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Abstract—In this work, we propose the first hardware imple-
mentation of Classic McEliece protected with countermeasures
against Side-Channel Attacks (SCA) and Fault Injection Attacks
(FIA). Classic Mceliece is one of the leading candidates for Key
Encapsulation Mechanisms (KEMs) in the ongoing round 4 of
the NIST standardization process for post-quantum cryptography.
In particular, we implement a range of generic countermeasures
against SCA and FIA, particularly protected the vulnerable
operations such as additive Fast Fourier Transform (FFT) and
Gaussian elimination, that have been targeted by prior SCA
and FIA attacks. We also perform a detailed SCA evaluation
demonstrating no leakage even with 100000 traces (improvement
of more than 100× the number of traces compared to unprotected
implementation). This comes at a modest total area overhead
of between 4× to 7×, depending on the type of implemented
SCA countermeasure. Furthermore, we present a thorough ASIC
benchmark for SCA and FIA protected Classic McEliece design.

Index Terms—Post-quantum Cryptography, Classic McEliece,
Side-Channel Attack, Fault Injection Attack, Countermeasures,
ASIC

I. INTRODUCTION

PUBLIC key cryptosystems are an integral part in our
current society as it impacts virtually every possible

digital communication where there is a need to establish secure
communication channels. Widely used key exchange algorithms,
such as RSA or ECC, rely on some hardness assumption
(like integer factorization). However, those are threatened
by the upcoming quantum computers. To overcome this
issue, a relatively new class of ciphers (called, post-quantum
cryptography) have been proposed which can withstand the
quantum threat.

Classic McEliece is one prominent post-quantum cipher.
It is one of the candidates for KEMs from code-based
cryptography in the on-going fourth round of the NIST PQC
standardization process. The security of Classic McEliece is
derived from the hardness assumption of decoding a linear
code [1]. Over the years, there have been many Side-Channel
(SCA) and Fault Injection (FIA) attacks on Classic Mceliece
Key Encapsulation Mechanism (KEM) [2]–[8]. Particularly,
the attackers have targeted the additive Fast Fourier Transform
(FFT) and Gaussian elimination operations, which are also
more susceptible to SCA and FIA. SCA countermeasures are
necessary in Classic McEliece, which already utilizes large area
in hardware. Thus, it is more attractive for a designer to consider
low cost generic countermeasures to protect Classic McEliece
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against SCA, instead of masking, which will incorporate plenty
of area and performance overhead. Traditionally, SCA and FIA
were considered as separated attack methodologies. However,
combined attack of SCA and FIA on RSA exponentiation is
shown in [9], while a combined protection proposed in [10] to
resist combined attack.

The contributions in this paper can be stated as follows:

• In this work, the first hardware implementation of the
Classic McEliece KEM protected against both SCA
and FIA is proposed, which particularly emphasize on
protecting the vulnerable operations, namely, the additive
FFT and the Gaussian elimination.

• A Gaussian Noise Generator and a Randomized Clock
against SCA are implemented, while Random Delay
Insertion and Redundancy are used to protect against
FIA.

• In particular, we perform SCA evaluation using standard
Test Vector Leakage Analysis (TVLA) [11], and were
able to validate the absence of side-channel leakage for
up to 100000 traces, with an increase in execution time
(avg. clock cycles) between 20% and 80%.

• To the best of our knowledge, we perform the first
ASIC benchmark for the SCA and FIA protected Classic
McEliece hardware design.

The rest of this paper is organized as follows. First, a briefly
description of Classic McEliece (Section II) is provided. Then,
existing FIA and SCA designs are described. In Section III
and Section IV, the countermeasures and ASIC benchmarks
are introduced respectively. The experimental results are
summarized in Section V. Finally, the conclusion is presented
in Section VI. Further, other information (such as, SCA traces)
are shared online1.

II. PRELIMINARIES ON CLASSIC MCELIECE

A. Concise Algorithmic Description

The code-based McEliece cryptosystem was first proposed
in 1978 based on randomly chosen irreducible Goppa codes,
and in 1986, a dual variant of McEliece cryptosystem was
introduced by Niederreiter [12], that uses a parity check matrix
H (instead of a generator matrix G) to encrypt a message
m into an error vector e. The Classic McEliece algorithm,
submitted as part of the NIST PQC standardization process is

1https://github.com/gan-pz/mceliece-figures/

https://github.com/gan-pz/mceliece-figures/
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based on the Niederreiter framework. It is essentially an IND-
CCA2 secure KEM, obtained from transforming an IND-CPA
secure Niederreiter encryption scheme.

The following provides a brief introduction to the three main
procedures of the Classic McEliece KEM: key generation, en-
capsulation, and decapsulation. The adjustable input parameters
for a Classic McEliece KEM are:

• n: Code length of the Goppa code used.
• m: Size of the finite field used q is defined by q = 2m.
• t: Number of correctable errors for the Goppa Code.
• Therefore, the code dimension, k = n−mt.

1) Key Generation: The key generation procedure generates
a public and private key pair based on the input parameters in
the manner shown in Algorithm 1.

Algorithm 1 Classic McEliece Key-pair Generation
Input: The Classic McEliece parameter set: m, t, n
Output: Secret Key (g(x), L), Public Key (T)

1: Generate a uniform random n-bit string s
2: Generate a uniform random monic irreducible polynomial

g(x) ∈ Fq[x] of degree t
3: Select a uniform random sequence L = [α1, α2, . . . , αn]

of n distinct elements in Fq, as the support for Goppa code
4: Compute the parity check matrix H of size (t×n) for the

Goppa Code Γ defined by (g(x), L)
5: Form the (mt×n) binary matrix H ′ by replacing each entry

in H with a column of m bits, where the bits correspond
to the coefficient of polynomial representation of the entry

6: Reduce H ′ to systematic form H ′′ = [In−k|T ], where
In−k is an (n− k)× (n− k) identity matrix

2) Encapsulation: The Encapsulation algorithm is used
to generate a ciphertext and a session key K, where K is
generated using the encoding algorithm and the cryptographic
hash function h, as shown in Algorithm 2.

Algorithm 2 Classic McEliece Encapsulation
Input: Public Key (T )
Output: Session Key (K), Ciphertext (C)

1: Generate a uniform error vector e ∈ Fn
2 of weight t

2: C0 ← He ∈ Fn−k
2 , where H = [In−k|T ]

3: C1 ← h(2, e) and put C ← (C0, C1)
4: K ← h(1, e, C)

3) Decapsulation: With the input ciphertext C, the ses-
sion key (K) is computed in decapsulation, as described in
Algorithm 3.

B. Prior Side-Channel and Fault Injection Attacks

1) SCA on Key generation: [8] proposed a key recovery
attacks by utilizing the power leakage during Gaussian elimina-
tion (Algorithm 1, line 6) in public key generation procession.

2) SCA and FIA on Encapsulation: Aiming at matrix vector
multiplication during encapsulation (Algorithm 2, line 2),
message recovery attacks were implemented in [3] using laser
FIA, and in [5] using power attacks respectively.

Algorithm 3 Classic McEliece Decapsulation
Input: Ciphertext (C), Secret Key (g(x), L)
Output: Session Key (K)

1: Split ciphertext C as (C0, C1) and set b = 1
2: Extract s ∈ Fn

2 and Γ′(g(x), L′) from secret key
3: Extend C0 to v = (C0, 0, . . . , 0) ∈ Fn

2 by inserting k 0’s
4: Find the unique codeword c in the Goppa code defined

by Γ′ that is at distance ≤ t from v
5: Set e = v + c
6: If wt(e) = t, C0 = He, return e; otherwise return ⊥,

where H = [In−k|T ]
7: If e←⊥, set e← s and b← 0
8: C ′

1 ← h(2, e)
9: If C ′

1 ̸= C1 set e← s and b← 0
10: K ← h(b, e, C)

3) SCA and FIA on Decapsulation: Based on the informa-
tion that the commonly used additive FFT in the decryption
module (Algorithm 3, line 4) will cause potential leakage,
[2], [6] proposed the plaintext recovery and key recovery
side-channel attack, respectively, together with power attacks
on FPGA. Targeting the decryption in software design, [7]
proposed the template syndrome decoding attack using the
leakage from a Hamming-weight (HW) computation in post
processing state of decryption. To be noticed, the protection
for this kind of attack is not discussed in our paper because
the HW computation is not included in the proposed hardware
implementation. As for the FIA, [4] proposed an attack which
targets the error-locator polynomial module (Berlekamp-Massey
module) (Algorithm 3, line 4) and bypasses the validity checks
operation (line 9 in Algorithm 3).

Differ from the deliberate fault detection designs [13]–
[15], the proposed countermeasures is designed for general
usage. To the best of our knowledge, the proposed hardware
implementation is the first generic countermeasures protecting
Classic McEliece hardware against both SCA and FIA. To
be more precise, we protect the sensitive operations such
as Gaussian elimination (key generation) and additive FFT
(decapsulation), which leak the long-term secret key. Since
the long-term secret key (key generation, decapsulation) is
more sensitive compared to the session key (encapsulation),
we focus on the implementing countermeasures only for
the key-generation and decapsulation procedures, while our
countermeasures can also be extended to the encapsulation
procedure as well.

III. PROPOSED FIA AND SCA COUNTERMEASURES

A. Proposed Generic SCA Countermeasures

1) Proposed Gaussian Noise Generator: It is well known
that introducing random noise from additional circuits running
in parallel with the cryptographic module reduces the signal-
to-noise ratio (SNR) in power traces, thereby increasing the
difficulty of being attakced. A shift register based noise
generator (SRNG) (Figure 1a) rather than the shift register
LUTs on [16] is proposed for generic usage but not only
for FPGA implementation. In the implementation, the basic
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Fig. 1: Overview of proposed countermeasures, including FIA and SCA countermeasures.

element of SRNG is a chain of 64 16-bits shift registers
connected end to end. When the enable signal CE is set to
high, the initial value in shift register keeps shifting from
LSB to MSB. The SRNG consists of r × m shift registers
(r = 64,m = 16 in this design), with the enable signal CE
controlled by a linear feedback shift register (LSFR) based
PRNG. The parameters r and m are adjustable to control the
amount of noise introduced to the side-channel traces.

2) Proposed Randomized Clock: To achieve the generic us-
age for both FPGA and ASIC, a dedicated clock divider circuit
rather than the Mixed-Mode Clock Management (MMCM)
block [17] is introduced as a randomized clock generator in
the proposed countermeasure , as show in Figure 1e. A tree of
multiplexers is then designed to select one of the frequencies
randomly. In the TVLA test, four different clocks (40MHz,
20MHz, 10MHz, 5MHz) are generated.

The generic nature of these countermeasures enable them
to be applied for the entire Classic McEliece design. In the
proposed implementation, the security of the two generic coun-
termeasures are evaluated on the most vulnerable operations
additive FFT and Gaussian elimination module as show in
Section V.

B. Proposed Generic FIA Countermeasures

1) Redundancy: The hardware redundancy countermeasure
works by duplicating the key circuit and comparing the results
to check for discrepancies. Figure 1c illustrates the hardware
redundancy approach [18]. While redundancy is straightforward
and effective, it comes with a high resource cost.

2) Random Delay Insertion: The main idea of this coun-
termeasure is to induce random delays on the input signals
of ctitial pipeline stages of the processor data path, resulting
in a randomization of the charge quantity from the power

supply. A D flip-flop with a random wait state (RWDFF) [19]
is implemented, which can insert multiple random clock period
delays into the data path, shown in Figure 1d.

In this work, FIA countermeasures consist of redundancy
and random delay techniques, as shown in Figure 1b. The
redundancy is implemented by creating three copies of the
Berlekamp-Massey (BM) decoder module from the decapsu-
lation process. A majority voting mechanism is then applied
to the outputs of the BM modules, protecting the validity
check (line 9 in Algorithm 3) against the fault injection attack
described in [4]. Additionally, a random delay, is introduced
to the enable input signal EN of BM modules.

IV. CLASSIC MCELIECE ASIC BENCHMARKS

An ASIC implementation is distinguished from FPGA-based
hardware designs, providing significantly better runtime, energy
and area performances. The RTL source code for Classic
McEliece is revised from the FPGA implementation in [20]
to ASIC by resolving some synthesizing errors that can be
ignored by the FPGA but not the ASIC design flow. Apart
from that, the proposed SCA and FIA countermeasures are
implemented. We utilize the Synopsys Design Compiler (S-
2021.06-SP1) for synthesis and Cadence Innovous (version
v21.17-s075 1) for place and route (PNR), and use the well-
established TSMC 65nm CMOS (TCBN65LP) technology to
perform ASIC benchmarking of our Classic McEliece design.

The ASIC results are based on the Single-Pass Early-Abort
(SPEA) systemizer from [19]. External memory is used for the
testbench due to the large public key size in Classic McEliece
and the lack of an embedded commercial SRAM Compiler
IP. Table I compares the operating frequency of our Kintex-7
XC7K325T-2FFG900C FPGA designs with the ASIC designs
for all Classic McEliece parameter sets. Overall, the ASIC
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TABLE I: Classic McEliece implementation comparison between
ASIC and FPGA

Parameter Set
Freq. (MHz) @ASIC Freq. (MHz) @FPGA

Key
gen.1 Encap. Decap.

Key
gen.1 Encap. Decap.

CM348864 387 416 357 158 172 169
CM460896 387 416 357 158 172 169
CM6688128 387 416 357 150 172 169
CM6960119 387 416 357 150 172 169
CM8192128 387 416 357 150 172 169

1: Using peripheral/external memory block

shows improved performance, with key generation being about
2.2× faster, encapsulation 2.4× faster, and decapsulation 2.1×
faster than the FPGA implementations.

V. EXPERIMENTAL EVALUATION

In this part, we report the experimental evaluation of our SCA
countermeasures for Classic McEliece. Our designs are tested
on the SAKURA-X board with a Xilinx Kintex-7 XC7K160T-
1FBGC FPGA2.
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A. SCA using TVLA with/without Countermeasure

To evaluate the security of our generic SCA countermeasures
on the Classic McEliece design, the well-known Test Vector
Leakage Analysis (TVLA) [11] are adopted. In particular, we
utilize the non-specific fixed versus random t-test, with the
TVLA threshold value of ±4.5 indicating presence of leakage.

In practice, the evaluation of the countermeasures focuses
on the additive FFT and Gaussian elimination modules, which
are attacked in [6], [7]. As illustrated in Figure 2, prior to
conducting the TVLA test, we first examine the relationship
between resources (FPGA Slice Utilization), power consump-
tion (FPGA Total Power), and security (Leakage Boundary)
across various security levels. This is achieved by modifying
the amount of SRNG used in the countermeasures. Taking the
additive FFT module as a reference for analysis, we consider
the unprotected design, labeled as “0SRNG” in Figure 2, as
the baseline for both resource and security evaluations. FPGA
total power is estimated using Vivado Simulator SAIF data
following post-implementation timing simulations. Moreover,
the unprotected design shows leakage points under TVLA tests
within only 1000 power traces (Figure 3). From the observed
correlation, the countermeasures enhance security by at least
100×, albeit with a 5× overhead in resource consumption.

2http://www.meytang.com/h-pd-20.html
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Fig. 3: TVLA results on unprotected design within 1000 power traces

Figure 4a and Figure 4b display the TVLA plots for the
protected designs, which evaluate the protected implementa-
tion with a combination of random clocking and noise (64
SRNGs) countermeasures. These plots, generated from 100,000
power traces, showing no observable leakage, demonstrating a
significant improvement in SCA resilience. This confirms the
effectiveness of our generic SCA countermeasures in protecting
the Classic McEliece hardware.
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Fig. 4: TVLA results on protected design within 100000 power traces

B. Performance Overhead from SCA and FIA Countermeasures

Refer to Table II for the performance overhead (area and clock
cycle count) due to our generic SCA and FIA countermeasures
for the Classic McEliece design on FPGA and ASIC respec-

http://www.meytang.com/h-pd-20.html
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tively. Note that, we utilize the CM348864 as a representative
parameter set set of Classic McEliece for illustration.

Regarding the area overhead, the slice utilization of the
additive FFT and Gaussian elimination module rise between
5× and 10× in the FPGA benchmarks, while the ASIC indicate
a 4× to 7× increase for the additive FFT and Gaussian
elimination, respectively. The significant area overhead results
from two main reasons: 1) In the FPGA benchmarks, the
countermeasures require more slice resources and less BRAM
due to its structural characteristics. In addition, a unified
measurement standard between slice and BRAM resources
is absent on FPGA platforms. Thus, compared to the overhead
on FPGA benchmark, the ASIC benchmark is more accurate.
2) Compared to the substantial area requirements of the
entire Classic McEliece design, the resources required for
the countermeasures are negligible. Specifically, the area of
the countermeasures accounts less than 24% of the entire
decryption module, let alone the whole Classic McEliece
design.

As for the average clock cycle count, we observe an increase
between 20% to 80% due to the SCA countermeasures in
both FPGA and ASIC benchmarks. Thus, we observe that our
generic shared SCA countermeasures can be implemented with
a reasonable overhead in performance and runtime for Classic
Mceliece, given that Classic Mceliece is mainly intended for
high-security environments where resource consumption is
typically not a hard constraint.

For the FIA countermeasures, compared with the unprotected
decryption module, we observe an increase in area consumption
of roughly 1.6× and 1.2× in FPGA and ASIC benchmarks
respectively, which therefore also clearly demonstrates a
reasonable overhead for our FIA protected design.

TABLE II: Area and Performance Comparison of the unprotected
and protected Classic McEliece hardware design

Tested
Modules Category

FPGA
benchmarks

ASIC
benchmarks Avg. clock

cyclesSLICE
(%)

BRAM
(%)

Cell
Count

Area
(µm)

Decryption w/o FIA- 1 14.2 4.8 330063 1281349 1806
w/ FIA- 2 23.1 4.9 407164 1547007 1806

additive
FFT

w/o SCA- 3 2.9 0 19906 83190 1095
w/ SCA- 4 15.3 0 57052 368399 1996

Gaussian
elimination

w/o SCA- 1.0 0 8294 45053 160
w/ SCA- 10.1 0 45479 330275 193

1: Without FIA countermeasures; 2: With FIA countermeasures; 3: Without SCA counter-
measures; 4: With SCA countermeasures.

VI. CONCLUSION

In this paper, we present the first hardware implementation of
Classic McEliece protected with generic side-channel analysis
(SCA) and fault injection attack (FIA) countermeasures. Specif-
ically, we secure vulnerable operations such as the additive
FFT and Gaussian elimination modules, which have been the
primary targets of previous attacks on Classic McEliece. The
propsoed practical SCA evaluation shows no leakage even after
100,000 power traces—a significant improvement compared to
the leakage observed at just 1,000 traces in the unprotected
design. This is achieved with reasonable area and performance
overheads, demonstrating the effectiveness of our protected
design.
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Jiménez-Fernández, and R. Chaves, “Hardware countermeasures bench-
marking against fault attacks,” Applied Sciences, vol. 12, no. 5, p. 2443,
2022.

[19] M. Bucci, R. Luzzi, M. Guglielmo, and A. Trifiletti, “A countermeasure
against differential power analysis based on random delay insertion,” in
2005 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2005, pp. 3547–3550.

[20] P.-J. Chen, T. Chou, S. Deshpande, N. Lahr, R. Niederhagen, J. Szefer,
and W. Wang, “Complete and improved fpga implementation of classic
mceliece,” Cryptology ePrint Archive, Paper 2022/412, 2022, https://
eprint.iacr.org/2022/412.

https://eprint.iacr.org/2019/1459
https://eprint.iacr.org/2022/1529
https://eprint.iacr.org/2022/1529
https://tches.iacr.org/index.php/TCHES/article/view/9841
https://tches.iacr.org/index.php/TCHES/article/view/9841
https://eprint.iacr.org/2022/412
https://eprint.iacr.org/2022/412

	Introduction
	Preliminaries on Classic McEliece
	Concise Algorithmic Description
	Key Generation
	Encapsulation
	Decapsulation

	Prior Side-Channel and Fault Injection Attacks
	SCA on Key generation
	SCA and FIA on Encapsulation
	SCA and FIA on Decapsulation


	Proposed FIA and SCA Countermeasures
	Proposed Generic SCA Countermeasures
	Proposed Gaussian Noise Generator
	Proposed Randomized Clock

	Proposed Generic FIA Countermeasures
	Redundancy
	Random Delay Insertion


	Classic McEliece ASIC Benchmarks
	Experimental Evaluation
	SCA using TVLA with/without Countermeasure
	Performance Overhead from SCA and FIA Countermeasures

	Conclusion
	References

