
Symmetric Encryption on a Quantum Computer

David Garvin† Oleksiy Kondratyev‡ Alexander Lipton§

Marco Paini¶

November 7, 2024

Abstract

Classical symmetric encryption algorithms use N bits of a shared secret key to transmit

N bits of a message over a one-way channel in an information theoretically secure man-

ner. This paper proposes a hybrid quantum-classical symmetric cryptosystem that uses

a quantum computer to generate the secret key. The algorithm leverages quantum cir-

cuits to encrypt a message using a one-time pad-type technique whilst requiring a shorter

classical key. We show that for an N -qubit circuit, the maximum number of bits needed

to specify a quantum circuit grows as N3/2 while the maximum number of bits that the

quantum circuit can encode grows as N2. We do not utilise the full expressive capabil-

ity of the quantum circuits as we focus on second order Pauli expectation values only.

The potential exists to encode an exponential number of bits using higher orders of Pauli

expectation values. Moreover, using a parameterised quantum circuit (PQC), we could

further augment the amount of securely shared information by introducing a secret key

dependence on some of the PQC parameters. The algorithm may be suitable for an early

fault-tolerant quantum computer implementation as some degree of noise can be tolerated.

Simulation results are presented along with experimental results on the 84-qubit Rigetti

Ankaa-2 quantum computer.

1 Introduction

The scientific literature has widely discussed the impact of quantum information
and computation on communication and cryptosystems. On the one hand, quantum
communication channels can transmit information with a complexity advantage [1]
and can make quantum key distribution (QKD) more secure against eavesdropping
attacks [2] – the latter thanks to fundamental quantum information principles such
as the no-cloning theorem [3]. On the other hand, future fault-tolerant quantum
computers may implement Shor’s algorithm efficiently [4, 5], which would irreversibly

†Rigetti Computing, Email: dgarvin@rigetti.com
‡Imperial College London, Email: a.kondratyev@imperial.ac.uk
§Abu Dhabi Investment Authority (ADIA), Email: alexander.lipton@adia.ae
¶Rigetti Computing, Email: mpaini@rigetti.com

1

compromise the security of widely adopted public-key cryptosystems that rely on the
computational complexity of semiprime integer factoring (Rivest-Shamir-Adleman,
RSA) [6] and the discrete logarithm (Diffie-Hellman, DH) [7].

Public-key cryptosystems are called asymmetric as they utilize two keys : one is
public and used for encryption, while the other is private and enables decryption.
Let us assume that Alice wishes to establish a secure communication channel using
RSA. To this aim, she first generates a key pair using two large prime integers and
the modular exponentiation one-way function. Then, she shares one key publicly:
Bob uses it to encrypt the plain text message for Alice. The resulting cypher text
can be decrypted by Alice only using the other key, which is private to her. Digital
signatures [8] and authentication [9] can be implemented with this method. Ex-
cluding the quantum computing threat, asymmetric cryptosystems are secure if the
key pair has been correctly generated and the private key remains as such. In par-
ticular, knowledge of the public key cannot be leveraged to retrieve or compromise
the private key, as no classical algorithm is known that can efficiently invert the
one-way function [10]. The latter point is of practical advantage compared to the
other major class of cryptosystems, called symmetric, in which a private key must
be shared securely among the communicating parties.

Symmetric cryptosystems use one key only. Crucially, the key needs to be shared
between Alice and Bob before any secure communication can commence, as it is used
for both encryption of the plain text and decryption of the cypher text – as such, it is
called the secret. This latter aspect requires establishing a physically secure channel
for secret sharing and ensuring that none of the potentially many key copies is ever
exposed: these are notable disadvantages as they are often difficult to guarantee and
verify. In practice, symmetric-key algorithms are effectively used as subroutines to
perform bulk plain text encoding, and a public-key cryptosystem is used to establish
the physically secure channel for secret sharing.

With significant technological progress toward building commercial quantum com-
puters [11, 12, 13], the relative balance in strengths and weaknesses between sym-
metric and asymmetric cryptosystems may be shifting. As mentioned, Shor’s algo-
rithms can efficiently invert RSA’s one-way function with an asymptotic exponential
speedup over the best known classical algorithm, the general number field sieve [14].
Public-key post-quantum cryptography algorithms are designed to be secure against
known quantum computing attacks [15]; however, their vulnerability to other, cur-
rently unfeasible attacks is a matter of active study and critical undertaking of many
leading initiatives [16]. Interestingly, widely adopted symmetric-key algorithms such
as the Advanced Encryption Standard (AES) [17] are believed to be post-quantum
since quantum computer attack times will remain large as long as key sizes are
sufficiently big (at least 256 bits) [18]. With this specific focus on quantum comput-
ing, we move on to discuss the case of quantum symmetric cryptosystems in more
detail.

The security of sending classical messages using one-time pads [19, 20] was inves-
tigated by Shannon who showed that N bits of a shared classical secret key are
necessary and sufficient to transmit N bits of a message over a one-way classical

2

channel, in an information theoretically secure manner [21, 22]. Bennett et al. de-
termined that 2N bits of shared classical secret key, along with N EPR pairs used
for teleportation over a quantum channel, can be used to securely transfer N qubits
of information [23]. Mosca et al. demonstrated that the transmission of N qubits
securely over a quantum channel can be achieved using only 2N bits of a classical
shared secret key [24]. Remote state preparation requires one bit of classical commu-
nication and one entangled qubit per qubit sent [25]. Encoding a classical message
using quantum states allows for uncloneable encryption where an eavesdropper can-
not clone the message for later decoding without alerting the message receiver [26].
The ability to detect whether eavesdropping has occurred allows reuse of a one-time
pad without compromising security [27]. Protocols for transmitting classical data
securely over quantum channels are presented in [28, 29].

This paper proposes a symmetric cryptosystem that uses a quantum computer to
generate the secret. As far as the authors are aware, not much attention in the
literature has been dedicated to hybrid symmetric encryption algorithms utilising
quantum resources to encrypt and decrypt the message whilst using a one-way clas-
sical channel to transfer the information. Although we do not discuss its computa-
tional complexity rigorously, we put forward general considerations suggesting that
our algorithm can be as secure as a one-time pad system – the latter being the only
theoretically secure classical cipher [30]. The proposed algorithm leverages parame-
terised quantum circuits (PQC) [31, 32] employing particular circuit structures that
render their classical sampling inefficient [33].

The algorithm enables us to encrypt a message using one-time pad-type techniques
but requires the transmission of significantly less information to specify the key. We
show that for a circuit containing N qubits, the maximum number of bits needed to
specify its configuration grows as N3/2 while the maximum number of bits encoded
grows as N2. However, we do not utilise the full expressive capability of the circuit
in our implementation as we only use the second order Pauli expectation values.
The potential exists to encode an exponential number of bits by using higher order
Pauli expectation values. The amount of securely transmitted information can be
increased by using a PQC where some gate parameters change over time according
to a prescribed secret. In the following, we will use the terms quantum circuits and
PQC interchangeably, as the protocol works by drawing random circuit parameters
from families of circuits that share broad structure characteristics.

Paper contributions: The contributions made in this paper are:

• An illustrative example showing how symmetric encryption can be imple-
mented utilising a gate-based quantum computer to generate the secret key.

• A general algorithm for performing symmetric encryption and decryption using
a quantum computer to generate a form of one-time pad secret key. Due to the
expressive power of the PQC, for large messages, a secret key of less than N
classical bits is required to encrypt a message containing N classical bits. All
the information shared via unsecure channels has no value to an eavesdropper
attempting to decrypt the message.

3

• An algorithm which may be a candidate for the early fault-tolerant quantum
computing era as some degree of noise can be tolerated. The algorithm requires
high-quality gates on the quantum computer since deep circuits are needed.
The algorithm requires measurements to be expectation values of Pauli ob-
servables. This adds noise resistance to the algorithm since error mitigation
techniques can be applied.

• Simulation results on 5-qubit and 20-qubit circuits. Experimental results using
the 84-qubit Rigetti Ankaa-2 quantum computer with an 84-qubit circuit.

• A method for specifying a PQC containing N qubits and M gate layers using
a maximum of (a+ b)NM classical bits, with a-bit encoding of the gate type
and b-bit encoding of the adjustable gate parameter (rotation angle).

• An analysis of the trade-off between sampling noise and the algorithm’s en-
coding efficiency.

Section 2 provides a brief introduction to PQCs. Section 3 highlights a stylised ex-
ample that illustrates the ideas behind the algorithm. Section 4 discusses additional
security considerations. Section 5 gives a detailed algorithm description. Section 6
provides an example of the end-to-end encryption and decryption executed on a
quantum simulator as well as on the quantum hardware (Rigetti’s Ankaa-2 QPU)
with the application of error detection and error correction techniques. Section 7
concludes and provides recommendations for future research. The Appendices pro-
vide additional information on plain text symbol to bitstring encoding, analysis of
expectation values of second order Pauli measurements, determination of classical
bits required to represent a PQC, and components of the symmetric encryption
algorithm.

2 Background

Quantum computing is an emerging technology that employs properties of quantum
mechanics to perform computations, in some cases exponentially more efficiently
than classical calculations [4, 34, 35, 36]. Superposition enables qubits (quantum
bits) to exist as a combination of both the |0⟩ and |1⟩ states simultaneously [37].
Entanglement statistically links the properties of one qubit with another beyond
classical correlations. Quantum interference of probability amplitudes allows certain
computations to be performed efficiently. Measurement of a qubit results in one bit
of classical information, where the probability of measuring either “0” or “1” depends
on the magnitude of the corresponding squared probability amplitudes of the qubit
states, as per the Born rule [38].

Quantum algorithms are represented by quantum circuits – in the widespread gate-
based computation model [39, 40]. These circuits are composed of single-qubit and
multi-qubit quantum gates. Quantum gates are unitary linear operators that trans-
form the quantum state (represented by a complex unit vector in a high-dimensional
Hilbert space), thus implementing the computational protocol. Multi-qubit gates
are used to create entanglement.

4

Some useful single-qubit gates are the Pauli X, Y and Z gates:

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
,

and the rotation gates that rotate qubit states around the x, y and z axis by an-
gle θ:

Rx(θ) =

[
cos

(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

)]
, Ry(θ) =

[
cos

(
θ
2

)
− sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

)]
,

Rz(θ) =

[
e−iθ/2 0

0 eiθ/2

]
.

Two-qubit gates that create entanglement are, e.g., the CZ and XY (iSWAP)
gates:

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , iSWAP =

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 .
A set of quantum gates that can be combined to implement any quantum (or classi-
cal) equivalent gate is called a universal gate set [39]. While there are many potential
universal gate sets, the set of choice depends on the hardware modality and ease of
physical implementation. A transpiler converts a quantum program into an efficient
sequence of native gates, that is, with as few native gates as possible [41, 42, 43].
Quantum circuits may be hard to simulate on classical computers [44].

A parameterised quantum circuit is a type of quantum circuit where some (or all)
gates can be specified by a set of adjustable parameters θ1, . . . , θm. Figure 1 shows a
schematic representation of a PQC composed of single-qubit and multi-qubit quan-
tum gates. The final quantum state, |ψf⟩, is obtained after the application of the
quantum circuit to the initial quantum state, |ψ0⟩:

|ψf⟩ = Um(θm) . . . U2(θ2)U1(θ1) |ψ0⟩ .

1

2

3

...

N − 1

N

. . .

. . .

. . .

. . .

. . .

M

M

M

M

M

M

...
|ψ0⟩

U1(θ1)

Um(θm)

Figure 1: Schematic representation of an N -qubit PQC. Note that this illustrative
example has an arbitrary choice of 1- and 2-qubit gate positions within the circuit.

5

The final state can be measured. The measurement produces a classical bitstring,
which follows the probability distribution specified by the quantum state via the
Born rule. Qubit measurement occurs in a specific basis. The computational basis
is typically the z-basis (unless explicitly specified otherwise) and the measurement
of the qubit state in the z-basis gives us either “0” (corresponding to the +1 eigen-
value of the Pauli Z operator) or “1” (corresponding to the −1 eigenvalue of the
Pauli Z operator). The outcome is probabilistic, but running the same quantum
circuit multiple times allows us to calculate the expectation value of Pauli Z on the
corresponding qubit. Changing the z-basis to the x-basis or the y-basis allows us to
calculate the expectation values of, respectively, Pauli X and Pauli Y operators. To
measure these expectation values, “change of basis” gates are added to the quantum
circuit before measurement [45]:

• To remain in the z-basis, add nothing (or the identity gate I) to the qubit.

• To transform the z-basis into the x-basis, add an H gate to the qubit.

• To transform the z-basis into the y-basis, add HS† gates to the qubit (the S†

gate should be applied first).

The gates used to change the basis are as follows:

I =

[
1 0
0 1

]
, H =

1√
2

[
1 1
1 −1

]
, S† =

[
1 0
0 −i

]
.

3 Stylised Example

We now present a simplified example illustrating how a person, Alice, can securely
transmit a message to her friend, Bob, using a hybrid quantum-classical encryption
algorithm. This highlights the major components of our algorithm which are then
covered in more detail in Section 5.

Alice and Bob, two trusted parties, wish to establish a secure communication chan-
nel. They meet in Alice’s office – a secure place – where Alice generates a random
PQC in the native gate set. An example of such a PQC is presented in Figure 2.

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

>>

>>

>>

>>

>>

Rx(−0.3795)

Rx(1.0857)

Ry(−2.2701)

Rx(2.8623)

Ry(1.3817) Rx(−3.086)

Ry(−1.1052)

Rx(2.2183)

Rx(−0.4458)

Ry(−2.6078)

Rx(−2.5026)

Ry(2.8764)

|ψ⟩

Figure 2: Randomly generated quantum circuit. All 1-qubit gate parameters (rota-
tion angles) are expressed in radians.

6

In this stylised example, the randomly generated quantum circuit consists of 5 qubits
and 6 layers of 1- and 2-qubit gates. The 1-qubit gates are random rotations around
the x and y axes and the 2-qubit gates are CZ (controlled Z) gates that create
entanglement.

Alice shares this circuit with Bob via a secure in-house communication channel. Now
both Alice and Bob have the same quantum circuit on their laptops in the form of
Python code. The Python code represents the circuit as a network of quantum
gates applied to a set of qubits [46]. The algorithm is hardware agnostic enabling
the code to be run on any quantum device once the circuit is represented using
Python commands specific to that device [47].

Later, Alice wants to communicate with Bob. She decides to send him an encrypted
message consisting of letter “K” in binary format:

Letter Radio Signal ASCII Binary ICS Meaning

K Kilo 1001011 “I wish to communicate with you”

Therefore, Alice needs to encrypt the bitstring [1001011].

Alice starts with generating a random string of Pauli operators X, Y and Z – the
same length as the width of the quantum circuit she shared with Bob:

[X,Z, Y, Y,X].

This determines the bases in which qubits should be measured: the first and fifth
qubits in the x-basis, the second qubit in the z-basis, and the third and fourth qubits
in the y-basis. The objective is to calculate the expectation values of Pauli operators
on various qubits. In this stylised example we have the following possibilities for
measuring the expectation value of a tensor product of two Pauli operators Pk and
Pl on qubits k and l, ⟨Pk ⊗ Pl⟩:

⟨X1 ⊗ Z2⟩ ,

⟨X1 ⊗ Y3⟩ ,

⟨X1 ⊗ Y4⟩ ,

⟨X1 ⊗X5⟩ ,

⟨Z2 ⊗ Y3⟩ ,

⟨Z2 ⊗ Y4⟩ ,

⟨Z2 ⊗X5⟩ ,

⟨Y3 ⊗ Y4⟩ ,

⟨Y3 ⊗X5⟩ ,

⟨Y4 ⊗X5⟩ .

To measure these expectation values, Alice has to add “change of basis” gates to
the quantum circuit before measurement (see Section 2) as shown in Figure 3:

7

• Add nothing (or identity gate I) to the second qubit as the computational
basis is the z-basis.

• Add H gates to the first and fifth qubits to transform the z-basis into the
x-basis.

• Add HS† gates to the third and fourth qubits to transform the z-basis into
the y-basis (the S† gate should be applied first).

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

M

M

M

M

M

Rx(−0.3795)

Rx(1.0857)

Ry(−2.2701)

Rx(2.8623)

Ry(1.3817) Rx(−3.086)

Ry(−1.1052)

Rx(2.2183)

Rx(−0.4458)

Ry(−2.6078)

Rx(−2.5026)

Ry(2.8764)

H

H

H

H

I

S†

S†

Figure 3: Measurement in different bases via inclusion of additional gates.

Next, Alice runs this quantum circuit 100,000 times and saves the measurement
results in a 100, 000×5 array. If “0” is measured, the eigenvalue of the corresponding
Pauli operator is +1. If “1” is measured, the eigenvalue of the corresponding Pauli
operator is −1. Therefore, the array entries are either +1 or −1. The number of
rows is equal to the number of quantum circuit runs and the number of columns is
equal to the number of qubits.

Then Alice computes the expectation values for the pairs of Pauli operators (tensor
products of two Pauli operators). The expectation value ⟨Pk ⊗ Pl⟩ ≡ ⟨PkPl⟩ is the
dot product of columns k and l, normalised by the number of rows. She gets:

⟨X1Z2⟩ = −0.76160

⟨X1Y3⟩ = 0.22724

⟨X1Y4⟩ = −0.00574

⟨X1X5⟩ = 0.13070

⟨Z2Y3⟩ = 0.81316

⟨Z2Y4⟩ = 0.02814

⟨Z2X5⟩ = −0.09922

⟨Y3Y4⟩ = −0.01034

⟨Y3X5⟩ = 0.12158

⟨Y4X5⟩ = 0.00368

• If the expectation value ⟨PkPl⟩ is larger than a chosen threshold value ϵ, the
pair PkPl can be used to encode “1”.

8

• If the expectation value ⟨PkPl⟩ is smaller than −ϵ, the pair PkPl can be used
to encode “0”.

The value of ϵ depends on the circuit configuration and the number of runs. Alice
sets it at ϵ = 0.01. An analysis of the ϵ calculation and tradeoffs required is provided
in Appendix B.

Therefore, Alice can use the following pairs of Pauli operators for encrypting her
message:

⟨X1Z2⟩ ⇒ 0

⟨X1Y3⟩ ⇒ 1

⟨X1Y4⟩ ⇒ − (expectation value falls within the [−ϵ, ϵ] interval)

⟨X1X5⟩ ⇒ 1

⟨Z2Y3⟩ ⇒ 1

⟨Z2Y4⟩ ⇒ 1

⟨Z2X5⟩ ⇒ 0

⟨Y3Y4⟩ ⇒ 0

⟨Y3X5⟩ ⇒ 1

⟨Y4X5⟩ ⇒ − (expectation value falls within the [−ϵ, ϵ] interval)

Alice sends Bob a text message that reads: XZYYX.

Then Alice sends Bob an email that reads: (1,3) (1,2) (2,5) (1,5) (3,4) (2,3) (2,4).

After Bob receives the text message, he knows that he must change the basis on
qubits 1, 3, 4 and 5 (add H to the first and fifth qubits and add HS† to the third
and fourth qubits).

After Bob receives the email, he knows what expectation values he needs to calculate
and in what order.

Bob runs the quantum circuit (the same as Alice’s) and gets the following expecta-
tion values (they would differ slightly from Alice’s values due to the finite number
of quantum circuit runs and some hardware noise):

⟨X1Y3⟩ = 0.22762 ⇒ 1

⟨X1Z2⟩ = −0.76166 ⇒ 0

⟨Z2X5⟩ = −0.09430 ⇒ 0

⟨X1X5⟩ = 0.12724 ⇒ 1

⟨Y3Y4⟩ = −0.00986 ⇒ 0

⟨Z2Y3⟩ = 0.81240 ⇒ 1

⟨Z2Y4⟩ = 0.03230 ⇒ 1

Bob correctly decrypts the message, reads the bitstring [1001011], and learns that
Alice would like to get in touch with him.

9

Two unsecure channels (text and email) were used to transmit the message. Even
if both channels are compromised it is impossible to decipher the message without
knowledge of the quantum circuit that creates the quantum state in which the Pauli
operators are measured. In other words, the quantum circuit plays the role of a
symmetric key used to encrypt and decrypt messages between two trusted parties.
It has been shown that it is exponentially difficult to learn quantum circuits of
bounded 2-qubit gate numbers from their samples [48].

4 Additional Security

The stylised example in Section 3 contains two important security protocol elements
that provide additional protection:

• No Pauli pairs are repeated.

• Only some of the possible Pauli pairs are used.

Our algorithm can be extended in multiple directions by including extra types of
security. Below, we discuss the following additional elements of the protocol:

• Using a proprietary randomly generated symbol-to-bitstring encoding scheme
for the plain text symbols.

• Making some of the 1-qubit gates vary with the corresponding adjustable pa-
rameters (rotation angles) depending on the time stamp (as a de facto random
seed – structurally identical PQC can generate very different quantum states).

• Extending the protocol into a multiple-key encryption where two (or more)
communicating parties are required to combine their keys to decrypt the mes-
sage.

• Using the quantum key distribution protocol for secure exchange of the PQC
instead of physical face-to-face communication.

If encrypting large amounts of data rather than a single ASCII symbol, we would
face additional challenges. This means that the general encryption protocol based
on measuring expectation values of second order Pauli operators should provide
additional degrees of security. We cannot use ASCII encoding for the plain text
symbols. To see why, let us look at how ASCII encodes letters. First, we notice that
all upper-case letters (from “A” to “Z”) start with “10” as leading bits in the 7-bit
binary encoding, while all lower-case letters (from “a” to “z”) start with “11” as the
two leading bits. Secondly, the letter encodings have unequal numbers of “0”s and
“1”s. For example, upper-case “A” is encoded as 5 “0”s and 2 “1”s: 1000001. This
means that a relatively simple frequency analysis can help to break the encryption
given a sufficiently large amount of text.

Therefore, we need to generate a random mapping of the plain text symbols to
bitstrings of fixed length simultaneously with the generation of the quantum circuit.
The key condition is that the number of “0”s and “1”s in each randomly generated
bitstring should be equal to prevent any possible attempt at frequency analysis.

10

A sample random mapping that illustrates this principle is shown in Table 1 in
Appendix A. There, each plain text symbol is represented by a 12-bit bitstring with
six “0”s and six “1”s. The table is shared with the trusted parties together with the
generated quantum circuit.

Another consideration concerns the architecture of the quantum circuit. Security
can be dramatically improved if the quantum circuit is modified by making the
1-qubit gates in the first layer adjustable as shown in Figure 4.

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

>>

>>

>>

>>

>>

Rx(α1θ)

Rx(α2θ)

Ry(α3θ)

Rx(α4θ)

Ry(α5θ) Rx(−3.086)

Ry(−1.1052)

Rx(2.2183)

Rx(−0.4458)

Ry(−2.6078)

Rx(−2.5026)

Ry(2.8764)

|ψ⟩

Figure 4: Quantum circuit with adjustable gates in the first layer. These gates are
used as a “seed” to generate circuits that create different quantum states.

Making the first layer adjustable turns the generated quantum circuit into a de facto
family of quantum circuits, where the configuration of adjustable parameters plays
the role of a “seed” that can be set according to some rules. For example, it can
be derived from the time stamp of some process as explained below. Without this
functionality we will be limited in how much text we can encode before we start
reusing the same pairs of Pauli operators with the same expectation values. With
this functionality, assuming that we perform a regular reset of the seed, the same
pairs of Pauli operators will have different expectation values for different seeds. This
should prevent any meaningful attempt at analysis of large amounts of intercepted
encrypted text as long as the seed is changed before the Pauli pairs are repeated.
In Figure 4, the 1-qubit gates in the first layer are rotations around the x, y and
z axes by angle αiθ, where i indicates the qubit number. Coefficients αi ∈ [−1, 1]
are fixed. Parameter θ is a function of the time stamp of the generated vector of
Pauli operators. As an illustration, we can adopt the following scheme for setting
the value of θ.

Let us write down the time stamp in the format: YYMMDDhhmmss. For example,
13:03:46 on 27 November 2023 would be represented by the following integer number:
231127130346. Then the value of parameter θ is set equal to YYMMDDhhmmss
modulo 2π. In our example it would be θ = 1.32392129. The value of θ is unique for
each time stamp. At the same time the knowledge of θ will be of no use unless the
whole quantum circuit is known. It means that the time stamp can also be shared
between the trusted parties using the unsecure channel – the same channel that is
used for communicating the vector of Pauli operators. Making the parameters of

11

the first layer’s gates depend on the time stamp ensures that it is fruitless to try to
establish the mapping between the pairs of Pauli operators and their binary values:
each random vector of Pauli operators that are used to encode the message will be
accompanied by a unique quantum circuit given by the unique time stamp. This
would allow us to reuse the same quantum circuit multiple times since every con-
figuration of adjustable parameters in the first layer will lead to the corresponding
unique quantum state in which Pauli operators are measured. The proposed sym-
metric encryption algorithm relies on the fact that the knowledge of which Pauli
operators have been measured reveals nothing about their expectation values unless
the quantum state in which they have been measured is also known.

It is also possible to transform the proposed algorithm into a multiple key encryption
protocol. For example, Alice splits the quantum circuit into two parts: the first M1

layers and the second M2 layers (M1 + M2 = M). Then Alice shares the first M1

layers with Bob and the second M2 layers with Charlie. It would only be possible
to perform decryption if both Bob and Charlie combine their quantum sub-circuits
into a single complete quantum circuit.

The stylised example described at the start of Section 3 requires a face-to-face
meeting of two trusted parties in order to exchange the PQC – a symmetric en-
cryption/decryption key. In some cases this may be inconvenient if not altogether
impossible. A natural solution that relies on the same type of security provided by
the laws of quantum mechanics is to use one of the QKD protocols. The Bennett-
Brassard (BB84) protocol [2, 49] is a potential choice.

QKD is a secure communication method that enables two parties to produce a
shared random secret key known only to them, which then can be used to encrypt
and decrypt messages. The main point here is that the secret key is a random
bitstring of any desired length. Appendix C shows that the PQC (our secret key)
consisting of N qubits and M layers of 1- and 2-qubit gates can be encoded as
a bitstring of length (a + b)NM , with a-bit encoding of the gate type and b-bit
encoding of the gate parameter (rotation angle). Equivalently, a random bitstring
of length (a+ b)NM can be translated into the corresponding PQC.

5 General Algorithm

We can now formulate the general hybrid quantum-classical symmetric encryp-
tion/decryption Algorithm 1.

Algorithm 1: Symmetric Encryption

1: Generation of a random quantum circuit on N qubits with M layers of 1-qubit
and 2-qubit gates (e.g., M = int(2

√
N)). The 1-qubit gates are random

rotations around the x, y and z axes; the 2-qubit gates are suitable native gates
(e.g., CZ or iSWAP). The first layer of the quantum circuit consists of 1-qubit
gates with parameters (rotation angles) of the form αiθ, where all αi ∈ [−1, 1],
i = 1, . . . , N , are randomly generated coefficients and the parameter θ is the
same for all 1-qubit gates in the first layer.

12

2: Generation of a random mapping scheme that would provide a one-to-one
mapping between any desired plain text symbol and a 2n-digit bitstring with
exactly n “0”s and exactly n “1”s.

3: Sharing of the generated quantum circuit and the plain text symbol mapping
scheme with the trusted party. The quantum circuit is a symmetric key that can
be used by the trusted parties to encrypt and decrypt data in binary format.

4: When one trusted party (Alice) wants to communicate with another trusted
party (Bob), the protocol is as follows:
a) Alice converts the plain text she wants to encrypt into the bitstring using

the generated mapping scheme.
b) Alice generates a random vector of Pauli operators {X, Y, Z}. The length of

the vector should be equal to the width of the quantum circuit, with
one-to-one mapping between the elements of the vector of Pauli operators
and the qubits (e.g., [Z1, Y2, X3, . . . , YN]).

c) Alice saves the time stamp of the generated random vector of Pauli
operators as an integer number in the format YYMMDDhhmmss. This
number modulo 2π (double precision) is the value of parameter θ in the first
layer of the generated quantum circuit.

d) Alice adds “change of basis” gates to each qubit in accordance with the
Pauli operator which is assigned to the qubit:

• nothing to qubits with Pauli Z (z-basis);
• H to qubits with Pauli X (transformation from the z-basis to the
x-basis);

• HS† to qubits with Pauli Y (transformation from the z-basis to the
y-basis).

e) Alice executes L runs of the quantum circuit and saves the measurement
results in an L×N array:

• if “0” is measured
then the eigenvalue of the corresponding Pauli operator is +1;

• if “1” is measured
then the eigenvalue of the corresponding Pauli operator is −1.

Therefore, the array entries are either +1 or −1. The number of rows is
equal to the number of quantum circuit runs and the number of columns is
equal to the number of qubits.

f) Alice randomly selects two qubits i and j (without replacement). She
calculates the expectation value of Pauli operators ⟨PiPj⟩ as the dot product
of columns i and j, normalised by the number of rows:

• if the value of ⟨PiPj⟩ is larger (closer to +∞) than ϵ
then this pair of qubits can be used to encode “1”;

• if the value of ⟨PiPj⟩ is smaller (closer to −∞) than −ϵ
then this pair of qubits can be used to encode “0”.

The value of ϵ is one of the algorithm’s parameters. The broad condition is
ϵ ≥ mσ, where σ is the estimated average standard deviation of expectation
values. The value of m can be chosen from some general considerations.

13

4: g) Alice takes the first bit from the bitstring she wants to encrypt:
if the bit value is “1” and ⟨PiPj⟩ > ϵ or the bit value is “0” and ⟨PiPj⟩ < −ϵ
then Alice encrypts this bit with the pair (i, j)
else the pair (i, j) is either discarded (if −ϵ ≤ ⟨PiPj⟩ ≤ ϵ) or put on hold
(for the next suitable bit), and Alice tries another random pair of Pauli
operators (without replacement).

h) This process continues (steps (f) and (g) are repeated) until Alice encrypts
the first K bits with the pairs of qubit indices. The broad condition is
K < N(N − 1)/2.

i) After that Alice generates a new random vector of Pauli operators, saves its
time stamp as an integer number in the format YYMMDDhhmmss, and
repeats the above procedure for the next K bits.

j) This process continues until Alice encrypts the whole bitstring (the whole
dataset in binary format). If the bitstring length is B, then we end up with
D vectors of Pauli operators, D time stamps, and D cycles of quantum
circuit runs: (D − 1)K < B ≤ DK.

5: The encrypted dataset consists of three arrays:
a) D ×N array of Pauli operators (D rows, N columns), where each kth row is

the vector of Pauli operators used to encrypt [(k − 1)K + 1, kK] section of
the bitstring.

b) D× 1 array of time stamps (a time stamp for each vector of Pauli operators).
c) D ×K array of pairs of qubit indices (D rows, K columns), where each kth

row is the vector of qubit index pairs used to encrypt [(k − 1)K + 1, kK]
section of the bitstring.

Alice sends the first and second arrays to Bob via their preferred unsecure
communication channel (e.g., email). Then Alice sends the third array to Bob
via the same or a different unsecure channel (e.g., second email).

6: After receiving the arrays from Alice:
a) Bob takes the first value from the time stamp array as an integer number in

the format YYMMDDhhmmss. This number modulo 2π is the value that
should be assigned to the parameter θ in the first layer of the quantum
circuit.

b) Bob takes the first row from the Pauli operator array and adds the
corresponding basis transformation gates to the quantum circuit – exactly
the same procedure as done by Alice. Bob runs the quantum circuit L times
and saves the measurement results (+1,−1) in an L×N array.

c) Bob takes the first element (i, j) from the index pairs array and calculates
the dot product of columns i and j from the L×N array:
if the value of the dot product of columns i and j is positive
then Bob decrypts (i, j) as “1”
else Bob decrypts (i, j) as “0”.
Bob continues this procedure until he reaches the end of the first row of the
index pairs array (i.e., until he decrypts first K bits).

14

6: d) Bob switches to the second row of the Pauli operators array and repeats
steps (a) and (b). He continues until the whole bitstring is decrypted.

e) Bob translates the decrypted bitstring into plain text using the same
mapping scheme as Alice.

Components of the algorithm are illustrated in Figure 16 (Appendix D).

Remark: With N = 2, 500, M = 100, L = 500, 000, K = 2, 500, 000, ϵ = 0.01,
m = 6, and n = 6, Algorithm 1 would allow encryption of 65 full pages of dense
normal text per single vector of Pauli operators (1 page = 40 lines × 80 symbols
per line × 12 bits per symbol). The 6-sigma threshold is equivalent to 1 typo per
about 26,000 pages of dense normal text (see Appendix B for the determination
of ϵ).

6 Encryption and Decryption Example

The following example illustrates the application of Algorithm 1 to the encryption
and decryption of a meaningful amount of plain text. The sample message is taken
from the short story by Edgar Allan Poe, The Gold-Bug [50]:

A good glass in the bishop’s hostel in the devil’s seat.

Forty-one degrees and thirteen minutes northeast and by north.

Main branch seventh limb east side.

Shoot from the left eye of the death’s-head.

A bee line from the tree through the shot fifty feet out.

In the novel, this message was encrypted by Scottish privateer Captain Kidd using
simple substitution cipher and successfully decrypted more than a century later by
the novel’s protagonist, William Legrand, using frequency analysis1.

We will encrypt and then decrypt this message first on a quantum simulator and
then on the actual quantum computer (Rigetti’s Ankaa-2 QPU). The message is 258
characters long (counting spaces) and should be translated into the 3,096-bit string
using the mapping Table 1 (Appendix A) before encryption.

6.1 Quantum Simulator

Figure 5 displays embedding of a 20-qubit quantum circuit on the square-grid QPU
graph. Even though we can easily realise the “all-to-all” qubit connectivity on a
quantum simulator, our objective is to stay within the restrictions imposed by the
limited connectivity of existing quantum processors. The corresponding quantum
circuit is shown in Figure 6. It consists of three layers of 1-qubit gates with adjustable
parameters (Rx, Ry) and three layers of fixed 2-qubit gates (iSWAP).

1The punctuation has been changed from its original version to make the message more readable.

15

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 5: Embedding of a 20-qubit quantum circuit on the square-grid QPU graph.
Each circle represents a qubit. The connecting lines show the physical connections
between qubits on the device. The 2-qubit gate operations can be applied directly
to these physically connected qubits.

In total, the quantum circuit is configured by 100 adjustable parameters. Each 1-
qubit rotation angle ϕj

i is defined on the interval [−π/2, π/2], thus attempting to
provide sufficiently uniform coverage of the qubit states on the Bloch sphere.

Since our task is to encode 3,096 bits and a single cycle (single set of basis gates)
can produce at most (20 · 19)/2 = 190 unique Pauli pairs, we have to run multiple
cycles when working with the 20-qubit circuit. Also, not all Pauli pairs will be
eligible for encoding purposes due to the finite number of quantum circuit runs
as explained in Appendix B. The analysis presented there and shown in Figure 12
indicates that with 10,000 quantum circuit runs we need to set the expectation value
threshold parameter ϵ to 0.05 in order to ensure the 6 standard deviations confidence
level. This is a demanding requirement that would push the number of cycles up
significantly unless we increase the number of quantum circuit runs and, therefore,
decrease the threshold value.

However, we can decrease the value of ϵ without increasing the number of quantum
circuit runs and without sacrificing the accuracy by applying an error detection and
error correction technique suggested by the very nature of the proposed encryption
protocol. The encryption protocol requires every plain text character to be repre-
sented by a bitstring with equal numbers of “0”s and “1”s. For example, six “0”s
and six “1”s as per the mapping Table 1. If the decrypted bitstring has unequal
number of “0”s and “1”s, then we immediately know that the bitstring has been
encrypted/decrypted incorrectly. As long as the error rate remains low, it is highly
unlikely that two errors (two bit-flips) would happen for the same bitstring and,
therefore, all occurred errors can be detected.

The encryption protocol also suggests an obvious error correction mechanism. For
example, if the decrypted bitstring has seven “0”s and five “1”s, we can try to flip
each “0” into “1” one by one and test the obtained seven new bitstrings with equal
number of “0”s and “1”s as to whether they encode a plain text character. This
is the approach we are taking in our experiment with the 20-qubit circuit given by
Figure 6.

16

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

Ry(α1θ)

Rx(α2θ)

Ry(α3θ)

Rx(α4θ)

Ry(α5θ)

Rx(α6θ)

Ry(α7θ)

Rx(α8θ)

Ry(α9θ)

Rx(α10θ)

Ry(α11θ)

Rx(α12θ)

Ry(α13θ)

Rx(α14θ)

Ry(α15θ)

Rx(α16θ)

Ry(α17θ)

Rx(α18θ)

Ry(α19θ)

Rx(α20θ)

Rx(ϕ
1
1)

Rx(ϕ
1
2)

Rx(ϕ
1
3)

Rx(ϕ
1
4)

Rx(ϕ
1
5)

Rx(ϕ
1
6)

Rx(ϕ
1
7)

Rx(ϕ
1
8)

Rx(ϕ
1
9)

Rx(ϕ
1
10)

Rx(ϕ
1
11)

Rx(ϕ
1
12)

Rx(ϕ
1
13)

Rx(ϕ
1
14)

Rx(ϕ
1
15)

Rx(ϕ
1
16)

Rx(ϕ
1
17)

Rx(ϕ
1
18)

Rx(ϕ
1
19)

Rx(ϕ
1
20)

Ry(ϕ
2
1)

Ry(ϕ
2
2)

Ry(ϕ
2
3)

Ry(ϕ
2
4)

Ry(ϕ
2
5)

Ry(ϕ
2
6)

Ry(ϕ
2
7)

Ry(ϕ
2
8)

Ry(ϕ
2
9)

Ry(ϕ
2
10)

Ry(ϕ
2
11)

Ry(ϕ
2
12)

Ry(ϕ
2
13)

Ry(ϕ
2
14)

Ry(ϕ
2
15)

Ry(ϕ
2
16)

Ry(ϕ
2
17)

Ry(ϕ
2
18)

Ry(ϕ
2
19)

Ry(ϕ
2
20)

Rx(ϕ
3
1)

Rx(ϕ
3
2)

Rx(ϕ
3
3)

Rx(ϕ
3
4)

Rx(ϕ
3
5)

Rx(ϕ
3
6)

Rx(ϕ
3
7)

Rx(ϕ
3
8)

Rx(ϕ
3
9)

Rx(ϕ
3
10)

Rx(ϕ
3
11)

Rx(ϕ
3
12)

Rx(ϕ
3
13)

Rx(ϕ
3
14)

Rx(ϕ
3
15)

Rx(ϕ
3
16)

Rx(ϕ
3
17)

Rx(ϕ
3
18)

Rx(ϕ
3
19)

Rx(ϕ
3
20)

Ry(ϕ
4
1)

Ry(ϕ
4
2)

Ry(ϕ
4
3)

Ry(ϕ
4
4)

Ry(ϕ
4
5)

Ry(ϕ
4
6)

Ry(ϕ
4
7)

Ry(ϕ
4
8)

Ry(ϕ
4
9)

Ry(ϕ
4
10)

Ry(ϕ
4
11)

Ry(ϕ
4
12)

Ry(ϕ
4
13)

Ry(ϕ
4
14)

Ry(ϕ
4
15)

Ry(ϕ
4
16)

Ry(ϕ
4
17)

Ry(ϕ
4
18)

Ry(ϕ
4
19)

Ry(ϕ
4
20)

Figure 6: 20-qubit quantum circuit with 100 configurable parameters. The fixed
2-qubit gates are iSWAP gates. The 2-qubit gates are applied between qubits which
have physical connections on the device (see Figure 5).

The numerical experiment consists of executing the encryption and decryption pro-
tocol end-to-end as specified by Algorithm 1 with 10,000 quantum circuit runs while
varying the values of the threshold parameter ϵ.

In our experiment, we observed error-free encryption and decryption for ϵ > 0.035.

17

Once the value of ϵ went below 0.035 we started to see instances of incorrect encryp-
tion and decryption. A typical decrypted message would then look as follows:

A good glass in the bishop’s hostel in the devil’s seat.

Forty-one degrees and thirteen minutes northeast and by north.

Main branch sev $ nth limb east side.

Shoot from the left eye of the death’s-head.

A bee line from the tree through the $ hot fifty feet out.

Here, symbol $ indicates detected incorrectly encrypted/decrypted character. The
application of the error correction mechanism outlined above restores the message
to its original form:

A good glass in the bishop’s hostel in the devil’s seat.

Forty-one degrees and thirteen minutes northeast and by north.

Main branch sev e nth limb east side.

Shoot from the left eye of the death’s-head.

A bee line from the tree through the s hot fifty feet out.

The first incorrect bitstring has been error-corrected to the bitstring representing
character “e” and the second incorrect bitstring has been error-corrected to the
bitstring representing character “s”. In some cases the proposed error correction
method can suggest several valid substitutions. To ensure uniqueness, the mapping
between plain text characters and the corresponding bitstrings should be organised
in such a way that the Hamming distance between any two bitstrings is > 2. This
may require longer bitstrings (e.g., 14-bit long) but would significantly increase the
number of eligible Pauli pairs – often by a substantial multiple for relatively small
number of quantum circuit runs.

For ϵ < 0.03 we observe instances of more than one error per bitstring and, therefore,
can no longer rely on the error correction. In this case, the solution is to increase
the number of quantum circuit runs.

6.2 Rigetti Ankaa-2 QPU

The 20-qubit circuit used in the numerical experiments on a quantum simulator can
be seen as a “proof of concept” exercise. However useful, the quantum simulator run
on a classical hardware has obvious limitation: memory. Increasing the qubit count
from 20 to 30 would slightly more than double the number of eligible Pauli pairs per
cycle but would increase the number of probability amplitudes of the quantum state
(and, therefore, the memory requirements) by three orders of magnitude. Going be-
yond 70 qubits becomes prohibitively expensive from the computational perspective
even for large high performance computing (HPC) systems.

18

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81 82 83 84

Figure 7: Embedding of an 84-qubit circuit on Ankaa-2 QPU graph. Each circle
represents a qubit. The connecting lines show the physical connections between
qubits on the device. The 2-qubit gate operations can be applied directly to these
physically connected qubits.

This is why experiments with 70+ qubit circuit executed on the actual quantum
hardware is so important – we are entering the realm of quantum computing that
cannot be simulated classically. We also aim to verify the possibility of executing
the proposed symmetric encryption protocol on NISQ computers. Figure 7 shows
embedding of an 84-qubit circuit on Rigetti’s Ankaa-2 square-grid QPU graph.

The 84-qubit circuit is structurally similar to the 20-qubit circuit we used in nu-
merical experiments executed on a quantum simulator. The circuit consists of three
layers of 1-qubit gates (Rx, Ry) and three layers of 2-qubit gates (iSWAP). The
total number of configurable parameters is 420.

We are interested in finding the level of critical threshold for the given number of
quantum circuit runs – for any threshold value larger than critical we should not
expect to see more than one error per bitstring. As long as there is only one bit-
flip in any given bitstring we can easily detect it and apply the error correction
mechanism described above. But once we start observing two or more bit-flips per
bitstring, the encryption/decryption process breaks down completely.

Figure 8 shows the values of critical threshold, ϵ∗, as a function of the number of
quantum circuit runs. Results are shown for three separate experiments, as repre-
sented by the green, orange and blue points/lines. These curves are purely indicative
as they depend on the specific quantum circuit architecture and are inherently noisy.
However, they provide valuable insight into the feasibility of executing the proposed
symmetric encryption protocol on NISQ hardware. Only three experiments could
be performed due to limited access to the QPU and the time required to complete
each experiment.

19

100k 200k 300k 400k
Number of circuit runs

0.01

0.02

0.03

0.04

0.05

0.06

Cr
iti

ca
l t

hr
es

ho
ld

 e
ps

ilo
n*

Experiment 1
Experiment 2
Experiment 3
Experiment 1 average
Experiment 2 average
Experiment 3 average

Figure 8: Critical threshold ϵ∗ for various numbers of quantum circuit runs. Three
separate experiments are represented by the green, orange and blue points respec-
tively. Each experiment has thirteen ϵ∗ points (one for each cycle) plotted at each
of the number of circuit runs. The lines are a visual aid connecting the average of
the thirteen points, for each of the number of circuit runs.

Figure 9 illustrates the share of ineligible Pauli pairs as a function of the number
of quantum circuit runs, corresponding to the points in Figure 8. Noise of the
QPU contributes significantly to attenuation of the magnitude of the expectation
values and, therefore, to the percentage of ineligible Paulis. We cannot derive the
percentage for a noiseless case at this scale, and discrimination between the effects
of circuit size and noise to the magnitude of the expectation values is an important
question for future work. Appendix B.2 contains results for a 5-qubit circuit showing
lower numbers of ineligible Pauli pairs in simulated results compared to the QPU
results.

To reduce the impact of QPU calibration drift with time, we developed an additional
error mitigation technique. Each expectation value was calculated four times, each
using 100,000 shots. Averaging one, two, three or four of these values generated esti-
mates of the expectations using 100K, 200K, 300K and 400K shots respectively. The
standard deviations were also calculated. Expectation values with large standard
deviations could be discarded as these had a higher likelihood of being inaccurate,
potentially changing sign and thereby leading to errors. This mitigation technique
could be applied when encrypting data bits. However, it can’t be used to exclude
expectation values when decrypting as the decryption algorithm has to use the ex-
pectations specified by the encryption process (via the list of pairs). The decryption
algorithm can use the standard deviation information in situations where an error
occurs and results in more than one potential decoded character. The character

20

100k 200k 300k 400k
Number of circuit runs

0.90

0.92

0.94

0.96

0.98

1.00

Sh
ar

e
of

 in
el

ig
ib

le
 P

au
li

pa
irs

Experiment 1
Experiment 2
Experiment 3
Experiment 1 average
Experiment 2 average
Experiment 3 average

Figure 9: Share of ineligible Pauli pairs for various numbers of quantum circuit runs.
Three separate experiments are represented by the green, orange and blue points
respectively. Each experiment has thirteen points (one for each cycle) plotted at
each of the number of circuit runs. The lines are a visual aid connecting the average
of the thirteen points, for each of the number of circuit runs.

resulting from flipping the bit which has the largest standard deviation is likely to
be the error that occurred.

Where possible, sampling without replacement was used. As long as there were at
least 12 unique expectations then these could be used to encode a character (needing
12 bits) and accurately decode it even in the presence of a single expectation value
error.

Note that since Pauli values on separate qubits commute, for unique Pauli operators
Pk and Pl on qubits k and l, the second order Pauli Pk ⊗ Pl is equal to Pl ⊗ Pk.
Therefore, we can define the pair (k, l) where k < l to represent the expectation value
E of Pk ⊗ Pl = Pl ⊗ Pk and we can define pair (l, k) where k < l to represent the
negated expectation value −E. This means that each expectation value measured
can be used to represent either a ”0” or a ”1”. This removes any issues related to
unequal numbers of positive and negative Pauli expectations.

7 Conclusions and Outlook

This paper proposes a hybrid quantum-classical symmetric encryption algorithm.
Encoding and decoding the message relies on computing expectation values of a
random parameterised quantum circuit. Some non-secret information is sent via
an unsecured, one-way classical channel. The PQCs enable long messages to be

21

transmitted securely with compact shared secrets, which are the PQC structure
and the symbol cypher. A stylised example was provided, followed by the detailed
general algorithm.

Initial experiments were performed using a 5-qubit PQC run on a quantum simula-
tor and Rigetti Ankaa-2 quantum hardware. Using 100,000 quantum circuit runs of
the simulator, it was found that about 20% of the second order Pauli expectation
values measured were ineligible to use as their magnitude was less than six standard
deviations of the noise. The same experiment on the quantum hardware resulted
in about 57% ineligible second order Pauli expectation values as the noise levels
were higher. There was an almost equal number of measured positive and nega-
tive expectation values, meaning that a similar amount of “1”s and “0”s could be
encrypted.

Further “proof of concept” experiments were conducted on a quantum simulator
(20-qubit circuit) and quantum hardware using the Rigetti Ankaa-2 QPU (84-qubit
circuit). Error detection and error correction techniques were applied in order to
increase the percentage of eligible Pauli pairs for the given number of quantum
circuits runs, which further improves the efficiency of the proposed protocol. We
note that it is beyond the capabilities of most existing classical computers to simulate
the 84-qubit quantum circuit.

Future work will continue to investigate running the algorithm on quantum hard-
ware. This will enable wider and deeper PQC to be utilised. The impact of noise
will be observed and quantified. Using simulation and quantum hardware, the rela-
tionship of Figure 10 will be examined and verified for larger quantum circuits.

While fault-tolerant quantum computers may be required to run circuits using thou-
sands of qubits, initial results could be obtained for hundreds of qubits on Noisy
Intermediate Scale Quantum (NISQ) era computers [51]. The algorithm requirement
for calculating expectation values of Pauli observables means that error mitigation
techniques can be utilised [52]. The availability of more qubits is beneficial as it pro-
vides additional second order Pauli observables to encode the classical bits thereby
improving the efficiency (see Appendix C for details).

Some theoretical aspects that were touched upon by this work are left for future
investigation.

First, we consider the distribution of the 2-qubit Pauli observables. In our exam-
ple, they are a small subset drawn randomly and without replacement, and their
expectation depends on the random PQC. Therefore, one may conjecture that these
expectation values should be approximately evenly distributed over their support.
However, certain types of PQC may suffer from the barren plateau phenomena, which
dictates the concentration of expectation values and their exponential reduction of
the expectation’s variances as the qubit count increases [53]. If our circuits were
to be affected, this may complicate the choice of second-order Pauli operators as
we add more qubits. Although we did not investigate this phenomenon, a possible
mitigation is to reduce the asymptotic depth growth of the circuit as a logarithm of
the qubit number, for which barren plateaus are expected not to occur.

22

Second, one of the possible attacks on this protocol entails eavesdropping on the
unsecured communication channel and performing a frequency attack. Although we
did not explicitly address this case, a recent result states that it is exponentially
difficult to learn quantum circuits of bounded 2-qubit gate numbers from their sam-
ples [48].

Third, Pauli expectation values can be classically simulated efficiently if the gener-
ating circuit contains only a small number of non-Clifford gates [54]. We did not
study if this aspect may pose a security threat to our algorithm or make it more
susceptible to specific attacks. However, this should not raise immediate concern
as the number of non-Clifford gates can be chosen freely within the depth-scaling
constraint. Additionally, the output of the circuit is privy to the communicating
parties only.

Fourth, our explicit example demonstrates that a hybrid quantum-classical symmet-
ric algorithm is within reach of current quantum computation – in our view, this is a
key aspect of this work. Moreover, some elements of the algorithm may help achieve
secure communication with fewer bits of information exchanged as secrets. It is of
future interest to assess whether or not this algorithm could be more efficient in an
end-to-end case than a specific classical alternative, such as the classical one-time
pad.

Our hope is that cryptanalysis experts can take these ideas further, enabling the
creation of a new efficient symmetric encryption algorithm.

Bibliography

[1] Niraj Kumar, Iordanis Kerenidis, and Eleni Diamanti. Experimental demon-
stration of quantum advantage for one-way communication complexity surpass-
ing best-known classical protocol. Nature Communications, 10(1), September
2019.

[2] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key
distribution and coin tossing. Proceedings of International Conference on Com-
puters, Systems and Signal Processing, page 175–179, 1984.

[3] Isaac L. Chuang Michael A. Nielsen. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 10 anv
edition, 2011.

[4] Peter Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, 1997.

[5] Craig Gidney and Martin Eker̊a. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. Quantum, 5:433, April 2021.

23

[6] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signature and public-key cryptosystems. Communications of the ACM,
pages 120–126, 1978.

[7] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[8] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on Com-
puting, 17(2):281–308, 1988.

[9] Paul Grassi, Elaine Newton, James Fenton, Ray Perlner, Andrew Regenscheid,
William Burr, Justin Richer, Naomi Lefkovitz, Jamie Danker, Yee-Yin Choong,
Kristen Greene, and Mary Theofanos. Digital identity guidelines: Authentica-
tion and lifecycle management. NIST special publication 800-63b, 2017.

[10] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[11] IBM. IBM debuts next-generation quantum processor & IBM Quantum System
Two, extends roadmap to advance era of quantum utility. https://newsroom

.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor

-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quant

um-Utility, December 2023.

[12] IonQ. How we achieved our 2024 performance target of #aq 35. https://ionq
.com/posts/how-we-achieved-our-2024-performance-target-of-aq-35,
January 2024.

[13] Rigetti. Rigetti investor presentation. https://investors.rigetti.com/st

atic-files/fbac3801-223f-4f0f-a207-47d25084a1d7, November 2023.

[14] Carl Pomerance. The number field sieve. Proceedings of Symposia in Applied
Mathematics, 48, 1994.

[15] Daniel J. Bernstein. Introduction to post-quantum cryptography, pages 1–14.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[16] NIST. Post-quantum cryptography pqc - selected algorithms 2022, July 2022.

[17] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James Dray. Advanced encryption standard (aes),
Nov 2001.

[18] Ray Perlner and David Cooper. Quantum resistant public key cryptography:
A survey. IDtrust ’09: Proceedings of the 8th Symposium on Identity and Trust
on the Internet, April 2009.

[19] David Kahn. The Codebreakers: The Comprehensive History of Secret Com-
munication from Ancient Times to the Internet. Scribner, 1996.

24

https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility
https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility
https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility
https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility
https://ionq.com/posts/how-we-achieved-our-2024-performance-target-of-aq-35
https://ionq.com/posts/how-we-achieved-our-2024-performance-target-of-aq-35
https://investors.rigetti.com/static-files/fbac3801-223f-4f0f-a207-47d25084a1d7
https://investors.rigetti.com/static-files/fbac3801-223f-4f0f-a207-47d25084a1d7

[20] Steven M. Bellovin. Frank miller: Inventor of the one-time pad. Cryptologia,
35(3):203–222, 2011.

[21] Claude E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379–423, 1948.

[22] Claude E. Shannon. Communication theory of secrecy systems. The Bell System
Technical Journal, 28(4):656–715, 1949.

[23] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher
Peres, and William K. Wootters. Teleporting an unknown quantum state via
dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70:1895–
1899, Mar 1993.

[24] Michele Mosca, Alain Tapp, and Ronald de Wolf. Private Quantum Channels
and the Cost of Randomizing Quantum Information. arXiv e-prints, pages
quant–ph/0003101, March 2000.

[25] Charles H. Bennett, Patrick Hayden, Debbie W. Leung, Peter W. Shor, and
Andreas Winter. Remote preparation of quantum states. arXiv e-prints, pages
quant–ph/0307100, July 2003.

[26] Daniel Gottesman. Uncloneable Encryption. arXiv e-prints, pages quant–
ph/0210062, October 2002.

[27] Jonathan Oppenheim and Micha l Horodecki. How to reuse a one-time pad and
other notes on authentication, encryption, and protection of quantum informa-
tion. Phys. Rev. A, 72(4):042309, October 2005.

[28] A. Beige, B. G. Englert, Ch. Kurtsiefer, and H. Weinfurter. Secure Commu-
nication with a Publicly Known Key. Acta Physica Polonica A, 101(3):357,
March 1999.

[29] Kim Boström and Timo Felbinger. Deterministic secure direct communication
using entanglement. Phys. Rev. Lett., 89:187902, Oct 2002.

[30] Alexander Lipton and Adrien Treccani. Blockchain and Distributed Ledgers:
Mathematics, Technology, and Economics. World Scientific, 2022.

[31] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Param-
eterized quantum circuits as machine learning models. Quantum Science and
Technology, 4(4):043001, Nov 2019.

[32] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao. Expressive
power of parameterized quantum circuits. Physical Review Research, 2(033125),
2020.

[33] Aram W. Harrow and Ashley Montanaro. Quantum computational supremacy.
Nature, 549(7671):203–209, September 2017.

25

[34] Daniel R. Simon. On the power of quantum computation. SIAM Journal on
Computing, 26(5):1474–1483, 1997.

[35] Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gut-
mann, and Daniel A. Spielman. Exponential algorithmic speedup by a quantum
walk. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory
of Computing, STOC ’03, page 59–68, New York, NY, USA, 2003. Association
for Computing Machinery.

[36] Scott Aaronson. How Much Structure Is Needed for Huge Quantum Speedups?
arXiv e-prints, page arXiv:2209.06930, September 2022.

[37] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2010.

[38] Max Born. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift fur Physik,
37(12):863–867, December 1926.

[39] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo,
Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald We-
infurter. Elementary gates for quantum computation. Phys. Rev. A, 52:3457–
3467, Nov 1995.

[40] Tycho Sleator and Harald Weinfurter. Realizable universal quantum logic gates.
Phys. Rev. Lett., 74:4087–4090, May 1995.

[41] Robert S. Smith, Eric C. Peterson, Mark G. Skilbeck, and Erik J. Davis. An
open-source, industrial-strength optimizing compiler for quantum programs.
Quantum Science and Technology, 5(4):044001, October 2020.

[42] Fei Hua, Meng Wang, Gushu Li, Bo Peng, Chenxu Liu, Muqing Zheng, Samuel
Stein, Yufei Ding, Eddy Z. Zhang, Travis S. Humble, and Ang Li. QASMTrans:
A QASM based Quantum Transpiler Framework for NISQ Devices. arXiv e-
prints, page arXiv:2308.07581, August 2023.

[43] Francisco J. R. Ruiz, Tuomas Laakkonen, Johannes Bausch, Matej Balog, Mo-
hammadamin Barekatain, Francisco J. H. Heras, Alexander Novikov, Nathan
Fitzpatrick, Bernardino Romera-Paredes, John van de Wetering, Alhussein
Fawzi, Konstantinos Meichanetzidis, and Pushmeet Kohli. Quantum Circuit
Optimization with AlphaTensor. arXiv e-prints, page arXiv:2402.14396, Febru-
ary 2024.

[44] Daniel Gottesman. The Heisenberg Representation of Quantum Computers.
arXiv e-prints, pages quant–ph/9807006, July 1998.

[45] Antoine Jacquier and Oleksiy Kondratyev. Quantum Machine Learning and
Optimisation in Finance: On the Road to Quantum Advantage. Packt, 2022.

[46] Daniel Koch, Laura Wessing, and Paul M. Alsing. Introduction to Coding
Quantum Algorithms: A Tutorial Series Using Pyquil. arXiv e-prints, page
arXiv:1903.05195, March 2019.

26

[47] Ryan LaRose. Overview and Comparison of Gate Level Quantum Software
Platforms. Quantum, 3:130, March 2019.

[48] Haimeng Zhao, Laura Lewis, Ishaan Kannan, Yihui Quek, Hsin-Yuan Huang,
and Matthias C. Caro. Learning quantum states and unitaries of bounded gate
complexity, 2023.

[49] Chris Bernhardt. Quantum Computing for Everyone. MIT Press, 2019.

[50] Edgar Allan Poe. The Complete Tales and Poems of Edgar Allan Poe. Vintage,
1975.

[51] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum,
2:79, August 2018.

[52] Andrew Arrasmith, Andrew Patterson, Alice Boughton, and Marco Paini. De-
velopment and Demonstration of an Efficient Readout Error Mitigation Tech-
nique for use in NISQ Algorithms. arXiv e-prints, page arXiv:2303.17741,
March 2023.

[53] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and
Hartmut Neven. Barren plateaus in quantum neural network training land-
scapes. Nature Communications, 9(1), November 2018.

[54] Tomislav Begušić, Kasra Hejazi, and Garnet Kin-Lic Chan. Simulating quan-
tum circuit expectation values by clifford perturbation theory, 2023.

[55] Rigetti. Ankaa-2 quantum processor. https://qcs.rigetti.com/qpus, March
2024.

27

https://qcs.rigetti.com/qpus

A Plain Text Symbol to Bitstring Encoding Scheme

Symbol Encoding Symbol Encoding Symbol Encoding

A 111100100010 a 100110001011 0 101010110100
B 111101010000 b 100001100111 1 001001101011
C 011101101000 c 100000101111 2 001010110101
D 011011001010 d 101100101010 3 100010101101
E 110001110010 e 101000001111 4 101000110011
F 110100010101 f 011110101000 5 010100011011
G 110100111000 g 100111101000 6 011010001110
H 010010101101 h 001011000111 7 011111000010
I 001110011010 i 000100101111 8 011100001011
J 011110010100 j 001110001101 9 110100001101
K 001011010101 k 100101010011 + 010101100101
L 100001110110 l 110010011010 - 011001011010
M 110101010010 m 100010101011 * 001011110001
N 011011000110 n 010101101100 / 011001001110
O 001110001011 o 011101011000 = 001101000111
P 101011000011 p 101011010100 (110000110011
Q 011110010001 q 101000011101) 010100111001
R 100100011101 r 101101010100 . 001110101001
S 101111100000 s 010101010011 , 101001110010
T 001111011000 t 011001101001 : 010011000111
U 101100010101 u 111000010101 ; 110010101010
V 110100011010 v 111101001000 ? 001101100011
W 111110000100 w 110111010000 ! 110010110100
X 111011000001 x 001101001011 ” 100110110100
Y 101101001001 y 000111001011 ’ 101010011010
Z 100001101101 z 101110110000 space 000110010111

Table 1: A sample encoding scheme (randomly generated). It is used to convert a
plain text character to a bitstring consisting of equal numbers of “0” and “1”.

B Expectation Values of Second Order Paulis

In the following, we consider situations where the quantum circuit can be executed
on either noise-free hardware (a quantum simulator) or a noisy quantum processing
unit (QPU).

B.1 Noiseless simulation

Figure 10 displays a cumulative distribution function (CDF) of the absolute values
of second order Pauli expectation values:

F (X) = Probability (| ⟨PkPl⟩ | ≤ X) .

28

The quantum circuit structure used to build the CDF corresponds to the one given
by Figure 3 with random rotation angles and random choices of measurement bases.
In total, we used 5,000 random configurations (rotation angles and Pauli pairs)
to build the CDF. Each expectation value was calculated with 1,000,000 quantum
circuit runs, that is bitstring samples. The unique configurations were created by
five different allocations of H and HS† gates in the final layer of the quantum circuit
and 100 randomly generated configurations of rotation angles for each allocation of
H and HS† gates. Taking into account that the 5-qubit quantum circuit can support
the calculation of expectation values for 10 unique Pauli pairs, the total number of
calculated second order Pauli expectation values is 5 × 10 × 100 = 5, 000.

We also calculated the standard deviations of expectation values for 50 random
Pauli pairs and circuit configurations. The average standard deviation has been
estimated to be 0.00096 for 1,000,000 quantum circuit runs. Applying the 6-sigma
rule (standard confidence bands widely used in experimental disciplines to claim a
scientific discovery) we get an estimate for the value of ϵ: 0.0058.

The right chart in Figure 10 shows that 12.1% of second order Pauli expectation
values can be found in the interval [−0.0058, 0.0058]. This is the proportion of Pauli
pairs that must be discarded: if the expectation value of a second order Pauli is close
to zero we cannot be certain that its sign is correct and that we will observe the
same sign when this expectation value is calculated next time. Parameter ϵ provides
conservative confidence bands.

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

F(
X)

0.000 0.002 0.004 0.006 0.008 0.010
X

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Figure 10: Cumulative distribution function for second order Pauli expectation mag-
nitudes across 5,000 randomly generated configurations; 100,000 quantum circuit
runs; noise-free quantum simulator. The 6-sigma threshold is ϵ = 0.0058.

In practice, we may want to add a safety margin to account for the “model risk”
and set ϵ = 0.01. In this case, the proportion of Pauli pairs that must be discarded
as ineligible for encoding increases to 16.5% or, roughly, one in six.

We can only rely on the 6-sigma rule if the noise in the estimation of second order

29

Pauli expectation values is normally distributed, i.e., there are no heavy tails. Let X
be the true expectation value of a Pauli pair andX be the estimate of the expectation
value of the same Pauli pair obtained with L quantum circuit runs. Then the noise,
ξ, can be quantified as the deviation from the true value:

ξ = X −X.

If we repeat the calculation of X many times, we can use the sample mean X̂ as an
approximation of the true expectation value X:

ξ = X − X̂.

Figure 11 displays the distribution of ξ as the deviation from the sample mean.
The distribution is bell-shaped without heavy tails. The vertical dashed red lines
indicate 1 standard deviation bands that contain approximately 2/3 of the dataset
population. This suggests that the application of the 6-sigma rule is a reasonable
and workable approach.

0.003 0.002 0.001 0.000 0.001 0.002 0.003 0.004
deviation from mean

0

50

100

150

200

250

300

350

400

Figure 11: Histogram of the noise component in the estimation of second order Pauli
expectation values. Vertical dashed red lines indicate 1 standard deviation bands.

Measurement noise depends on the number of shots performed on the quantum
computer and this noise can be measured and quantified. To obtain good results,
noise due to gate errors should be less than the measurement noise.

Executing 1,000,000 runs of the quantum circuit can be time consuming. We are
talking about tens of seconds if the circuit is run on a superconducting qubit pro-
cessor. This can be justified if we are dealing with a large amount of data that must
be encrypted/decrypted. However, it may not be the most efficient solution for
datasets of relatively small sizes. A faster protocol would trade an increase in speed
(i.e., smaller number of runs) for a smaller number of eligible Pauli pairs (due to an
increase in the noise). This may be a sensible trade-off for small datasets.

30

Figure 12 shows the dependence of ϵ (6 standard deviations) and the proportion of
ineligible Pauli pairs as functions of the number of quantum circuit runs. A short
message can be encrypted in milliseconds at the price of throwing out 2/3 of possible
Pauli pairs, which should not be a problem for a short message and sufficiently wide
quantum circuit.

103 104 105 106
0

0.05

0.1

0.15

0.2

number of circuit runs

ep
si
lo
n
(6
-s
ig
m
a
ru
le
)

103 104 105 106
0

0.2

0.4

0.6

0.8

number of circuit runs

sh
ar
e
of

in
el
ig
ib
le

P
au

li
p
a
ir
s

Figure 12: Dependence of encryption algorithm parameters on the number of quan-
tum circuit runs. The left plot shows how ϵ (6 standard deviations) depends on
the number of quantum computer runs. The right plot displays how the share of
ineligible Pauli pairs depends on the number of quantum computer runs.

B.2 Noisy hardware

Although the proposed algorithm has been specified with fault-tolerant quantum
computers in mind, it would be instructive to run it on existing noisy quantum
hardware to quantify the impact of noise present in the current generation of QPUs.
Would it be possible, in principle, to execute the proposed symmetric encryption
protocol on NISQ computers?

To answer this question we have used Ankaa-2, the latest 4th generation QPU from
the Rigetti Computing suite of superconducting qubit processors [55]. In order to
make results comparable to those obtained on the noise-free quantum simulator, we
used the same 5-qubit circuit shown in Figure 3. By changing the allocation of H
and HS† gates in the final layer we changed the measurement bases and calculated
expectation values for all possible second order Paulis. With N = 5 the number of
all possible Pauli pairs is 9 × N(N − 1)/2 = 90. The number of possible random
configurations of rotation angles was set at 56. This gave us 90 × 56 = 5, 040
expectation values of second order Paulis, all calculated with 100,000 runs of the
quantum circuit.

Figure 13 displays the corresponding CDF of the absolute values of second order
Pauli expectation values. To make it even more comparable to the results ob-
tained on the noise-free quantum simulator, we repeated the procedure described

31

in Section B.1 but with 100,000 quantum circuit runs – these results are shown in
Figure 14. The vertical dashed red lines cross the X axis at X = ϵ, where ϵ is 6 stan-
dard deviations of the second order Pauli expectation values from the corresponding
mean values. The horizontal dashed lines indicate the probability that the second
order Pauli expectation value would be smaller than ϵ, i.e., that it cannot be used
for encoding purposes.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
X

0.0

0.2

0.4

0.6

0.8

1.0

F(
X)

0.00 0.02 0.04 0.06 0.08 0.10
X

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F(
X)

Figure 13: Cumulative distribution function for second order Pauli expectation mag-
nitudes across 5,040 randomly generated configurations; 100,000 quantum circuit
runs; noisy QPU (Ankaa-2). The 6-sigma threshold is ϵ = 0.057.

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

F(
X)

0.00 0.01 0.02 0.03
X

0.0

0.1

0.2

0.3

F(
X)

Figure 14: Cumulative distribution function for second order Pauli expectation mag-
nitudes across 5,000 randomly generated configurations; 100,000 quantum circuit
runs; noise-free quantum simulator. The 6-sigma threshold is ϵ = 0.018.

We can see from Figures 13 and 14 that if we perform 100,000 quantum circuit
runs, then the share of ineligible Pauli pairs is about 57% for the noisy QPU and

32

about 20% for the noise-free quantum simulator. This result should be seen as an
indication that NISQ devices could be used for performing symmetric encryption
as per Algorithm 1, especially taking into account the current pace of quantum
hardware improvement.

Finally, we should mention that the quantities of positive and negative second order
Pauli expectation values are almost perfectly balanced: In the Ankaa-2 experiment,
the share of positive expectation values was 49.7% and the share of negative expec-
tation values was 50.3%. The share of positive expectation values greater than ϵ was
21.6% and the share of negative expectation values less than −ϵ was 21.9%.

Figure 15 displays the CDF for the magnitude of all second order Pauli expecta-
tion values (blue curve), along with the CDF for the magnitude of only the positive
second order Pauli expectation values (orange curve), and the CDF for the magni-
tude of only the negative second order Pauli expectation values (green curve). The
distributions are all basically the same and therefore overlap each other.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
X

0.0

0.2

0.4

0.6

0.8

1.0

F(
X)

All 2nd order Pauli expectations
Positive 2nd order Pauli expectations
Negative 2nd order Pauli expectations

Figure 15: Cumulative distribution functions for second order Pauli expectation
magnitudes across 5,040 randomly generated configurations; 100,000 quantum cir-
cuit runs; noisy QPU (Aanka-2). Comparison of all second order Pauli expectations
(blue curve) with only positive Pauli expectations (orange curve) and only negative
Pauli expectations (green curve).

Remark: The proposed symmetric encryption algorithm is based on the calcula-
tion of expectation values of second order Paulis. In principle, the same quantum
circuit can be used for encrypting more bits using the expectation values of higher
order Paulis: ⟨PiPjPk⟩, ⟨PiPjPkPl⟩, However, any possible gain is likely to be
immaterial since the expectation values of higher order Paulis may be smaller in
magnitude and the measurement noise will be larger. Only a small fraction of the
higher order Pauli expectations can be used for encryption if we keep the number
of quantum circuit runs within a reasonable limit.

33

C Classical Bits Required to Represent a PQC

In Section 1, it was mentioned that N bits of a shared classical secret key are neces-
sary and sufficient to transmit N bits of a message over a one-way classical channel
in an information-theoretical secure manner. In our case, the role of the shared
secret is played by a PQC. Due to its expressive power, the amount of information
needed to fully specify the PQC can be significantly smaller than the amount of
information that can be securely encoded using it. Let us see why.

Let N be the number of qubits and M be the number of layers of 1- and 2-qubit
gates. Therefore, the PQC can be fully specified by providing a description for each
of the N ×M circuit nodes. This can be done in the following manner.

First, for a given circuit node, we need to specify whether it is a 1-qubit gate
(including no gate, i.e., an identity gate I) or an element of a 2-qubit gate. Typically,
there are only a few possible fixed 2-qubit gates used to create entanglement (e.g.,
CX, CZ, XY). For example, we can use the following 3-bit scheme to encode the
gate type:

Bitstring Meaning

000 1-qubit gate, identity, I
001 1-qubit gate, rotation around x axis, Rx

010 1-qubit gate, rotation around y axis, Ry

011 1-qubit gate, rotation around z axis, Rz

100 2-qubit gate, CX
101 2-qubit gate, CZ
110 2-qubit gate, iSWAP

111 2-qubit gate,
√
iSWAP

Second, for 1-qubit gates, we need to specify the rotation angle, which is a continuous
variable on the interval [−π, π]. For that, we can use a standard 32-bit precision
binary encoding.

Third, for 2-qubit gates, we need to specify whether the given circuit node is a
target or a control. This is a binary indicator and one bit is sufficient to store this
information. Additionally, we need to indicate the location of the second circuit
node of the 2-qubit gate. Since it must be the same layer, we only have to indicate
the qubit index, which is an integer number between 0 and N − 1. We need

int (log2(N)) + 1

bits to represent this number in a binary format. For example, it will be a 10-bit
bitstring for N = 1, 000 and a 17-bit bitstring for N = 100, 000.

Therefore, in the worst case scenario, we would need at most

N ×M × (3 + 32)

34

bits to fully specify the PQC with 32-bit precision for all rotation angles.

At the same time, there are 3N possible configurations of the measurement bases.
This large number is indicative of how much information we could encode using the
PQC. However, in our algorithm we only use a tiny fraction of the expressive power
of PQC available to us – we only use the expectation values of second order Paulis,
⟨PiQj⟩, with

• P = {X, Y, Z},

• Q = {X, Y, Z},

• i = {1, . . . , N − 1},

• j = {i+ 1, . . . , N}.

The total number of possible combinations of second order Paulis is

N(N − 1)

2
× 9.

We cannot use all possible combinations of second order Paulis due to the measure-
ment noise as explained in Appendix B. For a reasonably large number of quantum
circuit runs, we can expect to use about 80% of the total number of Pauli pairs.

The following table shows a comparison of the number of bits needed to specify
the PQC versus the number of bits that can be encoded with the help of binarized
expectation values of unique second order Paulis (positive ⇒ 1; negative ⇒ 0) for
various values of N .

Maximum number Maximum number Expected number
of bits needed to of bits that can be of bits that can be
specify the PQC, encoded by the PQC, encoded by the PQC,

N M 35NM 4.5N(N − 1) 4.5N(N − 1)κ

1,000 63 2,205,000 4,495,500 3,596,400
2,500 100 8,750,000 28,113,750 22,491,000
5,000 141 24,675,000 112,477,500 89,982,000

10,000 200 70,000,000 449,955,000 359,964,000

Here, we set κ = 80% and assumed that the QPU has a square grid connectivity
and, therefore, we would need

M = int
(√

N × 2
)

layers of 1- and 2-qubit gates to ensure that the most distant qubits can be connected.
The maximum number of bits needed to specify the PQC grows with N as N3/2 while
the maximum number of bits that can be encoded by the PQC grows as N2.

Note that the algorithm proposed in this paper also requires the mapping scheme of
plain text symbol to bitstring encoding (see Appexdix A) to be exchanged securely

35

as part of the secret key. Table 1 contains 27 × 3 = 81 characters. Assuming a
predetermined ordering, it requires a total of 81 × 12 = 972 bits to specify the
mapping. This small overhead should be added to the number of bits needed to
specify the PQC.

D Components of the Symmetric Encryption Algorithm

Alice and Bob meet.

Generate PQC.
1

Generate mapping of plain text symbols

to fixed length bitstrings.
2

Share PQC and mapping scheme.

Alternatively, Alice sends to Bob via secure channel.
3

Alice and Bob separate.Alice Bob

Convert text message to

binary representation.
4a

Generate random string

of Pauli X, Y , Z.
4b

Create time stamp used for

generating seed for initial

layer of 1-qubit gates.

4c

Add change of basis gates

to PQC.
4d

Execute PQC many times and save

measurements. Compute expectation

values for the pairs of Paulis.

4e

Determine pairs to use for

encoding “1”s and “0”s.

Encode the message.

4
f-j

Send via unsecure channels:

a) String of random Pauli X, Y , Z.

b) Timestamp used for generating seed.

c) List of tuples that encode the message.

5

Receive via unsecure channels:

a) String of random Pauli X, Y , Z.

b) Timestamp used for generating seed.

c) List of tuples that encode the message.

6

Use timestamp to generate seed

for initial layer of 1-qubit gates.
6a

Add change of basis gates

to PQC.
6b

Execute PQC many times

and save measurements.
6b

Compute expectation values

for the pairs of Paulis.
6c

Determine mapping of pairs

to “1”s and “0”s.

Decrypt the message.

6
c-d

Translate decrypted message

to plain text using symbol

mapping scheme.

6e

Figure 16: Components of the symmetric encryption algorithm. Detailed explana-
tions of the blocks are provided in Section 5.

36

	Introduction
	Background
	Stylised Example
	Additional Security
	General Algorithm
	Encryption and Decryption Example
	Quantum Simulator
	Rigetti Ankaa-2 QPU

	Conclusions and Outlook
	Bibliography
	Plain Text Symbol to Bitstring Encoding Scheme
	Expectation Values of Second Order Paulis
	Noiseless simulation
	Noisy hardware

	Classical Bits Required to Represent a PQC
	Components of the Symmetric Encryption Algorithm

