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Abstract

Recently, a more efficient attack on the initial tropical Stickel protocol has been
proposed, different from the previously known Kotov-Ushakov attack, yet equally guar-
anteed to succeed. Given that the Stickel protocol can be implemented in various ways,
such as utilizing platforms beyond the tropical semiring or employing alternative com-
mutative matrix “classes” instead of polynomials, we firstly explore the generalizability
of this new attack across different implementations of the Stickel protocol. We then
conduct a comprehensive security analysis of a tropical variant that successfully re-
sists this new attack, namely the Stickel protocol based on Linde-de la Puente (LdlP)
matrices. Additionally, we extend the concept of LdlP matrices beyond the tropical
semiring, generalizing it to a broader class of semirings.
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1 Introduction

Tropical linear algebra has been recently used as a platform for new supposedly more se-
cure implementations of some cryptographic key exchange protocols including the Stickel
protocol [18]. In this context, Grigoriev and Shpilrain [8] introduced the first tropical imple-
mentation of the Stickel protocol, which we refer to as the ”initial tropical Stickel protocol”.
The widely accepted attack on this protocol is due to Kotov and Ushakov [12]. This attack
successfully breaks the protocol by finding the whole solution set of the underlying tropical
linear system imposed by the protocol by enumerating all minimal solutions of such system.

Then, recently, the authors in [16] proposed an alternative attack that breaks the protocol
by finding only a single solution of this linear system, rather than enumerating all solutions,
which significantly reduces the complexity in relation to the polynomial degree used in the
protocol. This attack is possible because the polynomials chosen by Alice and Bob com-
mute with the powers of the public matrices. Notably, this new attack is not guaranteed to
succeed on all implementations of the Stickel protocol. Its applicability depends on specific
conditions involving the underlying semiring and the “class” of the commuting matrices be-
ing used. Specifically, the attack successfully applies only when the one-sided linear systems
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over the semiring are easily solvable and the matrices used by Alice and Bob have an obvious
finite set of generators with which they commute (e.g., consider matrix powers as generators
of matrix polynomials).

Consequently, certain tropical variants of the Stickel protocol prove resistant to this
new attack, one notable example being the version based on Linde-de la Puente (LdlP)
matrices [13] as proposed by [15]. This variant is also resistant to the Kotov-Ushakov attack
which motivates a further investigation of its overall security by exploring the other heuristic
means. It turns out that this class of matrices can also be constructed over a wider variety of
semirings, possibly offering stronger cryptographic properties when utilized over alternative
semirings.

This paper is organized as follows: Section 2 covers preliminaries and basic definitions,
particularly those related to matrix algebra and the Stickel protocol over semirings. In
Section 3, we present the conditions under which the new attack is applicable and provide
its performance comparison with the Kotov-Ushakov attack. In Section 4, we analyze the
security of the tropical Stickel protocol based on LdlP matrices against the new attack, the
Kotov-Ushakov attack and some other heuristics that were suggested previously. All codes
related to the numerical experiments have been made available on GitHub 1.

2 Preliminaries

In this section, we introduce the matrix algebra over semirings followed by the construction
of the Stickel protocol over an arbitrary semiring, and how it is typically compromised by
the Kotov-Ushakov attack and the new attack put forward in [16]. Note that we use the
standard notation [m] = {1, . . . ,m} and [n] = {1, . . . , n} for most common index sets. We
start by recalling the definition of a semiring.

Definition 2.1 (Semiring). Let S be a non-empty set equipped with two binary operations
⊕ and ⊗, which satisfy the following properties:

• (S,⊕) is an Abelian semigroup which means that it satisfies associativity, commuta-
tivity and existence of an additive identity element ϵ.

• (S,⊗) is a semigroup which means that it satisfies associativity and existence of mul-
tiplicative identity element e.

• In (S,⊕,⊗) multiplication ⊗ distributes over addition ⊕.

• The additive identity ϵ satisfies the absorbing property, that is ϵ⊗ e = e⊗ ϵ = ϵ.

The semirings of primary interest, particularly for their cryptographic applications in
implementing the Stickel protocol, are the tropical (max-plus), fuzzy (max-min), and the
max-T semirings. We now present their formal definitions.

1https://github.com/suliman1n/On-the-security-of-the-initial-tropical-Stickel-protocol-and-its-
modification-based-on-LdlP-matrices
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Definition 2.2 (Tropical Semiring). The tropical semiring Rmax is defined by Rmax =
(R ∪ {−∞},⊕,⊗), where the tropical addition ⊕ and the tropical multiplication ⊗ are
respectively defined by a⊕ b = max{a, b} and a⊗ b = a+ b for all a, b ∈ Rmax.

Definition 2.3 (Max-min Semiring). The max-min semiring, denoted as Rmax,min, is defined
by Rmax,min = (R ∪ {−∞} ∪ {∞},⊕,⊗), with these two operations defined by a ⊕ b =
max{a, b} and a⊗ b = min{a, b} for all a, b ∈ Rmax,min.

Definition 2.4 (Max-T Semiring). The max-T semiring is defined as the unit interval B =
[0, 1] equipped with the tropical addition a ⊕ b = max(a, b) and the T -norm multiplication
a⊗ b = T (a, b) where T : B2 → B is a T -norm (see Definition 2.5).

Definition 2.5 (T -norm (e.g., [11])). A T-norm is a binary operation on the unit interval
that satisfies the following axioms for all a, b, d ∈ [0, 1]:

1. T (a, 1) = a (boundary condition).

2. b ≤ d implies T (a, b) ≤ T (a, d) (monotonicity).

3. T (a, b) = T (b, a) (commutativity).

4. T (a, T (b, d)) = T (T (a, b), d) (associativity).

One notable example of a T -norm that has some interesting properties, which will be
discussed later, is the Hamacher product, defined as

a⊗ b = T (a, b) =

{
0, if a = b = 0,

ab
a+b−ab

, otherwise.
(1)

The Stickel key exchange protocol is constructed using matrix algebra over an arbitrary
semiring S. We hence present some of the relevant definitions.

Definition 2.6 (Matrix Algebra over Semirings [7]). The arithmetic operations over a semir-
ing S are naturally extended to include matrices and vectors. In particular, the operation
A⊗ α = α⊗A, where α ∈ S,A ∈ Sm×n and (A)ij = aij for i ∈ [m] and j ∈ [n], is defined
by

(A⊗ α)ij = (α⊗ A)ij = α⊗ aij ∀i ∈ [m] and ∀j ∈ [n].

The matrix addition A⊕B of two matrices A ∈ Sm×n and B ∈ Sm×n, where (A)ij = aij and
(B)ij = bij for i ∈ [m] and j ∈ [n], is defined by

(A⊕B)ij = aij ⊕ bij ∀i ∈ [m] and ∀j ∈ [n].

The matrix multiplication of two matrices is also similar to the “traditional” algebra. Namely,
we define A⊗B for two matrices, where A ∈ Sm×p and B ∈ Sp×n, as follows:

(A⊗B)ij =

p⊕
k=1

aik ⊗ bkj = (ai1 ⊗ b1j ⊕ ai2 ⊗ b2j ⊕ . . .⊕ ain ⊗ bnj) ∀i ∈ [m] and ∀j ∈ [n].
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Definition 2.7 (Matrix Powers). For M ∈ Sn×n, the n-th power of M is denoted by M⊗n,
and is equal to

M⊗n = M ⊗M ⊗ . . .⊗M︸ ︷︷ ︸
n times

.

By definition, any square matrix to the power 0 is the identity.

Definition 2.8 (Identity Matrix of a semiring). The identity matrix I ∈ Sn×n is of the form
(I)ij = δij where

δij =

{
e if i = j

ϵ otherwise

Definition 2.9 (Matrix Polynomials). A matrix polynomial is a function of the form

A 7→ p(A) =
d⊕

k=0

ak ⊗ A⊗k,

where ak ∈ S for k = 0, 1, . . . , d. Here A ∈ Sn×n is a square matrix of any dimension n.

Any two matrix polynomials of the same matrix over any semiring commute just like in
the classical algebra [7], and this fact was utilized by Grigoriev and Shpilrain to construct an
implementation of the Stickel protocol over the tropical semiring after successfully attacking
the original implementation [8]. The Stickel protocol can clearly be implemented over any
semiring, as this underlying commutativity property remains valid.

Protocol 1 (Stickel Protocol over semirings).

1. Alice and Bob agree on public matrices A,B,W .

2. Alice chooses two random polynomials p1(x) and p2(x) and sends U = p1(A) ⊗W ⊗
p2(B) to Bob.

3. Bob chooses two random polynomials q1(x) and q2(x) and sends V = q1(A)⊗W⊗q2(B)
to Alice.

4. Alice computes her secret key using a public key V obtained from Bob, which is
Ka = p1(A)⊗ V ⊗ p2(B).

5. Bob also computes his secret key using Alice’s public key U , which is Kb = q1(A) ⊗
U ⊗ q2(B).

The two parties end up with an identical key due to the commutativity of polynomials
of the same matrix. Formally, we have Ka = p1(A) ⊗ V ⊗ p2(B) = p1(A) ⊗ q1(A) ⊗ W ⊗
q2(B)⊗ p2(B) = q1(A)⊗ p1(A)⊗W ⊗ p2(B)⊗ q2(B) = q1(A)⊗ U ⊗ q2(B) = Kb.

An intuitive way to attack this protocol is aiming to find the coefficients of two polyno-
mials that can reconstruct the transmitted message (U or V ). This is achieved by scanning
all solutions of the one-sided linear system corresponding to either message. (Note that
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U = p1(A)⊗W ⊗ p2(B) is essentially a one-sided linear system of the shape A⊗ x = b with
unknowns being the products of polynomial coefficients). The attacker then searches for a
solution that satisfies a specific structure arising from the multiplication of two polynomials.
This approach was proposed by Kotov and Ushakov to attack the tropical version of the
Stickel protocol [12]. The ideas of the attack can be summarized as follows.

The aim is to find two matrices X and Y , where they are expressed as

X =
D⊕

α=0

(
xα ⊗ A⊗α

)
, Y =

D⊕
β=0

(
yβ ⊗B⊗β

)
,

such that D is sufficiently large to exceed the maximal degree of any polynomial that Alice
and Bob might use. Then, Alice’s message U can be expressed as

U =
D⊕

α=0

(
xα ⊗ A⊗α

)
⊗W ⊗

D⊕
β=0

(
yβ ⊗B⊗β

)
,

or equivalently
D⊕

α,β=0

xα ⊗ yβ ⊗
(
A⊗α ⊗W ⊗B⊗β

)
= U.

We then denote Rαβ = A⊗α ⊗W ⊗B⊗β and therefore we can write

D⊕
α,β=0

xα ⊗ yβ ⊗
(
Rαβ

)
γδ

= Uγδ ∀γ, δ ∈ [n]× [n]. (2)

If we additionally denote zαβ = xα ⊗ yβ, we have

D⊕
α,β=0

zαβ ⊗
(
Rαβ

)
γδ

= Uγδ ∀γ, δ ∈ [n]× [n]. (3)

This is a system of linear equations of the shape A ⊗ x = b with coefficients
(
Rαβ

)
γδ

and

unknowns zαβ.
The next goal of the attack is to scan all solutions to this system, and get the solution that

satisfies zαβ = xα⊗yβ for some xα, yβ ∈ N ∀α, β ∈ {0, 1, . . . , D}. The way how this is done
may depend on the theory of A⊗ x = b over the semiring in question. It is known that for
the tropical (max-plus) semiring, the max-min semiring and, more generally, for any max-T
semiring where T is a continuous T -norm, the system A ⊗ x = b has the greatest solution,
a finite number of minimal solutions and each solution to A⊗ x = b lies in the box defined
by one of the minimal solutions and the greatest solution. For the attacker’s puproses, we
need to search for a vector (zαβ) in the box defined by one of the minimal solutions and the
greatest solution that satisfies zαβ = xα ⊗ yβ for some xα, yβ. A formal description of the
attack is due to Kotov and Ushakov [12] in the tropical case, and a max-min version (which
has a straightforward generalization to the max-T case) was suggested in [3].
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Different variants of the Stickel protocol (protocol 1) can be implemented using alterna-
tive “classes” of commuting matrices. A number of these alternatives are explored in the
literature (e.g., [15]). For these protocols using other kinds of commuting matrices, matrix
powers can be replaced with other generators, although this may require imposing some
mild constraints on the coefficients xα, yβ, and hence a generalized version of Kotov-Ushakov
attack still applies [15]. Formally, X and Y are instead expressed as

X =
⊕
α∈A

(xα ⊗ Aα) , Y =
⊕
β∈B

(yβ ⊗Bβ) , (4)

Here {Aα : α ∈ A} and (respectively) {Bβ : β ∈ B} are finite sets of matrices such that any
matrix that can be used by Alice and (respectively) by Bob can be represented as these X
and Y . The rest of the attack similarly follows, but may include additional conditions on
the coefficients xα, yβ.

Note that Kotov-Ushakov attack and its generalization [15] are guaranteed to succeed
under the (not too restrictive) condition that any matrix used by Alice or Bob can be
represented as linear combination of generators in A and B; for a detailed proof, refer to [15].
However, a significant limitation of these attacks is that they require scanning the entire
solution set of the underlying linear system, which involves finding all minimal solutions. As
Alice and Bob use polynomials of higher degree (or larger A,B in the case of the generalized
Kotov-Ushakov attack), the number of minimal solutions in this system grows exponentially,
resulting in a corresponding exponential increase in the attack’s computational complexity.
One way to circumvent this is to seek a particular minimal solution and then hope that
the box defined by such solution and the greatest solution contains a solution of the desired
structure. Then the resulting attack is of a polynomial time complexity, but the success
rate of it may suffer. The heuristic attacks of such type were put forward by Mach [14] and
in [1]. In the latter work it was found that a heuristic attack of this kind had 100% success
rate when applied to the tropical Stickel protocol based on modified circulants and over 90%
success rate when applied to the initial tropical Stickel protocol based on polynomials (the
success of a similar attack in the max-min case was, however, much more modest [3]).

Recently, the authors in [16] came up with a better idea to attack the various versions of
tropical Stickel protocols, which we next outline. Instead of searching for a special solution
of system (3) among all possible solutions—the approach employed in the Kotov-Ushakov
attack—it can be observed that any solution (rαβ) to (3) suffices to break the protocol.
Indeed, recalling that V = q1(A)⊗W ⊗ q2(B) and using the commutation between A⊗α and
q1(A) on one side and the commutation between B⊗β and q2(B) on the other side we obtain
that for any solution (rαβ) to system (3), the shared secret key K can be recovered by

K =
D⊕

α,β=0

rαβ ⊗ A⊗α ⊗ V ⊗B⊗β. (5)

To prove that, we simply need to verify whether this formula successfully recovers the
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key. Given that (rαβ) is any solution to (3), we have

K =
D⊕

α,β=0

rαβ ⊗ A⊗α ⊗ q1(A)⊗W ⊗ q2(B)⊗B⊗β

=
D⊕

α,β=0

rαβ ⊗ q1(A)⊗ A⊗α ⊗W ⊗B⊗β ⊗ q2(B)

= q1(A)⊗ (
D⊕

α,β=0

rαβ ⊗ A⊗α ⊗W ⊗B⊗β)⊗ q2(B)

= q1(A)⊗ U ⊗ q2(B) = Kb = Ka.

This attack significantly reduces the burden on the attacker by eliminating the need to
explore the entire solution set of system (3). Instead, any solution can be utilized. The new
attack is formally described in the following algorithm.

Attack 1 (Attacking Protocol 1 based on (5)).

1. Find a solution rαβ of system (3).

2. Compute the shared secret key K.

K =
D⊕

α,β=0

rαβ ⊗ A⊗α ⊗ V ⊗B⊗β.

In the tropical case, as well as in the max-min case and, more generally, for max-T
semirings with lower-semicontinuous T -norms [3], [5], the greatest solution of system (3) can
be easily found using an explicit formula and used in Attack 1. Note that the authors in [16]
also give algebraic conditions for semirings over which (3) has the greatest solution that
is easily computed by an explicit formula. Furthermore, for max-T semirings with upper-
semicontinuous T -norms one can find a minimal solution [5] and also use it in Attack 1.
Although this may require more time than finding the greatest solution for which there is
an explicit formula, it is still better than the Kotov-Ushakov attack where one needs to use
a number of minimal solutions and the greatest solution.

Figure 1 compares the performance of the Kotov-Ushakov attack and this new attack
(Attack 1) on the initial tropical Stickel protocol using the greatest solution to (3) with
matrix dimensions of 10 and a range of polynomial degrees. As expected, the computa-
tional time of the Kotov-Ushakov attack increases exponentially due to the rapid growth of
minimal solutions (enumerated minimal covers) with respect to the used polynomial degree.
In contrast, the increase in computational time for the new attack remains relatively small.
Note that at lower polynomial degrees, the two attacks show comparable performance, as the
computational heavy part in the Kotov-Ushakov attack (enumerating all minimal covers) is
not yet dominant.
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Figure 2 also shows the computational time of this new attack and one of the previously
proposed heuristics, namely the single cover heuristic from [1]. This may highlight that
heuristic attacks can remain valuable, especially when they achieve high success rates, due
to their higher efficiency when compared with the guaranteed attacks.

Figure 1: Computational time of Attack 1 vs. Kotov-Ushakov attack

The new attack also works for some other implementations of Stickel protocol such as the
ones based on the modified circulants and Jones matrices [10], [15]. However, if Alice and
Bob use a different implementation of Stickel protocol for which Aα in (4) do not commute
with the matrices used by them on the left and/or Bβ do not commute with the matrices
used by them on the right, then the Kotov-Ushakov attack is still guaranteed to work and the
new attack becomes a heuristic. The next section will discuss the tropical Stickel protocol
based on Linde-de la Puente matrices (shortly LdlP matrices) for which this is the case.

3 Security analysis of tropical Stickel protocol based

on Linde-de la Puente matrices

The tropical Stickel protocol based on Linde-de la Puente matrices closely resembles the
original tropical implementation in [8], but replaces tropical polynomials with matrices of the
form [2r, r]kn as introduced in [15]. We firstly introduce the concept of elementary matrices,
which will serve as the generators Aα and Bβ in the tropical Stickel protocol based on LdlP
matrices.
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Figure 2: Computational time of Attack 1 vs. the heuristic attack in [1]

Definition 3.1 (Tropical Elementary Matrices). Let Eij ∈ Rn×n
max be a matrix with entries

(
Eij

)
kl
=

{
0, if k = i, l = j

−∞, otherwise.

for i, j ∈ [n] and k, l ∈ [n]. Any matrix of this form is called a tropical elementary matrix.

Let us then present the definition of LdlP matrices.

Definition 3.2 ([15], generalizing [13]). For arbitrary real number r ⩽ 0 and real number
k ⩾ 0, we denote by [2r, r]kn the set of matrices A such that aii = k, for all i and aij ∈ [2r, r]
for i ̸= j.

Note that any two matrices of this form commute due to the following theorem.

Theorem 3.1 (LdlP Matrices Commutativity [15]). Let A ∈ [2r, r]k1n , B ∈ [2s, s]k2n for any
r, s ⩽ 0 and aii = k1 ⩾ 0, bii = k2 ⩾ 0 then

A⊗B = B ⊗ A = k2 ⊗ A⊕ k1 ⊗B

Let us observe that Linde-de la Puente matrices also allow for semiring generalizations.
Consider any semiring with idempotent addition (a⊕ a = a) in which the order ≤ is defined
canonically (a ⊕ b = b ⇔ a ≤ b), the property a ⊗ b ≤ a⊗2 ⊕ b⊗2 holds and in which there
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exists at least one element a with a⊗2 ≤ a. In particular, the property a ⊗ b ≤ a⊗2 ⊕ b⊗2

(to which we further refer as to the squares property) holds in commutative semirings with
cancellative condition (a ⊗ b = a ⊗ c and a ̸= 0 implies b = c) as shown in [6]. The latter
condition is sufficient but not necessary: for example, the max-min semiring also satisfies
the squares property without being cancellative. Then we can modify the above definition
to the following one. Here and below, 0 and 1 will denote the zero and the unity elements
of the semiring.

Definition 3.3. For arbitrary element r such that r⊗2 ≤ r we denote by [r⊗2, r]n the set of
matrices A such that aii = 1 for all i and r⊗2 < aij < r for i ̸= j.

Let us show that any two matrices of this form commute, adopting and generalizing an
argument of [13].

Theorem 3.2 (LdlP Matrices Commutativity over Semirings). Consider an idempotent
semiring in which the squares property holds, and let A ∈ [r⊗2, r]n, B ∈ [s⊗2, s]n for any r, s
such that r⊗2 ≤ r and s⊗2 ≤ s. Then

A⊗B = B ⊗ A = A⊕B

Proof. We observe that (A⊗B)ik can be written as⊕
j

aij ⊗ bjk = aik ⊕ bik ⊕
⊕
j ̸=i,k

aij ⊗ bjk (6)

Then, note that
aij ⊗ bjk ≤ r ⊗ s ≤ r⊗2 ⊕ s⊗2 ≤ aik ⊕ bik,

implying that (A⊗B)ik = aik ⊕ bik, and (B ⊗ A)ik = bik ⊕ aik can be shown similarly.

As written above, the max-min semiring satisfies the squares property and therefore the
above theorem holds for LdlP matrices over it. However, here we have a⊗2 = a for all a,
which trivializes the class of LdlP matrices making it less attractive for cryptographic pur-
poses. We can also consider the max-T semiring with T being the Hamacher product. It
can be shown that the Hamacher product is commutative and cancellative and therefore the
squares property holds in the max-Hamacher semiring. Furthermore, the intervals (a⊗2, a)
are non-empty for any a : 0 < a < 1 (we have 0 = 0 and 1 = 1 in any max-T semiring).

The protocol that utilizes the commutativity property of LdLP matrices over tropical
semiring is outlined below. Its generalization to commutative idempotent semirings satisfying
the squares property (a⊗b ≤ a⊗2⊕b⊗2) is also obvious, but we will restrict our cryptanalysis
to the tropical case in what follows.

Protocol 2 (Tropical Stickel Protocol based on LdlP matrices [15]).

1. Alice and Bob agree on a public matrix W ∈ Rn×n
max .

2. Alice chooses two random matrices A1 and A2, where A1 ∈ [2a1, a1]
k1
n and A2 ∈

[2a2, a2]
k2
n such that a1, a2 ≤ 0 and k1, k2 ≥ 0 and sends U = A1 ⊗W ⊗ A2 to Bob.
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3. Bob chooses two random matrices B1 and B2, where B1 ∈ [2b1, b1]
l1
n and A2 ∈ [2b2, b2]

l2
n

such that b1, b2 ≤ 0 and l1, l2 ≥ 0 and sends V = B1 ⊗W ⊗B2 to Bob.

4. Alice computes her secret key using a public key V obtained from Bob, which is
Ka = A1 ⊗ V ⊗ A2.

5. Bob also computes his secret key using Alice’s public key U , which is Kb = B1⊗U⊗B2.

The two parties end up with an identical key due to the commutativity of Linde-de la
Puente matrices. Formally, we have Ka = A1 ⊗ V ⊗ A2 = A1 ⊗ B1 ⊗ W ⊗ B2 ⊗ A2 =
B1 ⊗ A1 ⊗W ⊗ A2 ⊗B2 = B1 ⊗ U ⊗B2 = Kb.

Given that the new attack (Attack 1) is not guaranteed to succeed against this protocol,
we firstly analyze the effectiveness of both this attack and the Kotov-Ushakov attack (or
more precisely their generalized forms). Subsequently, we evaluate other heuristic attacks
that have previously demonstrated promising results against other tropical implementations
of the Stickel protocol. For all numerical experiments, unless stated otherwise, the values of
k1, k2, l1, l2 are chosen randomly from [0, 100], while a1, a2, b1, b2 are selected from [−100, 0],
and the entries of W are from [−100, 100].

• Kotov-Ushakov attack
Lets firstly describe a generalized version of Kotov-Ushakov attack that applies to
this protocol followed by an evaluation of its performance. Note that any matrix
A ∈ [2a, a]kn chosen in the protocol can be represented as a tropical linear combination
of elementary matrices with some restrictions on the coefficients (x, y). Therefore, to
break the protocol, we need to find

X =
n⊕

i,j=0

(
xij ⊗ Eij

)
, Y =

n⊕
s,t=0

(
yst ⊗ Est

)
,

Then, Alice’s message U can be expressed as

U =
n⊕

i,j=0

(
xij ⊗ Eij

)
⊗W ⊗

n⊕
s,t=0

(
yst ⊗ Est

)
,

or equivalently
n⊕

i,j,s,t

xij ⊗ yst ⊗
(
Eij ⊗W ⊗ Est

)
= U.

We then denote Rijst = Eij ⊗W ⊗ Est and therefore we can write

n⊕
i,j,s,t=0

xij ⊗ yst ⊗
(
Rijst

)
γδ

= Uγδ ∀γ, δ ∈ [n]× [n]. (7)

If we additionally denote zijst = xij ⊗ yst, we have

n⊕
i,j,s,t=0

zijst ⊗
(
Rijst

)
γδ

= Uγδ ∀γ, δ ∈ [n]× [n]. (8)
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We then similarly scan the whole solution of this tropical linear system searching for
an appropriate solution through the following attack.

Attack 2 (Kotov-Ushakov attack on tropical Stickel protocol based on LdlP matri-
ces [15]).

1. Compute

cijst = min
γ,δ∈[n]

(
Uγδ −Rijst

γδ )
)
, Sijst = arg min

γ,δ∈[n]

(
Uγδ −Rijst

γδ )
)
.

2. Among all minimal covers of [n] × [n] by Sijst, that is, all minimal subsets C ⊆
[n2]× [n2] such that ⋃

(ijst)∈C

Sijst = [n]× [n],

find a cover for which the system

xij + yst = cijst, if (i, j, s, t) ∈ C,
xij + yst ⩽ cijst, if otherwise.

2a1 ⩽ xij ⩽ a1, 2a2 ⩽ yst ⩽ a2, ∀i ̸= j, s ̸= t,

xii = k1, yss = k2, ∀i, s,
a1, a2 ⩽ 0, k1, k2 ≥ 0.

(9)

is solvable.

Figure 3 illustrates the computational time required to execute Attack 2, showing
that the attack is impractical due to the excessively high time consumption, even
for relatively low-dimensional cases. This inefficiency arises from the extremely high
number of minimal covers, which happens because each Sijst contains only one element
(as Rijst has only a single finite element). As a result, the total number of minimal
covers becomes (n2)n

2
, since each entry is covered by n2 components. Specifically, for

each (γ, δ) ∈ [n]× [n], there are n2 sets Sijst that satisfy (γ, δ) ∈ Sijst.

• The greatest solution attack
We now explore the applicability of an analogous version of Attack 1, which leverages
the greatest solution of system (8) to break the protocol. The attack follows a similar
structure, which involves finding the greatest solution to system (8), followed by the
key recovery formula.

Attack 3 (The greatest solution attack on tropical Stickel protocol based on LdlP
matrices).

1. Compute the greatest solution (cijst) of system (8).

cijst = min
γ,δ∈[n]

(
Uγδ −Rijst

γδ )
)

∀i, j, s, t ∈ [n].

12



Figure 3: Computional time of Attack 2

2. Compute the shared secret key K.

K =
n⊕

i,j,s,t=0

cijst ⊗ Eij ⊗ V ⊗ Est.

Although the attack is unlikely to succeed generally since the protocol violates the
generators’ commutativity condition, we investigate how frequently it does. Figure 4
shows the observed success rate. The attack showed high success rate with smaller W
values, but its success rate rapidly approaches zero as W becomes sufficiently large.

• The single cover heuristic attack
Kotov and Ushakov observed in their experiment [12] that smaller minimal covers
are significantly more likely to ”work”. A heuristic attack that construct a small
sized single minimal cover by iteratively selecting the largest Sαβ until all elements of
[n] × [n] are covered showed to be highly effective against multiple implementations
of the Stickel protocol [1]. An adaptation of this attack on protocol 2 is described in
Attack 4.

Attack 4 (The single minimal cover heuristic on tropical Stickel protocol based on
LdlP matrices).

1. Compute

cijst = min
γ,δ∈[n]

(
Uγδ −Rijst

γδ )
)
, Sijst = arg min

γ,δ∈[n]

(
Uγδ −Rijst

γδ )
)
.

13



Figure 4: Success rate of Attack 3

2. For each uncovered (γ, δ) ∈ [n]× [n], select the largest Sijst that includes it, and
add the indices i, j, s, t to the cover.

3. Solve the system

xij + yst = cijst, if (i, j, s, t) is in the cover,

xij + yst ⩽ cijst, if otherwise,

2a1 ⩽ xij ⩽ a1, 2a2 ⩽ yst ⩽ a2, ∀i ̸= j, s ̸= t,

xii = k1, yss = k2, ∀i, s,
a1, a2 ⩽ 0, k1, k2 ≥ 0.

Figure 5 shows the success rate of this attack, which performs poorly probably due to
the fact that all minimal covers of system (8) are of equal size (specifically n2 since each
Sijst contains only a single element). As a result, there is no smaller cover that offers
a higher probability of solving the linear system (9). Additionally, the large number
of minimal covers,as explained in the generalized Kotov-Ushakov attack (Attack 2),
probably further reduces the likelihood of finding an appropriate cover.

• Tropical Shpilrain attack
We now explore the effectiveness of the tropical version of Shpilrain attack [17], building
on the approach outlined in [2]. Similar to the other heuristics, this attack aims to
avoid the impracticality of the guaranteed attack (Attack 2). The objective of the
attack is to find X and Y such that

X ⊗W ⊗ Y = U

14



Figure 5: Success rate of Attack 4

where X and Y follow the forms of [2a1, a1]
k1
n and [2a2, a2]

k2
n respectively. Then, a

Mixed-Integer Linear Program (MILP) can be formulated by converting the disjunctive
constraints into linear constraints with Boolean variables [4], and solved using a MILP
solver (e.g. [9]). In particular, with xij, wij, yij and uij being respectively the entries of
X,W, Y and U , we have

max
k,l∈[n]

(xik ⊗ wkl ⊗ ylj) = uij ∀(i, j) ∈ [n]× [n],

which can be represented as the following set of inequalities

xik ⊗ wkl ⊗ ylj ≤ uij ∀i, j, k, l ∈ [n],

and with M being a sufficiently large number

xik ⊗ wkl ⊗ ylj + (1− zklij)M ≥ uij ∀i, j, k, l ∈ [n],∑
k

zklij = 1, zkij ∈ {0, 1} ∀i, j, k, l ∈ [n].

The details of the attack is described below in Attack 5.

Attack 5 (Shpilrain attack on tropical Stickel protocol based on LdlP matrices).

15



Solve the following system using a MILP solver

xik + wkl + ylj ≤ uij ∀i, j, k, l ∈ [n],

xik + wkl + ylj + (1− zklij)M ≥ uij ∀i, j, k, l ∈ [n],

z5klij ∈ {0, 1},∑
k,l

zklij = 1 ∀i, j ∈ [n],

2a1 ⩽ xij ⩽ a1, 2a2 ⩽ yst ⩽ a2, ∀i ̸= j, s ̸= t,

xii = k1, yss = k2, ∀i, s,
a1, a2 ⩽ 0, k1, k2 ≥ 0.

This attack has a perfect success rate and shows significantly better time efficiency
compared to the Kotov-Ushakov attack (Attack 2), as shown in Figure 6. However,
one major limitation of this attack is its high memory usage, which increases with
the dimension. The attack demands a substantial amount of memory to encode all
the required equations, and in environments like Matlab, it becomes impractical for
dimensions larger than 13. Specifically, the attack requires encoding 2n4+n2 equations
with n4 + 2n2 + 4 variables. This also shows that Protocol 2 offers greater resistance
to the Shpilrain attack compared to the initial tropical implementation (Protocol 1)
since the computational time of the attack increases with the dimension, while in the
initial implementation, the attack time remains unchanged, as it does not depend on
the polynomial degrees used in the protocol as presented in [2].

Figure 6: Computational time of Attack 5
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• Vanishing and dominant W heuristic attacks
It is occasionally possible to recover the shared secret key using only the public param-
eters by leveraging the theory of vanishing or dominant W , as outlined in [15], when
applicable. The two heuristic approaches for this are illustrated in the following two
attacks, where wst denotes the largest entry in W .

Attack 6 (Vanishing W attack on tropical Stickel protocol based on LdlP matrices).

1. Compute l1 ⊗ l2 = vst ⊗−wst and k1 ⊗ k2 = ust ⊗−wst.

2. Compute the key K as K = l1 ⊗ l2 ⊗ U ⊕ k1 ⊗ k2 ⊗ V .

Attack 7 (Dominant W attack on tropical Stickel protocol based on LdlP matrices).

1. Compute l1 ⊗ l2 = vst ⊗−wst and k1 ⊗ k2 = ust ⊗−wst.

2. Compute the key K as Kij = −wst ⊗ (vst ⊗ uij ⊕ ust ⊗ vij ⊕ uit ⊗ vsj ⊕ vit ⊗ usj).

The success rate of the two attacks is illustrated in Figure 7. A notable trend is
observed: when one attack performs poorly, the other tends to perform well across
different ranges of W . As a result, the overall combined success rate is generally high.
However, there are specific ranges of W where both attacks underperform, suggesting
that Alice and Bob can still effectively resist these two heuristics by carefully select-
ing certain values of W . For example, Figure 8 highlights a range of W where the
performance of both attacks noticeably weakens.

Figure 7: Success rate of Attack 6 and Attack 7

4 Conclusion

The Kotov-Ushakov attack could now be considered largely obsolete by the introduction of
the new attack (Attack 1), which can replace it to attack various implementations of the
Stickel protocol. However, the Kotov-Ushakov may still be valuable against some variants

17



Figure 8: Suboptimal performance of Attack 6 and Attack 7

that are resistant to the new attack, though it would likely be inefficient due to the significant
computations involved in enumerating all solutions of the underlying linear system. For the
Kotov-Ushakov attack to remain relevant, new classes of commuting matrices over semirings
have to be found. For such cases, the Kotov-Ushakov attack might be the only feasible attack.

While Attack 1 offers a clear advantage over the Kotov-Ushakov attack, it still encounters
some of the same challenges. Firstly, in the case of the Stickel protocol based on polynomials,
Alice and Bob can use sparse polynomials with sufficiently large degree D. This is especially
easy for them in the case of the implementation based on Jones matrices [10, 15] since they
would use rational exponents with high denominator, and the corresponding deformations
A(α) and B(β) are easy to compute. Secondly, there may still exist semirings over which
A ⊗ x = b is hard to solve, and in such cases, the new attack is not applicable. Identifying
such semirings, however, requires further exploration.

In the case of the tropical semiring, the Stickel protocol based on LdlP matrices resists
the new attack. It also resists the Kotov-Ushakov attack, primarily due to its impracticality
as it requires enumerating an exceedingly high number of minimal solutions in this case.
Moreover, other heuristic attacks that previously demonstrated promising results against
other variants of Stickel protocol showed only limited success here. This indicates that the
tropical Stickel protocol based on LdlP matrices requires further cryptanalysis to validate its
resistance. If so, this could indicate that tropical cryptography still holds potential and may
remain a viable platform for implementing secure cryptographic key exchange protocols.
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