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Abstract. Discrete Gaussian sampling on lattices is a fundamental problem in
lattice-based cryptography. In this paper, we revisit the Markov chain Monte Carlo
(MCMC)-based Metropolis-Hastings-Klein (MHK) algorithm proposed by Wang and
Ling and study its complexity under the Geometric Series Assuption (GSA) when
the given basis is BKZ-reduced. We give experimental evidence that the GSA is
accurate in this context, and we give a very simple approximate formula for the
complexity of the sampler that is accurate over a large range of parameters and
easily computable. We apply our results to the dual attack on LWE of [PS24] and
significantly improve the complexity estimates of the attack. Finally, we provide some
results of independent interest on the Gaussian mass of a random q-ary lattices.
Keywords: Lattices · Discrete Gaussian Sampling · Geometric Series Assumption

1 Introduction
Discrete Gaussian sampling on lattices (DGS) is a fundamental problem in lattice-based
cryptography. It appears both in basic cryptographic primitives such as “hash-and-sign”
digital signature schemes [GPV08, FHK+19], and in cryptanalysis as a fundamental tool
for solving hard problems such as the Shortest Vector problem [ADRS15] or the Learning
with Errors problem [PS24].

A Discrete Gaussian sampler is parameterized by a parameter “s” that controls the
width of the distribution. In general, the smaller s is, the harder it is to construct the
sampler. One important notion is called the smoothing parameter [MR04]. It captures the
idea that sampling for a value of s above this threshold is significantly easier than sampling
below because the distribution looks more like a continuous Gaussian in the former case.

There is currently a gap in the literature concerning discrete Gaussian samplers. We
either have efficient but limited (s depends on the basis and must be large enough1) sam-
plers [Kle00, GPV08, BLP+13, ACKS21] or very inefficient but arbitrarily good samplers
[ADRS15]. The latter takes times 2n+o(n). For certain applications such as dual attacks
on LWE, it would be preferable to have access to a less rigid sampler that lies somewhere
in-between, i.e. that can sample at any value of s and such that the complexity smoothly
interpolates between polynomial and exponential. Currently, the only2 known sampler to
do that is the Monte Carlo Markov Chain-based algorithm of [WL19],. It works for all
values of s but the complexity formula is involved and depends significantly on the basis
of the lattice. The authors gave a generic upper bound that does not depend on the shape
of the basis but only applies to rather large values of s.

A natural question is whether we can obtain a better complexity bound for [WL19]
when the basis follows a certain shape. This is the case for example when the basis is
BKZ-reduced, a common occurrence in cryptanalysis.
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In [PS24], the authors gave a simple approximation formula for the complexity of
[WL19] when the basis is BKZ-reduced, assuming the Geometric Series Assumption (GSA)
holds for the basis. Their formula also only applied to a limited range of values of s
due to the imprecision of the approximation. Furthermore, [PS24] did not provide any
experiments to compare the complexity of the algorithm when using a BKZ-reduced basis
with the complexity when using the GSA.

In this paper, we give a more precise, yet still simple, formula for the complexity
of [WL19] for a BKZ-reduced basis. Our formula is valid over a wider range of values
of s than [PS24] and we do a detailed analysis of the precision of the formula. More
precisely, we numerically show that our formula almost perfectly captures the complexity
of [WL19] assuming the GSA. Furthermore, we conduct numerical experiments to compare
the formula of [WL19] with a BKZ-reduced basis against the same formula using the GSA.
We observe that the GSA provides a reasonably accurate complexity in this case. Finally,
we update the complexity estimates of the dual attack proposed in [PS24] using our new
formula, as well as other improvements in the code.

We also prove some results of independent interest on random q-ary lattices. Specifically,
we give probability bounds that the Gaussian mass of a random q-ary lattice is close to 1.
This quantity appears naturally when studying the smoothing parameter of lattices.

Organization of the paper Section 2 contains preliminary technical results. Section 3
provides an upper bound on the complexity of [WL19]. Section 4 studies this upper bound
in the case where the basis is BKZ-reduced. Section 5 contains an application of our
formula from Section 4 to refine the complexity estimates of the dual attacks of [PS24].
Finally, Section 6 gives some probabilistic bounds on the Gaussian mass of a random
lattice.

2 Preliminaries
We denote vectors and matrices in bold case. We denote by xT the transpose of the
(column) vector x, which is therefore a row vector. For any vector x ∈ Rn, we denote by
∥x∥ its Euclidean norm. For any finite set X, we denote by U(X) the uniform distribution
over X. As usual, if P and Q are two probability distributions over X and Y respectively,
we denote by PQ the product distribution over X × Y . For any two distributions P and
Q, we denote by dTV(P, Q) the statistical distance (or total variation distance) between P
and Q. Recall that the exponential integral can be defined for any x ⩾ 0 by

E1(x) =
∫ ∞

1

e−xt

t
d t. (1)

Furthermore, we also have for any a, b > 0 that∫ b

a

e−t

t
d t = E1(a) − E1(b). (2)

Recall that the Lambert W function is a multivalued function giving the complex
solution(s) w to the equation wew = z. In this paper we will only deal with real numbers.
It can be shown that for any x, y ∈ R, the equation

yey = x

can only be solved (for y) if x ⩾ − 1
e . For positive numbers x > 0, this equation has exactly

one real solution y = W0(x), where W0 is one of the two real branches of the W function.
It is known that W0 is an increasing function.

We will use the following simple lemma on convex functions.
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Lemma 1. Let a ⩽ b be integers and f :
[
a − 1

2 , b + 1
2
]

→ R be a convex integrable
function. Then

∑b
i=a f(i) ⩽

∫ b+1/2
a−1/2 f(t) d t.

Proof. We prove the result by induction on b − a. If a = b then by Jensen inequality, we
have that

f

∫ a+ 1
2

a− 1
2

t d t

 ⩽
∫ a+ 1

2

a− 1
2

f(t) d t

which is exactly what we want since
∫ a+ 1

2
a− 1

2
t d t = a. The induction step is trivial by writing∑b

i=a f(i) = f(a) +
∑b

i=a+1 f(i) and
∫ b+1/2

a−1/2 f(t) d t =
∫ a+1/2

a−1/2 f(t) d t +
∫ b+1/2

a+1/2 f(t) d t, and
applying the induction hypothesis twice.

2.1 Lattices
We denote by L̂ the dual of a lattice L ⊂ Rn defined by

L̂ = {x ∈ span(L) : ∀y ∈ L, ⟨y, x⟩ ∈ Z}.

Let n ∈ N, 1 ⩽ k ⩽ n and q be a prime number. We say that a lattice L is a
n-dimensional q-ary lattice if qZn ⊆ L ⊆ Zn. Given a matrix A ∈ Zn×k, we consider the
following n-dimensional q-ary lattices:

Lq(A) =
{

x ∈ Zn : ∃s ∈ Zk, As = x mod q
}

,

L⊥
q (A) =

{
x ∈ Zn : AT x = 0 mod q

}
.

It is well-know that for any q-ary lattice L, there exists A and B such that L =
Lq(A) = L⊥

q (B), and that L̂⊥
q (A) = 1

q Lq(A). Furthermore vol(Lq(A)) = qn−rk A ⩾ qn−k

and therefore vol(L⊥
q (A)) = qrk A ⩽ qk. Finally, since Zq is a field, a random matrix A

has full rank (equal to k) with probability at least 1 − kqk−1−n.
We refer the reader to [ELZ05], [ZNKB14, Section 2.5.1], [MR09] or [PS24] for more

details on those constructions and why these lattices play a crucial role in lattice-based
cryptography, in particular because of the LWE problem.

2.2 Discrete Gaussian distribution
Let n ∈ N and s > 0. For any x ∈ Rn, we let ρs(x) := e−π∥x∥2/s2 . We extend ρs to sets by
ρs(X) =

∑
x∈X ρs(x) for any set X. We denote the discrete Gaussian distribution over a

lattice L ⊂ Rn by DL,s(x) = ρs(x)
ρs(L) for any x ∈ L. We denote DL,1 by DL for simplicity.

Given a vector t ∈ Rn,the shifted discrete Gaussian distribution over L is defined by
DL,s,t(x) = ρs(x−t)

ρs(L−t) for any x ∈ L. It is well-known by the Poisson summation formula
that for any lattice L and any s > 0,

ρ1/s(L̂) = 1
vol(L)s−nρs(L).

We will also use the fact that for any t ∈ Rn, ρs(t + L) ⩽ ρs(L). See e.g. [Ste17] for a
good introduction on this topic.

In general, the smaller s is, the harder it is to construct a sampler for DL,s. The notion
of smoothing parameter [MR04] captures the idea that sampling for a value of s above
this threshold is significantly easier than sampling below because the distribution looks
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more like a continuous Gaussian. Formally, for any ε > 0, the smoothing parameter of a
lattice L is defined by

ηε(L) = inf
{

s > 0 : ρ1/s(L̂) ⩽ 1 + ε
}

.

There are many algorithms to sample above the smoothing parameter [Kle00, GPV08,
BLP+13], including a time-space trade-off [ACKS21]. Sampling below the smoothing
parameter is much more challenging and usually inefficient [ADRS15]. At the extreme,
sampling for sufficiently small values of s allows one to solve the Shortest Vector problem
(SVP) [ADRS15] which is known to be NP-hard under randomized reduction [Ajt98].
The Monte Carlo Markov Chain based algorithm of [WL19] works for all values of s but
the complexity significantly depends on s and the shape of the basis. We give a short
description of this algorithm in Section 2.3.

We will also make use of the following simple lemma:

Lemma 2. Define, for any s > 0,

ρ̃(s) =
{

1 + 2e−π/s2 if s ⩽ 1,

s(1 + 2e−πs2) otherwise.

Then ρ̃ is a continuously increasing function and for any s > 0,

0 < ρs(Z) − ρ̃(s) ⩽ 2
∞∑

k=2
e−πk2

⩽ ε := 6.974685811 × 10−6.

Proof. The continuity is immediate since lims→1,s>1 ρ̃(s) = 1 + 2e−π = ρ̃(1). It is clearly
increasing over (0, 1] so by continuity it suffices to show that it is increasing over (1, ∞).
To see that, note that the derivative over this interval is 1 + 2e−πs2 − 4s2πe−πs2 which
can easily be seen to be positive for all s > 1.

Over the interval (0, 1], it is clear that ρs(Z) − ρ̃(s) = 2
∑∞

k=2 e−πk2/s2 is increasing.
Similarly over (1, ∞), by the Poisson summation formula, it is clear that ρs(Z) − ρ̃(s) =
2s
∑∞

k=2 e−πk2s2 is decreasing. Therefore, by continuity, the maximum of ρs(Z) − ρ̃(s) is
attained at s = 1. We can bound this value as follows:

ρ1(Z) − ρ̃(1) = 2e−4π + 2
∞∑

k=3
e−πk2

⩽ 2e−4π + 2
∞∑

k=9
e−πk = 2e−4π + 2e−9π

1 − e−π

which is smaller than 6.974685811 × 10−6 by numerical evaluation.

2.3 The Metropolis-Hastings-Klein (MHK) algorithm
In [WL19], the authors analyze a Markov chain Monte Carlo (MCMC)-based sampling
algorithm called the independent Metropolis-Hastings-Klein (MHK) algorithm. Without
going into the details, the Metropolis-Hastings algorithm is a particular way of sampling
from a distribution which can be defined as the stationary distribution of an associated
Markov chain. This algorithm is very flexible and requires to choose a “proposal distribution”
which affects the speed of convergence of the Markov chain. In the particular case of the
lattice discrete Gaussian distribution, the authors in [WL19] use the Klein algorithm [Kle00]
to define the proposal distribution and call this the MHK algorithm. In a previous paper,
the authors had already shown that the associated Markov chain converges exponentially
quickly (in the number of steps3) to the stationary distribution. The main contribution

3More precisely, they show that the distance between the stationary distribution and the distribution
after t steps is bounded by (1 − δ)t where δ is the spectral gap.
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of [WL19] is then to analyze the spectral gap of the transition matrix of the associated
Markov chain. This spectral gap is what defines the rate of convergence of the chain
and therefore the mixing time which defines the number of steps of the algorithm. Note
that by design, this algorithm always samples with an error since the chain converges to,
but does not attain, its stationary distribution: by increasing the number of steps, we
can nevetherless get closer to it in total variation. Finally, the algorithm only performs
elementary matrix and vector operations which take time polynomial in the dimension.

Theorem 1 ([WL19, Theorem 1, (8), (23) and (24)4]). There is an algorithm that given
a basis of a lattice L ⊂ Rn, any vector t ∈ Rn, any ε > 0 and any s > 0, returns a sample
according to some distribution DL,s,t,ε such that dTV(DL,s,t,ε, DL,s,t) ⩽ ε. This algorithm
runs in time ln

( 1
ε

)
· 1

∆ · poly(d) where 1
∆ = 1

ρs(t+L)
∏d

i=1 ρ
s/∥b̃i∥(Z) and b̃1, . . . , b̃d are the

Gram-Schmidt vectors of the basis.

Remark 1. It seems that a sampling algorithm with a similar complexity was previously
described in [BLP+13]. More precisely, the statement [BLP+13, Lemma 2.3] only applies
to large values of s, but the proof [BLP+13, Section 5] describes a rejection sampling
algorithm that either outputs a sample exactly according to DL,s, or outputs nothing with
probability 1 − ∆ where ∆ = ρs(t+L)∏d

i=1
ρ

s/∥̃bi∥
(Z)

. Therefore if we run the algorithm until it

outputs a sample, or output t after N ∈ N steps if we still did not get an output, we get
a Npoly(n) time algorithm. Call DN the output distribution after N steps. Then it is
not hard to see that dTV(DL,s, DN ) = (1 − ∆)N |1 − DL,s(t)| ⩽ (1 − ∆)N . Therefore, for
any ε > 0, dTV(DL,s, DN ) ⩽ ε if N ⩾ ln ε

ln(1−∆) which holds true if N ⩾ ln(1/ε)
∆ . It should

be noted that the proof of [BLP+13, Section 5] requires that s be larger than a certain
quantity (above the smoothing parameter) but this assumption only seems needed to prove
the polynomial time complexity in [BLP+13, Lemma 2.3].

2.4 Random q-ary lattices
We will consider the distributions Ln,k,q and L⊥

n,k,q of q-ary lattices defined over the set of
integer lattices by

Ln,k,q(L) = PrA∼U(Zn×k
q )[L = Lq(A)],

L⊥
n,k,q(L) = PrA∼U(Zn×(n−k)

q )

[
L = L⊥

q (A)
]
.

In other words, the distribution is obtained by taking a matrix A ∈ Zn×k
q with uniform

and independently distributed entries, and looking at the q-ary lattice generated by A;
and similarly for the orthogonal version. When neither k nor n − k are too small, those
two distributions are very close [PS24, Lemma 5].

Those distributions satisfy good uniformity properties when q goes to infinity. In
particular, the following theorem shows that we can compute statistical properties of
lattices sampled according to L⊥

n,k,q. See [PS24, Section 2.5] for more context.

Theorem 2 ([PS24, Theorem 3]). Let n ∈ N, 1 ⩽ k ⩽ n and q be a prime number. Let
1 ⩽ p and f : (Zn)p → R, then

EL∼L⊥
n,k,q

 ∑
x1,...,xp∈L

f(x1, . . . , xp)

 =
∑

x1,...,xp∈Zn

q(k−n)r(x1,...,xp)f(x1, . . . , xp)

where r(x1, . . . , xp) := rkZn
q
(x1, . . . , xp) is the rank of the xi mod q over Zn

q .

4[WL19] uses the normal distribution e−∥x∥2/2σ2 so s =
√

2πσ with our notations.
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In this paper, we will only make use of the following special case to compute the
variance of a sum over a lattice.

Corollary 1. Let n ∈ N, 1 ⩽ k ⩽ n and q be a prime number. For any f : Zn → R,

VL∼L⊥
n,k,q

[∑
x∈L

f(x)
]

= (qk−n − q2(k−n))
∑

x∈Zn\qZn

∑
u∈Zn

∑
α∈Zq\{0}

f(x)f(αx + qu).

Proof. Observe that by Theorem 2,

VL

[∑
x∈L

f(x)
]

= EL

 ∑
x,y∈L

f(x)f(y)

− EL

[∑
x∈L

f(x)
]2

=
∑

x,y∈Zn

q
(k−n) rkZn

q
(x,y)

f(x)f(y) −

(∑
x∈Zn

q
(k−n) rkZn

q
(x)

f(x)
)2

=
∑

x,y∈Zn

(
q

(k−n) rkZn
q

(x,y) − q
(k−n)(rkZn

q
(x)+rkZn

q
(y))
)

f(x)f(y).

We now look at the various cases:

• If rkZn
q
(x, y) = 0 then rkZn

q
(x) = rkZn

q
(y) = 0 so those terms of the sum are 0.

• If rkZn
q
(x, y) = 2 then rkZn

q
(x) = rkZn

q
(y) = 1 so those terms of the sum are 0.

• If rkZn
q
(x, y) = 1 and rkZn

q
(x) = 0 then rkZn

q
(y) = 1 so those terms of the sum are 0.

• The same holds if rkZn
q
(x, y) = 1 and rkZn

q
(y) = 1.

Therefore the only potentially non-zero terms are those for which rkZn
q
(x, y) = rkZn

q
(x) =

rkZn
q
(y) = 1. When this is the case, this means that there exists α, β ∈ Zq not both zero

such that αx + βy = 0 mod q. Furthermore, we must have β ≠ 0 for otherwise we would
have αx = 0 and therefore rkZn

q
(x) = 0 which is not possible. Therefore by dividing by

β, we can assume that β = −1. Therefore, y = αx mod q, i.e. y = αx + qu for some
u ∈ Zn.

2.5 BKZ
The BKZ algorithm is a well-known lattice reduction algorithm [Sch87]. It processes the
basis in blocks of size β and achieves a trade-off between the reduction quality and the
running time. We refer the reader to [HPS11] or [LN20] to recent work on this topic.

Let B be a BKZ-β reduced basis of a rank d lattice in Rd and b̃1, . . . , b̃d be the
corresponding Gram-Schmidt vectors. First recall that the root Hermite factor δB is
defined by

∥b1∥ = δd−1
B vol(L)1/d.

By [HPS11], we have that δd
B ⩽ 2γ

d−1
2(β−1) + 3

2
β where γβ is the β-Hermite constant. Experi-

mentally, it has been verified [Che13] that

δB ≈ Hβ :=
(

β

2πe
(πβ)1/β

)1/2(β−1)
(3)

See [EJK20] for more details on this point. We also need to estimate ∥b̃i∥. For this, we
will assume that the Geometric Series Assumption (GSA) [Sch03] holds for any BKZ-β
reduced basis.
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Heuristic 1 (Geometric Series Assumption (GSA)). Let b1, . . . , bd be a BKZ-β reduced
basis and b̃1, . . . , b̃d be the corresponding Gram-Schmidt vectors. Then for all i = 1, . . . , d,

∥b̃i∥ = ∥b1∥H
−2(i−1)
β , ∥b1∥ = Hd−1

β vol(L)1/d.

The GSA is known to be reasonably accurate when β ≪ d and β ⩾ 50 which is the
case in our experiments, but it does not correctly model what happens in the last d − β
coordinates. See [Bos21] for detailed discussions on the shape of the BKZ-reduced basis,
and a more thorough literature review on this topic.

3 Complexity of DGS
The complexity of the sampling algorithm (Theorem 1) from [WL19] primarily depends
on the quantity

1
∆ = 1

ρs(t + L)

d∏
i=1

ρ
s/∥b̃i∥(Z). (4)

Estimating this quantity is not easy because it depends on all the b̃i, and on ρs(t + L). As
was previously observed in [WL19], we can find an upper bound on this quantity that is
quite tight when s is not too small and t = 0 (or s is above the smoothing the parameter).

Lemma 3. For any s > 0, lattice L and b̃1, . . . , b̃d the Gram-Schmidt vectors of a basis
of L,

1
ρs(L)

d∏
i=1

ρ
s/∥b̃i∥(Z) = 1

ρ1/s(L̂)

d∏
i=1

ρ∥b̃i∥/s
(Z) ⩽

d∏
i=1

ρ∥b̃i∥/s
(Z)

Remark 2. When t ̸= 0 in (4), we cannot apply Lemma 3 directly. This is because
for certain choices of t, s and L, we might have ρs(t + L) < 1. In this case, as was
already noted in [WL19, above (76)], we can at least give a bound when s is above the
smoothing parameter of the lattice. Indeed, if s ⩾ ηε(L) then 1

ρs(t+L) ⩽ 1+ε
1−ε

1
ρs(L) by

[Reg09, Claim 3.8]. In this paper, we will only be interested in the case t = 0.

Proof. Recall the standard fact that vol(L) =
∏d

i=1∥b̃i∥. Using the Poisson summation
formula, we get that∏d

i=1 ρ
s/∥b̃i∥(Z)

ρs(L) =

∏d
i=1

s

∥b̃i∥
ρ∥b̃i∥/s

(Z)
sd

vol(L) ρ1/s(L̂)

= vol(L)∏d
i=1∥b̃i∥

∏d
i=1 ρ∥b̃i∥/s

(Z)

ρ1/s(L̂)
=
∏d

i=1 ρ∥b̃i∥/s
(Z)

ρ1/s(L̂)

and we get the wanted inequality since ρ1/s(L̂) ⩾ 1.

This upper bound (the last inequality of Lemma 3) is more convenient to study since it
does not depend on ρs(L). On the other hand, we need to keep in mind that it is only tight
when ρ1/s(L̂) ≈ 1 or at least ρ1/s(L̂) is not large. This is precisely the definition of the
smoothing parameter. For example, we might only want to use Lemma 3 for s ⩾ η1(L) to
guarantee that ρ1/s(L̂) ⩽ 2. Unfortunately, estimating η1 is difficult for arbitrary lattices
[CDLP13] and the generic bounds are very pessimistic.

In practice, however, we will most likely apply the sampling algorithm to random
lattices. In this case, we can hope to obtain bounds on ρ1/s(L̂) for most lattices. This
is exactly what we do in Section 6 for random q-ary lattices which are fundamental for
LWE-based cryptography.
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q-ary lattices By5 Corollary 2, for any n ∈ N, 1 ⩽ k ⩽ n, prime number q, ξ > 1 and α,
if s = ξqk/n, qk/n ⩾ 2 and α > µ then

PrL∼L⊥
n,k,q

[
ρ1/s(L̂) > α

]
⩽

σ2

(α − µ)2

where
µ = 1.000007n + ξ−n · 1.000014n, σ2 = q · 1.000028n · ξ−n.

If we assume that n ⩽ 10000, which is always true in practice, then all the above constants
are very close to 1 and for α = 2, we get that

PrL

[
ρ1/s(L̂) > 2

]
⩽ A · ξ−n

for some small constant A. For cryptographic usage, we always take k ≪ n, typically k =
n/2 which that a random lattice L ∼ L⊥

n,k,q satisfies that vol(L) = qk with overwhelming
probability. When this is the case, s = ξ vol(L)1/n. If we take ξ = 1.1 for example, then
ρ1/s(L̂) > 2 with overwhelming probability for large values of n.

Summary We can estimate that as soon as s ⩾ vol(L)1/n then we essentially have
ρ1/s(L̂) ⩽ 2 with overwhelming probability over the choice of L, for large enough values of
n and when k ≪ n.

4 DGS for BKZ-reduced basis
The goal of this section is to study the complexity of the sampler given by Theorem 1 when
the basis is BKZ-reduced. More precisely, we will study the upper bound in Lemma 3:∏d

i=1
ρ∥b̃i∥/s

(Z). (5)

Recall that for values of s that are not too small, this upper bound is quite tight (see
previous section).

4.1 How accurate is the GSA?
In this section, we compare the values given by (5) when using actual BKZ-reduced basis
or when using the GSA (Heuristic 1) for the values of the ∥b̃i∥. We will refer to the former
by “(5)+BKZ” and to the latter by “(5)+GSA”.

Before going into the experimental results, it is useful to heuristically think about why
the GSA should give good results in this context. Recall that the GSA is known to be
quite accurate for most lattices, except in the head and in the tail. Looking at (5), we can
expect that for values of s that are not too small, all terms of the product will be very
close to 1. Since the GSA is accurate for most values, the only errors will come from a
few terms in the head and in the tail. But since those terms are close to 1, we expect the
overall error of (5)+GSA to be small.

We run the following experiment: for several values of d = n (i.e. full-rank lattices)
and β, we pick N = 10 bases at random and BKZ-β reduce them. For BKZ, we use the
G6K software from [ADH+19]. Specifically, we use the “pump-and-jump” strategy with
n2

β2 log(n) tours (see [LN24] for a theoretical argument).
We then plot the complexity given by (5)+BKZ for each of those N bases. On the

other hand, we also plotted the value given by (5)+GSA. Since the latter only depends on
5Proven later in Section 6 which is independent from the rest of the paper.
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Figure 1: Comparison between (5)+BKZ and (5)+GSA for various values of n and β. For
each experiment, N = 5 bases are chosen at random and BKZ-β reduced. The plots show
both the absolute values and the ratio between the two complexities. See Section 4.1 for
details.

x = vol(L)1/n/s (for fixed n and β), we plot all curves as a function of x. As discussed in
Section 4, the upper bound (5) is only tight for values of s that satisfy s ⪆ vol(L)1/k, i.e.
x ⩽ 1. Therefore we only plot the curves over the interval [0, 1]. To make the comparison
easier, we give two plots per value of k and β:

• the “upper” plot gives the (logarithm) of (5)+GSA in red and the (N values of)
(5)+BKZ in grey,

• the “lower” plot gives the (N values of) of the (logarithm) of (5)+BKZ
(5)+GSA in blue.

In certain applications, it is important to run the sampler on q-ary bases. It is well-known
[Bos21, DEP23] that running BKZ on the standard6 q-ary basis yields a basis of a very
particular shape called the “Z-shape”. The Z-shape can deviate substantially from the
GSA for certain choices of parameters n, k and q and it is still an open problem to give a
good model for those bases. For this reason, we also ran the same experiments with some
q-ary bases. Strangely, in our experiments, we observed that the GSA seems to give better
results than the Z-shape adapted GSA, which is why in Figure 3 we plot (5)+GSA. We
leave as an open question to explain why this is the case.

The results can be found in Figure 1, Figure 2 and Figure 3. We observe a reasonably
good agreement between (5)+BKZ and (5)+GSA. Unsurprisingly, the error increases as
s becomes smaller (and x becomes closer to 1) but we expect that most applications of
this result will only use small values of x. In particular, the error seems negligible when
x ⩽ 1/4 which is probably the more useful regime for this algorithm. In particular, our
application in Section 5 only requires values of x which are significantly smaller than 1/4.

6A basis of the form
[

Ir 0
B qIn−r

]
for some 1 ⩽ r ⩽ n and integer matrix B.
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Figure 2: Comparison between (5)+BKZ and (5)+GSA for various values of n and β. For
each experiment, N = 5 bases are chosen at random and BKZ-β reduced. The plots show
both the absolute values and the ratio between the two complexities. See Section 4.1 for
details.
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(b) n = 100, β = 60 (q-ary)
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Figure 3: Comparison between (5)+BKZ and (5)+GSA for various values of n and β. For
each experiment, N = 5 q-ary basis are chosen at random and BKZ-β reduced. The plots
show both the absolute values and the ratio between the two complexities. See Section 4.1
for details.
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4.2 An approximation formula
Having observed in the previous section that the GSA gives reasonably accurate values for
(5), we now give a simple approximation for it. The motivation is twofold. First, from a
theoretical perspective, it is difficult to understand the behaviour of (5), even assuming
the GSA. By finding a much simpler formula, we can better understand its dependency on
the various parameters. Second, when using (5) in an optimizer to compute complexity
estimates of attacks (such as in [PS24]), the cost of evaluating this formula can quickly
become prohibitive. Indeed, evaluating (5) takes time O(n) to evaluate, compared to O(1)
to the formula that we give.

Theorem 3. Let 0 < d ⩽ n and 0 < β ⩽ d. Let b1, . . . , bd ∈ Rn be a BKZ-β reduced
basis of a lattice L and b̃1, . . . , b̃d be the Gram-Schmidt vectors of the basis. Let s > 0 and
α = ∥b1∥/s. If Heuristic 1 holds then for any odd number p ⩾ 1,

ln
(

d∏
i=1

ρ∥b̃i∥/s
(Z)
)

⩽ A +
p∑

ℓ=1

2ℓ(−1)ℓ+1

ℓ
(Bℓ + Cℓ)

where

A = (d0 + 1) ln α

Hd0
β

+ dε,

Bℓ =
E1

(
πℓα2H

−4(d0+ 1
2 )

β

)
− E1(πℓα2H−2

β )

2 ln(Hβ) ,

Cℓ =
E1

(
π

α2 ℓH
4(d− 1

2 )
β

)
− E1

(
π

α2 ℓH
4(d0+ 1

2 )
β

)
2 ln(Hβ) ,

d0 = max
(

−1, min
(

d − 1,
⌊

ln(α)
2 ln(Hβ)

⌋))
and ε comes from Lemma 2.

Proof of Theorem 3. Using Heuristic 1, we have that ∥b̃i∥/s = αH
−2(i−1)
β . Therefore,

ln
(

d∏
i=1

ρ∥b̃i∥/s
(Z)
)

=
d−1∑
i=0

ln ραH−2i
β

(Z)

Now check that
αH−2i

β ⩾ 1 ⇔ i ⩽
ln(α)

2 ln(Hβ) .

We let
d0 = max

(
−1, min

(
d − 1,

⌊
ln(α)

2 ln(Hβ)

⌋))
so that

d−1∑
i=0

ln ραH−2i
β

(Z) =
d0∑

i=0
ln ραH−2i

β
(Z) +

d−1∑
i=d0+1

ln ραH−2i
β

(Z).

For 0 ⩽ i ⩽ d0, we have αH−2i
β ⩾ 1 by definition of d0. Then by Lemma 2, there

exists ε such that ραH−2i
β

(Z) ⩽ αH−2i
β ·

(
1 + 2 exp(−πα2H−4i

β )
)

+ ε. By using that
ln(x + ε) ⩽ ln(x) + ε for any x ⩾ 1, we get that

d0∑
i=0

ln ραH−2i
β

(Z)
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⩽
d0∑

i=0
ln
(

αH−2i
β ·

(
1 + 2 exp(−πα2H−4i

β )
))

+
d0∑

i=0
ε

=
d0∑

i=0
ln
(

αH−2i
β

)
+

d0∑
i=0

ln
(

1 + 2 exp(−πα2H−4i
β )

)
+ (d0 + 1)ε

= (d0 + 1)
(

ε + ln α

Hd0
β

)
+

d0∑
i=0

ln
(

1 + 2 exp(−πα2H−4i
β )

)

by a routine calculation. Now i 7→ ln
(

1 + 2 exp(−πα2H−4i
β )

)
is a convex function over the

interval [− 1
2 , d0 + 1

2 ] whenever Hβ ⩽
√

π√
1+W0( 2

e )
(see Section A.1). Therefore by Lemma 1,

d0∑
i=0

ln
(

1 + 2 exp(−πα2H−4i
β )

)
⩽
∫ d0+ 1

2

− 1
2

ln
(

1 + 2 exp(−πα2H−4t
β )

)
d t.

Recall that for odd p, ln(1 + x) ⩽
∑p

ℓ=1
(−1)p+1xp

p for any x ⩾ 0. It follows that

d0∑
i=0

ln
(

1 + 2 exp(−πα2H−4i
β )

)
⩽
∫ d0+ 1

2

− 1
2

ln
(

1 + 2 exp(−πα2H−4i
β )

)

⩽
∫ d0+ 1

2

− 1
2

p∑
ℓ=1

2ℓ(−1)ℓ+1

ℓ exp
(

−πℓα2H−4t
β )

)
d t

=
p∑

ℓ=1

2ℓ(−1)ℓ+1

ℓ

∫ d0+ 1
2

− 1
2

exp
(

−πℓα2H−4t
β )

)
d t.

For any x ̸= 1,

∫ b

a

exp(−yx4t) d t =
∫ x4b

x4a

exp(−yu)
4 ln(x)u d u by the change u = x4t

= E1(yx4a) − E1(yx4b)
4 ln(x) by (2). (6)

Therefore,

d0∑
i=0

ln ραH−2i
β

(Z) ⩽ (d0 + 1)
(

ε + ln α

Hd0
β

)

+
p∑

ℓ=1

2ℓ(−1)ℓ+1

ℓ

E1

(
πℓα2H

−4(d0+ 1
2 )

β

)
− E1(πℓα2H−2

β )

2 ln(Hβ) .

Similarly, for d0 < i ⩽ d, we have αH−2i
β ⩽ 1 so ραH−2i

β
(Z) ⩽ 1 + 2 exp(− π

α2 H4i
β ) by

Lemma 2. It follows by the same argument as above that

d−1∑
i=d0+1

ln ραH−2i
β

(Z) ⩽
d−1∑

i=d0+1
ln
(
1 + 2 exp(− π

α2 H4i
β )
)

+ (d − 1 − d0)ε.
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Now i 7→ ln
(

1 + 2 exp(− π
α2 H4i

β )
)

is a convex function over the interval [d0 + 1
2 , d − 1

2 ]

whenever Hβ ⩽
√

π√
1+W0( 2

e )
(see Section A.1). Therefore by Lemma 1,

d0∑
i=0

ln
(
1 + 2 exp(− π

α2 H4i
β )
)
⩽
∫ d− 1

2

d0+ 1
2

ln
(
1 + 2 exp(− π

α2 H4t
β )
)

d t.

It then follows by the same argument as above that

d−1∑
i=d0+1

ln ραH−2i
β

(Z) ⩽ (d − 1 − d0)ε

+
p∑

ℓ=1

2ℓ(−1)ℓ+1

ℓ

E1

(
π

α2 ℓH
4(d− 1

2 )
β

)
− E1

(
π

α2 ℓH
4(d0+ 1

2 )
β

)
2 ln(Hβ) .

4.3 How accurate is the approximation?
We now compare the formula of Theorem 3 with the upper bound (5) on the complexity
where we use the GSA (Heuristic 1) for the values of the ∥b̃i∥. We will refer to the latter
by “(5)+GSA” as we did in Section 4.1.

We observe that both (5)+GSA and the formula from Theorem 3 only depend on d,
x = vol(L)1/d/s and β. Therefore, we plot the complexity curves as a function of x. We
will plot all results in logarithimic scale (base 2) since this is the most relevant scale for
our applications. For each set of parameter, we plot both the absolute values and the
difference. As discussed in Section 4, the upper bound (5) is only tight for values of s that
satisfy s ⪆ vol(L)1/d, i.e. x ⩽ 1. Therefore we only plot the curves over the interval [0, 1].

The curves can be found in Figure 4, we used p = 3 in Theorem 3 for all curves. The
bottom figures confirm that the difference between Theorem 3 and (5)+GSA is negligible.
Indeed, we can see that for d = 1000, the logarithm of the ratio between the two quantities
is less than 0.001, meaning that the approximation is correct within a multiplicative
factor 20.001 ⩽ 1.00067. This factor should be negligible for virtually all applications
given that the complexities grows exponentially in d, as can be seen on the top figures.
Although not shown here, we observed that the difference between (5)+GSA and the
formula from Theorem 3 is much larger for p = 1 compared to p = 3 where for d = 1000 it
is approximately 0.15 instead of 6 · 10−4.

5 Applications to dual attack on LWE
In this section, we revisit the complexity estimates from [PS24] using our approximation
formula (Theorem 3). The approach in [PS24] is to write an optimizer that uses an
approximate formula to find the best parameters and to then re-evaluate the complexity
for the best parameters using (5)+GSA. Indeed, recall that (5)+GSA takes time O(n)
to compute (compared to O(1) for the approximation) which becomes prohibitive when
n ≈ 1000 in the dual attack. However, this strategy can lead to sub-optimal parameter
choices if the approximate formula for the sampler is not good enough.
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Figure 4: Top pictures: (logarithm) of the complexity upper bound given by (5)+GSA,
for different values of d and β, plotted as a function of x. Bottom pictures: (logarithm) of
the ratio between the complexity given by Theorem 3 and that given by (5)+GSA, for the
same values of k and β.

5.1 High-level overview of the attack
In this section, we give a succint presentation of the attack in [PS24]. We focus on the
high-level description and how the Gaussian sampler plays a role. In this attack, we are
given m LWE samples which we represent in matrix form by (A, b) where A ∈ Zm×n

q is
chosen uniformly at random, and b = As + e where s ∈ Zn

q is the unknown secret that
we are trying to recover, and e ∈ Zm

q has its components sampled independently from a
distribution χe. Typically χe will either be a modular discrete Gaussian, or a centered
binomial. In all applications, χe will take very small values with high probability. Here,
the number of samples m is a parameter of the attack and is typically around 2n, see
[PS24, Sections 4.4 and 7] for more discussion on this point.

The first step of the attack is to split the secret s into two parts sguess ∈ Znguess
q and

sdual ∈ Zndual
q where n = nguess + ndual. The matrix A ∈ Zm×n

q is correspondingly split
into two parts:

A =
[
Aguess Adual

]
, s =

[
sguess
sdual

]
.

The algorithm will now exhaustively try all values s̃guess ∈ Znguess
q and check which one is

correct. Check that

b − Aguess · s̃guess = Aguess · (sguess − s̃guess) + Adual · sdual + e.

Recall that the components of e are sampled from χe which is small, so we expect ∥e∥ to
be relatively small. Consider the lattice

Lq(Adual) = AdualZndual
q + Zm.

The intuition behind the attack is that:

• If sguess = s̃guess then b − Aguess · s̃guess ∈ Lq(Adual) + e and since e has small norm,
this means that b − Aguess · s̃guess is close to the lattice Lq(Adual).
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• If sguess ̸= s̃guess then one can show that with high probability over the choice of
A, the vector Aguess · (sguess − s̃guess) is far from the lattice Lq(Adual) and therefore
b − Aguess · s̃guess is far from to the lattice Lq(Adual).

Therefore, the attack reduces to the problem of estimating the distance between a given
vector x and the lattice Lq(Adual). The usual approach to do so is to first sample a large
number N of vectors w1, . . . , wN in the dual lattice

L⊥
q (Adual) =

{
x ∈ Zm : xT Adual = 0 mod q

}
according to a discrete Gaussian of width s (a parameter of the attack). We then consider
the sum

gW (x) = 1
N

N∑
j=1

cos(2π⟨x, wj⟩/q)

which can be shown to corrolate with the distance from x to Lq(Adual). Therefore it
suffices to compute gW for all guesses b − Aguess · s̃guess and to keep the highest one. While
the naive way of computing all those sums is slow, a better algorithm using the discrete
Fourier transform is possible.

A critical point in the analysis above is the number of samples N : it needs to be
large enough for the values of gW to correctly estimate the distance to Lq(A) and how
large depends on the width s of the discrete Gaussian according to which we sample the
wi. Intuitively, a smaller value of s will require a smaller number of samples N , but will
increase the complexity of the Gaussian sampler. Since [PS24] uses the sampler from
[WL19], it is critical to have an accurate and quick to compute estimate of the complexity
of the sampler given a width s.

5.2 Applications
Our approach is first to modify the code7 to use our new approximate formula. This
requires a few more changes since the optimizer of [PS24] enforces the condition8 that
s ⩾ ∥b1∥

2q [PS24, Section 4.4]. Furthermore, the optimizer of [PS24] always picks the
smallest possible value of s. This approach does not work in our case because our condition
s ⩾ qk/n−1 is much weaker9 than ∥b1∥

2q , and results in very small values of s and sampling
time which is too high. We instead modified the code to search for the value of s in the
interval ∥b1∥

q · [0.4, 0.5] which experimentally seems to give the best results. Our new
complexity estimates are given in Table 1. We included the value of x = qndual/m−1/s in
the table to make the correspondence with Section 4. Indeed, recall that the complexity of
the sampler only depends on x = vol(L)1/d/t where d is the dimension of the lattice and t
is the width of the discrete Gaussian. In the algorithm of [PS24], d = m, vol(L) = qndual

and t = qs. Note that similarly to [PS24], we use the formula of Theorem 3 in the optimizer
to find the best set of parameters but we compute the final estimates using (5)+GSA.
Therefore, the only potential inaccuracies come from errors due to the GSA (see last
paragraph of this section). Importantly, all estimates in the table ignore polynomial
factors, including that of Theorem 1.

We observe some significant improvements in the complexity compared to [PS24],
especially without modulus switching, thanks to the smaller values of s that our formula

7The code for the complexity estimates in [PS24] is available as an artifact.
8Beware that the algorithm of [PS24] actually samples at qs and not s.
9By the Gaussian heuristic, which essentially holds true for random q-ary lattices [PS24, Corollary 2],

λ1 ≈ qk/n
√

n
2πe

. For a BKZ-β reduced basis, ∥b1∥ ⩾ λ1 and in fact ∥b1∥ ≫ λ1 unless β is close to n.

Hence, ∥b1∥
2 ≫ qk/n for most lattices.

https://artifacts.iacr.org/eurocrypt/2024/a5/
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Table 1: Dual attack cost estimates and their parameters as described in [PS24, Section 4.4]
modified as described in Section 5. All costs are logarithms in base two. Note that the
cost of attacks with modulus switching are optimistic estimates of what an algorithm
with modulus switching could give if the algorithm of [PS24] was extended with modulus
switching. This table only contains improvements on the sampler complexity.

No modulus switching
Scheme attack m nguess ndual β s x attack [PS24]
Kyber512 182 963 15 497 541 0.200 0.097 185
Kyber768 267 1419 21 747 849 0.250 0.087 273
Kyber1024 366 1925 31 993 1202 0.250 0.079 376

With modulus switching
Kyber512 141 763 141 371 381 0.190 0.082 141
Kyber768 201 1119 201 567 599 0.240 0.077 202
Kyber1024 273 1575 261 763 867 0.240 0.064 279

Table 2: Dual attack cost estimates and their parameters as described in [PS24, Section 4.4]
modified as described in Section 5. All costs are logarithms in base two. Note that the
cost of attacks with modulus switching are optimistic estimates of what an algorithm
with modulus switching could give if the algorithm of [PS24] was extended with modulus
switching. This table contains improvements on the optimizer and the sampler.

No modulus switching
Scheme attack m nguess ndual β s x attack [PS24]
Kyber512 181 1023 15 497 539 0.200 0.079 185
Kyber768 266 1504 22 746 843 0.240 0.070 273
Kyber1024 366 1985 31 993 1199 0.250 0.070 376

With modulus switching
Kyber512 136 778 133 379 381 0.190 0.081 141
Kyber768 199 1164 197 571 602 0.230 0.068 202
Kyber1024 270 1520 269 755 857 0.240 0.070 279

is able to handle. However, when looking in detail at the results, we also observe that the
optimizer of [PS24] has some limitations. Indeed, the algorithm brute forces all possible
values of m, β and nguess but since the search space is too large, it only evaluates values
on a grid with some signifcant steps on the β and nguess axis. As a result, the various
complexity terms (BKZ, guessing and sampling complexity) do not balance well in the final
complexity and lead to sub-optimal results. This is why our second approach is to modify
the optimizer to perform a coarse-grid search for promising parameter sets, and then do a
refined local search around those candidates. The results are available Table 2 and show
much more signifcant improvements, including for estimates with modulus switching.

An interesting observation can be made on both Table 1 and Table 2: the values of
x required for the sampler are all very small. Indeed, the largest value of x used by the
algorithm is less than 0.01. Recall that in Section 4.1 we compared the complexity of the
sampler BKZ-reduced basis against an approximation using the GSA. We saw a notable
increase in the approximation error when x gets close to 1, but also a negligible error when
x ⩽ 0.2. While it is difficult to extrapolate results to dual attack (that use β ≈ 1000) from
limited experimental results (β = 70), we note that in all our experiments, the error was
consistently negligible when x ⩽ 0.2. This suggests that in this parameter regime, we can
hope that the complexity estimates are indeed accurate.
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6 On the Gaussian mass of random q-ary lattices
In this section, we give probabilistic estimates on the value of ρ1/s(L̂) when L is a random
q-ary lattice (see Section 2.4 for more details). These bounds are related to the smoothing
parameter of lattices and are useful to argue about the tightness of the complexity bound
in Section 3. A similar result was shown for “standard” random q-ary lattices (i.i.d.
from uniform entries) in [LLBS14, Lemma 3] but only gives the expected value, whereas
we also bound the variance. A closely related result is available in [KNSW20] which
studies matrices with each entry independently and identically distributed from an integer
Gaussian distribution. Similarly, [CPS+20, Appendix A], [LPR13, Section 7] and [SS11,
Theorem 2] analyzes the Gaussian mass of a random q-ary lattice over cyclotomic fields.

Lemma 4. For any n ∈ N, 1 ⩽ k ⩽ n, prime number q and s > 0,

EL∼L⊥
n,k,q

[
ρ1/s(L̂)

]
⩽ ρ1/s(Zn) + qk−nρq/s(Zn),

VL∼L⊥
n,k,q

[
ρ1/s(L̂)

]
⩽ q1+k−nρq/s(Zn)ρ1/s(Zn).

Proof. Recall that if L = Lq(A) then L̂ = 1
q L⊥

q (A). Therefore, L ∼ Ln,k,q is equivalent to
L̂ ∼ 1

q L⊥
n,k,q. Therefore we can use Theorem 2 to get that

EL∼Ln,k,q

[
ρ1/s(L̂)

]
= EL∼L⊥

n,k,q

[
ρ1/s( 1

q L)
]

= EL∼L⊥
n,k,q

[
ρq/s(L)

]
= ρq/s(qZn) + qk−nρq/s(Zn \ qZn)
⩽ ρ1/s(Zn) + qk−nρq/s(Zn).

To estimate the variance, we use Corollary 1 to get that

VL∼Ln,k,q

[
ρ1/s(L̂)

]
= VL∼L⊥

n,k,q

[
ρ1/s( 1

q L)
]

= VL

[
ρq/s(L)

]
= (qk−n − q2(k−n))

∑
x∈Zn\qZn

∑
u∈qZn

∑
α∈Zq\{0}

ρq/s(x)ρq/s(αx + qu)

⩽ qk−n
∑

x∈Zn\qZn

∑
α∈Zq\{0}

ρq/s(x)ρq/s(αx + qZn)

⩽ qk−n
∑

x∈Zn\qZn

∑
α∈Zq\{0}

ρq/s(x)ρq/s(qZn)

= (q − 1)qk−nρq/s(Zn \ qZn)ρq/s(qZn)
⩽ q1+k−nρq/s(Zn)ρ1/s(Zn).

Lemma 5. For any n ∈ N, 1 ⩽ k ⩽ n, prime number q and ξ > 1, if s = ξqk/n ⩽ q then

ρ1/s(Zn) ⩽ (1 + ε)nf(s)n,

qk−nρq/s(Zn) ⩽ (1 + ε)nξ−nf
(

q1−k/n/ξ
)n

where f(x) = 1 + 2e−πx2 for all x ⩾ 0 and ε is defined in Lemma 2.
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Proof. Let ε be as in Lemma 2. Clearly s ⩾ 1 if s = ξqk/n so we can apply Lemma 2 to
get that

ρ1/s(Zn) ⩽ (1 + ε)n
(

1 + 2e−πs2
)n

= (1 + ε)nf(s)n.

By Lemma 2, when s ⩽ q, we have that

qk−nρq/s(Zn) ⩽ qk−n(1 + ε)n( q
s )n

(
1 + 2e−π(q/s)2

)n

= qk−n(1 + ε)nξ−nqn−k
(

1 + 2e−π(q1−k/n/ξ)2
)n

= (1 + ε)nξ−n
(

1 + 2e−π(q1−k/n/ξ)2
)n

= (1 + ε)nξ−nf
(

q1−k/n/ξ
)n

.

Corollary 2. For any n ∈ N, 1 ⩽ k ⩽ n, prime number q, ξ > 1 and α, if s = ξqk/n ⩽ q/2,
qk/n ⩾ 2 and α > µ then

PrL∼L⊥
n,k,q

[
ρ1/s(L̂) > α

]
⩽

σ2

(α − µ)2

where
µ = 1.000007n + ξ−n · 1.000014n, σ2 = q · 1.000028n · ξ−n.

Proof. Let f be defined as in Lemma 5 which is a decreasing function. Observe that if
2s ⩽ q then 2ξqk/n ⩽ q, that is q1−k/n/ξ ⩾ 2. Therefore, f(q1−k/n/ξ) ⩽ f(2) ⩽ 1.000007.
Similarly, if qk/n ⩾ 2 then s ⩾ 2 so f(s) ⩽ f(2). Also note that for ε ⩽ 6.98 × 10−6 we
have (1 + ε)f(2) ⩽ 1.000014. Hence, by Lemma 4 and Lemma 5

µ := EL∼L⊥
n,k,q

[
ρ1/s(L̂)

]
⩽ ρ1/s(Zn) + qk−nρq/s(Zn),

⩽ (1 + ε)nf(s)n + (1 + ε)nξ−nf
(

q1−k/n/ξ
)n

⩽ (1 + ε)nf(2)n + (1 + ε)nξ−nf (2)n

⩽ 1.000007n + ξ−n · 1.000014n,

and

σ2 := VL∼L⊥
n,k,q

[
ρ1/s(L̂)

]
⩽ q1+k−nρq/s(Zn)ρ1/s(Zn)

⩽ q · (1 + ε)nξ−nf
(

q1−k/n/ξ
)n

· (1 + ε)nf(s)n

⩽ q · (1 + ε)nξ−nf (2)n · (1 + ε)nf(2)n

⩽ q · 1.000028n · ξ−n.

Finally, we conclude by Chebyshev’s inequality.

The constants in Corollary 2 are somewhat arbitrary but allow for a greatly simplified
statement. It seems that the probability bound is not very sharp and it would be interesting
to see if the proof can be refined to obtain a stronger statement.
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Appendix

A Deferred results
A.1 Convexity of a certain function
First, we claim the following result.

Lemma 6. Let a > 0, x ̸= 1 and f(t) = ln (1 + 2 exp(−axt)) for any t ∈ R. Let

t0 = 1
ln x ln

 1+W

(
2
e

)
a

. If 0 < x < 1 then f is a convex function over (−∞, t0]. If x > 1

then f is a convex function over [t0, ∞).

Proof. Clearly f is twice differentiable and a routine calculation shows that

f ′′(t) = 2axt ln(x)2 exp(−axt)
(1 + 2 exp(−axt))2

(
axt − 1 − 2 exp(−axt)

)︸ ︷︷ ︸
:=g(t)

.

Now observe that

g(t) = 0 ⇔ axt − 1 = 2 exp(−axt)
⇔ axt − 1 = 2

e exp(1 − axt)
⇔ axt − 1 = W0(− 2

e )

⇔ xt =
1 + W0( 2

e )
a

⇔ t = 1
ln x

ln
(1 + W0( 2

e )
a

)

where W denotes the Lambert W function. If x < 1 then g(t) → ∞ as t → −∞ so g
and therefore f ′′ is positive over the interval (−∞, t0) where t0 is the unique solution to
g(t0) = 0 above. If x > 1 then g(t) → ∞ as t → ∞ so g and therefore f ′′ is positive over
the interval [t0, ∞).

Recall the setting from the proof of Theorem 3: we have α > 0, Hβ > 1 and d0 =
max

(
−1, min

(
k − 1,

⌊
ln(α)

2 ln(Hβ)

⌋))
. We want to show that i 7→ ln

(
1 + 2 exp(−πα2H−4i

β )
)

is a convex function over the interval [− 1
2 , d0 + 1

2 ]. First if d0 = −1 then the result is
trivial. Otherwise, we can assume that d0 ⩾ 0 and therefore d0 ⩽

⌊
ln(α)

2 ln(Hβ)

⌋
⩽ ln(α)

2 ln(Hβ) .
Let a = πα2 and x = H−4

β ∈ (0, 1). By Lemma 6, this function is convex over the interval
(−∞, t0) where

t0 = 1
ln x

ln
(

1 + W
( 2

e

)
a

)
= 1

−4 ln Hβ
ln
(

1 + W
( 2

e

)
πα2

)
= ln α

2 ln Hβ
+

ln
1+W

(
2
e

)
π

−4 ln Hβ
.

Since ln α
2 ln Hβ

⩾ d0, we have t0 ⩾ d0 + 1
2 whenever

ln
1+W

(
2
e

)
π

−4 ln Hβ
⩾ 1

2 ⇔ Hβ ⩽

√
π√

1 + W0( 2
e )

.
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However one can verify that this last inequality always holds because the right-hand
side is approximately 1.4653 whereas the Hβ is always smaller than H36 ≈ 1.012608,
as can be verified by numerical computations. Similarly, we want to show that i 7→
ln
(

1 + 2 exp(− π
α2 H4i

β )
)

is a convex function over the interval [d0 + 1
2 , k − 1

2 ]. First if
d0 = k −1 then the result is trivial. Otherwise we can assume that d0 < k −1 and therefore
that d0 ⩾

⌊
ln(α)

2 ln(Hβ)

⌋
⩾ ln(α)

2 ln(Hβ) − 1. Let a = π
α2 and x = H4

β > 1. By Lemma 6, this
function is convex over the interval [t1, ∞) where

t1 = 1
ln x

ln
(

1 + W
( 2

e

)
a

)
= 1

4 ln Hβ
ln
(

1 + W
( 2

e

)
π

α2

)
= ln α

2 ln Hβ
+

ln
1+W

(
2
e

)
π

4 ln Hβ
.

Since ln α
2 ln Hβ

⩽ d0 + 1, we have t1 ⩽ d0 − 1
2 whenever

ln
1+W

(
2
e

)
π

4 ln Hβ
⩽ − 1

2 ⇔ Hβ ⩽

√
π√

1 + W0( 2
e )

.
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