
VCVio: A Formally Verified Forking Lemma and Fiat-Shamir Transform,
via a Flexible and Expressive Oracle Representation

Devon Tuma, Nicholas Hopper
University of Minnesota

Abstract—As cryptographic protocols continue to be-
come more complex and specialized, their security
proofs have grown more complex as well, making
manual verification of their correctness more diffi-
cult. Formal verification via proof assistants has be-
come a popular approach to solving this, by allowing
researchers to write security proofs that can be ver-
ified correct by a computer.

In this paper we present a new framework of this
kind for verifying security proofs, taking a founda-
tional approach to representing and reasoning about
protocols. We implement our framework in the Lean
programming language, and give a number of secu-
rity proofs to demonstrate that our system is both
powerful and usable, with comparable automation to
similar systems.

Our framework is especially focused on reasoning
about and manipulating oracle access, and we demon-
strate the usefulness of this approach by implement-
ing both a general forking lemma and a version of
the Fiat-Shamir transform for sigma protocols. As
a simple case study we then instantiate these to an
implementation of a Schnorr-like signature scheme.

1. Introduction

Designing secure cryptographic protocols is often
error prone, and even small edge cases in proofs of their
security can lead to major security vulnerabilities. Im-
plementation errors are especially common, for example
a recent paper by Dao et al. showed significant numbers
of proof systems still using a weak and insecure ver-
sion of the Fiat-Shamir transform. [1]. Computer-aided
cryptography attempts to help mitigate these problems
by providing computer-checked verification of a cryp-
tographic protocol or implementation. This can range
from verifying the mathematical correctness of a security
reduction to verifying that a particular implementation
is safe from timing attacks.

In this paper we focus on verifying the mathemat-
ical correctness of cryptographic security proofs. We
specifically take a computational approach, where pro-
tocols are viewed as algorithms acting on bit-strings
and adversaries are viewed as being (as powerful as)
Turing machines. This is as opposed to a symbolic

approach which reasons about protocols via a manually
defined equational theory, which is meant to semanti-
cally capture the potential behavior without considering
explicit algorithms. Most mechanized analyses of large-
scale protocols have been done in the symbolic model
using systems like Tamarin [?] or ProVerif [?], which
make simplifying assumptions that aid in automation
but provide weaker assurances about a protocol’s se-
curity. While the computational approach often allows
for less automation than the symbolic one, it provides
more confidence in the correctness of the verification
it produces, which is valuable given that limitations in
equational theories have led to real world vulnerabilities
being missed by symbolic verification. ([2], [3]).

A wide variety of frameworks have been developed
to reason about cryptographic proofs in the compu-
tational setting, which all have different benefits and
drawbacks depending on the specific use cases. These
include EasyCrypt [4], CryptoVerif [5] SSProve [6], FCF
[7], CertiCrypt [8], and CryptHOL [9]. Usually compu-
tations in this approach are represented by a shallow
embedding into a more general proof assistant like Coq
or Isabelle. Depending on the specific framework proofs
can either be written as high-level asymptotic proofs
about computational indistinguishability, or as low-level
proofs of concrete probability bounds.

We do note that higher level and lower level ap-
proaches can be used together by implementing a more
high-level framework as an abstraction over a more
foundational one (For example EasyUC is built on top of
EasyCrypt). This provides a way to reduce the amount
of trust needed in the foundations of a higher level
framework, as they are verified correct with respect to
a much simpler foundation. For example the designers
of the OWL system [10] have suggested this approach
as a way to verify the currently axiomatic foundations
of their high level system. SSProve similarly has a fully
foundational base for its higher level abstractions. Our
implementation provides a simple abstraction layer in
order to reason about security games and adversaries,
however in future work it would be useful to implement
a more comprehensive high-level abstraction layer.

One important limitation with existing foundational
systems is how they reason about the oracles available
to a computation. In FCF for example oracle access is
specified by a single oracle with fixed input and output



types. This makes it difficult to reason about situa-
tions where multiple (or varying) oracles are available,
e.g. both a signing oracle and a random oracle. One
potential solution is the use of dependent sum types
for the domain and range of the oracles, however this
approach forces users to consider the possibility that
a query could return an output for the ‘wrong’ oracle,
requiring many failure checks. Nesting monads is also
a potential solution, with one layer for each oracle,
however this is cumbersome and can’t handle infinite
families of oracles (e.g. in defining unforgeability of ring
signatures the adversary has a unique oracle for each
ring size). In CryptHOL, oracles are implemented as
“generative probabilistic values” and require restructur-
ing adversaries and experiments into a series of smaller
computations that run between oracle calls. Because
adversaries cannot access the state of oracles, CryptHOL
cannot easily express reductions in which oracles are
reactively “programmed” or rewound to intermediate
states by one adversary (such as an adversary that
solves a hard computational problem) in response to the
queries or results output by another adversary, such as
an adversary that outputs a signature forgery.

In this work we define a framework with a generalized
notion of oracle access that overcomes these existing
limitations and implement this framework in the Lean
programming language. Oracles in our system are pa-
rameterized by some (possibly infinite) indexing set, and
the types of the input and output are given as a depen-
dent function of the index. Computations themselves are
represented as a sequence of purely syntactic oracle calls,
with continuation functions specifying what to do with
the result of the query. This structure is captured by a
shallow embedding as a free monad type. 1

This approach makes it feasible to treat probabilistic
computation as a special case of having access to a coin-
flipping oracle, and in particular this makes it possible
to reason simultaneously about random behavior and
other oracles. This unification can be very useful, which
we demonstrate by using it to prove a general forking
lemma, roughly based on the version given by Bellare
and Neven [11]. Previous work by Firsov and Unruh [12]
implemented a rewinding mechanism in EasyCrypt by
introducing a system of probabilistic reflection from high
level EasyCrypt to a more foundational representation,
however their construction is somewhat limited by the
nature of EasyCrypt itself. In particular they restrict to
only a subclass of EasyCrypt modules and only allow an
adversary to be rewound to it a fixed query. Our con-
struction on the other hand allows us to fork an arbitrary
adversary to arbitrary queries during its execution.

1. Other systems have used the term ‘Free Monad’ to refer to any
monad where the bind and return operations are purely syntactic,
without any further relations/semantics imposed upon them. A
more general notion of the ‘free monad of a functor’ also exists,
which has an important benefit of satisfying the basic monad laws
(left identity, right identity, and associativity). Our approach lies
somewhere between these two, and does satisfy these laws.

As a consequence of this we are able to give a verified
Fiat-Shamir heuristic for sigma protocols, and to our
knowledge signatures of this kind have not been verified
in the computational setting by any previous work.
Finally we instantiate this to get an implementation of
a Schnorr-style signature algorithm.

On the other hand our generalization requires a more
complicated semantics, which could lead to more com-
plicated proofs and worse usability. It also exacerbates
some existing limitations of foundational frameworks
that in other approaches can mostly go unnoticed. We
present a number of mechanisms to handle these issues,
including the use of automatic type coercions and meta
programming for proof generation. With these meth-
ods our system achieves comparable proof complexity
to other foundational frameworks in practice, although
it still offers less automation than many higher-level
approaches. See here for our full implementation.

1.1. Contributions

To summarize, our main contributions are:

• Defining and implementing a new foundational
framework for protocol verification with a focus
on specifying and manipulating oracles.

• Solving several usability/automation issues that
arise.

• Constructing a forking mechanism significantly
more general than in any previous work.

• Formalizing a version of the Fiat-Shamir Heuris-
tic for sigma protocols

1.2. Organization

We first give general background on the Lean pro-
gramming language in section 2. Then in section 3 we
define our representation of computations, and in section
4 and section 5 we give its denotational and operational
semantics respectively. In section 6 we discuss adver-
saries, security games, and hardness assumptions.

Section 7 gives a construction of our forking lemma,
and Section 8 gives our Fiat-Shamir construction. sec-
tion 8 uses these two constructions to prove security of
Schnorr Signatures. Finally in section 9 we discuss other
verification frameworks and related work.

2. The Lean Proof Assistant

The Lean Theorem Prover is a dependently typed
programming language and interactive proof assistant
that enables computer verification of both mathematical
proofs and properties of programs, similar to Coq or
Isabelle. We implement our protocol in Lean and will
use Lean syntax throughout the paper. We give a basic
introduction to Lean here, but refer to the Lean Manual
for a more comprehensive introduction.

https://anonymous.4open.science/r/VCV-io-5C73/VCVio/OracleComp/OracleComp.lean
https://lean-lang.org/
https://lean-lang.org/lean4/doc/whatIsLean.html


At a basic level Lean is a functional programming
language, and its syntax is similar to languages like
Haskell or OCaml. The core logic of Lean is based on a
type theory called the calculus of constructions (CIC),
where every expression is a term and every term has
a type, denoted (a : A). The type of a function from
type A to type B is written A → B, and function terms
are expressed using lambda notation:

def foo : ℕ → ℕ → ℕ := λ x y ↦ x * y + 1

Functions can also be written by using · as a ”hole”
in an expression, for example the above could be written
(· * · + 1). Functions can be dependently type, so
the type of an argument (or the output type) can depend
on previous arguments to the function. For example the
function List.cons is polymorphic in the type of the
list’s elements, which we express by naming the type of
the first argument:

List.cons : {A : Type} → List A → A → List A

The curly braces indicate that when this function is
called Lean should try to automatically determine the
value of A based on type inference. This allows us to
write List.cons xs x whether the elements of xs are
strings, natural numbers, or something else.

The standard algebraic data types are built into the
main language. Product types are written A × B with
canonical elements (a, b) for a : A and b : B. Sum
types are written A ⊕ B with canonical elements inl a
and inr b. The singleton type Unit has a single canon-
ical element (), and the empty type ⊥ has no elements.
We also have a type Bool, with canonical elements true
and false.

In order to be able to write and verify proofs, Lean
also has a type Prop to represent mathematical propo-
sitions, and we view the propositions in Prop as them-
selves being types. Under this framework, an element
P : Prop is a mathematical statement, and the ”ele-
ments” of P are the proofs of that statement (This is
essentially just the Curry-Howard isomorphism).

So for example given (P Q : Prop) the elements
of P ∧ Q are pairs ⟨p, q⟩ of proofs p : P and q : Q.
Similarly P ∨ Q has elements that are either a proof of P
or of Q, and P → Q has elements that are functions from
proofs of P to proofs of Q. We also have propositions True
with a single element and False with no elements (note
the capitalization compared to the elements of Bool).
The negation ¬ P is defined to be P → False.

While it’s possible to write proofs as explicit terms
in the language, lean also offers an interactive proof
environment that allows proofs to be written via tactic
programming. A tactic proof consists of a number of
steps that modify the current ”goal” to be proven, either
solving it explicitly or generating new goal(s) that would
suffice to complete the proof. The initial goal is the state-
ment being proved, and a proof is complete if no goals

remain. Many tactics are built in to the core language,
but they can also be defined by users. These tactics can
range in complexity from contradiction (which just
starts a proof by contradiction), to linarith (which can
check whether current linear constraints are satisfiable),
and they can be sequenced together easily:

example (x y z : ℚ) (h1 : 2*x < 3*y)
(h2 : -4*x + 2*z < 0) : 12*y - 4*z ≥ 0 :=

by contradiction; linarith

One particularly useful tactic is simp, which takes
in a list of equalities or iff statements, and attempts to
replace any instances of the left hand side of the equality
in the goal with the right hand side. As an example we
can use it to show that if x+y = z for some non-negative
y, then either x < z or y is 0:

example (x y z : ℝ) (hy : 0 ≤ y)
(hz : x + y = z) : x < z ∨ y = 0 :=

by simp [← hz, le_iff_lt_or_eq, hy]

New lemmas can also be tagged to be automatically
included in the list of lemmas used by simp, and building
a good API of such lemmas can help significantly with
proof automation. The main purpose of this tactic is to
help reduce goals to a canonical form, however in many
cases this canonical form ends up being True and the
entire proof can be completed.

One other advantage of using Lean is the existing
mathlib library [13], a large project that implements sig-
nificant amounts of mathematical theory in a unified and
interoperable way. We make use of this for representing
concepts such as probability mass functions, group ac-
tions and computational complexity. Most newly writ-
ten mathematical theory used in our system was written
directly as contributions to mathlib.

3. Computations with Oracle Access

In order to reason about cryptographic protocols, we
define a shallow embedding of computations with oracle
access into the Lean type system, using a free monad to
augment regular Lean functions with queries to oracles.
This approach is most similar to that of FCF, and our
monad is in some sense a unified generalization of the
two monads used in that system.

3.1. Specifying Oracles

Before defining our model of computation we give
a way to specify the set of oracles available to a
computation. Specifications are given by a structure
OracleSpec ι, where ι is an indexing set for the ora-
cles. Each element i : ι corresponds to a unique oracle,
and domain i and range i are the input and output
types of the oracle corresponding to i:



structure OracleSpec (ι : Type) where
domain : ι → Type
range : ι → Type

We also require that all the involved types have
decidable equality and that the output type of each or-
acle is non-empty, however these instances are generally
handled automatically by the type-class system so we
omit them here for simplicity. Note that we don’t specify
any behavior for these oracles, this should rather be seen
as analogous to a type signature for the set of oracles
that can be queried.

We define singletonSpec T U (denoted T →ₒ U) to
represent access to a single oracle with input type T and
output type U, by using the singleton type Unit for the
indexing set and have the domain and range functions
return T and U respectively:

def singletonSpec (T U : Type) :
OracleSpec Unit where

domain := λ () ↦ T
range := λ () ↦ U

In order to represent probabilistic computation we
define two additional oracle sets. Firstly coinSpec that
gives access to a single coin flipping oracle returning
a Bool, and secondly unifSpec that gives access to
an infinite family of oracles, indexed over ℕ, where the
nth oracle chooses a random value between 0 and n
inclusively (represented by the type Fin (n + 1) in
Lean). Since the input to these oracles is irrelevant, in
both cases we use Unit for the domain types:

def coinSpec : OracleSpec Unit :=
Unit →ₒ Bool

def unifSpec : OracleSpec ℕ where
domain := λ n ↦ Unit
range := λ n ↦ Fin (n + 1)

While it is possible to approximate uniform selec-
tion using only coin flips, it’s generally simpler to use
unifSpec and we will default to that going forward.

3.2. Representing Computations

We now define a language to represent com-
putations with oracle access via an inductive type
OracleComp spec α, where spec specifies what oracles
the computation can make use of, and α gives the type
of the final output. This type is a shallow embedding,
so functions and expressions in this representation are
just functions and expressions in the underlying lan-
guage (Lean in our implementation), augmented with
the ability to call oracles.

This embedding is done via a monad, which is a com-
mon way to represent computations with side effects in
languages where all computations are pure. For example
the IO monad gives a way to represent a computation

that e.g. reads from stdin or writes to stdout. One
way to think of of a value of type IO α is as a syntax
tree for a computation with return type α that has access
to syntactic read/write functions. In our case the ”side
effects” being captured by the monad are queries to the
oracles.

We define this as an inductive type with only
two constructors. The first is pure' α x which repre-
sents returning an pure Lean value x : α. The other,
queryBind' i t α oa, represents querying oracle i on
input t to get a result u and then running the compu-
tation oa u. Explicitly:

inductive OracleComp {ι : Type}
(spec : OracleSpec ι) : Type → Type 1

| pure' (α : Type) (x : α) :
OracleComp spec α

| queryBind' (i : ι) (t : spec.domain i)
(α : Type) (oa : spec.range i →

OracleComp spec α) : OracleComp spec α

We emphasize that the continuation oa in the
queryBind' constructor is an arbitrary Lean function.
Most of the ”interesting” behavior of a computation
is captured in this function as code in the underlying
language, all that the monad structure adds to this is
the ability to represent query calls.

We define query i t to be the computation that re-
turns the result of querying oracle i on input t, directly
returning the result as a pure value after:

def query (i : spec.ι) (t : spec.domain i) :
OracleComp spec (spec.range i) :=

queryBind' i t (spec.range i)
(λ u ↦ pure' (spec.range i) x)

The computations coin and \$[0..n] are defined as
special cases of this. Using these we can further define
uniform selection from lists, finite sets, types, etc. For
example uniform selection from a list is implemented by
choosing a random index k and returning the kth ele-
ment. We overload notation and write \$ xs for random
selection from any type of collection.

We next define the general monadic bind operation
on this type. The definition bind' α β oa ob will rep-
resent running the computation oa to get a result x : α,
then running ob on input x to get a result of type β. We
define this by induction on the first computation. If the
first computation oa is a pure value, we insert it directly
into the remaining computation. If the first computation
is a query bound to a continuation, we move the second
computation inside the continuation by a recursive call
to bind'. Explicitly:

def bind' (α β : Type) : OracleComp spec α →
(α → OracleComp spec β) →
OracleComp spec β

| pure' α a, ob => ob a
| queryBind' i t α oa, ob =>



query_bind' i t β (λ u ↦
bind' α β (oa u) ob)

OracleComp spec with the operations pure' and
bind' then forms a monad, and the three monad laws
can all be verified easily by induction. We will gen-
erally use Lean’s monad type class and its associated
notation to write computations. In particular we can
write return a for the pure operation, oa >>= ob for
the bind operation, and use do-notation for sequencing
larger computations:

example : OracleComp coinSpec ℝ := do
let b ← coin; let b' ← coin
let x := if b && b' then 3.141 else 0
let y := if b || b' then 1.618 else 0
return x * y

Additionally we have the monadic map operation
f <\$> oa that runs the computation oa to get a result
x, and returns f x. Similarly the sequence operation
og <*> oa runs the computation og to get a function g,
and then runs g <\$> oa. Both operations are syntactic
sugar around the basic return and >>= operations. One
very common use of this is to write f <\$> oa <*> ob
for the computation that runs oa and ob separately to
get x and y, returning only f x y.

We can also define computations recursively via pat-
tern matching, assuming the recursion used is well-
founded 2. For example we can define a computation
replicate oa n to repeat a computation n times, re-
turning the result in a length n vector:

def replicate (oa : OracleComp spec α)
(n : ℕ) : OracleComp spec (List α) :=

match n with
| 0 => return []
| (n + 1) => (· :: ·) <$> oa

<*> replicate oa n

3.3. Sub-Specs and Type Coercions

In order to combine sets of oracles we define an
append operation on OracleSpec, to represent having
access to oracles in either of the two original specs. We
make use of sum types for the indexing set, with the
inl and inr functions used to index the first and second
sets of oracles respectively. The types of the domain and
range at each index are defined by pattern matching on
the provided index:

2. Like most proof verification frameworks Lean is limited to
using well-founded recursion, ensuring that all recursive functions
eventually terminate. Usually this amounts to allowing for struc-
tural recursion (e.g. recursing on the tail of a list) however Lean
also allows custom annotations to prove termination. Generally
cryptographic protocols avoid using unbounded recursion so this
is rarely an issue, but we can still approximate such computations
by taking a maximum ”recursion-depth” argument as an input,
and then considering the limit as this bound grows large, in which
case the computation approaches the unbounded one.

def append (spec₁ spec₂ : OracleSpec) :
OracleSpec (spec₁.ι ⊕ spec₂.ι) where

domain := λ i ↦ match i with
| inl i => spec₁.domain i
| inr i => spec₂.domain i

range := λ i ↦ match i with
| inl i => spec₁.range i
| inr i => spec₂.range i

We introduce the notation spec ++ spec' for this
operation. We emphasize that this operation is neither
commutative nor associative: while swapping the order
doesn’t change the set available oracles, it does change
how you index into each of them.

One major issue in this representation is that it gives
no way to sequence or combine computations where one
has only a subset of the oracles of another. For example
we can’t bind coin to an adversary that has access to
both a coin oracle and random oracle, since our monad
definition requires that the OracleSpec remain fixed
throughout a computation. Instead we are forced to
make ad-hoc definitions of coin flipping for any new set
of oracles. This presents major issues for modularity and
code reuse, making the system harder to use in practice.

To solve this we create a system for automatically
coercing the type of a computation to one with a larger
set of oracles. We do this using Lean’s Coe A B type-
class, which specifies to Lean a way to automatically
convert a value of type A to one of type B (e.g. Coe ℚ ℝ
allows a rational number to be viewed as an element
of the reals). Lean will automatically perform a type-
class search for this whenever it fails to type check an
expression, and apply a coercion if it finds one.

We implement these coercions for cases when the ac-
tual set of oracles is a strict subsequence of the expected
set of oracles, allowing for arbitrary parenthesis in the
sub-spec only. Note that we restrict to subsequences
and not subsets of oracles, to avoid a potentially infi-
nite type-class search that would come from allowing
commutativity. The semantics we define in the next
to sections are highly compatible with these coercions,
and and our system is generally able to reduce a proof
about a coerced computation down to an analogous
proof about the original computation automatically, so
we omit mention of them going forwards.

4. Probability Semantics

In this section we give a denotational semantics
for OracleComp, where the denotation is a probability
distribution modeling the probability of getting specific
outputs from the computation. We only need to define
this for computations on unifSpec, the behavior of
other oracles can be reduced to this using the operational
semantics we define later. However in some proofs it can
be convenient to have denotations on any computation,
to use as an intermediate step in a calculation. We
therefore define it for arbitrary oracles by saying that



all oracles available will respond uniformly at random
(as they would for unifSpec).

Under this assumption we define a function
evalDist from computations with return type α to
probability mass functions on α, represented by the type
PMF α (originally developed for use in the CryptoLib
project [14]). PMF itself is a monad 3, and the mapping is
a morphism of monads (i.e. it respects pure and bind).
We define the evalDist of a query to be the uniform
distribution on its output type.

We emphasizes that evalDist is neither injective
nor surjective, as some distributions may have many
possible implementations, while others may have none.

We will write [= x | oa] for the probability as-
sociated to x by evalDist oa, which gives a simple
characterization of the semantics in practice:

[= x | return a] := if x = a then 1 else 0
[= y | oa >>= ob] :=

∑ x, [= x | oa] * [= y | ob x]
[= u | query i t] := 1 / (spec.range i).card

The summation in the bind case given by ∑ is a po-
tentially infinite sum. This can lead to issues regarding
convergence if probabilities are taken to be real num-
bers, so we instead use the type ℝ≥0∞ of non-negative
(potentially infinite) reals. All sums converge in this
type (as they are increasing and bounded above by ∞),
and so this allows us to sidestep the issue entirely.

It’s also possible to define a measure on α induced by
a PMF, and we define the probability [p | oa] of some
predicate p holding after running a computation as the
measure of the (potentially infinite) set {x | p x}.

We define support oa to be the set of possible out-
puts of oa, i.e. the set of x such that [= x | oa] ≠ 0.
We make heavy use of this when showing that an event
has probability either 1 or 0, allowing is to think about
”possible outputs” rather than explicit probabilities. Set
is also a monad 4, and it can be shown that this defi-
nition respects the monadic pure and bind operations.
In some other systems this kind of reasoning is done
with some form of relational Hoare logic, however we
find that most proofs are already made simple enough
by using support.

Finally we note that it’s possible to define finite ver-
sions of the support using Lean’s Finset type. This can
be very useful in many proofs, however this does require
that the output type of a computation has decidable
equality (in order to delete duplicate elements of the

3. The pure operation is the indicator that has probability 1
at that point and 0 at all others. The bind operation is the
distribution corresponding to drawing from the first of the two, and
then drawing from the second with that output as input. Measures
on (well-behaved) spaces also form a monad in a similar way

4. The pure operation is the singleton set, and the bind operation
is an indexed union over the first set. This monad can be seen
as representing non-deterministic computation, allowing a variable
to be assigned an arbitrary number of values. The support of a
computation can then be thought of as the result of assuming that
oracle queries return all possible outputs at once.

set), and we notably don’t have decidable equality for
computations that return functions.

5. Simulation Semantics
For oracles that aren’t meant to respond uniformly,

we now give an operational semantics which provides a
method for simulating the behavior of oracles. The main
construction is a function simulate that recursively
substitutes the queries to an oracle with a specified
implementation (that may have access to a different
set of oracles). We allow the simulation to maintain
some internal state, and augment the return value of
the computation with the final state. For example, sim-
ulating a random oracle will consist of maintaining an
internal cache of input/output pairs as the state, and the
replacement will substitute queries to include a check to
the cache before responding.

These semantics are generally used to reduce the set
of oracles in a computation to a smaller set, but this isn’t
the only use case. For example logging an adversary’s
queries maintains the existing set of oracles, and our
implementation of coercions is done by a simulation that
grows the set of oracles.

5.1. Specifying Oracle Behavior

In order to represent a procedure for
simulating a computation, we define a type
SimOracle spec spec' σ for an implementation
of the oracles in spec using a new set of oracles
spec', where σ is the type of an internal state
shared throughout the simulation. This is given by a
function that takes an oracle input and returns a new
computation that should be used to replace the query:

def SimOracle (spec : OracleSpec)
(spec' : OracleSpec) (σ : Type) :=

(i : spec.ι) → spec.domain i → σ →
OracleComp spec' (spec.range i × σ)

We introduce the notation spec →[σ] spec' for
this type. We can then define a function simulate that
applies a simulation oracle to a computation, recursively
replacing queries with the new computations, passing
the updated state along throughout, returning the final
result of the computation and the final state value.

def simulate (so : spec →[σ] spec') :
(oa : OracleComp spec α) → (s : σ) →
OracleComp spec' (α × σ)

-- Return the value and final state
| pure' α x, s => return (x, s)
-- Substitute the query and recurse
| query_bind' i t α oa, s => do

let (u, s') ← so i t s
simulate so (oa u) s'

As a shorthand we will write simulate' for the
version of simulate that discards the final state at the



end. As a very simple example we have an identity oracle
that substitutes back the original query, with a constant
Unit element as the state:

def idOracle : spec →[Unit] spec :=
λ i t () ↦ (·, ()) <$> query i t

This is an identity in the sense that we have exact
equality between simulate' idOracle oa () and the
original computation oa. We have a very similar oracle
for replacing oracle queries with a uniform choice of
outputs, that can reduce an arbitrary set of oracles to
unifSpec:

def unifOracle : spec →[Unit] unifSpec :=
λ i t () ↦ (·, ()) <$> ($ spec.range i)

In this case we no longer have equality between the
simulated and original computations (they are not even
of the same type), but we do still have equality up to
the previously defined probability semantics.

5.2. Combining Simulation Oracles

In order to represent more complex oracle imple-
mentations in a modular way, we define a number of
ways to combine multiple simulation oracles. The first
is a way to construct a combined simulation oracle for
spec₁ ++ spec₂ given individual simulation oracles for
each. The resulting simulation oracle pattern matches
the oracle index it receives and forwards to the cor-
responding simulation oracle, maintaining independent
states for each of them:

def append (so : spec₁ →[σ] spec)
(so' : spec₂ →[τ] spec) :
spec₁ ++ spec₂ →[σ × τ] spec :=

λ i ↦ match i with
| (inl i) => λ t (s₁, s₂) ↦ do

let (u, s₁') ← so i t s₁
return (u, s₁', s₂)

| (inr i) => λ t (s₁, s₂) ↦ do
let (u, s₂') ← so' i t s₂
return (u, s₁, s₂')

The other is a way to construct a simulation oracle
that applies two simulation oracles in sequence, by sim-
ulating the simulation function of one with the other:

def compose (so : spec₁ →[σ] spec₂)
(so' : spec₂ →[τ] spec) :
spec₁ →[σ × τ] spec :=

λ i t (s₁, s₂) ↦ do
let ((t, s₁'), s₂') ←
simulate so' (so i t s₁) s₂

return (t, (s₁', s₂'))

We will write ++ and ∘ for these two operations.
When combining many oracles with the above oper-
ations it’s common to run into issues with extrane-
ous state values, for example the state may have type

Unit × QueryLog rather than the simpler (and isomor-
phic) type QueryLog. To avoid this we also define a
function maskState that modifies the state type of a
simulation oracle using a type equivalence (i.e. bijection)
between some other state type. This amounts to just
applying/removing the mask before/after running the
simulation oracle (the function Prod.map applies two
functions component-wise to a pair):

def maskState (so : spec →[σ] spec)
(e : σ ≃ τ) : spec →[τ] spec :=

λ i t s ↦ map id e <$> so i t (e.symm s)

5.3. Counting, Logging, and Caching Queries

Besides just implementing oracle behavior, another
important use case is tracking some information about
a computation. For example we can easily implement a
simulation oracles for logging the queries made by an
oracle:

def loggingOracle : spec →[QueryLog] spec :=
λ i t log ↦ do let u ← query i t
return (u, log.logQuery i t u)

We also have a similar oracle for caching queries that
logs fresh values, but returns old values if the input has
been queried already:

def cachingOracle :
spec →[QueryCache] spec :=

λ i t cache ↦ match cache.lookup i t with
| some u => return (u, cache)
| none => do let u ← query i t

return (u, cache.cacheQuery i t u)

Finally we can then define a random oracle applying
this caching functionality, and then further reducing to a
uniform selection oracle. This second reduction beyond
caching introduces an extraneous Unit to the internal
state which we mask away for simplicity:

def randOracle :
spec →[QueryCache] unifSpec :=

(unifOracle ∘ cachingOracle).maskState
(Equiv.prodUnit (QueryCache spec))

6. Cryptographic Protocols, Adversaries,
and Security Games

In this section we give a simple abstraction layer
that can be used to specify cryptographic primitives,
protocols, and security games. This is not meant to be
a full high-level verification framework, but rather a
useful abstraction for organizing proofs in our system.
In future work it would be useful to implement a more
robust abstraction to better automate game-hopping
chains and indistinguishability arguments.



At a basic level, we represent cryptographic proto-
cols as structures containing fields for each function in
the protocol. A naive implementation of this however
wouldn’t be parametric in the set of oracles, forcing
e.g. distinct definitions in/outside the random oracle
model. To solve this we introduce a base structure
OracleAlg spec that just contains a specification of
how to simulate oracles in spec using unifSpec. Here
spec should be thought of as the global oracles for a
protocol (e.g. a random oracle), and the structure as
containing the ”intended behavior” of them. We also
assume an intended initial state (e.g. an empty cache).
Because we intend to use this for cryptographic proto-
cols, we assume these are all indexed by some security
parameter:

structure OracleAlg {ι : Type}
(spec : ℕ → OracleSpec ι) where

baseState (sp : ℕ) : Type
init_state (sp : ℕ) : baseState sp
baseSimOracle (sp : ℕ) :
spec sp →[baseState sp] unifSpec

Given some alg : OracleAlg spec we will write
alg.exec oa as shorthand for simulating oa with the
bundled oracle in alg. This allows us to define the type
of a crypto-system in a way that is agnostic to the oracles
that are available. As an example we define the type
of a signature protocol as extending this structure with
keygen, sign, and verify functions:

structure SigAlg (spec : ℕ → OracleSpec ι)
(M PK SK S : ℕ → Type)
extends OracleAlg spec where

keygen (sp : ℕ) :
OracleComp (spec sp) (PK sp × SK sp)

sign (sp : ℕ) : PK sp → SK sp →
M sp → OracleComp (spec sp) (S sp)

verify (sp : ℕ) : PK sp → M sp →
S sp → OracleComp (spec sp) Bool

Any particular implementation is then required to
specify how it intends the oracles to behave. We also
use this to define a simple type to represent security
games:

structure SecExp (spec : ℕ → OracleSpec ι)
extends OracleAlg spec where

main (sp : ℕ) : OracleComp (spec sp) Bool

def advantage (exp : SecExp spec) (n : ℕ) :=
[= true | exp.exec n (exp.main n)]

For example soundness of a signature algorithm can
be expressed in the following experiment, showing that
for any message distribution mDist the signature algo-
rithm produces a valid signature all but negligibly often:

variable (sigAlg : SigAlg spec M PK SK S)

def soundnessExp (mDist : (sp : ℕ) →

OracleComp (spec sp) (M sp)) :
SecExp spec where

main := λ sp ↦ do
let m ← mDist sp
let (pk, sk) ← sigAlg.keygen sp
let σ ← sigAlg.sign sp pk sk m
sigAlg.verify sp pk m σ

__ := sigAlg -- Inherit remaining fields

def isSound : Prop := ∀ mDist, negligible
1 - (soundnessExp sigAlg mDist).advantage

The predicate negligible above is a special case of
mathlib’s more general definition of super-polynomial
decay.

TODO: below

6.1. Adversaries and Asymptotics

For more complicated security games we need a rep-
resentation of an adversary, and so we define a type
SecAdv spec α β for an adversary that takes a value
of type α and computes an output of type β using
oracles in spec. We also require that the adversary is
polynomial time 5, and that we have an explicit bound
on the number of queries they make. Having a bound
on the number of queries is essential to our eventual
forking lemma, as the probability of successfully forking
will depend on this count. For technical reasons we also
require a list of the indices that have non-zero counts.
Explicitly:

structure SecAdv (spec : OracleSpec)
(α β : Type) where

run : α → OracleComp spec β
run_polyTime : polyTimeOracleComp run
activeOracles : List spec.ι
queryBound : spec.ι → ℕ
queryBound_is_bound : ∀ count x y,
((y, count) ∈ support
(simulate countingOracle (run x) 0)) →
∀ i : spec.ι, count i ≤ queryBound i

activeOracles_eq : ∀ i,
i ∈ activeOracles ↔ queryBound i ≠ 0

For example in the unforgeability experiment for
a signature algorithm, we have an adversary that has
access to the regular oracles spec of the protocol, and a
signing oracle M →ₒ S that that allows them to query for
a valid signature on any message. The input generation
for this experiment is just the keygen function, and the
main function gives the adversary the public keys and
gets back a message m and signature σ. The experiment
succeeds if this signature is valid and the message was
never queried:

5. This definition is a fairly direct extension of a definition from
mathlib based on Turing machines. We extend the definition to
our monad in a natural way by requiring that any pure values
returned are polynomial time, and that both computations in a
bind are polynomial time. The extra variables introduced by bind
are handled by currying



def unforgeableExp
(adv : SecAdv (spec ++ M →ₒ S) PK (M × S)) :
SecExp spec (PK × SK) where

inpGen := sigAlg.keygen ()
main := λ (pk, sk) ↦ do
let ((m, σ), log) ←

simulate (sigAlg.signingOracle pk sk)
(adv.run pk) (emptyLog spec)

let b ← sigAlg.verify pk m σ
return (b && !(log.wasQueried m))

__ := sigAlg

6.2. Hardness Assumptions

In this section we use the above framework to define
an analogue of the discrete log problem, which we will
use as the underlying hard problem for our signature
scheme.

Our definition is based on hard homogeneous spaces
as originally defined by Couveignes [15]. A homogenous
space consists of a finite group of ”vectors” G acting
simply and transitively on a set of base points P of the
same cardinality. Equivalently this means the action of
any element g ∈ G is a bijection on P , and so for any
pair of points there is a unique vector sending the first
to the second, which is called the vectorization of the
two points. We will write g +v p for the group action
and p1 −v p2 for vectorization.

The prototypical example is the discrete log problem
in a cyclic group C of order n, where P is the generators
of C and G is (Z/nZ)∗ acting by exponentiation, in
which case the vectorization is exactly the discrete log.
Another example is the ideal class group of a quadratic
field acting on a certain class of elliptic curves, see the
CSIDH protocol [16].

We define a type-class HomogeneousSpace G P to
represent this in Lean, where G and P are types indexed
by some security parameter. We can then define hard-
ness of the vectorization problem via the following game,
where the input generator just chooses two random
points, the adversary attempts to find their vectoriza-
tion, and then validation checks if this is correct:

variable (G P : (sp : ℕ) → Type)

def vectorizationAdv :=
SecAdv (λ _ ↦ unifSpec)
(λ sp ↦ P sp × P sp) (λ sp ↦ G sp)

def vectorizationExp [HomogeneousSpace G P]
(adv : vectorizationAdv G P) :
SecExp (λ _ ↦ unifSpec) where

main := λ sp ↦ do
let x₁ ←$ P sp
let x₂ ←$ P sp
let g ← adv.run sp (x₁, x₂)
return g = x₁ -� x₂

__ := baseOracleAlg

def vectorizationHard
[HomogeneousSpace G P] : Prop :=

∀ adv : vectorizationAdv G P, negligible
(vectorizationExp G P adv).advantage

The security of our signature scheme will be based
on a reduction of an adversary that can forge signatures
non-negligibly to one that can succeed at this experi-
ment non-negligibly.

7. A General Forking Lemma

The forking lemma is a lemma commonly used in
proving the security of signature schemes, which roughly
states that if an adversary is able to, on inputs drawn
from some distribution, non-negligibly compute a value
with some property, then it’s possible to construct an
adversary that non-negligibly computes two such values
on an input drawn from the same distribution, by run-
ning the adversary twice. Importantly though, these two
executions of the adversary are guaranteed to line up
until some specified point in the computation, at which
point they diverge. The most common application is to
fork the execution of an adversary at the result of a ran-
dom oracle call, to get two distinct results corresponding
to different outputs of the random oracle.

In this section we implement a version of the forking
lemma based on the presentation given by by Bellare
and Neven modified to align with our representation of
computations. More explicitly, our forking lemma will
be a formalization of the following:
Theorem 1 (Forking Lemma). Let IG be a prob-

abilistic computation with return type α, A be an
adversary that on an input from IG outputs a value
of type β, and choose a particular oracle O from
among those A has access to. Further, assume cf
is a function that takes a value of type α × β and
chooses either an index i or aborts.
Then there exists an algorithm F (A, cf) that on
input x from IG produces two values y1 and y2, each
of type β, such that:
• Both are possible outputs from executing A
• cf (x, y1) and cf (x, y2) are the same if they exist
• A’s execution in both cases is identical until at

least the nth query to oracle O
• The outputs of the nth queries to oracle O differ

Furthermore, if cf aborts only negligibly often on A then
it also aborts only negligibly on F (A, cf) (assum-
ing that A makes at most a polynomial number of
queries).
In this formulation the query to fork is given by

cf as an index corresponding to how many queries
should be replayed before allowing the computation to
diverge. A priori this integer can’t depend on an the
actual input/output values of the oracle calls, it can only
depend on the observed input and observed output of



the adversary. When we later apply our forking lemma
to the security of a signature scheme, we solve this by
simulating the adversary with a logging oracle first, al-
lowing us to internalize these values into the adversary’s
output. The index to fork on is then chosen by counting
the position of the relevant query in the log.

7.1. Seeding Query Outputs

Our eventual implementation will depend on gener-
ating seeded values to use in answering oracle queries,
preserving only a portion of the seed on the second
execution of the algorithm. Importantly we must pre-
generate values for all oracle calls, not just to the oracle
we plan to fork, or else the adversary may diverge early
before the desired query.

We represent such a seed as a function from an oracle
index to a list of outputs for that oracle:

def QuerySeed (spec : OracleSpec) : Type :=
(i : spec.ι) → List (spec.range i)

We could alternatively keep a single list where each
seed is tagged with the index, but this leads to issues
when actually using seeds in a computation. We write
∅ for the seed λ _ ↦ []. Operations like adding or
removing a value are defined by continuation passing:

def dropAtIndex (qs : QuerySeed spec)
(i : spec.ι) (n : ℕ) : QuerySeed spec :=

λ j ↦ if j = i then (qs j).drop n else qs j

We then define a function genSeed for choosing
random seed values, using a map qc to specify the
number of values to generate. Because the set of oracles
is allowed to be infinite, we also need to take in a list
of oracles we should generate seeds for, to ensure the
computation terminates. In practice both of these will
be from the query bounds bundled into an adversary.

-- Helper function to perform the recursion
def genSeedAux (qc : spec.ι → ℕ) :

List spec.ι → QuerySeed spec →
OracleComp unifSpec (QuerySeed spec)

| [], seed => return seed
| j :: js, seed => do

let xs ←$ Vector (spec.range j) (qc j)
let seed' := seed.addValues xs.toList
genSeedAux qc js seed'

def genSeed (qc : spec.ι → ℕ)
(activeOracles : List spec.ι) :
OracleComp unifSpec (QuerySeed spec) :=

genSeedAux qc activeOracles ∅

It can be shown that the support of genSeed is the
set of seeds for which the length of seed i is qc i * k
for all i, where k is the number of times i appears in
activeOracles. Furthermore, the output probability is
uniform across these elements.

Once we have a seed, we can use a simulation oracle
to substitute the seeded values in for the queries. Im-
portantly, if we fail to find a seed value for a particular
query we throw out the whole remaining seed, even if
seed values might exist for other oracles. This ensures
that computation will fully diverge after that point:

def seededOracle :
spec →[QuerySeed spec] spec :=

λ i t seed ↦ match seed i with
-- value found: return it and update seed
| u :: us => return (u, seed.update i us)
-- no value: leave the query untouched
| [] => (·, ∅) <$> query i t

It can be shown that for arbitrary values of the
arguments to genSeed, running genSeed and simulating
a computation with the result gives a computation that
is identical to the original up to distribution semantics.

7.2. Constructing the Forking Algorithm

We are now ready to construct the algorithm
F (A, cf) as defined in the lemma above. We first extend
the structure SecAdv in order to bundle in the function
that chooses the forking point. To do this we include
an additional argument i specifying which oracle will
be forked, and include a function cf that returns the
intended query index to fork at. We allow cf to option-
ally return none, and use Fin to enforce that the index
is in bounds:

structure ForkAdv (spec : OracleSpec)
(α β : Type) (i : spec.ι)
extends SecAdv spec α β where

cf : α → β → Option (Fin (qb i + 1))

Our forking algorithm for such an adversary is given
in Figure 1. We start by choosing ahead of time an
index s that we will fork on, and generate a seed with
enough values for all oracles, except oracle i for which
we generate only s values. We then add an additional
value to each of the seeds at index i, and run the
adversary separately with both seeds. Finally we check
that the results both give s as the chosen fork point,
and that the values added to the two seeds are different,
returning a value only if both hold.

A concrete probability bound for this construction is
given by the following theorem:

theorem le_fork_advantage
(adv : ForkAdv spec α β i) (x : α) :

let frk := [isSome | (fork adv).run x]
let acc := [isSome | adv.cf x <$> adv.run x]
-- Max number of queries by adversary
let q : ℝ≥0∞ := adv.queryBound i + 1
-- Number of possible hashes
let h : ℝ≥0∞ := card (spec.range i)
(acc / q) ^ 2 - acc / h ≤ frk := _



def fork (adv : ForkAdv spec α β i) :
SecAdv spec α (Option (β × β)) where

run := λ x ↦ do
-- pre-select where to fork execution
let s : Fin _ ← $[0..adv.queryBound i]
-- Generate shared seed for both runs
let qc := update adv.queryBound i s
let seed : QuerySeed spec ←

generateSeed qc adv.activeOracles
-- Add the forked queries to the two seeds
let seed₁ ← seed.insert i <$>

($ spec.range i)
let seed₂ ← seed.insert i <$>

($ spec.range i)
-- Run the adversary on both seeds
let y₁ ← simulate' seededOracle

seed₁ (adv.run x)
let y₂ ← simulate' seededOracle

seed₂ (adv.run x)
-- Only return a value on success
if adv.cf x y₁ = some s ∧

adv.cf x y₂ = some s ∧
(seed₁ i)[s] ≠ (seed₂ i)[s]

then return some (y₁, y₂)
else return none

-- At most twice as many queries
queryBound := 2 • adv.queryBound
activeOracles := adv.activeOracles
__ := _ -- Other fields omitted

Figure 1. Construction of the Forking Algorithm

The proof is omitted here, see the code for a
full proof, however it essentially follows directly from
Jensen’s inequality combined with some low-level ma-
nipulation of summations. We note that this bound isn’t
as tight as the one given by in particular we have q2

instead of q because we choose s immediately rather
than waiting to see what value of s comes from the first
execution of the computation.

8. A Fiat-Shamir Heuristic
In this section we give a definition of Σ-protocols,

and give a version of the Fiat-Shamir Heuristic for
constructing signature protocols for them. The type of
such a protocol is given by the following structure, where
p is the hard relation, X is the set of statements, W the
type of witnesses to statements in X, C is the type of
commitments, Ω is the type of challenges, and P is the
type of proofs after commitment:

structure SigmaAlg {ι : Type}
(spec : ℕ → OracleSpec ι)
(X W C Ω P : ℕ → Type)
(p : (sp : ℕ) → X sp → W sp → Prop)
extends OracleAlg spec where

commit (sp : ℕ) : X sp → W sp →
OracleComp (spec sp) (C sp)

prove (sp : ℕ) : X sp → W sp → C sp →
Ω sp → OracleComp (spec sp) (P sp)

verify (sp : ℕ) : X sp → Ω sp → P sp →
OracleComp (spec sp) (C sp)

sim (sp : ℕ) : X sp →
OracleComp (spec sp) (C sp)

extract (sp : ℕ) : P sp → P sp →
OracleComp (spec sp) (W sp)

Our version of the Fiat-Shamir Heuristic then gives
a way to construct a signature scheme from such a
protocol given a key generation function keygen and a
random oracle from messages and commitments to the
challenge space:

def FiatShamir (M : ℕ → Type)
(sigmaAlg : SigmaAlg spec X W C Ω P p) :
SignatureAlg (spec := λ sp ↦

spec sp ++ₒ (M sp × C sp →ₒ Ω sp))
(M := M) (PK := X) (SK := W)
(S := λ sp ↦ Ω sp × P sp) where

keygen := λ sp ↦ keygen sp
sign := λ sp pk sk m ↦ do
let c ← sigmaAlg.commit sp pk sk
let r ← query (Sum.inr ()) (m, c)
let s ← sigmaAlg.prove sp pk sk c r
return (r, s)

verify := λ sp pk m (r, s) ↦ do
let c ← sigmaAlg.verify sp pk r s
let r' ← query (Sum.inr ()) (m, c)
return r = r'

baseState := λ sp ↦
sigmaAlg.baseState sp × QueryCache _

init_state := λ sp ↦
(sigmaAlg.init_state sp, ∅)

baseSimOracle := λ sp ↦
sigmaAlg.baseSimOracle sp ++ randOracle

9. Related Work

Many different approaches to computer aided cryp-
tography have been developed in order to verify cryp-
tographic protocols in ways that can be checked by
computer. In their recent survey of the field [17], Bar-
bosa et al. point to three broad areas of focus: De-
sign level security of protocols, functional correctness of
implementations, and low-level side channel resistance.
Our approach is fully within the scope of design level
security, and so we restrict our discussion to that scope.
Within this, they identify two main approaches: sym-
bolic and computational.

In the symbolic approach messages (such as keys,
nonces, etc.) are represented as atomic terms, and cryp-
tographic primitives are modeled as black-box functions.
An equational theory is used to represent the way these
functions act on terms (for example an equational theory
for symmetric encryption would include something like
Dec(Enc(m, k), k) = m). Tools such as Tamarin
[18] and ProVerif [19] can use these theories to auto-
matically determine what an adversary could learn from



the protocol. This supports significant automation but
is necessarily constrained to the equational theory it is
given, and failing to enumerate a full theory could lead
to a vulnerability being missed (as happened to the ver-
ified SSH authenticated encryption scheme [2]). There
are also issues of reusability due to lack of modularity
in these reasoning systems, although some recent work
has demonstrated some methods to solve this issue [10].

Computational models on the other hand treat all
values as bit-strings, protocols as algorithms, and adver-
saries as Turing complete. This means that such proofs
often give much more confidence in the real world secu-
rity of verified protocols, however they typically suffer
in terms of automation and scalability.

One approach to the computational model, and the
one we take, is to embed protocols in some type of proof
assistant or dependently typed language (Coq, Lean,
Isabelle, etc.), and to then reason about the protocols
within using the higher-order logic of the system. This
is also the approach taken by FCF [7], CryptHOL [9],
and EasyCrypt [20]. Of all the approaches this provides
the greatest expressivity, in theory allowing essentially
the same depth of reasoning as on-paper proofs. This
approach allows for the greatest modularity and code
reuse. However this expressiveness creates a higher proof
burden, generally requiring the user to manually define
cryptographic reductions for protocols. Although much
work has been done to automate the verification of
such reductions once they are defined, this still hinders
automation compared to higher level approaches.

In contrast, CryptoVerif [5], Squirrel [21], and OWL
[10] provide higher levels of automation while still re-
maining in the computational model. However Cryp-
toVerif and Squirrel have minimal support for modular-
ity, and this additional automation also comes at the
cost of having a larger unverified code base in their
foundations. One interesting avenue for future research
could be to verify one of these frameworks in terms
of another lower-level computational approach. There
is also less support for very low-level manipulation of
adversaries, and it’s not clear that something like our
forking lemma could be implemented non-axiomatically
in such a system.

10. Conclusion

We present VCVio, a novel framework for verifying
security proofs of cryptographic protocols, taking a foun-
dational approach to representing and reasoning about
their behavior. This framework is particularly powerful
in its ability to represent and manipulate a computa-
tion’s oracles, and we demonstrate this by implementing
a much more general rewinding mechanism than in any
previous work. Finally we use this to formally verify
the security of a Schnorr-style signature, which to our
knowledge hasn’t been verified in any previous work.

References

[1] Q. Dao, J. Miller, O. Wright, and P. Grubbs, “Weak fiat-
shamir attacks on modern proof systems,” 2023 IEEE Sym-
posium on Security and Privacy (SP), pp. 199–216, 2023.

[2] M. Bellare, T. Kohno, and C. Namprempre, “Breaking
and provably repairing the ssh authenticated encryption
scheme: A case study of the encode-then-encrypt-and- mac
paradigm,” ACM Transactions on Information and System
Security, 2004.

[3] H. Krawczyk, “The order of encryption and authentication
for protecting communications (or: How secure is ssl?),” In
Proceedings of IACR CRYPTO, 2001.

[4] R. Canetti, A. Stoughton, and M. Varia, “Easyuc: Using
easycrypt to mechanize proofs of universally composable se-
curity,” 32nd IEEE Computer Security Foundations Sympo-
sium (CSF), 2019.

[5] B. Blanchet, “Cryptoverif: A computationally-sound security
protocol verifier,” 2017.

[6] P. G. Haselwarter, E. Rivas, A. V. Muylder, T. Winterhal-
ter, C. Abate, N. Sidorenco, C. Hritcu, K. Maillard, and
B. Spitters, “Ssprove: A foundational framework for modular
cryptographic proofs in coq,” 2021.

[7] A. Petcher, “A foundational proof framework for cryptog-
raphy,” Doctoral dissertation, Harvard University, Graduate
School of Arts & Sciences, 2015.

[8] S. Zanella-Beguelin, “Formal certification of game-based
cryptographic proofs,” 2011.

[9] D. Basin, A. Lochbihler, and R. Sefidgar, “Crypthol: Game-
based proofs in higher-order logic,” 2019.

[10] J. Gancher, S. Gibson, P. Singh, S. Dharanikota, and
B. Parno, “Owl: Compositional verification of security pro-
tocols via an information-flow type system,” In Proceedings
of the IEEE Security and Privacy, 2023.

[11] M. Bellare and G. Naven, “New multi-signature schemes and
a general forking lemma,” 2005.

[12] D. Firsoz and D. Unruh, “Reflection, rewinding, and coin-
toss in easycrypt,” Proceedings of the 11th ACM SIGPLAN
International Conference on Certified Programs and Proofs,
2022.

[13] T. M. Community, “The lean mathematical library,” in Pro-
ceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs, January 2020.

[14] J. Lupo, “cryptolib: Security proofs in the lean theorem
prover,” Master of Science Dissertation, University of Ed-
inburgh, 2021.

[15] J.-M. Couveignes, “Hard homogenous spaces,” 2006.
[16] W. Castryck, T. Lange, C. Martindale, L. Panny, and

J. Renes, “Csidh: An efficient post-quantum commutative
group action,” ASIACRYPT, no. LNCS 11274, pages 395–
427, 2018.

[17] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cre-
mers, K. Liao, and B. Parno, “Sok: Computer-aided cryptog-
raphy,” in 2021 IEEE Symposium on Security and Privacy
(SP), pp. 777–795, 2021.

[18] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The
tamarin prover for the symbolic analysis of security proto-
cols,” In Proc. (CAV), 2013.

[19] B. Blanchet, “Modeling and verifying security protocols with
the applied pi calculus and proverif,” Foundations and Trends
in Privacy and Security, 2016.



[20] G. Barthe, B. Gregoire, S. Heraud, and S. Zanella-Beguelin,
“Computer-aided security proofs for the working cryptogra-
pher,” In Proceedings of IACR CRYPTO, 2011.

[21] D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, and
S. Moreau, “An interactive prover for protocol verification
in the computational model,” In Proceedings of the IEEE
Security and Privacy, 2021.


	Introduction
	Contributions
	Organization

	The Lean Proof Assistant
	Computations with Oracle Access
	Specifying Oracles
	Representing Computations
	Sub-Specs and Type Coercions

	Probability Semantics
	Simulation Semantics
	Specifying Oracle Behavior
	Combining Simulation Oracles
	Counting, Logging, and Caching Queries

	Cryptographic Protocols, Adversaries, and Security Games
	Adversaries and Asymptotics
	Hardness Assumptions

	A General Forking Lemma
	Seeding Query Outputs
	Constructing the Forking Algorithm

	A Fiat-Shamir Heuristic
	Related Work
	Conclusion
	References

