
One-Shot Native Proofs of Non-Native
Operations in Incrementally Verifiable

Computations

Tohru Kohrita1, Patrick Towa2 and Zachary J. Williamson2

1 Nil Foundation
2 Aztec Labs

Abstract. Proving non-native operations is still a bottleneck in existing
incrementally verifiable computations. Prior attempts to solve this issue
either simply improve the efficiency of proofs of non-native operations or
require folding instances in each curve of a cycle. This paper shows how
to avoid altogether in-circuit proofs of non-native operations in the incre-
mental steps, and only record them in some auxiliary proof information.
These operations are proved natively at the end of the computation, at
the cost of only a small constant number (four or five) of non-native field
multiplications to go from a non-native operation record to a native one.
To formalise the security guarantees of the scheme, the paper introduces
the concept of incrementally verifiable computation with auxiliary proof
information, a relaxation of the standard notion of incrementally veri-
fiable computation. The knowledge-soundness now guarantees the cor-
rectness of a computation only if the piece of information attached to
a proof is valid. This new primitive is thus only to be used if there is
an efficient mechanism to verify the validity of that information. This
relaxation is exactly what enables a construction which does not require
in-circuit proofs of non-native operations during the incremental part
of the computation. Instantiated in the Plonk arithmetisation, the con-
struction leads to savings in circuit-gate count (compared to standard
folding-based constructions) of at least one order of magnitude, and that
can go up to a factor of 50.

1 Introduction

1.1 Context

The modern approach to proving the correctness of a computation is to do so
incrementally. The computation is first decomposed into sequential steps. Then,
to prove the correctness of the overall computation, the idea is to sequentially
prove the execution of a single step starting from the output of the previous
step, assuming it to have already been proved correct. This is what is known as
Incrementally Verifiable Computation (IVC) [26]. The main advantage of this
approach is that the computation and memory requirements for the prover are



only proportional to the size of a single step, rather the size of the whole com-
putation as with monolithic Succinct Non-interactive Arguments of Knowledge
(SNARKs).

This granularity enables several practical applications such as proving the
execution of a virtual machine which runs instructions from a pre-determined
instruction-set architecture, e.g., RISC-V or the instruction-set of Ethereum Vir-
tual Machine. These instructions are equivalent to instructions in an assembly
language. The full specification of a virtual machine also includes the number of
registers and the main-memory type (e.g., read and write, read/write-only, static
or dynamic). At each IVC step, the prover then shows that a single instruction
has been correctly executed and that the new memory state is consistent with
the previous state and the executed instruction.

Another recent application of incremental computation are proofs [8] that
a public transition of a state machine stems from the private execution of a
function in a given public set. The execution of a function is considered private if
the proof reveals nothing else than the state transition (and what can be inferred
from it). In particular, the proof reveals no information about the executed
function nor its arguments.

The classical approach [3,26] to building an IVC scheme for a given function
(e.g., the transition function of a virtual machine) is to recursively use a proof
system that is universal (i.e., it can be applied to any circuit of a given maximum
size) and has succinct verification. At each step, the prover shows that the result
at current step is the result of a single application of the function to a result at
the previous step, and that it knows a proof of correctness of this previous result
that the verifier of the previous step (instantiated with the proof-system verifier)
would accept. The downside of this approach is that in its instantiation with
the most efficient SNARKs, the verifier performs ElliptiC-Curve operations and
computes pairings. These types of operations, especially pairings, are enforced
with a large number of high-degree circuit gates, and the larger this amount is,
the slower the prover gets.

Accumulation schemes [5] and folding schemes introduced in Nova [17] gave
a solution to IVC that significantly improves the efficiency of the prover as there
are no pairing equations to prove. They are primitives which reduce the task of
checking the membership of two (or more) instances to an NP language to the
task of checking the membership of a single instance. To build an IVC scheme
from a folding scheme, the idea is to fold at each step an instance that attests to
the correct computation at the current step and an instance (an accumulator)
that attests to the correct execution of all the previous steps. At the end of the
computation, the prover need only prove knowledge of a witness to the member-
ship of the last accumulator. The advantage of using folding schemes compared
to the previous approach is that the verifier in existing (pre-quantum) construc-
tions only performs ECC operations; it does not do any pairing computation. It
means that when the IVC prover shows that it correctly folded two instances, it
must only prove ECC operations.

2



However, given a group of points on elliptic-curve defined over a prime-order
field Fq, if r denotes its (prime) order, proving a group addition in an arithmetic
circuit defined over Fr requires emulating Fq operations in Fr. This emulation is
what is usually referred to as foreign-field or non-native field operations. If r < q
as it is for instance the case for the BN254 used on the Ethereum blockchain,
proving group operations in an arithmetic circuit incurs a large number of gates,
and the prover computation scales at least linearly with this number.

The Cyclefold scheme [16] addresses this issue by leveraging an idea reminis-
cent of a paper by Ben-Sasson, Chiesa, Tromer and Virza [2]. It uses 2-cycles of
elliptic curves, i.e., it assumes that there is another group of points on an elliptic-
curve defined over Fr that has order q. To be more precise, half cycles exists as
this second group need not be pairing friendly. Applied to a folding-based IVC
construction, it requires two instance pairs: one pair per curve. The operations
in the Fq curve induced by the folding of two instances (consisting of group el-
ements in that Fq curve) are accumulated in the instance represented by group
elements in the Fr curve, and vice versa. There are at least two downsides to
this approach. First, foldings-instances one each curve are now necessary instead
of a single one, and even if the second instance is for a small circuit, its validity
must also be checked at the end of the computation. Moreover, if the paradigm is
instantiated with folding schemes like Protostar [4] or ProtoGalaxy [7] in which
the folding verifier performs field operations, the Fq field operations required to
check the folding of the instances in the Fr curve (i.e., the curve defined over Fr)
are non-native to the Fr field of the group in the Fq curve, although the correct
folding of these instances is constrained in Fr. Delegating these non-native field
operations to a subsequent IVC step while enforcing their consistency with the
current step is non-trivial and not addressed. The paper leaves as open task the
formalisation of a compiler that applies to any folding scheme describe over a
single curve.

The WARPfold paper [24] aims instead at efficiently simulating non-native
arithmetic in IVC schemes based on the Hypernova [18] and Protostar [4] folding
schemes, but does not obviate non-native field operations.

1.2 Contributions

This paper introduces an IVC scheme which does not require any non-native
operations to be proved at any IVC step. The idea is to record (in Fr) at each
step the group operations to do, and to only prove them natively at the end of
the computation. This record is committed and the commitment is given with
the IVC proof. The delicate part is to prove that the recorded operations are
consistent with the operations required to, for instance fully verify a folding,
without introducing new non-native operations. This is precisely what the con-
struction in Section 4 achieves. Importantly, the size of the proof and the verifier
computation do not scale with the total size of the operation record. The size
of the circuit for which the verifier checks proofs only depends on the number
of recorded non-native operations at the current step. The instantiation of the

3



scheme in the Plonk [10] arithmetisation is given in Section 5 and called Goblin
Plonk.

The prover eventually only performs non-native operations at the end of
the computation to translate into Fq the operations recorded in Fr. Per scalar
multiplication, this translation only requires a constant (four or five) number
of multiplications in Fq to be proved over Fr. In comparison, proving a scalar
multiplication in an Fr circuit would require a number of Fq multiplications
that scales linearly with the binary length of r (which is around 2λ, if λ denotes
the security parameter). Section 6 shows how to prove the correctness of this
translation, and how to prove the overall validity of the record.

As a proof at a given IVC step now attests to the validity of the result only if
the recorded operations are valid, the scheme is not a standard IVC scheme per
se. It is rather an IVC with some auxiliary information attached to the proof,
and the IVC output is valid only if that information is valid, in addition to the
IVC proof. In other words, the knowledge-soundness requirements are relaxed.
Section 3 formally defines IVC with auxiliary proof information. It is worth
noting that this new notion captures what is tacitly done in recent work such as
Mangrove [20] or Stackproofs [8], in which IVC outputs are valid only if some
information at the end satisfies a predicate.

Section 3 also describes a framework that encompasses the paradigms behind
existing IVC constructions, whether from SNARKs or folding schemes. This
framework allows to describe the construction in Section 4 in a way that is not
tied to a particular pre-existing standard IVC scheme, and rather shows that the
construction applies to all (though not exactly in a black-box manner). The focus
can then be only put on the handling of auxiliary proof information, without
having to prove the knowledge soundness of the construction anew whenever it
is applied to a particular incremental scheme.

Section 7 gives an estimation of the number of gates in a Plonk circuit entailed
by the instantiation in Section 5 and the validity proof in Section 6. Compared
to a standard folding-based IVC scheme, the estimation shows savings of at least
one order of magnitude, which may go up to a factor of 50.

2 Preliminaries

2.1 Notation and Convention

All algorithms are assumed to return an empty string, symbolised by ∅, when-
ever they are run on an input not in their defined input sets. Whenever an
algorithm returns ∅, it is said to abort or to return an empty output. An algo-
rithm is termed “efficient” if its run-time is a polynomial function of its input
size. Probabilistic algorithms which run in Polynomial Time are referred to as
PPT algorithms. Given a PPT algorithm A and binary strings x and r, A(x; r)
denotes the output of A on input x and random string r.

4



2.2 Bilinear-Group Structures

An asymmetric bilinear group structure consists of a tuple (p,G1,G2,GT , e) ,
with p a prime integer, G1, G2 and GT groups of order p, and e : G1×G2 7→ GT
a non-degenerate bilinear map. Generators of G1 and G2 are respectively denoted
[1]1 and [1]2. Define [1]T := e ([1]1, [1]2) . For any x ∈ F, [x]i is defined as x · [1]i
for all i ∈ {1, 2, T}. A bilinear group structure is of type 3 if there is no efficiently
computable homomorphism from G2 to G1. All pairings considered herein are
of type 3.

2.3 Proof Systems

A proof system for an NP-relation generator R consists of a set-up algorithm
Setup(R)→ (par , τ) that returns public parameters and a trapdoor (which may
be an empty string) on the input of a relation R← R

(
1λ
)
, and of a pair

(Prove(par , x, w),Vf(par , x))

of interactive algorithms. Generator R may for instance call on a generator of
bilinear group structures, and the NP relation for which proofs are computed is
defined over the generated bilinear group structure.

2.3.1 Properties. The proof systems considered in this paper are expected
to be complete and knowledge sound. A proof system is complete if Vf accepts
any interaction with Prove on a common instance x if the latter is given an
input w such that (x,w) ∈ R. Knowledge soundness (also called extractability)
requires the existence of a probabilistic algorithm, called extractor, that runs in
expected polynomial time and computes a witness for any instance for which a
prover makes the verifier accept with a probability above a certain threshold.
This threshold is called knowledge-soundness error. The knowledge-soundness
error is a function of the security parameter and the size of the instance. The
extractor is given black-box access to the prover algorithm and also has control
over its random tape. These properties are formally defined in Appendix A.1.

2.3.2 Universal Proof Systems. A universal proof system can be defined
as a proof system for a generator which returns relations of the form

{((C, x), w) : C(x,w) = 0} ,

with C being an arithmetic circuit of a size determined by the security parameter.
To be accurate, the relations (e.g., Plonkish relations) are distinct but still NP-
complete, so a pair (C, x) can be mapped in polynomial-time to an instance of
the relation.

These proof systems are sometimes defined with an additional key-generation
algorithm which takes as input parameters and a circuit C, and returns proving
and verification keys. The verification key is a succinct representation of C.

5



2.4 Polynomial Commitments

A polynomial-commitment scheme allows a party to commit to a polynomial
and to later convince another party of evaluations of the committed polynomial.

2.4.1 Syntax. Given a field F, a scheme to commit to univariate polynomials
consists of a set of algorithms as defined below.

Setup
(
1λ, Nmax ∈ N≥1

)
→ par : generates public parameters on the input of

a security parameter encoded in unary and of a positive integer Nmax. The
latter indicates a strict upper-bound on the maximum degree of the polyno-
mials that are committed to, i.e., the polynomials to be committed to are
of degree at most Nmax − 1. It is here tacitly assumed that the set-up al-
gorithm also expects an auxiliary input which may for instance specify the
basis (e.g., monomial or Lagrange) in which the polynomials to be commit-
ted to are represented. For simplicity, this input is omitted from the syntax.
To lighten the notation, the parameters are given as an implicit input to the
algorithms to follow whenever they are clear from the context.

Com
(
f ∈ F[X]<Nmax

)
→ (C, r) : computes a commitment to f (represented as

a tuple of at most Nmax field elements) and a piece of de-commitment infor-
mation r, which typically is a random value used to compute the commit-
ment.

Open (C, f, r)→ b ∈ {0, 1} : returns a bit indicating whether C is a valid com-
mitment to f w.r.t. the de-commitment information r. The algorithm is said
to accept if it returns 1 and to reject otherwise.

Eval : is a proof system for the language{
(C, u, v) : ∃

(
f ∈ F[X]<Nmax , r

)
Open(C, f, r) = 1 and f(u) = v

}
.

The bound Nmax on the degree of the witness f is here determined by par .

2.4.2 Hiding KZG Commitments. Polynomial-delegation schemes are sim-
ilar to polynomial-commitment schemes, except that the evaluations for which
proofs are computed are also committed. Zhang, Genkin, Katz, Papdopoulos
and Papamanthou [28] proposed a polynomial-delegation scheme which is sim-
ilar in spirit to the pairing-based polynomial-commitment scheme due to Kate,
Zaverucha and Goldberg [13]. The scheme which follows is a variation of standard
KZG commitments and is inspired by their construction. Kohrita and Towa [14]
proved it to be knowledge-sound under the q-DLOG assumption.

Setup
(
1λ, Nmax ∈ N≥1

)
:

G := (p,G1,G2,GT , e)← G
(
1λ
)

srs ←
(
[1]1, [τ ]1, . . . ,

[
τNmax−1

]
1
, [ξ]1, [1]2, [τ ]2, [ξ]2

)
for τ, ξ ←$ F∗

Return par ← (G, srs).

Com (f := (a0, . . . , aN−1)) :

6



r ←$ F

C ← a0 · [1]1 +a1 · [τ ]1 + · · ·+aN−1 ·
[
τN−1

]
1

+ r · [ξ]1 = [f(τ)]1 + r · [ξ]1
Return (C, r).

Open (C, f := (a0, . . . , aN−1), r) :

C ?= a0 · [1]1 + a1 · [τ ]1 + · · ·+ aN−1 ·
[
τN−1

]
1

+ r · [ξ]1.

Eval:
Prove→Vf :

q ← f − v : (X − u)

s←$ F

π ← [q(τ)]1 + s · [ξ]1
δ ← r · [1]1 − s · [τ ]1 + (s · u) · [1]1 = [r − s(τ − u)]1

Output (π, δ)

Vf : e (C − v · [1]1, [1]2) ?= e (π, [τ ]2 − u · [1]2) + e (δ, [ξ]2) .

2.5 Folding Schemes

A folding scheme [17] is a cryptographic primitive that reduces the task of veri-
fying the membership of two (or more) instances to an NP language to that of
verifying the membership of a single instance. Folding schemes are reminiscent
of accumulation schemes [5].

Formally, a folding scheme for an NP-relation generator R consists of set-up
algorithm Setup(R) → (par , τ) that returns public parameters on the input
of a relation R ← R

(
1λ
)
, (let L denote the corresponding language) and of

a pair (Prove(par , (x0, x1), (w0, w1)),Vf(par , (x0, x1)) → (w, x) of interactive
algorithms. Both algorithms run on a couple (x0, x1) of instances. Algorithm
Prove is also given witnesses w0 and w1 for the membership of x0 and x1 to
L. At the end of the interaction, Prove returns a witness w and Vf returns
an instance x. Instance x is referred to as the folding of x0 and x1

3. A folding
scheme is only useful in practice if the computational costs of the verifier added
to the costs to verify that (x,w) is in R are strictly less than the costs to verify
that (x0, w0) and (x1, w1) are in R.

2.5.1 Properties. A folding scheme should be complete and knowledge sound.
The completeness property requires that (x,w) ∈ R if w0 and w1 are valid wit-
ness for x0 and x1. A folding scheme is knowledge sound if there exists an
3 The terminology of proof systems (“prover,” “verifier,” and “proof” in the case of
non-interactive schemes) is perhaps unfitting for folding schemes as a folding verifier
does not accept or reject, it simply returns a new instance computed from its input
instances and the messages exchange with the prover. The terms “(folded) instance
generator,” “witness generator” and “folding string” might be better suited.

7



extractor that returns valid witnesses w0 and w1 for the memberships of x0 and
x1, when given rewinding access to any prover that convinces the verifier and
returns a valid witness with a probability above a certain threshold. That thresh-
old is the knowledge-soundness error. Formal definitions of these properties are
given in Appendix A.2.

2.5.2 Comparison with the Nova Definition. The definition of folding
schemes in the Nova series of papers [15, 17, 18] additionally includes a key-
generation algorithm that takes parameters as input and returns proving and
verification keys. That is because the constructions they give only allow to fold
instances for the same R1CS structure, which essentially means for the same
circuit. (The Nova paper [17] splits an R1CS instance as classically defined be-
tween the matrices which define a circuit, now called strcuture, and the rest of
the instance that is just called instance.)

Instances of a Plonk relation can be folded with the Protostar [4] and Pro-
toGalaxy [7] folding schemes. As explained in Section 2.3.2, that relation can
be mapped to a relation of the form {((C, x), w) : C(x,w) = 0} , so ProtoGalaxy
folds pairs of the form (C, x). (Circuit C is described by Plonk selectors.) It
means that ProtoGalaxy actually folds different circuits and their inputs. In
contrast, a folding instance in Nova is not a pair (C, x) that consists of a cir-
cuit and its instance (C, x), but rather only of a circuit instance x. That is, the
Nova folding scheme is for relations of the form {(x,w) : C(x,w) = 0} , with the
relation being parametrised by a circuit C. The relation for ProtoGalaxy is not
parametrised by a fixed circuit, and it is for this reason that the above definition
of folding schemes does not involve a key-generation algorithm.

3 Definitions

This section first gives a classical definition of Incrementally Verifiable Computa-
tion (IVC) for (ternary) NP relations. It next proposes an alternative definition
from which the rationale behind all existing constructions can be explained in
a simple and unified manner. It then introduces IVC with auxiliary proof in-
formation, which essentially is IVC with a relaxed knowledge soundness notion.
This relaxation is precisely what will later enable constructions that are more
efficient that what the standard IVC definition permits.

3.1 Incrementally Verifiable Computation

Existing definitions of IVC schemes are given for NP functions F : (x,w) 7→ y
which implies that to be able to repeat applications of F, its output set must be
included in its left-input set. However, most functions for which IVC schemes
are built are in fact binary-output functions (i.e., predicates), and {0, 1} is not
necessarily a subset of its left-input set. This realisation motivates the following
definitions which is given for general NP relations. It is worth noting that the

8



definition of proof-carrying data (a generalisation of IVC) due to Bünz, Chiesa,
Mishra and Spooner [6] is similarly given for predicates.

To show the definition of IVC for NP relations captures that for NP functions
which need not be predicates, consider a generator λ 7→ F

(
1λ
)
of NP functions

with arbitrary input and output sets. An IVC scheme for F can be defined as
an IVC scheme for the relation generator R that runs F ← F

(
1λ
)
and returns

relation
RF := {((x, y), w) : F (x,w) = y}.

Definition. Consider an NP-relation generator R. An Incrementally Verifiable
Computation (IVC) scheme for R consists of a set of algorithms as defined
hereafter.

Setup (R)→ par : on the input of a relation R ← R
(
1λ
)
, it generates public

parameters. The NP language corresponding to R is further denoted L.

Prove(par , (i, x0, xi+1), xi, πi, wi)→ πi+1 : given a non-negative integer i, a
proof πi (in case i ≥ 1) that there exist sequences x1, . . . , xi−1 (only if i ≥ 1,
and just x1 if i = 1) and w0, . . . , wi−1 such that

((x0, x1), w0), . . . , ((xi−1, xi), wi−1) ∈ R,

and a witness wi, this algorithm computes a proof πi+1 that there exist
sequences x1, . . . , xi and w0, . . . , wi such that

((x0, x1), w0), . . . , ((xi, xi+1), wi) ∈ R.

Vf(par , (i+ 1, x0, xi+1), πi+1)→ {0, 1} : given a non-negative integer i, this al-
gorithm deterministically returns a bit indicating whether πi+1 is a valid
proof.

The integers that Prove and Vf receive as input (i and i + 1 respectively)
indicate the number of IVC steps that have already been executed when the
algorithms are run. The number of executed IVC steps is here understood as the
number of number of IVC proofs that have already been computed.

Alternative Definition. An IVC scheme can equivalently be defined as a
sequence of knowledge-sound proof systems

(
P (i), V (i+1)

)
i∈N (sharing the same

parameters), each for an NP language L(i). Let

L
(0)
IVC := L = {(x0, x1) : ∃w0 ((x0, x1), w0) ∈ R}

and

L
(i)
IVC := { (x0, xi+1) : ∃ (w0, x1, w1 . . . , xi, wi)

((x0, x1), w0) , . . . , ((xi, xi+1), wi) ∈ R }

9



for all positive integers i. For all i ∈ N, Language L(i) must include L(i)
IVC (to be

able to compute valid proof for any instance in L(i)
IVC), and must be such that it

is hard to compute in PPT an instance in L(i) that is not in L(i)
IVC.

Note that V (0) is not defined. That is because x0 is the starting point of the
computation and there is thus no proof π0 to verify. Moreover, V (i+1) verifies
proof πi+1 computed by P (i) and which attests to the validity of xi+1.

Nevertheless, the prover in the definition of IVC is given as witness not a tuple
(w0, x1, w1, . . . , xi, wi) but rather a previous output xi, a proof πi that it stems
from a computation that starts from x0 and a witness wi for the membership
of (xi, xi+1) to L(i). This expresses the idea that it should be possible to carry
on an IVC from any step as long as the output is proved to be correct; there
should be no need to know intermediate computation results or witnesses. To
achieve it, existing IVC constructions define a sequence of predicates

(
F (i)

)
i∈N

and build a sequence
(
P (i), V (i+1)

)
i∈N of knowledge-sound proof systems for the

NP languages (parametrised by parameters par)

L(i) :=
{

(x0, xi+1) : ∃(xi, ρi, wi) F (i) (par , (x0, xi+1), xi, ρi, wi) = 1
}
.

These sequences of proof systems share the same parameter-generation algo-
rithm, which is omitted for simplicity, and the proving and verification algo-
rithms are run on the same parameters throughout the sequence. Note that as
P (i) is given πi as witness input, ρi should be efficiently and deterministically
computable from (par , x0, xi, πi) if V (i) accepts it.

Function F (0) generally is a predicate that is satisfied if its second and third
arguments are equal and if ((x0, x1), w0) ∈ R (input ρ0 is the empty string).
Language L(0) is then simply L(0)

IVC. For any positive i, predicates F (i) are de-
fined so that an instance (x0, xi+1) is in L(i) if there exists (xi, πi, wi) such that
((xi, xi+1), wi) ∈ R and that V (i) accepts on input (par , x0, xi, πi). It is the case
for any (x0, xi+1) in L(i)

IVC (it suffices to run the previous provers) and therefore,
L

(i)
IVC ⊆ L(i).
Conversely, languages L(i) are such that if a polynomial-time algorithm can

compute a proof πi+1 that an instance (x0, xi+1) is in L(i), then that instance is
likely in {

(x0, xi+1) : ∃(xi, πi, wi) ((xi, xi+1), wi) ∈ R
and V (i) (par , (x0, xi), πi) = 1

}
.

Moreover, a valid proof πi can be efficiently extracted from the algorithm which
computes πi+1 and on an instance determined by ρi. The knowledge soundness
of the proof systems imply that (x0, xi+1) is likely to be in L(i)

IVC. In other words,
it is hard to efficiently compute an instance in L(i) \ L(i)

IVC.
Recursive SNARK Bootstrapping. In the case of recursive SNARK boot-

strapping [3], for any positive integer i, function F (i) accepts if and only if
((xi, xi+1), wi) ∈ R and V (i) accepts on (par , (x0, xi), πi =: ρi) . More precisely,

10



the construction assumes that a universal SNARK (P, V ) is given. Its parame-
ters are those on which the proof systems in the sequence are run.

(
P (0), V (1)

)
is defined as (P, V ) applied to a circuit that ((x0, x1), w0) satisfies if and only
if it is in R. Proof system

(
P (1), V (2)

)
is now (P, V ) applied to a circuit that

((x0, x2), (x1, π1, w1)) satisfies if and only if ((x1, x2), w1) is in R and V (1) ac-
cepts proof π1 for instance (x0, x1). In general,

(
P (i), V (i+1)

)
is (P, V ) applied

to a circuit that ((x0, xi+1), (xi, πi, wi)) satisfies if and only if ((xi, xi+1), wi) is
in R and V (i) accepts proof πi for instance (x0, xi). Although it is always the
same universal SNARK that is used, the circuit to which it is applied changes
at each iteration.

The construction of Proof-Carrying Data (a generalisation of IVC) due to Bi-
tansky, canetti, Chiesa and Tromer [3] is actually expressed somewhat differently.
The authors define a random-access machine that they call PCD machine, and of
which the input is equivalent to (i, (x0, xi+1), xi, πi, wi) in the notation herein.
The machine accepts if ((xi, xi+1), wi) ∈ R and if the SNARK verifier would
would accept πi as a proof that xi is the result of i invocation the PCD machine
from x0. This definition is circular as the definition of the PCD machine depends
on the PCD machine itself. However, an application of Kleene’s recursion the-
orem resolves this apparent contradiction. In contrast, the inductive definition
in the previous paragraph is not circular and conveys the same idea. One of the
IVC constructions of Valiant in his seminal paper on IVC [26, Construction 2]
is similarly sequential.

Folding-Based Constructions. In the case of IVC schemes built from folding
schemes [17], function F (i) mainly checks that ((xi, xi+1), wi) ∈ R, that a claimed
instance matches the folding of two instances, and that these two instances are
valid. Their validity attests to the correct execution thus far. More precisely,
IVC proofs

πi := ((Ui, Vi), (ui, vi), ri)

consist of two instance-witness pairs that are in the folding-scheme relation and
some randomness. Each instance is of the form (C, x), with C denoting an arith-
metic circuit and x an instance for that circuit. Instance x is an input-output
pair (I,O) of the function of which C attests to the correct computation. The
first instance attests to the correct execution of functions F (j) for all j < i− 1,
and the second attest to the correct execution of F (i−1). These functions mainly
run one IVC step and ensure that the input to the corresponding step is the
correct output from all the previous steps. From an IVC proof πi as above, the
IVC prover folds the two instances Ui and ui into Ui+1, and computes a non-
interactive folding proof πFS,i+1. Next, it computes a hash hi+1 (with a function
H) of the function output at the current steps with randomness ri+1. This hash
acts as a compressing commitment to the outputs, so as to bound the size of the
public-output part of the folding instances, while chaining the computation by
making Ui+1 part of the public outputs of ui+1. The prover then sets

ρi ← ((Ui, ui), Ui+1, πFS,i+1, ri, ri+1, hi+1).

11



Formally, function F (0) simply checks that ((x0, x1), w0) ∈ R (U0, u0 and U1

are undefined and not part of its inputs) and that h1 = H(par , 1, (x0, x1), r1).
The parameters par given as input to the hash function H are parameters for a
folding scheme FS. Function F (1) enforces that ((x1, x2), w1) ∈ R, that u1.C =
F (0), that

u1.x.O = H(par , 1, (x0, x1), r1),

and that U2 := u1 is part of the public output of instance u2, i.e., that

h2 = H(par , 2, (x0, x2), u1, r2).

For i ≥ 2,

F (i) (par , (x0, xi+1), xi, ρi, wi) :

Return 1 if
((xi, xi+1), wi) ∈ R
ui.C = F (i−1)

FS.Vf (par , (Ui, ui), πFS,i+1) = Ui+1

ui.x.O = H(par , i, (x0, xi), Ui, ri)

hi+1 = H(par , i+ 1, (x0, xi+1), Ui+1, ri+1)

Else return 0.

This explanation departs from that of the Nova paper. The Nova IVS scheme only
defines a single “augmented function” which takes (par , i, (x0, xi+1), xi, ρi, wi)
as argument, tests whether i is 0 or at least 1, and returns what F (i) does
on (par , (x0, xi+1), xi, ρi, wi) . There is still a slight discrepancy as in the Nova
paper, the prover returns an empty accumulator U1 at step 0, and that is folded
with u1 at step 1. In that case F (1) = F (2) and that is why the case distinction
on i is only between 0 and otherwise, rather than 0, 1 and otherwise. However,
folding an empty accumulator U1 with u1 is equivalent to setting U2 ← u1 as
above.

Note that using a single function of which index i is a field element, as it
is the case therein, means that the IVC scheme is only defined for i bounded
by the field size. The sequential definition of functions F (i) does not have this
restriction, although this difference is irrelevant in practical IVC applications
when the field size is large, e.g., 2256.

Besides, defining a single augmented function may seem circular as the folding
instances attests to the correct execution of the augmentation function being
defined. Yet, as the set in which to which the instances belong is fixed when
parameters are generated, the augmented function can just be defined w.r.t.
elements in these sets, and it is only once the function is defined that these
elements be interpreted as folding instances. The previous sequential definition
once again avoids this apparent circularity issue in the definition.

Notice that function F (i) also includes a check that ui.C = F (i−1), i.e., that
the circuit in instance ui is indeed the previous function F (i−1) in the sequence.

12



(Function F (i−1) is here conflated with the circuit that attests to its correct com-
putation.) The Nova augmented function does not have such a test because the
Nova folding scheme folds instances for a particular circuit, and its knowledge-
soundness definition guarantees that the extractor returns witnesses for the two
input instances for the same circuit. Recall from Section 2.5.2that a folding in-
stance in Nova is not a pair consists of a circuit and its instance (C, x), but
only a circuit instance x. In particular, only the IVC verifier checks that the
folding instance-witness pairs in the proof are valid for the circuit of the aug-
mented function, i.e., that ((F ′, Ui+1), Vi+1) and ((F ′, ui+1), vi+1) are valid, with
F ′ denoting the Nova augmented function. If that is the case, by the knowledge
soundness of the Nova folding scheme, the extractor returns witnesses Vi and vi
for folding instances Ui and ui (deduced from vi+1) such that ((F ′, Ui), Vi) and
((F ′, ui), vi) are valid. It is thus guaranteed at the next extraction step that ui
is an instance for the same augmented function.

If the Nova IVC scheme were instead instantiated with a folding scheme that
folding circuits and their instances, like Protostar [4] and ProtoGalaxy [7], it
would be necessary for the augmented function to check at each step i that
circuit ui.C is indeed F ′ for the IVC scheme to be knowledge-sound.

Limitations and Alternative. Despite its elegance and simplicity, this ap-
proach to building IVC incurs significant costs as it requires P (i) to prove a
statement about F (i). Even though folding schemes greatly reduced these costs
compared to the SNARK-bootstrapping approach (because folding verifiers do
not perform pairing operations), folding-scheme verifiers [4, 17] typically per-
forms ElliptiC-Curve (ECC) operations. Unfortunately, ECC operations induce
a large number of high-degree constraints in the circuit of which P (i) proves the
satisfiability, even with the most practical circuit arithmetisations [10, 22]; and
the higher the number and degree of constraints, the slower provers are. That is
because the arithmetisation is done in the scalar field of the ECC group, which
means that arithmetising ECC operations requires to simulate operations from
the base field of the ECC in its scalar field.

This observation motivates the following idea: instead of proving the correct-
ness of expensive verifier operations at each step, simply accumulate (at each
step and) into some information auxiliary to the IVC proof constraints to prove
the input-output statements of these expensive operations. Proving the correct-
ness of expensive operations can thereby be deferred and proved at once for
multiple steps4; and the IVC proof now only guarantees the correctness of a
computation output up to the validity of the expensive operations accumulated
in the auxiliary information. To formalise this idea, the next section introduces
IVC with auxiliary proof information.

4 Section 6 shows how to prove the validity of these operations in their native field,
which is why the prover is eventually faster than in standard IVC constructions.

13



3.2 Incrementally Verifiable Computation with Auxiliary Proof
Information

Incrementally verifiable computation with auxiliary proof information relaxes
the soundness requirement of IVC insofar as a proof attests to the validity of
a computation only if some auxiliary proof information is in a predetermined
language. The elements of that language are later qualified as valid. The relax-
ation enables constructions that are more efficient than those of classical IVC, as
operations that are expensive in the proof computation can be included in the
auxiliary proof information rather than proved at each step. Assuming the exis-
tence of an efficient scheme to prove the validity of auxiliary information, those
expensive operations can eventually be proved at once after a desired number
of computation steps. Together with the relaxed IVC proof, a validity proof for
the auxiliary information attests to the validity of the computation.

Definition. Consider a generator G which returns the description of an NP
relation R and of a family of NP relations R(i)

aux defined for all positive integers
i. (Although there might be infinitely many distinct relations in the family,
the description should be finite.) Denote by L

(i)
aux the language corresponding

NP language. Relation R is the main relation for which the IVC is computed.
Language L(i)

aux consists of the pieces of auxiliary proof information that are
considered valid after i computation steps.

An Incrementally Verifiable Computation (IVC) scheme for G consists of a
set of algorithms as defined below.

Setup
(
R,
(
R

(i)
aux

)
i≥1

)
→ par : generates public parameters on the input of a

relation and a sequence of relations(
R,
(
R(i)

aux

)
i≥1

)
← G

(
1λ
)
.

Prove(par , (i, x0, xi+1), xi, πi, aux i, st i, wi)→ (πi+1, aux i+1, st i+1) : receives as
input a non-negative integer i, a proof πi (in case i ≥ 1) that either aux i /∈
L

(i)
aux or there exist sequences x1, . . . , xi−1, (only if i ≥ 1, and just x1 if i = 1)

and w0, . . . , wi−1 such that

((x0, x1), w0), . . . , ((xi−1, xi), wi−1) ∈ R,

a state st i (only if i ≥ 1) and a witness wi. This algorithm computes an
auxiliary piece of proof information aux i+1 as well as a proof πi+1 that
either aux i+1 /∈ L

(i+1)
aux or there exist sequences x1, . . . , xi and w0, . . . , wi

such that

((x0, x1), w0), . . . , ((xi, xi+1), wi) ∈ R,

and updates the prover state to st i+1. State st i is a witness for the mem-
bership of aux i to L

(i)
aux and contains information that the prover needs to

14



compute aux i+1, and state st i+1 information that the prover needs at the
next step.

Vf(par , (i+ 1, x0, xi+1), πi+1, aux i+1)→ {0, 1} : given a non-negative integer i,
this algorithm deterministically returns a bit indicating whether πi+1 is a
valid proof w.r.t. aux i+1.

Formal definitions of completeness and knowledge soundness are given in Ap-
pendix B.

Remark that standard IVC is a special case of IVC with auxiliary proof
information in which the auxiliary information and the prover state are empty
at all steps.

Alternative Definition. Similarly to classical IVC, IVC with auxiliary proof
information can be defined as a sequence of knowledge-sound proof systems(
P (i), V (i+1)

)
i∈N (sharing the same parameters), each for an NP language L(i).

Let

L
(0)
IVC−aux =

{
(x0, x1, aux 1) : aux 1 /∈ L(1)

aux or ∃w0 ((x0, x1), w0) ∈ R
}

and

L
(i)
IVC−aux :=

{
(x0, xi+1, aux i+1) : aux i+1 /∈ L(i+1)

aux or

∃(w0, x1, w1, . . . , xi, wi) ((x0, x1), w0) , . . . , ((xi, xi+1), wi) ∈ R
}

for all positive integers i. The prover state is (witnesses and) not part of the
instance as the verifier does not have access to it. For all i ∈ N, language L(i)

must include the language of instances (x0, xi+1, aux i+1) for which there exist
intermediate computation results (if i ≥ 1) and valid witnesses5. Language L(i)

should also be such that it is hard to compute in PPT an instance in L(i) for
which there do not exist intermediate witnesses and computation results.

The next section then shows how to build an IVC with auxiliary proof infor-
mation from a standard IVC that follows the paradigm highlighted in Section
3.1.

5 To be able to compute valid proofs for any such instance. This is not required for
instances with an invalid aux i+1 and for which intermediate computation results and
valid witnesses do not exist.

15



Fig. 1. Illustration of incrementally verifiable computation with auxiliary proof infor-
mation for a generator of relations of the form {((x, y), w) : F (x,w) = y}.

4 Construction

This section presents an IVC scheme with auxiliary proof information with no
expensive operation to be proved at any step. It is built from any IVC scheme
that follows the same model that existing constructions do, and from other
standard cryptographic primitives.

Decomposition of Predication Functions. As explained in Section 3.1,
each of the existing constructions of IVC schemes can be viewed as a sequence(
P (i), V (i+1)

)
i∈N of knowledge-sound proof systems for NP languages

L(i) :=
{

(x0, xi+1) : ∃(xi, ρi, wi) F (i) (par , (x0, xi+1), xi, ρi, wi) = 1
}
,

given a sequence
(
F (i)

)
i∈N of predicates. These sequences are such that if (x0, xi+1)

is in L(i), then a proof πi such that

V (i) (par , (x0, xi), πi) = 1

can be extracted from a membership witness.
Let i0 be the computation step from which function F (i) contains expensive

operations. That is, i0 is a non-negative integer such that for all i ≥ i0, functions
F (i) can be written as a composition F (i)

k−1 ◦ · · · ◦F
(i)
0 of k ≥ 2 functions that are

alternately inexpensive and expensive, or expensive and inexpensive. A function
is here considered “expensive” if it incurs a number of circuit gates or a degree
of gate constraints in a chosen arithmetisation that is above a desired threshold.
This threshold is at least high enough to consider a check that ((xi, xi+1), wi) ∈ R
as inexpensive6. The goal is to defer execution proofs of expensive operations
by accumulating their inputs and outputs into some auxiliary information, and
only prove inexpensive operations at each IVC step.
6 As L

(0)
IVC = L, function F (0) typically only checks that ((x0, x1), w0) ∈ R, which

is considered inexpensive, so i0 > 0. Note that in the case of recursive SNARK

16



Integer k can be assumed to be 2 without loss of generality because the
techniques to follow readily extend to larger values of k. Function F

(i)
0 can be

assumed to be inexpensive and F (i)
1 expensive for the same reason. For instance,

in the case of recursive SNARK bootstrapping, F (i)
0 may include only the field

operations performed by the verifier and F (i)
1 may represent its ECC operations.

(As ECC operations can be simulated with field operations, the decomposition
need not be unique.) In other words, function F (i) is further written as F (i)

1 ◦F
(i)
0 ,

with F (i)
0 inexpensive and F (i)

1 expensive. Language L(i) can then be rewritten
as {

(x0, xi+1) : ∃(xi, ρi, wi, σi) F (i)
0 (par , (x0, xi+1), xi, ρi, wi) = σi

and σi ∈ LF (i)
1

}
,

with L
F

(i)
1

denoting the language of inputs accepted by F (i)
1 . Let R

F
(i)
1

stand for

the corresponding NP relation. Language L(i) is then{
(x0, xi+1) : ∃(xi, ρi, wi, σi, wσ,i) F (i)

0 (par , (x0, xi+1), xi, ρi, wi) = σi

and (σi, wσ,i) ∈ RF (i)
1

}
.

Construction Outline. The idea of the construction is to only prove the in-
expensive part F (i)

0 of F (i) at each step i, and accumulate their outputs in a
running commitment. To prove that this accumulation was properly done, the
prover separately commits to the output of F (i)

0 at the current step, and proves
that the new accumulator opens to the concatenation of the previous accumula-
tor and the current output of F (i)

1 . This proof is then to be verified at the next
IVC iteration. However, verifying a concatenation proof may itself incur ex-
pensive operations. The concatenation verifier algorithm is thus itself split into
expensive and inexpensive parts. The prover at the next iteration only proves
the inexpensive part and concatenates its output with the output of F (i)

0 before
proving that the accumulation was correctly done.

Building Blocks. The construction makes use of the following algorithms.

Γ : a scheme to commit to vectors of a maximum length, say `max, given as
input to its parameter-generation algorithm. It will be used to commit to
instance-witness pairs relations to be determined below. The bound on the
maximum vector length will in turn imply a bound on the maximum number
of IVC steps that can be proved.

bootstrapping, F (1) already implements V (1) which is generally considered expensive,
and thus i0 = 1. However, in the case of folding-based IVC, F (1) is inexpensive as
there is no check of a folding verifier (see Section 3.1), but F (2) is expensive, and
therefore i0 = 2.

17



Π‖ : a non-interactive proof system to prove that a committed vector is the
concatenation of two other committed vectors. That is, a proof system for
the relation{(

(C0, (C1, `), C2), (Ak, rk)2
k=0

)
: Γ.Open (Ck, Ak, rk) = 1

and (A0 = A1 ‖A2 or length(A1) 6= ` or `+ length(A2) > `max)
}
.

Algorithms Π‖.Prove and Π‖.Vf are further denoted Prove‖ and Vf‖.
Note that a proof guarantees concatenation only if the length of the vector
committed in C1 is of the length given as part of the public instance. (This
relaxation is to enable efficient instantiations.) This proof system should
therefore only be used if there is another mechanism to ascertain that this
length requirement is satisfied. The condition `+ length(A2) > `max will be
enforced by the predicates to follow.
As Vf‖ may itself incur operations that are expensive to be verified in-
circuit, the function this algorithm computes is also decomposed into two
parts, Vf‖,0 and Vf‖,1, the former inexpensive and the latter expensive,
such that

Vf‖ = Vf‖,1 ◦Vf‖,0.

In fact, with the upcoming instantiation in mind, function Vf‖,1 is further
decomposed into two functions Vf′‖,1 and Vf′′‖,1. In the instantiation, Vf′‖,1
performs ECC operations and Vf′′‖,1 performs pairing computations. Further
denote by LVf′‖,1

the input-output language of Vf′‖,1 and by RVf′‖,1
the cor-

responding relation. The language of strings that Vf′′‖,1 accepts is supposed
to be in the complexity class P (in practice, it would be a set of ECC points
which satisfy a pairing equation). The auxiliary proof information will then
(also) contain the outputs of Vf′‖,1 from each IVC step. However, for the
auxiliary information not to grow indefinitely, the outputs of Vf′‖,1 at each
iteration is accumulated into a constant-size piece of information. That can
of course be done with a commitment scheme, as with the outputs of F (i)

0 ,
but to further reduce proving costs, the instantiation leverages the linear
structure of the set of ECC points. More precisely, it computes a random
linear combination of a vector of ECC points which accumulates the outputs
of Vf′‖,1 in all the previous rounds, and its output in the current round. This
property is captured in the general case by the existence of an algorithm as
follows.

Acc(Ti−1, τ̄i) 7→ Ti : a PPT algorithm such that if Ti is in LVf′′‖,1
(the language

of strings that Vf′′‖,1 accepts) then, except with probability εAcc, inputs
Ti−1 and τ̄i are as well. Probably εAcc may depend on the algorithm which
computes the triple. Conversely, if Ti−1 and τ̄i are in LVf′′‖,1

, then Ti is as
well with probability 1. The function it computes should be inexpensive.
Although this algorithm is probabilistic, the predicates to come, which are
not probabilistic, must check its correct execution. The randomness Acc

18



uses is then to be derived deterministically, while remaining unpredictable
to any efficient prover. The construction thus uses a hash function to do so.

H : a hash function, modelled as a random oracle, that is used to derive ran-
domness for algorithm ACC by hashing its inputs. Define

RAcc := {(((T ′, τ̄), T ), wAcc) : Acc (T ′, τ̄ ;H (T ′, τ̄)) = T} .

The auxiliary proof information further contains a witness wAcc,i for the
correct accumulation of Ti−1 and τ̄i into Ti.

R : an NP-relation generator.(
F (i) = F

(i)
1 ◦ F (i)

0

)
i∈N

: a sequence of predicates parametrised by a relation R
in the range of R.(

P (i), V (i+1)
)
i∈N : a sequence of knowledge-sound proof systems for{

(x0, xi+1) : ∃(xi, ρi, wi, σi, wσ,i) F (i) (par , (x0, xi+1), xi, ρi, wi) = σi

and (σi, wσ,i) ∈ RF (i)
1

}
.

Main Predicate. The IVC proof computed at step i is a satisfiability proof for
a predicate G(i). In addition to IVC input and output xi and xi+1, it takes as
input the auxiliary pieces of information aux i and aux i+1 computed at steps i
and i+ 1. These pieces of information each include three commitments:

– a commitment C1 to the concatenation of the outputs of F0, of the input-
outputs of Vf′‖,1 (and witnesses for their memberships to L

F
(i)
1

and LVf′‖,1
)

at all previous steps before the last one, and of an accumulation of Vf′‖,1
outputs up to two steps ago (together with a witness which attests that its
accumulation with the output of Vf′‖,1 at the previous round results in the
accumulation of all the Vf′‖,1 outputs up to the previous step),

– a commitment C2 to the output, input-output and accumulation at the last
step, and

– a commitment C0 to the concatenation of the openings to C1 and C2, i.e.,
to the outputs, input-outputs and accumulation at all the previous steps.

The length of the concatenated table committed in C1 is also given. It is nec-
essary to ensure that the opening to C0 is the concatenation of the openings to
C1 and C2, because Π‖ does so only if the length of the opening to C1 has the
length declared in the instance. Lastly, they contain a concatenation proof π‖
as well as an accumulation T of the Vf′‖,1 outputs at all the steps before the
previous one. The prover state consists of a piece of de-commitment information
for C0, of an opening A1 to C1 and a piece of de-commitment information r1,
and an opening A2 := ((σ,wσ), (τ = (τ̃ , τ̄), wτ ), (T ′, wAcc)) to C2 and a piece of

19



de-commitment information r2. That is to say,

aux i :=
(
C

(i−1)
0 ,

(
C

(i−1)
1 , `i−1

)
, C

(i−1)
2 , π‖,i, Ti−1

)
st i :=

(
r

(i−1)
0 , A

(i−1)
1 , r

(i−1)
1 , A

(i−1)
2 , r

(i−1)
2

)
,

and similarly for aux i+1 and st i+1.

The predicate essentially checks consistency between commitments C(i−1)
0

and C
(i)
1 , guarantees that the output of the inexpensive part F (i)

0 of predicate
F (i) and the input-output pair of Vf′‖,1 are indeed committed in C

(i−1)
2 , that

the new length `i is indeed the sum of `i−1 and the length of A(i−1)
2 , that this

new length does not exceed a bound `max dictated by the parameters of the
commitment scheme, that T ′ in A(i)

2 is consistent with Ti−1 in aux ′i, and that Ti
is the correct accumulation of Ti−1 and of the Vf′‖,1 output.

What precedes only holds true for i ≥ i0 + 4. That is because there are no
expensive operations before step i0, and consequently no auxiliary proof infor-
mation computed before step i0, no concatenation proof computed before step
i0 + 1, no Vf′‖,1 output before step i0 + 2 and no accumulation of Vf′‖,1 outputs
before step i0 + 3. In the first i0 + 4 steps, the auxiliary proof information has
the following form (the bracket notation indicates commitments):

st1 = aux 1 = · · · = st i0 = aux i0 ← ∅

st i0+1 ←A
(i0)
2 = (σi0 , wσ,i0) =: A

(i0)
0 , r

(i0)
2 =: r

(i0)
0

aux i0+1 ←C
(i0)
0 = C

(i0)
2 =

[
A

(i0)
2 ; r

(i0)
2

]
st i0+2 ← r

(i0+1)
0 , A

(i0+1)
1 = A

(i0)
0 , r

(i0)
0 , A

(i0+1)
2 = (σi0+1, wσ,i0+1), r

(i0+1)
2

aux i0+2 ←
[
A

(i0+1)
1 , A

(i0+1)
2 ; r

(i0+1)
0

]
,
[
A

(i0)
2 ; r

(i0)
2

]
, `i0+1,

[
A

(i0+1)
2 ; r

(i0+1)
2

]
π‖,i0+2

st i0+3 ← r
(i0+2)
0 , A

(i0+2)
1 =

(
A

(i0+1)
1 , A

(i0+1)
2

)
, r

(i0+1)
0

A
(i0+2)
2 = ((σi0+2, wσ,i0+2), (τi0+2, wτ,i0+2)) , r

(i0+2)
2

aux i0+3 ←
[
A

(i0+2)
1 , A

(i0+2)
2 ; r

(i0+2)
0

]
,
[
A

(i0+2)
1 ; r

(i0+1)
0

]
, `i0+2,

[
A

(i0+2)
2 ; r

(i0+2)
2

]
π‖,i0+3, Ti0+2

st i0+4 ← r
(i0+3)
0 , A

(i0+3)
1 =

(
A

(i0+2)
1 , A

(i0+2)
2

)
, r

(i0+2)
0

A
(i0+3)
2 = ((σi0+3, wσ,i0+3), (τi0+3, wτ,i0+3), (Ti0+2, wAcc,i0+3)) ,

π‖,i0+4, Ti0+3, r
(i0+3)
2

aux i0+4 ←
[
A

(i0+3)
1 , A

(i0+3)
2 ; r

(i0+3)
0

]
,
[
A

(i0+3)
1 ; r

(i0+2)
0

]
, `i0+3,

[
A

(i0+3)
2 ; r

(i0+3)
2

]
π‖,i0+4, Ti0+3.

For i ≥ i0 + 3, define

20



G(i)
(
par , (x0, xi+1, aux i+1) , A

(i)
2 , r

(i)
2 , xi, ρi, aux i, A

(i−1)
2 , r

(i−1)
2 , wi

)
→ {0, 1} :

Return 1 if

F
(i)
0 (par , (x0, xi+1), xi, ρi, wi) = σi

Γ.Open
(
C

(i−1)
2 , A

(i−1)
2 ; r

(i−1)
2

)
= 1

Γ.Open
(
C

(i)
2 , A

(i)
2 ; r

(i)
2

)
= 1

C
(i−1)
0 = C

(i)
1

Vf‖,0
(
par‖,

(
C

(i−1)
0 ,

(
C

(i−1)
1 , `i−1)

)
, C

(i−1)
2

)
, π‖,i

)
= τ̃i

`i = `i−1 + length
(
A

(i−1)
2

)
`i ≤ `max

Ti−1 = A
(i)
2 .T ′i

Else return 0,

with

A
(i)
2 := ((σi, wσ,i), (τi = (τ̃i, τ̄i), wτ,i), (T

′
i , wAcc,i)) .

The second and third conditions in the predicate are easily proved in the Plonk
arithmetisation: constrain the inputs of G(i) corresponding to A(i−1)

2 to be equal
to the values committed in C(i−1)

2 ; the latter is interpreted as a commitment to
extra columns of a Plonk execution trace. The same can be done for A(i)

2 and
C

(i)
2 .
For i < i0, function G(i) returns 1 if and only if F (i) does so on the same

inputs. Function G(i0) ensures that the output of F (i0)
0 is committed in C

(i0)
1 .

G(i0+1) additionally enforces consistency between C
(i0)
0 and C

(i0+1)
1 , and that

`i0+1 in aux i0+2 matches the length of A(i0)
2 in aux i0+1 (this latter check is crucial

to later ensure correct concatenation). Function G(i0+2) further guarantees that
the output of F (i0+2)

0 and the input-output of Vf′‖,1 are committed in C(i0+2)
2 ,

that the `i0+2 in aux i0+3 is the sum of `i0+1 and of the length of A(i0+1)
2 in

aux i0+2, and that Ti0+2 is the output of Vf′‖,1.
A precise definition of G(i) would require its input set to be completely

specified. Yet, vectors A(i−1)
2 and A(i)

2 that it receives as input might in practice
be of variable size. For a given `max in the par input of G(i), the set to which
A

(i−1)
2 and A(i)

2 respectively belong is simply defined as the union of the sets of
vectors of size 1 to `max. The input set of G(i) is then defined as the union over
`max ∈ N≥1 of the input set for a given `max.

Now that the sequence of predicates G(i) has been defined, the construction
will also make use of the following primitives.

21



(
P

(i)
0 , V

(i+1)
0

)
i∈N

: a sequence of knowledge-sound proof systems for the inex-

pensive parts of functions
(
F (i)

)
i∈N , i.e., for{

(x0, xi+1) : ∃(xi, ρi, wi, σi) F (i)
0 (par , (x0, xi+1), xi, ρi, wi) = σi

}
for all i ≥ i0. This is easily obtained from the previous sequence by simply
removing the constraints to enforce that (σi, wσ,i) ∈ RF (i)

1
= 1. In the Plonk

arithmetisation for instance, it simply means setting the selectors for these
constraints to 0. Let

(
P

(i)
0 , V

(i+1)
0

)
=
(
P (i), V (i+1)

)
for all i < i0. This

assumption is the reason why the construction is not entirely black-box,
though it holds for known practical applications.(

Q(i),W (i+1)
)
i∈N : a sequence of knowledge-sound proof systems for the lan-

guages of instances accepted by functions
(
G(i)

)
i∈N , i.e., for{

(x0, xi+1, aux i+1) : ∃
(
A

(i)
2 , r

(i)
2 , xi, ρi, aux i, A

(i−1)
2 , r

(i−1)
2 , wi

)
G(i)

(
par , (x0, xi+1, aux i+1) , A

(i)
2 , r

(i)
2 , xi, ρi, aux i, A

(i−1)
2 , r

(i−1)
2 , wi

)
= 1

}
.

This sequence can be obtained from sequence
(
P

(i)
0 , V

(i+1)
0

)
i∈N

by adding ex-

tra constraints to enforce the other checks performed by functions
(
G(i)

)
i≥i0

.

(For i < i0, define
(
Q(i),W (i+1)

)
:=
(
P (i), V (i+1)

)
.) Similarly to the case of

sequence
(
P (i), V (i+1)

)
i∈N , it is can be assumed that the proof systems in

sequence
(
Q(i),W (i+1)

)
i∈N share the same algorithm to generate parameters

which is denoted (Q,W ) .Setup, and that the proving and verification algo-
rithms are run on the same parameters throughout the sequence. In practice,
these algorithms and parameters are those of a universal SNARK system or
of a folding scheme, and are the same as those for

(
P (i), V (i+1)

)
i∈N . It is

further assumed that it is the case, and functions F (i) can thus be run on
parameters generated by (Q,W ) .Setup.

Formal Description. Given the building blocks, the following scheme is an
IVC scheme with auxiliary proof information for a generator G that runs R and
returns its output together with a description of relations

R(1)
aux = · · · = R(i0)

aux ← {(∅,∅)} ,

R(i0+1)
aux ←

{
((C0, C2), (A2, r2)) : C0 = C2, A2 ∈ RF (i0)

1

and Γ.Open (C2, A2, r2) = 1
}
,

22



R(i0+2)
aux ←

{(
(C0, (C1, `)C2, π‖), (r0, A1, r1, A2, r2)

)
: A1 ∈ RF (i0)

1

Γ.Open (C1, A1, r1) = 1

A2 ∈ RF (i0+1)
1

Γ.Open (C2, A2, r2) = 1

` = length(A1)

and Vf‖
(
par‖, (C0, (C1, `) , C2) , π‖

)
= 1

}
,

R(i0+3)
aux ←

{(
(C0, C1, C2, π‖, T ), (r0, A1, r1, A2 := ((σ,wσ), (τ, wτ )) , r2)

)
:

A1 ∈ RF (i0+1)
1

×R
F

(i0)
1

Γ.Open (C1, A1, r1) = 1

(σ,wσ) ∈ R
F

(i−1)
1

, (τ, wτ ) ∈ RVf′‖,1

Γ.Open (C2, A2, r2) = 1

` = length(A1)

Vf‖
(
par‖, (C0, (C1, `) , C2) , π‖

)
= 1

and T ∈ LVf′′‖,1

}
,

and for i ≥ i0 + 4,

R(i)
aux ←

{(
(C0, C1, C2, π‖, T ), (r0, A1, r1, A2 := ((σ,wσ), (τ, wτ ), (T ′, wAcc)) , r2)

)
:

A1 ∈ RA(i−2)
1

Γ.Open (C1, A1, r1) = 1

(σ,wσ) ∈ R
F

(i−1)
1

, (τ, wτ ) ∈ RVf′‖,1
, (((T ′, τ̄), T ), wAcc) ∈ RAcc

Γ.Open (C2, A2, r2) = 1

` = length(A1)

Vf‖
(
par‖, (C0, (C1, `) , C2) , π‖

)
= 1

and T ∈ LVf′′‖,1

}
,

with τ = (τ̃ , τ̄),

R′Acc := {(T ′, wAcc) : (((T ′, τ̄), T ), wAcc) ∈ RAcc}

(which is parametrised by τ̄ and T ), and

R
A

(i−2)
1

= R
F

(i0)
1

×R
F

(i0+1)
1

×
(
RVf′‖,1

×R
F

(i0+2)
1

×R′Acc

)
×

· · · ×
(
RVf′‖,1

×R
F

(i−2)
1

×R′Acc

)
.

23



It is assumed that the security parameter 1λ can be inferred from the output of
generator R.

The scheme algorithms are as follows. They are assumed to abort if any of
their inputs is not in their specified sets.

Setup
(
R,
(
R

(i)
aux

)
i≥1

, `max

)
→ par :

parΓ ← Γ.Setup
(
1λ, `max

)
par‖ ← Π‖.Setup

(
1λ, `max

)
par (Q,W ) ← (Q,W ).Setup (R)

par ←
(
parΓ, par‖, par (Q,W ),

(
R

(i)
aux

)
i≥1

)
Return par

Prove(par , (i, x0, xi+1), xi, πi, aux i, st i, wi)→ (πi+1, aux i+1, st i+1) :

Compute ρi from
(
par (Q,W ), x0, xi, πi

)
σi ← F

(i)
0

(
par (Q,W ), (x0, xi+1), xi, ρi, wi

)
Compute wσ,i such that (σi, wσ,i) ∈ RF (i)

1

st i :=
(
r

(i−1)
0 , A

(i−1)
1 , r

(i−1)
1 , A

(i−1)
2 , r

(i−1)
2

)
aux i :=

(
C

(i−1)
0 ,

(
C

(i−1)
1 , `i−1

)
, C

(i−1)
2 , π‖,i, Ti−1

)
x‖,i ←

(
C

(i−1)
0 ,

(
C

(i−1)
1 , `i−1

)
, C

(i−1)
2

)
τ̃i ← Vf‖,0

(
par‖, x‖,i, π‖,i

)
τ̄i ← Vf′‖,1 (τ̃i)

Compute wτ,i such that (τi := (τ̃i, τ̄i), wτ,i) ∈ RVf′‖,1

Ti ← Acc (Ti−1, τ̄i;H (Ti−1, τ̄i))

Compute wAcc,i such that (((Ti−1, τ̄i), Ti), wAcc,i) ∈ RAcc

A
(i)
2 ← ((σi, wσ,i), (τi, wτ,i), (Ti−1, wAcc,i))

C
(i)
2 ← Γ.Com

(
A

(i)
2 , r

(i)
2

)
for a uniformly random r

(i)
2

A
(i)
1 , C

(i)
1 ← A

(i−1)
0 := A

(i−1)
1 ‖A(i−1)

2 , C
(i−1)
0

C
(i)
0 ← Γ.Com

(
A

(i)
1 ‖A

(i)
2 , r

(i)
0

)
for a uniformly random r

(i)
0

`i ← length
(
A

(i)
1

)
24



π‖,i+1 ← Prove‖
(
par‖,

(
C

(i)
0 ,
(
C

(i)
1 , `i

)
, C

(i)
2

)
,
(
A

(i)
1 ‖A

(i)
2 , A

(i)
1 , A

(i)
2

))
st i+1 ←

(
r

(i)
0 , A

(i)
1 , r

(i−1)
0 , A

(i)
2 , r

(i)
2

)
aux i+1 ←

(
C

(i)
0 ,
(
C

(i)
1 , `i

)
, C

(i)
2 , A

(i)
2 , π‖,i+1, Ti

)
xQ,W ← (x0, xi+1, aux i+1)

wQ,W ←
(
A

(i)
2 , r

(i)
2 , xi, ρi, aux i, A

(i−1)
2 , r

(i−1)
2 , wi

)
πi+1 ← Q(i)

(
parQ,W , xQ,W , wQ,W

)
Return (πi+1, aux i+1, st i+1)

Vf(par , (i+ 1, x0, xi+1), πi+1, aux i+1)→ {0, 1} :

Return W (i+1)
(
parQ,W , (x0, xi+1, aux i+1), πi+1

)
.

The above definitions of the prover and verifier algorithms are given for the case
i ≥ i0 + 3. For i ≤ i0 + 2, they simply do not perform the operations which are
undefined, given the definitions of aux i and G(i).

Notice that the work of the verifier is essentially the work of W (i+1) which
verifiers proofs for a circuit which only takes the input-outputs A(i)

2 and A(i−1)
2

at the current and previous steps, not a whole accumulator.

Completeness. Suppose that
(
Q(i),W (i+1)

)
is complete for all i ∈ N and

that Π‖ is complete. Assume Γ to be correct. Then, the scheme is complete (as
formally defined in Appendix B.1).

For i = 0, given any ((x0, x1), w0) in R, by definition, function F (i) accepts on
(par , (0, x0, x1), x0, w0). As the prover algorithm simply runs Q(0), which proves
that G(0) = F (0) would accept on (par , (x0, x1), x0, w0), the verifier algorithm,
which runs W (1), accepts the proof. Moreover, (aux 1, st1) = (∅,∅) ∈ R(1)

aux .
For 0 < i < i0 (in case i0 > 1), let (i, x0, xi, πi, aux i) be such that Vf ac-

cepts on (par , (i, x0, xi), πi, aux i). Algorithm Vf accepts if and only if W (i) =
V (i) accepts on (par , (x0, xi), πi) and aux i = ∅. Given xi+1 and wi such that
the tuple ((xi, xi+1), wi) is in R, by definition, G(i) = F (i) accepts on in-
put (parQ,W , (x0, xi+1), xi, ρi, wi) if ρi is correctly computed from the tuple
(parQ,W , x0, xi, πi). As the prover does just that before running Q(i) which shows
that G(i) accepts, the verifier, which runs W (i+1), accepts the proof computed
by Q(i). Besides, the prover sets aux i+1 ← ∅, so it is in L(i+1)

aux .
For i = i0, let (i0, x0, xi0 , πi0 , aux i0) be such that Vf accepts on input

(par , (i0, x0, xi0), πi0). It means that W (i0) = V (i0) accepts on (par , x0, xi0 , πi0)
and that aux i0 = ∅. Let xi0+1 and wi0 be such that ((xi0 , xi0+1), wi0) is in R.
The prover algorithm computes ρi,0 from (par , x0, xi0 , πi0) and computes the
output σi0 of F (i0)

0 on input (par , (x0, xi0+1), xi0 , ρi0 , wi0) . It then commits to
(σi0 , wσ,i0) in C(i0)

2 and sets C(i0)
0 ← C

(i0)
2 . If Γ is complete, its opening algorithm

would accept on C(i0)
2 and A(i0)

2 , and W (i0+1) would therefore accept the proof

25



computed by Q(i0). Moreover, as F (i0) accepts on (par , (x0, xi0+1), xi0 , ρi0 , wi0),

the instance-witness pair A(i0)
2 is in R

F
(i0)
1

and therefore (aux i0+1, st i0+1) ∈

R
(i0+1)
aux .
For i ∈ {i0 + 1, i0 + 2}, the correctness of Γ and the completeness of Π‖ in

addition to arguments similar to those given in the previous case guarantee that
the verifier accepts proofs computed by the prover, and that (aux i+1, st i+1 ∈
R

(i+1)
aux if (aux i, st i) ∈ R(i)

aux .
For i ≥ i0 + 3, the fact that Acc(Ti−1, τ̄i) is in LVf′′‖,1

if Ti−1 and τ̄i are,
in addition to the previous arguments, implies that the verifier accepts proofs
computed by the prover, and that aux i+1 ∈ L(i+1)

aux if aux i ∈ L(i)
aux . ut

Knowledge Soundness. Suppose that
(
Q(i),W (i+1)

)
is knowledge-sound for

all i ∈ N and that Π‖ is knowledge-sound. Suppose that for all i ∈ N, a proof
πi can be extracted from any PPT algorithm which computes a valid proof πi+1

and aux i+1 ∈ L(i+1)
aux with probability at least κ(i+1)

ρ . Assume Γ to be εΓ-binding
and Acc to have an error probability of εHAcc when its randomness is computed
as a hash of its inputs with a function H modelled as a random oracle. Then,
the scheme is knowledge-sound (as formally defined in Appendix B.1).

An error from algorithm Acc is here understood as the event in which a
probabilistic algorithm with runs in expected polynomial time returns a tuple
(T ′, τ̄ , T ) such that T is in LVf′′‖

but τ̄ or T ′ is not. The error probability may
depend on the probability that this algorithm returns such a triple with T in
LVf′′‖

, and on the number of random-oracle queries it makes. See Section 5.4 for
an instantiation of Acc and its error probability.

Let A be an algorithm which returns a tuple (st , (n+ 1, x0, xn)) with n non-
negative and constant in λ, and let Prove∗ be a deterministic algorithm such
that, denoting by (π∗, aux∗) its output on input (st , (n+ 1, x0, xn+1)), the piece
of information aux∗ is in L

(n+1)
aux and algorithm Vf accepts (π∗, aux∗) for the

instance (n + 1, x0, xn+1) with probability at least ε. Let qH be the number of
queries that Prove∗ makes to the random oracle H.

To extract sequences of IVC outputs and witnesses from algorithm Prove∗,
the idea is to inductively define a sequence of extractors E(i+1) for all i ∈ N.
Intuitively, extractor E(i+1) is designed to extract sequences x1, . . . , xi (if i ≥
1) and w0, . . . , wi such that ((x0, x1), w1), . . . , ((xi, xi+1), wi) are in R, given
rewinding access to a prover which computes a proof and an auxiliary piece of
information aux i+1 ∈ L(i+1)

aux that the verifier accepts. Each extractor calls the
previous one on an input and on a prover that is determined by its own input
and prover to which it has rewinding access. In addition to that, each extractor
is so that if the auxiliary information computed by the prover to which it has
access is valid, then the auxiliary information computed by the prover to which
it gives the previous extractor access is also valid. Extractor E then simply runs
E(n+1) on input (x0, xn+1) and with rewinding access to Prove∗(st , n, ·).

For all i ∈ N, let E(i+1)
Q,W denote an extractor for proof system

(
Q(i),W (i+1)

)
.

In the case of SNARK bootstrapping, it is an extractor for the universal SNARK,

26



applied to the circuit for whichW (i+1) verifies satisfiability proofs. In the case of
the NOVA IVC scheme, it is an algorithm which computes (xi, ρi, wi) from the
witness vi+1 for the instance ui+1 which is part of the IVC proof that W (i+1)

verifies. Let E‖ be an extractor for Π‖. Denote by E(i+1)
ρ the algorithm which

extracts πi from any PPT algorithm which computes a valid proof πi+1 and
on an instance determined by ρi. In the case of SNARK bootstrapping, it is
the algorithm which simply returns ρi. In the case of the NOVA IVC, it is an
extractor for the folding scheme.

Extractor E(1) is defined below for any probabilistic algorithm (P ∗)
(0) that

runs in expected polynomial time and to which the extractor is given black-box
rewinding access (but without access to its state output). To define E(i+1) for a
positive integer i, consider any probabilistic algorithm (P ∗)

(i) that runs in ex-
pected polynomial time, of which the output is parsed as (Πi+1,AUX i+1,ST i+1),

and to which E(i+1) is given black-box rewinding access (but without access to its
ST i+1 output). The algorithm is here assumed to run in expected polynomial
time rather than strict polynomial time because the algorithms to follow run
proof-system extractors, which are generally only guaranteed to run in expected
polynomial time, c.f. Appendix A.1.2. Intuitively, it is an adversarial prover the
IVC step i. As extractor E(i+1) will run extractor E(i) (assuming it to already
be defined), a prover (P ∗)

(i−1) for step i− 1 must be defined.
The first step is to define an algorithm (Q∗)

(i−1) (given rewinding access to
(P ∗)

(i)) which computes a witness tuple
(
A

(i)
2 , r

(i)
2 , xi, πi, aux i, A

(i−1)
2 , r

(i−1)
2 , wi

)
.

It runs on an instance (x0, xi+1, aux i+1) with a fixed value aux i+1. Assuming
aux i+1 to be in L

(i+1)
aux , and denoting by Πi+1|AUX i+1=aux i+1

the first output

of (P ∗)
(i) conditioned on the event in which its second output is the fixed val-

ued aux i+1, if the verifier accepts (Πi+1|AUX i+1=aux i+1
, aux i+1) for the instance

(i + 1, x0, xi+1) with a probability greater than the knowledge-soundness error
threshold of

(
Q(i),W (i+1)

)
and greater than κ(i+1)

ρ , then the tuple that (Q∗)
(i−1)

returns is such that

G(i)
(
par , (x0, xi+1, aux i+1) , A

(i)
2 , r

(i)
2 , xi, ρi, aux i, A

(i−1)
2 , r

(i−1)
2 , wi

)
= 1,

for ρi computed from (par , x0, xi, πi).(
(Q∗)

(i−1)
)(P∗)(i) (

parQ,W , (x0, xi+1, aux i+1)
)

:(
A

(i)
2 , r

(i)
2 , xi, ρi, aux i, A

(i−1)
2 , r

(i−1)
2 , wi

)
←
(
E(i+1)
Q,W

)(P∗)(i)

πi ←
(
E(i+1)
ρ

)(P∗)(i) (
parQ,W , ρi

)
Return

(
A

(i)
2 , r

(i)
2 , xi, πi, aux i, A

(i−1)
2 , r

(i−1)
2 , wi

)
.

27



Extractor E(i+1)
Q,W is here run on input

(
parQ,W , (x0, xi+1, aux i+1)

)
. The piece of

information aux i that it returns is in L
(i)
aux if the fixed value aux i+1 is in L(i+1)

aux .

Given the output of (Q∗)
(i−1)

, the next step is to define a prover algorithm
(P ∗)

(i−1) for the step i − 1, i.e., an algorithm which computes a state st i that
is a valid witness for the validity of the piece of information aux i auxiliary to
πi. In other words, this algorithm reconstructs from aux i a state st i such that
(aux i, st i) ∈ R(i)

aux . However, E(i) is not given access to this state output st i.(
(P ∗)

(i−1)
)(P∗)(i) (

par , (x0, xi+1, aux i+1), A
(i)
2 , r

(i)
2 , xi, πi, aux i, A

(i−1)
2 , r

(i−1)
2

)
:

If i ≥ i0 + 2

x‖ ←
(
C

(i−1)
0 ,

(
C

(i−1)
1 , `i−1

)
, C

(i−1)
2

)
(Ak, rk)

2
k=0 ← E(Q∗)(i−1)

‖

(
par‖, x‖

)
Return ∅ if A2 6= A

(i−1)
2

r
(i−1)
0 , A

(i−1)
1 , r

(i−1)
1 ← r0, A1, r1

If i ≥ i0 + 3

aux i =:
(
C

(i−1)
0 ,

(
C

(i−1)
1 , `i−1

)
, C

(i−1)
2 , π‖,i, Ti−1

)
If i = i0 + 3

A
(i)
2 := ((τi := (τ̃i, τ̄i), wτ,i), (σi, wσ,i))

Else

A
(i)
2 := ((τi := (τ̃i, τ̄i), wτ,i), (σi, wσ,i), (T

′
i , wAcc,i))

Return ∅ if Ti−1 or τ̄i is not in LVf′′‖,1

st i ←
(
r

(i−1)
0 , A

(i−1)
1 , r

(i−1)
1 , A

(i−1)
2 , r

(i−1)
2

)
Return (xi, πi, aux i, st i).

Suppose that aux i+1 is in L(i+1)
aux and that the verifier accepts on

(par , (i+ 1, x0, xi+1), Πi+1|AUX i+1=aux i+1
, aux i+1)

with a probability greater than the soundness-error threshold of
(
Q(i),W (i+1)

)
and greater than κ(i+1)

ρ . As the tuple algorithm (Q∗)
(i−1) returns is such that

G(i)
(
par , (x0, xi+1, aux i+1) , A

(i)
2 , r

(i)
2 , xi, ρi, aux i, A

(i−1)
2 , r

(i−1)
2 , wi

)
= 1,

28



σi is the output of F
(i)
0 on input (par , (x0, xi+1), xi, ρi, wi) . Moreover, as aux i+1

is in L(i+1)
aux and as A2 = A

(i−1)
2 if (P ∗)

(i−1) does not abort, function F (i)
1 accepts

on input σi, and therefore F (i) accepts on input (par , (x0, xi+1), xi, ρi, wi) .

The piece of information aux i+1 being in L(i+1)
aux and the fact that A2 = A

(i−1)
2

if (P ∗)
(i−1) does not abort also imply that τi = (τ̃i, τ̄i) is a valid input-output

of Vf′‖,1 and that Vf′′‖,1 accepts on Ti. If i ≥ i0 + 3, the latter is the output
of algorithm Acc on input (Ti−1, τ̄i) because wAcc,i is a valid witness for the
membership of ((T ′i , τ̄i), Ti) to LAcc (the language corresponding to RAcc), and
because the definition of G(i) implies that Ti−1 = A

(i)
2 .T ′i . If (P ∗)

(i−1) does
not abort, Ti−1 and τ̄i are both in the language of inputs that Vf′′‖,1 accepts.
Therefore, by definition of G(i), algorithm Vf‖ accepts π‖,i for the instance(
C

(i−1)
0 ,

(
C

(i−1)
1 , `i−1

)
, C

(i−1)
2

)
.

It remains to show that there exists an opening to C(i−1)
1 that is in R

A
(i−2)
1

and that has length `i−1. The equality C
(i)
1 = C

(i−1)
0 holds because G(i) accepts,

and there exists an opening to C(i)
1 that is in R

A
(i−1)
1

and that has length `i

because aux (i+1) is in L(i+1)
aux . Algorithm (P ∗)

(i−1) runs the extractor E‖ of Π‖

to extract openings to C
(i−1)
0 , C

(i−1)
1 and C

(i−1)
2 . If the opening to C

(i−1)
2 is

distinct from A
(i−1)
2 , the algorithm aborts as the binding property of Γ has been

contradicted. Otherwise, since the length `i−1 (in case i ≥ i0 + 2) on which Vf‖
is run is equal to `i−length

(
A

(i−1)
2

)
by definition of G(i), that opening to C(i−1)

0

is the concatenation of an opening to C(i−1)
1 and A

(i−1)
2 . That is also because

G(i) checks that `i ≤ `max. As RA(i−1)
1

= R
A

(i−2)
1

×
(
RVf′‖,1

×R
F

(i−1)
1

×R′Acc

)
,

that opening to C(i−1)
1 is in R

A
(i−2)
1

, and aux i is thus in L
(i)
aux .

Given these algorithms, a sequence of extractors
(
E(i+1)

)
i∈N

can now be

inductively defined as follows. Extractor E(i+1) mainly runs (Q∗)
(i−1) to extract

an IVC output xi and a witness wi, and runs E(i) with rewinding access to
(P ∗)

(i−1) to extract the rest of the intermediate IVC outputs and witnesses.(
E(1)

)(P∗)(0)

(par , (x0, x1)) :

w0 ←
(
E(1)
Q,W

)(P∗)(0) (
parQ,W , (x0, x1)

)
Return w0

and for i > 0,(
E(i+1)

)(P∗)(i)

(par , (x0, xi+1)) :

(πi+1, aux i+1, st i+1)← (P ∗)
(i)

(x0, xi+1)

Return ∅ if Vf (par , (i+ 1, x0, xi+1), πi+1, aux i+1) = 0

29



(
A

(i)
2 , r

(i)
2 , xi, πi, aux i, A

(i−1)
2 , r

(i−1)
2 , wi

)
←
(

(Q∗)
(i−1)

)(P∗)(i)

(w0, x1, w1, . . . , xi−1, wi−1)←
(
E(i)

)(P∗)(i−1)

(par , (x0, xi))

Return (w0, x1, w1, . . . , xi, wi).

The extractors abort if any of the algorithms they run as subroutines does.
With the extractors defined, the last step to analyse their success probabil-

ities and run-time. To that end, first let κ(i+1)
Q,W denote the soundness error of

proof system
(
Q(i),W (i+1)

)
and p(i+1)

Q,W the polynomial factor in the extraction

probability. Functions κ(i+1)
ρ and p(i+1)

ρ are defined similarly for E(i+1)
ρ , and κ‖

and p‖ for E‖.

Set (P ∗)
(n)

(·) := Prove∗(st , n, ·), and in case n ≥ 1, algorithms (Q∗)
(i−1)

and (P ∗)
(i−1)

, for i ∈ {1, . . . , n}, are as defined above. Recall that auxn+1 :=

aux∗ is in L
(n+1)
aux by assumption, and that by the previous analysis, aux i is

consequently in L(n)
aux for all i ∈ {1, . . . , n} if E(n+1) does not abort.

Let Acc denote the event in which for some i ∈ {i0 + 4, . . . , n} (in case
n ≥ i0 + 4), Ti is LVf′′‖

but Ti−1 or τ̄i is not. The success probability of the
extractor is first conducted under the condition that Acc does not occur, and
the probability that it does is accounted for afterwards.

For all i ∈ {0, . . . , n − 1}, let q
(

(P ∗)
(i)
)
denote the probability that algo-

rithm
(

(P ∗)
(i)
)(P∗)(i+1)

computes a triple (πi+1, aux i+1, st i+1) that Vf accepts

(πi+1, aux i+1) for the instance (i+ 1, x0, xi+1), conditioned on event Acc.

For i ∈ {1, . . . , n}, let q
(

(Q∗)
(i−1)

)
denote the probability that algorithm(

(Q∗)
(i−1)

)(P∗)(i)

returns an output distinct from ∅, still conditioned on event

Acc. Note that (Q∗)
(i−1) runs E(i+1)

Q,W on a fixed value aux i+1. By an averaging
argument, conditioned on the event that Vf accepts (πi+1, aux i+1), for any real
value 0 < γ < 1, aux i+1 is with probability at least 1−γ such that (P ∗)

(i) returns
a pair that has aux i+1 as second component and that Vf accepts with probability
at least γq

(
(P ∗)

(i)
)
. For γ ← 1/2, it means that with probability at least 1/2,

algorithm (P ∗)
(i) computes a pair that has aux i+1 as second component and

that Vf accepts with probability at least q
(

(P ∗)
(i)
)
/2. Therefore, assuming

that q
(

(P ∗)
(i)
)
> 2κ

(i+1)
Q,W , algorithm E(i+1)

Q,W succeeds with probability at least

q
(
E(i+1)
Q,W

)
:=
(
q
(

(P ∗)
(i)
)
/2− κ(i+1)

Q,W

)
/
(

2p
(i+1)
Q,W

)
.

30



Assuming also that q
(

(P ∗)
(i)
)
> κ

(i+1)
ρ , algorithm

(
E(i+1)
ρ

)
succeeds with

probability at least

q
(
E(i+1)
ρ

)
:=
(
q
(

(P ∗)
(i)
)
− κ(i+1)

ρ

)
/p(i+1)
ρ .

On this account, if q
(

(P ∗)
(i)
)
> max

(
2κ

(i+1)
Q,W , κ

(i+1)
ρ

)
, algorithm (Q∗)

(i−1)

returns an output distinct from ∅ with probability

q
(

(Q∗)
(i−1)

)
≥ 1−

(
1− q

(
E(i+1)
Q,W

)
+ 1− q

(
E(i+1)
ρ

))
.

If this lower bound is strictly greater than κ‖, then

q
(

(P ∗)
(i−1)

)
≥ 1−

1−
(
q
(

(Q∗)
(i−1)

)
− κ‖

)
/p‖︸ ︷︷ ︸

q

(
E(Q∗)(i−1)

‖

)
+εΓ

 .

Notice that the sequence of lower bounds on
(
q
(

(P ∗)
(i)
))

i
is increasing, i.e.,

the closer to the start of the computation the extraction procedure gets, the
lower the success probability of the prover is.

Now define a sequence of knowledge-soundness errors as follows:

κ(1) := κ
(1)
Q,W

κ(i+1) := inf
{
q ∈

(
max

(
2κ

(i+1)
Q,W , κ(i+1)

ρ

)
, 1
]

: if q (B) = q then

q

((
(Q∗)

(i−1)
)B
)
> κ‖ and q

((
(P ∗)

(i−1)
)B
)
> κ(i)

}
for i ∈ {1, . . . , n} (if n ≥ 1).

As for the extraction polynomial factor, let

p(1) := p
(1)
Q,W .

Suppose that q
(

(P ∗)
(i−1)

)
> κ(i). Let q

(
E(i)

)
denote the success probabil-

ity of
(
E(i)

)(P∗)(i−1)

conditioned on event Acc. It is at least(
q
(

(P ∗)
(i−1)

)
− κ(i)

)
/p(i),

assuming p(i) to have already been determined.

The success probability q
(
E(i+1)

)
of
(
E(i+1)

)(P∗)(i)

conditioned on event

Acc is at least

1−
(

1− q
(

(P ∗)
(i)
)

+ 1− q
(

(Q∗)
(i−1)

)
+ 1− q

(
E(i)

))
.

31



Define p(i+1) as a polynomial of smallest possible degree that is at least
as large as the ratio between

(
1− κ(i+1)

)
and the previous lower bound on

q
(
E(i+1)

)
with q

(
(P ∗)

(i)
)
replaced with κ(i+1).

Let εAcc be the probability of event Acc. If ε is such that ε− εAcc > κ(n+1),

then E(n+1) can extract from (P ∗)
(n) a sequence of valid intermediate IVC out-

puts and witnesses.
Error

εAcc = εAcc

((
E(n+1)

)(P∗)(n)

, qH

((
E(n+1)

)(P∗)(n)))
,

is a function of the success probability of E(n+1) with access to (P ∗)
(n)

, if
the check that Ti−1 and τ̄i are is LVf‖,1′′ were not present in the definition
of (P ∗)

(i−1)
, and of the number of queries it makes to oracle H. The former

is precisely q
(
E(n+1)

)
(removing the check is tantamount being in an event in

which it always passes) and the latter depends on qH (the number of queries
Prove∗ makes) and on the expected run-time of E(n+1). See Section 5.4 for an
instantiation of algorithm Acc and an analysis of probability εAcc.

In what follows, given an algorithm B, let T (B) stand for its run-time. For
i ≥ 1,

T

((
E(i+1)

)(P∗)(i)
)

= T
(

(P ∗)
(i)
)

+ T
(
W (i+1)

)
+ T

((
(Q∗)

(i−1)
)(P∗)(i)

)
+ T

((
E(i)

)(P∗)(i−1))

by definition of E(i+1). Furthermore,

T

((
(Q∗)

(i−1)
)(P∗)(i)

)
= T

((
(EQ,W )

(i+1)
)(P∗)(i)

)
+ T

((
(Eρ)

(i+1)
)(P∗)(i)

)

Let n(i+1)
EQ,W and n(i+1)

Eρ respectively denote the number of times that E(i+1)
Q,W and

E(i+1)
ρ run (P ∗)

(i)
. It is in expectation at most polynomial in the length of

their inputs. These extractors may also do a number of operations that is in
expectation polynomial in the size of their inputs. These inputs are computed
from outputs that W (i+1) accepts, so they are of a length that is polynomial in
λ. This implies that

T

((
(Q∗)

(i−1)
)(P∗)(i)

)
=
(
n

(i+1)
EQ,W + n

(i+1)
Eρ

)
T
(

(P ∗)
(i)
)

+ poly(λ).

32



Besides, T
(
W (i+1)

)
= poly(λ). Consequently,

T

((
E(i+1)

)(P∗)(i)
)
≤
(
n

(i+1)
EQ,W + n

(i+1)
Eρ + 1

)
T
(

(P ∗)
(i)
)

+ poly(λ)

+ T

((
E(i)

)(P∗)(i−1))
.

In addition to that, if i ≥ i0 + 2, denoting by n‖ the number of times that E‖

runs algorithm
(

(Q∗)
(i−1)

)(P∗)(i)

, which is in expectation polynomial in the size
of its inputs,

T

((
(P ∗)

(i−1)
)(P∗)(i)

)
≤ T

((
(Q∗)

(i−1)
)(P∗)(i)

)
+ poly(λ)

≤
(
n

(i+1)
EQ,W + n

(i+1)
Eρ

)
T
(

(P ∗)
(i)
)

+ poly(λ).

These two inequalities show that the run-time of E(n+1) is polynomial in expec-
tation as long as n is constant in λ.

To define the knowledge-soundness error of the scheme, the number of oracle
queries E(n+1) must be bounded by above, which means that the run-time of E
should strictly be polynomial instead of just polynomial in expectation. For this
reason, instead of running exactly E(n+1) on (P ∗)

(n)
, extractor E repeats the

following procedure J times, for a positive integer J to be determined later. E
runs E(n+1) for a number of steps that is at most twice the expected run-time of
E(n+1). If E(n+1) returns within that time an output distinct from ∅, algorithm
E exits the loop and returns that output, and otherwise continues.

To analyse the success probability of E, remark that by Markov’s inequality,
the probability that E(n+1) does not return an output within twice its expected
runtime is at most 1/2. Now let (Xν)ν≥1 be a family of independent random
variables with the same binomial distribution of parameter β. In essence, Xν

indicates whether the ν-th iteration of the loop is successful, and β is at least
half the success probability of E(n+1) (not conditioned on event Acc). Let T :=
min{ν ≥ 1: X1 + · · · + Xν = 1}. It is a stopping time which indicates the
number of trials to obtain a success. The random variable T −1, which indicates
the number of trials before a success, has a negative binomial distribution with
parameters 1 and β. Its expectation is then (1−β)/β. Therefore, by E[T ] = 1/β,

which is at most twice the inverse of the success probability of E(n+1).

Moreover, the Chernoff bound (Appendix A.3) implies that the probability
that the number of trials is higher that this expectation decreases exponentially
fast. Formally, consider a real number γ > 0, and let J ← d(1+γ)/βe. Note that
T > J if and only if X1 + · · ·+XJ < 1, which is equivalent to

X1 + · · ·+XJ − Jβ < 1− Jβ ≤ −γ.

33



Besides, E[X1 + · · ·+XJ ] = Jβ, and 0 < γ/Jβ ≤ 1. The Chernoff bound implies
that

P [T > J ] ≤ P [X1 + · · ·+XJ − Jβ < −γ]

= P [X1 + · · ·+XJ − Jβ < −(γ/Jβ)Jβ]

≤ exp(−(γ/Jβ)2Jβ/2)

∼ exp(−γ/2) as γ →∞.

In other words, the probability that none of the J executions of E(n+1) leads to
a success decreases exponentially with J. Now set γ = γ(δ) and J so that the
success probability of E is arbitrarily close to that of E(n+1). Yet, the run-time
of E is strictly polynomial time, which means that the number of random oracle
queries it makes is bounded. Now Let Acc′ denote the event in which, during
the execution of E (rather than E(n+1)) for some i ∈ {i0 + 4, . . . , n} (in case
n ≥ i0 + 4), Ti is LVf′′‖

but Ti−1 or τ̄i is not. Let ε′Acc be the probability of event

Acc′. If ε is such that ε− ε′Acc > κ(n+1), then E can extract from (P ∗)
(n)

(·) =
Prove∗(st , n, ·) a sequence of valid intermediate IVC outputs and witnesses.
Define then the knowledge-soundness error of the scheme as the infimum of the
set of values ζ such that if the success probability of a prover is ζ, is larger than
max

(
2κ

(n+1)
Q,W , κ

(n+1)
ρ

)
and is such that

q

((
(Q∗)

(n−1)
)B
)
> κ‖

and
q

((
(P ∗)

(n−1)
)B
)
> κ(n),

then ζ − ε′Acc > κ(n+1). Define the extraction factor as a polynomial of smallest
possible degree that is at least as large as the ration between (1 − κ) and the
difference between the lower bound on q

(
E(n+1)

)
, with q

(
(P ∗)

(n)
)

replaced

with κ(n+1), and the additive factor (parametrised γ) between q
(
E(n+1)

)
and

the success probability of E.
It should be noted that the preceding analysis abuses the knowledge-soundness

definition of proof systems because algorithms

(Q∗)
(n−1)

, (P ∗)
(n−1)

, . . . , (Q∗)
(0)
, (P ∗)

(0)

are only guaranteed to run in expected polynomial time, although the definition
requires extraction only from provers that run in strict polynomial time. To re-

solve this issue, one could instead define from
(

(Q∗)
(n−1)

)(P∗)(n)

an algorithm((
Q̃∗
)(n−1)

)(P∗)(n)

that runs in strict polynomial, in the exact same way ex-

tractor E was defined from E(n+1). Then, define from
(

(P ∗)
(n−1)

)(P∗)(n)

(that

34



still runs (Q∗)
(n−1) as sub-routine, not

(
Q̃∗
)(n−1)

– to preserve the previous

success probability conditioned on event Acc) an algorithm
((

P̃ ∗
)(n−1)

)(P∗)(n)

that runs in strict polynomial time overall. For all i ∈ {1, . . . , n−1} (if i ≥ 2), de-

fine
((

Q̃∗
)(i−1)

)(P∗)(i)

from
(

(Q∗)
(i−1)

)(P∗)(i)

, and
((

P̃ ∗
)(i−1)

)(P∗)(i)

(which

still runs (Q∗)
(i−1) as sub-routine) from

(
(P ∗)

(i−1)
)(P∗)(i)

. A common param-
eter γ can be chosen for all the algorithms, and so that the success probabilities
(conditioned on event Acc) are negligibly (in λ) close to those of the original
algorithms. As long as n is constant in λ, the loss in success probability from

(P ∗)
(0) to

(
P̃ ∗
)(0)

remains negligible. ut

5 Instantiation

The first part of this section shows how to represent ECC operations that arise
in IVC constructions as a finite state machine. This gives a precise structure in
that case to what is denoted A0, A1 and A2 in Section 4. The section continues
with instantiations of the building blocks of the construction given in Section 4.

5.1 ElliptiC-Curve State Machine.

In IVC constructions based on primitives that are secure under classical assump-
tions, the “expensive” operations usually are multi-scalar multiplications (ECC
operations) that the verifier algorithm performs. To apply the construction in
Section 4 to this case, the input-outputs to these constructions and the witnesses
for their correct executions must be represented in the arithmetisation chosen for
the IVC. What follows is an abstraction of these ECC operations. Then comes
an instantiation of this abstraction in the Plonk arithmetisation.

5.1.1 Abstract State Machine. Let E(Fq) be an elliptic curve defined over
a prime-order field Fq. Let (G,+) be a subgroup of the group of points of E that is
of prime order r. Computations in G are captured by the following deterministic
finite-state machine.

The state set is the union of

{(0, 0), (0, 1), (∞, 0), (∞, 1)}

and
{(G, 0), (G, 1) : G ∈ G} .

The initial state is (0, 0) and the set of final states is {(∞, 0), (∞, 1)}. The
boolean second state component is a flag indicating whether an invalid ECC

35



operation has occurred in the machine execution thus far. State (∞, 0) is hence
interpreted as an accepting final state and state (∞, 1) as a rejecting final state.

The input alphabet is the set that consists of 0E , (+, P ) for all P ∈ G,
(·, a, P ) for all a ∈ Fr and P ∈ G, (=, P ) for all P ∈ G, and ∞. These represent
“reset,” “addition,” “scalar-multiplication” and “equality” operations.

The state-transition function is now defined as follows. From a state (0, b)
with b ∈ {0, 1}, if the input is 0E , then the next state is set to (0E , b). If the input
is ∞, the next (and final) state is set to (∞, b). From a state (G, b) with G ∈ G
and b ∈ {0, 1}, if the input is (+, P ), then the next state is set to (G + P, b).
If the input is (·, a, P ), then the next state is set to (G + aP, b). If the input is
(=, P ), then the next state is set to (0, b) if G = P and otherwise to (0, 1). Note
that once the second state component is set to 1, it can never revert to 0.

To illustrate an execution of the state machine, consider two field elements
a and b, as well as four group elements P0, . . . , P3. The computation of two
separate group elements Q := P0 + P1 + aP2 = ((0E + P0) + P1) + aP2 and
R := bP3 is captured via the following sequence of inputs

0E → (+, P0)→ (+, P1)→ (·, a, P2)→ (=, Q)

→ 0E → (·, b, P3)→ (=, R)→∞.

5.1.2 State-Machine Execution in the Plonk Arithmetisation. To rep-
resent an execution of the ECC state machine in the Plonk arithmetisation, it
is necessary and sufficient to “encode” its state and input at each step within an
execution trace (in Fr). Encoding the state and input at a given execution step
here means defining a one-to-one correspondence between that state and input
and the entries of an execution-trace sub-matrix (together with a bit indicating
whether all gate constraints are so far satisfied). The correspondence naturally
depends on the relative sizes of Fr and Fq.

First suppose that r < q < 2r. It is for instance the case for the BN254 curve,
for which 2253 < r < q < 2254, and which is still one of the most prevalent choice
for on-chain SNARKs because of existing Ethereum pre-compiles. Let ` denote
the binary length of r, i.e., 2`−1 ≤ r < 2`. The condition q < 2r implies that
q < 2`+1. Now let k be a integer such that ` < 2k ≤ 2(`−1), which exists as soon
as ` > 2. Under these conditions, for any integer x ∈ {0, . . . , q−1}, there exists a
unique pair (x0, x1) of k-bit integers, i.e., integers

{
0, . . . , 2k − 1

}
⊆ {0, . . . , r−1}

such that x = x0 + 2kx1. (The inclusion is because k ≤ `− 1, which implies that
2k ≤ 2`−1 ≤ r.) Unicity of the pair is guaranteed via the Euclidian division of x
by 2k. As for its existence, it follows from the fact that

2k − 1 + 2k
(
2k − 1

)
= 22k − 1 ≥ 2`+1 − 1 ≥ q.

In other words, an element in Fq can be represented by two elements of Fr.
For inputs of the state machine that contain a group element, that input

is a pair (x, y) of Fq elements in Weierstrass affine coordinates. What precedes
shows that x and y can uniquely be written as pairs (x0, x1) and (y0, y1) of Fr

36



elements. On this account, the state (except for the boolean second state com-
ponent) and input (distinct from ∞) at each execution step of the machine can
be written in two consecutive rows of a four-column execution trace as follows.
Define an arbitrary one-to-one correspondence between each op ∈ {0E ,+, ·,=}
and a subset of Fr, e.g., {0, . . . , 3} (and each operation is further conflated with
its image).

op x0 x1 y0

0 y1 a 0

If op = 0E , set x0 ← x1 ← y0 ← y1 ← a ← 0. If op 6= ·, set a ← 0. Input ∞ is
not represented in the execution trace as it is, by construction, necessarily the
final input to the machine, and that final input is the only occurrence of ∞.

Consecutive ECC operations represented in this way can be accumulated in
an execution trace from top to bottom.

In fact, if the elliptic curve has an efficiently computable endomorphism ψ, a
scalar multiplication a ·P can be reduced to [11,12] computing a0 ·P +a1 ·ψ(P ),
for a0 and a1 of around half the binary size of a. This reduces by half the amount
of computation to be proved in Section 6.1.2 if the most significant half of the
bits of a only comprises zeroes (a1 = 0). In the execution trace, the second row
can thus be replaced with

0 y1 a0 a1 .

5.2 Commitment Scheme

The scheme used to commit to ECC-operation tables, denoted Γ in Section 4, is
the hiding KZG commitment scheme presented in Section 2.4.2. Let Nmax the
maximum length of the vectors that can be committed using parameters that
have been generated for hiding KZG commitments. Note that a commitment to
a vector A ∈ FN for some N < Nmax is also a commitment to (A ‖ 0j) for any
j ∈ {1, . . . , Nmax − N}. On this account, a KZG commitment to a vector A is
actually a commitment to the set of vectors (A‖0j) for all j ∈ {1, . . . , Nmax−N}.
The exact length (as referred to in Section 4) of a vector A ∈ FNmax is defined
as the sum of 1 and the maximum index i ∈ {0, . . . , Nmax− 1} such that Ai 6= 0
if such an index exists, and 0 otherwise.

5.3 Concatenation Proofs

Consider three positive integers N0, N1 and N2 such that N0 and N1 + N2 are
at most Nmax. Let A0 ∈ FN0 , A1 ∈ FN1 and A2 ∈ FN2 . Define A0(X), A1(X)
and A2(X) as the univariate polynomials of which vectors A0, A1 and A2 are
the coefficients in the monomial basis. The main observation is that

A0 = A1 ‖A2 =
(
A1,0

N2
)

+
(
0N1 , A2

)
37



if and only if
A0(X) = A1(X) +XN1A2(X).

By the polynomial-identity lemma, the latter equation holds, except with prob-
ability at most Nmax/|F|, if

Zx := A0(X)−A1(X)− xN1A2(X)

evaluates to 0 at x, for a uniformly random x←$ F.
Given commitments C0, C1 and C2 to vectors A0, A1 and A2, and the length

N1 of A1, the verifier sends to the prover a uniformly random field element x,
computes a commitment C0 − C1 − xN1C2 to Zx and uses it to verify a proof
that Zx(x) = 0.

To apply this idea to the case where A0, A1 and A2 are not column vectors
but rather matrices with M columns, the prover must now show that for each
j ∈ {0, . . . ,M − 1}, polynomial

A0,j(X)−A1,j(X)−XN1A2,j(X)

is the zero polynomial. This is equivalent to proving that the bivariate polynomial

M−1∑
j=0

Y j
(
A0,j(X)−A1,j(X)−XN1A2,j(X)

)
is the zero polynomial. Except with probability at most (M +Nmax)/|F| (again
via the polynomial-identity lemma), it is the case if

Zx,y :=

M−1∑
j=0

yj
(
A0,j(X)−A1,j(X)− xN1A2,j(X)

)
evaluates to 0 at x. The verifier algorithm can thus proceed similarly to the case
of single-column vectors (i.e., M = 1), except that it now also sends a uniformly
random field element y (independent from x) in the first protocol round. Note
that instead of being independent of X, variable Y could be replaced with XNmax

(which would incur a larger number of field operations).
Formally, the following protocol, denoted Π‖, is for the relation{(

(C0, (C1, `), C2),
(
Ak ∈ FNmax×M , rk

)2
k=0

)
: Γ.Open (Ck, Ak, rk) = 1

A0(X) = A1(X) +X`A2(X)

}
,

Prove←Vf : x, y ←$ F

Vf : CZ ←
∑M−1
k=0 yk ·

(
Cj,0 − Cj,1 − x`Cj,2

)
Prove→Vf :

38



q ← Zx,y : (X − x)

s←$ F

π ← [q(τ)]1 + s · [ξ]1
δ ← r · [1]1 − s · [τ ]1 + (s · x) · [1]1 = [r − s(τ − x)]1

Output (π, δ)

Vf : e (CZ , [1]2) ?= e (π, [τ ]2 − x · [1]2) + e (δ, [ξ]2) .

The non-interactive proof system denoted Π‖ in Section 4 can be instantiated
with the Fiat–Shamir transformation [9] of this interactive proof system. The
IVC prover in Section 4 proves a statement about Vf‖, so about a concrete hash
function instantiating the random oracle. Therefore, the security of the instan-
tiation of the construction in Section 4 with the Fiat–Shamir transformation of
this proof system is only heuristic. However, that is already the case for exist-
ing IVC proof systems which apply the Fiat–Shamir transformation to either a
interactive universal SNARK or to an interactive folding scheme.

5.4 Accumulation Algorithm

Given the above protocol, define Vf′′‖,1 as the algorithm which takes a tuple
(CZ , x, (π, δ)) , and returns 1 if

e (CZ , [1]2) = e (π, [τ ]2)− e (x · π, [1]2) + e (δ, [ξ]2)

and 0 otherwise. (The function is parametrised by vk‖.) Following the notation
of Section 4, Given T ′ := (C ′Z , x

′, (π′, δ′)) and τ̄ := (CZ , x, (π, δ)) as inputs,
algorithm Acc generates α← F and returns T ← τ̄ + α · T ′. Note that

e (CZ + αC ′Z , [1]2)− e (π + απ′, [τ ]2) + e (x · π + α (x′ · π′) , [1]2)

− e (δ + αδ′, [ξ]2)

= e (CZ , [1]2)− e (π, [τ ]2) + e (x · π, [1]2)− e (δ, [ξ]2)

+ α · (e (C ′Z , [1]2)− e (π′, [τ ]2) + e (x′ · π′, [1]2)− e (δ′, [ξ]2))

=
(

dlog[1]T (·) + α · dlog[1]T (·)
)
· [1]T .(

dlog[1]T (·) + α · dlog[1]T (·)
)
is a degree-1 polynomial in F[α]. If T ′ and τ̄ satisfy

the pairing equation, it is the zero polynomial and thus T satisfies the pairing
equation as well. Conversely, if T ′ or τ̄ is non-zero, the polynomial is non-zero
and by the polynomial-identity lemma, T satisfies the pairing equation with
probability at most 1/|F|.

The construction in Section 4 de-randomises this algorithm by using a hash
function modelled as a random oracle. (Its domain should in practice be sepa-
rated from that of the random oracle used in the Fiat–Shamir transformation

39



of the proof system in Section 5.3.) The inputs to the algorithm are hashed to
obtain the randomness on which the algorithm runs.

Denote by ϕ the linear map

(CZ , x, (π, δ)) 7→ e (CZ , [1]2)− e (π, [τ ]2) + e (x · π, [1]2)− e (δ, [ξ]2) .

In the random-oracle model, consider an algorithm which makes at most qH
oracle queries and which, with probability at least εϕ, returns m ≥ 1 tuple

(T ′0, τ̄0, T0) , . . . ,
(
T ′m−1, τ̄m−1, Tm−1

)
such that for all i ∈ {0, . . . ,m − 1}, with αi := H (T ′i , τ̄i) , Ti = τ̄i + αiT

′
i and

ϕ (τ̄i + αiT
′
i ) = 0.

Bagherzandi, Cheon and Jarecki [1] designed a forking algorithm which, when
applied to the present algorithm, returns tuples

(T ′0, τ̄0, T0,0) , (T ′0, τ̄0, T0,1) , . . . ,
(
T ′m−1, τ̄m−1, Tm−1,0

)
, (T ′0, τ̄0, Tm−1,1)

such that for all i in {0, . . . ,m−1} and all b ∈ {0, 1}, Ti,b = τ̄i+αi,bT
′
i , αi,0 6= αi,1,

and ϕ(Ti,0) = ϕ(Ti,1) = 0. It does so with probability at least ε/8, and in at
most 8m2qH/ε · ln(8m/ε) times the runtime of the forked algorithm.

The forking algorithm does so by generating m + 1 executions of the algo-
rithm with the same random string; only the random-oracle answers change. In
each execution j ∈ {0, . . .m}, for all i ∈ {0, . . . ,m−1}, the algorithm queries the
oracle (among other queries) at a pair

(
(T ′i )

(j)
, τ̄

(j)
i

)
, receives an answer α(j)

i ,

and returns a value T (j)
i such that T (j)

i = τ̄
(j)
i +α

(j)
i (T ′i )

(j) and ϕ
(
T

(j)
i

)
= 0. Im-

portantly, for each i, the corresponding query is made at the same computation
step. The executions are also such that all random-oracle answers in executions
i and i+ 1 (for i ∈ {0, . . . ,m− 1}) are the same up to the step at which the al-
gorithm queries the oracle at

(
(T ′i )

(i)
, τ̄

(i)
i

)
. The answers in the two executions

are generated uniformly and independently, and the forking algorithm eventually
returns a non-empty value only if the answers are distinct.

The fact that the answers are the same up to the forking point implies that
(T ′i )

(i)
= (T ′i )

(i+1) and τ̄
(i)
i = τ̄

(i+1)
i . Set then T ′i ← (T ′i )

(i)
, τ̄i ← τ̄

(i)
i , αi,0 ←

H
(

(T ′i )
(i)
, τ̄

(i)
i

)
, αi,1 ← H

(
(T ′i )

(i+1)
, τ̄

(i+1)
i

)
Ti,0 ← T

(i)
i and Ti,1 ← T

(i+1)
i .

As T ′i = (Ti,0 − Ti,1)(αi,0 − αi,1)−1 and τ̄i = Ti,0 − αi,0T ′i , the linearity of ϕ
implies that ϕ (τ̄i) = ϕ (T ′i ) = 0.

In the knowledge-soundness proof of the construction in Section 4, Ti is
computed as τ̄i+αiTi−1 from step i0+3 included. Integerm is therefore n−i0−2
in that case. The forked algorithm is extractor E(n+1), and as shown in the proof
of knowledge soundness, the run-time of E(n+1) is polynomial in expectation as
long as n is polynomial in the security parameter λ, so the run-time of the forking
algorithm applied to E(n+1) is polynomial in expectation, and the number of
queries it makes also is. The forking lemma of Bagherzandi, Cheon and Jarecki
implies that the probability εAcc of event Acc is at most 1− q

(
E(n+1)

)
/8.

40



In spite of this analysis, as in the case of the concatenation proof, the IVC
prover in Section 4 proves a statement about Acc, so about a concrete hash
function instantiating the random oracle. The security of the construction is
therefore heuristic.

6 Proving Validity of Auxiliary Proof Information

This section first shows how to prove the validity of ECC-operation tables as
defined in Section 5.1.2. It then gives a simple method to check the validity of
auxiliary proof information.

6.1 Validity of ECC-Operation Tables

As in Section 5.1.2, consider an elliptic curve E over a prime-order field Fq and a
group of points in E(Fq) that is of prime order r such that r < q < 2r. As shown
in that section, operations in that group can be represented in a four-column
Plonk execution trace over Fr in two consecutive rows:

op x0 x1 y0

0 y1 a 0

for op ∈ {0E ,+, ·,=}, and x0, x1, y0 and y1 in
{

0, . . . , 2k − 1
}
for some integer

k such that ` < 2k ≤ 2(`− 1). Such a matrix Ar ∈ F2N×4
r is considered valid if

the state machine (Section 5.1) it represents ends in an accepting state.

6.1.1 From Fr to Fq. To prove that the validity of Ar, let

ι : Fr ∼= Z/rZ ↪→ Z→ Z/qZ ∼= Fq

denote the map which maps an Fr element with representative in {0, . . . , r− 1}
to the class in Fq of that representative. Now define a matrix Aq in FN×4

q such
that

Aq,i,0 = ι(Ar,2i,0)

Aq,i,1 = ι(Ar,2i,1) + 2kι(Ar,2i,2)

Aq,i,2 = ι(Ar,2i,3) + 2kι(Ar,2i+1,1)

Aq,i,3 = ι(Ar,2i+1,2)

for all i ∈ {0, . . . , N − 1}. The rows of Aq are thus of the form

op x y ι(a) .

41



In case the curve has an efficiently computable endomorphism, assuming that
Aq is defined with 5 columns instead of 4, its rows are of the form

op x y ι(a0) ι(a1) .

It is possible to prove the validity of Aq with a universal SNARK for circuits
defined over Fq, but one must first prove that it is correctly computed from Ar.
To that end, it suffices to show that∑

0≤i≤N−1

Aq,i,jX
i =

∑
0≤i≤N−1

ι(Ar,2i,0)Xi

∑
0≤i≤N−1

Aq,i,1X
i =

∑
0≤i≤N−1

(
ι(Ar,2i,1) + 2kι(Ar,2i,2)

)
Xi

∑
0≤i≤N−1

Aq,i,2X
i =

∑
0≤i≤N−1

(
ι(Ar,2i,3) + 2kι(Ar,2i+1,1)

)
Xi

∑
0≤i≤N−1

Aq,i,3X
i =

∑
0≤i≤N−1

ι(Ar,2i+1,2)Xi

in Fq[X]. (There is an extra equation to be proved if scalar a is split in two.)
These four polynomial equations hold if and only if an equality holds between
the two bivariate polynomials in X and Y of which the left-hand and right-hand
sides of the equalities respectively are their coefficients of degree 0, . . . , 3 in Y.
This observation allows to prove all equalities at once. However, to explain in a
simple manner how to prove such an equality, first consider the case in which
there is only the first equation to prove. The proof for four equations at once is
a straightforward generalisation of that case.

Suppose that the prover is given a univariate commitment to∑
0≤i≤N−1

Aq,i,jX
i.

The verifier can choose a uniformly random value x ←$ Fq and the prover can
reveal the evaluation of that polynomial at x, denote it vx together with a proof
that the evaluation is correct. The next step is to prove that∑

0≤i≤N−1

ι(Ar,2i,0)xi = vx mod q.

It is sufficient for that to prove the correct execution of an algorithm which takes
(ι(Ar,i,0))

2N−1
i=0 , x and vx as input, computes

∑
0≤i≤N−1 ι(Ar,2i,0)xi and accepts

if and only if it is equal to vx modulo q.

wx ← ι(Ar,2(N−1),0)

For i = 2(N − 2) down to 0 by 2

wx ← ι(Ar,i,0) + x · wx mod q

42



wx
?= vx mod q

In practice, the prover is given a commitment to (Ar,i,0)
2N−1
i=0 , so the execution

of this algorithm is proved via a circuit defined over Fr. Since the algorithm
performs computations modulo q, proving the correct execution of this algorithm
requires to prove arithmetic operations in a foreign field.

This method for proving one of the polynomial equations can be generalised
to the case in which all four equations are proved at once, provided that the
prover has commitments to the columns of matrix Ar. Namely, the prove uses
a univariate commitment scheme to prove an evaluation vx,y at (x, y) of the
bivariate polynomial of which the coefficients at Y 0, . . . , Y 3 are given by the
univariate polynomials on the right sides of the previous equalities. The previous
algorithm now initialises a value

wx,y ← ι(Ar,2(N−1),0)+ y ·
(
ι(Ar,2(N−1),1) + 2kι(Ar,2N−1,2)

)
+ y2 ·

(
ι(Ar,2(N−1),3) + 2kι(Ar,2N−1,1)

)
+ y3 · ι(Ar,2N−1,2) mod q

and for i = 2(N − 2) down to 0 by 2, updates it as

wx,y ← ι(Ar,i,0)+ y ·
(
ι(Ar,i,1) + 2kι(Ar,i,2)

)
+ y2 ·

(
ι(Ar,i,3) + 2kι(Ar,i+1,1)

)
+ y3 · ι(Ar,i+1,2)

+ x · wx,y mod q.

Assuming that representing Fq elements as two k-bit integers allows to compute
the above without having to constrain 2k · ι(Ar,i,2) mod q in an Fr circuit, that
is four Fq multiplications in total per ECC operation to be enforced in an Fr
circuit.

Note that no operation on the curve defined over Fr must be constrained in
an Fr circuit. It means that the scheme does not actually need a curve cycle, it
only requires the existence of another cryptographic group that has order q.

6.1.2 Validity of Operation Tables in Fq. Proving the validity of oper-
ations in {0E ,+,=} is straightforward. The one which requires care is the ·
scalar-multiplication operation.

As in section 5.1.2, integer ` denotes the binary length of r, i.e., 2`−1 ≤
r < 2`. Consider a positive integer h less than ` − 1 and the Euclidian division
`− 1 = hm+ s of `− 1 by h.

Note that(
2h
)m ≤ (2h)m · 2s = 2`−1 ≤ r < 2` =

(
2h
)m · 2s+1 ≤

(
2h
)m+1

.

The decomposition of a < r in base 2h thus hasm digit; denote them a0, . . . , am−1.
Now observe that for any group element H, of which the distribution is to be

43



determined later,

a ·G =
∑

0≤i<m

(
2h
)i · ai ·G

=
∑
i

(
2h
)i · (ai ·G+H −H)

=
∑
i

(
2h
)i · (ai ·G+H)−

∑
i

(
2h
)i
H

= (a0G+H) + 2h ·
(
(a1G+H) + 2h ·

(
· · · 2h · (am−1G+H) · · ·

))
−
∑
i

(
2h
)i
H.

This suggests an algorithm akin to the double-and-add algorithm in which in-
stead of doubling at each round, the algorithm doubles h times, and adds a
term (aiG + H). To verify the correct execution of this algorithm, constraints
enforcing correct point adding and doubling are necessary.

Given three points P = (xP , yP ), Q = (xQ, yQ) and R = (xR, yR) in E(Fq),
assuming that Q 6= ±P and that P and Q are both not the neutral element of E
(the point 0E at infinity), the equality P ±Q = R is satisfied if and only if [23]

(xP + xQ + xR)(xQ − xP )2 − (yQ ± yP )2 = 0

(yP + yR)(xQ − xP )− (yQ ± yP )(xP − xR) = 0.

Moreover, in case Q = P, the equality 2P = R holds if and only if

3x2
P (xP − xR)− 2yP (yP + yR) = 0

4y2
P (xR + 2xP )− 9xP (y2

P − b) = 0

Elliptic-curve-point coordinates can be arranged in a Plonk execution trace
as follows.

xP yP xQ yQ

0 xR yR 0

(In case P = Q, xQ and yQ can be replaced with 0.) The above equations thus
yield an algebraic equation that wire values must satisfy.

Distribution of H. The previous equations hold in case neither P nor Q is
0E , and if Q 6= −P. If H were set to 0E , then at the i+1-th step of the algorithm,
when am−1−i ·G is to be added to the mutable variable which eventually holds
a · G, it is likely that am−1−i = 0. More precisely, it suffices for a to have
2h consecutive bits in its binary decomposition to be 0, which is likely if h is
small. In that case, the above equations which constrain the execution trace of
the algorithm to be correct would not be applicable. It is of course possible to
introduce conditionals to check whether the point to be added is 0E and simply
set the result to match the first argument, but this would introduce several extra

44



constraints. Alternatively, one could simply hash into E to obtain a uniformly
random value in the group. The probability that am−1−iG + H is zero for any
i is negligible. Besides, the probability (over the distribution of H) that, at any
step of the algorithm execution, the point to be added is the inverse of the value
currently stored is also negligible. Hashing into E to generate H thus guarantees
that with high probability, the equations given for the case P,Q 6= 0E and
P 6= −Q are sufficient to verify the correct execution of the scalar-multiplication
algorithm.

Multi Scalar Multiplications. Consecutive scalar-multiplication opera-
tions can be considered as a single Multi-Scalar Multiplication (MSM). In that
case, instead of writing the trace of successive executions of an algorithm for
single-scalar multiplication, write instead the trace of an MSM algorithm best
suited for the size of the MSMs that arise in practice. This can be Straus’s algo-
rithm [25], Pippenger’s algrorithm [21] or sliding-window methods [27]. In any
case, algorithms to compute MSMs often make use of variant of the double-and-
add algorithm, and potentially leverage results from a pre-computation phase.

Choice of h. The larger h is, the less iterations there are in the scalar-
multiplication algorithm, and the shorter the execution trace gets. However, the
number of group operations in a pre-computation phase grows with h in some
MSM algorithms. For instance, in Straus’s algorithm applied to an MSM of size
ν ≥ 2, the pre-computation phase requires 2νh − 1 − ν group operations. The
online phase requires mh = ` − 1 − s doublings and approximately `/h group
additions. For ` = 254, the optimal value of h seems to be around 4.

6.2 Validity of Auxiliary Proof Information

To now show the validity of an auxiliary piece of proof information is after n ≥
i0 + 3 steps construction, the verifier simply checks that C(n)

0 is a commitment
to a valid table of ECC operations as per Section 6.1, that Vf‖ accepts on input(

par‖,
(
C

(n)
0 ,

(
C

(n)
1 , `n

)
, C

(n)
2

)
, π‖,n+1

)
,

and that T is in LVf′′‖,1
, i.e., that ϕ(T ) = 0, for ϕ defined in Section 5.4.

7 Performance

Throughout the incremental computation with auxiliary proof information, only
the proof at the end that table Aq is correctly computed from Ar (Section 6.1.1)
requires Fq operations to be emulated in Fr. That is four or five Fq multipli-
cations, depending on whether the curve has an efficiently endomorphism. In
comparison, standard IVC proofs requires Fq operations to be simulated in Fr
for each scalar multiplication that the SNARK or folding verifier does.

In the algorithm given in Section 6.1.2, each of the m ≈ `/h algorithm
steps requires h point doubling. That is at least 5(h + 1) multiplications in
Fq (the 7 multiplications for point doubling are replaced with the number of

45



multiplications for addition, which is 5, to get a lower bound). In total, it means
that the number of non-native field multiplications in standard IVC is m∗5(h+
1)/5 = m(h + 1) the amount in the construction. If ` = 254 and h = 4, then
m = 63, it means 315 times more Fq multiplications to be emulated in Fr
compared to standard IVC. In the case of successive scalar multiplications that
are then treated as a single MSM,m(h+1) should be replaced with the amortised
number of Fq multiplications per scalar multiplication.

A more precise estimation of the performance gain is as follows. Consider an
MSM of size ν ≥ 1. Denote by

NFr (Fq) the number of gates in the Plonk four-column execution trace of an Fr
circuit to emulate a multiplication in Fq

NFr (G) the number of gates in the execution trace of an Fr circuit to emulate
an operation (addition or point doubling) in G

m(ν, `, h) denotes the number of steps in a given algorithm to compute an MSM
of size ν with `-bit scalars represented in base 2h

NG(ν, `, h) : the number of group operations per step of the same algorithm to
compute an MSM of size ν with `-bit scalars represented in base 2h

NFq (ν ∗ (Fr ·G), `, h) the number of gates in the execution trace of an Fq circuit
to emulate an MSM of size ν, with `-bit scalars represented in base 2h, for
the same MSM algorithm

NFq (G) the number of gates in the execution trace of an Fq to emulate an
operation in G.

Note that the number of field and group operations that the prover performs
at the end of an IVC scales at least linearly with the number of gates in the
execution trace.

In the construction, the total number of execution-trace gates in Fr that an
MSM of size ν incurs is at most ν ∗ 5 ∗NFr (Fq) for the proof that Aq is correctly
computed from Ar, and NFq (ν ∗ (Fr · G)) for the proof of the MSM in the Fq
circuit. That is at most

ν ∗ 5 ∗NFr (Fq) +NFq (ν ∗ (Fr ·G), `, h)

gates in total.
In standard IVC, for the same MSM algorithm, the total number of gates in

an Fr circuit is

m(ν, `, h) ∗NG(ν, `, h) ∗NFq (G) ∗NFr (Fq).

As an example to get a numerical estimation, let the MSM algorithm simply
consist of ν executions of the algorithm in Section 6.1.2. In that algorithm,
m(ν, `, h) = νb`−1/hc ≈ ν`/h, NG(ν, `, h) = (h+1) (there are h point doublings
and an addition at each step) and NFq (ν ∗ (Fr ·G), `, h) = νNFq (1∗ (Fr ·G), `, h).
Standard IVC requires at least

`/h ∗ (h+ 1) ∗NFq (G) ∗ NFr (Fq)
5 ∗NFr (Fq) +NFq (Fr ·G, `, h)

46



more gates than the construction the IVC with auxiliary proof information.
In practice, NFq (G) is around 2 (one row for the inputs to the operation

and one row for the output), NFr (Fq) is around 10, and NFq (Fr · G, `, h) is
approximately m(`, h) ≈ `/h. For `← 254 ≈ 256 and h← 4, the previous ratio
is at least 56. For ν = 64, that is 7296 gates versus 409600. For an optimised
MSM algorithm, although the ratio would definitely be lower, the number of
constraints in standard IVC would still be at least an order of magnitude higher
than in the construction with auxiliary proof information.

Acknowledgements. Many thanks to Liam Eagen, Luke Edwards and Ariel
Gabizon for helpful discussions and corrections. The first author contributed
while still at Aztec Labs.

47



References

1. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson,
P.F., Jha, S. (eds.) ACM CCS 2008. pp. 449–458. ACM Press (Oct 2008). https:
//doi.org/10.1145/1455770.1455827

2. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701–732. Springer, Cham (Aug 2019). https://doi.org/
10.1007/978-3-030-26954-8_23

3. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th ACM STOC. pp. 111–120. ACM Press (Jun 2013).
https://doi.org/10.1145/2488608.2488623

4. Bünz, B., Chen, B.: Protostar: Generic efficient accumulation/folding for special-
sound protocols. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part II. LNCS,
vol. 14439, pp. 77–110. Springer, Singapore (Dec 2023). https://doi.org/10.
1007/978-981-99-8724-5_3

5. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without
succinct arguments. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS,
vol. 12825, pp. 681–710. Springer, Cham, Virtual Event (Aug 2021). https://doi.
org/10.1007/978-3-030-84242-0_24

6. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from
accumulation schemes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 1–18. Springer, Cham (Nov 2020). https://doi.org/10.1007/
978-3-030-64378-2_1

7. Eagen, L., Gabizon, A.: ProtoGalaxy: Efficient ProtoStar-style folding of multiple
instances. Cryptology ePrint Archive, Report 2023/1106 (2023), https://eprint.
iacr.org/2023/1106

8. Eagen, L., Gabizon, A., Sefranek, M., Towa, P., Williamson, Z.J.: Stackproofs:
Private proofs of stack and contract execution using protogalaxy. Cryptology ePrint
Archive, Paper 2024/1281 (2024), https://eprint.iacr.org/2024/1281

9. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263,
pp. 186–194. Springer, Berlin, Heidelberg (Aug 1987). https://doi.org/10.1007/
3-540-47721-7_12

10. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptol-
ogy ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953

11. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 518–535. Springer, Berlin, Heidelberg (Apr 2009). https:
//doi.org/10.1007/978-3-642-01001-9_30

12. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Berlin, Heidelberg (Aug 2001). https://doi.
org/10.1007/3-540-44647-8_11

13. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Berlin, Heidelberg (Dec 2010). https://doi.org/10.1007/
978-3-642-17373-8_11

48

https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-981-99-8724-5_3
https://doi.org/10.1007/978-981-99-8724-5_3
https://doi.org/10.1007/978-981-99-8724-5_3
https://doi.org/10.1007/978-981-99-8724-5_3
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://eprint.iacr.org/2023/1106
https://eprint.iacr.org/2023/1106
https://eprint.iacr.org/2024/1281
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11


14. Kohrita, T., Towa, P.: Zeromorph: Zero-knowledge multilinear-evaluation proofs
from homomorphic univariate commitments. Cryptology ePrint Archive, Report
2023/917 (2023), https://eprint.iacr.org/2023/917

15. Kothapalli, A., Setty, S.: SuperNova: Proving universal machine executions without
universal circuits. Cryptology ePrint Archive, Report 2022/1758 (2022), https:
//eprint.iacr.org/2022/1758

16. Kothapalli, A., Setty, S.: CycleFold: Folding-scheme-based recursive arguments
over a cycle of elliptic curves. Cryptology ePrint Archive, Report 2023/1192 (2023),
https://eprint.iacr.org/2023/1192

17. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive zero-knowledge arguments
from folding schemes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV.
LNCS, vol. 13510, pp. 359–388. Springer, Cham (Aug 2022). https://doi.org/
10.1007/978-3-031-15985-5_13

18. Kothapalli, A., Setty, S.T.V.: HyperNova: Recursive arguments for customizable
constraint systems. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part X. LNCS,
vol. 14929, pp. 345–379. Springer, Cham (Aug 2024). https://doi.org/10.1007/
978-3-031-68403-6_11

19. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge International Se-
ries on Parallel Computation, Cambridge University Press (1995)

20. Nguyen, W.D., Datta, T., Chen, B., Tyagi, N., Boneh, D.: Mangrove: A scal-
able framework for folding-based SNARKs. In: Reyzin, L., Stebila, D. (eds.)
CRYPTO 2024, Part X. LNCS, vol. 14929, pp. 308–344. Springer, Cham (Aug
2024). https://doi.org/10.1007/978-3-031-68403-6_10

21. Pippenger, N.: On the evaluation of powers and related problems. In: 17th Annual
Symposium on Foundations of Computer Science (sfcs 1976). pp. 258–263 (1976).
https://doi.org/10.1109/SFCS.1976.21

22. Setty, S., Thaler, J., Wahby, R.: Customizable constraint systems for succinct ar-
guments. Cryptology ePrint Archive, Paper 2023/552 (2023), https://eprint.
iacr.org/2023/552, https://eprint.iacr.org/2023/552

23. Silverman, J.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics,
Springer New York (2009), https://books.google.ch/books?id=Z90CA_EUCCkC

24. Soukhanov, L.: WARPfold : Wrongfield ARithmetic for protostar folding. Cryptol-
ogy ePrint Archive, Report 2024/354 (2024), https://eprint.iacr.org/2024/354

25. Straus, E.G.: Addition chains of vectors (problem 5125). American Mathematical
Monthly 70(806-808), 16 (1964)

26. Valiant, P.: Incrementally verifiable computation or proofs of knowledge im-
ply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 1–18. Springer, Berlin, Heidelberg (Mar 2008). https://doi.org/10.1007/
978-3-540-78524-8_1

27. Yen, S.M., Laih, C.S., Lenstra, A.K.: Multi-exponentiation. IEE proceedings: com-
puters and digital techniques 141(6), 325–326 (1994)

28. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-
knowledge version of vSQL. Cryptology ePrint Archive, Report 2017/1146 (2017),
https://eprint.iacr.org/2017/1146

49

https://eprint.iacr.org/2023/917
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2023/1192
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-68403-6_11
https://doi.org/10.1007/978-3-031-68403-6_11
https://doi.org/10.1007/978-3-031-68403-6_11
https://doi.org/10.1007/978-3-031-68403-6_11
https://doi.org/10.1007/978-3-031-68403-6_10
https://doi.org/10.1007/978-3-031-68403-6_10
https://doi.org/10.1109/SFCS.1976.21
https://doi.org/10.1109/SFCS.1976.21
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2023/552
https://books.google.ch/books?id=Z90CA_EUCCkC
https://eprint.iacr.org/2024/354
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://eprint.iacr.org/2017/1146


A Preliminaries

A.1 Proof Systems

The properties that proof systems should satisfy are formally defined as follows.

A.1.1 Completeness. A proof system for a relation-generator R is complete
if for all λ ∈ N≥1, for all R in the range of R

(
1λ
)
, for all (par , τ) in the range

of Setup(R), for all (x,w) in R,

P [Vf (par , x,Prove(par , x, w)) = 1] = 1.

A.1.2 Knowledge Soundness. A proof system is knowledge sound with er-
ror κ, function with values in (0, 1), if there exist a real polynomial p and an
extractor E, which runs in expected polynomial time (on the size of its inputs),
such that for any PPT algorithm Prove∗ to which E is given black-box rewind-
ing access, for all λ ∈ N≥1, for any R in the range of R

(
1λ
)
and any (par , τ) in

the range of Setup(R), for any (potentially unbounded) algorithm A, for any
(st ∈ {0, 1}∗, x)← A(par) such that

P
[
Vf(Prove∗(st),·)(par , x) = 1

]
> κ(λ, |x|),

the inequality

P
[
(x,w) ∈ R : w ← E(Prove∗(st),·)(par , τ, x)

]
≥
(
P
[
Vf(Prove∗(st),·)(par , x) = 1

]
− κ(λ, |x|)

)
/p(λ, |x|)

holds. The notation E(Prove∗(st),·) means that E has rewinding black-box access
to Prove∗, which runs on some state st to which E does not have access. It
is further assumed that E returns w 6= ∅ only if it is such that (x,w) ∈ R.
The reason is that from any extractor E that satisfies the condition, one can
always another extractor which tests whether the witness E computed is valid
and returns ∅ if that is not the case. This new extractor has the same extraction
probability as E does.

It is in fact sufficient to show that the condition on the extraction probability
holds for any deterministic polynomial-time algorithm Prove∗. That is because
for any PPT algorithm Prove∗, its success probability is the expectation, over
the choice of its random string, of the success probability of Prove∗ running
on a fixed random string. If the condition holds for any deterministic algorithm,
it holds for Prove∗ running on any fixed random string, and therefore for the
probabilistic algorithm Prove∗.

A.2 Folding Schemes

This section gives formal definitions for the properties that folding schemes
should satisfy.

50



A.2.1 Completeness. A folding scheme for a relation-generator R is com-
plete if for all λ ∈ N≥1, for all R in the range of R

(
1λ
)
, for all par in the range

of Setup(R), for all (x0, w0), (x1, w1) in R, with (W,X) denoting

(Prove(par , (x0, x1), (w0, w1)),Vf(par , (x0, x1)) ,

the random outputs of Prove and Vf in the interaction, P [(X,W ) ∈ R = 1] .

A.2.2 Knowledge Soundness. A folding scheme is knowledge sound with
error κ, function with values in (0, 1), if there exist a real polynomial p and an
extractor E, which runs in expected polynomial time (on the size of its inputs),
such that for any PPT algorithm Prove∗ to which E is given black-box rewind-
ing access, for all λ ∈ N≥1, for any R in the range of R

(
1λ
)
and any par in

the range of Setup(R), for any (potentially unbounded) algorithm A, for any
((st ∈ {0, 1}∗, (x0, x1))← A(par) such that P [(x,w) ∈ R] > κ(λ, |(x0, x1)|), the
inequality

P
[
(x0, w0), (x1, w1) ∈ R : (w0, w1)← E(Prove∗(st),·)(par , (x0, x1))

]
≥ (P [(X,W ) ∈ R]− κ(λ, |(x0, x1)|)) /p(λ, |(x0, x1)|)

holds. The pair (W,X) denotes

(Prove(par , (x0, x1), (w0, w1)),Vf(par , (x0, x1)) ,

the random outputs of Prove and Vf in the interaction. The notation

E(Prove∗(st),·)

means that E has rewinding black-box access to Prove∗, which runs on some
state st to which E does not have access. It is further assumed that E returns
(w0, w1) 6= ∅ only if it is such that (x0, w0) and (x1, w1) are in R. The reason is
similar to that for the case of proof systems.

A.3 Chernoff Bound

The Chernoff bound gives bound on the tail distribution of sums of independent
Bernoulli random variables.

Theorem A.1 ( [19, Theorem 4.2]). Let X1, X2, . . . , Xn be independent Bernoulli
random variables such that, for 1 ≤ i ≤ n, P [Xi = 1] = pi, with 0 < pi < 1.
Then, for X =

∑n
i=1Xi, E[X] =

∑n
i=1 pi, and any 0 < δ ≤ 1,

P [X < (1− δ)E[X]] < exp
(
−E[X]δ2/2

)
.

B Definitions

This section gives formal definitions for the schemes defined in Section 3.

51



B.1 Incrementally Verifiable Computation with Auxiliary Proof
Information

B.1.1 Completeness. An IVC scheme with auxiliary proof information for a

generator G is complete if for all λ ∈ N≥1, for all
(
R,
(
R

(i)
aux

)
i≥1

)
in the range of

G
(
1λ
)
and all par in the range of Setup

(
R,
(
R

(i)
aux

)
i≥1

)
, for all ((x0, x1), w0)

in R, with (Π1,AUX 1,ST 1) denoting the random variable

Prove (par , (0, x0, x1), w0) ,

P [Vf (par , (1, x0, x1), (Π1,AUX 1)) = 1] = 1

and (AUX 1,ST 1) ∈ R(1)
aux ; and if for all (i, x0, xi, πi, aux i) with i positive such

that
Vf(par , (i, x0, xi), πi, aux i) = 1,

for all xi+1, wi such that ((xi, xi+1), wi) is in R, with (Πi+1,AUX i+1,ST i+1)
denoting Prove (par , (i, x0, xi+1), xi, πi, aux i, st i, wi) ,

P [Vf (par , (i+ 1, x0, xi+1), (Πi+1,AUX i+1)) = 1] = 1,

and (AUX i+1,ST i+1) ∈ R(i+1)
aux if (aux i, st i) ∈ R(i)

aux .

B.1.2 Knowledge Soundness. An IVC scheme with auxiliary proof infor-
mation for a generator G is knowledge-sound with error κ, function with values
in (0, 1), if there exist a real polynomial p and an extractor E, which runs in
expected polynomial time (on the size of its inputs), such that for any PPT algo-
rithm Prove∗ to which E is given rewinding black-box access, for all λ ∈ N≥1,

for all
(
R,
(
R

(i)
aux

)
i≥1

)
in the range of G

(
1λ
)
and all par in the range of

Setup
(
R,
(
R

(i)
aux

)
i≥1

)
, for any (potentially unbounded) algorithm A, for any

(st ∈ {0, 1}∗, (n+ 1, x0, xn+1))← A(par)

with n positive such that,

P
[
Vf (par , (n+ 1, x0, xn+1), (Π∗,AUX ∗)) = 1 |AUX ∗ ∈ L(n+1)

aux

]
> κ(λ, |(n+ 1, x0, xn+1)|),

the inequality

P [((x0, x1), w0), . . . , ((xn, xn+1), wn) ∈ R :

(w0, x1, w1, . . . , xn, wn)← EProve∗(st,·)(par , (n+ 1, x0, xn+1)) |AUX ∗ ∈ L(n+1)
aux

]
≥
(
P
[
Vf (par , (n+ 1, x0, xn+1), (Π∗,AUX ∗)) = 1 |AUX ∗ ∈ L(n+1)

aux

]
−κ(λ, |(n+ 1, x0, xn+1)|)

)
/p(λ, |(n+ 1, x0, xn+1)|)

52



holds. The triple (Π∗,AUX ∗,ST ∗) denotes the random variable

Prove∗(st , (n+ 1, x0, xn+1)).

The notation E(Prove∗(st),·) means that E has rewinding black-box access to
Prove∗, which runs on some state st to which E does not have access. Extractor
E does not have access to the ST ∗ output of Prove∗ either. That is because
the only additional capabilities that E should have compared to Vf is to have
access to the random tape of Prove∗. As Vf is not given access to the ST ∗

output of Prove∗, the extractor should not have access to it either.
For E to run in time polynomial in the size of its inputs, n + 1 should be

encoded in unary as E requires at least that many elementary steps to write its
output. It is further assumed that E returns an output distinct from ∅ only if the
intermediate IVC outputs and witnesses are valid. Indeed, from any extractor E
that satisfies the condition, one can always define another extractor which tests
whether the outputs of E are valid intermediate IVC outputs and witnesses and
returns ∅ if that is not the case. This new extractor has the same extraction
probability as E does.

The definition fundamentally states that for any tuple (n+ 1, x0, xn+1) that
algorithm A returns and for which algorithm Prove∗ can compute a valid proof
with a probability above the soundness-error threshold, the extractor can com-
pute a sequence of intermediate computation results together with valid wit-
nesses if the auxiliary proof information is valid. It does so with a probability
that is close, up to a polynomial factor, to the probability that Prove∗ com-
putes a proof with auxiliary information that passes verification. Note that the
definition requires successful extraction only if the auxiliary proof information
is valid: a relaxation compared to standard IVC schemes.

Similarly to the case of proof systems (see Appendix A.1), it is sufficient to
prove a lower bound on the probability to extract intermediate IVC outputs and
witnesses from deterministic algorithms that return a piece of information aux∗

in L(n+1)
aux , instead of proving a lower bound on probabilistic algorithms. Indeed,

for any PPT algorithm Prove∗, its success probability conditioned on the event
aux∗ ∈ L(n+1)

aux is the expectation, over the choice of its random strings that lead
to aux ∈ L(n+1)

aux , of the success probability of Prove∗ running on a fixed such
random string.

53


	One-Shot Native Proofs of Non-Native Operations in Incrementally Verifiable Computations
	Introduction
	Context
	Contributions

	Preliminaries
	Notation and Convention
	Bilinear-Group Structures
	Proof Systems
	Properties.
	Universal Proof Systems.

	Polynomial Commitments
	Syntax.
	Hiding KZG Commitments.

	Folding Schemes
	Properties.
	Comparison with the Nova Definition.


	Definitions
	Incrementally Verifiable Computation
	Incrementally Verifiable Computation with Auxiliary Proof Information

	Construction
	Instantiation
	ElliptiC-Curve State Machine.
	Abstract State Machine.
	State-Machine Execution in the Plonk Arithmetisation.

	Commitment Scheme
	Concatenation Proofs
	Accumulation Algorithm

	Proving Validity of Auxiliary Proof Information
	Validity of ECC-Operation Tables
	From Fr to Fq.
	Validity of Operation Tables in Fq.

	Validity of Auxiliary Proof Information

	Performance
	Preliminaries
	Proof Systems
	Completeness.
	Knowledge Soundness.

	Folding Schemes
	Completeness.
	Knowledge Soundness.

	Chernoff Bound

	Definitions
	Incrementally Verifiable Computation with Auxiliary Proof Information
	Completeness.
	Knowledge Soundness.




