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Abstract

Recent active studies have demonstrated that cryptography without one-way functions (OWFs) could
be possible in the quantum world. Many fundamental primitives that are natural quantum analogs of OWFs
or pseudorandom generators (PRGs) have been introduced, and their mutual relations and applications
have been studied. Among them, pseudorandom function-like state generators (PRFSGs) [Ananth, Qian,
and Yuen, Crypto 2022] are one of the most important primitives. PRFSGs are a natural quantum analogue
of pseudorandom functions (PRFs), and imply many applications such as IND-CPA secret-key encryption
(SKE) and EUF-CMA message authentication code (MAC). However, only known constructions of
(many-query-secure) PRFSGs are ones from OWFs or pseudorandom unitaries (PRUs).

In this paper, we construct classically-accessible adaptive secure PRFSGs in the invertible quantum
Haar random oracle (QHRO) model which is introduced in [Chen and Movassagh, Quantum]. The
invertible QHRO model is an idealized model where any party can access a public single Haar random
unitary and its inverse, which can be considered as a quantum analog of the random oracle model. Our
PRFSG constructions resemble the classical Even-Mansour encryption based on a single permutation,
and are secure against any unbounded polynomial number of queries to the oracle and construction. To
our knowledge, this is the first application in the invertible QHRO model without any assumption or
conjecture. The previous best construction in the idealized model is PRFSGs secure up to o(λ/ log λ)
queries in the common Haar state model [Ananth, Gulati, and Lin, TCC 2024].

We develop new techniques on Haar random unitaries to prove the selective and adaptive security of our
PRFSGs. For selective security, we introduce a new formula, which we call the Haar twirl approximation
formula. For adaptive security, we show the unitary reprogramming lemma and the unitary resampling
lemma. These have their own interest, and may have many further applications. In particular, by using the
approximation formula, we give an alternative proof of the non-adaptive security of the PFC ensemble
[Metger, Poremba, Sinha, and Yuen, FOCS 2024] as an additional result.

Finally, we prove that our construction is not PRUs or quantum-accessible non-adaptive PRFSGs by
presenting quantum polynomial time attacks. Our attack is based on generalizing the hidden subgroup
problem where the relevant function outputs quantum states.

∗This work was done in part while the first author was in KIAS, Korea.
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1 Introduction

In classical cryptography, one-way functions (OWFs) are the minimal assumption [IL89], because many
primitives, such as pseudorandom generators (PRGs), pseudorandom functions (PRFs), secret-key encryption
(SKE), message authentication code (MAC), digital signatures, and commitments, are all existentially
equivalent to OWFs. Moreover, almost all primitives (including important applications such as public-key
encryption and multiparty computations) imply OWFs.

In the quantum world, on the other hand, OWFs are not necessarily the minimum assumption [Kre21,
MY22, AQY22]. Many fundamental primitives have been introduced such as pseudorandom unitaries
(PRUs) [JLS18, MH24], pseudorandom function-like state generators (PRFSGs) [AQY22, AGQY22],
pseudorandom state generators (PRSGs) [JLS18], one-way state generators (OWSGs) [MY22], one-way
puzzles (OWPuzzs) [KT24], unpredictable state generators (UPSGs) [MYY24], and EFI pairs [BCQ23].
Although they are believed to be weaker than OWFs [Kre21, KQST23, LMW24], they still imply many useful
applications such as private-key quantum money schemes [JLS18], SKE [AQY22], MAC [AQY22], digital
signatures [MY22], commitments [MY22, AQY22], and multiparty computations [MY22, AQY22].

Among them, pseudorandom function-like state generators (PRFSGs) [AQY22, AGQY22] are one of
the most important primitives. PRFSGs are a natural quantum analogue of pseudorandom functions (PRFs).
A PRFSG is a quantum polynomial-time (QPT) algorithm G that takes a classical key k and a bit string
x as input, and outputs a quantum state |ϕk(x)⟩. Roughly speaking, the security requires that no QPT
adversary can distinguish whether it is querying to G(k, ·) with a random k or an oracle that outputs Haar
random states.1 PRFSGs imply almost all known primitives such as UPSGs, PRSGs, OWSGs, OWPuzzs, and
EFI pairs. PRFSGs also imply useful applications such as IND-CPA SKE, EUF-CMA MAC, private-key
quantum money schemes, commitments, multi-party computations, (bounded-poly-time-secure) digital
signatures, etc. However, all known constructions of (multi-query-secure) PRFSGs are ones from OWFs or
PRUs [AQY22, AGQY22].

In classical cryptography, some idealized setups where parties can access some public source of
randomness are often introduced, such as the common random string model [BFM19] or the random function
or permutation oracle model [BR93, EM97]. These idealized setups reflect the reality of random source or
hash functions and naturally provide the practical instantiations of basic cryptographic primitives, and they
serve as a testbed for new analysis tools in classical and post-quantum settings [DKS12, ABKM22].

It is natural to consider their quantum counterparts: public sources of quantum states and unitaries. In fact,
various quantum analogue of the setup models have already been introduced [CM24, DLS22, MY24, Qia24,
CCS24, AGL24, BFV20], and several primitives have been constructed including commitments, PRSGs, and
restricted-copy secure PRFSGs. In particular, [AGL24] recently constructed bounded-query PRFSGs in the
common Haar state (CHS) model, which was shown to be optimal by the authors.

However, most previous works focus on the idealized model where the parties have access to the common
states, except for [BFV20, CM24]. The idealized model for common unitaries must be much more useful
than common states and perhaps connect the practical and heuristic constructions of quantum cryptographic
objects and theory in the near future, as in the random oracle and ideal cipher models in the classical and
post-quantum world. In particular, the limitation of the CHS model motivates the following question:

Are multi-copy secure PRFSGs achievable if a common random unitary is given?
1More precisely, the oracle works as follows. If it gets x as input and x was not queried before, it samples a Haar random state ψx

and returns it. If x was queried before, it returns the same state ψx that was sampled before when x was queried for the first time.
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1.1 Our Results

PRFSGs in the invertible QHRO Model. The main result of the present paper is a construction of
classically-accessible adaptive secure PRFSGs in the invertible quantum Haar random oracle (QHRO) model
which is a quantum analog of the random oracle model. In the invertible QHRO model, which is introduced
in [CM24] and considered in [BFV20], any party can query the same Haar random unitaries U := {Uλ}λ∈N
and their inverses U† := {U †λ}λ∈N, where Uλ is a λ-qubit Haar random unitary. 2

Theorem 1.1 (Informal). Classically-accessible adaptive secure PRFSGs exist in the invertible QHRO model.

More precisely, given the common Haar unitaries U , our construction of a PRFSG GU (k, x)→ |ϕk(x)⟩
is the following one: For any x, k, k′ ∈ {0, 1}λ,

|ϕk(x)⟩ := Xk′
UλX

k |x⟩ , (1)

whereXk applies PauliXki on ith qubit for each i ∈ [λ]. ThisXUX construction resembles the Even-Mansour
encryption, the simplest encryption scheme based on a single permutation [EM97, DKS12].

Our PRFSG is classically-accessible adaptive secure. Roughly speaking, it means that, for each x, |ϕk(x)⟩
looks like an independent Haar random state even given access to U and U†. The precise meaning is as
follows: let A(·,·,·) be an unbounded adversary such that

• A(·,·,·) can query the first oracle only classically but adaptively at most poly(λ) times.

• A(·,·,·) can query the second and third oracle quantumly and adaptively at most poly(λ) times.

Then, for any such A(·,·,·),∣∣∣∣ Pr
U←µ,k←{0,1}λ

[1← AOU
PRFS(k,·),U ,U† ]− Pr

U←µ,OHaar
[1← AOHaar(k,·),U ,U† ]

∣∣∣∣ ≤ negl(λ), (2)

where U = {Uλ}λ∈N ← µ means that, for each natural number λ, Uλ is sampled from the Haar measure over
λ-qubit unitary group. Here, OUPRFS and OHaar are defined as follows:

• OUPRFS(k, ·): It takes x ∈ {0, 1}λ as input and outputs GU (k, x) = |ϕk(x)⟩.

• OHaar(·): It takes x ∈ {0, 1}λ as input and outputs |ψx⟩, where |ψx⟩ is sampled from the Haar measure
over all λ-qubit pure states for each x ∈ {0, 1}λ.

PRSGs in the invertible QHRO Model. As in the plain model, PRFSGs trivially imply PRSGs in the
invertible QHRO model. As an cororally of Theorem 1.1, we also have the following result:

Theorem 1.2 (Informal). PRSGs exist in the invertible QHRO model.

The construction is the trivial one, namely, GU (k) outputs |ϕk⟩ := Uλ|k⟩, where k ∈ {0, 1}λ. The
security means that for any polynomial t, |ϕk⟩⊗t is statistically indistinguishable even given access to U and
U†.

The only known previous construction of PRSGs in the invertible QHRO model [BFV20] is more
complicated and requires high query depth to the common unitary. Namely, their construction has to query a
common Haar unitary Uλ poly(λ) times. On the other hand, our construction queries a common Haar unitary
Uλ only at once, which is simpler construction than [BFV20].

2In [CM24, BFV20], they consider that anyone has access to λ-qubit unitary Uλ and its inverse for specific λ. On the other hand,
in this work, we consider that any party has access to Haar random unitaries {Uλ}λ and their inverses, where Uλ is λ-qubit Haar
random unitary for each λ ∈ N.
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Our PRFSG is not quantum-accessible secure (and therefore not PRUs). We complement this result
by proving that our XUX construction is not secure quantum-accessible PRFSGs, even non-adaptively and
without accessing inverse Haar unitary oracles. In particular, this implies that the construction is not PRUs.
Concretely, our attack learns the secret keys in polynomial time3 given non-adaptive access to Uλ and UλP
using a variant of Simon’s algorithm [Sim96] for quantum states, inspired by the quantum attack on the
Even-Mansour encryption [KM12].

We also prove that a similar attack can break UP , a naturally strengthened variant of UX , but using
random Pauli P instead of random X . We believe a similar attack breaks the quantum-accessible security of
the PUP construction.

Haar Twirl Approximation Formula. To show a special case of Theorem 1.1, we introduce a new formula,
which we call Haar twirl approximation formula, which is our technical contribution. The formula is written
as follows:4

Lemma 1.3. Let k, d ∈ N such that d >
√

6k7/4. Define Sk to be the set of all permutations over k elements.
Let A be a dk-dimentional register, and B be any register. Then, for any quantum state ρ on the registers AB,∥∥∥∥∥∥(M(k)

Haar,A ⊗ idB)(ρAB)−
∑
σ∈Sk

1
dk
R†σ,A ⊗ TrA[(Rσ,A ⊗ IB)ρAB]

∥∥∥∥∥∥
1

≤ O
(
k2

d

)
, (3)

whereM(k)
Haar(·) := EU←µd

U⊗k(·)U †⊗k, µd is the Haar measure over d-dimensional unitaries, and Rπ is
the permutation unitary that acts Rπ |x1, ..., xk⟩ = |xπ−1(1), ..., xπ−1(k)⟩ for all x1, ..., xk ∈ [d] for each
π ∈ Sk.

We show Lemma 1.3 based on Weingarten calculus [CŚ06]. However, for applications, we do not need
any complicated facts about Wingarden calculus and Haar measure because Lemma 1.3 is stated based on
only permutation unitaries.

Alternative Proof of [MPSY24]. The above formula should be of independent interest, and will have many
other applications. In fact, by using the formula, we show alternative proof of the non-adaptive security of
PFC emsemble [MPSY24]. In their proof, they used the Schur-Weyl duality, but our Lemma 1.3 is based on
the Weingarten calculus [CŚ06]. This new approach will be useful in other applications.

Unitary reprogramming and resampling lemma. To prove Theorem 1.1 with the adaptive security, we
follow the post-quantum security proof of the Even-Mansour encryption [ABKM22]. Along the way, we
develop the unitary variants of their main lemmas, the (arbitrary) reprogramming lemma and resampling
lemma. The unitary (arbitrary) reprogramming lemma can be understood as an adaptive version of the
generalization of the lower bound of Grover’s search [AMRS20], which was used in various applications
including the post-quantum security of MAC. The unitary resampling lemma can be thought of as a unitary
variant (and generalization) of the adaptive reprogramming lemma [GHHM21], which was widely used in
e.g., Fiat-Shamir signature and transform [KLS18, SXY18] or in some of the first quantum applications of
random oracles [Unr14a, Unr14b, ES15]. We believe the unitary variant presented in this paper must have
further applications in quantum cryptography.

3A concurrent paper [ABGL24] proves that a single depth is insufficient to construct PRUs inspired by [CCS24]. However, their
attack is information-theoretic, thus two results are incomparable.

4[MPSY24] implicitly showed a similar result, but our formula is simpler. Moreover, our formula is true for any state ρ, while
their result holds only for specific states ρ on the distinct subspace.
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1.2 Related work

Comparison with PRFSGs in the CHS Model. A recent work [AGL24] constructed bounded-copy
PRFSGs in the CHS model. Compared with their PRFSGs, our PRFSGs have an important advantage in that
the number of queries allowed for the adversary is not limited: it is an unbounded polynomial time. PRFSGs
in the CHS model [AGL24] allows only o(λ/ log λ) number of copies, and it was shown to be optimal. Our
result overcomes the barrier by considering the invertible QHRO model.

Comparison with previous works about invertible QHRO model. As mentioned, the invertible QHRO
model was considered in [CM24, BFV20]. In [CM24], they conjectured the Gap-Local-Hamiltonian problem
has a succinct argument in the invertible QHRO model. In [BFV20], they provide an idea of how to construct
PRSGs and a security proof sketch in the invertible QHRO model based on some (unproven but very plausible)
claim that might be proven through the Weingarten calculus. We give formal security proof of PRFSGs
without any conjectures. Moreover, our result immediately implies the existence of PRSGs in the invertible
QHRO model, which supersedes [BFV20].

Comparison with the concurrent work [ABGL24]. Ananth, Bostanci, Gulati and Lin independently
and concurrently show similar results in [ABGL24]. They consider the inverseless QHRO model in which
an adversary can query common Haar random unitary but cannot query its inverse, and construct PRUs,
classically-accessible adaptive secure PRFSGs, and PRSGs in the inverseless QHRO model. The strength of
their result is to construct PRUs. They also prove that the query depth 1 construction cannot be information-
theoretic secure PRUs by suggesting the polynomial query attack. We do not construct PRUs, but our
classically-accessible adaptive PRFSGs are secure even if an adversary has access to not only the common
Haar random unitary but also its inverse.

The state hidden subgroup problem We consider a variant of hidden subgroup problems when breaking
the quantum-accessible security. Two concurrent works [BGTW24, MZ24] observe and use the quantum
state version of the hidden subgroup problem in different contexts.

1.3 Open Problems

• Can we construct quantumly-accessible adaptive secure PRFSGs in the invertible QHRO model?

• Can we construct PRUs and strong PRUs [MH24]5 in the invertible QHRO model? As mentioned,
the recent concurrent work [ABGL24] shows that (inverseless) PRUs in the inverseless QHRO model.
However, their construction is broken when the inverse queries are allowed using the attack presented
in the same paper for the single query construction. Concretely, is XUXUX strong PRUs? This
candidate deviates from the known impossibility.

• For the XUX construction, can we use the same key for two X operators? Or, can we prove stronger
security of the construction, e.g., secure PRUs with pure state inputs?

• Can we find further applications of the new techniques presented in this paper? Our tools are quite
different from the tools used in the recent studies of the random unitaries; the Schur-Weyl duality

5Strong PRUs are efficiently implementable unitaries which are computationally indistinguishable from Haar random unitaries
even given access to them and their inverses.
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[MPSY24] or the path-recording technique [BHHP24, ABGL24] developed in [MH24]. The Haar
Twirl approximation formula may be useful in the application of PRUs. The classical counterparts
or relatives of the unitary reprogramming and resampling lemmas are one of the main tools in the
post-quantum security analysis.

1.4 Technical Overviews

Our construction uses only single Uλ. Since each Uλ is sampled independently, it suffices to consider the
case an adversary queries the same Uλ. We write it just U for notational simplicity. For k, x ∈ {0, 1}λ, we
construct PRFSGs |ϕk,k′(x)⟩ as

|ϕk(x)⟩ := UXk |x⟩ or Xk′
UXk |x⟩ , (4)

whereXk is the λ-qubit Pauli operator defined by
⊗

iX
ki . HereXki acts on ith qubit. We show non-adaptive

security for UXk |x⟩ and adaptive security for Xk′
UXk |x⟩ based on independent techniques, which we will

explain below.

1.4.1 Non-Adaptive Security

First, let us consider when an adversary can query U only non-adaptively. This precisely means that for any
unbounded adversary A, any polynomial t, and any bit strings x1, ..., xℓ(λ) ∈ {0, 1}λ with any polynomial ℓ,
Pr[⊤ ← C] ≤ 1/2 + negl(λ) in the following security game.

1. A can apply U on its state. Note that ni can be equal to nj for any i ̸= j.

2. C samples b ← {0, 1}. If b = 0, C chooses k ← {0, 1}λ and runs |ϕk(xi)⟩ ← GU (k, xi) t(λ)
times for each i ∈ [ℓ(λ)]. Then C sends |ϕk(x1)⟩⊗t ⊗ ... ⊗ |ϕk(xℓ)⟩⊗t to A. If b = 1, C sends
|ψ1⟩⊗t ⊗ ...⊗ |ψℓ⟩⊗t to A, where |ψi⟩ is a Haar random λ-qubit state for each i ∈ [ℓ(λ)].

3. A returns b′ ∈ {0, 1}. Note that A cannot query U after receiving the challenge state.

4. C outputs ⊤ if and only if b = b′.

As we can see in the above definition of the security game, the adversaryA can query U only before it receives
the challenge state.

Since our construction uses only single U , it suffices to claim that the trace norm between the following
two states is at most negligible in λ for any polynomial t, ℓ, any bit strings x1, ..., xℓ ∈ {0, 1}λ, and any
quantum state ρ:

E
U←µ2λ ,

k←{0,1}λ

ℓ⊗
i=1

(UXk |xi⟩ ⟨xi|Xk†U †)⊗tA ⊗ U
⊗m
B ρBCU

†⊗m
B (5)

ℓ⊗
i=1

(
E

|ψi⟩←µs
2λ

|ψi⟩ ⟨ψi|⊗t
)

A
⊗ E
U←µ2λ

U⊗mB ρBCU
†⊗m
B . (6)

Here µ2λ denotes the Haar measure over all λ-qubit unitary, and µs2λ denotes the Haar measure over all
λ-qubit pure states.
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The main challenge is to compare the above two states. One possible way is to calculate the expectation
of the Haar random unitary U by invoking the Schur-Weyl duality as in [MPSY24]. However, this approach
encounters challenges due to the limitations of Schur-Weyl duality in facilitating comparisons between
different moments of the Haar measure. In our situation, a (tℓ+m)th moment of the Haar measure appears
in Equation (5), but a mth moment of the Haar measure appears in Equation (6).

Solution: Approximation of the Haar Twirl. In order to overcome this challenge, we show and invoke the
following approximation formula for the Haar twirl as we state it in Lemma 1.3: for any quantum state ρ,∥∥∥∥∥∥(M(k)

Haar,A ⊗ idB)(ρAB)−
∑
σ∈Sk

1
dk
R†σ,A ⊗ TrA[(Rσ,A ⊗ IB)ρAB]

∥∥∥∥∥∥
1

≤ O
(
k2

d

)
, (7)

whereM(k)
Haar(·) := EU←µd

U⊗k(·)U †⊗k, µd is the d-dimensional Haar measure, and Rπ is the unitary that
acts Rπ |x1, ..., xk⟩ = |xπ−1(1), ..., xπ−1(k)⟩ for all x1, ..., xk ∈ [d] for each π ∈ Sk.

From Equation (7), the Haar twirl can be approximated as the summation of permutation unitary Rπ.
This helps us to compare Equation (5) with Equation (6). By Equation (7) and the property of random Pauli
operator, we can show Equation (5) is statistically close to Equation (6).

1.4.2 Adaptive Security

The quantitative security of the PUP construction is as follows.

Theorem 1.4. Suppose that A makes p classical queries to the PRFSG oracle and q queries to the (invertible)
n-qubit Haar random unitary oracle U . Then it holds that∣∣∣∣∣ Pr

U←µ,(k,k′)←{0,1}n

[
AXk′

UXk,U → 1
]
− Pr
U←µ,W←µ

[
AW,U → 1

]∣∣∣∣∣ = O

√p3 + p2q2

2n

 . (8)

The proof of the above theorem closely resembles the post-quantum security proof of the Even-Mansour
cipher [ABKM22], which uses the standard hybrid arguments by changing the oracles. To this end, we
develop the following resampling and reprogramming lemmas for the unitary oracles.

Lemma 1.5 (Unitary reprogramming lemma, informal). Consider the following experiment:

Phase 1: D outputs a unitary F0 = F over m-qubit, and a quantum algorithm C that decides how to
reprogram F .

Phase 2: C is executed and reprogram F on the subspace S and outputs the reprogrammed unitary F ′. A
random b ∈ {0, 1} is chosen and D receives oracle access (with only forward queries) to F (if b = 0)
or F ′ (if b = 1).

Phase 3: D loses access to the oracle access, and is noticed how F is reprogrammed, and outputs a bit b′.

Then, it holds that |Pr [D → 1|b = 1]− Pr [D → 1|b = 0]| ≤ q ·
√

2ϵ, where ϵ is the maximum overlap of
any quantum state and the reprogrammed space.

Lemma 1.6 (Unitary resampling lemma, informal). Consider the following experiment:
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Phase 1: D specifies two distributions of quantum states D0, D1. D makes q forward or inverse queries to a
m-dimensional Haar random unitary U .

Phase 2: A random b ∈ {0, 1} is chosen, and D makes an arbitrary many queries to U (if b = 0) or U ′ (if
b = 1) where U ′ is defined by U ◦ SWAPµ0,µ1 for |µ0⟩ ← D0, |µ1⟩ ← D1.6

Then, the following holds:|Pr [b′ = 1|b = 0]− Pr [b′ = 1|b = 1]| ≤ 2
√

6q
2m given that D0, D1 satisfy some

uniformity conditions.

We write Xk′
UXk =: V U

k for simplicity. The real-world experiment where the algorithm is given oracle
access to V U

k , U can be denoted by H0 below:

H0 :U, V U
k , U, V

U
k , U, .... (9)

where each U may include multiple forward and inverse queries to the unitary U , and V U
k denotes a single

classical-query to the PRFSG oracle V U
k = Xk′

UXk.
We consider the following hybrid experiments, which are close because of the unitary resampling lemma:

H0 : U︸︷︷︸
Phase 1

, V U
k , U, V

U
k , U, ....︸ ︷︷ ︸

Phase 2

(10)

H′0 : U︸︷︷︸
Phase 1

, V U ′
k , U ′, V U ′

k , U ′, ....︸ ︷︷ ︸
Phase 2

(11)

where in H0
′, we resample the random unitary U into U ′ so that V U ′

k maps the first query to almost random
state. More concretely, for the first query x1, we define the distribution D0 samples x1 ⊕ k for the random
key k, and D1 samples a random state. Then, it holds that

V U ′
k |x1⟩ = Xk′

U ′Xk |x1⟩ = Xk′
U ◦ SWAPx1⊕k,µ |x1 ⊕ k⟩ = Xk′

U |µ⟩ =: |ν⟩ (12)

for random state |µ⟩. In turn, the output state |ν⟩ also looks random.
We define W as a random unitary that maps |x1⟩ to |ν⟩. Then, with some calculations, we can prove that

the hybrid experiment H′0 is close to the following hybrid:

H′′0 :U,W,U ′, V U
k , U

′, .... (13)

Intuitively, the first query to the PRFSG oracle is identical, and the later steps may differ slightly due to the
replacement of oracles. The actual proof requires multiple hybrid experiments in between.

Then, the unitary reprogramming lemma for F = |0⟩ ⟨0| ⊗ U + |1⟩ ⟨1| ⊗ U † proves the following two
hybrids are close:

H′′0 : U,W︸ ︷︷ ︸
Phase 1

, U ′︸︷︷︸
Phase 2

, V U
k , U

′, ....︸ ︷︷ ︸
Phase 3

(14)

H1 : U,W︸ ︷︷ ︸
Phase 1

, U︸︷︷︸
Phase 2

, V U
k , U

′, ....︸ ︷︷ ︸
Phase 3

(15)

(16)

6SWAPx,y maps α |x⟩ + β |y⟩ 7→ α |y⟩ + β |y⟩ in the span of {|x⟩ , |y⟩}.
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then the proof continues to reach

Hp :U,W,U,W,U, .... (17)

that corresponds to the ideal-world experiment. By the standard hybrid argument, we conclude that H0
and Hp are close, i.e., the p-query algorithm cannot distinguish the oracle Xk′

UXk and W with a high
probability.

Simulation of Unitary Oracles. A careful reader may notice (multiple) problems in the above arguments.
In particular, if the adversary queries the same input x to the PRFSG oracle twice, some intermediate hybrid
answers them using one by V U

k and the other by W . Another subtle problem is that reprogramming and
resampling may require the knowledge of some pure quantum states related to the oracle input/outputs.

We detour these problems by considering a stronger oracle algorithm. When an oracle W is always
queried by classical inputs byA, we consider the simulation oracle Sim(W ) and corresponding the simulation
algorithm Sim(A) that work roughly as follows:

• When A makes the classical input query x to W and obtain a pure state |ϕx⟩ = W |x⟩, Sim(A) queries
x to Sim(W ) and obtains a perfect classical description of |ϕx⟩ as an answer. Then it constructs |ϕx⟩
by itself and proceeds as A. If the same query x is made by A later, Sim(A) does not make any query
and constructs |ϕx⟩ by itself again. The other behavior of Sim(A) is identical to A.

Note that even if the oracle W is changed during the experiment, Sim(A) does the same behavior. Therefore,
even if the oracle is replaced in the middle, the same input to the oracle is answered by the same output state.

By simulating the PRFSG oracles, we can extract the query information of the PRFSG oracles, thereby
reprogramming and resampling relevant spaces without affecting the algorithm’s success probability. This
resolves the subtle problems mentioned above and completes the security proof.

2 Preliminaries

2.1 Basic Notations

This paper uses the standard notations of quantum computing and cryptography. We use λ as the security
parameter. [n] means the set {1, 2, ..., n}. For any set S, x← S means that an element x is sampled uniformly
at random from the set S. We write negl as a negligible function and poly as a polynomial. QPT stands for
quantum polynomial-time. For an algorithm A, y ← A(x) means that the algorithm A outputs y on input x.

The identity operator over d-dimensional space is denoted by Id. When the dimension is clear from the
context, we sometimes write I for simplicity. We use X , Y and Z as Pauli operators. For a bit string x,
Xx :=

⊗
iX

xi . We use Y y and Zz similarly. The n-qubit Pauli group is defined as {XxZz}x,z∈{0,1}n .
For a vector |ψ⟩, we define its norm as ∥ |ψ⟩ ∥ :=

√
⟨ψ|ψ⟩. For two density matrices ρ and σ, the trace

distance is defined as TD(ρ, σ) := 1
2∥ρ− σ∥1 = 1

2Tr
[√

(ρ− σ)2
]
, where ∥ · ∥1 is the trace norm. For any

matrix A, we define the Frobenius norm ∥A∥2 as
√

Tr[A†A]. For any matrix A, the operator norm ∥ · ∥∞
is defined as ∥A∥∞ := max|ψ⟩

√
⟨ψ|A†A |ψ⟩, where the maximization is taken over all pure state |ψ⟩. id

denotes the identity channel, i.e., id(ρ) = ρ for any state ρ. For two channels E and F that take d dimensional
states, we say ∥E −F∥⋄ := max|ψ⟩ ∥(id⊗E)(|ψ⟩ ⟨ψ|)− (id⊗F)(|ψ⟩ ⟨ψ|)∥1 is the diamond norm between
E and F , where the maximization is taken over all d2 dimensional pure states.

10



The set (or group) of d-dimensional unitary matrices and states are denoted by U(d) and S(d). µd and
µsd denotes the Haar measure over U(d) and S(d), respectively. Sk denotes the permutation group over k
elements. For π ∈ Sk and σ ∈ Sℓ, (π, σ) ∈ Sk+ℓ is the permutation that permutates the first k elements with
respect to π and the last ℓ elemensts with respect to σ. For π ∈ Sk, we define dk × dk permutation unitary
Rπ that satisfies Rπ |x1, ..., xk⟩ = |xπ−1(1), ..., xπ−1(k)⟩ for all x1, ..., xk ∈ [d].

2.2 Haar twirl and Unitary Design

We define the Haar twirling map.

Definition 2.1. Let k, d ∈ N and ν be a distribution over U(d). We define the k-wise twirl with respect to ν
M(k)

ν as

M(k)
ν (·) := E

U←ν
U⊗k(·)U †⊗k. (18)

In particular, for the Haar measure µd over U(d), we call it the Haar k-wise twirl, and write it byM(k)
Haar

Definition 2.2 (Unitary k-Design [Mel24]). Let k, d ∈ N. We say that a distribution ν over U(d) is a unitary
k-design if the action of the k-wise twirl is the same as that of the Haar k-wise twirl. Namely, for any
dk-dimensional state ρ,

M(k)
ν (ρ) =M(k)

Haar(ρ). (19)

Note that an action on any unitary 1-design ν can be written

M(1)
ν = I

d
(20)

sinceM(1)
Haar(ρ) = I

d for any state ρ.
The following lemma follows from the straightforward calculation.

Lemma 2.3. For any n ∈ N, the uniform distribution over n-qubit Pauli group is unitary 1-design.

2.3 Useful Lemmas

Theorem 2.4 (Theorem 5.17 in [Mec19]). Let µN be the Haar measure over U(N). Given N1, . . . , Nk ∈ N,
let X = U(N1)× · · · × U(Nk). Let µ = µN1 × · · · × µNk

be the product of Haar measures on X . Suppose
that f : X → R is L-Lipschitz in the ℓ2-sum of Frobenius norm, i.e., for any U = (U1, ..., Uk) ∈ X and
V = (V1, ..., Vk) ∈ X , we have |f(U)− V (U)| ≤ L

√∑
i ∥Ui − Vi∥22. Then for every δ > 0,

Pr
U←µ

[
f(U) ≥ E

V←µ
[f(V )] + δ

]
≤ exp

(
− Nδ

2

24L2

)
, (21)

where N := min{N1, . . . , Nk}.

We use that the probability that an algorithm given access to U and its inverse U † is a Lipschitz function
concerning U . The case when an algorithm queries only U is shown in [Kre21]. Since the proof for the case
when given access to U and U † is the same, we have the following.
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Lemma 2.5 ([Kre21]). LetAU,U† be a quantum algorithm that makes T queries to U ∈ U(N) and its inverse.
Then, f(U) = Pr[1← AU,U† ] is 2T -Lipschitz in the Frobenius norm, i.e., |f(U)− f(V )| ≤ 2T∥U − V ∥2
for all U, V ∈ U(N).

Lemma 2.6 (Gentle Measurement Lemma [Win99, Wat18]). Let ρ be a quantum state, and 0 ≤ ϵ ≤ 1. Let
M be a matrix such that 0 ≤M ≤ I and

Tr[Mρ] ≥ 1− ϵ. (22)

Then, ∥∥∥∥ρ−
√
Mρ
√
M

Tr[Mρ]

∥∥∥∥
1
≤
√
ϵ. (23)

Lemma 2.7 (Quantum Union Bound [Gao15, OV22]). Apply the two-outcome projective (P1, I −
P1), ..., (Pm, I − Pm) sequentially on ρ, and let ρm be the final state conditioned on the outcome P1, ..., Pm
all occurring. Suppose that Tr[Piρ] ≥ 1− ϵi for i = 1, ...,m, then, it holds that

∥ρ− ρm∥1 ≤
√
ϵ1 + ...+ ϵm. (24)

We also use the following lemma.

Lemma 2.8. Let A,B and C be square matrices of the same size such that 1: A is hermitian, 2: AB = BA,
3: B and C are positive. Then,

|Tr[ABC]| ≤ ∥A∥∞Tr[BC]. (25)

Proof of Lemma 2.8. Since AB = BA, A and B has the spectral decomposition with the same basis {|ψi⟩}i:
A =

∑
i ai |ψi⟩ ⟨ψi| , B =

∑
i bi |ψi⟩ ⟨ψi|. Note that bi ≥ 0 for any i since B is positive. Therefore,

|Tr[ABC]| = |
∑
i

aibi ⟨ψi|C |ψi⟩ | ≤
∑
i

|ai|bi ⟨ψi|C |ψi⟩ ≤ (max
i
|ai|)

∑
i

bi ⟨ψi|C |ψi⟩ = ∥A∥∞Tr[BC],

(26)

where, in the first inequality, we have used the triangle inequality and bi ⟨ψi|C |ψi⟩ ≥ 0 since bi ≥ 0 and C
is positive.

The following two lemmas follow from the straightforward calculation.

Lemma 2.9. For any Hermitian matrix A,

∥A∥1 = 2 max
M :0≤M≤I

Tr[MA]− Tr[A]. (27)

Lemma 2.10. Let A and B be registers such that the dimension of B is larger than that of A. Then, for
any unitary V on A and pure state |ϕ⟩A,B over the registers A and B, there exist a unitary W on B and a
quantum state ξ on B such that

TrA[(VA ⊗ IB) |ϕ⟩ ⟨ϕ|AB] =
√
ξBW (V Γ ⊗ I)W †

√
ξB, (28)

where Γ denotes the transpose with respect to computational basis.
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For k, d ∈ N, define

Π(d,k)
sym := 1

k!
∑
σ∈Sk

Rσ. (29)

Π(d,k)
sym satisfies the following which are well-known facts. For its detail, see [Har13, Mel24].

Lemma 2.11. Let k, d ∈ N. Then, Π(d,k)
sym is the projection. Moreover,

TrΠ(d,k)
sym =

(
d+ k − 1

k

)
(30)

and

E
|ψ⟩←µs

d

(|ψ⟩ ⟨ψ|)⊗ℓ = Π(d,k)
sym

TrΠ(d,k)
sym

, (31)

where µsd is the Haar measure over all d-dimensional states.

Lemma 2.12. Let k, d ∈ N. Then,

1
k!
∑
σ∈Sk

Rσ ⊗Rσ = Π(d2,k)
sym . (32)

Proof of Lemma 2.12. Let A := A1...Ak and B := B1...Bk, where Ai and Bi are d-dimensional registers
for each i ∈ [k]. We define Ci := AiBi for each i ∈ [k] and C := C1...Ck. Then, Rσ,A⊗Rσ,B = Rσ,C for
any σ ∈ Sk. Therefore Lemma 2.12 follows from Lemma 2.11.

3 Definition of PRSGs and PRFSGs in QHRO Model

In this section, we introduce the quantum Haar random oracle (QHRO) model and define pseudorandom state
generators (PRSGs) and pseudorandom function-like state generators (PRFSGs) in the QHRO model. In the
QHRO model, any party is given oracle access to a family U = {Un}n∈N of Haar random unitaries, where
Un is a Haar random unitary acting on n qubits. For simplicity, U ← µ denotes Uλ ← µ2λ for each λ ∈ N.

We consider the following two different types of oracle accesses:

• Any party can query U but cannot query its inverse U † := {U †n}n∈N.

• Any party can query both U and U †.

We call the former the inverseless QHRO model, and the latter the invertible QHRO model.

3.1 PRSGs in the QHRO Model

The pseudorandom state generators in the plain model were defined in [JLS18]. Here we define PRSGs in the
QHRO model as follows.

Definition 3.1 (Pseduorandom States Generators (PRSGs) in the QHRO Model). We define that an
algorithm G(·,·) is a pseudorandom state generator (PRSG) in the QHRO model if it satisfies the following:
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• Efficient generation: Let λ ∈ N be the security parameter and Kλ be a key space over at most poly(λ)
bits. GU ,U† is a QPT algorithm that takes a key k ∈ Kλ as input, and outputs a quantum state |ϕk⟩.

• Pseudorandomness in the invertible QHRO model: For any polynomial-query adversary A(·,·), and
any polynomial t(λ), there exists a negligible function negl such that∣∣∣∣ Pr

U←µ,k←Kλ

[1← AU ,U†(|ϕk⟩⊗t)]− Pr
U←µ,|ψ⟩←µS

2λ

[1← AU ,U†(|ψ⟩⊗t)]
∣∣∣∣ ≤ negl(λ). (33)

If both the generation algorithm G and the adversary A are only allowed to query U non-adaptively before
receiving challenge states, we say it is PRSGs in the non-adaptive inverseless QHRO model.

3.2 PRFSGs in the QHRO Models

We give the definition of PRFSGs in the QHRO model and the invertible QHRO model. PRFSGs in
the plain model were defined in [AQY22, AGQY22]. As a security, we can consider selective security,
classically-accessible adaptive security, and quantumly-accessible adaptive security. In this work, we focus
on selective security in the QHRO model and classically-accessible adaptive security in the invertible QHRO
model.

Definition 3.2 (Slectively Secure Pseudorandom Function-like State Generators (PRFSGs) in the QHRO
Model). We define that an algorithm G(·,·) is a selectively secure pseudorandom function-like state generator
(PRFSG) in the QHRO model if it satisfies the following:

• Efficient generation: Let λ ∈ N be the security parameter and Kλ be a key space at most poly(λ) bits.
GU ,U

† is a QPT algorithm that takes a key k ∈ Kλ and a bit string x ∈ {0, 1}λ as input, and outputs a
quantum state |ϕk(x)⟩.

• Selective security in the invertible QHRO model: For any unbounded adversary A, any polynomial t,
and any bit strings x1, ..., xℓ(λ) ∈ {0, 1}λ with any polynomial ℓ,∣∣∣∣ Pr

U←µ,k←Kλ

[1← AU ,U†(|ϕk(x1)⟩⊗t , ..., |ϕk(xℓ)⟩⊗t)] (34)

− Pr
U←µ,|ψ1⟩,...,|ψℓ⟩←µS

2λ

[1← AU ,U†(|ψ1⟩⊗t , ..., |ψℓ⟩⊗t)]
∣∣∣∣ ≤ negl(λ). (35)

If both the generation algorithmG and the adversaryA are only allowed to query U non-adaptively before
receiving challenge states, we say it is PRFSGs in the non-adaptive inverseless QHRO model.

Definition 3.3 (Classically-accesible Adaptively Secure PRFSGs in the invertible QHRO Model). Let
G(·) be a QPT algorithm that satisfies the efficient generation property in Definition 3.2. If it satisfies the
following, we say it is a classically-accessible adaptive secure PRFSG in the invertible QHRO model.

• Classically-accessible adaptive security in the invertible QHRO model: For any unbounded adversary
A(·,·,·) that queries each oracle at most poly(λ) and can query the first oracle only classically,∣∣∣∣ Pr

U←µ,k←Kλ

[1← AO
U,U†
PRFS (k,·),U ,U† ]− Pr

U←µ,OHaar
[1← AOHaar(k,·),U ,U† ]

∣∣∣∣ ≤ negl(λ). (36)

Here, OU ,U
†

PRFS and OHaar are defined as follows:
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– OU ,U
†

PRFS(k, ·): It takes x ∈ {0, 1}λ as input and outputs GU ,U†(k, x) = |ϕk(x)⟩.
– OHaar(·): It takes x ∈ {0, 1}λ as input and outputs |ψx⟩, where |ψx⟩ ← µS2λ for each x ∈ {0, 1}λ.

4 Haar Twirl Approximation Formula

In this section, we derive the Haar twirl approximation formula, Lemma 1.3, which plays a crucial role in
proving the non-adaptive security of PRFSGs in the QHRO model. First, we intuitively explain why the
approximation formula holds in Section 4.1. Next, we introduce the Weingarten matrix and the Weingarten
function in Section 4.2, and give some lemmas of the Weingarten function in Section 4.3. Finally, we give a
proof of the approximation formula in Section 4.4.

4.1 Intuition for Approximation Formula

Our goal of this section is to show the following approximation formula, which we call Haar twirl approximation
formula: let ρ be a quantum state on the register AB, where the dimension of A is dk and B is some fixed
register. Then, for the Haar twirlM(k)

Haar(·) = EU←µd
U⊗k(·)Udeg⊗k defined in Definition 2.1,∥∥∥∥∥∥(M(k)

Haar,A ⊗ idB)(ρAB)−
∑
π∈Sk

1
dk
Rπ,A ⊗ TrA[(R†π,A ⊗ IB)ρAB]

∥∥∥∥∥∥
1

≤ O
(
k2

d

)
, (37)

where Sk is the set of all permutations over k elements, and Rπ is the permutation unitary that acts
Rπ |x1, ..., xk⟩ = |xπ−1(1), ..., xπ−1(k)⟩ for all x1, ..., xk ∈ [d].

Intuitively, the above formula is derived as follows; first, from Weingarten calculus [CŚ06],

(M(k)
Haar,A ⊗ idB)(ρAB) =

∑
σ,τ∈Sk

Wg(τσ−1; d)R†σA ⊗ TrA[ρAB(RτA ⊗ IB)], (38)

where Wg( · ; d) is called the Weingarten function that maps an element of Sk to a real number.7 We give its
definition in Section 4.2. The Weingarten function has the following nice property8;

Wg(π; d) ≈
{
d−k if π is the identity,
O(d−k−1) otherwise.

(39)

Therefore, if we ignore all terms such that τ ̸= σ in Equation (38), Equation (37) seems to hold. We show
this formally in Section 4.4.

4.2 Weingerten Calculus

In this subsection, we review Weingarten calculus [CMN22].
We first introduce the Weingarten function as follows. Let us assume k and d are positive integers such that

k ≤ d. Recall that Sk is the permutation group over k elements, and, for π ∈ Sk, Rπ is dk × dk permutation
unitary that satisfies Rπ |x1, ..., xk⟩ = |xπ−1(1), ..., xπ−1(k)⟩ for all x1, ..., xk ∈ [d]. We define k!× k! matrix
G(d) whose matrix elements are specified by two permutations σ, τ ∈ Sk such that

G(d)σ,τ := Tr[Rτσ−1 ] = dk−|τσ
−1|. (40)

7Wg depends on k, but for simplicitly we omit k here.
8For the case when π is the identity, see Lemma 4.6. For other cases, we do not use it explicitly but it is shown in [CM17].
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Here, for π ∈ Sk, |π| is defined by the minimum number of transpositions to represent π as a product of
those transpositions. Note that G(d)σπ,τπ = G(d)σ,τ for any π, σ, τ ∈ Sk. Let Wg(d), which is called the
Weingarten matrix, be a k!× k! matrix as the pseudo-inverse of G(d). We define the Weingarten function
Wg(·; d) : Sk → R such that

Wg(στ−1; d) := Wg(d)σ,τ . (41)

This is well-defined since Wg(d)σ,τ = Wg(d)σπ,τπ for any π, σ, τ ∈ Sk, where it follows from G(d)σπ,τπ =
G(d)σ,τ .

Weingarten calculus is the following lemma:

Lemma 4.1 (Corollary 2.4 of [CŚ06]). Let k, d ∈ N. Let µd be the Haar measure over U(d) and Sk be the set
of all permutations over [k]. Let i := (i1, ..., ik), j := (j1, ..., jk), i′ := (i′1, ..., i′k), j′ := (j′1, ..., j′k) ∈ [d]k.
Then,

E
U←µd

Ui1j1 ...UikjkU i′1j′
1
...U i′

k
j′

k
=

∑
σ,τ∈Sk

δi,σ(i′)δj,τ(j′)Wg(τσ−1; d), (42)

where, for ℓ := (ℓ1, ..., ℓk),∈ [d]k and π ∈ Sk, π(ℓ) := (ℓπ(1), ..., ℓπ(k)).

From Lemma 4.1 and the straightforward calculation, we have the following lemma.

Lemma 4.2. Let k, d ∈ N. Let A denote the dk-dimensional register, and B denote any dimensional register.
Let MAB be a matrix. Then,

(M(k)
Haar,A ⊗ idB)(MAB) =

∑
σ,τ∈Sk

Wg(τσ−1; d)R†σA ⊗ TrA′ [MAB(RτA ⊗ IB)]. (43)

Proof of Lemma 4.2. For any dk × dk matrix N , we have

M(k)
Haar(N) =

∑
σ,τ∈Sk

Wg(τσ−1; d)Tr[NRτ ]R†σ. (44)

We give its proof later. From Equation (44),

(M(k)
Haar,A ⊗ idB)(MAB) =

(
IA ⊗

∑
i

|i⟩ ⟨i|B
)

(M(k)
Haar,A ⊗ idB)(MAB)

(
IA ⊗

∑
j

|j⟩ ⟨j|B
)

(45)

=
∑
i,j

M(k)
Haar,A(M (i,j)

A )⊗ |i⟩ ⟨j|B (46)

=
∑
i,j

∑
σ,τ∈Sk

Wg(τσ−1; d)Tr[M (i,j)Rτ ]R†σA ⊗ |i⟩ ⟨j|B (47)

=
∑

σ,τ∈Sk

Wg(τσ−1; d)R†σA ⊗
(∑

i,j

Tr[M (i,j)Rτ ] |i⟩ ⟨j|B
)
, (48)

where M (i,j)
A := (IA ⊗ ⟨i|B)MAB(IA ⊗ |j⟩B). From the standard calculation, we have∑

i,j

Tr[M (i,j)Rτ ] |i⟩ ⟨j|B = TrA′ [MAB(RτA ⊗ IB)]. (49)
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Thus, we have

(M(k)
Haar,A ⊗ idB)(MAB) =

∑
σ,τ∈Sk

Wg(τσ−1; d)R†σA ⊗ TrA′ [MAB(RτA ⊗ IB)]. (50)

To conclude the proof, we show Equation (44). From Lemma 4.1, we have

M(k)
Haar(N) =

∑
i,j∈[d]k

(
M(k)

Haar(N)
)
i,j

|i⟩ ⟨j| (51)

=
∑

i,j,ℓ,m∈[d]k
E

U←µd

Ui1ℓ1 ...UikℓkNℓ,mU j1m1 ...U jkmk
|i⟩ ⟨j| (52)

=
∑

i,j,ℓ,m∈[d]k

∑
σ,τ∈Sk

Nℓ,mδi,σ(j)δℓ,τ(m)Wg(τσ−1; d) |i⟩ ⟨j| (53)

=
∑

σ,τ∈Sk

Wg(τσ−1; d)

 ∑
ℓ,m∈[d]k

Nℓ,mδℓ,τ(m)

 ∑
i,j∈[d]k

δi,σ(j) |i⟩ ⟨j|

 . (54)

From the definition of Rσ, ∑
i,j∈[d]k

δi,σ(j) |i⟩ ⟨j| =
∑
j∈[d]k

|σ(j)⟩ ⟨j| = R†σ. (55)

On the other hand, ∑
ℓ,m∈[d]k

Nℓ,mδℓ,τ(m) =
∑

ℓ,m∈[d]k
Nℓ,m(Rτ )m,ℓ = Tr[NRτ ]. (56)

From the above three equations, Equation (44) follows.

4.3 Useful Lemmas of Weingarten Function

We use some properties of the Weingarten function. First, the following lemma follows from the fact that the
Weingarten matrix is the pseudo-inverse of the Gram matrix.

Lemma 4.3. Let k, d ∈ N. Then, for any π, σ ∈ Sk, Wg(π; d) = Wg(π−1; d) and Wg(πσπ−1; d) =
Wg(σ; d).

Proof of Lemma 4.3. First, let us show the former. Since the Gram matrix is symmetric by its definition, the
Weingartne matrix Wg(d) is also symmetric since it is the pseudoinverse of the Garm matrix. Thus, we have
Wg(π; d) = Wg(d)π,e = Wg(d)e,π = Wg(π−1; d).

Next, let us prove the latter. Since Wg(στ−1; d) = Wg(d)σ,τ , it suffices to show Wg(d)πσ,πτ = Wg(d)σ,τ
for any π, σ, τ ∈ Sk. For π ∈ Sk, let us define k!×k! matrix Wg(π)(d) such that Wg(π)(d)σ,τ := Wg(d)πσ,πτ .
Since G(d)πρ,πτ = dk−|πρτ

−1π−1| = dk−|στ
−1| = G(d)σ,τ , Wg(π)(d) is also the pseudo-inverse of G(d).

From the uniqueness of the pseudo-inverse matrix, we have Wg(π)(d) = Wg(d) for any π ∈ Sk, which
implies Wg(d)πσ,πτ = Wg(d)σ,τ for any π, σ, τ ∈ Sk.

The following are lemmas about a summation of the Weingarten function. The first lemma is shown in
section 3.1.1. of [CMS12].
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Lemma 4.4 ([CMS12]). ∑
π∈Sk

Wg(π; d) = 1
d(d+ 1) · · · (d+ k − 1) . (57)

Lemma 4.5 (Lemma 6 in [ACQ22]).∑
π∈Sk

|Wg(π; d)| = 1
d(d− 1) · · · (d− k + 1) . (58)

The following lemma is a corollary of Theorem 3.2 in [CM17].

Lemma 4.6 ([CM17]). Let k, d ∈ N such that d >
√

6k7/4. Then,

1
dk

(
1−O

(
k

d2

))
≤Wg(e; d) ≤ 1

dk

(
1−O

(
k7/2

d2

))
. (59)

4.4 Proof of Haar Twirl Approximation Formula

Now we are ready to prove the approximation formula.

Lemma 4.7. Let k, d ∈ N such that d >
√

6k7/4. Let A be a dk-dimentional register, and B be some fixed
register. Then, for any quantum state ρ on the registers AB,∥∥∥∥∥∥(M(k)

Haar,A ⊗ idB)(ρAB)−
∑
σ∈Sk

1
dk
R†σ,A ⊗ TrA[(Rσ,A ⊗ IB)ρAB]

∥∥∥∥∥∥
1

≤ O
(
k2

d

)
. (60)

Proof of Lemma 4.7. From the concavity of 1-norm, it suffices to show the case when ρ is a pure state |ψ⟩ ⟨ψ|.
In the following, we often write |ψ⟩ ⟨ψ| just as ψ for the notational simplicity.

It is clear that both matrices are hermitian. Thus, from Lemma 2.9,∥∥∥∥∥∥(M(k)
Haar,A ⊗ idB)(ψAB)−

∑
σ∈Sk

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ψA′B]

∥∥∥∥∥∥
1

(61)

=2 max
M :0≤M≤I

Tr

M(
(M(k)

Haar,A ⊗ idB)(ψAB)−
∑
σ∈Sk

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ψA′B]

)
− Tr

(M(k)
Haar,A ⊗ idB)(ψAB)−

∑
π∈Sk

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ψA′B]

 . (62)

Thus, it suffices to show that both the first term and the second term are at most O(k2/d).

Estimation of the first term in Equation (62). To show the first term is at most O(k2/d), we show∣∣∣∣∣Tr
[
MAB

(
(M(k)

Haar,A ⊗ idB)(ψAB)−
∑
σ∈Sk

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ψA′B]

)]∣∣∣∣∣ ≤ O
(
k2

d

)
(63)
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for any 0 ≤M ≤ I . Without loss of generality, we can assume the dimension of B is larger than that of A.
Otherwise, we add some register C such that the dimension of BC is larger than that of A, and consider
M ′ABC := MAB ⊗ IC and |ψ′⟩ABC := |ψ⟩AB |0...0⟩C. Thus, for any permutation σ ∈ Sk, there exists a
quantum state ξ such that

TrA′ [(Rσ,A′ ⊗ IB)ψA′B] =
√
ξBR

Γ
σ,B
√
ξB =

√
ξBR

†
σ,B
√
ξB (64)

from Lemma 2.10. Here, for simplicity, we write that Rσ,B is a unitary which acts as Rσ on the subregister of
B whose dimension is the same as that of A, and as the identity on the residual subregister of B. By using
this, we have ∑

σ∈Sk

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ψA′B] =

∑
σ∈Sk

1
dk
R†σ,A ⊗

√
ξBR

†
σ,B
√
ξB. (65)

By combing Equation (64) and Lemma 4.2, the k-fold Haar twirl can be rewritten as follows;

(M(k)
Haar,A ⊗ idB)(ψAB) =

∑
σ,τ∈Sk

Wg(τσ−1; d)R†σ,A ⊗ TrA′ [(Rτ,A′ ⊗ IB)ψA′B] (66)

=
∑

σ,π∈Sk

Wg(π; d)R†σ,A ⊗ TrA′ [(Rπσ,A′ ⊗ IB)ψA′B] (67)

=
∑

σ,π∈Sk

Wg(π; d)R†σ,A ⊗
√
ξBR

†
πσ,B

√
ξB, (68)

where we replaced the summention of τ with π that satisfies τ = πσ. Then, we have∣∣∣∣∣Tr
[
MAB

(
(M(k)

Haar,A ⊗ idB)(ψAB)−
∑
σ∈Sk

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ψA′B]

)]∣∣∣∣∣ (69)

=
∣∣∣∣∣Tr
[
MAB

((
Wg(e; d)− 1

dk

) ∑
σ∈Sk

R†σ,A ⊗
√
ξBR

†
σ,B
√
ξB +

∑
σ,π∈Sk,
π ̸=e

Wg(π; d)R†σ,A ⊗
√
ξBR

†
πσ,B

√
ξB

)]∣∣∣∣∣
(70)

≤
∣∣∣∣∣Wg(e; d)− 1

dk

∣∣∣∣∣
∣∣∣∣∣Tr
[
MAB

∑
σ∈Sk

R†σ,A ⊗
√
ξBR

†
σ,B
√
ξB

]∣∣∣∣∣+
∣∣∣∣∣Tr
[
MAB

∑
σ,π∈Sk,
π ̸=e

Wg(π; d)R†σ,A ⊗
√
ξBR

†
πσ,B

√
ξB

]∣∣∣∣∣,
(71)

where we have used Equations (64) and (65) in the equality, and the inequality follows from the triangle
inequality. In the following, we show both the first term and the second term are at most O(k2/d).
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The trace of the first term in Equation (71) can be estimated as follows:∣∣∣∣∣Tr
[
MAB

( ∑
σ∈Sk

R†σ,A ⊗
√
ξBR

†
σ,B
√
ξB

)]∣∣∣∣∣ ≤
∣∣∣∣∣Tr
[ ∑
σ∈Sk

R†σ,A ⊗
√
ξBR

†
σ,B
√
ξB

]∣∣∣∣∣ (72)

≤
∑
σ∈Sk

∣∣∣∣Tr[R†σ,A]Tr[
√
ξBRσ,B

√
ξB]
∣∣∣∣ (73)

≤
∑
σ∈Sk

∣∣∣∣Tr[R†σ,A]
∣∣∣∣ (74)

=k!
(
d+ k − 1

k

)
, (75)

where we have used
• the facts that 0 ≤ M ≤ I and

∑
σ∈Sk

R†σ,A ⊗
√
ξBR

†
σ,B
√
ξB is positive in the first ineqaulity. The

latter follows from Lemma 2.12;

• the riangle inequality and Tr[A]Tr[B] = Tr[A⊗B] for any matrix A and B in the second equality;

• |Tr[
√
ξBR

†
σ,B
√
ξB]| = |Tr[ξBRσ,B]| ≤ 1 for any σ ∈ Sk since ξ is a quantum state and Rσ is unitary

in the third inequality;

• Tr[R†σ] = Tr[Rσ] ≥ 0 for any σ ∈ Sk and Lemma 2.11 in the last equality.
By combing Equation (75) and Lemma 4.6, we have9∣∣∣∣Wg(e; d)− 1

dk

∣∣∣∣
∣∣∣∣∣Tr
[
M

( ∑
σ∈Sk

R†σ,A ⊗
√
ξBR

†
σ,B
√
ξB

)]∣∣∣∣∣ ≤
∣∣∣∣Wg(e; d)− 1

dk

∣∣∣∣k!
(
d+ k − 1

k

)
(76)

≤O
(
k7/2

dk+2

)
k!
(
d+ k − 1

k

)
(77)

=O
(
k7/2

d2

)
(78)

≤O
(
k2

d

)
. (79)

Next, let us estimate the second term in Equation (71);∣∣∣∣∣Tr
[
MAB

∑
σ,π∈Sk,
π ̸=e

Wg(π; d)R†σ,A ⊗
√
ξBR

†
πσ,B

√
ξB

]∣∣∣∣∣ (80)

=
∣∣∣∣∣Tr
[ ∑
σ,π∈Sk;π ̸=e

Wg(π; d)(R†σ,A ⊗R
†
π,BR

†
σ,B)(IA ⊗

√
ξB)MAB(IA ⊗

√
ξB)

]∣∣∣∣∣ (81)

=
∣∣∣∣∣Tr
[( ∑

π∈Sk;π ̸=e
Wg(π; d)IA ⊗Rπ,B

)( ∑
σ∈Sk

Rσ,A ⊗Rσ,B
)

(IA ⊗
√
ξB)MAB(IA ⊗

√
ξB)

]∣∣∣∣∣. (82)

Here,

9
k7/2

d2 = k2

d
k3/2

d
≤ k2

d
since d >

√
6k7/4.
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• we have used Rπσ = RσRπ in the first equality;

• we replaced the summation of π with π−1 and that of σ with σ−1 in the second equality.

We want to apply Lemma 2.8 to Equation (82). Note that

•
∑
π∈Sk;π ̸=e Wg(π; d)IA ⊗Rπ,B is hermitian:

( ∑
π∈Sk;π ̸=e

Wg(π; d)IA ⊗Rπ,B
)†

=
∑

π∈Sk;π ̸=e
Wg(π; d)IA ⊗Rπ−1,B (83)

=
∑

π∈Sk;π ̸=e
Wg(π−1; d)IA ⊗Rπ,B (84)

=
∑

π∈Sk;π ̸=e
Wg(π; d)IA ⊗Rπ′,B, (85)

where we have replaced the summation of π with π−1 in the second equality, and we have used
Lemma 4.3 in the last equality;

•
∑
σ∈Sk

Rσ,A ⊗Rσ,B and (IA ⊗
√
ξB)MAB(IA ⊗

√
ξB) are positive, where the former follows from

Lemma 2.12;

•
∑
π∈Sk;π ̸=e Wg(π; d)IA ⊗Rπ,B is commutive with

∑
σ∈Sk

Rσ,A ⊗Rσ,B as follows;( ∑
π∈Sk;π ̸=e

Wg(π; d)IA ⊗Rπ,B
)( ∑

σ∈Sk

Rσ,A ⊗Rσ,B
)

(86)

=
∑
σ∈Sk

(Rσ,A ⊗Rσ,B)
( ∑
π∈Sk;π ̸=e

Wg(π; d)IA ⊗R†σRπRσ,B
)

(87)

=
∑
σ∈Sk

(Rσ,A ⊗Rσ,B)
( ∑
π∈Sk;π ̸=e

Wg(π; d)IA ⊗Rσπσ−1,B

)
(88)

=
∑
σ∈Sk

(Rσ,A ⊗Rσ,B)
( ∑
π′∈Sk;π′ ̸=e

Wg(σ−1π′σ; d)IA ⊗Rπ′,B

)
(89)

=
( ∑
σ∈Sk

Rσ,A ⊗Rσ,B
)( ∑

π′∈Sk;π′ ̸=e
Wg(π′; d)IA ⊗Rπ′,B

)
, (90)

where

– we replaced the summation of π with π′ := σπσ−1 in the third equality;
– we have used Lemma 4.3 in the last equality.
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Thus, we can apply Lemma 2.8 to Equation (82);∣∣∣∣∣Tr
[
MAB

∑
σ,π∈Sk,
π ̸=e

Wg(π; d)R†σ,A ⊗
√
ξBR

†
πσ,B

√
ξB

]∣∣∣∣∣ (91)

≤
∥∥∥∥ ∑
π∈Sk;π ̸=e

Wg(π; d)IA ⊗Rπ,B
∥∥∥∥
∞

Tr
[( ∑

σ∈Sk

Rσ,A ⊗Rσ,B
)

(IA ⊗
√
ξB)MAB(IA ⊗

√
ξB)

]
(92)

=
∥∥∥∥ ∑
π∈Sk;π ̸=e

Wg(π; d)IA ⊗Rπ,B
∥∥∥∥
∞

Tr
[
MAB

( ∑
σ∈Sk

Rσ,A ⊗
√
ξBRσ,B

√
ξB

)]
. (93)

We have already estimated the trace of Equation (93) in Equation (75). Hence, it suffices to estimate the
operator norm in Equation (93);∥∥∥∥ ∑

π∈Sk;π ̸=e
Wg(π; d)IA ⊗Rπ,B

∥∥∥∥
∞

=
∥∥∥∥ ∑
π∈Sk;π ̸=e

Wg(π; d)Rπ,B
∥∥∥∥
∞

(94)

≤
∑

π∈Sk;π ̸=e
|Wg(π; d)| (95)

= 1
d(d− 1) · · · (d− k + 1) − |Wg(e; d)| (96)

≤ 1
dk

(
1 +O

(
k2

d

))
− 1
dk

(
1−O

(
k

d2

))
(97)

=O
(

k2

dk+1

)
, (98)

where we have used

• ∥A⊗B∥∞ = ∥A∥∞∥B∥∞ for any matrix A and B in the first equality;

• triangle inequality and ∥Rπ∥∞ ≤ 1 for any π ∈ Sk in the first inequality;

• Lemma 4.5 in the second equality, and Lemma 4.6 in the last inequality.

From Equations (75), (93) and (98), we can bund the second term in Equation (71) as follows;∣∣∣∣∣Tr
[
MAB

∑
σ,π∈Sk,
π ̸=e

Wg(π; d)R†σ,A ⊗
√
ξBR

†
πσ,B

√
ξB

]∣∣∣∣∣ ≤k!
(
d+ k − 1

k

)
O

(
k2

dk+1

)
≤ O

(
k2

d

)
. (99)

Therefore, from Equations (71), (79) and (99), we have∣∣∣∣∣Tr
[
MAB

(
(M(k)

Haar,A ⊗ idB)(ψAB)−
∑
σ∈Sk

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ψA′B]

)]∣∣∣∣∣ ≤ O
(
k2

d

)
. (100)

for any 0 ≤M ≤ I . This implies that the first term in Equation (62) is at most O(k2/d).
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Estimation of the second term in Equation (62). To conclude the proof, let us estimate the second term in
Equation (62). To do so, it suffices to show the following;∣∣∣∣∣Tr

[
(M(k)

Haar,A ⊗ idB)(ψAB)−
∑
σ∈Sk

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ψA′B]

]∣∣∣∣∣ ≤ O
(
k2

d

)
(101)

It is clear Tr[(M(k)
Haar,A ⊗ idB)(ψAB)] = 1. On the other hand,

Tr
[ ∑
σ∈Sk

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ψA′B]

]
(102)

= 1
dk

Tr
[
IA ⊗ TrA′ [ψA′B]

]
+ Tr

[ ∑
σ∈Sk;σ ̸=e

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ψA′B]

]
(103)

=1 + 1
dk

∑
σ∈Sk;σ ̸=e

Tr[Rσ,A]Tr[(Rσ,A′ ⊗ IB)ψA′B] (104)

Thus, ∣∣∣∣∣Tr
[

E
U←µd

(U⊗kA ⊗ IB)ψAB(U †⊗kA ⊗ IB)−
∑
π∈Sk

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ψA′B]

]∣∣∣∣∣ (105)

= 1
dk

∣∣∣∣∣ ∑
σ∈Sk;σ ̸=e

Tr[Rσ,A]Tr[(Rσ,A′ ⊗ IB)ψA′B]
∣∣∣∣∣ (106)

≤ 1
dk

∑
σ∈Sk;σ ̸=e

|Tr[Rσ,A]Tr[(Rσ,A′ ⊗ IB)ψA′B]| (107)

≤ 1
dk

∑
σ∈Sk;σ ̸=e

|Tr[Rσ,A]| (108)

= 1
dk

( ∑
σ∈Sk

Tr[Rσ,A]− Tr[IA]
)

(109)

= 1
dk

(
k!Tr[Π(d,k)

sym,A]− Tr[IA]
)

(110)

= 1
dk

(
k!
(
d+ k − 1

k

)
− dk

)
(111)

≤O
(
k2

d

)
, (112)

which implies that the second term in Equation (62) is at most O(k2/d). Here we have used

• Equation (104) in the first equality;

• |Tr[(Rσ,A′ ⊗ IB)ψA′B]| ≤ 1 for all σ ∈ Sk in the second inequality;

• |Tr[Rσ,A]| = Tr[Rσ,A] for all σ ∈ Sk in the second equality;

• Lemma 2.11 in the third and fourth equality.
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Therefore, by putting together Equations (62), (100) and (112), we have the desired result;∥∥∥∥∥∥(M(k)
Haar,A ⊗ idB)(ψAB)−

∑
σ∈Sk

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ψA′B]

∥∥∥∥∥∥
1

≤ O
(
k2

d

)
. (113)

Remark 4.8. Our bound in Lemma 4.7 is optimal because ρ = Π(d,k)
sym

Tr[Π(d,k)
sym ]

achieve the upper bound. We can

check this as follows: from the concrete expression of Π(d,k)
sym in Lemma 2.11, we have

M(k)
Haar(Π

(d,k)
sym ) = E

U←µd

U⊗kΠ(d,k)
sym U †⊗k = 1

k!
∑
σ∈Sk

E
U←µd

U⊗kRσU
†⊗k = 1

k!
∑
σ∈Sk

Rσ = Π(d,k)
sym , (114)

where we have used RσU⊗k = U⊗kRσ for any σ ∈ Sk and any U ∈ U(d). On the other hand,∑
σ∈Sk

1
dk

Tr[Π(d,k)
sym Rσ]R†σ =

∑
σ∈Sk

1
dk

Tr[Π(d,k)
sym ]R†σ (115)

= 1
dk

(
d+ k − 1

k

) ∑
σ∈Sk

R†σ (116)

= (1 +O(k2/d)) 1
k!
∑
σ∈Sk

R†σ (117)

= (1 +O(k2/d))Π(d,k)
sym , (118)

where we have used Π(d,k)
sym Rσ = Π(d,k)

sym for any σ ∈ Sk in the first equality, and Lemma 2.11 in the second
and the last equality. Therefore,∥∥∥∥∥∥M(k)

Haar

( Π(d,k)
sym

Tr[Π(d,k)
sym ]

)
−
∑
σ∈Sk

1
dk

Tr
[ Π(d,k)

sym

Tr[Π(d,k)
sym ]

Rσ

]
R†σ

∥∥∥∥∥∥
1

= O

(
k2

d

)∥∥∥∥∥ Π(d,k)
sym

Tr[Π(d,k)
sym ]

∥∥∥∥∥
1

= O

(
k2

d

)
. (119)

5 PRFSGs and PRSGs in the non-adaptive inverseless QHRO Model

In this section, we construct selective secure PRFSGs in the non-adaptive inverseless QHRO model.

Theorem 5.1. Selective secure PRFSGs exist in the non-adaptive inverseless QHRO model.

This is shown by the following theorem.

Theorem 5.2. Let d,m, t, ℓ ∈ N such that d >
√

6(tℓ + m)7/4. Let ν be the unitary 1-design over U(d).
Then, for any quantum state ρ and distinct x1, ..., xℓ ∈ [d],∥∥∥∥ E

U←µd,
P←ν

ℓ⊗
i=1

(UP |xi⟩ ⟨xi|P †U †)⊗tA ⊗ U
⊗m
B ρBCU

†⊗m
B −

ℓ⊗
i=1

(
E

|ψi⟩←µs
d

|ψi⟩ ⟨ψi|⊗t
)

A
⊗ E
U←νd

U⊗mB ρBCU
†⊗m
B

∥∥∥∥
1

≤O
(√

mℓ

d

)
+O

((tℓ+m)2

d

)
, (120)

where µsd denotes the Haar mesure over all d-dimensional states.
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Before proving Theorem 5.2, we show Theorem 5.1 assuming it.

Proof of Theorem 5.1. Since the proof is the same, we only show the existence of PRFSGs in the QHRO
model. Let λ ∈ N be a security parameter and U := {Un}n∈N be a single common Haar random unitary.
Then, the following QPT algorithm GU becomes a PRFSG:

• For k, x ∈ {0, 1}λ, GU (k, x) prepares Xk |x⟩ and query it to U , then outputs |ϕk(x)⟩ := UλX
k |x⟩.

LetAU be an adversary that queries ξBC to U⊗m(λ)
λ,B ⊗ (

⊗r(λ)
i=1 Un(i))C before receiving challenge states from

the challnger, where r and m are a polynomial of λ, and n(i) ̸= λ for all i ∈ [r]. Note that this does not lose
the generality. Then, for any polynomial t, ℓ, and any x1, ..., xℓ ∈ {0, 1}λ, the probability that AU outputs 1
when it receives |ϕk(x1)⟩⊗t ⊗ ...⊗ |ϕk(xℓ)⟩⊗t is

Pr
U←µ,

k←{0,1}λ

[1← AU (|ϕk(x1)⟩ ⟨ϕk(x1)|⊗t ⊗ ...⊗ |ϕk(xℓ)⟩ ⟨ϕk(xℓ)|⊗t)] (121)

= E
U←µ,

k←{0,1}λ

ℓ⊗
i=1

(UλXk |xi⟩ ⟨xi|Xk†U †λ)⊗tA ⊗ (U⊗mλ,B ⊗
r(λ)⊗
i=1

Un(i),C)ξBC(U⊗mλ,B ⊗
r(λ)⊗
i=1

Un(i),C)† (122)

= E
Uλ←µ2λ ,

k←{0,1}λ

ℓ⊗
i=1

(UλXk |xi⟩ ⟨xi|Xk†U †λ)⊗tA ⊗ U
⊗m
λ,BρBCU

†⊗m
λ,B (123)

= E
Uλ←µ2λ ,
P←ν

ℓ⊗
i=1

(UλP |xi⟩ ⟨xi|P †U †λ)⊗tA ⊗ U
⊗m
λ,BρBCU

†⊗m
λ,B , (124)

where

• ρBC is defined as

ρBC := (IB ⊗
r(λ)⊗
i=1

Un(i),C)ξBC(IB ⊗
r(λ)⊗
i=1

Un(i),C)†, (125)

and we have inserted it in the second equality since n(i) ̸= λ for all i ∈ [r];

• ν is the uniform distribution over all λ-qubit Pauli operator, and, in the last equality, we have used

E
k←{0,1}λ

Xk |x⟩ ⟨x|Xk† = E
k,k′←{0,1}λ

XkZk
′ |x⟩ ⟨x|Z†k′

Xk† = E
P←ν

P |x⟩ ⟨x|P † (126)

for any x ∈ {0, 1}λ since any Pauli Z does not cahnge |x⟩ except for a global phase.

On the other hand, we have

Pr
U←µ2λ ,

|ψ1⟩,...,|ψℓ⟩←µs
2λ

[1← AU (|ψ1⟩ ⟨ψ1|⊗t ⊗ ...⊗ |ψℓ⟩ ⟨ψℓ|⊗t)] (127)

=
ℓ⊗
i=1

(
E

|ψi⟩←µs
2λ

|ψi⟩ ⟨ψi|⊗t
)

A
⊗ E
U←µ

(U⊗mλ,B ⊗
r(λ)⊗
i=1

Un(i),C)ξBC(U⊗mλ,B ⊗
r(λ)⊗
i=1

Un(i),C)† (128)

=
ℓ⊗
i=1

(
E

|ψi⟩←µs
2λ

|ψi⟩ ⟨ψi|⊗t
)

A
⊗ E
Uλ←µ2λ

U⊗mλ,BρBCU
†⊗m
λ,B , (129)
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where ρBC is defined above. Therefore∣∣∣∣ Pr
U←µ,

k←{0,1}λ

[1← AU (|ϕk(x1)⟩ ⟨ϕk(x1)|⊗t ⊗ ...⊗ |ϕk(xℓ)⟩ ⟨ϕk(xℓ)|⊗t)]

− Pr
U←µ2λ ,

|ψ1⟩,...,|ψℓ⟩←µs
2λ

[1← AU (|ψ1⟩ ⟨ψ1|⊗t ⊗ ...⊗ |ψℓ⟩ ⟨ψℓ|⊗t)]
∣∣∣∣ (130)

≤
∥∥∥∥ E
Uλ←µ2λ ,
P←ν

ℓ⊗
i=1

(UλP |xi⟩ ⟨xi|P †U †λ)⊗tA ⊗ U
⊗m
λ,BρBCU

†⊗m
λ,B −

ℓ⊗
i=1

(
E

|ψi⟩←µs
2λ

|ψi⟩ ⟨ψi|⊗t
)

A
⊗ E
Uλ←µ2λ

U⊗mλ,BρBCU
†⊗m
λ,B

∥∥∥∥
1

(131)

≤O
(√

mℓ

2λ
)

+O

((tℓ+m)2

2λ
)

(132)

≤negl(λ), (133)

which implies GU is a PRFSG in the non-adaptive QHRO model. Here, we have used Lemma 2.3
and Theorem 5.2 in the second inequality.

Before a proof of Theorem 5.2, we show the following lemma.

Lemma 5.3. Let d, k, ℓ ∈ N and ν be a unitary 1-design over U(d). For ℓ distinct x1, ..., xℓ ∈ [d], define
x := (x1, ..., xℓ) and

Λ(x) :=
∑

y1,...,yk∈[d]/{x1,...,xℓ}

k⊗
i=1
|yi⟩ ⟨yi| . (134)

Then, for any dk-dimensional state ρ,

Tr[Λ(x) E
P←ν

P⊗kρP †⊗k] ≥ 1− mℓ

d
. (135)

Proof of Lemma 5.3. Note that

I − Λ(x) =
∑

y1,...,yk∈[d]
yi=xj for some i∈[k] and j∈[ℓ]

k⊗
i=1
|yi⟩ ⟨yi| ≤

∑
i∈[k],j∈[ℓ]

Λi,j , (136)

where Λi,j := I⊗i−1 ⊗ |xj⟩ ⟨xj | ⊗ I⊗k−i. Then,

Tr[(I − Λ(x)) E
P←ν

P⊗kρP †⊗k] ≤
∑

i∈[k],j∈[ℓ]
Tr[Λi,j E

P←ν
P⊗kρP †⊗k] (137)

=
∑

i∈[k],j∈[ℓ]
Tr[ρ E

P←ν
P †⊗kΛi,jP⊗k] (138)

=
∑

i∈[k],j∈[ℓ]
Tr[ρI

⊗k

d
] (139)

= mℓ

d
, (140)
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which implies Equation (135). Here, the inequality follows from Equation (136), and the second equality
follows from the definition of Λi,j and ν is a 1-design as follows:

E
P←ν

P †⊗kΛi,jP⊗k = E
P←ν

I⊗i−1 ⊗ P † |xj⟩ ⟨xj |P ⊗ I⊗k−i = 1
d
I⊗k. (141)

Now we are reday to prove Theorem 5.2.

Proof of Theorem 5.2. Let x := (x1, ..., xℓ) and

Λ(x) :=
∑

y1,...,yk∈[d]/{x1,...,xℓ}

k⊗
i=1
|yi⟩ ⟨yi| . (142)

Define

ξBC = E
P←ν

P⊗kB ρBCP
†⊗k
B (143)

and

ξ′BC := Λ(x)
B ξBCΛ(x)

B

Tr[Λ(x)
B ξBC]

. (144)

Note that

∥ξBC − ξ′BC∥1 ≤ O
(√

mℓ

d

)
(145)
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from Lemmata 2.6 and 5.3. Let us consider the following sequence of matrices:

ρ
(0)
ABC := E

U←µd,
P←ν

ℓ⊗
i=1

(UP |xi⟩ ⟨xi|P †U †)⊗tA ⊗ U
⊗m
B ρBCU

†⊗m
B (146)

ρ
(1)
ABC := E

U←µd

ℓ⊗
i=1

(U |xi⟩ ⟨xi|U †)⊗tA ⊗ U
⊗m
B ξBCU

†⊗m
B (147)

ρ
(2)
ABC := E

U←µd

ℓ⊗
i=1

(U |xi⟩ ⟨xi|U †)⊗tA ⊗ U
⊗m
B ξ′BCU

†⊗m
B (148)

ρ
(3)
ABC :=

∑
π∈Stℓ+m

1
dtℓ+m

Rπ,AB ⊗ TrAB[R†π,AB(
ℓ⊗
i=1
|xi⟩ ⟨xi|⊗tA ⊗ ξ

′
BC)] (149)

ρ
(4)
ABC :=

( ∑
σ∈St

1
dt
Rσ

)⊗ℓ
A
⊗
∑
τ∈Sm

1
dm

Rτ,B ⊗ TrB[R†τ,Bξ
′
BC] (150)

ρ
(5)
ABC :=

ℓ⊗
i=1

(
E

|ψi⟩←µs
d

|ψi⟩ ⟨ψi|⊗t
)

A
⊗
∑
τ∈Sm

1
dm

Rτ,B ⊗ TrB[R†τ,Bξ
′
BC] (151)

ρ
(6)
ABC :=

ℓ⊗
i=1

(
E

|ψi⟩←µs
d

|ψi⟩ ⟨ψi|⊗t
)

A
⊗ E
U←νd

U⊗mB ξ′BCU
†⊗m
B (152)

ρ
(7)
ABC :=

ℓ⊗
i=1

(
E

|ψi⟩←µs
d

|ψi⟩ ⟨ψi|⊗t
)

A
⊗ E
U←νd

U⊗mB ξBCU
†⊗m
B (153)

ρ
(8)
ABC :=

ℓ⊗
i=1

(
E

|ψi⟩←µs
d

|ψi⟩ ⟨ψi|⊗t
)

A
⊗ E
U←νd

U⊗mB ρBCU
†⊗m
B . (154)

We argue ρ(i−1) is indistinguishable from ρ(i) for each i ∈ [8]:

• ρ(0)
ABC = ρ

(1)
ABC follows from the left and right invariance of the Haar measure:

ρ
(0)
ABC = E

U←µd,
P←ν

ℓ⊗
i=1

(UP |xi⟩ ⟨xi|P †U †)⊗tA ⊗ U
⊗m
B ρBCU

†⊗m
B (155)

= E
U←µd,
P←ν

ℓ⊗
i=1

(U ′ |xi⟩ ⟨xi|U ′†)⊗tA ⊗ (U ′P †)⊗kB ρBC(U ′P †)†⊗kB (156)

= E
U ′←νd

ℓ⊗
i=1

(U ′ |xi⟩ ⟨xi|U ′†)⊗tA ⊗ U
′⊗k
B ( E

P←ν
P⊗kB ρBCP

⊗k
B )U †⊗mB (157)

= E
U ′←νd

ℓ⊗
i=1

(U ′ |xi⟩ ⟨xi|U ′†)⊗tA ⊗ U
′⊗k
B ξBCU

†⊗m
B (158)

= ρ
(1)
ABC, (159)

where we replaced the expectation of U with that of U ′ := UP in the second equality.

• ∥ρ(1)
ABC − ρ

(2)
ABC∥1 ≤ O(

√
mℓ/d) from Equation (145).
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• ∥ρ(2)
ABC − ρ

(3)
ABC∥1 ≤ O((tℓ+m)2/d) by Lemma 4.7.

• ρ(3)
ABC = ρ

(4)
ABC from the following observation. Suppose that π ∈ Stℓ+m cannot be decomposed into

π = (σ1, ..., σℓ, τ) for any σ1, ..., σℓ ∈ St and τ ∈ Sm. Then, for any state |ϕ⟩B,

(IA ⊗ Λ(x)
B )Rπ,AB(

ℓ⊗
i=1
|xi⟩⊗t)A |ϕ⟩B = 0 (160)

from the definition of Λ(x), which implies

TrAB[R†π,AB(
ℓ⊗
i=1
|xi⟩ ⟨xi|⊗tA ⊗ ξ

′
BC)] = TrAB[R†π,AB(

ℓ⊗
i=1
|xi⟩ ⟨xi|⊗tA ⊗ ξ

′
BC)ΛB] = 0 (161)

for such π ∈ Stℓ+m. On the other hand, if π ∈ Stℓ+m can be decomposed into π = (σ1, ..., σℓ, τ) for
some σ1, ..., σℓ ∈ St and τ ∈ Sm, we have

TrAB

[
R†π,AB

( ℓ⊗
i=1
|xi⟩ ⟨xi|⊗tA ⊗ ξ

′
BC

)]
= TrAB

[
R†(σ1,...,σℓ,τ),AB

( ℓ⊗
i=1
|xi⟩ ⟨xi|⊗tA ⊗ ξ

′
BC

)]
(162)

= TrAB

[(( ℓ⊗
i=1

Rσi

)
A
⊗Rτ,B

)†( ℓ⊗
i=1
|xi⟩ ⟨xi|⊗tA ⊗ ξ

′
BC

)]
(163)

=
( ∏
i∈[ℓ]

Tr[R†σi
|xi⟩ ⟨xi|⊗t]

)
TrB[R†τ,Bξ

′
BC] (164)

= TrB[R†τ,Bξ
′
BC]. (165)

Thus,

ρ
(3)
ABC =

∑
π∈Stℓ+m

1
dtℓ+m

Rπ,AB ⊗ TrAB

[
R†π,AB

( ℓ⊗
i=1
|xi⟩ ⟨xi|⊗tA ⊗ ξ

′
BC

)]
(166)

=
∑

σ1,...,σℓ∈St,τ∈Sm

1
dtℓ+m

R(σ1,...,σℓ,τ),AB ⊗ TrAB

[
R†(σ1,...,σℓ,τ),AB

( ℓ⊗
i=1
|xi⟩ ⟨xi|⊗tA ⊗ ξ

′
BC

)]
(167)

=
∑

σ1,...,σℓ∈St,τ∈Sm

1
dtℓ+m

( ℓ⊗
i=1

Rσi

)
A
⊗Rτ,B ⊗ TrB[R†τ,Bξ

′
BC] (168)

=
( ∑
σ∈St

1
dt
Rσ

)⊗ℓ
A
⊗
∑
τ∈Sm

1
dm

Rτ,B ⊗ TrB[R†τ,Bξ
′
BC] (169)

= ρ
(4)
ABC. (170)

• ∥ρ(4)
ABC − ρ

(5)
ABC∥1 ≤ O(ℓt2/d) as follows: for each j ∈ [ℓ+ 1], define

ρ
′(j)
ABC :=

( j−1⊗
i=1

(
E

|ψi⟩←µs
d

|ψi⟩ ⟨ψi|⊗t
)
⊗
( ∑
σ∈St

1
dt
Rσ

)⊗ℓ−j+1)
A
⊗
∑
τ∈Sm

1
dm

Rτ,B ⊗ TrB[R†τ,Bξ
′
BC].

(171)
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From Lemma 2.11,

E
|ψi⟩←µs

d

|ψi⟩ ⟨ψi|⊗t =
∑
σ∈St

1
d(d− 1)...(d− t+ 1)Rσ =

(
1 +O

(
t2

d

)) ∑
σ∈St

1
dt
Rσ, (172)

which implies ∥ρ′(j)ABC − ρ
′(j+1)
ABC ∥1 ≤ O(t2/d) for all j ∈ [ℓ]. Since ρ′(1)

ABC = ρ
(4)
ABC and ρ′(ℓ+1)

ABC =
ρ

(5)
ABC, we have ∥ρ(4)

ABC − ρ
(5)
ABC∥1 ≤ O(ℓt2/d).

• ∥ρ(5)
ABC − ρ

(6)
ABC∥1 ≤ O(m2/d) from Lemma 4.7.

• ∥ρ(6)
ABC − ρ

(7)
ABC∥1 ≤ O(

√
mℓ/d) from Equation (145).

• ρ(7)
ABC = ρ

(8)
ABC follows from the left and right invariance of the Haar measure:

ρ
(7)
ABC =

ℓ⊗
i=1

(
E

|ψi⟩←µs
d

|ψi⟩ ⟨ψi|⊗t
)

A
⊗ E
U←νd

U⊗mB ξBCU
†⊗m
B (173)

=
ℓ⊗
i=1

(
E

|ψi⟩←µs
d

|ψi⟩ ⟨ψi|⊗t
)

A
⊗ E
U←νd

U⊗mB ( E
P←ν

P⊗kB ρBCP
†⊗k)U †⊗mB (174)

=
ℓ⊗
i=1

(
E

|ψi⟩←µs
d

|ψi⟩ ⟨ψi|⊗t
)

A
⊗ E
U←νd,P←ν

(UP )⊗kB ρBC(UP )†⊗kB (175)

=
ℓ⊗
i=1

(
E

|ψi⟩←µs
d

|ψi⟩ ⟨ψi|⊗t
)

A
⊗ E
U ′←νd

U ′⊗kB ρBCU
′†⊗k
B (176)

= ρ
(8)
ABC, (177)

where we replaced the expectation of U with that of U ′ := UP in the last equality.

Therefore, from the triangle inequality, we have

∥ρ(0)
ABC − ρ

(7)
ABC∥1 ≤ O

(√
mℓ

d

)
+O

((tℓ+m)2

d

)
, (178)

which concludes the proof.

6 Adaptively-secure PRFSGs in the invertible QHRO Model

In this section, we prove the following theorem.

Theorem 6.1. Classically-accessible adaptively-secure PRFSGs exist in the invertible QHRO model.

6.1 Construction

We consider the following construction:

V U
k |ϕ⟩ = Xk1 ◦ U ◦Xk0 |ϕ⟩ (179)
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where a key k = (k0, k1) ∈ K specifies two independent operators Xk0 , Xk1 ∈ U(d).10 The following
theorem shows that V U

k is a pseudorandom unitary if the queries are all classical, meaning that the input register
of V U

k is measured in a computational basis before every query. This implies Theorem 6.1, combining with
the proof of [AGQY22, Theorem 5.14], which says that if U is a Haar random unitary, then |x⟩ 7→ |x⟩⊗U |x⟩
is adaptively-secure PRFSGs.

Theorem 6.2. Let Vk be in Equation (179). Suppose that {Xkb}k is such that, for any b ∈ {0, 1} and
x ∈ {0, ..., d− 1}, Xkb |x⟩ is uniformly distributed over {|0⟩ , ..., |d− 1⟩} for random k. For any A having
access to two oracles that makes p classical-input queries to the first oracle and q queries11 to the second
oracle (including inverse queries), it holds that∣∣∣∣ Pr

U←µd,k←K

[
AV U

k ,(U,U†) → 1
]
− Pr
U←µd,W←µd

[
AW,(U,U†) → 1

]∣∣∣∣ = O

√p3 + p2q2

d

 . (180)

6.2 Preparation I: Lemmas

We use the following lemmas to prove the security of Equation (179).
For two quantum states |a⟩ and |b⟩, define the generalized swap operation

SWAP|a⟩,|b⟩ : α |a⟩+ β |b⟩+ |c⟩ 7→ α |b⟩+ β |a⟩+ |c⟩

for any |c⟩ ∈ span(|a⟩ , |b⟩)⊥.12 It is the swap operation between two states if ⟨a|b⟩ = 0. We sometimes use
SWAPa,b for brevity.

Our two main lemmas are stated below. We give the proofs in Sections 6.5 and 6.6.

Lemma 6.3 (Unitary reprogramming lemma). Let D be a distinguisher in the following experiment:

Phase 1: D outputs a unitary F0 = F over m-qubit and a quantum algorithm C whose output is a quantum
state ρ and a classical string that specifies a classical description of the following data: a set S of
m-qubit pure states and a unitary US such that, for the span S of all states in S, US acts as the identity
on the image of I −ΠS , where ΠS is the projection to S. Let

ϵ := sup
|ϕ⟩:m-qubit state

E
C

[
∥ΠS |ϕ⟩∥2

]
. (181)

Phase 2: C is executed and outputs ρ, S and US . Let F1 := F ◦ US . A bit b is chosen uniformly at random,
and D is given ρ and quantum access to Fb and makes q queries in expectation if b = 0, and sends the
quantum state νb to the next phase.

Phase 3: D loses access to Fb and receives νb and the classical string specifying the classical descriptions S
and US outputted by C in the second phase. Finally, D outputs a guess b′.

Then, it holds that

|Pr [D → 1|b = 1]− Pr [D → 1|b = 0]| ≤ q ·
√

2ϵ. (182)

In fact, the trace distance TD(ν0, ν1) between two cases after Phase 2 is at most q
√

2ϵ.
10The independency of k0 and k1 are used in the proof of Claim 1.
11We do not count the queries used by V U

k .
12This map is well-defined unitary as a (rotated) reflection in span(|a⟩ , |b⟩).
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Lemma 6.4 (Unitary resampling lemma). Let D be a distinguisher in the following experiment:

Phase 1: D specifies two distributions of d-dimensional qudit pure quantum states Dµ
0 , D

µ
1 such that

E |µi⟩ ⟨µi| = I/d for i = 0, 1. D makes at most q forward or inverse queries to a d-dimensional Haar
random unitary U (0) := U , and sends the quantum state ν to the next phase.

Phase 2: Sample |µ0⟩ ← Dµ
0 , |µ1⟩ ← Dµ

1 . A bit b ∈ {0, 1} is uniformly chosen, andD, given ν and classical
descriptions of |µ0⟩ , |µ1⟩, is allowed to make arbitrarily many (forward or inverse) queries to an oracle
that is either U (0) if b = 0 or U (1) := U ◦ SWAPµ0,µ1 if b = 1. Finally, D outputs a bit b′.

Then, the following holds:

∣∣Pr
[
b′ = 1|b = 0

]
− Pr

[
b′ = 1|b = 1

]∣∣ ≤ 2
√

6q
d
. (183)

In fact, the trace distance between two distributions (ν, |µ0⟩ , |µ1⟩ , U (0)) and (ν, |µ0⟩ , |µ1⟩ , U (1)) is at most
2
√

6q
d where U and U ′ are perfectly given as their classical description.

The following fact is (implicitly) used in this section multiple times.

6.3 Preparation II: Simulations

We occasionally consider that the algorithms or oracles have perfect knowledge of quantum states or unitaries,
without hurting the algorithm’s behavior. This section explains the classical simulation or descriptions of
quantum objects. Here and below, we fix a way to express (unnormalized) pure quantum states |ϕ⟩ and unitary
U by classical strings str(|ϕ⟩) and str(U)—for example by the amplitudes of the state or matrix that describes
the unitary.

We define the classical simulation of the unitary oracle U with the classical-input access as follows.

Definition 6.5. Let U be a d × d unitary. We define a classical simulation oracle Sim(U) with the
classical-input queries that are defined as follows:

• It maintains a list T of tuples of two strings representing quantum states, initialized by T = ∅.

• For the j-th query xj ∈ {0, ..., d− 1}, it does:

– If there is no ℓ < j such that (xℓ, str(|ψℓ⟩)) in T , it defines |ψj⟩ := U |xj⟩ and returns str(|ψj⟩).
It appends (xj , str(|ψj⟩)) at the end of T .

– If there is ℓ < j such that (xℓ, str(|ψℓ⟩)) in T , it returns str(|ψℓ⟩). It samples a new x′ ∈
{0, ..., d−1} where there is no ℓ < j satisfying the above condition, and appends (x′, str(U |x′⟩))
at the end of T .13

The list T after the j-th query is denoted by

Tj = {(xj , str(|ψi⟩))}i∈[j] . (184)

We define Xj := span(|x1⟩ , ..., |xj⟩) and Ψj := span(|ψ1⟩ , ..., |ψj⟩).
13This step is to maintain the same size of the list.
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Lemma 6.6. Let AW be an oracle algorithm that only makes classical-input queries to W . Then, there exists
an oracle algorithm Sim(A)Sim(W ) with the same number of queries whose output is identical to AW . In
particular, Pr[AW → 1] = Pr[Sim(A)Sim(W ) → 1].

Proof. We define B := Sim(A) as follows:

• It runs A, but when A makes the j-th query xj to W , B makes query xj to Sim(W ) and obtain
str(|ψj⟩). It recovers |ψj⟩ and returns to A as the output of the j-th query.

• If A terminates, B outputs whatever A outputs.

From the perspective of A, the oracle answers are always identical, proving the lemma.

6.4 Security Proof

Given the lemmas, we will prove Theorem 6.2. In other words, we will prove Equation (180).

Proof of Theorem 6.2. We call the algorithms in the real world when accessing the oracles V U
k , (U,U †), and

in the ideal world when accessing W, (U,U †). Below, we occasionally write U to denote the oracle access
to both U and U †. We let B := Sim(A) and prove the indistinguishability with respect to the simulation
algorithm B with the simulated oracle Sim(W ) or Sim(V U

k ).
Recall B maintains the list T ; after the j-th pure state query, we write

Tj = {xj , str(|ψi⟩))}i∈[j] (185)

to denote the current T , where it holds |ψi⟩ = W |xi⟩ in the ideal world, and

|ψi⟩ = V U
k |xi⟩ = Xk1 ◦ U ◦Xk0 |xi⟩ (186)

for some k in the real-world experiment for i ∈ [j].
We write Πj

i=1fi to denote f1 ◦ ... ◦ fj ; the order is important because we use the notation Π for the
product of unitary operations. Following [ABKM22, pp. 9-10], for any unitary U , we define:

−→
QTj ,U,k :=

j∏
i=1

SWAPXk0 |xi⟩,U†◦(Xk1 )†|ψi⟩,
−→
S Tj ,U,k :=

j∏
i=1

SWAPUXk0 |xi⟩,(Xk1 )†|ψi⟩, (187)

and define

UTj ,k = [U ]Tj ,k := U ◦
−→
QTj ,U,k (188)

for unitaries U . For any |x1⟩ , |x2⟩ , |y1⟩ , |y2⟩ and U , SWAPU |x1⟩,U |y1⟩ ◦ U ◦ SWAP|x2⟩,|y2⟩ equals to

SWAPU |x1⟩,U |y1⟩ ◦ SWAPU |x2⟩,U |y2⟩ ◦ U = U ◦ SWAP|x1⟩,|y1⟩ ◦ SWAP|x2⟩,|y2⟩, (189)

which gives

UTj ,k = −→S Tj ,U,k ◦ U. (190)

We divide the execution of B into p+ 1 phases P0, ..., Pp where Pi describes the execution between the
i-th and (i+ 1)-st queries to the first oracle; P0 corresponds to the execution before the first pure state query.
Let qj denote the expected query number of B to the second oracle during Pj . It holds that q =

∑p
j=0 qj .
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We define the following sequences of experiments:

Hj,0 :U,W,U, · · · ,W,U︸ ︷︷ ︸
P0,...,Pj

, V U
k , UTj ,k,︸ ︷︷ ︸

(j+1)-st pure state query and Pj+1

V U
k , · · · , V U

k , UTj ,k︸ ︷︷ ︸
Pj+2,...,Pp

(191)

Hj,1 :U,W,U, · · · ,W,U︸ ︷︷ ︸
P0,...,Pj

, V
Uj

k , [Uj ]Tj ,k,︸ ︷︷ ︸
(j+1)-st pure state query and Pj+1

V
Uj

k , · · · , V Uj

k , [Uj ]Tj ,k︸ ︷︷ ︸
Pj+2,...,Pp

(192)

Hj,2 :U,W,U, · · · ,W,U︸ ︷︷ ︸
P0,...,Pj

, W,UTj+1,k,︸ ︷︷ ︸
(j+1)-st pure state query and Pj+1

V
Uj

k , · · · , V Uj

k , UTj+1,k︸ ︷︷ ︸
Pj+2,...,Pp

(193)

Hj,3 :U,W,U, · · · ,W,U︸ ︷︷ ︸
P0,...,Pj

, W,UTj+1,k,︸ ︷︷ ︸
(j+1)-st pure state query and Pj+1

V U
k , · · · , V U

k , UTj+1,k︸ ︷︷ ︸
Pj+1,...,Pp

(194)

Hj+1,0 :U,W,U, · · · ,W,U︸ ︷︷ ︸
P0,...,Pj

, W,U,︸ ︷︷ ︸
(j+1)-st pure state query and Pj+1

V U
k , · · · , V U

k , UTj+1,k︸ ︷︷ ︸
Pj+1,...,Pp

(195)

where Uj will be specified later in the proof of Claim 2 where its actual definition is used. The characters
(with super/subscripts) in the descriptions of hybrids denote:

U : It denotes the phases P0, ..., Pp that may contain multiple queries to the unitary U.

V,W : They denote a single pure state query to the corresponding simulation oracle Sim(V ) or Sim(W ).
Recall the oracles also store the query list T . If the j-th query input |xj⟩ coincides with the previous
ℓ-th query for some ℓ < j, the simulation oracle returns |ψℓ⟩ without making the actual query.14

Note that H0,0 and Hp,0 correspond to the real- and ideal-world experiments, respectively.
We write B(Hj,k) to denote the algorithm with the hybrid experiment Hj,k. We will prove the following

claims, which correspond (parts of) [ABKM22, Lemma 6,7]. Note that in Claim 3 we connect the hybrid
Hj,1 and Hj,3 and Hj,2 appears as an intermediate hybrid in between.

Claim 1. |Pr [B(Hj,3)→ 1]− Pr [B(Hj+1,0)→ 1]| ≤ 4qj+1
√

6p2/d for j = 0, ..., p− 1.

Claim 2. |Pr [B(Hj,0)→ 1]− Pr [B(Hj,1)→ 1]| ≤ 2
√

6q/d for j = 0, ..., p− 1.

Claim 3. |Pr [B(Hj,1)→ 1]− Pr [B(Hj,3)→ 1]| ≤ 4
√
p/d for j = 0, ..., p− 1.

We prove these claims later. Given these claims, we prove our main result as follows.

|Pr[B(H0,0)→ 1]− Pr[B(Hp,0)→ 1]| (196)

≤
p−1∑
j=0

4qj+1

√
6p2

d
+ 2

√
6q
d

+ 4
√
p

d

 (197)

≤ 4q

√
6p2

d
+ 2p

√
6q
d

+ 4p
√
p

d
(198)

= O

√p3 + p2q2

d

 . (199)

This proves the desired result.
14For example, even if |ψℓ⟩ = W |xℓ⟩ holds and the j-th oracle query is to V U

k , the oracle returns the stored output |ψℓ⟩. This
resembles the assumptions that no same queries are made in the (classical or post-quantum) random oracle/permutations.
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Proof of Claim 1. Recall this claim compares the following two hybrids:

Hj,3 :U,W,U, · · · ,W,U︸ ︷︷ ︸
P0,...,Pj

, W,UTj+1,k,︸ ︷︷ ︸
(j+1)-st pure state query and Pj+1

V U
k , · · · , V U

k , UTj+1,k︸ ︷︷ ︸
Pj+1,...,Pp

(200)

Hj+1,0 :U,W,U, · · · ,W,U︸ ︷︷ ︸
P0,...,Pj

, W,U,︸ ︷︷ ︸
(j+1)-st pure state query and Pj+1

V U
k , · · · , V U

k , UTj+1,k︸ ︷︷ ︸
Pj+1,...,Pp

(201)

Note that the only difference between the two hybrids is the second oracle in the phase Pj+1. We define the
following distinguisher D using B to invoke the unitary reprogramming lemma (Lemma 6.3):

Phase 1: D samples Haar random unitary U and defines a unitary

F0 = F = |0⟩ ⟨0| ⊗ U + |1⟩ ⟨1| ⊗ U †. (202)

It defines the following algorithm:

C: It samples Haar random unitary W and k ← K. It runs B by answering the queries to the second
oracles using U and one to the first oracles using Sim(W ), until after answering the (j + 1)-st
query to the first oracle with the intermediate state ρ. Until this point, D gets the list

Tj+1 = {(xi, str(|ψi⟩))}i∈[j+1] (203)

of the input-output states to W. It then computes S and US such that

F1 = F ◦ US = |0⟩ ⟨0| ⊗ UTj+1,k + |1⟩ ⟨1| ⊗ U †Tj+1,k
(204)

holds by choosing US := |0⟩ ⟨0| ⊗ −→QTj ,U,k + |1⟩ ⟨1| ⊗ −→Q †Tj ,U,k
.

Explicitly, the following choice of S suffices by definition of UTj+1,k and Equation (190):

{|0⟩ ⊗Xk0 |xi⟩ , |0⟩ ⊗ U † ◦ (Xk1)† |ψi⟩ , |1⟩ ⊗ UXk0 |xi⟩ , |1⟩ ⊗ (Xk1)† |ψi⟩}j+1
i=1 . (205)

We define the following subsets:

S00 := {|0⟩ ⊗Xk0 |xi⟩}j+1
i=1 , S01 := {|0⟩ ⊗ U † ◦ (Xk1)† |ψi⟩}j+1

i=1 , (206)

S10 := {|1⟩ ⊗ UXk0 |xi⟩}j+1
i=1 , S11 := {|1⟩ ⊗ (Xk1)† |ψi⟩}j+1

i=1 . (207)

Phase 2: C is executed and outputs S and ρ, and D is given quantum access to Fb. D resumes running B
given ρ, by answering the queries using Fb. When B makes the (j + 2)-nd pure-state query, this phase
is finished.

Phase 3: D is now given the classical string specifying k,W, Tj+1. D resumes running B, answering the
queries to the first oracle using Sim(V U

k ) (with the list Tj+1) and the queries to the second oracle using
UTj+1,k. Finally, D outputs whatever B outputs.

This distinguisher D fits in Lemma 6.3. Also, if b = 0, the distinguisher accesses the oracle exactly as in
Hj+1,0, whereas b = 1 gives Hj,3.

The expected number of queries in Phase 2 is exactly the expected number of queries in Pj+1, that is,
qj+1. To bound ϵ, note that the last register of each vector in S, described in Equation (205), is applied by
1-design unitaries over random k. We will show that the following inequality holds:

E
C

[
∥ΠS |ϕ⟩∥2

]
≤ 12p2

d
. (208)

The claim is followed by the unitary reprogramming lemma.
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Proof of Equation (208). For any b, c ∈ {0, 1}, Sbc is the set of j + 1 orthonormal states. Let Πbc and Πb

be the projections to the span of Sbc and Sb0 ∪ Sb1. Also note that the states in S00 ∪ S01 and the states in
S10 ∪ S11 are orthogonal. Thus it holds that

∥ΠS |ϕ⟩ ∥2 = ∥Π0 |ϕ⟩ ∥2 + ∥Π1 |ϕ⟩ ∥2 (209)

and we bound each term. Below, we give the upper bound of ∥Π0 |ϕ⟩ ∥2, and the same argument gives the
same upper bound for ∥Π1 |ϕ⟩ ∥2.

Note that Π0Π0b = Π0b. The following can be easily verified:

Π2
0 = (Π0 −Π00 −Π01)2 + (Π00 −Π01)2 (210)

which gives

∥Π0 |ϕ⟩ ∥2 = ∥(Π0 −Π00 −Π01) |ϕ⟩ ∥2 + ∥(Π00 −Π01) |ϕ⟩ ∥2 (211)
≤ ∥Π00(Π0 −Π00 −Π01) |ϕ⟩ ∥2 + ∥(Π0 −Π00)(Π0 −Π00 −Π01) |ϕ⟩ ∥2 (212)
+ (∥Π00 |ϕ⟩ ∥+ ∥Π01 |ϕ⟩ ∥)2 (213)

= ∥Π00Π01 |ϕ⟩ ∥2 + ∥(Π0 −Π00)(Π0 −Π01) |ϕ⟩ ∥2 + (∥Π00 |ϕ⟩ ∥+ ∥Π01 |ϕ⟩ ∥)2 (214)
≤ ∥Π00Π01∥22 + ∥(Π0 −Π00)(Π0 −Π01)∥22 + 2∥Π00 |ϕ⟩ ∥2 + 2∥Π01 |ϕ⟩ ∥2 (215)

where the first equality is obtained by considering ⟨ϕ| (·) |ϕ⟩ on Equation (210), and the inequality holds
because 1) we decompose the first term by the range of Π00 and (Π0 − Π00), and 2) we apply the triangle
inequality on the second term. In the last inequality, we use the property of the matrix 2-norm and
(a+ b)2 ≤ 2a2 + 2b2. Using this inequality, we will prove that, using j ≤ p− 1,

E
C
∥Π0 |ϕ⟩ ∥2 = 2(j + 1)2 + 4(j + 1)

d
≤ 6p2

d
. (216)

By similarly bounding E ∥Π1 |ϕ⟩ ∥2, we have the inequality ∥ΠS |ϕ⟩ ∥2 ≤ 12p2

d , which concludes the proof of
Equation (208).

Recall that |ψi⟩ = W |xi⟩ for all i. For convenience, write S00 = {|a1⟩ , ..., |aj+1⟩} and S01 =
{|b1⟩ , ..., |bj+1⟩} where |ai⟩ := |0⟩ ⊗Xk0 |xi⟩ ∈ S00 and |bℓ⟩ := |0⟩ ⊗ U †(Xk1)†W |xℓ⟩ ∈ S01. For any
i, ℓ ∈ {1, ..., j + 1}, it holds that

E
k
∥ |ai⟩ ⟨ai| · |bℓ⟩ ⟨bℓ| ∥22 = E

k
| ⟨bℓ|ai⟩ |2 = E

k
| ⟨xℓ|W †Xk1UXk0 |xi⟩ |2 = 1

d
(217)

because Ek[Xk0 |xi⟩ ⟨xi| (Xk0)†] = I/d.
We now give the upper bounds on the terms in Equation (215) in expectation over W,k, which are

randomness chosen by C. The third and last terms can be bounded by 2(j + 1)/d each easily.
Note that S0b is an orthonormal set for b = 0, 1, thus Π00 =

∑
|ai⟩ ⟨ai| ,Π01 =

∑
|bi⟩ ⟨bi| . It holds that

E
k
∥Π00Π01∥22 = E

k
∥

∑
1≤i,ℓ≤j+1

|ai⟩ ⟨ai| · |bℓ⟩ ⟨bℓ| ∥22 (218)

≤ E
k

∑
1≤i,ℓ≤j+1

∥ |ai⟩ ⟨ai| · |bℓ⟩ ⟨bℓ| ∥22 = (j + 1)2

d
(219)

36



where we use ∥A+B∥2 ≤ max(∥A∥2, ∥B∥2) ≤
√
∥A∥22 + ∥B∥22 for two orthogonal projectors A,B such

that AB = 0, and ∥AB∥2 = ∥BA∥2 for two matrices. This gives an upper bound on the first term.
For the second term, note that ∥(Π0 −Π00)(Π0 −Π01)∥2 = ∥Π01Π00∥2 is well-known15 if their ranges

have only a trivial intersection {0}, which happens with probability 1. This gives the same upper bound on
the second term.

Proof of Claim 2. Recall this claim compares the following two hybrids:

Hj,0 :U,W,U, · · · ,W,U︸ ︷︷ ︸
P0,...,Pj

, V U
k , UTj ,k,︸ ︷︷ ︸

(j+1)-st pure state query and Pj+1

V U
k , · · · , V U

k , UTj ,k︸ ︷︷ ︸
Pj+2,...,Pp

(220)

Hj,1 :U,W,U, · · · ,W,U︸ ︷︷ ︸
P0,...,Pj

, V
Uj

k , [Uj ]Tj ,k,︸ ︷︷ ︸
(j+1)-st pure state query and Pj+1

V
Uj

k , · · · , V Uj

k , [Uj ]Tj ,k︸ ︷︷ ︸
Pj+2,...,Pp

(221)

Note that Uj is yet to be defined; we will define Uj by U ◦ SWAPµ0,µ1 for some d-dimensional qudit states
|µ0⟩ , |µ1⟩. The only difference between the two hybrids is that the unitary U in Hj,0 from the (j + 1)-st
phase is replaced by Uj in Hj,1.

We define the following distinguisher D using B to invoke Lemma 6.4:

Phase 1: D samples a d-dimensional Haar unitary W and specifies the following two distributions of
|µ0⟩ , |µ1⟩:

Dµ
0 := {|0⟩ , ..., |d− 1⟩}, (222)

Dµ
1 := {d-dimensional pure states}. (223)

Given access to a d-dimensional Haar random unitary U (0) := U , D runs BSim(W ),U until B asks the
(j + 1)-st query xj+1 to Sim(W ). This phase is finished before answering this query. Until this point,
D gets the list Tj = ((xi, str(|ψi⟩)))i∈[j] of the input-output states to W .

Phase 2: Samples |µ0⟩ ← Dµ
0 , i.e., µ0 ← {0, ..., d− 1}, and |µ1⟩ ← Dµ

1 and b← {0, 1}. Now D got the
(j + 1)-st query |xj+1⟩ for some xj+1 ∈ {0, ..., d − 1}. D defines k so that Xk0 |xj+1⟩ = |µ0⟩ and
randomly chooses k1. Given oracle access to U (b), D resumes running B, answering the remaining
queries to the first oracle using V U(b)

k and the remaining queries to the second oracle using [U (b)]Tj ,k.
In particular, the (j + 1)-st query xj+1 to the first oracle is answered by U |µ1⟩.

The distinguisher fits in Lemma 6.4. Also, by defining Uj := U (1), the case of b = 0 corresponds to
Hj,0 and b = 1 corresponds to Hj,1, respectively. Since E |µi⟩ ⟨µi| = I/d holds for i = 0, 1, the unitary
resampling lemma proves the claim, where the number of queries in the first phase is q0 + ...+ qj ≤ q.

Proof of Claim 3. We consider the following variations of the second phase of the experiment in the proof of
Claim 2, where we highlight the changed parts by red and the omitted parts are identical to Phase 2:

Phase 2-1: Samples |µ0⟩ ← Dµ
0 and |µ′1⟩ ← Dµ

1 and b ← 1. Define |µ1⟩ :=
(I−Π

U†(Ψj ))|µ′
1⟩

∥(I−Π
U†(Ψj ))|µ′

1⟩∥
. Here

Φj = span(|ψ1⟩ , ..., |ψj⟩) as defined in Definition 6.5.

15It can be proven as follows. Let R0, R00, R01 be the ranges of the projectors Π0,Π00,Π01. Then it holds that R0 =
R00 ⊕ R01 = R⊥

01 ⊕ R01 = R⊥
01 ⊕ R⊥

00, which implies that there exist unitary U0, U1 such that U0 : R00 → R⊥
01 and

U1 : R01 → R⊥
00. ForU = U0 ⊕U1, it holds that Π0 −Π00 = UΠ01U

† and vice versa, which proves ∥(Π0 −Π00)(Π0 −Π01)∥2 =
∥UΠ01U

†UΠ00U
†∥2 = ∥Π01Π00∥.
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Phase 2-2: Samples |µ0⟩ ← Dµ
0 and |µ1⟩ is defined by U †W |xj+1⟩ and b ← 1. ... In particular, the

(j + 1)-st query xj+1 to the first oracle is answered by U |µ1⟩= W |xj+1⟩.

Phase 2-3: Samples |µ0⟩ ← Dµ
0 and |µ1⟩ is defined by U †W |xj+1⟩ and b← 1. ... answering the remaining

queries to the first oracle using V U(1)
k (I −Πspan(|xj+1⟩,(Xk0 )†|µ1⟩)) and the remaining queries to

the second oracle using [U (1)]Tj ,k. The (j + 1)-st query xj+1 to the first oracle is answered by
U |µ1⟩ = W |xj+1⟩.

Phase 2-4: Samples |µ0⟩ ← Dµ
0 and |µ1⟩ is defined by U †W |xj+1⟩ and b← 1. ... answering the remaining

queries to the first oracle using V U(0)
k and the remaining queries to the second oracle using [U (1)]Tj ,k.

We write H(1)
j,1 ,..., H(4)

j,1 to denote these changed hybrids. In Phase 2-3, we only change the output |ψ⟩
according to the oracle’s answers in the list T .

• Note that Hj,1 coincides with Phase 2 with b = 0, and H(1)
j,1 only differs the projective measurement.

We think H(1)
j,1 as applying the projection (I − ΠU†(Ψj)) on |µ′1⟩ and proceeding conditioned on its

success. Note that |µ′1⟩ is independent from U and the states in Ψj are orthogonal to each other. Thus,
the projection fails with probability

∥ΠU†(Ψj) |µ′1⟩ ∥2 =
j∑
i=1
| ⟨ψi|U |µ′1⟩ |2 = j

d
≤ p

d
. (224)

By the gentle measurement lemma, we have |Pr[B(Hj,1)→ 1]− Pr[B(H(1)
j,1 )→ 1]| ≤

√
p/d.

• Phase 2-2 is identical to Phase 2-1 because |µ1⟩ is uniformly distributed over Im(I −ΠU†(Ψj)) in both
cases. Note that this corresponds to

Hj,2 : U,W,U, · · · ,W,U︸ ︷︷ ︸
P0,...,Pj

, W ,UTj+1,k,︸ ︷︷ ︸
(j+1)-st pure state query and Pj+1

V
Uj

k , · · · , V Uj

k , UTj+1,k︸ ︷︷ ︸
Pj+2,...,Pp

. (225)

• For Phase 2-3, for any x ∈ {0, ..., d− 1} \ {xj+1}, the expectation over U,W, k satisfies

E
∣∣∣⟨µ1|Xk0 |x⟩

∣∣∣2 = E
∣∣∣⟨xj+1|UW †Xk0 |x⟩

∣∣∣2 = 1
d

(226)

which represents that the projection on input x fails. Therefore, by the quantum union bound
(Lemma 2.7), we have ∣∣∣Pr[B(H(2)

j,1 )→ 1]− Pr[B(H(3)
j,1 )→ 1]

∣∣∣ ≤ √p

d
. (227)

• Finally, Phase 2-4 corresponds to

Hj,3 : U,W,U, · · · ,W,U︸ ︷︷ ︸
P0,...,Pj

, W,UTj+1,k,︸ ︷︷ ︸
(j+1)-st pure state query and Pj+1

V U
k , · · · , V U

k , UTj+1,k︸ ︷︷ ︸
Pj+2,...,Pp

. (228)

Since V U
k and V Uj

k are identical in Im(Πspan(|xj+1⟩,(Xk0 )†|µ1⟩)), the same argument above shows that∣∣∣Pr[B(H(3)
j,1 )→ 1]− Pr[B(H(4)

j,1 )→ 1]
∣∣∣ ≤ √p

d
. (229)

Combining the above, we prove the claim.
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6.5 Proof of Unitary Reprogramming Lemma

This section proves Lemma 6.3. We recall the statement below for convenience.

Lemma 6.7 (Unitary reprogramming lemma). Let D be a distinguisher in the following experiment:

Phase 1: D outputs a unitary F0 = F over m-qubit and a quantum algorithm C whose output is a quantum
state ρ and a classical string that specifies a classical description of the following data: a set S of
m-qubit pure states and a unitary US such that, for the span S of all states in S, US acts as the identity
on the image of I −ΠS , where ΠS is the projection to S. Let

ϵ := sup
|ϕ⟩:m-qubit state

E
C

[
∥ΠS |ϕ⟩∥2

]
. (230)

Phase 2: C is executed and outputs ρ, S and US . Let F1 := F ◦ US . A bit b is chosen uniformly at random,
and D is given ρ and quantum access to Fb and makes q queries in expectation if b = 0, and sends the
quantum state νb to the next phase.

Phase 3: D loses access to Fb and receives νb and the classical string specifying the classical descriptions S
and US outputted by C in the second phase. Finally, D outputs a guess b′.

Then, it holds that

|Pr [D → 1|b = 1]− Pr [D → 1|b = 0]| ≤ q ·
√

2ϵ. (231)

In fact, the trace distance TD(ν0, ν1) between two cases after Phase 2 is at most q
√

2ϵ.

Proof. Let MC(ρAC) = |0⟩ ⟨0|C ρAC |0⟩ ⟨0|C + |1⟩ ⟨1|C ρAC |1⟩ ⟨1|C for a single-qubit register C and
arbitrary ancillary register A. Let F be a unitary over {0, 1}m. The controlled version of F is defined by

cF = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ F (232)

so that cF : |c⟩ |x⟩ 7→ |c⟩F c |x⟩ .16 The execution of D can be described by

(Φ ◦ cF ◦MC)qmax (233)

which is applied to some initial state ρ where qmax is the upper bound of the number of queries and Φ is an
arbitrary quantum channel.17 Let Γb = Φ ◦ cFb ◦MC and define

ρk := (Γqmax−k
1 ◦ Γk0)(ρ) (234)

which corresponds to the final state where the first k queries are answered by cF0, and the remaining
queries are answered by cF1. The intermediate state after the k-th query is denoted by ρ(0)

k := Γk0(ρ). The
final state of the algorithm using the F0 (or F1) oracle entirely is ρ0 (ρqmax , respectively). We also define
pk := Tr

[
|1⟩ ⟨1|C ρ

(0)
k

]
to represent the probability that the oracle query is made in the (k + 1)-th iteration

for 0 ≤ k < qmax.

16The controlled queries reflect the expected number of queries. See [ABKM22, Section 4.1] for a more detailed discussion.
17Each layer may have different channels Φ1, ...,Φqmax . The standard argument with the counter, i.e. Φ =

∑qmax
j=1 |j⟩ ⟨j − 1|⊗Φj

allows us to use a single channel Φ without loss of generality.
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We give an upper bound

E
r

[TD (|r⟩ ⟨r| ⊗ ρqmax , |r⟩ ⟨r| ⊗ ρ0)] ≤ q
√

2ϵ (235)

where r is the randomness used by C. Note that cF †0 ◦ cF1 = cUS . By the monotonicity of TD under quantum
channels, for any r we have

TD (|r⟩ ⟨r| ⊗ ρk, |r⟩ ⟨r| ⊗ ρk−1) ≤ TD
(
cF0 ◦MC

(
ρ

(0)
k−1

)
, cF1 ◦MC

(
ρ

(0)
k−1

))
(236)

= TD
(
MC

(
ρ

(0)
k−1

)
, cUS ◦MC

(
ρ

(0)
k−1

))
. (237)

We can write

cUS ◦MC

(
ρ

(0)
k−1

)
= US

(
|1⟩ ⟨1|C ρ

(0)
k−1 |1⟩ ⟨1|C

)
+ |0⟩ ⟨0|C ρ

(0)
k−1 |0⟩ ⟨0|C , (238)

thus Equation (237) can be written as

TD
(
|1⟩ ⟨1|C ρ

(0)
k−1 |1⟩ ⟨1|C , US

(
|1⟩ ⟨1|C ρ

(0)
k−1 |1⟩ ⟨1|C

))
(239)

= pk−1 · TD (σk−1, US(σk−1)) (240)

where we recall pk−1 = Tr
[
|1⟩ ⟨1|C ρ

(0)
k−1

]
and define σk−1 be the normalization of |1⟩ ⟨1|C ρ

(0)
k−1 |1⟩ ⟨1|C .

This gives

E
r

[TD (|r⟩ ⟨r| ⊗ ρqmax , |r⟩ ⟨r| ⊗ ρ0)] ≤
qmax∑
k=1

E
r

[TD (|r⟩ ⟨r| ⊗ ρqk
, |r⟩ ⟨r| ⊗ ρk−1)] (241)

≤
qmax∑
k=1

pk−1 · E
S

[TD (σk−1, US(σk−1))] (242)

≤ q · sup
σ

E
S

[TD (σ, US(σ))] . (243)

Using the fact that any mixed state is a convex combination of pure states and TD(|ϕ⟩ , |ψ⟩) =
√

1− ⟨ϕ|ψ⟩2 =
∥ |ϕ⟩ − |ψ⟩ ∥2/

√
2, we have

sup
σ

E
r

[TD(σ, US(σ))] ≤ sup
|ϕ⟩

E
S

[TD(|ϕ⟩ , US |ϕ⟩)] =
sup|ϕ⟩ ES [∥ |ϕ⟩ − US |ϕ⟩ ∥2]

√
2

≤
√

2ϵ. (244)

Plugging Equation (244) into Equation (243) concludes the proof. The last inequality of Equation (244) is
derived by, recalling the map US acts as the identity on the image of I −ΠS ,

E
S

[∥ |ϕ⟩ − US |ϕ⟩ ∥2] (245)

= E
S

[∥ΠS |ϕ⟩ − USΠS |ϕ⟩ ∥2] (246)

≤ E
S

[∥ΠS |ϕ⟩ ∥2] + E
S

[∥USΠS |ϕ⟩ ∥2] (247)

= 2E
S

[∥ΠS |ϕ⟩ ∥2] (248)

≤ 2
√
E
S

[
∥ΠS |ϕ⟩ ∥22

]
≤ 2
√
ϵ (249)

for any |ϕ⟩, where we use Jensen’s inequality in the last step.
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6.6 Unitary Resampling Lemma

This section proves Lemma 6.4. We recall the statement below for convenience.

Lemma 6.8 (Unitary resampling lemma). Let D be a distinguisher in the following experiment:

Phase 1: D specifies two distributions of d-dimensional qudit pure quantum states Dµ
0 , D

µ
1 such that

E |µi⟩ ⟨µi| = I/d for i = 0, 1. D makes at most q forward or inverse queries to a d-dimensional Haar
random unitary U (0) := U , and sends the quantum state ν to the next phase.

Phase 2: Sample |µ0⟩ ← Dµ
0 , |µ1⟩ ← Dµ

1 . A bit c ∈ {0, 1} is uniformly chosen, and D, given ν, is allowed
to make arbitrarily many (forward or inverse) queries to an oracle that is either U if b = 0 or
U ′ := U ◦ SWAPµ0,µ1 if b = 1. Finally, D outputs a bit b′.

Then, the following holds:

∣∣Pr
[
b′ = 1|b = 0

]
− Pr

[
b′ = 1|b = 1

]∣∣ ≤ 2
√

2q
d
. (250)

In fact, the trace distance between two distributions (ν, U) and (ν, U ′) is at most 2
√

2q
d where U and U ′ are

perfectly given as their classical description.

Proof. We assume that the execution of the first phase of D can be described by18

DU1 := Φ ◦ U±1 ◦ ... ◦ U±1 ◦ Φ ◦ U ◦ Φ (251)

where Φ is an arbitrary quantum channel that may include the intermediate measurements.
We consider the following two continuous distributions:

D0(νU , U): It samples a Haar random unitary U , |µ0⟩ , |µ1⟩. It runs DU1 on input |0⟩ ⟨0| and obtains νU .
Then it outputs (νU , U) where U specifies the full classical description of U .

D1(νU , U ′): It samples a Haar random unitary U , |µ0⟩ , |µ1⟩. It runs DU1 on input |0⟩ ⟨0| and obtains νU .
Define U ′ := U ◦ SWAPµ0,µ1 . Then it outputs (νU , U ′).

By the right-invariant property of Haar measure, the following distribution is identical to D1:

D2(νU ′ , U): It samples a Haar random unitary U , |µ0⟩ , |µ1⟩. Define U ′ := U ◦ SWAPµ0,µ1 . It runs DU ′
1

on input |0⟩ ⟨0| and obtains νU ′ . Then it outputs (νU ′ , U).

We will prove that for any U , the following two mixed states are close:

TD (νU , νU ′) ≤ 2
√

6q
d
. (252)

Assuming this, we conclude the proof of the resampling lemma.

18Technically, multiple projective measurements may exist between two oracle queries, which cannot be deferred because of the
pure state queries. The general case can be proven exactly the same way, and considering the general case only makes the description
of D complicated.
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Now we prove Equation (252). Let S = span(|µ0⟩ , |µ1⟩). We first define the projection P+ := I −ΠS .
By the same analysis as in Equation (211), we can prove that

E
µ0,µ1

[
∥ΠS |ϕ⟩ ∥22

]
≤ 6
d
. (253)

Also note thatU ′ = U◦SWAPµ0,µ1 = SWAPU−1|µ0⟩,U−1|µ1⟩◦U . We defineT = span(U−1 |µ0⟩ , U−1 |µ1⟩)
and P− := I −ΠT , which satisfies by the same reason:

E
µ0,µ1

[
∥ΠT |ψ⟩ ∥22

]
≤ 6
d
. (254)

Observe that

UP+ |ϕ⟩ = U ′P+ |ϕ⟩ and U−1P− |ψ⟩ = (U ′)−1P− |ψ⟩ (255)

for any quantum states |ϕ⟩ , |ψ⟩. Therefore, we have

TD (νU , νU ′) (256)

≤ TD
(
Φ ◦ U±1 ◦ ... ◦ U±1 ◦ Φ(|0⟩ ⟨0|),Φ ◦ U±1P± ◦ ... ◦ U±1P± ◦ Φ(|0⟩ ⟨0|)

)
(257)

+ TD
(
Φ ◦ (U ′)±1P± ◦ ... ◦ (U ′)±1P± ◦ Φ(|0⟩ ⟨0|),Φ ◦ (U ′)±1 ◦ ... ◦ (U ′)±1 ◦ Φ(|0⟩ ⟨0|)

)
(258)

where the terms in U±1P±, (U ′)±1P± always have the same signs. The quantum union bound (Lemma 2.7)
ensures that each term is bounded above by

√
6q/d. Thus we have

TD (νU , νU ′) ≤ 2
√

6q
d

(259)

for any U . This proves Equation (252).

7 Breaking quantum-accessible PRFSG security

We prove that the constructions in this section are not quantum-accessible PRFSGs.

Theorem 7.1. Let U be an n-qubit Haar random unitary given as an oracle and a, b be random n-bit strings.
Then, XaUXb is not a quantum-accessible (nonadaptively-secure) PRFSGs in the QHRO model even without
inverse access to the QHRO. More explicitly, a polynomial-time algorithm exists given non-adaptive oracle
access to U and XaUXb that finds a, b with overwhelming probability.

We also consider the random Pauli variant and prove the following theorem.

Theorem 7.2. Let U be an n-qubit Haar random unitary given as an oracle and P be a random Pauli
operator over n qubits. Then, UP is not a quantum-accessible (nonadaptively-secure) PRFSGs in the QHRO
model even without inverse access to the QHRO. More explicitly, a polynomial-time algorithm exists given
non-adaptive oracle access to U and UP that finds P with overwhelming probability.

Before proceeding to the attack, we use the following variant of Simon’s algorithm for quantum states.
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Lemma 7.3. Let (|ξx⟩)x∈{0,1}n be quantum states. Suppose that there exists t ∈ {0, 1}n \ {0n} such that
⟨ξx|ξx⊕t⟩ = 1 for any x ∈ {0, 1}n and there exists a constant 0 ≤ c < 1 such that | ⟨ξx|ξx′⟩ | ≤ c if
x⊕ x′ /∈ {0n, t}. Suppose that there is an efficient algorithm A that prepares∑

x∈{0,1}n |x⟩ |ξx⟩⊗t√
2n

(260)

for t such that ct ≤ 2−2n+4. Then, there exists an algorithm that recovers t using O(n) calls to A with
overwhelming probability.

Proof. Consider the following subroutine∑
x∈{0,1}n |x⟩ |ξx⟩⊗t√

2n
7→
∑
x,y∈{0,1}n(−1)x·y |y⟩ |ξx⟩⊗t

2n (261)

=
∑
y∈{0,1}n |y⟩

∑
x∈{0,1}n(−1)x·y |ξx⟩⊗t

2n (262)

=
∑
y∈{0,1}n |y⟩

∑
x∈X((−1)x·y + (−1)(x⊕t)·y) |ξx⟩⊗t

2n (263)

for X ⊂ {0, 1}n of size 2n−1 such that X ∪ {x⊕ t : x ∈ X} = {0, 1}n, where the first state is prepared by
A then we apply the inverse QFT on the first register. Measuring the first n qubits, we obtain y such that
y · t = 0. Specifically, the probability of obtaining y is,∣∣∣∣∣∥2

∑
x∈X(−1)x·y |ξx⟩⊗t ∥2

4n − 1
2n−1

∣∣∣∣∣ (264)

=
∣∣∣∣∣2
n+1 +

∑
x,x′∈X,x ̸=x′(−1)(x⊕x′)·y ⟨ξx|ξx′⟩t

4n − 1
2n−1

∣∣∣∣∣ (265)

≤
∑

x,x′∈X,x̸=x′

| ⟨ξx|ξx′⟩t |
4n ≤ 22n−2ct

4n = ct

4 ≤
1

22n−2 . (266)

Therefore, the output is (1/2n−1)-close in the statistical distance to the uniform distribution over y such that
y · t = 0. Repeating this procedure O(n) times, we can recover t with overwhelming probability.

7.1 Breaking XUX

Proof of Theorem 7.1. Let U be Haar random unitary and V := XaUXb for random n-bit strings a, b. Let
|Φ⟩ =

∑
x∈{0,1}n |x, x⟩ /

√
2n be the maximally entangled state. We have

(Xx ⊗ I) · (U ⊗ U) · (Xy ⊗ I) |Φ⟩ ⊗ (Xx ⊗ I) · (V ⊗ U) · (Xy ⊗ I) |Φ⟩ (267)
= (XxUXy ⊗ U) |Φ⟩ ⊗ (Xa⊕xUXb⊕y ⊗ U) |Φ⟩ . (268)

We write (XxUIXy ⊗ U) |Φ⟩ =: |Ux,y⟩ . We then consider the state

|ξx,y⟩ = (XxUXy ⊗ U)⊗ (Xa⊕xUXb⊕y ⊗ U) + (Xa⊕xUXb⊕y ⊗ U)⊗ (XxUXy ⊗ U)√
2

|Φ,Φ⟩ (269)

= |Ux,y⟩ ⊗ |Ua⊕x,b⊕y⟩+ |Ua⊕x,b⊕y⟩ ⊗ |Ux,y⟩√
2

. (270)
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Note that |ξx⊕a,y⊕b⟩ = |ξx,y⟩ holds. On the other hand, we later prove that | ⟨ξx,y|ξx′,y′⟩ | ≤ 2n/2n/2 holds
for all pairs such that (x, y)⊕ (x′, y′) ̸= (0, 0) or (a, b) with an overwhelming probability over random U .
Assuming this, t = O(1) satisfies the condition of Lemma 7.3 with overwhelming probability.

To prepare the target state, we prepare

∑
x,y

1
2n |x, y⟩ ⊗ (|Φ⟩⊗2)⊗t 7→

∑
x,y

1
2n |x, y⟩ ⊗ (|Ux,y⟩ ⊗ |Ua⊕x,b⊕y⟩)⊗t (271)

using Equations (267) and (268). Then compute the projection I22n ⊗Π⊗tsym where Πsym := Π(22n,2)
sym is the

projection to the space
{
|p,q⟩+|q,p⟩√

2 : p, q ∈ {0, 1}2n
}

as defined in Lemma 2.11. The probability of success
is at least 1/2t, because ∥∥∥∥∥(I22n ⊗Π⊗tsym)

∑
x,y

1
2n |x, y⟩ ⊗ (|Ux,y⟩ ⊗ |Ua⊕x,b⊕y⟩)⊗t

∥∥∥∥∥
2

(272)

= 1
22n

∑
x,y

∥∥Πsym |Ux,y⟩ ⊗ |Ua⊕x,b⊕y⟩
∥∥2t (273)

≥ 1
22n ·

∑
x,y

(1
2

)t
= 1

2t (274)

where we use the fact that |Ux,y⟩ ⊗ |Ua⊕x,b⊕y⟩ is identical to

|Ux,y⟩ ⊗ |Ua⊕x,b⊕y⟩+ |Ua⊕x,b⊕y⟩ ⊗ |Ux,y⟩
2 + |Ux,y⟩ ⊗ |Ua⊕x,b⊕y⟩ − |Ua⊕x,b⊕y⟩ ⊗ |Ux,y⟩2 (275)

which implies the projection onto the symmetric subspace succeeds with probability 1/2 each. In particular,
if all the projections succeed, the outcome becomes

∑
x,y

1
2n |x, y⟩ ⊗ |ξx,y⟩

⊗t . (276)

It remains to prove that | ⟨ξx,y|ξx′,y′⟩ | is small for (x, y)⊕ (x′, y′) ̸= (0, 0) or (a, b). We use the following
lemma.

Lemma 7.4. Let a, b and c be n bit strings such that a ̸= c. Then,

| ⟨0|XaUXbU †Xc |0⟩ |2 ≤ n√
2n

(277)

with probability at least 1− e−O(n2) over the choice of U with respect to µ2n .

The proof is given below. Assume that this lemma is true. Then, by the union bound, with probability
at least 1 − 22ne−O(n2) = 1 − negl(n), Equation (277) holds for any a ̸= c. The inner product is, using
Equation (270),

⟨ξx,y|ξx′,y′⟩ = ⟨Ux,y|Ux′,y′⟩ ⟨Ua⊕x,b⊕y|Ua⊕x′,b⊕y′⟩+ ⟨Ux,y|Ua⊕x′,b⊕y′⟩ ⟨Ua⊕x,b⊕y|Ux′,y′⟩. (278)
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For y′ ̸= y, we have

| ⟨Ux,y|Ux′,y′⟩ | = | ⟨Φ| (XxUXy ⊗ U)†(Xx′
UXy′ ⊗ U) |Φ⟩ | (279)

= | ⟨Φ| (XyU †Xx⊕x′
UXy′ ⊗ I) |Φ⟩ | (280)

=
∣∣∣∣∣
∑
i,j∈{0,1}n ⟨i, i| (XyU †Xx⊕x′

UXy′ ⊗ I) |j, j⟩
2n

∣∣∣∣∣ (281)

=
∣∣∣∣∣
∑
i∈{0,1}n ⟨i|XyU †Xx⊕x′

UXy′ |i⟩
2n

∣∣∣∣∣ (282)

≤
∑

i∈{0,1}n

| ⟨i|XyU †Xx⊕x′
UXy′ |i⟩ |

2n ≤ ( n√
2n

)1/2. (283)

The same inequality holds for | ⟨Ua⊕x,b⊕y|Ua⊕x′,b⊕y′⟩ | and | ⟨Ux,y|Ua⊕x′,b⊕y′⟩ | if y′ /∈ {y, y ⊕ b}. Also, if
x ̸= x′, we have

| ⟨Ux,y|Ux′,y′⟩ | = | ⟨Φ| (XxUXy ⊗ I)†(Xx′
UXy′ ⊗ I) |Φ⟩ | (284)

= | ⟨Φ| (I ⊗ (XxUXy)T )†(I ⊗ (Xx′
UXy′)T ) |Φ⟩ | (285)

= | ⟨Φ| (I ⊗Xx(UT )†Xy⊕y′
UTXx′) |Φ⟩ | (286)

using the ricochet property of the maximally mixed state (A⊗ I) |Φ⟩ = (I ⊗AT ) |Φ⟩. A simple calculation
gives the same inequality holds for this case. If (x′, y′) /∈ {(x, y), (x⊕a, y⊕ b)}, by the case-by-case analysis
on each term of Equation (278), it must hold that

| ⟨ξx,y|ξx′,y′⟩ | ≤ 2n
2n/2 . (287)

Therefore, we can prepare the state in Equation (276) in polynomial time which satisfies the conditions of
Lemma 7.3. Applying the attack in the lemma, we conclude the proof.

The proof of Lemma 7.4 relies on the following lemma.

Lemma 7.5 ([EAŻ05]). Let A,B and C be d× d matrix. Then,

E
U←µd

UAU †CUBU † = Tr[AB]Tr[C]
d

I

d
+ dTr[A]Tr[B]− Tr[AB]

d(d2 − 1)

(
C − Tr[C]I

d

)
(288)

Proof of Lemma 7.4. We show by the concentration inequality. To invoke it, we need the following expectation:

E
U←µ2n

| ⟨0|XaUXbU †Xc |0⟩ |2 (289)

= E
U←µ2n

| ⟨a|UXbU † |c⟩ |2 (290)

= E
U←µ2n

⟨a|UXbU † |c⟩ ⟨c|UXbU † |a⟩ (291)

= ⟨a| Tr[(Xb)2]Tr[|c⟩ ⟨c|]
2n

I

2n + 2nTr[Xb]Tr[Xb]− Tr[(Xb)2]
2n(22n − 1)

(
|c⟩ ⟨c| − Tr[|c⟩ ⟨c|] I2n

)
|a⟩ (292)

= ⟨a| I2n + 2n(22n−2h(b) − 1)
2n(22n − 1)

(
|c⟩ ⟨c| − I

2n
)
|a⟩ (293)

=Θ(2−n), (294)

where we have used
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• Lemma 7.5 in the third equality;

• Tr[Xb] = 2n−h(b) in the fourth equality, where h(b) is the hamming distance of b;

• a ̸= c and 0 ≤ 2n(22n−2h(b)−1)
2n(22n−1) ≤ 1 in the last equality.

Note that we can see ⟨0|XaUXbU †Xc |0⟩ |2 is the probability that some algorithm given access to U and
U † outputs 1. From this and Lemma 2.5, ⟨0|XaUXbU †Xc |0⟩ |2 is 4-Lipshcitz for U . Therefore, from the
concentration inequality Theorem 2.4,

Pr
U←µ2n

[| ⟨0|XaUXbU †Xc |0⟩ |2 ≤ n√
2n

] ≥ Pr
U←µ2n

[∣∣∣∣| ⟨0|XaUXbU †Xc |0⟩ |2 −Θ(2−n)
∣∣∣∣ ≤ n

2
√

2n

]
(295)

≥1− exp
(
−O

(
2nn

2

2n
))

(296)

≥1− e−O(n2). (297)

7.2 Breaking UP

Proof of Theorem 7.2. We construct the quantum states |ξ⟩ given oracle access to U and UP =: V for
random Pauli operator P over n qubits. More concretely, for (x, z) ∈ {0, 1}n × {0, 1}n, write Px,z to denote

ix·zX⊗xZ⊗z = ix·z(Xx1Zz1)⊗ ...⊗ (XxnZzn). (298)

We define V = UP for random Pauli P = Pa,b. Note that Px,z · Px′,z′ = ix·z
′−x′·zP(x,z)⊕(x′,z′) =

(−1)x·z′−x′·zPx′,z′ ·Px,z . It well known that {|Px,z⟩ := (Px,z ⊗ I) |Φ⟩}x,z consists the orthonormal basis for
the maximally mixed state |Φ⟩.

Let (x′, z′) = (x, z)⊕ (a, b). It holds that

Pa,bPx′,z′ = ia·z
′−x′·b · Px,z = ia·z−x·b · Px,z, and Px′,z′ = ia·z−x·b · Pa,bPx,z. (299)

Consider

|ϕx,z⟩ := 1√
2

[(V ⊗ I ⊗ U ⊗ I) + (U ⊗ I ⊗ V ⊗ I)] (Px,z ⊗ I ⊗ Px,z ⊗ I) |Φ,Φ⟩ (300)

= (U ⊗ I)⊗2
[(PPx,z ⊗ I) |Φ⟩ ⊗ (Px,z ⊗ I) |Φ⟩+ (Px,z ⊗ I) |Φ⟩ ⊗ (PPx,z ⊗ I) |Φ⟩√

2

]
(301)

= ia·z−x·b(U ⊗ I)⊗2
[ |Px′,z′ , Px,z⟩+ |Px,z, Px′,z′⟩√

2

]
. (302)

Similarly, (U † ⊗ I)⊗2 |ϕx′,z′⟩ can be expressed by

(Pa,bPx′,z′ ⊗ I) |Φ⟩ ⊗ (Px′,z′ ⊗ I) |Φ⟩+ (Px′,z′ ⊗ I) |Φ⟩ ⊗ (Pa,bPx′,z′ ⊗ I) |Φ⟩√
2

(303)

= (−1)a·z−x·b · (Px,z ⊗ I) |Φ⟩ ⊗ (Pa,bPx,z ⊗ I) |Φ⟩+ (Pa,bPx,z ⊗ I) |Φ⟩ ⊗ (Px,z ⊗ I) |Φ⟩√
2

(304)

= (−i)a·z−x·b |Px
′,z′ , Px,z⟩+ |Px,z, Px′,z′⟩√

2
. (305)
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From this and the orthogonality of {(Px,z ⊗ I) |Φ⟩}x,z , we derive that |ϕx,z⟩⊗2 , |ϕx′,z′⟩⊗2 are identical for
(x′, z′) ∈ {(x, z), (x, z) ⊕ (a, b)} and otherwise orthogonal. Therefore, |ξx,z⟩ := |ϕx,z⟩⊗2 be our target
states. To construct

∑
x,z |x, z, ξx,z⟩, we prepare∑

x,z

1
2n |x, z⟩ ⊗ |Φ⟩

⊗4 7→
∑
x,z

1
2n |x, z⟩ ⊗ |Px,z⟩

⊗4 (306)

7→
∑
x,z

1
2n |x, z⟩ ⊗ (U ⊗ I)⊗4 |Px′,z′ , Px,z⟩⊗2 (307)

where the first step is to apply (Px,z⊗I)⊗4 and the second step apply (V ⊗I⊗U ⊗I)⊗2.19 Then compute the
projection I22n ⊗Π⊗2

sym where Πsym := Π(22n,2)
sym is the projection to the space

{
|p,q⟩+|q,p⟩√

2 : p, q ∈ {0, 1}2n
}

as defined in Lemma 2.11. It is not hard to see that the probability of success is at least 1/4. This is because∥∥∥∥∥(I22n ⊗Π⊗2
sym)

∑
x,z

1
2n |x, z⟩ ⊗ (U ⊗ I ⊗ U ⊗ I)⊗2 |Px′,z′ , Px,z⟩⊗2

∥∥∥∥∥
2

(308)

= 1
22n

∑
x,z

∥∥Πsym |Px′,z′ , Px,z⟩
∥∥4 (309)

≥ 1
22n ·

∑
x,z

(1
2

)2
= 1

4 (310)

where we use the invariant of the symmetric subspace under any unitary in the first equality, and

|Px′,z′ , Px,z⟩ = |Px
′,z′ , Px,z⟩+ |Px,z, Px′,z′⟩

2 + |Px
′,z′ , Px,z⟩ − |Px,z, Px′,z′⟩

2 . (311)

Therefore, given U,UP we can efficiently construct the state in Equation (260) for |ξx,z⟩ = |ϕx,z⟩⊗2 for
|ϕx,z⟩ defined in Equation (300). By Lemma 7.3, we can extract (a, b) for P = Pa,b, thus UP cannot be a
secure quantum-accessible PRFSG.

8 Application of Haar Twirl Approximation: Alternative Proof of Non-
Adaptive Security of PFC Ensemble

In this section, we give an alternative proof of the non-adaptive security of PFC ensemble [MPSY24]. They
essentially use the Schur-Weyl duality in the proof of [MPSY24]. However, our proof does not invoke it and
essentially uses the Weingarten calculus.

8.1 Definitions and Lemmas

First, we define the action of a permutation unitary and a binary phase unitary.

Definition 8.1 (Permutation Unitaries on Cd). Let Sd be a set of all permutations over d elements. For each
π ∈ Sd, we define the permutation unitary Pπ on Cd that acts

Pπ |x⟩ = |π(x)⟩ (312)

for all x ∈ [d].
19We ignore the phase which becomes irrelevant.
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Definition 8.2 (Binary Phase Unitaries). For a function f : [d]→ {0, 1}, we define the binary phase unitary
Ff on Cd that acts

Ff |x⟩ = (−1)f(x) |x⟩ (313)

for all x ∈ [d].

Definition 8.3 (k-wise twirl). Let k, d ∈ N and F be a set of all functions f : [d]→ {0, 1}. We define the
PF k-wise twirlM(t)

PF and PFC k-wise twirlM(t)
PFC as follows:

M(t)
PF (·) := E

π←Sd,f←F
(PπFf )⊗k(·)(PπFf )†⊗k, (314)

M(t)
PFC(·) := E

π←Sd,f←F ,
C←ν

(PπFfC)⊗k(·)(PπFfC)†⊗k. (315)

Here, Sd is the set of all permutations over [d], F is a set of all functions f : [d] → {0, 1}, and ν is any
unitary 2-design.

The following two lemmas are shown in [MPSY24], both of which are from the straightforward
computation (without Schur-Weyl duality).

Lemma 8.4 (Lemma 3.2 in [MPSY24]). Let k, d ∈ N and ν be any unitary 2-design. Define Λ be the
projection onto

span{|x1, ..., xk⟩ ;x1, ..., xk ∈ [d] and x1, ..., xk are distinct.}. (316)

Then, for any quantum state ρ,

Tr[Λ E
C←ν

C⊗kρC†⊗k] ≥ 1−O
(
k2

d

)
. (317)

Lemma 8.5 (Immediate corollary of Lemma 3.8 of [MPSY24]). Let A be a dk-dimentional register
and B be any register. Let Λ be the projection defined in Lemma 8.4. Then, for any state ρAB such that
(ΛA ⊗ IB)ρAB(ΛA ⊗ IB) = ρAB,

(M(k)
PF,A ⊗ idB)(ρAB) =

∑
σ∈Sk

ΛA
Tr[Λ]R

†
σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ρA′B]. (318)

Here A′ is a register whose size is the same as that of the register A.

8.2 Proof

Now by using Lemma 4.7, we show the following theorem which is originally shown by invoking the
Schur-Weyl duality in [MPSY24].

Theorem 8.6. Let k, d ∈ N such that d >
√

6k7/4. Then,∥∥∥∥M(k)
Haar −M

(k)
PFC

∥∥∥∥
⋄
≤ O

(
k√
d

)
. (319)
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Proof of Theorem 8.6. Let A be a dk-dimentional register and B be any register. It suffices to show that for
any state ρAB, ∥∥∥∥(M(k)

Haar,A ⊗ idAB)(ρAB)− (M(k)
PFC,A ⊗ idB)(ρAB)

∥∥∥∥
1
≤ O

(
k√
d

)
. (320)

Define

ξAB := E
C←ν

(C⊗kA ⊗ IB)ρAB(C⊗kA ⊗ IB)†, and (321)

ξ′AB := (ΛA ⊗ IB)ξAB(ΛA ⊗ IB)
Tr[(ΛA ⊗ IB)ξAB] . (322)

From Lemmata 2.6 and 8.4, we have

∥ξAB − ξ′AB∥1 ≤O
(
k√
d

)
. (323)

Thus, ∥∥∥∥(M(k)
Haar,A ⊗ idAB)(ρAB)− (M(k)

PFC,A ⊗ idB)(ρAB)
∥∥∥∥

1
(324)

=
∥∥∥∥(M(k)

Haar,A ⊗ idAB)(ξAB)− (M(k)
PF,A ⊗ idB)(ξAB)

∥∥∥∥
1

(325)

≤
∥∥∥∥(M(k)

Haar,A ⊗ idAB)(ξ′AB)− (M(k)
PF,A ⊗ idB)(ξ′AB)

∥∥∥∥
1

+O

(
k√
d

)
, (326)

(327)

where the equality follows from the right and left invariance of the Haar measure, and the inequality follows
from Equation (323) and the triangle inequality.

To conclude the proof, we show∥∥∥∥(M(k)
Haar,A ⊗ idAB)(ξ′AB)− (M(k)

PF,A ⊗ idB)(ξ′AB)
∥∥∥∥

1
≤ O

(
k√
d

)
. (328)

Let us consider the following hybrids of matrices:

• ξ0,AB := (M(k)
Haar,A ⊗ idAB)(ξ′AB).

• ξ1,AB :=
∑
σ∈Sk

1
dkR

†
σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ξ′A′B].

• ξ2,AB :=
∑
σ∈Sk

ΛA
Tr[Λ]R

†
σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ξ′A′B].

• ξ3,AB := (M(k)
PF,A ⊗ idB)(ξ′AB)

From Lemma 4.7, we have

∥ξ0 − ξ1∥1 ≤ O(k2/d). (329)
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Moreover, we have

ξ2 = ξ3 (330)

from Lemma 8.5. Thus, it suffices to show ∥ξ1 − ξ2∥1 ≤ O(k2/d). Note that ξ1,AB is invariant under the
action of 2-design twirl because

E
C←ν

(C⊗kA ⊗ IB)ξ1,AB(C⊗kA ⊗ IB)† =
∑
σ∈Sk

1
dk

E
C←ν

(C⊗kR†σC†⊗k)A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ξ′A′B] (331)

=
∑
σ∈Sk

1
dk
R†σ,A ⊗ TrA′ [(Rσ,A′ ⊗ IB)ξ′A′B] (332)

= ξ1,AB, (333)

where we have used the fact U⊗kRσU †⊗k = Rσ for any σ ∈ Sk and U ∈ U(d) in the second equality. This
and Lemma 8.4 imply

Tr[(ΛA ⊗ IB)ξ1,AB] ≥ 1−O
(
k2

d

)
. (334)

Thus, we have

∥ξ1,AB − ξ2,AB∥1 ≤ ∥(ΛA ⊗ IB)ξ1,AB(ΛA ⊗ IB)− ξ2,AB∥1 +O

(
k√
d

)
(335)

=
∥∥∥∥(Tr[Λ]

dk
− 1

)
ξ2,AB

∥∥∥∥
1

+O

(
k√
d

)
(336)

= O

(
k2

d

)
+O

(
k√
d

)
(337)

≤ O
(
k√
d

)
, (338)

where we have used

• Equation (334) and Lemma 2.6 in the first inequality and

• Tr[Λ] = d(d− 1) · · · (d− k + 1) and (ΛA ⊗ IB)ξ1,AB(ΛA ⊗ IB) = ξ2,AB in the second equality.

Therefore, Equation (328) follows from Equations (329), (330) and (338), which concludes the proof.

Acknowledgments. SY thanks Benoît Collins for lecturing about Weingarten calculus. SY also thanks
Tomoyuki Morimae for helpful discussions and for helping him to write the introduction.
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