
Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement

Daniel Collins1,2, Yuval Efron3, and Jovan Komatovic4∗

1 Purdue University
2 Georgia Institute of Technology

3 Columbia University
4 École Polytechnique Fédérale de Lausanne (EPFL)

colli594@purdue.edu, ye2210@columbia.edu, jovan.komatovic@epfl.ch

Abstract. It is well known that a trusted setup allows one to solve the Byzantine agreement problem
in the presence of t < n/2 corruptions, bypassing the setup-free t < n/3 barrier. Alas, the overwhelm-
ing majority of protocols in the literature have the caveat that their security crucially hinges on the
security of the cryptography and setup, to the point where if the cryptography is broken, even a single
corrupted party can violate the security of the protocol. Thus these protocols provide higher corruption
resilience (n/2 instead of n/3) for the price of increased assumptions. Is this trade-off necessary?

We further the study of crypto-agnostic Byzantine agreement among n parties that answers this question
in the negative. Specifically, let ts and ti denote two parameters such that (1) 2ti + ts < n, and
(2) ti ≤ ts < n/2. Crypto-agnostic Byzantine agreement ensures agreement among honest parties if
(1) the adversary is computationally bounded and corrupts up to ts parties, or (2) the adversary is
computationally unbounded and corrupts up to ti parties, and is moreover given all secrets of all parties
established during the setup. We propose a compiler that transforms any pair of resilience-optimal
Byzantine agreement protocols in the authenticated and information-theoretic setting into one that is
crypto-agnostic. Our compiler has several attractive qualities, including using only O(λn2) bits over the
two underlying Byzantine agreement protocols, and preserving round and communication complexity
in the authenticated setting. In particular, our results improve the state-of-the-art in bit complexity by
at least two factors of n and provide either early stopping (deterministic) or expected constant round
complexity (randomized). We therefore provide fallback security for authenticated Byzantine agreement
for free for ti ≤ n/4.

1 Introduction

Byzantine agreement (BA), the problem of reaching agreement between n parties, of which at most t are
corrupt, and controlled by an adversary, is arguably the core problem in fault-tolerant distributed computing,
with research spanning more than four decades [PSL80,GK20]. In this paper, we focus on the synchronous
case, in which messages are delivered to parties at most ∆ time after being sent. Cryptographic tools and
assumptions are central in the design of BA protocols, both for improved efficiency in various regimes and
as well as to circumvent lower bounds [DS83,GK20,GKO+20,BKLZL20]. Perhaps the most eminent of those
cryptographic tools are digital signatures, typically instantiated alongside a public key infrastructure (PKI)
assumption, in which it is assumed that on top of knowing a list of identifiers of all parties participating
in the protocol, each identifier has a corresponding public-secret key pair (pk, sk) with pk being known
to all parties. By levearging PKI, it is well known that BA can be solved in the presence of t < n

2 cor-
rupt parties [DS83,KK06], while setup-free protocols must assume t < n

3 (even assuming cryptography like
signatures) [PSL80,LSP82].

The reliance on PKI mandates two highly crucial assumptions. First, that any underlying cryptography
remains secure.5 Second, that the secrets established at setup remain secure. The vast majority of literature,

∗Most of this work was completed while Jovan Komatovic was at a16z crypto.
5This does not apply to protocols based on primitives like pseudosignatures [PW96] that are information

theoretically-secure but require setup; these protocols generally have a high cost and are not deployed at present.

and all practical work on BA that assumes PKI, suffers from the following shortcoming: the security of the
protocol hinges on the security of the employed cryptographic primitives, to the point where even a single
corrupt party can violate security, if the cryptography used turned out to be broken. This precarious state
of affairs is not only a theoretical concern, with perhaps the most notorious example being the transaction
malleability attack in Bitcoin which resulted in losses of hundreds of millions of dollars [DW14]. Reliance on
computational assumptions is more generally risky as they may, at any time, be publicly (let alone discreetly)
broken, either classically or due to the looming threat of quantum computation. In some sense, despite the
weaker corruption resilience that information-theoretic, setup-free protocols offer, they have the benefit of
having no other potential weak spots in their security.

Can we get the best of both worlds? That is, a BA protocol that has optimal resilience given PKI and
secure cryptography (the authenticated setting), that still maintains high security against a computationally
unbounded adversary that can nullify any setup (the sabotaged setting)? Note that the specific setting in
which the protocol executes is chosen by the adversary at the beginning of the protocol, and in particular
honest (i.e., non-corrupt) parties are in general oblivious to the actual setting in which the protocol executes.
Designing such protocols is precisely the question we address in this paper.

This question was in fact studied two decades ago by Fitzi, Holenstein and Wullschleger [FHW04] in
the broader context of secure multi-party computation (MPC), in which they design an MPC (and thus a
BA) protocol that has what they call hybrid security. In particular, it can tolerate up ts corrupt parties
against a computationally bounded adversary and secure cryptography, and up to ti corrupt parties under
no computational or setup assumptions, for any ti ≤ ts < n

2 such that ts + 2ti < n.6 They also prove that
this bound is tight, even for BA. In particular, a protocol can support up to ti ≤ n

4 faults with no loss
of resilience given a computationally-bounded adversary, i.e., with optimal ts < n

2 fault tolerance! While
an impressive feasibility result for general MPC, when one focuses on BA, existing protocols, namely from
[FHW04] and subsequent work [FR09], suffer from several drawbacks hindering their usability.

Communication Complexity. Fitzi et al. [FHW04] propose a hybrid broadcast protocol with O(λn4) commu-
nication complexity (in bits) that they use as a subroutine to solve MPC. Subsequent work [FR09] also builds
broadcast with complexity O(λn4) as written and using state-of-the-art sub-routines O(λn3 log n) or O(λn3+
n3 log2 n) bits [ANS23,CDG+24b,AC24] (ignoring problems with composition due to non-simultaneous ter-
mination [CCGZ19]). Building crypto-agnostic BA from parallel broadcast generically [CGG+23] would
therefore require at least O(λn4) bits. This leaves a large gap from the classic Ω(n2) lower bound on the
communication complexity of BA [DR85].

Round Complexity. It is well known that any deterministic BA protocol resilient against up to at most t
Byzantine parties must take at least t+1 rounds in the worst case [DS83]. This can be circumvented if the pro-
tocol is early stopping, thereby using just O(f) rounds when f < t corruptions actually occur [PT84,DRS90],
or if it is randomized, where expected constant-round protocols are known [KK06,ADD+19]. Existing hybrid
protocols as written however are deterministic and are not early stopping, requiring O(n) rounds of commu-
nication in all cases, and it is not clear that the protocol of [FR09] can immediately lead to constant-round
BA since parallel composition of expected constant-round protocols generically results in expected O(log n)
round complexity [BOEY03], let alone the high communication this would incur even if it did work.

General Compiler. Existing hybrid protocols are either directly concrete [FHW04] or make use of a linear
number of instances of underlying building blocks like broadcast and are thus not amenable to efficient
implementation [FR09]. Ideally, one would want to be able to construct an efficient protocol Π with hybrid
security in a black box manner from given protocols BAAuth,BASab for the authenticated and sabotaged
settings, respectively, without having to solve BA from scratch.

6The model of [FHW04] (and [FR09]) as stated here does not consider passive compromise of the setup as we do,
and additionally considers inconsistent PKI which imposes different resilience bounds; we discuss this further later.

2

Our Contributions. Our main contribution is a compiler that enjoys all of the above properties. Our compiler
transforms any two given protocols BAAuth,BASab in the authenticated and sabotaged settings, respectively,
into a protocol Juggernaut with crypto-agnostic security with optimal resilience ts + 2ti < n, ti ≤ ts < n

2 .
Furthermore, Juggernaut uses BAAuth,BASab in a black-box manner, Juggernaut has an additive factor of just
O(λn2) bits of communication over BAAuth,BASab. Our protocol optimizes for the practical authenticated
case: if BAAuth is early stopping, then so is Juggernaut in the authenticated setting. Moreover, if BAAuth is
a randomized protocol with expected round complexity R, then Juggernaut has expected round complexity
O(R) in the authenticated setting. Therefore, our protocol effectively provides crypto-agnostic security to
an authenticated protocol for free.

Along the way, we propose two new graded consensus gadgets with O(λn2) bit complexity and constant
(worst-case) round complexity that provide partial security guarantees in one world (authenticated resp.
sabotaged) and full security in the other (sabotaged resp. authenticated) that may be of independent interest.

Using our compiler, we propose two concrete protocols, one deterministic and one randomized. Our
deterministic protocol has O(λn2) bit complexity in all cases, has O(f) round complexity for f actual
failures in the authenticated case and uses O(n) rounds in the sabotaged case. Our randomized protocol has
O(λn2) expected bit complexity and constant expected round complexity in the authenticated case, and uses
O(λ2n2) bits and O(λ+ f) rounds in the sabotaged case.

1.1 Technical Overview

We first would like to stress the complexity of the problem by examining state-of-the-art authenticated
BA protocols achieving optimal corruption resilience. Intuitively, without setup and given t < n

3 , a quorum
consisting of at least 2

3 of parties suffices to convince an honest party to adopt a value, as a counting argument
shows that no quorum for a different value can exist. This is no longer the case when one demands t < n

2 ,
and the overwhelming majority of protocols make use of signature based equivocation checks to assert that
only one value will be adopted by honest parties during the protocol. Any attempt to increase the size of a
quorum can be met with silence from corrupt parties, resulting an unhalting executions due to t < n

2 . On
the other hand, any attempt to relax equivocation checks can be met with agreement violation attacks by
corrupt parties. This forces one to rethink the problem from a first principles approach.

A Strawman Solution: Black Boxes and Graded Consensus. A natural approach is to use protocols secure
in each setting as black boxes. Let BAAuth,BASab be protocols solving BA in the authenticated setting and
sabotaged (i.e., setup-free and information-theoretic) setting, respectively. Intuitively, we would like to run
BAAuth first, check if agreement was reached, and if not, run BASab. A typical tool in the literature for detecting
pre-existing agreement is the graded consensus (GC) primitive, which allows parties to output, along with
their value, a grade indicating their level of confidence in the output. The literature luckily contains efficient
implementations of GC in both the authenticated setting [MR21a] and the sabotaged setting [AW23]. Alas,
we are faced with a trickier scenario. Recall that the specific setting in which the protocol runs is chosen
by the adversary at the beginning of protocol execution, and in particular they can choose a setting that
renders any existing GC useless and provides no guarantees.

Building Our Juggernaut Protocol. An observation we make, inspired by similar techniques from network-
agnostic protocols [BKL19,BZL20] that provide security under synchrony or asynchrony, is that we can design
GCs that work as usual in one of the settings and provide partial guarantees in the other setting in order to
build a crypto-agnostic protocol. Designing such GCs with optimal corruption resilience (ts + 2ti < n, ti ≤
ts <

n
2), O(λn2) bit complexity and constant round complexity, as well as appropriately combining everything

together (which brings up technical challenges, as explained below), are the main technical contributions of
this paper.

Recall that Byzantine agreement provides consistency (all parties output the same value), termination
(all parties output a value and halt), and some validity property (in this work, namely that if all parties
input the same value, that value is decided). We consider graded consensus with two grades, either 0 or 1:

3

graded validity then requires all honest parties output input v and grade 1, and graded consistency requires
that if any honest party outputs (v, 1), then all honest parties output (v, 0) or (v, 1).

As sketched above, our high level approach is to run BAAuth, check if agreement was reached, and run
BASab if not. However, if we are in the sabotaged setting, BAAuth can behave arbitrarily, and if we are in the
authenticated setting, BASab can behave arbitrarily. We introduce two graded consensus protocols to deal
with this. Our first, GC∗

Auth, provides full security in the authenticated case for up to ts corruptions, and
ensures validity and termination for up to ti corruptions in the sabotaged case. Our second, GC∗

Sab, provides
the opposite guarantees: full security in the sabotaged case with ti corruptions, and validity and termination
in the authenticated case with ts corruptions.

At a high level, our protocol, which we call Juggernaut, proceeds as follows. First, each party pi runs
GC∗

Auth using their input vi, which outputs pair (v1, g1). v1 is then fed to BAAuth, which outputs v2. In the
authenticated case, GC∗

Auth and BAAuth provide full security, and therefore all honest parties output the same
v2 from BAAuth. In the sabotaged case, however, we only have validity of GC∗

Auth. To preserve validity in the
sabotaged case, parties then input v1 to GC∗

Sab if g1 = 1, and otherwise input v2 to GC∗
Sab; let the output

of GC∗
Sab be (v3, g3). Since GC∗

Sab provides validity in the authenticated case, all honest parties will output
the same (v2, 1), where v1 = v2 in ‘valid’ runs of Juggernaut (so validity is preserved from GC∗

Auth up to this
point).

At this point we do not yet have consistency in the sabotaged case, only validity. Therefore, all parties
run BASab with input v3, which provides full security in the sabotaged case. However, BASab provides no
security in the authenticated case. To rectify this, as well as to provide early stopping in the authenticated
case, parties multicast their output value v3 as (decide, v3) only if g3 = 1 and wait for ∆ time. Then, on
receipt of n− ts (decide, v3) messages (which is always guaranteed in the authenticated case), parties output
v3 and can safely halt. In the sabotaged case, however, some but not all parties may terminate at this stage.
Thus, to ensure all other parties terminate, parties terminate if they receive (decide, v) from n−ts−ti parties
after running BASab (if they have not yet halted). Therefore, if an honest party halts due to receiving n− ts
(decide, v3) messages, all honest parties will receive n− ts − ti (decide, v) messages and halt. Otherwise, all
honest parties will not halt before terminating from BASab. In this case, if an honest party receives n− ts− ti
(decide, v) messages, then since n − ts − ti > ti + 1, one honest party must have output (v, 1) from GC∗

Sab,
and by graded consistency, all honest parties output v, and by consistency in the sabotaged case of BASab,
all honest parties will output v from that, and thus agree on v. Otherwise, consistency of BASab ensures the
consistency of BASab.

Dealing with Non-Simultaneous Termination. The above works well if BAAuth is such that all parties terminate
at the same time. However, if BAAuth is early-stopping or randomized, parties will not in general output from
BAAuth at the same time. For instance, the adversary can force one honest party to produce an output
significantly earlier than any other honest party. To rectify this, we utilize the synchronizer primitive, which
ensures that honest parties “move on” from BAAuth at roughly the same time. Concretely, the synchronizer
guarantees that honest parties quit executing BAAuth within at most one round of each other, regardless of
whether we are in the authenticated or sabotaged setting. Furthermore, in the authenticated setting, the
synchronizer ensures that honest parties progress from BAAuth with (asymptotically) no additional round
overhead: (1) if BAAuth is early stopping with complexity O(f), then honest parties progress in O(f) rounds,
and (2) if BAAuth is randomized with expected round complexity R, then honest parties progress in O(R)
rounds. This is essential to guarantee that, in the authenticated case, Juggernaut introduces no asymptotic
round complexity overhead.

Constructing Crypto-Agnostic Graded Consensus. We provide efficient compilers that use a single instance
of graded consensus protocol secure in a given setting that provide validity and termination in the other
setting. Namely, our two compilers each incur three additional rounds and O(λn2) communication overhead
over the black boxes we use, for example the graded consensus protocols of Momose-Ren [MR21a] and Attiya-
Welch [AW23] which themselves have constant round complexity and quadratic communication complexity.

Our first protocol GC∗
Auth provides full authenticated security and validity and termination in the sabo-

taged case. Recall that the underlying authenticated graded consensus protocol, say ΠMR, in general provides

4

no security in the sabotaged case. Our goal is thus to augment ΠMR with a procedure to ensure sabotaged
ti-validity and termination. The main challenge is ensuring that this procedure does not interfere with the
authenticated security of ΠMR.

The key observation lies in the fact that if the parties aren’t in the validity case, then parties can change
their inputs to ΠMR arbitrarily without violating security. Therefore, parties in our protocol cast votes in
search of a sufficiently large quorum (of n− ti parties) to output a value with grade 1. If such a quorum is
found, a certificate of the quorum is made and broadcast to the rest of the parties. Upon receiving a unique
certificate of this kind, a party replaces its input with the received value, and enters ΠMR with the new input.
Validity in the sabotaged case then becomes immediate, and careful analysis is required to ensure that this
added part of the protocol can not violate the ts-security of the protocol in the authenticated setting.

Our second protocol GC∗
Sab provides the opposite: sabotaged security and validity and termination in the

authenticated case. The main challenge stems from the fact that honest parties might not initiate the protocol
GC∗

Sab in the same round, due to possibly different exit times from BAAuth. Thanks to the Synchronizer (see
Section 4), which leverages the synchrony assumption of the network, we know that honest parties commence
GC∗

Sab at most 1 round apart from one another. This allows us to design GC∗
Sab with that in mind, and not

deal with the general case of asynchrony.
Similarly to GC∗

Auth, our augmenting of ΠAW with sabotaged ts-validity relies on the observation that
when not in the validity case, parties may change their inputs arbitrarily without harming the security of
the protocol. A first attempt at augmenting ΠAW with authenticated ts-validity might look as follows: Echo
the inputs, and look for a quorum of n− ts echos for a value v, broadcast a certificate C(v) of this quorum (if
found) using threshold signatures, and if no conflicting certificates were received, cast a vote for v, deciding
it with grade 1 if a quorum of n− ts of votes was received. Validity in the authenticated case clearly holds,
but alas, in the sabotaged setting, for reasons that become clear in the analysis, this approach fails.

The key observation here is that in the authenticated setting, we only care about validity, and so we can
impose stricter conditions on deciding a value prior to running ΠAW. Specifically, our solution stipulates that
witnessing a unique certificate for a value is no longer sufficient for party to decide a value, it must have also
created a certificate itself. This saves us from consistency violations in the sabotaged setting by making sure
that if an honest party decides a value before ΠAW, then all honest parties have seen a certificate for that
value.

1.2 Related Work

Hybrid Security. Two previous works that we are aware of consider fallback security w.r.t. an unbounded
adversary for an authenticated protocol [FHW04,FR09] (both cited above), both focused on the feasibility of
MPC. These works additionally allow the adversary to completely compromise the PKI, given the adversary
corrupts up to tp parties - they call the resulting model hybrid security. They show to provide security for
tp > 0 that 2ts + tp < n is necessary and sufficient.7 Thus, to guarantee any security in this case, one must
sacrifice resilience in ts. Our model further differs from previous work in that in the sabotaged case, we
additionally allow the adversary to passively compromise the setup even under ts + 2ti < n, whereas the
adversary cannot not do so in [FHW04,FR09] unless tp or less corruptions are made. This is of particular
note for information-theoretic authenticated BA with fallback since one can set ts =

n
2 − 1 and still achieve

fallback security for ti ≤ n
4 under passively compromised setup.

As noted above, [FHW04] build hybrid broadcast with O(λn4) bit and O(n) round complexity. They
first build ‘weak broadcast’ which provides security in their hybrid setting, then generically build graded
consensus with O(n) instances of weak broadcast, followed by O(n) instances of graded consensus (one per
round) for the final broadcast protocol. We do not see how to easily reduce this complexity without starting
from scratch, which we indeed do in this work.

[FR09] also build hybrid broadcast using O(λn4) bits and O(n) rounds as written; we now consider its
most expensive components. First, they run Dolev-Strong broadcast w.r.t. the sender (or as we note, any

7In [FR09], the authors show for tp = 0 that ts + 2ti < n is enough, and so ts ≤ n/2 and ti > 0 (in their model)
is possible for functionalities like broadcast and MPC with (in their case unanimous) abort.

5

t < n broadcast protocol). Then, they run so-called broadcast with extended validity, which they build from
n instances of perfectly-secure broadcast [BGP+89] with a message-signature pair as input. Finally, they
run parallel broadcast where each honest party may input O(n) signatures on a message. Perfectly secure
parallel broadcast with O(λ)-sized input can be built using O(λn3 log n) bits and O(f) rounds for f actual
corruptions [CDG+24b], and otherwise O(λn2 + n3 log2 n) bits and constant rounds [AC24]. Authenticated
parallel broadcast under honest majority with O(λ+n)-sized inputs (using multisignatures) can be built using
O(n3 + λn2) bits and O(n) rounds [CDG+24a], and otherwise O(λn3) bits and constant rounds [ANS23].
Ultimately, we cannot escape using at least O(λn3) bits using the approach of [FR09] to build constant-round
broadcast, let alone BA with constant round complexity.

Fallback Security. Many works consider providing additional security guarantees to primitives like BA or
MPC on top of or in exchange for some security in the ‘base’ setting (in our work the authenticated setting)
going back at least to Chaum [Cha90] in MPC; we survey some below. [GKKY10] considers a model where
the secrets of tc parties can be exposed to the adversary and ta additional parties can be corrupted, showing
in particular 2ta +min{ta, tc} < n for (fixed) ta, tc > 0 is sufficient and necessary; observe that their model
is incomparable to ours. An accountable BA protocol [CGG+22] provides security given t corruptions, and
given t′ > t corruptions, parties can generate a proof that some parties must have behaved maliciously.
This resembles MPC with identifiable abort [IOZ14], namely MPC under corrupt majority that ensures a
corrupt party is unanimously detected if the protocol aborts, but is not confined to the synchronous set-
ting. [LZLM+20] considers synchronous MPC under ts corruptions with responsiveness (like asynchronous
protocols) under tr corruptions, and achieve a comparable bound as us, namely ts+2tr < n. [LRM10] consid-
ers trade-offs between information-theoretic robustness (preventing adversarial abortion) and computational
privacy assuming broadcast and secure channels.

A line of work initiated in [BKL19] considers network-agnostic security, that is, providing security for
up to ta corruptions if the network is asynchronous and ts if it is synchronous. Some works consider
feasibility results, including [BKL19] for BA, which is possible if and only if 2ts + ta < n, among oth-
ers [BZL20,BKL21,DLZ23], as well as performance [DHLZ21,BCLZL23]. The recent work of [DE24] has a
similar motivation to ours in that the authors show that network-agnostic BA can be built ‘for free’ in the
synchronous case, namely with O(λn2) bit and constant round overhead.

Byzantine agreement. There is a rich history of work on the Byzantine agreement problem in each our
considered settings (when considered separately). In the authenticated setting, the state-of-the-art protocol
for BA in terms of communication complexity and latency is [CDG+24a] in the deterministic case, in which
they showcase a protocol with resilience t < n

2 with optimal O(f) round complexity when f ≤ t corruptions
actually occur, and O(λn2) bit complexity. In the randomized case, [ADD+19] presents a protocol with O(1)
expected latency, and O(λn2) expected bit complexity, with resilience of t < n

2 . For the sabotaged setting,
the protocol of [MMR15] presents a protocol with optimal t < n

3 resilience, O(1) expected latency, and
O(n2) expected bit complexity. Alas their protocol assumes the existence of a common coin. [BGP92] and
[CW92] were the first to solve BA with O(n2) bits and linear rounds; later [LS22] built such a protocol that
is additionally early stopping. In a breakthrough result, Chen [Che21] solved BA with strong unanimity (⊥
can be decided when not all honest parties propose the same value) with O(nL + n2 log n) for messages
of length L. [CDG+24b] achieve external validity [CKPS01] (decided values satisfy a given predicate) with
O((nL + n2) log n) bit complexity; note Juggernaut can be modified to support external validity by adding
appropriate predicate checks.

2 Preliminaries and Definitions

Throughout the paper, we consider a fully connected network of n parties p1, . . . , pn that communicate over
point-to-point authenticated channels. Some fraction of these parties are controlled by an adversary and may
deviate arbitrarily from the protocol. We call these parties corrupt and the other parties honest. When we
say that a party multicasts a message, we mean that it sends it to all n parties in the network. We denote
the security parameter by λ. Throughout the paper, we assume a universe of values V .

6

Public Key Infrastructure. We assume that the parties have established a public key infrastructure before
the protocol execution, which is a bulletin board or plain PKI. Namely, each party pi has a secret-public key
pair (ski, pki) for the use of cryptography. In this paper, we assume that those keys are used to instantiate
a secure digital signature scheme and all messages in our protocols (but not necessarily building blocks) are
implicitly signed.

Threshold Signatures. On top of a PKI, a trusted setup allows the parties to map any vector of f valid
signatures of the same message m by different parties (henceforth referred to as an f -certificate of m) into
a single message π of length O(λ), called a threshold signature, denoted C(m), with the property that the
signature certification algorithm passes on π iff π is the image of a valid t-certificate on m.

Communication Model. We assume a synchronous network, where all parties begin the protocol at the same
time, the clocks of the parties progress at the same rate, and all messages are delivered within some known
finite time ∆ > 0 (called the network delay) after being sent. In particular, messages of honest parties
cannot be dropped from the network and are always delivered. Thus, we can consider protocols that execute
in rounds of length ∆ where parties start executing round r at time (r − 1)∆. We further assume that ∆ is
public information and is known to all parties and the adversary, and any action carried out by any party
can depend on ∆. With that in mind, and to avoid notation encumbrance, we omit ∆ from the list of inputs
to algorithms and protocols in our definitions.

Adversarial Model. The adversary model we consider in the paper is an amalgamation of two common
adversaries in the literature. Formally, given two parameters ti ≤ ts < n/2 such that 2ti + ts < n, the
adversary A can be described as a tuple A = (A0,A1,A2) such that

– A0(Π, r, Trr) = Fr where Fr denotes the set of corrupt parties at round r. I.e. A0 is an algorithm
that chooses for every round the set of corrupt parties, based on the description of the protocol Π, the
round r, and the transcript Trr of the protocol up to round t. We distinguish between two types of
adversaries in this context. A static adversary satisfies that A0(Π, r, Trr) = A0(Π, 0, T r0) for all rounds
r. An adaptive adversary satisfies A0(Π, r, Trr) ⊆ A0(Π, r+ 1, T rr+1) for all rounds t. Unless otherwise
stated, we assume an adaptive adversary For a given adversary A, we say that a party p is forever honest
if p ̸∈ Fr for all rounds r.

– A1(Π, r, Trr,Fr) describes the algorithm run by corrupt parties throughout the execution of the protocol:
it may depend on the description of the protocol Π, the round r, the transcript Trr of the protocol up to
round r, and the internal state of all corrupt parties at round r. In this context, we distinguish between
two settings, characterized by the capabilities of the adversary.

• Sabotaged. A1 (and A0) are computationally unbounded, and in particular can break the security
of any cryptographic primitive used in the protocol via the PKI. Furthermore, the adversary has
complete access to all the information, secret and public of any setup protocol carried out by the
parties prior to receiving their inputs. Equivalently, in the ideal setup world, the adversary receives
from the trusted dealer of the setup all communication sent to any party.

• Authenticated. A1 (and A0) are computationally bounded, and there is a trusted PKI setup. In
this case, we assume in our security proofs that the cryptographic primitives used in the protocol
provide perfect security, which, by a standard hybrid argument, does not affect the generality of our
result and serves to simplify the exposition.

– A2(Π)→ {0, 1}. The adversary, at round r = 0 can view the protocol description Π and choose a bit b
that indicates the setting of the current execution of the protocol. This choice is not revealed to honest
parties. The following holds.

• If b = 1, then A chose the sabotaged setting. Furthermore, |Fr| ≤ ti for all rounds r.
• If b = 0, then A chose the authenticated setting. Furthermore |Fr| ≤ ts for all rounds r.

We say that the adversary A is t-bounded if |Fr| ≤ t holds for all rounds r
Definitions and properties that we introduce hereafter are only required to hold with probability 1−negl(λ).

7

2.1 Distributed Primitives

When relevant, our primitives take input from a value set V with |V | ≥ 2; we assume that default value
⊥ ̸∈ V . Note that ⊥ is considered as a valid output in each protocol.

Definition 1 (Byzantine Agreement). Let Π be a protocol executed by parties p1, . . . , pn, where each
party pi begins by calling propose with input vi ∈ V . The BA problem pertains to the following properties.

– Validity: Π is sabotaged (authenticated) t-valid if the following holds in the sabotaged (authenticated)
setting when at most t parties are corrupted: If every honest party’s input is equal to the same value v,
then every honest party outputs v.

– Consistency: Π is sabotaged (authenticated) t-consistent if the following holds in the sabotaged (authen-
ticated) setting when at most t parties are corrupted: Every honest party that outputs a value outputs the
same value v.

– Termination: Π is sabotaged (authenticated) t-terminating if the following holds in the sabotaged (au-
thenticated) setting when at most t parties are corrupted: Every honest party produces an output and
terminates.

If Π is sabotaged (authenticated) t-valid, t-consistent, and t-terminating, we say it is sabotaged (authenti-
cated) t-secure.

Definition 2 (Graded Consensus). In the graded consensus (GC) problem, each honest party invokes
propose with input vi ∈ V and outputs a tuple (yi, gi) ∈ V × {0, 1}. Let Π be a protocol executed by parties
p1, ..., pn. The relevant properties attributable to Π are as follows.

– Validity: We say that Π is sabotaged (authenticated) t-valid if the following holds in the sabotaged
(authenticated) setting when at most t parties are corrupted: If every honest party’s input is equal to the
same value v, then every honest party outputs (v, 1).

– Consistency: We say that Π is sabotaged (authenticated) t-consistent if the following holds in the
sabotaged (authenticated) setting when at most t parties are corrupted: If an honest party outputs (v, 1)
for some value v, then all honest parties output either (v, 1) or (v, 0).

– Termination: We say that Π is sabotaged (authenticated) t-terminating if the following holds in the
sabotaged (authenticated) setting when at most t parties are corrupted: There exists a round r such that
all honest parties produce an output and terminate by round r.

If a protocol Π for GC is sabotaged (authenticated) t-valid, t-consistent, and t-terminating, we say that Π
is sabotaged (authenticated) t-secure.

Definition 3 (Synchronizer). In the Synchronizer problem, we expose the following interface, that any
party can engage with in a round of their choice.

– start synchronization(v ∈ V): a party starts synchronization with a value v ∈ V .
– output synchronization completed(v′ ∈ V): a party completes synchronization with a value v′ ∈ V .

We make the assumption that each honest party starts synchronization at most once. Importantly, we do
not assume that all honest parties start synchronization, i.e., it could be the case that no honest party starts
synchronization.

We consider the following properties w.r.t. to a protocol Π in the context of the Synchronization primitive.

– Justification: We say that Π has sabotaged (authenticated) t-justification if the following holds in the
sabotaged (authenticated) setting when at most t parties are corrupted: If the an honest party p completes
synchronization with a value v′ at round r, then there exists an honest party q that started synchronization
with value v′ at a round r′ < r.

– Totality: We say that Π has sabotaged (authenticated) t-totality if the following holds in the sabotaged
(authenticated) setting when at most t parties are corrupted: Let ρ be the first round in which an honest
party completes synchronization for some value v. Then, every honest party pi completes synchronization
at some round ρi ≤ ρ+ 1.

8

– Liveness: We say that Π has sabotaged (authenticated) t-liveness if the following holds in the sabotaged
(authenticated) setting when at most t parties are corrupted: Suppose there exists a value v ∈ V and a
round ρ such that all honest parties start synchronization with value v by round ρ. Then, every honest
party pi completes synchronization with value v at some round ρi ≤ ρ+ 1.

Generic Compiler. As mentioned in the introduction, we make use of black-box access to given protocols
solving BA. One in the PKI setting with authenticated ts-security, and one in the information theoretic
setting with ti-security. We further make the assumption that along with Π, we are also given a parameter
TΠ indication the amount of rounds one must run the protocol to ensure that all honest nodes have produced
an output except for with negligible probability We here formalize the notion of black-box access to a protocol
in the context of our work.

Definition 4. For a given tuple (Π,TΠ), where Π is a sabotaged (authenticated) t-secure BA protocol and
TΠ is a parameter, black-box access implies the following guarantees for any adversary A.

– If A chose the sabotaged (authenticated) setting and furthermore there exists a round r′ s.t. all honest
parties initiate Π.propose(v ∈ V) at round r′, then except for with negl(λ) probability, by round r′ + TΠ ,
all honest parties have produced an output from Π, furthermore, these outputs satisfy the BA conditions
so long as |Fr| ≤ t for all rounds r.

For a given protocol Π and an adversary A, we denote its expected communication (in bits) complexity
under A by CCA(Π). Note that this is well defined since in all protocols discussed in this work, there is a
predetermined upper bound on the number of rounds for which each party is active before halting. We assume
that values in V are of size O(λ) when CC is calculated; this is without loss of generality (see Section 6).

3 Juggernaut

This section presents Juggernaut, our main protocol. We start by introducing Juggernaut’s building blocks
(Section 3.1). Then, we show how these building blocks are composed into Juggernaut (Section 3.2). Finally,
we prove Juggernaut’s security and complexity, captured in the following theorem.

Theorem 1. Let ts, ti such 2ti + ts < n, ti ≤ ts < n
2 . Assuming black-box access to (BAAuth, TAuth) and

(BASab, TSab), where BAAuth is an authenticated ts-secure protocol for BA, and BASab is a sabotaged ti-secure
protocol. Then, there exists a protocol Juggernaut which is authenticated ts-secure and sabotaged ti-secure.
Furthermore, for any adversary A the following holds:

1. If BAAuth and BASab are secure against an adaptive adversary, then so is Juggernaut.

2. If A chose the sabotaged setting, and the adversary is ti-bounded, the expected communication (in bits)
complexity of Juggernaut is O(CCA(BAAuth) + CCA(BASab) + λn2).

3. If A chose the authenticated setting, and the adversary is ts-bounded, then the expected communication
(in bits) complexity of Juggernaut is O(CCA(BAAuth) + λn2).

4. If A chose the authenticated setting, and the adversary is ts-bounded, then if r is the the first round
such that all parties honest at round r have produced an output from BAAuth and terminated BAAuth, then
all forever honest parties produce and output from Juggernaut and terminate Juggernaut after r + O(1)
rounds.

3.1 Building Blocks: Overview

In this subsection, we summarise the building blocks we use to build Juggernaut on top of Byzantine agree-
ment.

9

Authenticated Graded Consensus with Sabotaged Validity. The authenticated graded consensus
with fallback validity primitive exposes the following interface:

– Input propose(v ∈ V): A party proposes a value v ∈ V .
– Output: (v′ ∈ V, g′ ∈ {0, 1}): A party outputs a value v′ with a binary grade g′. Usually indicated by a

left arrow ←.

We assume that all honest parties propose exactly once and they all do that simultaneously (i.e., in the same
round). In this setting, we design a protocol GC∗

Auth, that satisfies the following properties w.r.t. the graded
consensus primitive (See Definition 2) for any ts + 2ti < n, ti ≤ ts < n

2 : Authenticated ts-secure, sabotaged
ti-valid, and sabotaged ti-terminating.

Complexity. Juggernaut utilizes an implementation of the primitive that exchanges O(λn2) bits and termi-
nates in T1 = O(1) rounds. We relegate our implementation of the primitive to Section 5.1.

Sabotaged Graded Consensus with Authenticated Validity. The sabotaged graded consensus with
authenticated validity primitive exposes the following interface:

– Input propose(v ∈ V): A party proposes a value v ∈ V .
– Output (v′ ∈ V, g′ ∈ {0, 1}): A party outputs a value v′ with a binary grade g′. Usually indicated with

a left arrow ←.

All honest parties propose exactly once and they do so within one round of each other. Therefore, we do
not assume that all honest parties propose in the same round. For this setting, we design a protocol GC∗

Sab

with the following properties w.r.t. to the GC primitive (See Definition 2) for any ts + 2ti < n, ti ≤ ts < n
2 :

Sabotaged ti-secure and authenticated ts-valid and ts-terminating.

Complexity. In Juggernaut, we employ an implementation of the primitive that exchanges O(λn2) bits and
terminates in T2 = O(1) rounds. The implementation can be found in Section 5.2.

Synchronizer. The primitive exposes the following interface:

– input start synchronization(v ∈ V): A party starts synchronization with a value v ∈ V .
– output synchronization completed(v′ ∈ V): A party completes synchronization with a value v′ ∈ V .

We design a protocol Sync, that has the following properties in the context of the Synchronizer primitive
(See Definition 3) for any ts + 2ti < n, ti ≤ ts <

n
2 .

– Sabotaged ti-totality.
– Authenticated ts-justification, ts-totality, ts-liveness.

Complexity. We implement the synchronizer primitive with O(λn2) exchanged bits. See Section 4 for more
details.

3.2 Juggernaut’s Implementation & Proof

Juggernaut’s implementation is provided in Figure 1, whereas its visual dedication can be found in Figure 2.
For clarity, we proceed with a written exposition on the stages of the protocol. On a high level, as seen in
Figure 2, the protocol divided into five steps.

First, all parties propose their input into GC∗
Auth – recall that this is authenticated ts-secure and sabotaged

ti-valid. The output of GC
∗
Auth is then fed as input into BAAuth. Note that here is where the synchronizer Sync

comes into play, since in the the sabotaged case, or an early stopping/randomized protocol BAAuth in the
authenticated setting, the adversary can cause significant gaps between the rounds in which honest parties

10

produce an output and move on from BAAuth. Sync maintains that honest parties exit BAAuth at most 1 round
apart from one another. The input to GC∗

Sab is then decided depending on whether g1 = 1, as depicted in
the figure.

To maintain early stopping in the authenticated case, each party that has g2 = 1 participates in an
early stopping phase in order to detect pre-existing agreement in GC∗

Sab. During that phase, parties with
g2 = 1 multicast decide(v4) messages for their output from GC∗

Sab. If a quorum of n− ts decide(v) messages
is received for some value, then a party decides v and halts. Otherwise, after sufficient time has passed, all
honest parties that haven’t halted start executing the sabotaged BA protocol BASab in the same round. At
its conclusion, parties produce an output based on conditions C2 and C3, as seen in Figure 1.

Juggernaut
(Pseudocode for a party pi)

Constants: Tmax = T1 + TAuth + T2 + 1.
Initialization: vi = pi’s proposal, output1 = output2 = false.

1. Let (v1, g1)← GC∗
Auth.propose(vi). // This step takes exactly T1 rounds.

2. Let v2 ← BAAuth.propose(v1). If BAAuth does not terminate after TAuth rounds, let v2 ← ⊥. // This step takes
at most TAuth rounds. However, if A is computationally bounded, it might take fewer than TAuth rounds.

3. Invoke Sync.start synchronization(v2).
4. Upon (1) Sync.synchronization completed(v′) is triggered, or (2) TAuth rounds elapsed, party pi starts step 4.

If g1 = 1, let v3 ← v1. Else if Sync.synchronization completed(v′) is triggered, let v3 ← v′. Else, let v3 ← v1.
5. Let (v4, g4)← GC∗

Sab.propose(v3). // This step takes exactly T2 rounds.
6. Set output1 = true.
7. If g4 = 1, multicast (decide, v4).
8. At round Tmax, let output1 = false and let vSab ← BASab.propose(v4). If BASab does not terminate after TSab

rounds, let vSab ← ⊥.
9. Set output2 = true.

Decision:

C1. If output1 = true and received (decide, v4) from n− ts distinct parties: decide v4 and halt.
C2. If output2 = true and received for some v (decide, v) from n− ts − ti distinct parties: decide v and halt.
C3. If output2 = true: decide vSab and halt.

Fig. 1: BA with crypto-agnostic security for 2ti + ts < n given 1) an authenticated ts-secure BA protocol BAAuth; 2)
a sabotaged ti-secure BA protocol BASab; 3) an authenticated ts-secure and sabotaged ti-valid graded consensus

protocol GC∗
Auth; and 4) a sabotaged ti-secure and authenticated ts-valid graded consensus protocol GC∗

Sab.

Proof (of Theorem 1).

Juggernaut’s security in the sabotaged setting. We start by proving that Juggernaut is ti-valid in the sabotaged
setting.

Lemma 1 (ti-validity). Juggernaut (Figure 1) is ti-valid in the sabotaged setting.

Proof. Suppose all honest parties propose the same value v. Due to the validity property of GC∗
Auth in the

sabotaged setting, all honest parties decide (v, 1) from GC∗
Auth. Hence, all honest parties propose v to GC∗

Sab.
The fact that GC∗

Sab satisfies validity in the sabotaged setting proves that all honest parties decide (v, 1)
from GC∗

Sab. Thus, all honest parties multicast a (decide, v) message. Hence, all honest parties receive n− ti
such messages. (Note that no honest party receives n − ts decide message for any value v′ ̸= v since that
would imply that an honest party sends a decide(v′) message, which cannot occur.) As n− ti ≥ n− ts (since
ti ≤ ts), all honest parties decide v according to decision condition C1. ⊓⊔

11

Fig. 2: Overview of the structure of the main protocol for each party. Beginning with input insertion at the top left
with vi, and ending with output production at the bottom left. The values next to arrows indicate the outputs and

inputs produced and delivered into procedures.

Next, we prove that Juggernaut is ti-consistent in the sabotaged setting.

Lemma 2 (ti-consistency). Juggernaut (Figure 1) is ti-consistent in the sabotaged setting.

Proof. Suppose that at least one honest party outputs due to C1, i.e., receives (decide, v4) from n − ts
distinct parties. Since n − ts − ti > ti, at least one honest party must have output (v4, 1) from GC∗

Sab, and
thus by ti-consistency of GC∗

Sab, all honest parties output the same value v4, and in particular no honest
party multicasts (decide, v′4) for v

′
4 ̸= v4. In addition, at least n− ts − ti honest parties must have multicast

(decide, v4). Thus all honest parties will receive (decide, v4) from at least n− ts − ti distinct parties, and not
for any other value v′4 ̸= v4 since n − ts − ti > ti. Therefore all honest parties will output v4 either due to
C1 or C2.

Suppose that no honest party outputs due to C1 and at least one outputs due to C2, i.e., due to receiving
(decide, v) for some v from n − ts − ti distinct parties. Then at least one honest party must have multicast
(decide, v), since n− ts− ti > ti. By the ti-consistency of GC∗

Sab, all honest parties will propose the same v to
BASab. By the ti-validity of BASab, all honest parties will output the same vSab = v. Thus all honest parties
will output either due to C2 or C3 with the same value v.

Finally, supposing no honest party outputs due to C1 or C2, all honest parties output the same value v
from BASab due to the ti-consistency of BASab and then decide it due to C3. ⊓⊔

Finally, we prove that Juggernaut is ti-terminating in the sabotaged setting.

Lemma 3 (ti-termination). Juggernaut (Figure 1) is ti-terminating in the sabotaged setting.

Proof. Juggernaut trivially terminates as all honest parties decide in round Tmax + TSab (at the latest). ⊓⊔

Juggernaut’s security in the authenticated setting. First, we prove that Juggernaut is ts-valid in the authen-
ticated setting.

Lemma 4 (ts-validity). Juggernaut (Figure 1) is ts-valid in the authenticated setting. Furthermore, all
honest parties output according to C1.

12

Proof. Let all honest parties propose the same value v. By the ts-security of GC∗
Auth, all honest parties output

(v, 1). Then as above, since all honest parties output g1 = 1, all honest parties set v3 = v. By the ts-validity
with termination of GC∗

Sab, all parties output (v, 1). Validity and all parties outputting according to C1 then
follows as in the proof of Lemma 1 ⊓⊔

Next, we prove that Juggernaut is ts-consistent in the authenticated setting.

Lemma 5 (ts-consistency). Juggernaut (Figure 1) is ts-consistent in the authenticated setting. Further-
more, all honest parties output according to C1.

Proof. We first argue that all honest parties input the same value v3 to GC∗
Sab.

– Suppose first that at least one honest party outputs g1 = 1 from GC∗
Auth. Then by the ts-consistency of

GC∗
Auth, all honest parties will output the same v1. By the ts-validity of BAAuth, all honest parties output

v2 = v1 from BAAuth, and thus no honest party can advance from Sync with any value v′ ̸= v1. Thus
v3 = v1 is the same for all honest parties.

– Otherwise, no party outputs g1 = 1 from GC∗
Auth. By ts-consistency of BAAuth, all honest parties output

the same v2 (and thus no honest party can advance from Sync with any value v′ ̸= v2), and by construction
all set v3 = v2 (i.e., do not override v3 with v1).

Then, by the ts-validity of GC∗
Sab, all honest parties output (v4, 1) from GC∗

Sab, multicast (decide, v4), and by
the same reasoning as for the proof of Lemma 4, all honest parties will output due to C1 (and in particular
never execute BASab). ⊓⊔

Lastly, we observe that Juggernaut is ts-terminating in the authenticated setting as all parties terminate
without running BASab.

Complexity. We now attend to the complexity analysis of Juggernaut. Lemma 4 and Lemma 5 implies that
in the authenticated setting, all honest parties produce an output and halt after GC∗

Sab, without running
BASab. Since T2 = O(1), and by the Totality and Liveness properties of Sync, we get that if r is first
the round by which all honest parties produced an output from BAAuth, then all forever honest parties
produce an output and halt after at most r +O(1) rounds, as required. Furthermore, since no honest party
executes BASab, the expected communication (in bits) complexity of Juggernaut is O(CCA(BAAuth)+λn2), as
required. In the sabotaged setting, notice that all communication aside from BAAuth and BASab is bounded by
O(λn2) bits. Thus in the sabotaged setting, the expected communication (in bits) complexity of Juggernaut
is O(CCA(BAAuth) + CCA(BASab) + λn2), as required.
Lastly, notice that aside from (potentially) BAAuth and BASab, the protocol Juggernaut is deterministic, and
thus if BAAuth,BASab are secure against an adaptive adversary, then so is Juggernaut. This concludes the
proof of Theorem 1. ⊓⊔

3.3 Corollaries

Now that we have proven Theorem 1, we can instantiate BAAuth and BASab with concrete protocols in order to
obtain concrete crypto-agnostic protocols. Before we state those corollaries, one point needs to be addressed.

Bit complexity in the sabotaged setting. In order to maximize the generality of our results, the only assumption
we made about BAAuth,BASab, as explained in Definition 4, is that we are provided with round complexity
bounds for these protocols. In particular, we are given no such guarantee for bit complexity. As such, in the
sabotaged setting, when the parties run BAAuth, which is an authenticated ts-secure BA protocol, we have
no a-priori upper bound for the amount of bits sent by honest parties during the execution, hence why we
define the bit complexity of a protocol w.r.t. a particular adversary. When considering concrete protocols,
however, each party can infer a bound from the description of the protocol on the number of messages it has
to send, and if is exceeded, an honest party can simply halt BAAuth and move onto Sync with input ⊥. The
corollaries we state assume that such a modification was made to the final protocol.

13

Juggernautdet. For a deterministic protocol, we instantiate BAAuth with the protocol of [MR21b] modified
using the techniques of [LS22] to achieve O(f) round complexity, and BASab with the protocol of [BGP92],
to obtain the following.

Corollary 1. Let ts, ti s.t. ts + 2ti < n, ti ≤ ts < n
2 . There exists a deterministic authenticated ts-secure,

sabotaged ti-secure protocol Juggernautdet solving the BA problem with the following properties.

– In the authenticated setting, Juggernautdet has O(λn2) bit complexity and O(f) round complexity, where
f ≤ ts is number of actual corruptions.

– In the sabotaged setting, Juggernautdet has O(λn2) bit complexity and O(n) round complexity.

Juggernautran. For a randomized protocol, we instantiate BAAuth with the protocol of [ADD+19], setting
TAuth = O(λ), and BASab with the protocol of [LS22] (run bit-by-bit in parallel), to obtain the following.

Corollary 2. Let ts, ti s.t. ts + 2ti < n, ti ≤ ts < n
2 . There exists a randomized authenticated ts-secure,

sabotaged ti-secure protocol Juggernautran solving the BA problem with the following properties.

– In the authenticated setting, Juggernautran has O(λn2) expected bit complexity and O(1) expected round
complexity.

– In the sabotaged setting, Juggernautran has O(λ2n2) bit complexity and O(λ+ f) round complexity, where
f ≤ ti is the number of actual corruptions.

4 Building a Synchronizer

In this section we construct Sync, that fills the role of the synchronizer as discussed in Section 3. Formally,
we prove the following.

Theorem 2. There exists a deterministic protocol Sync that satisfies the following in the context of the
Synchronizer primitive (See Definition 3), for any ts + 2ti < n, ti ≤ ts <

n
2 .

– Sabotaged ti-totality.
– Authenticated ts-totality, ts-justification, and ts-liveness.

Furthermore, Sync has communication (in bits) complexity of O(λn2).

The implementation of Sync can be found in Figure 3. On calling start synchronization, parties multicast
finish(vi). On receiving n− ts finish(v) for some v, parties form a certificate. Then, at this point or on receipt
of such a certificate, the caller multicasts it and calls synchronization completed(v).

Synchronizer Sync
(Pseudocode for a party pi)

– When start synchronization(vi ∈ V) is invoked, multicast finish(vi).
– If ∃v ∈ V such that at least n− ts finish(v) messages are received, perform the following steps: (1) use TS

to create a certificate C(v), (2) multicast C(v), and (3) trigger synchronization completed(v).
– If ∃v ∈ V such that a certificate C(v) is received, perform the following steps: (1) multicast C(v), and (2)

trigger synchronization completed(v).

Fig. 3: Synchronizer Sync with authenticated ts-justification, totality and liveness, and sabotaged ti-totality.

Proof (of Theorem 2).

14

Sync’s correctness in the authenticated setting. First, prove the justification property.

Lemma 6 (ts-justification). Sync (Figure 3) satisfies ts-justification in the authenticated setting.

Proof. If an honest party completes synchronization with a value v′, there is at least one honest party that
multicasts a finish(v′) message (as n− ts > ts given ts < n/2). Hence, the lemma holds. ⊓⊔

Next, we prove the totality property.

Lemma 7 (ts-totality). Sync (Figure 3) satisfies ts-totality in the authenticated setting.

Proof. The lemma trivially holds as each honest party disseminates a certificate once it completes synchro-
nization. ⊓⊔

Finally, we prove the liveness property.

Lemma 8 (ts-liveness). Sync (Figure 3) satisfies ts-liveness in the authenticated setting.

Proof. By the beginning of the round ρ+ 1, each honest party receives n− ts finish(v) messages. Therefore,
each honest party completes synchronization with value v by round ρ+ 1. ⊓⊔

Sync’s correctness in the sabotaged setting. We prove the totality property.

Lemma 9 (ti-totality). Sync (Figure 3) satisfies ti-totality in the sabotaged setting.

Proof. The lemma trivially holds as each honest party disseminates a certificate once it completes synchro-
nization (as in the authenticated case). ⊓⊔

Complexity. Finally, we argue that honest parties exchange O(λn2) bits in Sync. Observe that each honest
party multicasts a single finish message, thus sending O(n) bits (assuming that the values are of constant
size). Moreover, each honest party multicasts one certificate of size O(λ) bits, thus sending O(λn) bits. Hence,
honest parties send n ·O(n+ λn) = O(λn2) bits. ⊓⊔

5 Building Graded Consensus

In this section, we construct our two GC protocols that we use in Juggernaut – First, our authenticated
protocol with sabotaged validity and termination, and then, our sabotaged protocol with authenticated
validity and termination.

5.1 Authenticated Graded Consensus with Sabotaged Validity

We first construct graded consensus for the authenticated setting, augmented with validity for the sabotaged
setting. We denote the protocol by GC∗

Auth. Formally, we prove the following.

Theorem 3. Let ts, ti such that ts + 2ti < n, ti ≤ ts < n
2 . There exists a T1 = O(1) round deterministic

protocol GC∗
Auth that satisfies the following properties in the context of the GC primitive (see Definition 2) in

a ∆-synchronous network when all parties commence the protocol in the same round.

– Authenticated ts-secure.
– Sabotaged ti-valid.
– Sabotaged ti-terminating.

Furthermore, given ΠMR has at most O(λn2) bit complexity and constant round complexity, so too does
GC∗

Auth.

15

Our protocol GC∗
Auth, described in Figure 4, assumes an authenticated graded consensus protocol (see Def-

inition 2), like the constant-round, authenticated ts-secure, and sabotaged ti-terminating GC of Momose-
Ren [MR21a]. In GC∗

Auth, parties run three rounds of filtering to additionally ensure sabotaged ti-validity
before executing ΠMR. First, each party multicasts its input (recall all values are signed by assumption).
Then, if n− ti signatures from different parties on some v are received, a certificate on v is formed, the out-
put of the protocol is locked to (v, 1), pi’s input to ΠMRis overwritten with v, and the certificate is multicast.
In the third round, parties overwrite their input if they receive non-conflicting certificates for a single value
v. Finally, parties run ΠMR, and output the result of that if they did not lock their output.

GC∗
Auth(vi)

(Pseudocode for a party pi)
Initialization: yi = vi, gi = 0

– Round 1: Multicast init(v).
– Round 2: If there exists v ∈ V such that at least n − ti init(v) messages are received, then perform the

following steps: (1) use threshold signatures to create an (n − ti)-certificate C(v) for init(v), (2) multicast
C(v), and (3) lock yi = v, gi = 1.

– Round 3: If (1) there exists v ∈ V such that C(v) is received, and (2) there does not exist v′ ̸= v such that
C(v′) is received, then yi ← v.

– Round 4+: Run (yi, gi)← ΠMR(yi).
– Decision: Output (yi, gi).

Fig. 4: Authenticated ts-secure and sabotaged ti-valid graded consensus protocol GC∗
Auth given an authenticated

ts-scure graded consensus ΠMR.

Proof (of Theorem 3). Termination clearly holds in both settings by the behaviour of the protocol. We now
move on to the other properties.

Validity in the sabotaged setting. First, we prove that GC∗
Auth satisfies validity in the sabotaged setting.

Lemma 10. If any honest party receives n− ti init(v) messages, then v is the proposal of an honest party.

Proof. As n > ts + 2ti, we have that n− ti > ti. Therefore, the lemma holds. ⊓⊔

Lemma 11 (ti-validity). GC
∗
Auth satisfies sabotaged ti-validity.

Proof. Suppose all honest parties propose the same value v ∈ V . As there are at least n− ti honest parties
and they all propose value v, every honest party eventually receives n− ti values for v (and, by Lemma 10,
only v). Therefore, every honest party decides (v, 1), thus concluding the proof. ⊓⊔

Validity in the authenticated setting. We now prove that GC∗
Auth satisfies validity in the authenticated setting.

Throughout the rest of the proof of the validity property, we suppose that all honest parties propose the
same value v.

Lemma 12. If any (n− ti)-certificate C(v′) is formed, then v′ = v.

Proof. As C(v′) is formed and n− ti > ts (given that n > ts + 2ti), there exists an honest party that sends
an init(v′) message for its proposal v′. Given that all honest parties propose v, v′ = v. ⊓⊔

Lemma 13. If any honest party locks some value v′ in round 2, then v′ = v.

16

Proof. Let pi denote any honest party that locks some value v′ in round 2. Therefore, pi receives an init(v′)
message for v′ from an honest party as n− ti > ts (as n > ts + 2ti). As all honest parties propose v, v′ = v
and the lemma holds. ⊓⊔

Lemma 14 (ts-validity). GC
∗
Auth satisfies authenticated ts-validity.

Proof. Consider any honest party pi that decides; let pi decide (v′, g′). We distinguish two cases:
– Let party pi lock in round 2. In this case, v′ = v (due to Lemma 13) and g′ = 1. Therefore, the statement

of the theorem holds in this case.
– Let party pi decide in round (i.e., step) 4. Here, every honest party that proposes to ΠMR does so with

value v. Indeed, if any honest party pj updates its yj variable in round 3, Lemma 12 proves that yj holds
value v. Hence, the validity property of ΠMR ensures that v′ = v and g′ = 1.

Having considered both cases, the proof is concluded. ⊓⊔

Consistency in the authenticated setting.

Lemma 15. No two (n− ti)-certificates C(v) and C(v′ ̸= v) can be formed.

Proof. By contradiction, suppose two certificates C(v) and C(v′ ̸= v) are formed. Therefore, there are n −
ti + n− ti − n = n− 2ti parties that participated in forming both certificates. As n > ts + 2ti, n− 2ti > ts,
which further implies that there is at least one honest party that participated in forming both certificates.
As this is impossible, we reach a contradiction. ⊓⊔

Lemma 16. If any honest party locks (v, 1) in round 2, then all honest parties decide (v, 1).

Proof. First, all honest parties that lock in round 2 lock (v, 1) (due to Lemma 15). Moreover, every other
honest party pi sets its yi variable to v in round 3 (due to Lemma 15 and by protocol construction). Therefore,
the validity property of ΠMR ensures that all honest parties that decide in round 4 decide (v, 1). ⊓⊔

Lemma 17 (ts-consistency). GC
∗
Auth satisfies authenticated ts-consistency.

Proof. To prove the lemma, we consider two possible scenarios:

– There exist an honest party that locks (v, 1) in round 2. In this case, all honest parties decide (v, 1) (by
Lemma 16).

– No honest party decides in round 2. In this case, the consistency property follows directly from the
consistency property of ΠMR.

As the statement of the lemma holds in both cases, the proof is concluded. ⊓⊔

Complexity. The protocol ΠMR (using [MR21a]) has bit complexity of O(λn2) for inputs of size O(λ), and
our addition to the protocol incurs an additive factor of O(λn2) of bits communicated. Thus in total GC∗

Auth

has a bit complexity of O(λn2). This concludes the proof of Theorem 3. ⊓⊔

5.2 Sabotaged Graded Consensus with Authenticated Validity

We now move on to our second graded consensus protocol, the dual version of GC∗
Auth for the sabotaged case.

Specifically, we aim to design a protocol, GC∗
Sab, that functions as a standard GC in the sabotaged case, but

maintains validity in the authenticated case. Formally, we prove the following.

Theorem 4. Let ts, ti such that 2ti + ts < n, ti ≤ ts < n
2 . There exists an T2 = O(1) round deterministic

protocol GC∗
Sab that satisfies the following in the context of the graded consensus primitive (See Definition 2)

in a ∆-synchronous network if the round distance between protocol initiation times of any two honest parties
is at most 1.

– Authenticated ts-validity.

17

– Authenticated ts-termination.
– Sabotaged ti-security.

Furthermore, given ΠAW has at most O(λn2) bit complexity and constant round complexity, so too does GC∗
Sab.

Our protocol GC∗
Sab (Figure 5) assumes a sabotaged ti-secure graded consensus protocol, like the constant-

round round protocol ΠAW of Attiya and Welch [AW23] that is sabotaged ti-secure, and authenticated
ts-terminating for any ti ≤ ts < n

2 , ts + 2ti < n, even in asynchrony. As in GC∗
Auth, parties first echo their

signed value. As our goal is authenticated ts-validity, parties form a n− ts certificate on echo(v) if possible.
In the third round, we now require that if parties have both received certificates only for one value v, and
additionally received n − ts echos of v, that they vote for v by multicasting vote(v). In the fourth round,
parties overwrite their input to ΠAW if they receive at least n − ts − ti vote(v) messages for unique v, lock
their output to (v, 1) if they receive n− ts vote(v) messages, and then execute ΠAW, outputting the result if
there is no locked value.

GC∗
Sab(vi)

(Pseudocode for a party pi)
Initialization: yi = vi, gi = 0

– Round 1 (Echo): Multicast echo(vi).
– Round 2 (Forward): If ∃v ∈ V s.t. received at least n − ts echo(v) messages, use TS to create certificate
C(v) and multicast it.

– Round 3 (Vote): If p made a certificate C(v) at Round 2 for value v ∈ V , didn’t receive a certificate C(v′)
for any other value v′ ∈ V , and received n− ts echo(v), multicast vote(v).

– Round 4+: If ∃v ∈ V s.t. received at least n − ts vote(v) messages, set vi = v and lock yi = v, gi = 1.
Otherwise if received at least n− ts − ti vote(v) for a unique value, set vi = v. Run (yi, gi)← ΠAW(vi).

– Decision: Output (yi, gi).

Fig. 5: Sabotaged ti-secure and authenticated ts-valid GC∗
Sab given a sabotaged ts-secure graded consensus ΠAW.

Proof (of Theorem 4). Termination clearly holds in both settings by the behaviour of the protocol. We now
move on to the other properties.

Let an honest party pi start executing GC∗
Sab in some global round ρi. Then, party pi executes Round

x ∈ {1, 2, 3, 4} of GC∗
Sab in global rounds ρi + 2(x− 1) and ρi + 2(x− 1) + 1.

Authenticated ts-validity. We first prove that GC∗
Sab satisfies authenticated ts-validity.

Lemma 18 (ts-consistency). The protocol GC∗
Sab satisfies authenticated ts-validity.

Proof. Suppose all honest parties propose the same value v. As all honest parties overlap in each round
of GC∗

Sab for (at least) δ time, all honest parties receive n − ts echo(v) messages at the start of Round 2.
Moreover, no certificate C(v′ ̸= v) can exist as that would imply that there exists a correct party whose
proposal is v′ ̸= v. Hence, every honest party multicast vote(v) in Round 3, which then implies that every
honest party outputs (v, 1). Thus, the validity property is ensured in the signature world. ⊓⊔

Sabotaged ti-validity. Then, we prove that GC∗
Sab satisfies validity in the sabotaged setting. We start by

proving that if all honest parties propose the same value v and an honest party creates a certificate C(v′) in
Round 2, then v = v′.

Lemma 19. Suppose all honest parties propose the same value v. If an honest party creates a certificate
C(v′) in Round 2, then v = v′.

18

Proof. If an honest party pi creates a certificate C(v′) in Round 2, party pi has received an echo(v′) message
from an honest party as n− ts > ti (given that n > ts + 2ti). Therefore, v

′ = v. ⊓⊔

Next, we prove that if all honest parties propose the same value v and an honest party multicast a vote(v′)
message in Round 3, then v′ = v.

Lemma 20. Suppose all honest parties propose the same value v. If an honest party multicasts a vote(v′)
message in Round 3, then v′ = v.

Proof. If an honest party pi multicasts a vote(v′) message in Round 3, party pi has previously constructed
a certificate C(v′) in Round 2. By Lemma 19, v′ = v, thus concluding the proof. ⊓⊔

Next, we prove that if all honest parties propose v to GC∗
Sab, then all honest parties propose v to ΠAW in

Round 4.

Lemma 21. Suppose all honest parties propose the same value v. Then, all honest parties propose v to ΠAW

in Round 4.

Proof. As v is proposed by every honest party, every honest party pi has vi = v. We show that if party pi
updates its vi local variable, then it updates it to value v. Consider all possible places when party pi could
update its local variable vi:

– Round 4 upon receiving n − ts vote(v′) messages: As n − ts > ti (given n > ts + 2ti), party pi receives
a vote(v′) message from an honest party. Therefore, Lemma 20 proves that v′ = v. Thus, the statement
holds in this case.

– Round 4 upon receiving n − ts − ti for a unique value v′: As n − ts − ti > ti (given n > ts + 2ti),
party pi receives a vote(v′) message from an honest party. Hence, v′ = v by Lemma 20, which proves the
statement even in this case.

As vi remains v at party pi, the proof is concluded. ⊓⊔

Finally, we prove that GC∗
Sab satisfies validity in the sabotaged setting.

Lemma 22 (ti-validity). The protocol GC∗
Sab satisfies validity in the sabotaged setting, i.e. GC∗

Sab satisfies
sabotaged ti-validity.

Proof. Suppose all honest parties propose the same value v. Consider any honest party pi. We distinguish
two possible cases:

– Let party pi decide a pair (v′, g′) in Round 4. In this case, pi receives n − ts vote(v′) messages. As
n− ts > ti (given n > ts+2ti), pi receives a vote(v′) message from an honest party. Therefore, Lemma 20
proves that v′ = v and g′ = 1. Thus, the validity property is satisfied in this case.

– Let party pi decide a value v
′ after running theΠAW algorithm. By Lemma 21, all honest parties propose v

to ΠAW. Due to the validity property of ΠAW, every honest party decides (v, 1) from ΠAW, thus concluding
the proof even in this case.

As the validity property is satisfied in both cases, the proof is concluded. ⊓⊔

Consistency in the sabotaged setting. Next, we prove that GC∗
Sab satisfies consistency in the sabotaged setting.

We first show that if one honest party sends a vote(v) message and another honest party sends a vote(v′)
message, then v = v′.

Lemma 23. If an honest party pi sends a vote(v) message and an honest party pj sends a vote(v′) message,
then v = v′.

19

Proof. By contradiction, let v ̸= v′. As pi (resp., pj) sends a vote(v) (resp., vote(v′)) message, pi (resp., pj)
creates a certificate C(v) (resp., C(v′)) in Round 2. Hence, party pi receives a certificate C(v′) in Round 3 and
party pj receives a certificate C(v) in Round 3. Therefore, we reach contradiction with the fact that parties
pi and pj send vote(·) messages. ⊓⊔

Finally, we are ready to prove the consistency property of GC∗
Sab.

Lemma 24 (ti-consistency). The protocol GC∗
Sab satisfies consistency in the sabotaged setting.

Proof. We distinguish two cases:
– Let there exist an honest party pi that locks (v, 1) in Round 4. Hence, honest party pi receives n − ts

vote(v) messages in Round 4. Now, consider any honest party pj . We further consider two scenarios:
• Let pj lock (v′, g′) in Round 4. In this case, g′ = 1. Moreover, as pj decides in Round 4, pj receives

n− ts − ti vote(v
′) messages. As n− ts − ti > ti, Lemma 23 guarantees that v′ = v.

• Let pj decide (v
′, g′) after deciding (v′, g′) from ΠAW. As pi receives n− ts vote(v) messages in Round

4, every honest party receives (at least) n − ts − ti vote(v) messages in Round 4. Importantly, as
n− ts− ti > ti, Lemma 23 guarantees that no honest party receives n− ts− ti vote(v

′), for any value
v′ ̸= v. Hence, every honest party pi sets its local variable vi to v and proposes vi to ΠAW. Finally,
the strong validity property of ΠAW ensures v′ = v.

– No honest party locks (v, 1) in Round 4. In this case, the consistency property follows directly from the
consistency property of ΠAW.

The lemma holds. ⊓⊔

Complexity. The protocol ΠAW (using [AW23]) has bit complexity of O(λn2) for inputs of size O(λ), and our
addition to the protocol incurs an additive factor of O(λn2) of communication bits. Thus in total GC∗

Sab has
bit complexity of O(λn2). This concludes the proof of Theorem 4. ⊓⊔

6 Conclusion

In this work, we have constructed efficient crypto-agnostic Byzantine agreement, and in particular a protocol
with O(λn2) bit complexity and constant round complexity in the authenticated setting. Natural open
problems are as follows:

– Our Juggernaut protocols use O(λn2) bits only when the input message is of size O(λ), and otherwise
O(Ln2) for L = Ω(λ). It is thus natural to consider efficient crypto-agnostic BA for long messages.
The main difficulty here is keeping complexity low while also providing security in the sabotaged or
information-theoretic setting where it is difficult enough to build efficient protocols [CDG+24b] let alone
in the crypto-agnostic setting.

– As Juggernaut optimises round complexity in the authenticated case, it may be of interest to instead
optimise for the sabotaged case (i.e., not running the authenticated protocol in ‘good’ executions).

– Finally, extending our results to the model where the public key infrastructure may be inconsistent or
arbitrarily broken as considered in [FHW04,FR09] may be of interest.

Acknowledgements

Daniel Collins was supported in part by AnalytiXIN and by Sunday Group, Inc.

References

AC24. Gilad Asharov and Anirudh Chandramouli. Perfect (parallel) broadcast in constant expected rounds via
statistical VSS. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part V, volume 14655
of LNCS, pages 310–339. Springer, Cham, May 2024.

20

ADD+19. Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous byzantine

agreement with expected O(1) rounds, expected o(n2) communication, and optimal resilience. In Fi-
nancial Cryptography, volume 11598 of Lecture Notes in Computer Science, pages 320–334. Springer,
2019.

ANS23. Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. Communication and round efficient parallel broadcast
protocols. Cryptology ePrint Archive, Paper 2023/1172, 2023.

AW23. Hagit Attiya and Jennifer L. Welch. Multi-valued connected consensus: A new perspective on crusader
agreement and adopt-commit. In Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and
Yukiko Yamauchi, editors, 27th International Conference on Principles of Distributed Systems, OPODIS
2023, December 6-8, 2023, Tokyo, Japan, volume 286 of LIPIcs, pages 6:1–6:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

BCLZL23. Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss. Network-agnostic security comes
(almost) for free in DKG and MPC. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023,
Part I, volume 14081 of LNCS, pages 71–106. Springer, Cham, August 2023.

BGP+89. Piotr Berman, Juan A Garay, Kenneth J Perry, et al. Towards optimal distributed consensus. In FOCS,
volume 89, pages 410–415, 1989.

BGP92. Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed consensus. In Computer
science: research and applications, pages 313–321. Springer, 1992.

BKL19. Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with optimal asynchronous fallback
guarantees. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS,
pages 131–150. Springer, Cham, December 2019.

BKL21. Erica Blum, Jonathan Katz, and Julian Loss. Tardigrade: An atomic broadcast protocol for arbitrary
network conditions. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part II, volume
13091 of LNCS, pages 547–572. Springer, Cham, December 2021.

BKLZL20. Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine agreement
with subquadratic communication. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I,
volume 12550 of LNCS, pages 353–380. Springer, Cham, November 2020.

BOEY03. Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant time. Distributed
Computing, 16(4):249–262, 2003.

BZL20. Erica Blum, Chen-Da Liu Zhang, and Julian Loss. Always have a backup plan: Fully secure synchronous
MPC with asynchronous fallback. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 707–731. Springer, Cham, August 2020.

CCGZ19. Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termination and compos-
ability of cryptographic protocols. Journal of Cryptology, 32(3):690–741, July 2019.

CDG+24a. Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel
Vidigueira. Dare to agree: Byzantine agreement with optimal resilience and adaptive communication. In
Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing, pages 145–156, 2024.

CDG+24b. Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Manuel
Vidigueira, and Igor Zablotchi. Error-free near-optimal validated agreement. arXiv preprint
arXiv:2403.08374, 2024.

CGG+22. Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan Komatovic, Zarko Milosevic, and
Adi Seredinschi. Crime and Punishment in Distributed Byzantine Decision Tasks. In 42nd IEEE Inter-
national Conference on Distributed Computing Systems, ICDCS 2022, Bologna, Italy, July 10-13, 2022,
pages 34–44. IEEE, 2022.

CGG+23. Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira. On the validity
of consensus. In Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing, pages
332–343, 2023.

Cha90. David Chaum. The spymasters double-agent problem: Multiparty computations secure unconditionally
from minorities and cryptographically from majorities. In Gilles Brassard, editor, CRYPTO’89, volume
435 of LNCS, pages 591–602. Springer, New York, August 1990.

Che21. Jinyuan Chen. Optimal error-free multi-valued byzantine agreement. In 35th International Symposium
on Distributed Computing (DISC 2021). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2021.

CKPS01. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient asynchronous
broadcast protocols. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 524–541. Springer,
Berlin, Heidelberg, August 2001.

CW92. Brian A Coan and Jennifer L Welch. Modular construction of a byzantine agreement protocol with
optimal message bit complexity. Information and Computation, 97(1):61–85, 1992.

21

DE24. Giovanni Deligios and Mose Mizrahi Erbes. Closing the efficiency gap between synchronous and network-
agnostic consensus. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part V, volume
14655 of LNCS, pages 432–461. Springer, Cham, May 2024.

DHLZ21. Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. Round-efficient byzantine agreement and multi-
party computation with asynchronous fallback. In Kobbi Nissim and Brent Waters, editors, TCC 2021,
Part I, volume 13042 of LNCS, pages 623–653. Springer, Cham, November 2021.

DLZ23. Giovanni Deligios and Chen-Da Liu-Zhang. Synchronous perfectly secure message transmission with
optimal asynchronous fallback guarantees. In Foteini Baldimtsi and Christian Cachin, editors, FC 2023,
Part I, volume 13950 of LNCS, pages 77–93. Springer, Cham, May 2023.

DR85. Danny Dolev and Rüdiger Reischuk. Bounds on Information Exchange for Byzantine Agreement. Journal
of the ACM (JACM), 32(1):191–204, 1985.

DRS90. Danny Dolev, Ruediger Reischuk, and H Raymond Strong. Early stopping in byzantine agreement.
Journal of the ACM (JACM), 37(4):720–741, 1990.

DS83. Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM Journal
on Computing, 12(4):656–666, 1983.

DW14. Christian Decker and Roger Wattenhofer. Bitcoin transaction malleability and MtGox. In Miroslaw
Kutylowski and Jaideep Vaidya, editors, ESORICS 2014, Part II, volume 8713 of LNCS, pages 313–326.
Springer, Cham, September 2014.

FHW04. Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. Multi-party computation with hybrid security.
In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 419–
438. Springer, Berlin, Heidelberg, May 2004.

FR09. Matthias Fitzi and Dominik Raub. Tight bounds for protocols with hybrid security. Cryptology ePrint
Archive, Paper 2009/434, 2009. https://eprint.iacr.org/2009/434.

GK20. Juan A. Garay and Aggelos Kiayias. SoK: A consensus taxonomy in the blockchain era. In Stanislaw
Jarecki, editor, CT-RSA 2020, volume 12006 of LNCS, pages 284–318. Springer, Cham, February 2020.

GKKY10. S Dov Gordon, Jonathan Katz, Ranjit Kumaresan, and Arkady Yerukhimovich. Authenticated broad-
cast with a partially compromised public-key infrastructure. In Stabilization, Safety, and Security of
Distributed Systems: 12th International Symposium, SSS 2010, New York, NY, USA, September 20-22,
2010. Proceedings 12, pages 144–158. Springer, 2010.

GKO+20. Juan A. Garay, Aggelos Kiayias, Rafail M. Ostrovsky, Giorgos Panagiotakos, and Vassilis Zikas. Resource-
restricted cryptography: Revisiting MPC bounds in the proof-of-work era. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 129–158. Springer, Cham, May
2020.

IOZ14. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with identifiable abort.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages
369–386. Springer, Berlin, Heidelberg, August 2014.

KK06. Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 445–462. Springer, Berlin, Heidel-
berg, August 2006.

LRM10. Christoph Lucas, Dominik Raub, and Ueli Maurer. Hybrid-secure mpc: Trading information-theoretic
robustness for computational privacy. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, pages 219–228, 2010.

LS22. Christoph Lenzen and Sahar Sheikholeslami. A recursive early-stopping phase king protocol. In Proceed-
ings of the 2022 ACM Symposium on Principles of Distributed Computing, pages 60–69, 2022.

LSP82. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem. ACM Transac-
tions on Programming Languages and Systems, 4(3):382–401, 1982.

LZLM+20. Chen-Da Liu-Zhang, Julian Loss, Ueli Maurer, Tal Moran, and Daniel Tschudi. MPC with syn-
chronous security and asynchronous responsiveness. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part III, volume 12493 of LNCS, pages 92–119. Springer, Cham, December 2020.

MMR15. Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous binary byzan-
tine consensus with t < n/3, o(n2) messages, and O(1) expected time. J. ACM, 62(4):31:1–31:21, 2015.

MR21a. Atsuki Momose and Ling Ren. Optimal Communication Complexity of Authenticated Byzantine Agree-
ment. In Seth Gilbert, editor, 35th International Symposium on Distributed Computing, DISC 2021,
October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume 209 of LIPIcs, pages 32:1–32:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

MR21b. Atsuki Momose and Ling Ren. Optimal Communication Complexity of Authenticated Byzantine Agree-
ment. In Seth Gilbert, editor, 35th International Symposium on Distributed Computing (DISC 2021),

22

https://eprint.iacr.org/2009/434

volume 209 of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1–32:16, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

PSL80. Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching Agreement in the Presence of
Faults. J. ACM, 27(2):228–234, 1980.

PT84. Kenneth J Perry and Sam Toueg. An authenticated byzantine generals algorithm with early stopping.
Technical report, Cornell University, 1984.

PW96. Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosignatures and byzantine agreement
for t ≥ n/3. Citeseer, 1996.

23

	Juggernaut: Efficient Crypto-Agnostic Byzantine Agreement

