a few
equations (via the Schwartz-Zippel lemma) over Z, and then
convert these equations to ones overZ𝑞 [𝑋]/(𝑋𝑑+1)masked
by some auxiliary vectors to not leak any extra information.

(5) Combine the above linear equations (again applying the
Schwartz-Zippel lemma) for proving ®𝑢 =𝑇 [®𝑠 ; ®𝑣] + ®𝑦 with the
equation 𝐴®𝑠 + 𝑝®𝑣 = ®𝑡 together with the quadratic equation
∥®𝑠 ∥2 mod 𝑞 ≤ 𝛽2 into one quadratic equation.

(6) Apply a ZK proof of knowledge to prove the one quadratic
equation.

Themodulus𝑞 that needs to be used in the above zero-knowledge
proof needs to be either large-enough to accommodate the arith-
metic being done modulo 𝑝 in the actual equation that we would
like to prove, or be a multiple of 𝑝 . Furthermore, in many scenarios,
the equation in (1) is actually of the form 𝐴1𝑠1 + . . . +𝐴𝑘𝑠𝑘 where
∥𝑠𝑖 ∥ ≤ 𝛽𝑖 for different 𝛽𝑖 . Thus one may want to commit to the vec-
tors 𝑠𝑖 in different ways – in particular, one may choose to put some
𝑠𝑖 into the “Ajtai” part of the ABDLOP commitment scheme from
[28] and others into the “BDLOP” part. Furthermore, for the ones in
the Ajtai part, one needs to decide what kind of rejection sampling
strategy to use – the usual Gaussian one, a bimodal one for “one-
time” commitments [27], or perhaps in the future not use rejection
sampling at all by slightly increasing the standard deviation [24].3

The good news is that if one has freedom to work modulo any
𝑞, then picking the optimal parameters for obtaining the smallest
proof sizes can be done via a script that tries many possibilities
for the internal working of the zero-knowledge proof. Because our
implementation of the linear-size proofs does not restrict us to any
particular modulus 𝑞, we can incorporate such a script into LaZer.4
Thus a protocol designer wishing to incorporate zero-knowledge
proofs proving relations of the form (1), can simply write down the
public parameters 𝐴 and 𝑡 and the bounds on the various parts of
the secret vector, and LaZer will set the parameters that the ZK
proof will need to use and output them to a header file which will
be read at compile-time. The designer can then simply invoke the
prover and verifier procedure of the ZK proof without needing to
understand anything about the internals of these proofs.

The LaBRADOR succinct proofs are, in our opinion, even more
complicated to implement and use than the linear size proofs. The
scheme consists of many rounds, with each round needing its own
parameter setting. Furthermore, the scheme from [9] only supports
specific relations related to R1CS proofs, whereas we would like
to use is to support proofs of multiple relations as in (1). The main
difference is that we need to prove an ℓ2-bound on the witness of

3Since this paper is relatively new, we have not yet incorporated it into our work.
4The succinct proof allows a choice of several moduli.

The LaZer Library:
Lattice-Based Zero Knowledge and
Succinct Proofs for Quantum-Safe Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

each equation, rather than just proving one bound for the entire
proof system.5 This requires a wrapper around the LaBRADOR
protocol and is described in Section 4.

Themain goal of our library is so that the protocol designer
need not understand anything written in this section!

1.2 Our Contribution
As alluded to above, ease-of-use of incorporating lattice-based proof
systems is the primary objective of the LaZer library. In addition to
this main goal, we also want the library to be efficient and amenable
to future optimizations. The library consists of four layers (see Fig-
ure 1). At the bottom layer are the algebraic operations that are
needed for ZK proofs and lattice cryptography in general. In order
to have the necessary flexibility, we need to support operations over
arbitrary moduli, and therefore we cannot specifically optimize for
a particular polynomial ring. Nevertheless, one can come fairly
close to optimal by optimizing for operations over small moduli
and then using the Chinese remainder theorem to perform opera-
tions over a modulus that’s their product. Working with such small
moduli is particularly efficient when one further optimizes using
AVX2 (or AVX512) instructions. Some experimental evidence in
[13] showed that working over moduli that do not natively support
the Number Theoretic Transform (which would lead to optimal
implementations) are actually quite efficient using the Chinese Re-
mainder Theorem approach. We give more details about this layer
in Section 3.

The second layer of the library is the ZK / succinct proof layer.
The ZK protocol of [28], which we implemented, is most compact
when implemented over polynomial rings of small degree, such as
Z𝑞 [𝑋]/(𝑋 64+1). We furthermore expect that these zero-knowledge
proofs will be the most expensive part of many protocols. We there-
fore optimized the expensive operations (such as multiplication)
specifically over rings of this degree, which allowed to have a
computationally-efficient implementation of the ZK proof from
[28]. This ZK proof can then be used to prove relations from (1)
over any ring with degree ≥ 64.6 More details are in Section 3.

The second layer of the library also includes the LaBRADOR
succinct proof system. The original purpose of LaBRADOR was to
be able to provide succinct proofs for R1CS, but in applications to
lattice protocols, we believe that the most useful application will
be proving (multiple) statements of the form (1). In order to be
able to prove such statements, we needed to implement a wrapper
algorithm on top, which is in the third layer of LaZer. Because the
proof size of LaBRADOR is succinct (asymptotically𝑂 (log log𝑛) in
the witness length), we did not need to optimize its parameters to
allow arbitrary moduli. In particular, we allow the user to pick from
one of several moduli to work with, and then adapt the statement
to this modulus. More details about this layer are in Section 4.

5For R1CS systems, it’s enough to prove that all the coefficient vectors are 0/1, which
can be done by proving one quadratic equation ⟨ ®𝑤, ®1 − ®𝑤⟩ = 0 over the integers.
6Currently, the algebraic operations over rings Z𝑞 [𝑋]/(𝑋𝑑 + 1) with 𝑑 > 64 use
automorphisms to map down to vectors of polynomials over the ringZ𝑞 [𝑋]/(𝑋 64+1)
and then perform operations over this ring. This, as mentioned, is not the optimal way
to perform such operations, and will be sped up in the future. Nevertheless, because
the runtime is dominated by the ZK proof, this currently does not make too much
practical difference.

The third layer of the library consists of useful common tools
that can be built on top of the layer below (such as proofs of (1)) or
tools that are independent of proof systems, such as the trapdoor
sampling algorithm such that when given a trapdoor for a (pseudo)-
random matrix𝐴, one is able to produce vectors ®𝑠 with small norms
that satisfy 𝐴®𝑠 = ®𝑡 mod 𝑝 for arbitrary 𝑝 . A very compact such
sampler is exactly the one used for the recently-chosen NIST stan-
dard signature FALCON [31]. We therefore added this trapdoor
sampling functionality to our library. This pre-image sampler is
used in our sample constructions of blind signatures, anonymous
credentials, and aggregate signatures.

The last layer is the main layer that we expect most users will
interact with. It is the Python layer which, using CFFI [32], wraps
the algebraic C library and the zero knowledge functionality of the
lower layers. The result allows the user to set up and call all the
proof functions (whether from [28] or [9]) from Python. In addition
to the functions related to proving and verifying statements, the
user also has access to functions that allow for creating, manip-
ulating, and operating on vectors and matrices over polynomial
rings. We believe that the protocol designer should be able to write
his entire protocol in our Python layer and perhaps only add the
performance-critical tools to the layer below written in C. Because
Python is an interpreted language, we tried to make this layer as
"thin" as possible so as to mitigate the performance hit. For example,
writing a somewhat involved anonymous credential protocol in the
Python layer only resulted in about a 30% overhead.

1.3 Protocol Examples and Comparison to
Other Works.

As far as we are aware, there have not been any general libraries
that support either efficient lattice-based linear or succinct proof
systems. There are of course existing libraries for fast polynomial
arithmetic (e.g. [10, 30, 33]), and we do make use of the HEXL
library [10] as a subroutine for polynomial multiplications and for
the linear-size proof system. We cannot exclusively rely on HEXL
for polynomial multiplication because it only works for special
rings, whereas we would like our linear-size proofs to work for any
ring of the form Z𝑞 [𝑋]/(𝑋𝑑 + 1) where 𝑑 is a power of 2. For fast
polynomial multiplication over such a ring, we use the CRT to work
over a ring Z𝑝1 · · ·𝑝𝑘 [𝑋]/(𝑋𝑑 + 1) such that the product 𝑝1 · · · 𝑝𝑘 >

𝑑𝑞2 is large enough so that no carries occur when operations with
coefficients at most 𝑞 are performed in this ring. The primes 𝑝𝑖 are
picked such that one can perform efficient NTT multiplications
over the rings Z𝑝𝑖 [𝑋]/(𝑋𝑑 + 1). The HEXL library is used to do
multiplications over these latter rings. For succinct proofs, we only
work over very specific primes and created specifically-tailored
operations over these primes optimized for the AVX-512 instruction
set.

Together with the LaZer library, we provide fully-documented
examples of protocols written in Python. We hope that in addition
to being interesting in of themselves, they will also serve as guides
for how one would use the library to construct new protocols.
The example protocols include a proof of knowledge of a Kyber
KEM secret key and a proof of knowledge of the secret key for the
Swoosh NIKE [21]. These two protocols demonstrate the extremes
of the moduli sizes that one may encounter in practice. While Kyber

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Vadim Lyubashevsky, Gregor Seiler, and Patrick Steuer

Figure 1: The Layers of the LaZer library. All but the top Python layer are written in C. The LaBRADOR part requires the
AVX-512 instruction set.

Scheme [4] [11] (with LaZer)

Assumption Mod-LWE /
Mod-SIS

Mod-LWE /
Mod-ISIS𝑓

Organization PK 47.5KB 1 KB
Blinded Sig 6.8 KB 1.3 KB
Credential 79.6 KB 29 KB

Issuance Time 0.383 sec 0.117 sec
Showing Time 0.504 sec 0.198 sec

Table 1: Anonymous Credential Scheme from [4] and one
from [11]. The latter is implemented using the LaZer library.

has a short 12-bit modulus, the Swoosh moduli are over 200 bits.
We further use our linear-size proof system in two full-fledged
protocols – a blind signature scheme and an anonymous credential
scheme from [11]. We also illustrate the workings of the succinct
proof system built on LaBRADOR to give an example of a generic
instantiation of an aggregate signature scheme that combines a
hash-and-sign signature scheme (in our case we use FALCON [31])
and a succinct proof system. We describe these schemes in more
detail in Section 6, and below give a brief comparison of our protocol
instantiation of an anonymous credential scheme and a lattice-based
aggregate signature scheme to similar quantum-safe protocols in
the literature.

In [4], the authors construct and implement an anonymous cre-
dential scheme based on the hardness of standard lattice problems
using the zero-knowledge proof from [28]. As an example of an
application of LaZer, we implement (using the Python layer) the
anonymous credential scheme from [11]. The run-times and output
sizes of both protocols are given in Table 1. It is not really possible
to make an apples-to-apples comparison between the running time
of the schemes – the schemes are somewhat different, the comput-
ers on which they are not exactly the same, the scheme in [4] was
in C using AVX-2 instructions, while ours is a combination of C
with AVX-512 combined with Python, etc. The main takeaway from
Table 1 is that one can create a simple implementation in Python of
a somewhat-involved lattice-based protocol using the LaZer library,

[23] FALCON +
LaZer

FALCON +
LaZer

Signatures 1024 1024 100, 000
Prover Time 25.7 sec 0.6 sec 65 sec
Prover RAM 9.5 GB 200 MB 25.5 GB
Sig. Size 165 KB 73.5 KB 72.3 KB

Table 2: Performance of a STARK-based aggregate signature
from [23] for 1024 signatures and the implementation using
the FALCON signature and LaZer for 1024 and 100,000 signa-
tures.

and the performance is comparable to that of implementations that
were specifically protocol-tailored. We hope that the efficiency and
relative ease of use of our Python layer therefore encourages more
researchers to write their schemes using LaZer.

In Table 2, we give a comparison between our generic aggregate
signature scheme implementation which combines the FALCON
hash-and-sign signature scheme and a succinct proof system to
that of a one-time aggregate signature scheme created fromWinter-
nitz signatures and a STARK-based succinct proof. 7 The run-time
comparison is again not apples-to-apples. The signature scheme
in [23] is a one-time signature scheme, whereas FALCON is a gen-
eral signature scheme. Furthermore, the implementation of [23]
used multi-threading on an 8-core processor, whereas our imple-
mentation is single-thread, but did use the AVX-512 instruction
set. Nevertheless, it appears that the LaZer implementation has at
least an order of magnitude speed advantage and perhaps, even
more importantly, has a much lower RAM requirement and shorter
signature size than the STARK-based implementation.

The lattice-based multi-signature scheme Chipmunk [19] can be
seen as a conversion of a lattice-based one-time signature into a
synchronous multi-signature where the restriction is that all time
is broken down into epochs, each signer can sign only once per

7[1] also discusses a lattice-based aggregate signature using FALCON and a lattice-
based succinct proof, and proposes a slightly different version of LaBRADOR. But
there is no implementation, and so a comparison cannot be made.

The LaZer Library:
Lattice-Based Zero Knowledge and
Succinct Proofs for Quantum-Safe Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

epoch (and the message is the same for all signers), and one can
only aggregate signatures from the same epoch. For 1024 signatures,
the aggregate signature size was 118 KB, and the Rust run-time
(which used 24 threads) was essentially the same as our C-based
(single-threaded, but utilizing AVX-512 instructions) scheme. Our
instantiation of FALCON + succinct proof is more general in that
there is no same-message restriction and no additional synchronic-
ity requirement, and yet it still has shorter signatures and a similar
prover run-time. The advantage of Chipmunk is that the verifica-
tion time is much smaller, whereas ours is only about 40% faster
than that of the prover. As far as we are aware, the aggregate sig-
nature construction in this paper has the smallest signature length
and prover running time of all quantum-safe constructions, and we
hope that this example encourages more generic constructions that
use (lattice-based) succinct proofs as the core building block.

1.4 Future Work
The LaZer library in its current form already allows for fairly ef-
ficient constructions of many privacy-based primitives, but there
are still numerous improvements that can be made to improve the
performance and expand the functionality of the library. There
are several improvements that one can make to the implemen-
tation of the zero-knowledge proof system from [28]. There has
been interesting recent work on cheaply removing the need for
rejection sampling when masking the randomness of a commit-
ment scheme [24]. This technique could be used to speed up the
scheme and slightly reduce the output length of the linear-size ZK
proofs. There are also some internal mechanics of the proof that
can be improved. One of the more expensive parts of the proof is
the approximate range proof that uses a modular version of the
Johnson-Lindenstrauss lemma [22] and the protocol description in
[28] calls for two applications of it. Reducing it to one application
should result in a noticeable performance improvement.

Lattice cryptography is known to be highly parallelizable, and
practical uses of the LaZer library should eventually take advantage
of this feature. It would therefore be useful to add the ability to
support multi-threaded processors to all layers of the library. Ex-
ploring the implementation of the library on GPU’s can also result
in a significant performance improvement.

Currently, the succinct proof system only supports succinctness,
but not yet zero-knowledge. While this is already useful for several
applications, adding zero-knowledge (which was already described
in [9]) would allow the applicability of the proof system to be
expanded to domains like voting systems and privacy-based digital
currency systems where privacy is important.

The linear-size proof system currently supports native opera-
tions over the ring Z𝑝 [𝑋]/(𝑋𝑑 + 1) for 𝑑 = 64 and all the internal
ZK components (such as the commitment scheme) is over this ring.
One can increase efficiency by using larger rings for the commit-
ment scheme, as this requires fewer polynomials and thus a lot
fewer multiplications. This, together with natively supporting mul-
tiplication for rings Z𝑝 [𝑋]/(𝑋𝑑 + 1) where 𝑑 ≠ 64 should result
in a noticeable performance improvement for our linear-size proof
system.

There are also many "intermediate" layer useful building blocks
(see Figure 1) that one could construct on top of the proof system

layer. For example, one could build ring signatures by implementing
the one-out-of many proof system from [27] or, when aggregating
the equations in (1), one could aggregate not just the signatures,
but also the public keys. This requires some extra wrapper layers
around LaBRADOR, but would then result in a rather efficient
lattice-based threshold signature scheme without requiring any
interaction during signing.

2 Obtaining and building LaZer and its
documentation

The LaZer library can be build on Linux AMD64 systems with the
following software installed: gcc or clang, make, python 3.10 or
newer (including the cffi module) and the gmp and mpfr develop-
ment packages. The LaZer code generator requires an installation
of the SageMath computer algebra system version 10.2 or newer.

The LaBRADOR proof system is currently implemented in sepa-
rate libraries (one per supported prime). While the LaZer library
benefits from AVX512 instruction set extensions, LaBRADOR re-
quires them (plus a couple of features only found in newer compiler
versions). That is why it is possible to build the rest of LaZer sep-
arately from LaBRADOR such that LaZer can also be build on
systems lacking those prerequisites.

A sphinx installation8 (including the sphinxcontrib-bibtex pack-
age) is required to build the documentation.

Clone the repository from GitHub, change to the lazer directory
and clone the submodules

git clone https://github.com/lazer-crypto/lazer
cd lazer
git submodule init
git submodule update

In the following, all directory changes are relative to the lazer
directory. Now either build just the LaZer library ..

make

.. or both the LaZer and the LaBRADOR library

make all

Change to the python directory and build the python modules

cd python
make

The python directory contains a couple of examples, each in its
own subdirectory. The demo subdirectory has an implementation
of some example instance of 1. The anon_cred subdirectory has an
anonymous credentials implementation. The blindsig subdirectory
has a blind signature implementation. The swoosh subdirectory
has an implementation of proving well-formedness of a swoosh
public key. The kyber1024 subdirectory has an implementation of
proving knowledge of a Kyber1024 secret key. Let <name> be one
of these subdirectories, build and run the corresponding example

8https://www.sphinx-doc.org/en/master/usage/installation.html

https://www.sphinx-doc.org/en/master/usage/installation.html

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Vadim Lyubashevsky, Gregor Seiler, and Patrick Steuer

cd <name>
make
python3 <name>.py

Optionally, change to the docs directory and build the html docu-
mentation

cd docs
make html

Use any browser (e.g. firefox) to view the documentation

firefox build/html/index.html

3 The C Linear Proof Layer
We now describe in detail how to prove lattice linear relations
with norms using the linear-sized proof system. For simplicity, we
present only the case where there is a single euclidean norm bound
on the witness. Note that LaZer allows to prove multiple norm
bounds on the elements of some arbitrary partition of the witness
or to prove that some elements have binary coefficients only. These
features are needed to implement the protocols we are interested in.
However, even the simplest case highlights some of the challenges
encountered when setting parameters for these proof systems. The
last section provides insights into LaZer implementation details.

3.1 Linear-sized proofs for lattice relations
In this section, we show how to prove knowledge of a secret short
vector (s, e) ∈ R𝑚

𝑝,𝑑 ′
× R𝑛

𝑝,𝑑 ′
such that

t = As + e (2)
over R𝑝,𝑑 ′ and (se) ≤ 𝐵 (3)

for public A ∈ R𝑛×𝑚
𝑝,𝑑 ′

, t ∈ R𝑛
𝑝,𝑑 ′

and 𝐵.
In the linear-sized proof system, we can prove knowledge of

above secret as follows: First commit to s using the ABDLOP com-
mitment [28].

If 𝐵 is a Euclidean norm bound, do an exact Euclidean norm
proof for the following linear functions of s over R𝑝,𝑑 ′ :[se]2 =

[1𝑚−A] s + [
0
t

]
2
≤ 𝐵

This implies a proof of 2 and 3.
Applying these strategies directly works only if the proof system

modulus 𝑞 can be set to 𝑝 and the degree 𝑑′ is 64, that is, it requires
the statement’s parameters to be proof system friendly in the sense
that they exactly correspond to the rings over which the zero-
knowledge proof operates. In most cases, this is unfortunately
not the case, and usually one would like to prove lattice relations
over rings which were set up with optimality of the underlying
construction in mind, whereas the zero-knowledge proof system
works over rings which optimize the zero-knowledge proof.

For example, many lattice-based schemes use moduli 𝑝 = 2𝑙 + 1
mod 4𝑙 with 𝑙 close or equal to the ring degree 𝑑′ such that 𝑋𝑑 ′ + 1

splits into many (𝑙) irreducible factors of low degree (𝑑
′

𝑙
), while the

linear-sized proof system [28] uses moduli 𝑞 = 5 mod 8 (i.e., 𝑙 = 2)
to guarantee the invertability of its challenges. In the following, we
show how to prove statements modulo any 𝑝 .

If the statement modulus 𝑝 is not a suitable proof system modu-
lus, we consider a proof of knowledge for (s, e, v) ∈ R𝑚

𝑑 ′
×R𝑛

𝑑 ′
×R𝑛

𝑑 ′
such that 3 holds and

t = As + e + 𝑝v (4)

holds over R𝑑 ′ .
Clearly, such a proof implies a proof for the original statement.

Then again, this proof is implied by a proof of knowledge of (s, e, v)
such that 3 holds and 4 holds over R𝑞,𝑑 ′ if 𝑞 is large enough such
that there is no wrap-around modulo 𝑞. For the latter to hold, we
need to add an approximate range proof (ARP) for v.9

A lower bound for the required proof system modulus can be
determined as follows. For 𝑃 =

𝑝−1
2 , let 𝑆 ≤ 𝑃 and 𝐸 ≤ 𝑃 be

bounds such that ∥𝑠 ∥∞ ≤ 𝑆 and ∥𝑒 ∥∞ ≤ 𝐸.10 We can bound 𝑝v by
∥𝑝v∥∞ = ∥t − As − e∥∞ ≤ ∥t∥∞+ ∥As∥∞+ ∥e∥∞ ≤ 𝑃 +𝑚𝑃𝑑′𝑆 +𝐸.
So we know that

∥v∥∞ ≤
1
𝑝
(𝑃 +𝑚𝑃𝑑′𝑆 + 𝐸) (5)

but can only prove ∥v∥∞ ≤
𝜓
𝑝 (𝑃 +𝑚𝑃𝑑′𝑆 + 𝐸), where 𝜓 is the

slack of the ARP. Then we have ∥t + As + e + 𝑝v∥∞ ≤ ∥t∥∞ +
∥As∥∞ + ∥e∥∞ + ∥𝑝v∥∞ ≤ (𝜓 + 1) (𝑃 +𝑚𝑃𝑑′𝑆 + 𝐸). Set 𝑞 such that
𝑞−1
2 ≥ (𝜓 + 1) (𝑃 +𝑚𝑃𝑑′𝑆 + 𝐸).
We can then commit to (s, e, v), prove the linear (in (s, e, v))

equation 4 over R𝑞,𝑑 ′ , do a norm proof for 3 and do the approximate
range proof for 5.

Doing the ARP adds 4 “full-sized” polynomials to the proof size,
for our proof system ring degree of 64, and 256 "short" polynomials.
Since s and e are short they are put in the “Ajtai” part of the ABDLOP
commitment.11.

From the above computation, ∥v∥∞ ≤ 𝑉 for𝑉 = 1
𝑝 (𝑃 +𝑚𝑃𝑑′𝑆 +

𝐸). Putting v in the BDLOP part of the ABDLOP commitment
increases the commitment size by 𝑛 "full-sized" polynomials, i.e.,
by 𝑛𝑑′ ⌈log(𝑞)⌉ bits.

If ∥(s, e)∥2 ≤ 𝐵, then putting v into the Ajtai part increases this
bound: ∥(s, e, v)∥2 ≤

√
𝐵2 + 𝑛𝑉 2. While this adds only 𝑛 "short"

polynomials (the additional masked openings) to the proof (and
makes those slightly larger), the main disadvantage is that this in-
creases the bound on the extracted MSIS solution. This may require
an increase in the MSIS problem dimension by 𝑥 which increases
the commitment size by 𝑥 compressed "full-sized" polynomials and
the corresponding hints. Moreover, it may require to increase the
modulus 𝑞, which negatively affects the proof size.

9An approximate range proof [6, 22] is a “cheap” proof that proves that the coefficients
of the commitment are in a certain loose range. They aremostly used in zero-knowledge
proofs to prove that no wraparound occurs.
10We can always bound ∥𝑠 ∥∞ and ∥𝑒 ∥∞ by 𝐵: In case B is an 𝑙2-norm bound, that is
just the corresponding naive infinity norm bound.
11The ABDLOP commitment scheme in [28] contains slots for committing to elements
with small norms (i.e. the “Ajtai” part, named so because it is related to the original
commitment scheme implicit in [2]) and slots for committing to arbitrary-sized polyno-
mials (named the BDLOP part because it is related to the BDLOP commitment scheme
[5])

The LaZer Library:
Lattice-Based Zero Knowledge and
Succinct Proofs for Quantum-Safe Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Therefore, the best strategy is to avoid committing to v altogether,
andmake the proof of the linear equation 4 overR𝑞,𝑑 ′ implicit in the
ARP. Notice that v = t−As−e

𝑝 over R𝑑 ′ and v can also be computed
over R𝑞,𝑑 ′ if 𝑞 is chosen coprime to 𝑝 . Instead of 5, we do an ARP
for[−𝑝−1A −𝑝−11𝑛

] [s
e

]
+
[
𝑝−1t

]
∞
≤ 1

𝑝
(𝑃 +𝑚𝑃𝑑′𝑆 + 𝐸) (6)

This implies a proof for 5 and for 4 overR𝑞,𝑑 ′ which (for appropriate
𝑞) implies that 4 also holds over R𝑑 ′ . Together with the norm proof
for 3, this implies a proof for the original statement.

We now consider the case, where the degree𝑑′ of the statement’s
ring may be greater than the degree 𝑑 = 64 of the rings the proof
system naturally works with. In this case, a ring isomorphism can
be applied to convert the statement into an equivalent statement
over the smaller ring.

Both strategies (lifting the modulus and reducing the ring degree)
are easily combined such that we can prove arbitrary statements of
above form.

However, in the more general case we want to prove multiple
norm bounds on different parts of the witness or prove that other
parts of the witness have binary coefficients only. In this case, pa-
rameter setting becomes more involved. The next section describes
how the LaZer code generator can be used to set parameters from
a simple input specification such that
• The underlying MLWE and MSIS problems are hard.
• Proof size is optimized heuristically considering trade-offs
between putting witness parts in the Ajtai or BDLOP part of
the commitment.
• The right proof system modulus is determined.
• The input statement is converted into an equivalent state-
ment over the proof system ring.

3.2 Code generation
When we need to prove different statements of the form (1) as a
subroutine of some protocol, note that norm bounds on parts of the
witness are usually fixed across instances. From an implementation
point of view, this means that we may fix them at compile-time, to-
gether with the public parameters: the polynomial ring, the module
dimension and the partition of the witness.

In fact, specifying the above inputs (polynomial ring, module
rank, partition of the witness and corresponding norm bounds) is
all one needs to do to prove (1) using LaZer.

Such a specification is then used as an input to a LaZer’s code
generator, which heuristically optimizes proof size and runtime
and outputs the resulting parameters encapsulated in a constant C
structure, that can be referenced by the prover and the verifier. More
specifically, the specification is just a python script with variables
corresponding to the required inputs.

For example the specification for proving 1 over𝑅𝑝 = Z3329 [𝑋]/(𝑋 256+
1) for 𝛽 = 1.2

√
2048 and 𝐴 ∈ 𝑅4×8𝑝 (that is, proving knowledge of a

Kyber1024 secret key) would look as follows:

from math import sqrt
vname = "params"

deg = 256

mod = 3329
dim = (4,8)

wpart = [[list(range(8))]]
wl2 = [1.2*sqrt(2048)]
wbin = [0]

The string vname is some variable name for the generated C
structure (and thus must be a valid C identifier). The partition of
the witness is encoded as a list wpart. The 𝑛-th element of the
partition is itself encoded as as list of indices of the witness vector.
In the example, the partition has just a single element i.e., the
whole witness vector (indices 0 to 7). The euclidean norm bound
corresponding to the 𝑛-th part of the witness is the 𝑛-th element of
the list wl2. The𝑛-th element of the list wbin is a booleanwhich, if set
to 1, bounds the 𝑛-th part of the witness to have binary coefficients
only. The latter feature is not needed in our example.

3.3 Using generated code from an application
Below code implements generic prover and verifier functions for
1 in LaZer. By "generic" we mean that, assuming the generated
code (a constant structure named "params" in our example) is in
params.h, the contents of params.h could be replaced by any other
output from the code generator, corresponding to a possibly totally
different instance.

#include "lazer.h"
#include "params.h"

void prover(uint8_t *proof, polyvec_t s, polymat_t A,
polyvec_t t, const uint8_t pp[32])

{
lin_prover_state_t prover;

lin_prover_init (prover, pp, params);

lin_prover_set_statement (prover, A, t);
lin_prover_set_witness (prover, s);
lin_prover_prove (prover, proof, NULL, NULL);

lin_prover_clear (prover);
}

int verifier(const uint8_t *proof, polymat_t A,
polyvec_t t, const uint8_t pp[32])

{
lin_verifier_state_t verifier;

lin_verifier_init (verifier, pp, params);

lin_verifier_set_statement (verifier, A, t);
int accept = lin_verifier_verify (verifier, proof,

NULL);

lin_verifier_clear (verifier);
return accept;

}

The NULL parameter in the verify function and first NULL parame-
ter in the prove function can instead be used to avoid out-of-bounds

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Vadim Lyubashevsky, Gregor Seiler, and Patrick Steuer

reads or writes of the proof buffer. We ignore this here for simplic-
ity and assume the size of the proof buffer is an upper bound of
the proof length. The second NULL parameter in the prove function
can instead be used to pass internal coins to the prover (instead of
tossing them interally).

3.4 Implementation details
The code generator is approximately 600 lines of sage code. The
LWE estimator12 is called as a subroutine. From the input specifica-
tion, it sets the proof system modulus and computes an equivalent
statement over the proof system ring. It starts by putting the whole
witness in the Ajtai part of the commitment, setting all other pa-
rameters and computing the resulting proof size. Then it continues
to move the biggest witness part to the BDLOP part of the com-
mitment and comparing the resulting proof size. This process is
iterated as long as the proof size decreases. While this process only
is guaranteed to find a local optimum, the best possible proof sizes
were obtained in our real-world examples.

The C library is more than 10000 lines of code. The HEXL li-
brary’s NTT implementation and the FALCON reference implemen-
tation’s trapdoor sampling algorithm are used as subroutines. Since
the NTT is specialized to fully-splitting rings, we implemented
polynomial multiplications in the proof system ring via the explicit
Chinese-remainder theorem (ECRT). The base arithmetic layer also
implements samplers (uniform, gaussian, binomial), an encoder for
those distributions and rejection sampling algorithms.

The combined toolchain of the code generator and the library
aims at fixing the maximum amount of quantities possible at com-
pile time.

4 The C LaBRADOR Proof Layer
Our starting point is an implementation of the LaBRADOR proof
system from an overlapping anonymous submission aimed towards
proving polynomial evaluations that arise in the arithmetization
of arbitrary circuits. For this work and its focus on proving lattice
schemes we have implemented a new frontend for LaBRADOR
that efficiently supports proving relations that are most suitable
for this setting. The new frontend builds on top of the carefully
AVX512-optimized library for polynomial arithmetic and Johnson-
Lindenstrauss projection from the LaBRADOR implementation.

Recall that LaBRADOR originally supports the so-called principle
relation where the witnesses consist of 𝑟 vectors 𝒔𝑖 ∈ R𝑛𝑞 that fulfill
dot-product constraints of the form∑︁

𝑖, 𝑗

𝑎𝑖 𝑗 ⟨𝒔𝑖 , 𝒔 𝑗 ⟩ +
∑︁
𝑖

⟨𝝋𝑖 , 𝒔𝑖 ⟩ + 𝑏 = 0

that optionally can only be required to hold in the constant coef-
ficient, together with one global norm constraint

∑
𝑖 ∥𝒔𝑖 ∥2 ≤ 𝛽2.

In the code the LaBRADOR implementation is actually written for
another relation that is optimized for internal purposes and allows
for more efficient recursion. Then there is a frontend, called the Chi-
huahua frontend, that reduces the principle relation to the internal
LaBRADOR relation.

12https://bitbucket.org/malb/lwe-estimator/src/master/

The problem with the principle relation for our purposes is
twofold. First, consider our example application of signature aggre-
gation. Here the witness consists of many constant-length vectors
that represent the individual signatures and one needs to prove
tight ℓ2-norm bounds on each individual vector, which means that
the global norm bound in the principle relation does not suffice.
Second, proving the principle relation is not efficient when the mul-
tiplicity 𝑟 is large, which is the case in an aggregate signature. The
reasons is that Chihuahua computes 𝑂 (𝑟2) garbage polynomials
that have a computational cost of𝑂 (𝑛) each, and they become part
of the witness for the following LaBRADOR proof layer. Our new
frontend is called Dachshund and supports a relation which dif-
fers from the principal relation in that statements have individual
norm bounds for every vector, ∥𝒔𝑖 ∥2 ≤ 𝛽2

𝑖
. Moreover, Dachshund

is efficient even for very large multiplicities 𝑟 .

Proving individual norm bounds. For proving the individual norm
bounds, Dachshund expands the witness and produces dot-product
constraints in the resulting principle relation that prove them to-
gether with only one remaining global norm bound. It essentially
uses standard techniques for this. Concretely, note that the constant
coefficient of the polynomial ⟨𝒔𝑖 , 𝜎−1 (𝒔𝑖)⟩ is equal to the squared
ℓ2-norm ∥𝒔∥2. So if the global norm bound on all the 𝒔𝑖 implies
that this can not wrap-around modulo 𝑞, it suffices to prove that
ℎ𝑖 = 𝛽2

𝑖
− ∥𝒔𝑖 ∥2 mod ±𝑞 is positive which in turn can be proven by

expanding it in binary in order to prove that it is below 𝑞/2. So let
ℎ𝑖 be the polynomial whose coefficients are given by the binary
expansion of ℎ𝑖 . Then we get the dot-product constraint

cnst(⟨𝒔𝑖 , 𝒔′𝑖 ⟩ − 𝛽
2
𝑖 − ℎ𝑖𝑔) = 0,

where 𝜎−1 (𝑔) = 1 + 2𝑋 + · · · + 2⌈log𝑞⌉−2𝑋 ⌈log𝑞⌉−2 is a gadget
polynomial and 𝒔′

𝑖
= 𝜎−1 (𝒔𝑖). The 𝒔′

𝑖
and ℎ𝑖 become part of the

witness. To prove that 𝒔′
𝑖
is correctly conjugated constraints of

the form cnst(⟨𝜎−1 (𝜶𝑖), 𝒔𝑖 ⟩ − ⟨𝜶𝑖 , 𝒔′𝑖 ⟩) = 0 for uniformly random
challenge vectors 𝜶𝑖 ∈ R𝑛𝑞 are used, and the fact that the ℎ𝑖 are
binary follows from cnst(ℎ𝑖𝜎−1 (ℎ𝑖)) = 0.

Rebalancing into fewer vectors of higher rank. While LaBRADOR
allows that vectors are split further into even more vectors it is
not possible to join them and one needs a more elaborate way of
rebalancing the vectors. The reason is that the quadratic garbage
polynomials ⟨𝒔𝑖 , 𝒔 𝑗 ⟩ transform nicely under splitting in that also the
garbage polynomials split and the original garbage polynomials can
be recovered by adding them together. On the other hand joining
vectors also joins garbage polynomials and it is not possible any-
more to recover the original ones. To circumvent this problem we
perform committing to the witness in two phases. First we commit
to the unconjugated vectors 𝒔𝑖 . Then we get challenge polynomials
𝑐𝑖 ∈ C, multiply the conjugated 𝒔′

𝑖
by the corresponding 𝑐𝑖 , and

commit to the vectors 𝑐𝑖 𝒔′𝑖 . Now, joining all the 𝒔𝑖 and all the 𝑐𝑖 𝒔′𝑖
into long vectors 𝒔 = 𝒔1 ∥ · · · ∥ 𝒔𝑟 and 𝒔′ = 𝑐1𝒔′1 ∥ · · · ∥ 𝑐𝑟 𝒔

′
𝑟 ,

respectively, results in the garbage polynomial

⟨𝒔, 𝒔′⟩ =
∑︁
𝑖

𝑐𝑖 ⟨𝒔𝑖 , 𝒔′𝑖 ⟩.

Here the garbage polynomials that we need for the quadratic norm-
check constraints are all separated by the challenge polynomials
𝑐𝑖 .

https://bitbucket.org/malb/lwe-estimator/src/master/

The LaZer Library:
Lattice-Based Zero Knowledge and
Succinct Proofs for Quantum-Safe Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

There is one issue remaining. Namely, in order to lift the qua-
dratic norm-check constraints to hold in all of R𝑞 one would want
to first collapse all of them to a single constraint over Z𝑞 by lin-
ear combining them with integer challenges. Then this single Z𝑞-
constraint could be lifted by letting the prover send the polynomial
with zero constant coefficient that makes the constraint hold over
Z𝑞 . In our case we now already have a linear combination of the
Z𝑞-constraints with polynomial challenges 𝑐𝑖 . This destroys their
Z𝑞 structure and the constant coefficient does not vanish anymore.
It means we need to lift all of the constraints individually inside
the linear combination. But the prover can not send all of the lift-
ing polynomials as this would dramatically increase the proof size.
Hence, we let the prover compute the lifting polynomials 𝑏𝑖 with
cnst(𝑏𝑖) = 0 such that

⟨𝒔𝑖 , 𝒔′𝑖 ⟩ − 𝛽
2
𝑖 − ℎ𝑖𝑔 + 𝑏𝑖 = 0 in R𝑞,

and commit to them together with the 𝒔𝑖 in the first commitment
phase. Since the lifting polynomials are not short they need to be
decomposed with respect to some small base before committing.
Now, the final quadratic constraint for the norm-checks is

⟨𝒔, 𝒔′⟩ −
∑︁
𝑖

𝑐𝑖 (𝛽2𝑖 + 𝑔ℎ𝑖 − 𝑏𝑖) = 0.

The linear constraints for proving the conjugated vectors become
cnst(⟨𝜎−1 (𝑐𝑖𝜶𝑖), 𝒔𝑖 ⟩−⟨𝜶𝑖 , 𝒔′𝑖 ⟩) = 0. They can be collapsed and lifted
together, in conjunction with the lifting polynomials 𝑏𝑖 so that it is
shown that their constant coefficients are zero.

5 The Python Layer
The Python layer wraps the C layer of the library and allows the
user to easily and efficiently work with algebraic rings of the form
Z𝑞 [𝑋]/(𝑋𝑑 + 1). Most importantly, it also allows the user to cre-
ate and prove statements using either the [28] or [9] proof sys-
tems. There is full documentation, together with detailed exam-
ples, provided with the code, and in this section we just provide a
general overview. All elements (e.g. polynomials, polynomial, vec-
tors, polynomial matrices) are defined over some polynomial ring
Z𝑞 [𝑋]/(𝑋𝑑 + 1). To create such a ring with, e.g. 𝑑 = 512, 𝑞 = 12289,
one would simply write R=polyring_t(512,12289). Then we can
instantiate polynomials (poly_t), polynomial vectors (polyvec_t),
and polynomial matrices (polymat_t) over the ring R by passing a
python list consisting either of integer coefficients to create a poly-
nomial or a list of poly_t or polyvec_t types to create vectors and
matrices. One can also create these types randomly by generating
the coefficients from some bounded uniform, binomial, or discrete
Gaussian distribution.

The library tries to make polynomial arithmetic simple and in-
tuitive. The operators +,-,* have been overloaded and so one can
write things of the form

vec_a=mat_B*vec_c+5*pol_d*vec_e-(vec_f*vec_g)*vec_h

to correspond to

®𝑎 = 𝐵 ∗ ®𝑐 + 5 ∗ 𝑑 ∗ ®𝑒 − ⟨ ®𝑓 , ®𝑔⟩ ∗ ®ℎ.

The library automatically performs the needed NTT conversions
and then stores the variable in the last form (either NTT or coeffi-
cient). In the vast majority of scenarios, this is optimal – i.e. it is

fairly rare that one needs a variable in both NTT and coefficient
representation.

The initialization function for the classes poly_t,polyvec_t,polymat_t
use CFFI to initialize a pointer to the respective equivalent C class
and the Python functions implementing arithmetic similarly call
their respective C equivalents. The C functions that are used in our
Python wrapper are all declared in the lazer_cffi_build.py file.
It’s important to note that the user never needs to interact with
pointers or anything unrelated to Python when interacting with
LaZer through the Python interface.

In addition to the basic arithmetic, we also provide the FAL-
CON trapdoor generation and sampling functions for the ring
Z𝑞 [𝑋]/(𝑋𝑑 + 1) where 𝑑 = 512, 𝑞 = 12289. As mentioned before,
this function is very useful for creating blind signatures, anonymous
credentials, and multi/threshold-signatures. One can create a FAL-
CONpublic key/secret key pair skenc,pkenc,pkpol=falcon_keygen(),
where skenc is a secret key (which corresponds to a short basis
stored in some form, which is not important), pkenc is the public
key stored in some form (we can ignore this13), and pkpol, which
is a FALCON public key. And one can do trapdoor sampling as

s1, s2 = falcon_preimage_sample(skenc,t)

to create polynomials s1,s2 such that pkenc*s2 + s1 = t.
The main purpose of the LaZer library is to be able to easily

work with proof systems. If, for example, we would like to prove
knowledge of short s satisfying A*s + t = 0, after initializing the
proof system (see Section 6) by creating a prover, we would simply
write

prover.set_statement(A, t)
prover.set_witness(s)
proof = prover.prove()

where proof is the zero-knowledge proof in which ∥®𝑠 ∥ satisfies
some norm bounds that we specified in a separate file that was
first fed to LaZer so that LaZer could create C header files with the
optimal parameters (this C header file is always imported at the
beginning of the protocol).

The verifier would verify this proof system via (after initializa-
tion)

verifier.set_statement(A, t)
result = verifier.verify(proof)

When creating a succinct proof using LaBRADOR, we will gen-
erally be proving many relations of the form (1). We will need to
initialize the prover by letting it know how many equations there
are, what is the degree of each polynomial, and what are the bounds
on the witness norm. Afterwards, we can just enter each polyno-
mial relation one at a time. For example, if we would like to prove
knowledge of s1,s2 such that pkenc*s2 + s1 = t, we would write

ID=int_to_poly(1,R)
left_statement=[pkenc,ID]
witness=[s2,s1]

13It is used temporarily in the current version of the library because we do not yet
implement general optimal multiplication for any ring except Z𝑞 [𝑋]/(𝑋𝑑 + 1) with
𝑑 = 64.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Vadim Lyubashevsky, Gregor Seiler, and Patrick Steuer

ProofSystem.fresh_statement(left_statement,witness,t)

Then once all the statements are entered, one creates a proof using
the ProofSystem.pack_prove() routine.

It may happen that wewould like to use the samewitness polyno-
mial/polynomial vector in several statements. In this case, instead
of adding a witness polynomial to the witness list, one can in-
stead add the witness number corresponding to an already witness
that one would like to use. So for example, if, instead of s1, we
wanted to use a polynomial that was the fifth witness, we would set
witness=[s2,4] (since the numbering starts from 0). Furthermore,
the various individual statements can be over rings Z𝑞 [𝑋]/(𝑋𝑑 +1)
of different degrees (i.e. 𝑋𝑑 + 1 for any 𝑑 ≥ 64 and a power of 2),
though if two statements share a witness, they should be over the
same ring.

6 Protocol Samples
In this section we give a small taste for how one would use the
Python layer of the LaZer library to create protocols that utilize
linear-size ZK proofs and succinct proofs. The full protocols can
be found in the python directory and their descriptions are fully
documented in the Python Module / Examples section of the ac-
companying documentation.

6.1 Kyber Proof
One of the example applications for the linear-size ZK proof that
we provide is a proof of knowledge of a Kyber-1024 [12] secret key.
All the files for this are found in the python/kyber1024 directory.

Define 𝑅𝑝 = Z𝑝 [𝑋]/(𝑋𝑑 + 1) for 𝑝 = 3329 and 𝑑 = 256. The
secret key of the Kyber-1024 encryption scheme consists of polyno-
mial vectors ®𝑠, ®𝑒 ∈ 𝑅4𝑝 each of whose coefficients is independently
generated from the binomial distribution as 𝜂1 +𝜂2 −𝜂3 −𝜂4 where
𝜂𝑖 ← {0, 1}. The public key consists of a uniformly-random matrix
𝐵 ∈ 𝑅4×4𝑝 and a vector ®𝑡 = 𝐵®𝑠 + ®𝑒 . The important feature of Kyber’s
secret key (®𝑠, ®𝑒), which controls the security and decryption failure
probabilities, is that its ℓ2-norm is approximately

√
2048. We will

show how to use the LaZer library to give a ZK proof that the norm
of (®𝑠, ®𝑒) is at most 1.2 ·

√
2048.

We first need to create the file that defines the parameters of the
proof system.

vname = "param" # variable name

deg = 256 # ring Rp degree d
mod = 3329 # ring Rp modulus p
m,n = 4,8
dim = (m,n) # dimensions of A

wpart = [list(range(n))] # partition of w
wl2 = [1.2*sqrt(deg*n)] # l2-norm bounds
wbin = [0] # binary coeffs?

The equation that the ZK proof system proves is of the form

[𝐵 | 𝐼] ·
[
®𝑠
®𝑒

]
+ ®𝑡 = 0. In the code above, we define the degree and

the modulus of the ring Z𝑝 [𝑋]/(𝑋𝑑 + 1) and then the dimensions
of the matrix 𝐴 = [𝐵 | 𝐼]. The list of lists wpart defines how the

witness is split. In our case, we want to prove a norm bound on
the entire witness (®𝑠, ®𝑒), which consists of 8 polynomials, and so
wpart consists of just one list [0,1,2,3,4,5,6,7]. The list wl2 specifies
the norm bound that we would like to prove on the corresponding
witness in wpart. In this case, we would like to prove that the norm
is less than 1.2 ·

√
2048. If instead of the ℓ2-norm, we wanted to

prove that the witness were binary, we would instead enter 0 in the
wl2 list, and a 1 in the wbin one. In this case, we want to prove the
ℓ2-norm, so we set wbin to 0.

If the above file is named kyber1024_params.py, then we run the
sage script (in the scripts directory) to create the kyber1024_params.h
header file that figures out the optimal parameters for the ZK proof.
We do this via

sage lin-codegen.sage kyber1024_params.py >

kyber1024_params.h

Once we have the header file, we can compile the generated C code
into a python module

python3 params_cffi_build.py kyber1024_params.h

Thiswill create a pythonmodule _kyber1024_params_cffi exporting
a lib object that contains the parameter set. The lib object can
contain more than one parameter set (see next Section). One can
then import this object into the python code as

from _kyber1024_params_cffi import lib

We now create the main file which will create the statement
and the ZK proof (and verification) of it. This file can be found
in the python directory of our source code, and we just give the
important details here. We import the LaZer library and also the
parameters mod,deg,m,n from the kyber1024_params.py file. Then
we have the only place that the C functions are accessed from
Python, and this part is the same in every example, and can just
be copied (adjusting for the file names) into any new construction.
We import the object lib containing all the parameters described
above via from _kyber1024_params_cffi import lib and then set
up the prover and verifier with the proof parameters and the public
randomness KYBERPP (which is the seed that creates a part of the
Kyber public key) and the common randomness P1PP which is used
in the proof system (e.g. to create the random commitment matrix).

from lazer import *

shake128 = hashlib.shake_128(bytes.fromhex("00"))
KYBERPP = shake128.digest(32) # kyber public randomness
shake128 = hashlib.shake_128(bytes.fromhex("01"))
P1PP = shake128.digest(32) # proof system public

randomness

from kyber1024_params import mod, deg, m, n
from _kyber1024_params_cffi import lib
prover = lin_prover_state_t(P1PP, lib.get_params("param"))
verifier = lin_verifier_state_t(P1PP,

lib.get_params("param"))

Afterwards, we create the polynomial ring 𝑅 = Z𝑝 [𝑋]/(𝑋𝑑 + 1)
with 𝑑 = 𝑑𝑒𝑔 and 𝑝 =𝑚𝑜𝑑 , create the random matrix 𝐴1 ∈ 𝑅𝑚×𝑚
using the and the identity matrix 𝐴2, and then define 𝐴 as their

The LaZer Library:
Lattice-Based Zero Knowledge and
Succinct Proofs for Quantum-Safe Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

concatenation. We then create the random secret vector ®𝑠𝑘 = (®𝑠, ®𝑒)
with binomial coefficients, and finally define ®𝑝𝑘 = 𝐴 · ®𝑠𝑘 .

R = polyring_t(deg, mod)
A1 = polymat_t.urandom_static(R, m, m, mod, KYBERPP, 0)
A2 = polymat_t.identity(R, m)
A = polymat_t(R, m, n, [A1, A2])
sk = polyvec_t.brandom_static(R, n, 2,

secrets.token_bytes(32), 0)
pk = A*sk

We then set the statement for the prover and create the ZK proof.
That we know a vector ®𝑤 in 𝑅8 with ℓ2-norm at most 1.2 ·

√
2048

satisfying 𝐴 · ®𝑤 − ®𝑝𝑘 = 0.

prover.set_statement(A, -pk)
prover.set_witness(sk)
proof = prover.prove()

To verify the proof, we simply do

verifier.set_statement(A, -pk)
verifier.verify(proof)

We can then run the entire protocol simulating the creation of
the proof and its verification via python3 kyber1024_demo.py where
the latter is the file name we saved the above code to.

6.2 Anonymous Credentials
A more complicated example using the linear-size ZK proof sys-
tem is the anonymous credential scheme from [11]. That scheme
includes several rounds and two ZK proofs and also requires com-
bining operations over rings Z𝑝 [𝑋]/(𝑋𝑑 + 1) for different values
of 𝑑 . The full protocol is in the python/anon_cred directory and we
recommend to also read through the blind signature and anony-
mous credential section in the code documentation. In this section,
we will just give a taste for how these more involved schemes can
still be fairly easily instantiated using LaZer.

The first ZK proof that we will want to create is to prove knowl-
edge of ®𝑠, ®𝑚 satisfying

𝐴®𝑟 + 𝐵 ®𝑚 + ®𝑡 = 0 (7)

over the ring 𝑅𝑝 = Z𝑝 [𝑋]/(𝑋𝑑 + 1) with 𝑝 = 12289 and 𝑑 = 64.
The public matrices 𝐴, 𝐵 are in 𝑅8×16𝑝 and 𝑅8×8𝑝 respectively. We
want to prove that ∥®𝑟 ∥ < 109 and that ®𝑚 is binary. We therefore set
up the parameter file as follows:

vname = "p1_param"

deg = 64
mod = 12289
dim = (8,24)

wpart = [list(range(0,16)), list(range(16,24))]
wl2 = [109, 0]
wbin = [0, 1]

The splitting of the witness wpart is more interesting than in
the previous Kyber example. The witness now consists of two parts
®𝑟 and ®𝑚, and we would like to prove different things about each of
them. The list wpart thus consists of two lists – one containing the
placing of ®𝑟 , which is in position 0-15, and the then the placing of
®𝑚 in positions 16-23. Then the wl2 and wbin lists specify that we
would like to prove that ∥®𝑟 ∥ is at most 109 and that the coefficients
of ®𝑚 are binary.

The second ZK proof proves knowledge of ®𝑟 ∈ 𝑅16𝑝 , ®𝑚 ∈ 𝑅8𝑝 , ®𝑠 ∈
𝑅16𝑝 , and ®𝜏 ∈ 𝑅8𝑝 that satisfy

𝐴®𝑟 + 𝐵 ®𝑚 +𝐶®𝑠 + 𝐷 ®𝜏 + ®𝑡 = 0 (8)

with ∥®𝑟 ∥ < 109, ®𝑚 and ®𝜏 being binary, and ∥®𝑠 ∥ <
√
34034726. The

parameter file, which has a different name would look as follows

vname = "p2_param"
deg = 64
mod = 12289
dim = (8,48)

wpart = [list(range(0,16)), list(range(16,24)),
list(range(24,40)), list(range(40,48))]

wl2 = [109, 0, sqrt(34034726), 0]
wbin = [0, 1, 0, 1]

Note that the wpart list specifies that the witness should be
(®𝑟, ®𝑚, ®𝑠, ®𝜏) and the wl2 and wbin lists specify the ℓ2 norms for ®𝑟 and
®𝑠 and that ®𝑚 and ®𝜏 should be binary.

To create the parameters, we use the same method as in the
Kyber example, except we now have two parameter files. So we
first generate the parameter for each script:

sage lin-codegen.sage anon_cred_p1_params.py > params1.h

sage lin-codegen.sage anon_cred_p2_params.py > params2.h

and then simply paste the code from both of the new .h files into
one file anon_cred_params.h Once we have the header file, we can
compile the generated C code into a python module

python3 params_cffi_build.py anon_cred_params.h

Thiswill create a pythonmodule _anon_cred_params_cffi exporting
a lib object that contains the parameter set.

In the anonymous credential scheme, the user first generates
®𝑟, ®𝑚 and creates the ZK proof for (7). He then receives the vectors ®𝑠
and ®𝜏 from the credential authority, and then has to create a proof
for something resembling (8) to show his credential. He therefore
needs to initialize two proof systems.

self.p1_prover = lin_prover_state_t(P1PP,
lib.get_params("p1_param"))

self.p2_prover = lin_prover_state_t(P2PP,
lib.get_params("p2_param"))

Another useful feature of the library worth pointing out here
is that we can easily work over rings Z𝑝 [𝑋]/(𝑋𝑑 + 1) of different
dimensions 𝑑 . For example, all the above equations were over the
ring with 𝑑 = 64, but we also use the FALCON pre-image sampler,
which uses 𝑑 = 512. Define 𝑅 to be the ring with 𝑑 = 64 and 𝑅′ to
be the one with 𝑑 = 512. If we have a FALCON public polynomial 𝑎
and a signature 𝑠2, 𝑠1 such that 𝑎𝑠2 + 𝑠1 = 𝑡 over the ring 𝑅′, then

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Vadim Lyubashevsky, Gregor Seiler, and Patrick Steuer

we can use the standard algebra mapping 𝜎 : 𝑅′ → 𝑅8 (e.g. see [29,
Section 2.8]) to convert this to the equation𝐴®𝑠2 +®𝑠1 = ®𝑡 over 𝑅. The
LaZer library supports such a linear algebra transformation and one
can convert between the polynomial 𝑎 ∈ 𝑅′ and a matrix 𝐴 ∈ 𝑅8×8
by taking an encoding of the FALCON public key generated via

sk, pk, _ = falcon_keygen()

and then transform pk into𝐴 by running A = falcon_decode_pk(pk,RING),
where RING = polyring_t(64,12289). Similarly, one can convert the
sampled pre-images 𝑠1, 𝑠2 ∈ 𝑅′ into 𝑅8 via

s1, s2 = falcon_preimage_sample(sk,t,RING)

Thus one can use the pre-image sampling of FALCON and fork over
any polynomial ring Z𝑝 [𝑋]/(𝑋𝑑 + 1) with 𝑝 = 12289 and 𝑑 being
a power-of-2 at most 512.

6.3 Aggregate Signature
A simple example that uses (a wrapper for) the LaBRADOR succinct
proof combines the proof with the FALCON signature scheme to
create an aggregate signature scheme. The file for the aggregate
signature scheme is python/agg_sig.py. The general idea is that
we want to prove the knowledge of 𝑠 (𝑖)2 , 𝑠

(𝑖)
1 with small norms

satisfying

𝑎 (𝑖) ∗ 𝑠 (𝑖)2 + 𝑠
(𝑖)
1 = 𝑡 (𝑖) mod 𝑝 (9)

over the polynomial ring 𝑅𝑝 = Z𝑝 [𝑋]/(𝑋𝑑 + 1) for 𝑝 = 12289 and
𝑑 = 512, for many 𝑖 . At the present, our succinct proof requires
all the equations to be written over one of its supported moduli 𝑞
(which are 24,32,40,or 48 bit) and so we can rewrite (9) as

𝑎 (𝑖) ∗ 𝑠 (𝑖)2 + 𝑠
(𝑖)
1 + 𝑝 ∗ 𝑣

(𝑖) = 𝑡 (𝑖) mod 𝑞 (10)

over the ring 𝑅𝑞 = Z𝑞 [𝑋]/(𝑋𝑑 + 1) for some polynomial 𝑣 and
𝑞 ≫ 𝑝 (while the degree 𝑑 is still 512). As long as we prove that the
norms of 𝑠 (𝑖)2 , 𝑠

(𝑖)
1 , 𝑣 (𝑖) are all small, there will be no wraparound

modulo 𝑞 and the above equation holds true over the integers, and
therefore (9) is satisfied.

We begin constructing the proof system by importing the LaZer
and LaBRADOR python libraries and specifying the number of
signatures that will be aggregated, and the ℓ2-squared norms of
𝑠
(𝑖)
2 , 𝑠

(𝑖)
1 , 𝑣 (𝑖) in (10).

from lazer import *
from labrador import *
sig_num=1024
norms=[17017363,17017363,round(1248245003*.75)]

We now move to setting up the parameters for the proof system.
To initialize the proof system, we need to specify the structure
of the entire witness vector ®𝑤 (which is the concatenation of all
the 𝑠 (𝑖)2 , 𝑠

(𝑖)
1 , 𝑣 (𝑖)). Every element of ®𝑤 needs to be either a polyno-

mial or a polynomial vector. We need to specify the degree of the
ring in which each of these polynomials (or polynomial vectors) is
in. In the case of the aggregate signature scheme, each equation
(10) consists of three polynomials of degree 512. Thus the entire

witness consists of 3*sig_num witnesses of degree 512, ad we set
deg_list=[deg]*(3*sig_num)

Next we specify the number of polynomials that each witness
has. In our case, each witness consists of one polynomial, and so
we define the num_pols_list variable as a list of 3*sig_num ones, as
num_pols_list=[1]*(3*sig_num).

We then specify the square norm bounds that we would like
to prove for each of the witnesses. Because we plan to store the
witnesses as

[𝑠 (1)2 , 𝑠
(1)
1 , 𝑣 (1) , 𝑠 (2)2 , 𝑠

(2)
1 , 𝑣 (2) , . . .] (11)

the norm bounds are going to be as in the norms list defined in the
beginning,repeated sig_num times, and so we define this list as
norm_list=norms*sig_num

We finally define the number of constraints (which is the number
of signatures) and initialize the proof statement specifying that we
are using the 40-bit modulus.

num_constraints=sig_num
PS=proof_statement(deg_list, num_pols_list,norm_list,

num_constraints, "40")

To create and add statements in (10), we create a loop that creates
a random polynomial (which would normally correspond to a hash
of the message) in 𝑅𝑝 and then lift it to 𝑅𝑞 .

f_t=poly_t.urandom_static(FALCON_RING,FALCON_RING.mod,TARGPP,0)
l_t=f_t.lift(BIGMOD_RING)

We would then pre-image sample the 𝑠
(𝑖)
2 , 𝑠

(𝑖)
1 and again lift

them to the ring 𝑅𝑞 .

l_s1, l_s2 = falcon_preimage_sample(skenc, f_t)
l_s1=l_s1.lift(BIGMOD_RING)
l_s2=l_s2.lift(BIGMOD_RING)

Afterwards, we initialize and compute the polynomial 𝑣 (𝑖) in
(10) as

𝑣 (𝑖) = (𝑡 (𝑖) − 𝑠 (𝑖)1 − 𝑎
(𝑖) ∗ 𝑠 (𝑖)2) ∗ 𝑝

−1 mod 𝑞

l_v=poly_t(BIGMOD_RING)
v=(l_t-l_s1-l_pk*l_s2)*inv_fal_mod

where the variable inv_fal_mod was perviously defined to be the
inverse of 𝑝 over Z𝑞 . After checking that the norms of the pre-image
sampling outputs are small enough so as the statement we want to
prove is actually satisfied, we add the equation to the statement.

stat_left=[l_pk,ID,ID*mod]
wit=[l_s2,l_s1,v]
PS.fresh_statement(stat_left,wit,l_t)

The equation specified above is l_pk*l_s2+ID*l_s1+ID*mod*v=l_t,
which is exactly (10). Once we have collected all the equations
into our statement, we can output the statement data structure as

The LaZer Library:
Lattice-Based Zero Knowledge and
Succinct Proofs for Quantum-Safe Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

stmnt=PS.output_statement(), and then create the proof via proof
= PS.pack_prove(). Then the verifier can verify the statement using
the pack_verify(proof,stmnt,"40") command.

Acknowledgments
This work was supported by the EU H2020 ERC Project 101002845
PLAZA.

References
[1] Marius A. Aardal, Diego F. Aranha, Katharina Boudgoust, Sebastian Kolby, and

Akira Takahashi. 2024. Aggregating Falcon Signatures with LaBRADOR. In
CRYPTO (1) (Lecture Notes in Computer Science, Vol. 14920). Springer, 71–106.

[2] Miklós Ajtai. 1996. Generating Hard Instances of Lattice Problems (Extended
Abstract). In STOC. 99–108.

[3] Scott Ames, Carmit Hazay, Yuval Ishai, andMuthuramakrishnan Venkitasubrama-
niam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted Setup.
In ACM Conference on Computer and Communications Security. ACM, 2087–2104.

[4] Sven Argo, Tim Güneysu, Corentin Jeudy, Georg Land, Adeline Roux-Langlois,
and Olivier Sanders. 2024. Practical Post-Quantum Signatures for Privacy. IACR
Cryptol. ePrint Arch. (2024), 131.

[5] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and Chris
Peikert. 2018. More Efficient Commitments from Structured Lattice Assumptions.
In SCN. 368–385.

[6] Carsten Baum and Vadim Lyubashevsky. 2017. Simple Amortized Proofs of
Shortness for Linear Relations over Polynomial Rings. IACR Cryptology ePrint
Archive 2017 (2017), 759. http://eprint.iacr.org/2017/759

[7] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Succinct Arguments for
R1CS. In EUROCRYPT (1) (Lecture Notes in Computer Science, Vol. 11476). Springer,
103–128.

[8] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost
Rijneveld, and Peter Schwabe. 2019. The SPHINCS+ Signature Framework. In
CCS. ACM, 2129–2146.

[9] Ward Beullens and Gregor Seiler. 2023. LaBRADOR: Compact Proofs for R1CS
from Module-SIS. In CRYPTO (5) (Lecture Notes in Computer Science, Vol. 14085).
Springer, 518–548.

[10] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe D. M. de Souza, and Vinodh
Gopal. 2021. Intel HEXL: Accelerating Homomorphic Encryption with Intel
AVX512-IFMA52. CoRR abs/2103.16400 (2021).

[11] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Alessandro
Sorniotti. 2023. A Framework for Practical Anonymous Credentials from Lattices.
In CRYPTO (2) (Lecture Notes in Computer Science, Vol. 14082). Springer, 384–417.

[12] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. 2018. CRYS-
TALS - Kyber: A CCA-Secure Module-Lattice-Based KEM. In 2018 IEEE European
Symposium on Security and Privacy, EuroS&P. 353–367.

[13] Chi-MingMarvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor Seiler,
Cheng-Jhih Shih, and Bo-Yin Yang. 2021. NTT Multiplication for NTT-unfriendly
Rings New Speed Records for Saber and NTRU on Cortex-M4 and AVX2. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2 (2021), 159–188.

[14] Plonky3 Library Contributors. 2024. Plonky3. https://github.com/Plonky3/
Plonky3.

[15] STARK Library Contributors. 2018. stark. https://github.com/elibensasson/
libSTARK.

[16] Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehle. 2017. CRYSTALS – Dilithium: Digital Signatures fromModule
Lattices. Cryptology ePrint Archive, Report 2017/633. https://eprint.iacr.org/
eprint-bin/getfile.pl?entry=2017/633&version=20170627:201152&file=633.pdf.

[17] Muhammed F. Esgin, Veronika Kuchta, Amin Sakzad, Ron Steinfeld, Zhenfei
Zhang, Shifeng Sun, and Shumo Chu. 2021. Practical Post-quantum Few-Time
Verifiable Random Function with Applications to Algorand. In Financial Cryp-
tography (2) (Lecture Notes in Computer Science, Vol. 12675). Springer, 560–578.

[18] Muhammed F. Esgin, Ron Steinfeld, Dongxi Liu, and Sushmita Ruj. 2023. Efficient
Hybrid Exact/Relaxed Lattice Proofs and Applications to Rounding and VRFs. In
CRYPTO (5) (Lecture Notes in Computer Science, Vol. 14085). Springer, 484–517.

[19] Nils Fleischhacker, Gottfried Herold, Mark Simkin, and Zhenfei Zhang. 2023.
Chipmunk: Better Synchronized Multi-Signatures from Lattices. In CCS. ACM,
386–400.

[20] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. 2019. PLONK: Permu-
tations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowl-
edge. Cryptology ePrint Archive, Paper 2019/953. https://eprint.iacr.org/2019/953

[21] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, and Peter
Schwabe. 2023. Swoosh: Practical Lattice-Based Non-Interactive Key Exchange.
IACR Cryptol. ePrint Arch. (2023), 271.

[22] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. 2022. Practical Non-
interactive Publicly Verifiable Secret Sharing with Thousands of Parties. 13275
(2022), 458–487.

[23] Irakliy Khaburzaniya, Konstantinos Chalkias, Kevin Lewi, and Harjasleen Malvai.
2022. Aggregating and Thresholdizing Hash-based Signatures using STARKs. In
AsiaCCS. ACM, 393–407.

[24] Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. 2023. Toward
Practical Lattice-Based Proof of Knowledge from Hint-MLWE. In CRYPTO (5)
(Lecture Notes in Computer Science, Vol. 14085). Springer, 549–580.

[25] Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. 2018. Lattice-Based
Zero-Knowledge Arguments for Integer Relations. In CRYPTO (2) (Lecture Notes
in Computer Science, Vol. 10992). Springer, 700–732.

[26] San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. 2013. Improved
Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications. In
PKC. 107–124.

[27] Vadim Lyubashevsky and Ngoc Khanh Nguyen. 2022. BLOOM: Bimodal Lattice
One-out-of-Many Proofs and Applications. 13794 (2022), 95–125.

[28] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. 2022. Lattice-
Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More
General. In CRYPTO (2) (Lecture Notes in Computer Science, Vol. 13508). Springer,
71–101. https://eprint.iacr.org/2022/284 https://eprint.iacr.org/2022/284.

[29] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plançon, and Gregor Seiler.
2021. Shorter Lattice-Based Group Signatures via "Almost Free" Encryption and
Other Optimizations. In ASIACRYPT (4). Springer, 218–248.

[30] Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-Olivier
Killijian, and Tancrède Lepoint. 2016. NFLlib: NTT-Based Fast Lattice Library. In
CT-RSA (Lecture Notes in Computer Science, Vol. 9610). Springer, 341–356.

[31] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, , and
Zhenfei Zhang. 2017. FALCON. Technical Report. National Institute of Standards
and Technology. https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions..

[32] Armin Rigo and Maciej Fijalkowski. 2012-2018. CFFI documentation. https:
//cffi.readthedocs.io/en/latest/index.html.

[33] Victor Shoup. 1996-2021. NTL: A Library for doing Number Theory. https:
//libntl.org/.

http://eprint.iacr.org/2017/759
https://github.com/Plonky3/Plonky3
https://github.com/Plonky3/Plonky3
https://github.com/elibensasson/libSTARK
https://github.com/elibensasson/libSTARK
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2017/633&version=20170627:201152&file=633.pdf
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2017/633&version=20170627:201152&file=633.pdf
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/284
https://eprint.iacr.org/2022/284
https://cffi.readthedocs.io/en/latest/index.html
https://cffi.readthedocs.io/en/latest/index.html
https://libntl.org/
https://libntl.org/

	Abstract
	1 Introduction
	1.1 The Challenge with Incorporating ZK Proofs
	1.2 Our Contribution
	1.3 Protocol Examples and Comparison to Other Works.
	1.4 Future Work

	2 Obtaining and building LaZer and its documentation
	3 The C Linear Proof Layer
	3.1 Linear-sized proofs for lattice relations
	3.2 Code generation
	3.3 Using generated code from an application
	3.4 Implementation details

	4 The C LaBRADOR Proof Layer
	5 The Python Layer
	6 Protocol Samples
	6.1 Kyber Proof
	6.2 Anonymous Credentials
	6.3 Aggregate Signature

	Acknowledgments
	References

