
Secret Sharing with Publicly Verifiable Deletion⋆

Jonathan Katz1 and Ben Sela2

1 Google and University of Maryland
jkatz2@gmail.com

2 University of Maryland
benjsela@cs.umd.edu

Abstract. Certified deletion, an inherently quantum capability, allows
a party holding a quantum state to prove that they have deleted the in-
formation contained in that state. Bartusek and Raizes recently studied
certified deletion in the context of secret sharing schemes, and showed
constructions with privately verifiable proofs of deletion that can be ver-
ified only by the dealer who generated the shares. We give two construc-
tions of secret sharing schemes with publicly verifiable certified deletion.
Our first construction is based on the post-quantum security of the LWE
problem, and each share requires a number of qubits that is linear in the
size of an underlying classical secret sharing scheme for the same set of
authorized parties. Our second construction is based on a more general
assumption—the existence of post-quantum one-way functions— but re-
quires an asymptotically larger number of qubits relative to the share
size of the underlying classical scheme.

1 Introduction

Secret-sharing schemes [15] allow a dealer to split a secret s into shares such
that only certain authorized subsets of those shares (as defined by some mono-
tone access structure) can recover s, while all other subsets of the shares reveal
no information about s. Secret sharing has been studied extensively in both
the computational and information-theoretic settings, and constructions in both
settings are known for various access structures.

Recent work of Bartusek and Raizes [5] initiated the study of secret sharing
with certified deletion. Such schemes consider shares that are quantum states,
and allow a party given a share to generate a (classical) proof that they have
deleted their share. Bartusek and Raizes put forth two (incomparable) notions of
security in this setting, and show information-theoretic constructions of schemes
for threshold access structures that allow for privately verifiable proofs of dele-
tion, where the proofs are verifiable only by the dealer who generated the initial
shares. They leave open the questions of whether it is possible to construct
secret-sharing schemes with publicly verifiable proofs of deletion, and whether
can one construct secret-sharing schemes with (privately or publicly verifiable)
certified deletion for arbitrary monotone access structures.
⋆ Work supported in part by NSF award CNS-2154705.

2 J. Katz and B. Sela

We resolve both of these questions in the affirmative. We give two construc-
tions of secret-sharing schemes with publicly verifiable proofs of deletion; both
constructions inherit the access structure of some underlying (classical) secret-
sharing scheme and hence can support any monotone access structure. Our first
construction relies on the post-quantum hardness of the LWE problem, and each
share requires a number of qubits that is linear in the size of the share size of
the underlying classical secret-sharing scheme. Additionally this scheme only has
computational security. Our second construction relies only on the existence of
a post-quantum one-way function (OWF), but the number of qubits used to
encode each share is quadratic in the number of parties.

Although our first construction offers only computational secrecy, we show
that any such scheme can be upgraded to satisfy certified everlasting security ;
this roughly means that once a share is deleted the information contained in
that share is inaccessible even to a computationally unbounded adversary. Note
that this implies the standard notion of information-theoretic secrecy.

1.1 Related Work

The first example of certified deletion is due to Unruh [16] in the context
of revocable encryption. Certified deletion was first formalized by Broadbent
and Islam [7], who develop a symmetric-key encryption scheme based on BB84
states [18] whose ciphertexts can be certifiably deleted. Certified deletion has
since been explored in many other cryptographic settings [2, 3, 5, 10–12,14].

Public verifiability for proofs of deletion has also been considered [4, 13, 14].
Of particular relevance to our work are the results of Bartusek et al. [4]. Their
technique allow one to encode a classical string in a quantum state such that
an appropriate preimage of a one-way function serves as proof that the encoded
string was deleted. A roughly equivalent result using different techniques was
shown concurrently by Kitigawa et al. [13].

1.2 Open Problems and Future Work

Our work leaves open several questions. Our constructions both rely on a clas-
sical secret-sharing scheme as a building block, and require the scheme to have
the (non-standard) property that the shares in any unauthorized subset are uni-
form. While schemes satisfying this property are known for both threshold and
general monotone access structures [8], it would be interesting to extend our re-
sults to work for arbitrary (perfectly secret) secret-sharing schemes, which may
potentially allow for smaller share size.

In our work we consider only adaptive certified deletion, which is a simple
and intuitively appealing definition. Bartusek and Raizes also propose an alter-
nate notion of security called no-signaling certified deletion. The construction by
Bartusek and Raizes satisfying that notion can be easily lifted to achieve public
verifiability based on any post-quantum one-way function with sub-exponential
security (see Appendix D). However it is an open problem to construct schemes
that are provably secure in this setting from milder assumptions.

Secret Sharing with Publicly Verifiable Deletion 3

2 Technical Overview

We now give a more detailed overview of our techniques and results.

2.1 Background

Notions of security. Bartusek and Raizes [5] introduce two notions of security
for secret sharing with certified deletion, which we informally recall here:

No-signaling certified deletion: Let A = (A1, ...,Aℓ) be a set of ℓ non-
communicating adversaries, with each adversary Ai associated with some
unauthorized set Ai ⊂ [n] and all {Ai} disjoint.
– The challenger creates shares |qsh1⟩, ..., |qshn⟩ ← Share(s), and each Ai

receives {|qshj⟩}j∈Ai
.

– Each Ai deletes some subset of its shares subject to the constraint that
the set of non-deleted shares across all {Ai} does not form an authorized
set. Each Ai then outputs its state.

A secret-sharing scheme has no-signaling certified deletion if the combined
outputs of the {Ai} are (almost) independent of the secret that was shared.

Adaptive certified deletion: Let A be an adversary.
– The challenger creates shares |qsh1⟩, ..., |qshn⟩ ← Share(s). The adversary
A can then adaptively obtain and delete shares subject to the constraint
that, at any point in the experiment, the shares that have been obtained
but not deleted never form an authorized set.

– A outputs its state.
A secret-sharing scheme has adaptive certified deletion if the output of A is
(almost) independent of the secret being shared.

Bartusek and Raizes [5] prove that no-signaling security does not imply adap-
tive security by showing an explicit construction of a secret-sharing scheme that
satisfies the former but not the latter. They leave open the other direction,
though they note certain difficulties in trying to prove that adaptive security
implies no-signalling security. We prove in Appendix C that the definitions are
in fact incomparable, and there exists a secret-sharing scheme satisfying adaptive
security but not no-signalling security.

In the remainder of our work, we consider adaptive certified deletion only.

Prior work. Bartusek and Raizes show two constructions of secret-sharing
schemes with (privately verifiable) certified deletion. Their first scheme, which
can be based on any underlying (classical) secret-sharing scheme, satisfies no-
signalling security but not adaptive security. As noted earlier, we believe this
construction can be adapted fairly easily to achieve public verifiability based
on post-quantum OWFs with sub-exponential security; this still leaves open the
question of public verifiability for schemes achieving adaptive security. Their
second construction, which achieves adaptive security, is based on a specific
(classical) secret-sharing scheme for threshold access structures, and it is not
clear how to extend the scheme for general access structures. In summary, for

4 J. Katz and B. Sela

the adaptive security definition in which we are interested, there is no prior con-
struction of a secret-sharing scheme for general access structures, or achieving
public verifiability.

2.2 The Starting Point of Our Approach

Our approach for constructing an adaptively secure secret-sharing scheme differs
from the approaches taken by Bartusek and Raizes in constructing their schemes.
We provide a high-level overview here.

We begin by recalling a technique for publicly verifiable deletion introduced
by Bartusek et al. [4]. They provide a way to encode a bit b in a quantum state
|ψ⟩ such that an adversary A can perform a measurement on |ψ⟩ that “deletes”
b and produces a publicly verifiable proof of that fact. The bit is encoded by
choosing x0, x1 ← {0, 1}κ and encoding b as

|ψ⟩ = |x0⟩+ (−1)b|x1⟩;

additionally, y0 = f(x0) and y1 = f(x1) are published, where f is a one-way
function. A deletion certificate is a preimage of either y0 or y1. To delete the bit
and obtain such a certificate, A simply measures |ψ⟩ in the computational basis.
On the other hand, if A does not delete the bit and is given x0⊕ x1, then it can
perform a measurement of |ψ⟩ in the Hadamard basis to learn a string d such
that d · (x0 ⊕ x1) = b; i.e., given x0 ⊕ x1 it can learn b.

Bartusek et al. [4] show that it is infeasible for a computationally bounded
adversary who does not know x0 ⊕ x1 to generate a deletion certificate and still
learn b (even if it is given x0 ⊕ x1 after generating the deletion certificate). On
the other hand, if A is given x0 ⊕ x1 before being asked to produce a deletion
certificate, the Gentle Measurement Lemma (Lemma 1) implies that A can learn
b without disturbing the state |ψb⟩ too much. It can then perform a measurement
in the computational basis to produce a (false) proof of deletion.

This suggests the following approach for constructing a secret-sharing scheme
with certified deletion. For a secret s, the dealer begins by generating classical
shares csh1, ..., cshn ← Share(s); assume each share is an m-bit string. Then for
each i ∈ [n] the dealer encodes cshi by creating states of the form

|qshi⟩ =
⊗
k∈[m]

(
|xi,k0 ⟩+ (−1)cshi,k |xi,k1 ⟩

)
,

where xi,kb are uniform and independent and cshi,k denotes the kth bit of cshi.
The dealer then publishes yi,kb := f(xi,kb) for all i ∈ [n], k ∈ [m], and b ∈ {0, 1}.

To delete a quantum share |qshi⟩, a party measures the entire state in the
computational basis to produce a sequence of preimages x1, ..., xm such that
xk ∈ {xi,k0 , xi,k1 } for all k ∈ [m]. In this way, xk serves as a proof of deletion for
the kth bit of cshi, which can be publicly verified by checking that f(xk) yields
the appropriate image in the verification key.

Secret Sharing with Publicly Verifiable Deletion 5

While the above allows for certified deletion, we have not yet shown how the
secret can be reconstructed from an authorized set of shares! Learning the clas-
sical share cshi (that can be used with other shares to reconstruct the secret s)
requires knowledge of the strings {xi,k0 ⊕ x

i,k
1 }k∈[m]. However, as mentioned ear-

lier, if those strings are revealed at the outset to an adversary then the deletion
proof becomes meaningless. Somehow we must allow the preimages to be used
by an authorized set of parties, but otherwise remain hidden.

A seemingly natural solution to the above problem is to split the preimages
among the parties by using a classical secret sharing scheme so that each share
is of the form (|qsh⟩, csh). However this approach is vulnerable to the following
attack. Note that any portion of each share which is classical cannot be deleted.
Thus, an adaptive adversary can alternate corrupting and deleting shares until
an authorized set of shares have been corrupted, at which point the adversary
holds an authorized set of classical shares {cshi}i∈A. Now the adversary can
reconstruct the strings {xi,k0 ⊕ xi,k1 } which renders any future deletion proofs
meaningless. Therefore we need a way of hiding the preimages so that no useful
information is left behind after a share is deleted.

We discuss two approaches for achieving exactly this.

2.3 Construction from LWE

Our first approach (Construction 1) is to instantiate a reconstruction oracle
obfuscating a program to perform reconstruction. In more detail, define a recon-
struction program Rec as follows. Hardcode the strings {xi,k0 ⊕ x

i,k
1 }i∈[n],k∈[m].

Then, on input a set of the form {(di,k, i, k)}k∈[m],i∈A⊆[n], Rec does:

– Compute csh′i,k := di,k · (xi,k0 ⊕ x
i,k
1) for all i ∈ A, k ∈ [m].

– Set csh′i = csh′i,1 · · · csh
′
i,m for i ∈ A, and output Reconstruct({csh′i}i∈A),

where Reconstruct is the reconstruction procedure for the underlying classical
secret-sharing scheme.

When the {di,k}i∈A,k∈[m] are the results of Hadamard measurements of the cor-
responding quantum shares, then the above program outputs the original secret
s whose classical shares were encoded in the quantum states as discussed in the
previous section.

We obfuscate the above program using compute-and-compare obfuscation [17],
which can be constructed based on the post-quantum hardness of LWE. Let
P : {0, 1}ℓin → {0, 1}ℓout be a function, and define the following compute-and-
compare program:

CC[P, lock, z](x) =

{
z P (x) = lock

⊥ otherwise.

A compute-and-compare obfuscator takes a program of the above form, and out-
puts another program P̃ which is functionally equivalent, and with the security

6 J. Katz and B. Sela

guarantee that if it is computationally infeasible for an adversary given P to
compute lock, then P̃ hides all details of P .

This suggests the following attempt at a secret-sharing scheme with certi-
fied deletion. On input s, generate classical shares csh1, ..., cshn ← Share(s) and
encode them in quantum states |qshi⟩ as discussed above. Let Rec be the re-
construction program with the {xi,k0 ⊕ xi,k1 }i∈[n],k∈[m] hardcoded as discussed
earlier. Then give the ith party the quantum share |qshi⟩, and give all parties
the same obfuscated program R̃ec ← CC.Obf(CC[Rec, s, s]). Now, given an au-
thorized set of shares, parties can measure each |qshi⟩ in the Hadamard basis and
evaluate R̃ec on the measurement results to obtain s. Intuitivly, security of the
compute-and-compare obfuscator implies that P̃ hides the details of Rec—and
in particular hides the hardcoded preimages—so that our deletion mechanism
functions properly.

Note, however, that security of the compute-and-compare obfuscation de-
pends on the unpredictability of the lock value; a problem arises if s is not a
high-entropy value! To remedy this issue, we make the following modification:
Instead of using s itself as the lock, we sample a uniform value lock, and let the
states {|qshi⟩}i∈[n] encode classical shares of lock rather than of s.

We remark that this construction achieves only computational secrecy (even
against a static adversary who simply corrupts an unauthorized set and does not
delete anything) because the compute-and-compare obfuscation is only compu-
tationally hiding. We discuss in Section 2.5 how to upgrade the scheme to achieve
information-theoretic secrecy and, in fact, an even stronger notion we call ever-
lasting security.

2.4 Construction from One-Way Functions

Recall that our starting point was to create classical shares {cshi}i∈[n] ← Share(s)
of the secret, and then encode these shares in states of the form

|qshi⟩ :=
⊗
k∈[m]

(
|xi,k0 ⟩+ (−1)cshi,k |xi,k1 ⟩

)
.

If we want to avoid compute-and-compare obfuscation then we need some other
method of hiding the xor of the preimages in such a way that an authorized
set of parties can either recover them directly or otherwise make use of them to
recover the classical secret shares.

We first present the following (flawed) construction. In addition to giving each
party the state |qshi⟩ defined above, we can also create classical shares of the
preimages {cshxi }i∈[n] ← Share

(
{xi,k0 , xi,k1 }

)
, and give party i the classical share

cshxi . Now an authorized set of parties can use the shares for the preimages to
recover the preimages, and then use the recovered preimages to learn the classical
shares for the secret s. However, this scheme is vulnerable to the following attack:
– Alternate corrupting and deleting shares until an authorized set of classi-

cal shares {cshxi }i∈S has been recovered, and use them to reconstruct the
preimages {xi,k0 , xi,k1 }.

Secret Sharing with Publicly Verifiable Deletion 7

– Continue to corrupt and delete shares as follows. For each newly corrupted
share (cshi, |qshxi ⟩), use the previously recovered preimages to extract cshsi
from |qshsi ⟩ without disturbing the quantum state (this is possible by the
Gentle Measurement Lemma). Then delete the share and continue until an
authorized set of shares {cshsi}i∈S have been recovered. Reconstruct the se-
cret s← Reconstruct({cshsi}i∈S).

While the above attack breaks our construction, we make the following observa-
tion. For the adversary to corrupt an authorized set of shares, at least 1 share
must be deleted in the preimage extraction step above. While proofs of dele-
tion are meaningless if the adversary knows the preimages, this first deletion
proof must have been returned by the adversary prior to learning the preimages.
Therefore the classical share cshsi encoded in the corresponding state |qshsi ⟩ was
truly deleted. As there are at most n−1 shares which have not been deleted after
the preimage extraction step, the second step of the attack can only succeed if
there exists an authorized set of size n− 1 or smaller.

With the above in mind, our construction seems secure (at least against
this particular attack) if we have an (n, n)-access structure. We now modify
the construction so that the attack fails for any access structure such that the
smallest authorized set is of size at least n − 1. The sharing procedure for our
modified construction is as follows.

– Create secret shares {cshsi}i∈[n] ← Share(s) of the secret. Sample a set of
uniform preimages Pre1 := {xi,k0 , xi,k1 }, and use them to encode the classical
shares of s into the corresponding quantum states |qshsi ⟩.

– Create secret shares for the above preimages {cshxi }i∈S ← Share({xi,k0 , xi,k1 }).
Sample a set of uniform preimages Pre2 := {zi,k0 , zi,k1 }, and use them to
encode the shares {cshxi }i∈[n] into the corresponding states |qshxi ⟩.

– Create secret shares {cshzi }i∈[n] ← Share({zi,k0 , zi,k1 }). Finally set the ith
share as the tuple (cshzi , |qsh

x
i ⟩, |qsh

s
i ⟩).

Consider the analogue of our attack on the above construction. Our attack
first corrupts and deletes shares in order to extract the first set of preimages
{zi,k0 , zi,k1 }. Then the adversary continues to corrupt and delete shares, using the
previously extracted preimages to extract shares of {xi,k0 , xi,k1 } from the states
|qshxi ⟩ as it goes. Once the second set of preimages is recovered, the adversary
continues to corrupt and delete shares, this time using the second set of preimages
to extract shares of the secret.

We claim that at least one deletion must take place for each set of extracted
preimages in the above attack. If the preimages in Pre1 are recovered without
the adversary outputting a proof of deletion, then the adversary must hold an
authorized set of shares which is not permitted by the experiment. Note that
prior to learning Pre1, any proof of deletion for a share i truly deletes the infor-
mation encoded in |qshxi ⟩ and |qshsi ⟩. Therefore, after recovering Pre1, the only
shares of Pre2 which the adversary has access to are the ones currently in its
view. It follows that in order to obtain an authorized set of shares for Pre2, at

8 J. Katz and B. Sela

least one more deletion must be output by the adversary. However this means
that by the time Pre2 is recovered, there are at most n − 2 shares of s which
have not yet been deleted. Thus, assuming all authorized sets are of size at least
n − 1, the above attack fails. Therefore if we iterate the above construction k
times, the attack should fail for any access structure all of whose authorized sets
have size at least n− k.

There is one additional issue to resolve. If the secret-sharing scheme has
shares that are larger than the secret (which is the case for many schemes for
general access structures), then each iteration of the above construction will have
a share size equal to some multiplicative factor of the previous share size, and so
iterating n times will result in a share size that is exponential in n. To address
this, we generate the preimages using a PRF with a different key kℓ at each
level ℓ, and then secret-share the key in the next level.

2.5 Everlasting Security

Our first secret-sharing construction does not have information-theoretic secrecy,
as the compute-and-compare program contains a (classical) encryption of the
secret. It turns out we can upgrade our construction, and more generally any
computational secret-sharing scheme, to achieve information-theoretic secrecy,
and in fact an even stronger property we call everlasting security.

Let SScomp be a computational secret-sharing scheme with adaptive certified
deletion, and let SSclassical be an information-theoretic classical secret-sharing
scheme for the same access structure. Recall the intuition behind the deletion
mechanism: as long as the preimages are hidden from the adversary, a proof of
deletion destroys any information about the underlying bit. With this in mind,
rather than creating shares of the secret itself with SScomp, we generate classical
shares csh1, ...cshn ← SSclassical.Share(s), and we encode each cshi in a state of
the form |qshsi ⟩ =

⊗
k∈[m](|x

i,k
0 ⟩+ (−1)cshi,k |xi,k1 ⟩), where cshi,k is the kth bit of

cshi, and the preimages xi,kb are evaluations of a PRF with a uniform key k0.
We then hide k0 using SScomp, i.e., we compute shares |qshPRF1 ⟩, ..., |qshPRFn ⟩ ←
SScomp.Share(k0). Finally we output the set of shares {|qshi⟩ ⊗ |qsh

PRF
i ⟩}i∈[n].

Security of SScomp implies that a quantum polynomial-time (QPT) adversary
outputting a proof of deletion for |qshPRFi ⟩ has indeed deleted any information
about the corresponding classical information cshi in an information theoretic
sense. On the other hand, even if an unbounded adversary later breaks the
computational scheme SScomp to recover the PRF key (and by extension the
preimages), one cannot recover the classical shares if they were deleted by a
bounded adversary. Provided that SSclassical is information-theoretic, we have
that the secret remains hidden.

3 Preliminaries

We let λ denote the security parameter, and let negl(·) be an unspecified negli-
gible function. For n ∈ N, let [n] = {1, ..., n}. For a finite set S, we write s← S

Secret Sharing with Publicly Verifiable Deletion 9

to denote that s is sampled uniformly from S. For a distribution D, we write
x← D to denote that x is sampled according to D. For two distributions D1,D2

over the same set D, their statistical distance is given by

SD(D1,D2) =
1

2

∑
x∈D

∣∣∣∣ Pr
x′←D1

[x′ = x]− Pr
x′←D2

[x′ = x]

∣∣∣∣ .
QPT stands for “quantum polynomial-time.” We use the standard definition

of a quantum secure one-way function (OWF).

Definition 1 (One-Way Functions). An efficiently computable function f :
{0, 1}λ 7→ {0, 1}ℓout(λ) is a one-way function if for every QPT adversary A,

Pr
x←{0,1}λ

[
A(f(x)) ∈ f−1(f(x))

]
≤ negl(λ).

We also use the following standard definition of a quantum-secure pseudo-
random function (PRF).

Definition 2 (Pseudorandom Function). A function F : K × X 7→ Y is a
pseudorandom function family if for any QPT adversary A,∣∣∣∣ Prk←K

[
A|F (k,·)⟩ = 1

]
− Pr
O←Func(X ,Y)

[
A|O⟩ = 1

]∣∣∣∣ ≤ negl(λ),

where Func(X ,Y) denotes the set of functions from X to Y, and writing A|·⟩
denotes giving A quantum oracle access to the indicated function.

Zhandry [20] showed that quantum-secure PRFs can be constructed from
quantum-secure OWFs.

3.1 Quantum Computation

An n-qubit system is a Hilbert space C2n . A register X is a Hilbert space to
which we have assigned a name. A pure state |ψ⟩X on register X is a column
vector with norm 1. We omit the subscript indicating the register when it is not
relevant. The conjugate transpose of |ψ⟩ is denoted by ⟨ψ|. A distribution over
pure states {(pi, |ψi⟩)} is a mixed state which we represent by its density matrix
ρ =

∑
i pi|ψi⟩⟨ψi|. The trace distance between two mixed states ρ and σ is

TD(ρ, σ) =
1

2
Tr

[√
(ρ− σ)†(ρ− σ)

]
.

The trace distance between two mixed states is the optimal distinguishing ad-
vantage of an unbounded adversary between the two states.

A projector is a Hermitian operator such that Π2 = Π, and a projective
measurement is a set of projectors {Πi} such that

∑
iΠi = I. We make use of

the following lemma, which states roughly that if a quantum computation acting
on some initial mixed state ρ produces a deterministic output, then the same
output can be produced without disturbing the state ρ.

10 J. Katz and B. Sela

Lemma 1 (Gentle Measurement Lemma [19]). Let ρ be a quantum state
on some register X, and let {Π,1−Π} be a projective measurement on X such
that Tr(Πρ) ≥ 1− δ. Let

ρ′ =
ΠρΠ

Tr(Πρ)

be the post-measurement state that results from obtaining the outcome corre-
sponding to Π. Then TD(ρ, ρ′) < 2

√
δ.

We say two families of distributions D0 = {D0,λ}λ∈N and D1 = {D1,λ}λ∈N
are computationally indistinguishable if for any QPT distinguisher A, we have∣∣∣∣ Pr

x←D0,λ

[Aλ(x) = 1]− Pr
x←D1,λ

[Aλ(x) = 1]

∣∣∣∣ ≤ negl(λ),

in which case we write D0 ≈c D1. Similarly, we say two families of (possibly
mixed) states {ρ0,λ}λ∈N and {ρ1,λ}λ∈N are computationally indistinguishable if
for any QPT adversary A,

|Pr [1← A(ρ0,λ)]− Pr [1← A(ρ1,λ)]| ≤ negl(λ).

3.2 Compute-and-Compare Obfuscation

The following definitions are taken (almost verbatim) from [9]. Note that we
only require security in the presence of classical auxiliary input.

Definition 3 (Compute-and-Compare Program). Given a function P :
{0, 1}ℓin 7→ {0, 1}ℓout along with a target value lock ∈ {0, 1}ℓout and a message
z ∈ {0, 1}ℓmsg , we define the compute-and-compare program:

CC[P, lock, z](x) =

{
z P (x) = lock

⊥ otherwise.

Definition 4 (Unpredictable Distributions). Let D = {Dλ} be family of
distributions such that Dλ is a distribution over pairs of the form (CC[P, y, z], aux),
where aux is a classical value. D is unpredictable if for all QPT algorithms A,

Pr
(CC[P,y,z],aux)←Dλ

[
A(1λ, f, aux) = y

]
≤ negl(λ).

Definition 5 (Compute-and-Compare Obfuscation). A PPT algorithm
CC.Obf is an obfuscator for the class of unpredictable distributions if for any
family of distributions D = {Dλ} belonging to the class, the following holds:

Functionality Preserving: there exists a negligible function negl such that for
all λ, and every program P in the support of Dλ,

Pr[P ← CC.Obf(1λ, P) : ∀x, P (x) = P (x)] ≥ 1− negl(λ).

Secret Sharing with Publicly Verifiable Deletion 11

Distributional Indistinguishability: there exists an efficient simulator Sim
such that:

(CC.Obf(1λ, P), aux) ≈c (Sim(1λ, P.param), aux)

where (P, aux) ← Dλ, and P.param denotes the input size, output size, and
circuit size of P , which are not required to be obfsucated.

Wichs and Zirdelis [17] construct a compute-and-compare obfuscator for un-
predictable distributions assuming the quantum hardness of LWE.

3.3 Secret Sharing

We now present the standard definitions of (classical) secret sharing. An access
structure A over n parties is a collection of subsets of [n]. If A ∈ A, we say A
is authorized ; A ∈ [n] is unauthorized otherwise. A is monotone if A ∈ A and
A ⊆ A′ implies A′ ∈ A.

Definition 6 (Secret sharing scheme). A secret-sharing sharing scheme with
message space S for monotone access structure A is a pair of algorithms SS =
(Share,Reconstruct) with the following syntax.

– ShareA(s): A randomized algorithm that on input s ∈ S outputs shares
sh1, ..., shn.

– ReconstructA({shk}k∈A, A): On input a set of shares {shk}k∈A and A ⊆ [n],
outputs some s′ ∈ S if A ∈ A, and otherwise outputs ⊥.

Correctness: For all s ∈ S, and any authorized subsets A ∈ A, we have

Pr [(sh1, ..., shn)← Share(s) : Reconstruct({shk}k∈A) = 1] = 1

Privacy: For any unauthorized set A ̸∈ A, and for any pair of secrets s0, s1 ∈ S,
we have

SD
(
{sh0i }i∈A, {sh

1
i }i∈A

)
= 0,

where shb1, ..., sh
b
n ← Share(sb) for b ∈ {0, 1}.

Uniformity: For our results, we require a secret-sharing scheme with the (non-
standard) property that the shares of any unauthorized subset are uniformly
distributed. Formally, we require that shares are alwaysm-bit strings for somem,
and that for any unauthorized set A ̸∈ A the distributions{
{shi}i∈[n] ← Share(s) : {shi}i∈A

}
and

{
{shi}i∈[n] ← {0, 1}m : {shi}i∈A

}
are identical. Chandran et al. [8] proved that Shamir’s threshold secret-sharing
scheme [15] as well the Benaloh-Leichter scheme [6] for general monotone access
structures both satisfy this property.

12 J. Katz and B. Sela

3.4 Secret Sharing with Verifiable Deletion

We now give definitions of secret sharing with certified deletion. Our definitions
are based on those of Bartusek and Raizes [5], modified for publicly verifiable
deletion (PVD) and computational secrecy.

Definition 7 (Secret Sharing with PVD). A secret-sharing scheme with
certified deletion for message space S and a monotone access structure A over
n parties consists of the following four algorithms:

– ShareA(1
λ, s): A randomized algorithm that on input a security parameter

λ ∈ N and a secret s, outputs n share registers Sh1, ...,Shn, and a classical
verification key vk.

– ReconstructA({Shi}i∈A): On input a set of share registers, outputs either s
or ⊥.

– DeleteA(Shi): On input a share register outputs a classical certificate of dele-
tion cert.

– VerifyA(vk, i, cert): On input a verification key vk, an index i ∈ [n], and a cer-
tificate of deletion cert, outputs either ⊤ (indicating accept) or ⊥ (indicating
reject).

Correctness of Reconstruction: For all λ ∈ N and all A ∈ A,

Pr
[
(Sh1, ...,Shn, vk)← ShareA(1

λ, s) : ReconstructA ({Shi}i∈A) = s
]
= 1.

Correctness of Deletion: For all λ ∈ N and all i ∈ [n],

Pr

[
(Sh1, . . . ,Shn, vk)← ShareA(1

λ, s)
cert← Delete(Shi)

: VerifyA(vk, i, cert) = ⊤
]
= 1.

Adaptive certified deletion [5]. The security notion we aim to satisfy involves
an adversary who can adaptively learn and delete shares, provided that the set of
shares which has been learned but not deleted never forms an authorized set at
any point in the experiment. A formal description of the security game SS-ACD
modeling this type of adversary follows.

Definition 8. Let A be an adversary with internal register State. Let A be an
access structure, and let s be a secret. Define SS-ACDA(1

λ, |ψ⟩,A, s) as follows:

– Generate shares and verification key (Sh1, ...,Shn, vk) ← Share(1λ, s). Ini-
tialize the corruption set C = ∅ and the deleted set D = ∅. Initialize the
internal register State of the adversary A with |vk⟩ ⊗ |ψ⟩.

– The adversary may then repeatedly do one of three things:
• Request to corrupt share j ∈ [n]. When the adversary chooses this option,

add j to C and give A the corresponding share register Shj. If C \D ∈ A,
then immediately abort the experiment and output ⊥.

• Delete a share by outputting an index j ∈ [n] and a certificate certj. If
VerifyA(vk, j, certj) = ⊤, add j to D. Otherwise, abort the experiment
and output ⊥.

Secret Sharing with Publicly Verifiable Deletion 13

• End the experiment by outputting A’s internal register State.

– Output A’s internal register State, unless the experiment has already aborted.

A secret sharing scheme for access structure A has computational adaptive PVD
if for any QPT adversary A, any state |ψ⟩, and any secrets s0, s1,

SS-ACDA(1
λ, |ψ⟩,A, s0) ≈c SS-ACDA(1

λ, |ψ⟩,A, s1).

We say that a secret sharing scheme for access structure A has computational
adaptive PVD with everlasting security if for any QPT adversary A, any state
|ψ⟩, and any pair of secrets (s0, s1),

TD
(
SS-ACDA(1

λ, |ψ⟩,A, s0),SS-ACDA(1
λ, |ψ⟩,A, s1)

)
= negl(λ).

4 Construction from Compute-and-Compare Obfuscation

In this section we present a construction for a computational secret-sharing
scheme with adaptive PVD. Our construction takes as input a secret sharing
scheme with the property that any unauthorized set of shares are perfectly uni-
form, and generates a computational scheme with certified deletion for the same
access structure. Our scheme is secure assuming quantum secure compute-and-
compare obfuscation, which in turn can be based off the post-quantum hardness
of LWE [17]. Our construction does does not have everlasting security. How-
ever in Section 4.2, we show how any computational scheme can be upgraded to
satisfy this property assuming the existence of a one-way function.

Construction 1 Let f : {0, 1}κ(λ) 7→ {0, 1}ℓ(λ) be a one-way function. Let SS =
(Share,Reconstruct) be a secret-sharing scheme for monotone access structure A
with shares in {0, 1}m that satisfies the uniformity property. Let CC.Obf be a
post-quantum compute-and-compare obfuscator for unpredictable distributions.

– ShareA(1
λ, s): On input a secret s, sample lock ← {0, 1}m. Generate shares

csh1, ..., cshn ← SS.ShareA(lock). Sample a PRF key k0 ← K.
For each i ∈ [n] do the following:

– For each k ∈ [m] and b ∈ {0, 1}, compute xi,kb = F (k0, b||i||k) and set
yi,kb = f(xi,kb).

– Prepare the quantum state

|qshi⟩ =
⊗
k∈[m]

(
|xi,k0 ⟩+ (−1)cshi,k |xi,k1 ⟩

)
.

14 J. Katz and B. Sela

– Let Rec be the following program:

Rec
(
{(di,k, i, k)}i∈A⊆[n],k∈[m]

)
1: Hardcode the strings {xi,k0 ⊕ x

i,k
1 }i∈[n],k∈[m]

2: for i ∈ A, k ∈ [m] do
3: csh′i,k := di,k · (xi,k0 ⊕ x

i,k
1)

4: end for
5: for i ∈ S do
6: csh′i := csh′i,1, ..., cshi,m
7: end for
8: lock′ = Reconstruct({cshi}i∈A)
9: return lock′

– Generate an obfuscated program R̃ec← CC.Obf(1λ,CC[Rec, lock, s]) with
lock as the target value, and the secret s as the hidden value.

– Initialize register Shi to
(
R̃ec, |qshi⟩

)
.

– Set the public verification key as vk = {yi,k0 , yi,k1 }i∈[n],k∈[m].
– ReconstructA({Shi}i∈A⊆[n], A) : For i ∈ A parse the quantum shares Shi as

|qshi⟩ =
⊗
k∈[m]

(
|xi,k0 ⟩+ (−1)cshi,k |xi,k1 ⟩

)
.

Measure each
(
|xi,k0 ⟩+ (−1)cshi,k |xi,k1 ⟩

)
in the Hadamard basis to obtain

measurement result di,k. Compute R̃ec({(di,k, i, k)}i∈A,k∈[m]) and output what-
ever it outputs.

– DeleteA(Shi) : Parse the quantum share as |qshi⟩ =
(
R̃ec,

⊗
k∈[m] |qshi,k⟩

)
.

Measure each |qshi,k⟩ in the computational basis to obtain measurement re-
sult xi,k. Output {xi,k}k∈[m].

– VerifyA(vk, i, cert) : Parse cert as x1, ..., xm ∈ {0, 1}κ. If f(xk) ∈ {yi,k0 , yi,k1 }
for all k ∈ [m], output ⊤, otherwise output ⊥.

4.1 Proof of Security for Construction 1

We give a brief roadmap for our proof. Recall that the security guarantee of
the compute-and-compare obfuscator only applies if an adversary A given the
program Rec in the clear, together with some auxiliary input aux, cannot predict
the lock value. In our setting the auxiliary input will take the form of some
unauthorized set of quantum shares, together with any information that was
leftover from additional deleted shares. This poses a problem, since the security
definition for the compute-and-compare obfuscator does not allow the auxiliary
input to be chosen adaptively based on the obfuscated program.

To get around this problem, we will first appeal to the security of the under-
lying classical secret sharing scheme to argue that we can replace the classical
shares of lock with uniform strings (Lemma 2). The structure of this portion of
the proof is based on techniques used in [5], with changes based on our differing

Secret Sharing with Publicly Verifiable Deletion 15

deletion mechanism. Now that the auxiliary input is completely independent of
lock, we can appeal to the security of the compute-and-compare obsfucator to
argue that the secret remains hidden.

Formal proof. We introduce some additional notation. Fix a secret s, and
a subset S ⊆ [n]. For a classical secret sharing scheme (Share,Reconstruct), a
partial set of shares {cshi}i∈A⊆[n], and an index j ̸∈ S, we let Sharej(s, {cshi}i∈A)
denote the distribution over the jth share conditioned on the secret s and the
set of shares {cshi}i∈A. If the set of already determined shares are not consistent
with the secret s, then the above distribution outputs ⊥. Similarly, for a subset
of indices, D ⊂ [n], we let ShareD(s, {cshi}i∈A⊆[n]) denote the distribution over
the set of shares {cshi}i∈D conditioned on the secret s and the shares {cshi}i∈A.

We also define the following binary projective measurement, which is pa-
rameterized by a proof of deletion cert. Parsing a deletion certificate as cert :=
xc1 , ..., xcm , where ck ∈ {0, 1}, we define the following projector:

Πcert :=
⊗
k∈[m]

H|ck⟩⟨ck|H.

The measurement outcome above corresponds to measuring a register C in the
Hadamard basis, and then observing c1...cm as the measurement outcome.

We now introduce two experiments ExptSS-ACDreal (s) and ExptSS-ACDrand (s), shown
in Figure 1. The first of these denotes experiment SS-ACD instantiated with
Construction 1 as the secret-sharing scheme, and the second only differs in that
the underlying classical shares are replaced with uniform strings. We show that
the outputs of these two experiments are indistinguishable.

ExptSS-ACDreal (s) ExptSS-ACDrand (s)

– lock← {0, 1}m

– csh1, ..., cshn ← Share(lock) csh1, ...cshn ← {0, 1}m

– Sample uniform xi,k0 , xi,k1 ← {0, 1}κ, hardcode the preimages in
Rec according to Construction 1, and generate the obfuscated
program R̃ec← CC.Obf(1λ,CC[Rec, lock, s]).

– For i ∈ [n] prepare the quantum state

|qshi⟩ =
⊗
k∈[m]

(
|xi,k0 ⟩+ (−1)cshi,k |xi,k1 ⟩

)

– Initialize each share register Shi with the state |R̃ec⟩ ⊗ |qshi⟩.
– Run and output the result of the experiment

SS-ACDA(1
λ, |ψ⟩,A, s) using the above share registers.

Fig. 1: Experiments in the proof.

16 J. Katz and B. Sela

Lemma 2. For any secret s,

TD
(
ExptSS-ACDreal (s),ExptSS-ACDrand (s)

)
≤ negl(λ).

We first introduce the following hybrids.

– Hyb′0(s): This is the same as ExptSS-ACDreal (s) except we lazy sample the under-
lying classical shares as the adversary corrupts them.
• Sample lock ← {0, 1}m. Sample uniform values xi,k0 , xi,k1 ← {0, 1}κ for
i ∈ [n], k ∈ [m], b ∈ {0, 1}. Set yi,kb = f(xi,kb) for b ∈ {0, 1}, i ∈ [n], k ∈
[m], and set the verification key vk = {yi,k0 , yi,k1 }i∈[n],k∈[m]. Generate the
obfuscated program R̃ec← CC.Obf(1λ,CC[Rec, lock, s]).

• Run the SS-ACDA(1
λ, |ψ⟩,A, s) experiment as follows. Initialize A with

|ψ⟩ ⊗ |R̃ec⟩, and initialize the set of corrupted and deleted shares C and
D as empty. When A corrupts a share c, generate the classical share
as cshc ← Sharec(s, {cshi}i∈C), and prepare the following corresponding
quantum encoding on register Shc:

|qshc⟩Shc :=
⊗
k∈m

(
|xc,k0 ⟩+ (−1)cshc,k |xc,k1 ⟩

)
.

Then add c to the set of corrupted share indices C.
– Hyb0(s): In this hybrid we purify the classical share generation by intro-

ducing a set of registers C1, ...,Cn held by the challenger which will hold
superpositions of classical shares. The share registers Sh1, ...,Shn will then
be generated based on the states on the challengers registers.
• Sample lock ← {0, 1}m. Sample uniform values xi,kb ← {0, 1}κ for i ∈
[n], k ∈ [m], b ∈ {0, 1}. Set yi,kb = f(xi,kb) for b ∈ {0, 1}, i ∈ [n], k ∈
[m], and set the verification key vk = {yi,k0 , yi,k1 }i∈[n],k∈[m]. Generate the
obfuscated program R̃ec← CC.Obf(1λ,CC[Rec, lock, s]).

• Whenever a new share c is corrupted, prepare a state on registers Cc

and Shc as follows. Run the procedure Sharec(s, {Ci}i∈C) coherently on
the superposition of sets of shares defined by the challengers registers to
obtain

Cc ← Sharej(s, {Ci}i∈C).

Let
∑

cshc∈{0,1}m αcshc |cshc⟩Cc
be the state on register Cc. Prepare the

following state by running the quantum share encoding procedure co-
herently on Cc:

1

2m/2

∑
cshc

αcshc |cshj⟩Cc

⊗
k∈[m]

(
|xc,k0 ⟩+ (−1)cshc,k |xc,k1 ⟩

)
Shc

.

Add c to C.
• Measure each Ci in the computational basis, and then output the result

of SS-ACDA(1
λ, |ψ⟩,A, s).

Secret Sharing with Publicly Verifiable Deletion 17

– Hybi(s) for i ∈ [n]: Run Hyb0 with the following exception. For the first i
deletions, after each share j is deleted, measure register Cj with respect to
the binary projective measurement {Πcertj ,1 −Πcertj}. If the measurement
result is “reject” (i.e. has measurement outcome 1 − Πcertj), output ⊥ and
abort the experiment.

– Simi(s) for i ∈ [0, n]: Run SS-ACDA(1
λ, |ψ⟩,A, s) as follows.

• When A corrupts a share c, prepare the following state on registers Cc

and Shc:

1

2m/2

∑
cshc∈{0,1}m

|cshc⟩Cc

⊗
k∈[m]

(
|xc,k0 ⟩+ (−1)cshc,k |xc,k1 ⟩

)
Shc

• For the first i deletions, d1, ..., di, after the challenger verifies certdj
(for

j ∈ [i]), perform the binary projective measurement {Πcertdj
,1−Πcertdj

}.
Abort and output ⊥ immediately after any measurement that rejects (i.e.
has measurement outcome 1−Πcert).

Claim 1. For every secret s,

TD
(
ExptSS-ACDreal (s),Hyb0(s)

)
= 0.

Proof. First, the fact that TD(ExptSS-ACDreal (s),Hyb′0(s)) = 0 follows from the def-
inition of the lazy-sampling style sharing procedure used in Hyb′0. The fact that
TD(Hyb′0(s),Hyb0(s)) = 0 follows from the fact that operations on disjoint sets
of registers commute, and in particular measuring the challengers registers at the
beginning or at the end of the experiment will not impact the state of the ad-
versary A. Since measuring the challengers registers in the computational basis
before giving the share registers to A induces the same distribution over classical
shares as in Hyb′0(s), the result follows. ⊓⊔

Recall that in Hybi(s), the state of the challengers share registers that have
been deleted (up to the i′th deletion) are measured in the Hadamard basis and
are therefore in a uniform superposition immediately after the deletion takes
place (assuming the experiment does not abort). Intuitively, if the share registers
that are deleted contain the same distribution (uniform) as they did prior to
being queried, we might hope that when generating newly corrupted shares we
can ignore the shares that have been deleted and condition only on the shares
in C \D. This intuition is proved formally in the following claim.

Define HybTi (s) (resp. SimT
i (s)) as the experiment which runs Hybi(s) (resp.

Simi(s)) but aborts immediately after the ith deletion and outputs the adver-
saries register State.

Claim 2. For every secret s and for every i ∈ [n],

TD
(
HybTi (s),Sim

T
i (s)

)
≤ negl(λ).

18 J. Katz and B. Sela

Proof. Recall that the only difference between HybTi (s) and SimT
i (s) is that in the

former experiment shares are generated based on previously corrupted shares,
and in the latter they are generated as uniform superposition states. We will
prove the claim by induction on i. To see that the claim holds for i = 0, note
that prior to the first deletion, it follows from the property of the classical secret
sharing scheme that any unauthorized set of shares (and in particular whichever
subset is queried by the adversary prior to the first deletion) is perfectly indis-
tinguishable from uniformly random strings. Therefore in Hyb0, each share is a
uniform superposition, and TD(HybT0 (s),Sim

T
0 (s)) = 0.

Now suppose that TD(HybTi (s),Sim
T
i (s)) ≤ negl(λ). We show that the claim

holds for i+ 1 by introducing the following sequence of hybrids.

– HybTi+1 : Run Hybi+1 but abort and output the adversaries register State as
soon as the (i+ 1)th deletion test has been passed.

– Hyb′Ti+1 : Run HybTi+1, up until A outputs its ith deletion. Then, for each
subsequent corruption c, prepare the following state on registers Cc and Shc
which corresponds to encoding a uniform classical share:

1

2m/2

∑
cshc∈{0,1}m

|cshc⟩Cc

⊗
k∈[m]

(
|xc,k0 ⟩+ (−1)cshc,k |xc,k1 ⟩

)
Shc

.

Once A outputs its (i + 1)th deletion certificate, abort and output the ad-
versary’s register State.

– SimT
i+1 : Run Simi+1 but abort and output the adversaries register State as

soon as the (i+ 1)th deletion test has been passed.

We first show that
TD(Hyb′Ti+1,Sim

T
i+1) ≤ negl(λ).

Note that after the ith deletion the experiments Hyb′Ti+1 and SimT
i+1 are identical.

Therefore the trace distance between these two experiments is upper bounded by
their distance immediately prior to the ith deletion. By the inductive hypothesis,
TD(HybTi (s),Sim

T
i (s)) ≤ negl(λ). Since Hyb′Ti+1 is identical to Hybi up until the

ith deletion (but prior to the Hadamard measurement on the deleted share), it
follows that the state of Hyb′Ti+1 prior to the ith deletion is negligibly close to
that of SimT

i+1 prior to the ith deletion, and therefore we have the desired result.
We now show that

TD
(
HybTi+1,Hyb

′T
i+1

)
≤ negl(λ).

To show the above, we will prove that each corrupted share generated after
the ith deletion but before the (i + 1)th deletion in HybTi+1 is in a uniform
superposition. To do so, we will argue that ignoring the deleted share registers
{Ci}i∈D and generating each newly corrupted share based only on the shares
in C \D does not change the outcome of the experiment. Since C \D is never
authorized, it follows from the uniformity property of the classical secret sharing
scheme that generating each newly corrupted share based on C \D results in a
uniform superposition.

Secret Sharing with Publicly Verifiable Deletion 19

We introduce the following sequence of hybrids which give different ways of
generating the shares corrupted after the ith deletion in HybTi+1.

– Expt0: Run HybTi+1 with no changes. In particular, each newly corrupted is
generated as follows based on all shares in C, including those that have been
deleted:

Cc ← Sharec(s, {Ci}i∈C).

– Expt1: Run HybTi+1 but generate each share after the ith deletion as follows:
• Generate fresh share registers for the deleted shares based on the shares

in C \D:
{C′i}i∈D ← ShareD(s, {Ci}i∈C\D).

• Generate each newly corrupted share based on the shares in C \ D to-
gether with the freshly generated share registers {C′i}i∈D:

Cc ← Sharec(s, {Ci}i∈C\D ∪ {C′i}i∈D).

– Expt2: Run HybTi+1 but generate each newly corrupted share as follows based
only on shares in C \D:

Cc ← Sharec(s, {Ci}i∈C\D).

The only difference between Expt1 and Expt2 is that in Expt2, additional share
registers for the indices in D are generated before generating Cj . Since random
variables in a joint distribution can be sampled in any order as a sequence of
samples from conditional distributions, it is clear that SD(Expt1,Expt2) = 0.

To prove that Expt0 and Expt1 are identical, note that the only difference
between these experiments is that each newly corrupted share Cj is generated
based on the original deleted share registers {Ci}i∈D in Expt0, and based on the
freshly generated registers {C′i}i∈D in the case of Expt1. Since the distribution
Sharej(·) takes classical inputs and is being run coherently on superpositions,
it is enough to show that a computational basis measurement of the original
registers {Ci}i∈D and the new registers {C′i}i∈D induce the same distribution.
This follows from the fact that each deleted share register Cd is in a Hadamard
basis state immediately after being deleted. However by the uniformity property
of the underlying classical secret-sharing scheme, if we were to regenerate Cd

based on the shares in C \D we would also obtain a uniform superposition.
Therefore TD(HybTi+1(s),Expt2) = 0. However note that in Expt2, each cor-

rupted share Cj is generated based on a set C \ D such that (C \ D) ∪ {j} is
not authorized (for otherwise the adversary would obtain an authorized set).
Therefore by the uniformity property of the underlying secret sharing scheme,
the newly corrupted share registers in Expt2 contain uniform superpositions. It
follows that TD(HybTi+,Hyb

′T
i+1) ≤ negl(λ) as desired which completes the proof.

⊓⊔

We show that each Hadamard measurement on the deleted registers impacts
the state of the experiment by at most a negligible amount.

20 J. Katz and B. Sela

Claim 3. For every i ∈ [0, n] and every secret s,

TD(Hybi(s),Hybi+1(s)) ≤ negl(λ).

Proof. The only difference between Hybi(s) and Hybi+1(s) is a Hadamard mea-
surement on register Cdi+1

in Hybi+1, where di+1 is the index of the (i+1)th share
that is deleted. Suppose that the Hadamard measurement rejects with probabil-
ity at most ϵ. It follows from the Gentle Measurement Lemma that, conditioned
on the Hadamard measurement accepting, the trace distance between Hybi and
Hybi+1 is at most 2

√
ϵ. It follows that

TD(Hybi(s),Hybi+1(s)) ≤ (1− ϵ)2
√
ϵ+ ϵ.

Therefore to prove the claim we will show that the probability that the Hadamard
measurement rejects is negligible. We start by observing that the probability of
acceptance is almost identical in each of the following hybrids.

– Hybi+1: Run the identically named hybrid defined at the start of the proof.
– HybTi+1: Run Hybi+1 but abort and output State after the (i+1)th deletion.
– SimT

i+1: Run Simi+1 but abort and output State after the (i+ 1)th deletion.

Since Hybi+1(s) and HybTi+1(s) are identical up to the round where the ith
Hadamard test is applied, the acceptance probability is identical in both cases.
By Claim 2, we have

TD(Hybi+1(s),Simi+1(s)) ≤ negl(λ).

Therefore it suffices to show that the probability that the final deletion test in
SimT

i+1 does not pass is negligible.
Recall that the projective measurement Πcert simply measures the classical

share register C in the Hadamard basis to obtain a string c1...cm and checks if the
deletion proof cert := xb1 , ..., xbm that was just output by A is such that bk = ck
for all k ∈ [m]. Since measurements on disjoint registers commute perfectly, we
can instead measure C in the Hadamard basis at the start of the experiment to
obtain a string c1...cm and then run the experiment until A deletes the corre-
sponding share and outputs a proof xb1 ...xbm . Since the measurements commute,
the probability that ck = bk for all i ∈ [m] is identical in each case. With this in
mind, we define the following experiment which is essentially identical to Simi+1

except that we perform the Hadamard measurement on C before running the
adversary as described above.

Fix some share index d ∈ [n], and suppose that d has a non-negligible chance
of being deleted in the (i+1)th round. We will show that conditioned on d being
deleted, the Hadamard test passes with high probability. Suppose otherwise.
Then Expt0(d) given below must output 1 with non-negligible probability3.
3 Expt0(d) is defined by ignoring any text inside a box, and Expt1(d) is defined by

running Expt0(d), but ignoring text outside a box on lines which contain both boxed
and unboxed text.

Secret Sharing with Publicly Verifiable Deletion 21

– Expt0(d) Expt1(d)

• Sample lock ← {0, 1}m and uniform values xi,k0 , xi,k1 ← {0, 1}κ for i ∈
[n], k ∈ [m]. Set yi,kb = f(xi,kb).

• Instantiate Rec with {xi,k0 ⊕ x
i,k
1 } as in Construction 1.

• R̃ecreal ← CC.Obf
(
1λ,CC[Rec, lock, s]

)
R̃ecsim ← Sim(1λ,Rec.param)

• Proceed as in Simi+1 but with the following exception. If A corrupts the
dth share, prepare the state∑

csh

|csh⟩Cd

⊗
k∈[m]

(
|xd,k0 ⟩+ (−1)cshd,k |xd,k1 ⟩

)
Shd

on registers Shd and Cd, and measure Cd in the Hadamard basis to obtain
measurement outcome c1, ..., cm. Note that the residual state on register
Shd is given by

⊗
k∈[m] |xd,kck

⟩.
• Run Simi+1, sampling the shares uniformly, up until A outputs the (i+

1)th proof of deletion cert := (xb1 , ..., xbm).
• If the (i+1)th proof of deletion is not for share d, then abort and output
⊥.

• If bk ̸= ck for some k ∈ [m], output 1, and otherwise output ⊥.

We first show that

Pr[Expt0(d) outputs 1] ̸= negl(λ) =⇒ Pr[Expt1(d) outputs 1] ̸= negl(λ).

If the above does not hold, we can construct a distinguisher violating security
of the compute-and-compare obfuscator. We present our distinguisher BCC be-
low. It takes as input either a simulated program R̃ecsim ← Sim(1λ,Rec.param),
or an obfuscated program R̃ecreal ← CC.Obf(1λ,CC[Rec, lock, s]), as well as the
preimages {xi,k0 , xi,k1 } as auxiliary input.

BCC
(
R̃ec, {xi,k0 , xi,k1 }i∈[n],k∈[m]

)
– Hardcode the index d.
– Run the adversary A initialized with R̃ec and answer the corruption requests

as follows. If A corrupts share q, do the following:
• If q ̸= d, prepare a uniform classical share cshq ← {0, 1}m and encode it

with the appropriate preimages on register Shi.
• If q = d, prepare the state

⊗
i∈[m] |xci⟩ on the share register Shd.

– If A outputs a valid proof of deletion certd := xb1 , ..., xbm for Shd as its
(i+ 1)th deletion, do the following:
• If ck ̸= bk for some k ∈ [m], output real.
• Otherwise, output either sim or real with equal probability.

– If A does not output a proof of deletion for Shd, then output either sim or
real with equal probability.

22 J. Katz and B. Sela

Suppose the implication does not hold, and that Pr[Expt0(d) outputs 1] is non-
negligible but Pr[Expt1(d) outputs 1] ≤ negl(λ). Let Good denote the event in
the execution of BCC that A deletes the dth share as its (i + 1)th deletion but
that bk ̸= ck for some k ∈ [m] (note that this is equivalent to Expt0(i0)/Expt1(i0)

outputting 1). We abuse notation and write R̃ec ← Exptb(d) to mean that R̃ec
is generated according to the first three lines of Exptb(d) for b ∈ {0, 1}. Since
BCC outputs real when an event in Good occurs, and outputs a random guess
otherwise, we have the following:∣∣∣∣∣ Pr

R̃ec←Expt0(d)
[BCC outputs real]− Pr

R̃ec←Expt1(d)
[BCC outputs real]

∣∣∣∣∣
=

1

2

∣∣∣Pr[Expt0(d) outputs 1]− Pr[Expt1(d) outputs 1]
∣∣∣

Since the first term above is assumed to be non-negligible, and the second is
assumed to be negligible, it follows that BCC has non-negligible advantage against
the compute-and-compare obfuscator.

We now show that Pr[Expt1(d) outputs 1] ≤ negl(λ). If this is not the case,
than we can construct an adversary BOWF against the one-way function which
we present below.

BOWF(y)

– Hardcode the index d, and sample uniform index k0 ← [m], and uniform
b0 ← {0, 1}.

– Set yd,k0

b0
:= y. For (i, k, b) ̸= (d, k0, b0), sample uniform xi,kb ← {0, 1}κ and

set yi,kb = f(xi,kb).
– Sample R̃ecsim ← Sim(1λ,Rec.param)

– Simulate Expt1(d) as follows. Initialize A with |ψ⟩ ⊗ |R̃ecsim⟩. When A cor-
rupts some share q, do the following:
• If q ̸= d, sample a uniform classical string csh← {0, 1}m, and encode it

with the corresponding preimages.
• If q = d, prepare the state⊗

k ̸=k0

(
|xd,k0 ⟩+ (−1)cshd,k |x1⟩d,k

)⊗
|xd,k0

1−b ⟩

– If A outputs as part of a certificate of deletion, a preimage of y, then output
y. Otherwise output ⊥.

If y is the evaluation of a uniform preimage, BOWF perfectly simulates Expt1(d).
If Expt1(d) has a non-negligible chance of outputting 1, then the above procedure
has a non-negligible chance of inverting the one-way function. ⊓⊔

Proof (of Lemma 2). With the above claims in hand the main result easily fol-
lows. In more detail, note that Simn(s) is identical to ExptSS-ACDrand (s), and therefore

Secret Sharing with Publicly Verifiable Deletion 23

TD
(
Simn(s),Expt

SS-ACD
rand (s)

)
= 0. Claim 1 implies TD(ExptSS-ACDreal (s),Hyb′0(s)) ≤

negl(λ). Claim 2 implies TD(Hyb0(s),Hybn(s)) ≤ negl(λ), and Claim 3 implies
that TD(Hybn(s),Simn(s)) ≤ negl(λ). Putting the above together we obtain the
lemma statement. ⊓⊔

We now prove the security of Construction 1.

Theorem 1. Let SSclassical be a classical secret sharing scheme such that any
unauthorized set of shares is perfectly indistinguishable from uniform. Then in-
stantiating 1 with SSclassical gives a scheme that has computational adaptive PVD.

Proof. Let SSPVD be the secret sharing scheme that results from Construction 1.
We wish to show that for any QPT adversary A and any two secrets s0, s1,

SS-ACD(1λ, |ψ⟩,A, s0) ≈c SS-ACD(1λ, |ψ⟩,A, s1).

Note that for b ∈ {0, 1}, ExptSS-ACDreal (sb) is identical to SS-ACD(1λ, |ψ⟩,A, sb)
instantiated with Construction 1. It follows from Lemma 2 that for b ∈ {0, 1},

TD
(
ExptSS-ACDreal (sb),Expt

SS-ACD
rand (sb)

)
≤ negl(λ).

Therefore, it suffices to show that ExptSS-ACDrand (s0) ≈ ExptSS-ACDrand (s1). We prove
the claim by appealing to the security of the compute-and-compare obfuscator.

Consider an adversary BCC against the compute-and-compare obfuscator
which receives uniform preimages {xi,k0 , xi,k1 }i∈[n],k∈[m], and an obfuscated pro-
gram R̃ec← CC.Obf(CC[Rec, lock, sb]) where lock is uniform. Clearly lock is un-
predictable, even given Rec in the clear together with the preimages. Therefore
it follows from the security of the compute-and-compare obfuscator that there
exists a simulator Sim(1λ,Rec.param) such that(

R̃ecreal, {xi,k0 , xi,k1 }i∈[n],k∈[m]

)
≈c

(
R̃ecsim, {xi,k0 , xi,k1 }i∈[n],k∈[m]

)
,

where the preimages above are uniform and R̃ecsim ← Sim(1λ,Rec.param). There-
fore, replacing the obfuscated program R̃ecreal in the experiment ExptSS-ACDrand (sb)

with a simulated program R̃ecsim is undetectable to a computationally bounded
adversary. However since this modified experiment no longer depends on the
hidden value sb, the desired claim follows. ⊓⊔

4.2 Certified Everlasting Security

We now present our construction which takes an arbitrary computational secret
sharing scheme with adaptive PVD and upgrades it to have everlasting security.

Construction 2 Let SScomp be a computational secret sharing scheme with adap-
tive publicly verifiable deletion (definition 8), and let SSclassical be a classical secret
sharing scheme for the same access structure with the uniformity property. Let
f : {0, 1}κ 7→ {0, 1}β be a one-wway function, and let F : K×{0, 1}⌈1+log(n·m)⌉ 7→
{0, 1}κ be a pseudorandom function family.

24 J. Katz and B. Sela

– ShareA(1
λ, s) : On input a secret s, sample uniform PRF key k0 ← K, and set

xi,kb , xi,k1 := F (k0, b||i||k) for all i ∈ [n], k ∈ [m], b ∈ {0, 1}. Set yi,kb = f(xi,kb).
Generate the following quantum shares and verification key for the PRF key:

vkPRF, {|qshPRFi ⟩}i∈[n] ← SScomp.Share (k0) .

Generate classical shares {cshi}i∈[n] ← SSclassical.Share(s). For each i ∈ [n]
do the following:
• Let cshi,k, be the kth bit of cshi and prepare the quantum state

|qshsi ⟩ =
⊗
k∈[m]

(
|xi,k0 ⟩+ (−1)cshi,k |xi,k1 ⟩

)
.

• Set |qshi⟩ := |qsh
s
i ⟩|qsh

PRF
i ⟩.

Set the verification key as vk =
(
vkPRF, {y(i,k)0 , yi,k1 }i∈[n],k∈[m]

)
.

– ReconstructA({|qshi⟩}i∈A) : Parse each share as |qshi⟩ = |qsh
s
i ⟩|qsh

PRF
i ⟩. Re-

construct the PRF key as

k0 ← SScomp.Reconstruct({|qshPRFi ⟩}i∈A).

Use the PRF key to reconstruct the xor’ed preimages {xi,k0 ⊕ x
i,k
1 }. Use the

preimages together with the quantum shares {|qshsi ⟩}i∈A to obtain classical
shares {cshi}i∈A. Output the secret s← SSclassical.Reconstruct)({cshi}i∈A).

– DeleteA(|qsh⟩) : Parse |qsh⟩ as |qshs⟩⊗|qshPRF⟩, and run SScomp.Delete(|qshPRFi ⟩)
to obtain certPRF. Measure the state |qshsi ⟩ in the computational basis to ob-
tain certs. Output (certs, certPRF) as the proof of deletion.

– VerifyA(vk, i, cert) : On input an index i, a proof cert := (certs, certPRF)

and a verification key vk =
(
vkPRF, {(yi,k0 , yi,k1)}i∈[n],k∈[m]

)
, parse certs as

x1, ..., xm ∈ {0, 1}κ and check that f(xk) ∈ {yi,k0 , yi,k1 } for all k ∈ [m]. If the
above condition is satisfied and SScomp.Delete(vk

PRF, i, certPRF) = ⊤, then
return ⊤, and otherwise return ⊥.

Lemma 3. Construction 2 has adaptive PVD with everlasting security.

The proof is almost identical to that of Theorem 1, except where we appeal to
the security of the computational secret sharing scheme rather than the compute-
and-compare obfuscator in order to hide the PRF key. For completeness we
include a full proof in Appendix A

5 Construction from One-Way Functions

We now present our secret sharing construction based only on the existence of
a post-quantum one-way function.

Secret Sharing with Publicly Verifiable Deletion 25

Construction 3 Let f : {0, 1}κ 7→ {0, 1}β be a one-way function, and let
SSclassical be a classical secret sharing scheme such that any unauthorized set of
shares is indistinguishable from uniform. Let F : K×{0, 1}⌈1+log(n·m)⌉ 7→ {0, 1}κ
be a pseudorandom function family.

– ShareA(1
λ, s) :

• Compute {csh−1i }i∈[n] ← SSclassical.Share(s). Sample k0prf , . . . , k
n
prf ← K,

and create shares {cshℓi} ← Share(kℓprf) for each ℓ ∈ {0, ..., n− 1}.
• For ℓ = 0, ..., n do the following:

∗ For i ∈ [n], k ∈ [m], let i||k be the concatenations of the binary
representation of i and k. For b ∈ {0, 1}, let xi,kℓ,b := F (kℓprf , b||i||k).
Prepare the quantum state

|qshℓ−1i ⟩ =
⊗
k∈[m]

(
|xi,kℓ,0⟩+ (−1)csh

ℓ−1
i,k |xi,kℓ,1⟩

)
• For each i ∈ [n], initialize register Shi with the state ⊗

ℓ∈[−1,n−1]

|qshℓi⟩, csh
n
i

 .

– ReconstructA({Shi}i∈A, A) :
• Parse each share as the tuple

(⊗
ℓ∈[−1,n−1] |qsh

ℓ
i⟩, csh

n
i

)
, and compute

knprf ← SSclassical.Reconstruct({cshni }i∈A).

• For ℓ = n− 1, ..., 0 do the following:
∗ Compute xi,kℓ+1,b = F (kℓ+1

prf , b||i||k). Measure |qshℓi⟩ in the Hadamard

basis to obtain strings {dℓ+1
i,k }. Compute cshℓi,k := dℓ+1

i,k ·
(
xi,kℓ+1,0 ⊕ x

i,k
ℓ+1,1

)
for each i ∈ [n], k ∈ [m], and set cshℓi := cshℓi,1...csh

ℓ
i,m.

∗ Compute kℓprf ← SSclassical.Reconstruct({cshℓi}i∈S).
• Use the PRF key k0prf that was reconstructed at the end of the above loop

to recover the secret shares {csh−1i }i∈A and then recover the secret s.
– DeleteA(Shi) : Apply a computational basis measurement to register Shi to

obtain strings {xi,kℓ }i,ℓ∈[n],k∈[m]. Output {(i, ℓ, k, xi,kℓ)}.
– VerifyA(vk, i, cert) : Parse cert as {(i, ℓ, k, xi,kℓ)}. If f(xi,kℓ) ∈ {yi,k0,ℓ, y

i,k
1,ℓ} for

all i, ℓ, k, then output ⊤, otherwise output ⊥.

The proof of security is similar to that of Construction 1 and can be found
in Appendix B.

Theorem 2. Construction 3 has adaptive publicly verifiable deletion security.

26 J. Katz and B. Sela

References

1. Ambainis, A., Mosca, M., Tapp, A., Wolf, R.: Private quantum channels. In:
41st Annual Symposium on Foundations of Computer Science. pp. 547–553.
IEEE Computer Society Press, Redondo Beach, CA, USA (Nov 12–14, 2000).
https://doi.org/10.1109/SFCS.2000.892142

2. Bartusek, J., Goyal, V., Khurana, D., Malavolta, G., Raizes, J., Roberts, B.: Soft-
ware with certified deletion. In: Joye, M., Leander, G. (eds.) Advances in Cryp-
tology – EUROCRYPT 2024, Part IV. Lecture Notes in Computer Science, vol.
14654, pp. 85–111. Springer, Cham, Switzerland, Zurich, Switzerland (May 26–30,
2024). https://doi.org/10.1007/978-3-031-58737-5_4

3. Bartusek, J., Khurana, D.: Cryptography with certified deletion. In: Handschuh,
H., Lysyanskaya, A. (eds.) Advances in Cryptology – CRYPTO 2023, Part V.
Lecture Notes in Computer Science, vol. 14085, pp. 192–223. Springer, Cham,
Switzerland, Santa Barbara, CA, USA (Aug 20–24, 2023). https://doi.org/10.
1007/978-3-031-38554-4_7

4. Bartusek, J., Khurana, D., Malavolta, G., Poremba, A., Walter, M.: Weakening
assumptions for publicly-verifiable deletion. In: Rothblum, G.N., Wee, H. (eds.)
TCC 2023: 21st Theory of Cryptography Conference, Part IV. Lecture Notes in
Computer Science, vol. 14372, pp. 183–197. Springer, Cham, Switzerland, Taipei,
Taiwan (Nov 29 – Dec 2, 2023). https://doi.org/10.1007/978-3-031-48624-1_7

5. Bartusek, J., Raizes, J.: Secret sharing with certified deletion. In: Reyzin, L.,
Stebila, D. (eds.) Advances in Cryptology – CRYPTO 2024, Part VII. Lecture
Notes in Computer Science, vol. 14926, pp. 184–214. Springer, Cham, Switzer-
land, Santa Barbara, CA, USA (Aug 18–22, 2024). https://doi.org/10.1007/
978-3-031-68394-7_7

6. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions.
In: Goldwasser, S. (ed.) Advances in Cryptology – CRYPTO’88. Lecture Notes in
Computer Science, vol. 403, pp. 27–35. Springer, New York, USA, Santa Barbara,
CA, USA (Aug 21–25, 1990). https://doi.org/10.1007/0-387-34799-2_3

7. Broadbent, A., Islam, R.: Quantum encryption with certified deletion. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020: 18th Theory of Cryptography Conference,
Part III. Lecture Notes in Computer Science, vol. 12552, pp. 92–122. Springer,
Cham, Switzerland, Durham, NC, USA (Nov 16–19, 2020). https://doi.org/10.
1007/978-3-030-64381-2_4

8. Chandran, N., Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Adaptive extractors
and their application to leakage resilient secret sharing. In: Malkin, T., Peikert,
C. (eds.) Advances in Cryptology – CRYPTO 2021, Part III. Lecture Notes in
Computer Science, vol. 12827, pp. 595–624. Springer, Cham, Switzerland, Virtual
Event (Aug 16–20, 2021). https://doi.org/10.1007/978-3-030-84252-9_20

9. Coladangelo, A., Liu, J., Liu, Q., Zhandry, M.: Hidden cosets and applications to
unclonable cryptography. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology
– CRYPTO 2021, Part I. Lecture Notes in Computer Science, vol. 12825, pp.
556–584. Springer, Cham, Switzerland, Virtual Event (Aug 16–20, 2021). https:
//doi.org/10.1007/978-3-030-84242-0_20

10. Hiroka, T., Kitagawa, F., Morimae, T., Nishimaki, R., Pal, T., Yamakawa, T.:
Certified everlasting secure collusion-resistant functional encryption, and more.
In: Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT 2024,
Part III. Lecture Notes in Computer Science, vol. 14653, pp. 434–456. Springer,
Cham, Switzerland, Zurich, Switzerland (May 26–30, 2024). https://doi.org/10.
1007/978-3-031-58734-4_15

https://doi.org/10.1109/SFCS.2000.892142
https://doi.org/10.1109/SFCS.2000.892142
https://doi.org/10.1007/978-3-031-58737-5_4
https://doi.org/10.1007/978-3-031-58737-5_4
https://doi.org/10.1007/978-3-031-38554-4_7
https://doi.org/10.1007/978-3-031-38554-4_7
https://doi.org/10.1007/978-3-031-38554-4_7
https://doi.org/10.1007/978-3-031-38554-4_7
https://doi.org/10.1007/978-3-031-48624-1_7
https://doi.org/10.1007/978-3-031-48624-1_7
https://doi.org/10.1007/978-3-031-68394-7_7
https://doi.org/10.1007/978-3-031-68394-7_7
https://doi.org/10.1007/978-3-031-68394-7_7
https://doi.org/10.1007/978-3-031-68394-7_7
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/978-3-030-64381-2_4
https://doi.org/10.1007/978-3-030-64381-2_4
https://doi.org/10.1007/978-3-030-64381-2_4
https://doi.org/10.1007/978-3-030-64381-2_4
https://doi.org/10.1007/978-3-030-84252-9_20
https://doi.org/10.1007/978-3-030-84252-9_20
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1007/978-3-031-58734-4_15
https://doi.org/10.1007/978-3-031-58734-4_15
https://doi.org/10.1007/978-3-031-58734-4_15
https://doi.org/10.1007/978-3-031-58734-4_15

Secret Sharing with Publicly Verifiable Deletion 27

11. Hiroka, T., Morimae, T., Nishimaki, R., Yamakawa, T.: Quantum encryption
with certified deletion, revisited: Public key, attribute-based, and classical com-
munication. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASI-
ACRYPT 2021, Part I. Lecture Notes in Computer Science, vol. 13090, pp. 606–
636. Springer, Cham, Switzerland, Singapore (Dec 6–10, 2021). https://doi.org/
10.1007/978-3-030-92062-3_21

12. Hiroka, T., Morimae, T., Nishimaki, R., Yamakawa, T.: Certified everlasting zero-
knowledge proof for QMA. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryp-
tology – CRYPTO 2022, Part I. Lecture Notes in Computer Science, vol. 13507,
pp. 239–268. Springer, Cham, Switzerland, Santa Barbara, CA, USA (Aug 15–18,
2022). https://doi.org/10.1007/978-3-031-15802-5_9

13. Kitagawa, F., Nishimaki, R., Yamakawa, T.: Publicly verifiable deletion from min-
imal assumptions. In: Rothblum, G.N., Wee, H. (eds.) TCC 2023: 21st Theory of
Cryptography Conference, Part IV. Lecture Notes in Computer Science, vol. 14372,
pp. 228–245. Springer, Cham, Switzerland, Taipei, Taiwan (Nov 29 – Dec 2, 2023).
https://doi.org/10.1007/978-3-031-48624-1_9

14. Poremba, A.: Quantum proofs of deletion for learning with errors. Cryptology
ePrint Archive, Report 2022/295 (2022), https://eprint.iacr.org/2022/295

15. Shamir, A.: How to share a secret. Communications of the Association for Com-
puting Machinery 22(11), 612–613 (Nov 1979). https://doi.org/10.1145/359168.
359176

16. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q., Os-
wald, E. (eds.) Advances in Cryptology – EUROCRYPT 2014. Lecture Notes
in Computer Science, vol. 8441, pp. 129–146. Springer, Berlin, Heidelberg,
Germany, Copenhagen, Denmark (May 11–15, 2014). https://doi.org/10.1007/
978-3-642-55220-5_8

17. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: Umans, C. (ed.) 58th Annual Symposium on Foundations of Computer Science.
pp. 600–611. IEEE Computer Society Press, Berkeley, CA, USA (Oct 15–17, 2017).
https://doi.org/10.1109/FOCS.2017.61

18. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (jan 1983). https:
//doi.org/10.1145/1008908.1008920, https://doi.org/10.1145/1008908.1008920

19. Winter, A.: Coding theorem and strong converse for quantum channels. IEEE
Transactions on Information Theory 45(7), 2481–2485 (1999). https://doi.org/10.
1109/18.796385

20. Zhandry, M.: How to construct quantum random functions. In: 53rd Annual Sym-
posium on Foundations of Computer Science. pp. 679–687. IEEE Computer Soci-
ety Press, New Brunswick, NJ, USA (Oct 20–23, 2012). https://doi.org/10.1109/
FOCS.2012.37

https://doi.org/10.1007/978-3-030-92062-3_21
https://doi.org/10.1007/978-3-030-92062-3_21
https://doi.org/10.1007/978-3-030-92062-3_21
https://doi.org/10.1007/978-3-030-92062-3_21
https://doi.org/10.1007/978-3-031-15802-5_9
https://doi.org/10.1007/978-3-031-15802-5_9
https://doi.org/10.1007/978-3-031-48624-1_9
https://doi.org/10.1007/978-3-031-48624-1_9
https://eprint.iacr.org/2022/295
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1109/FOCS.2017.61
https://doi.org/10.1109/FOCS.2017.61
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1109/18.796385
https://doi.org/10.1109/18.796385
https://doi.org/10.1109/18.796385
https://doi.org/10.1109/18.796385
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37

28 J. Katz and B. Sela

A Proof of Security for Construction 2

Theorem 3. Construction 2 has adaptive publicly verifiable deletion security.

We will prove the theorem by showing that TD(ExptSS-ACDreal (s),ExptSS-ACDsim (s)) ≤
negl(λ), where the two experiments are defined below.

ExptSS-ACDreal (s) ExptSS-ACDsim (s)

– {cshsi}i∈[n] ← Share(s) {cshsi}i∈[n] ← {0, 1}
– Run SS-ACDA(1

λ, |ψ⟩,A, s) as normal except use the shares generated above
as the underlying classical shares for s in Construction 2.

We first introduce the following hybrids which are almost identical to those
introduced in the proof of security for Construction 1.

– Hyb′0(s): This is the same as ExptSS-ACDreal (s) except we lazy sample the under-
lying classical shares as the adversary corrupts them.
• Sample uniform PRF key k0 ← K, and set xi,kb := F (k0, b||i||k) for
i ∈ [n], k ∈ [m], b ∈ {0, 1}. Set yi,kb = f(xi,kb). Generate the following
quantum shares for the PRF key:

vkPRF, {|qshPRFi ⟩} ← SScomp.Share (k0) .

• Run the experiment SS-ACDA(1
λ, |ψ⟩,A, s) as follows. Initialize A with

|ψ⟩, and initialize the set of corrupted and deleted shares C and D as
empty. When A corrupts a share c, generate the classical share as cshc ←
Sharec(s, {cshi}i∈C), and prepare the following corresponding quantum
encoding on register Shc:

|qshc⟩Shc :=
⊗
k∈m

(
|xc,k0 ⟩+ (−1)cshc,k |xc,k1 ⟩

)
.

Then add c to the set of corrupted share indices C.
– Hyb0(s): In this hybrid we purify the classical share generation by intro-

ducing a set of registers C1, ...,Cn held by the challenger which will hold
superpositions of classical shares. The share registers Sh1, ...,Shn will then
be generated based on the states on the challengers registers.
• Sample a uniform PRF key k0 ← K and set xi,kb = F (k0, b||i||k) for
i ∈ [n], k ∈ [m], b ∈ {0, 1}. Set yi,kb = f(xi,kb), and set the verification
key vk = {yi,k0 , yi,k1 }i∈[n],k∈[m]. Generate the following quantum shares
for the PRF key:

vkPRF, {|qshPRFi ⟩} ← SScomp.Share (k0) .

Secret Sharing with Publicly Verifiable Deletion 29

• Run the experiment SS-ACDA(1
λ, |ψ⟩,A, s) as follows. Whenever a new

share c is corrupted, prepare a state on registers Cc and Shc as follows.
Run the procedure Sharec(s, {Ci}i∈C) coherently on the superposition of
sets of shares defined by the challengers registers to obtain

Cc ← Sharec(s, {Ci}i∈C).

Let
∑

cshc∈{0,1}m αcshc |cshc⟩Cc
be the state on register Cc. Prepare the

following state on register Shc by running the quantum share encoding
procedure coherently on Cc:

1

2m/2

∑
cshc

αcshc |cshc⟩Cc

⊗
k∈[m]

(
|xc,k0 ⟩+ (−1)cshc,k |xc,k1 ⟩

)
Shc

.

Additionally add |qshPRFc ⟩ to Shc. Add c to C.
• Measure each Ci in the computational basis, and then output the result

of SS-ACDA(1
λ, |ψ⟩,A, s).

– Hybi(s) for i ∈ [n]: Run Hyb0 with the following exception. For the first i
deletions, after each share j is deleted, measure register Cj with respect to
the binary projective measurement {Πcertj ,1 −Πcertj}. If the measurement
result is “reject” (i.e. has measurement outcome 1 − Πcertj), output ⊥ and
abort the experiment.

– Simi(s) for i ∈ [0, n]: Run SS-ACDA(1
λ, |ψ⟩,A, s) as follows.

• When A corrupts a share c, prepare the following state on registers Cc

and Shc:

1

2m/2

∑
cshc∈{0,1}m

|cshc⟩Cc

⊗
k∈[m]

(
|xc,k0 ⟩+ (−1)cshc,k |xc,k1 ⟩

)
Shc

.

Add |qshPRFc ⟩ to Shc and add c to C.
• For the first i deletions, d1, ..., di, after the challenger verifies certdb

,
perform the binary projective measurement {Πcertdb

,1−Πcertdb
}. Abort

and output ⊥ immediately after any measurement that rejects (i.e. has
measurement outcome 1−Πcert).

Claim 4. For every secret s,

TD
(
ExptSS-ACDreal (s),Hyb0(s)

)
≤ negl(λ)

Proof. The proof is identical to that Claim 1 ⊓⊔

Claim 5. For every secret s and every i ∈ [n],

TD
(
HybTi (s),Sim

T
i (s)

)
≤ negl(λ)

Proof. The proof is identical to that of Claim 2 ⊓⊔

30 J. Katz and B. Sela

The proof of the following claim is almost identical to that of Claim 3, with
several changes due to the use of a computational secret sharing scheme in place
of a compute-and-compare obfuscator.

Claim 6. For every i ∈ [0, n] and every secret s,

TD(Hybi(s),Hybi+1(s)) ≤ negl(λ).

Proof. The only difference between Hybi(s) and Hybi+1(s) is a Hadamard mea-
surement on register Cdi+1

in Hybi+1, where di+1 is the index of the (i+1)th share
that is deleted. Suppose that the Hadamard measurement rejects with probabil-
ity at most ϵ. It follows from the Gentle Measurement Lemma that, conditioned
on the Hadamard measurement accepting, the trace distance between Hybi and
Hybi+1 is at most 2

√
ϵ. It follows that

TD(Hybi(s),Hybi+1(s)) ≤ (1− ϵ)2
√
ϵ+ ϵ.

Therefore to prove the claim we will show that the probability that the Hadamard
measurement rejects is negligible. We start by observing that the probability of
acceptance is almost identical in each of the following hybrids.

– Hybi+1:
– HybTi+1: Run Hybi+1 but abort and output State after the (i+ 1)st deletion.
– SimT

i+1: Run Simi+1 but abort and output State after the (i+ 1)st deletion.

Since Hybi+1(s) and HybTi+1(s) are identical up to the round where the ith
Hadamard test is applied, the acceptance probability is identical in both cases.
By Claim 2, we have

TD(Hybi+1(s),Simi+1(s)) ≤ negl(λ).

Therefore it suffices to show that the probability that the final deletion test in
SimT

i+1 does not pass is negligible.
Recall that the projective measurement Πcert simply measures the classical

share register C in the Hadamard basis to obtain a string c1...cm and checks if the
deletion proof cert := xb1 , ..., xbm that was just output by A is such that bk = ck
for all k ∈ [m]. Since measurements on disjoint registers commute perfectly, we
can instead measure C in the Hadamard basis at the start of the experiment to
obtain a string c1...cm and then run the experiment until A deletes the corre-
sponding share and outputs a proof xb1 ...xbm . Since the measurements commute,
the probability that ck = bk for all i ∈ [m] is identical in each case. With this in
mind, we define the following experiment which is essentially identical to Simi+1

except that we perform the Hadamard measurement on C before running the
adversary as described above.

Fix some share index d, and suppose that d has a non-negligible chance of
being deleted in the (i + 1)th round. We will show that conditioned on d be-
ing deleted, the Hadamard test passes with high probability. Suppose otherwise.
Then experiment Expt0(d) shown below must output 1 with non-negligible prob-
ability.

Secret Sharing with Publicly Verifiable Deletion 31

– Expt0(d) Expt1(d) Expt2(d)

• Sample uniform PRF key k0 and compute xi,kb := F (k0, b||i||k) for i ∈
[n], k ∈ [m], b ∈ {0, 1}. Set yi,kb = f(xi,kb).

• vkPRF, {|qshPRFi ⟩}i∈[n] ← SScomp.Share(k0)

vkPRF, {|qshPRFi ⟩}i∈[n] ← SScomp.Share(0) .

• Resample the preimages uniformly as xi,k0 , xi,k1 ← {0, 1}κ

• Proceed as in Simi+1 but with the following exception. If A corrupts the
dth share, prepare the state

1

2m/2

∑
cshd∈{0,1}m

|cshd⟩Cd

⊗
k∈[m]

(
|xd,k0 ⟩+ (−1)cshd,k |xd,k1 ⟩

)
Shd

on registers Shd and Cd, and measure Cd in the Hadamard basis to obtain
measurement outcome c1, ..., cm. Note that the residual state on register
Shd is given by ⊗

k∈[m]

|xd,kck
⟩

• Run Simi+1, sampling the shares uniformly, up until A outputs the (i+
1)th proof of deletion cert := (xb1 , ..., xbm).

• If the (i+1)th proof of deletion is not for share d, then abort and output
⊥.

• If bk ̸= ck for some i ∈ [m], output 1, and otherwise output ⊥.

We first show that

Pr[Expt0(d) outputs 1] ̸= negl(λ) =⇒ Pr[Expt1(d) outputs 1] ̸= negl(λ).

If the above does not hold, then we can construct a distinguisher that breaks the
security of the computational secret sharing scheme SScomp. Note that Expt0(d)
and Expt1(d) only differ in which secret is being shared by the computational
secret sharing scheme. We present our distinguisher BSS below.

BSS
– Hardcode the index d.
– Sample a PRF key kprf ← K and give the challenger (kprf , 0). The Challenger

then creates secret shares {|qshPRFi ⟩} of either kprf or 0.
– Compute xi,kb := F (kprf , b||i||k) for i ∈ [n], k ∈ [m], b ∈ {0, 1}.
– Simulate the experiment Simi+1 with adversary A as follows. If A requests

to corrupt share q do the following:
• If q ̸= d, prepare a uniform classical share cshi, and encode it with the

appropriate preimages as the following state:⊗
k∈[m]

(
|xq,k0 ⟩+ (−1)cshq,k |xq,k1 ⟩

)
.

32 J. Katz and B. Sela

• If q = d, sample uniform c1, ..., cm ∈ {0, 1} and prepare the state
|qshsq⟩ :=

⊗
i∈[m] |xci⟩.

Corrupt the share |qshPRFq ⟩ and initialize register Shq to the state (|qshsq⟩, |qsh
PRF
q ⟩).

Give Shq to A.
– If A outputs as its (i+1)th deletion proof, a valid proof of deletion certd :=
xb1 , ..., xbn for Shd, do the following:
• If ck ̸= bk for some k ∈ [m], output kprf
• Otherwise, output either kprf or 0 with equal probability.

– If A does not output a proof of deletion for the share d, then output either
kprf or 0 with equal probability.

Note that the above adversary perfectly simulates either Expt0(d) or Expt1(d)
depending on if the challenger secret shares 0 or the PRF key k0. Let Good
denote the event that in the execution of BSS above, A outputs a valid proof
of deletion for d, and ck ̸= bk for some k ∈ [m] (note that this is equivalent
to Expt0(d)/Expt1(d) outputting 1). Note that BSS guesses randomly unless an
event in Good occurs. Therefore the advantage of BSS is∣∣∣Pr [BSS outputs real | Expt0(d)]− Pr[BSS outputs real | Expt1(d)]

∣∣∣
=

1

2

∣∣∣Pr[Expt0(d) outputs 1]− Pr[Expt1(d) outputs 1]
∣∣∣

By assumption the first term above is non-negligible and the second term is
negligible, which implies that BSS has non-negligible advantage against the com-
putational secret sharing scheme as desired.

We now show that

Pr[Expt1(d) outputs 1] ̸= negl(λ) =⇒ Pr[Expt2(d) outputs 1] ̸= negl(λ).

If the above does not hold, we can construct an adversary B|O⟩PRF against the PRF,
which we present below. The adversary uses the oracle O to generate the preim-
ages, and then simulates the remainder of the experiment in Expt1(d)/Expt2(d).

B|O⟩PRF

– Hardcode the index d.
– Compute xi,kb = O(b||i||k) for i ∈ [n], k ∈ [m], b ∈ {0, 1}. Generate quantum

shares {|qshPRFi ⟩}i∈[n] ← SScomp.Share(0).
– Simulate the experiments Expt1(d)/Expt2(d) with adversary A as follows. If
A requests to corrupt share q do the following:
• If q ̸= d, prepare a uniform classical share csh, and encode it with the

appropriate preimages as the following state:

|qshsq⟩ :=
⊗
k∈[m]

(
|xq,k0 ⟩+ (−1)cshq,k |xq,k1 ⟩

)
• If q = d, sample uniform c1, ..., cm ∈ {0, 1}, and prepare the state
|qshs⟩ :=

⊗
i∈[m] |xci⟩.

Secret Sharing with Publicly Verifiable Deletion 33

Initialize register Shq with the state (|qshsq⟩, |qsh
PRF
q ⟩) and give Shq to A.

– If A outputs a valid proof of deletion certd := xb1 , ..., xbn for Shd, do the
following:
• If ck ̸= bk for some k ∈ [m], output PRF.
• Otherwise, output either PRF or Uniform with equal probability.

– If A does not output a proof of deletion for the share d, then output either
PRF or Uniform with equal probability.

If the oracle is a random function, then B|O⟩PRF perfectly simulates Expt2(d). and if
the oracle is a PRF then B|O⟩PRF perfectly simulates Expt1(d). Let Good denote the
event that the simulation of Expt1(d)/Expt2(d) in an execution of the adversary
B|O⟩PRF above outputs 1. Note that the adversary guesses that the oracle is a PRF
if an event in Good occurs, and otherwise the adversary outputs a random guess.
Therefore the advantage of B|O⟩PRF is given by the following:∣∣∣Pr [B|O⟩PRF outputs real | Expt0(d)

]
− Pr

[
B|O⟩PRF outputs real | Expt1(d)

]∣∣∣
=

1

2

∣∣∣Pr[Expt1(d) outputs 1]− Pr[Expt2(d) outputs 1]
∣∣∣.

Therefore if the first term above is non-negligible but the second term is negli-
gible, then B|O⟩PRF violates the security of the PRF.

We now show that Pr[Expt2(d) outputs 1] ≤ negl(λ). If this is not the case,
than we can construct an adversary BOWF against the one-way function which
we present below.

BOWF(y)

– Hardcode the index d, and sample uniform index k0 ∈ [m], and uniform
b0 ∈ {0, 1}.

– Set yd,k0

b0
:= y. Sample uniform xi,kb ← {0, 1}κ for (b, i, k) ̸= (b0, d, k0) and

set yi,kb = f(xi,kb).
– Generate quantum shares {|qshPRFi ⟩}i∈[n] ← SScomp.Share(0).
– Simulate Expt2(d) as follows. Initialize A with |ψ⟩. When A corrupts some

share q, do the following:
• If q ̸= d, sample a uniform classical string csh← {0, 1}m, and encode it

with the corresponding preimages.

|qshsi ⟩ :=
⊗
k∈[m]

(
|xq,k0 ⟩+ (−1)cshq,k |xq,k1 ⟩

)
• If q = d, prepare the state

|qshsq⟩ :=
⊗

k∈[m]\{k0}

(
|xd,k0 ⟩+ (−1)cshd,k |xd,k1 ⟩

)⊗
|xd,k0

1−b ⟩.

Initialize register Shq with the state (|qshsq⟩, |qsh
PRF
q ⟩) and give Shq to A.

34 J. Katz and B. Sela

– If A outputs as part of a certificate of deletion, a preimage of y, then output
y. Otherwise output ⊥.

Note that if the input y is the evaluation of a uniform preimage, then BOWF per-
fectly simulates Expt2(d). If Expt2(d) has a non-negligible chance of outputting
1, then the above procedure has a non-negligible chance of inverting the one way
function.

The above implies that Expt0(d) outputs 1 with negligible probability, and
therefore the Hadamard test passes with overwhelming probability. ⊓⊔

Proof (of Theorem 3). With the above claims in hand the main result easily fol-
lows. In more detail, note that Simn(s) is identical to ExptSS-ACDrand (s), and therefore
TD

(
Simn(s),Expt

SS-ACD
rand (s)

)
= 0. Claim 4 implies TD(ExptSS-ACDreal (s),Hyb′0(s)) ≤

negl(λ). Claim 5 implies TD(Hyb0(s),Hybn(s)) ≤ negl(λ), and Claim 6 implies
that TD(Hybn(s),Simn(s)) ≤ negl(λ). Putting the above together we obtain the
lemma statement. ⊓⊔

B Proof of Security for Construction 3

In this section we prove the security of Construction 3.

Theorem 4. Construction 3 has adaptive publicly verifiable deletion security.

We will prove the theorem by showing that TD(ExptSS-ACDreal ,ExptSS-ACDsim) ≤
negl(λ), where the two experiments are defined below.

ExptSS-ACDreal (s) ExptSS-ACDsim (s)

– {cshsi}i∈[n] ← Share(s) {cshsi}i∈[n] ← {0, 1}m

– Run Construction 3 but replace {csh−1i }i∈[n] (i.e. the classical shares of the
secret being shared) with the strings {cshsi}i∈[n] generated above.

For notational convenience we write the classical shares of the secret s as csh−1

rather than cshs, and we additionally set k−1 := s. We define the sets Goodi :=
{−1, ..., n− i− 1} and Badi := [n] \ Goodi. Intuitively the set Goodi will be the
set of indicies which corresond to shares that are actually deleted

We introduce the following hybrids.

– Hyb′0(s) : This is the same as ExptSS-ACDreal (s) except we lazy sample the un-
derlying classical shares as the adversary corrupts them.
• Sample uniform PRF keys k0prf , ..., k

n
prf ← K. Compute xi,kℓ,b = F (kℓprf , b||i||k)

for all i ∈ [n], k ∈ [m], ℓ ∈ [n], b ∈ {0, 1}.

Secret Sharing with Publicly Verifiable Deletion 35

• Run the experiment SS-ACD(1λ, |ψ⟩,A, s) as follows. Initialize A with
|ψ⟩. When A corrupts a share c, generate the following classical shares
for ℓ ∈ {−1, 0, ..., n}:

cshℓc ← Sharec(k
ℓ
prf , {csh

ℓ
i}i∈C).

For ℓ ∈ {−1, 0, ..., n− 1}, prepare the following state on register Shℓc:

|qshℓc⟩Shℓc :=
⊗
k∈[m]

(
|xc,kℓ+1,0⟩+ (−1)csh

ℓ
c,k |xc,kℓ+1,1⟩

)
.

Initialize the register Shnc with the state cshnc . Add c to C.
– Hyb0(s) : In this hybrid we purify the classical share generation by intro-

ducing a set of registers C1, ...,Cn held by the challenger which will hold
superpositions of classical shares. The share registers Sh1, ...,Shn will then
be generated based on the states on the challengers registers.
• Sample uniform PRF keys k0prf ..., k

n
prf ← K. Compute xi,kℓ,b = F (kℓprf , b||i||k)

for all i ∈ [n], k ∈ [m], ℓ ∈ [n], b ∈ {0, 1}.
• WhenA corrupts a share c, prepare registers {Cℓ

c}ℓ∈[−1,n] and {Shℓc}ℓ∈[−1,n]
as follows. Run the procedure Sharec(k

ℓ
prf , {Cℓ

i}i∈C) coherently on the su-
perposition of sets of shares defined by the challengers registers to obtain

Cℓ
c ← Sharec(k

ℓ
prf , {Cℓ

i}i∈C)

for ℓ ∈ {−1, ..., n}. Let
∑

cshc∈{0,1}m αℓ
cshc
|cshc⟩Cc

be the state on Cℓ
c. For

each ℓ ∈ {−1, 0, ..., n− 1}, prepare the following state on register Shℓc:∑
cshℓc

αcshℓc
|cshℓc⟩Cℓ

c

⊗
k∈[m]

(
|xc,kℓ+1,0⟩+ (−1)csh

ℓ
c,k |xc,kℓ+1,1⟩

)
Shℓc

.

Initialize the register Shnc with the same state as Cn
c . Add c to C.

• For i ∈ [n], ℓ ∈ {−1, ..., n}, measure each Cℓ
i in the computational basis,

and then output the result of SS-ACDA(1
λ, |ψ⟩,A, s).

– Hybi(s) for i ∈ [n] : Run Hyb0(s) with the following exception. For the first i
deletions, do the following. Immediately after deletion j (for j ∈ [i]), measure
register Cℓ

j with respect to the binary projective measurement {Πcertℓj
,1 −

Πcertℓj
} for each ℓ ∈ {−1, ..., n− j−1}. If any of the measurement results are

“reject” (i.e. has measurement outcome 1−Πcertℓj
), output ⊥ and abort the

experiment.
– Simi(s) for i ∈ [0, n]: Here every classical share corresponding to the secret s

and the PRF keys k0prf , ..., k
n−i
prf is generated as a uniform string, where i is the

number of deletions that have taken place. For ℓ ≥ n− i, the classical shares
cshℓj are generated as shares of the corresponding PRF keys kn−i+1

prf , ..., knprf .
• Run Hybi(s) with the following exception. For all corruptions that take

place prior to the (i+ 1)th deletion, do the following. When A corrupts

36 J. Katz and B. Sela

a share c, prepare the following states on registers Cℓ
c and Shℓc for each

ℓ ∈ {−1, 0, ..., n− i− 1}:

1

2m/2

∑
cshℓc∈{0,1}m

|cshℓc⟩Cℓ
c

⊗
k∈[m]

(
|xc,kℓ+1,0⟩+ (−1)csh

ℓ
c,k |xc,kℓ+1,1⟩

)
Sℓ
c

.

For ℓ ∈ {n− i, ..., n} generate the corresponding classical share registers
as follows:

Cℓ
c ← Sharec(k

ℓ
prf , {Cℓ

i}i∈C).

Prepare the corresponding registers {Shℓc} as above.
• For the first i deletions do the following. For deletion j ∈ [i], let dj

be the index of the share that is deleted. After the challenger verifies
certdj

, perform the binary projective measurement
{
Πcertℓdj

,1−Πcertℓdj

}
on register Cℓ

j for each ℓ ∈ {−1, 0, ..., n − i − 1} abort and output ⊥ if
any of these measurement results are “reject”.

Lemma 4. For every secret s,

TD
(
ExptSS-ACDreal (s),Hyb0(s)

)
= 0

Proof. First, the fact that TD(ExptSS-ACDreal (s),Hyb0(s)) = 0 follows from the def-
inition of the lazy-sampling style sharing procedure used in Hyb0. The fact that
TD(Hyb0(s),Hyb

′
0(s)) = 0 follows from the fact that operations on disjoint sets

of registers commute, and in particular measuring the challengers registers at the
beginning or at the end of the experiment will not impact the state of the ad-
versary A. Since measuring the challengers registers in the computational basis
before giving the share registers to A induces the same distribution over classical
shares as in Hyb0(s), the result follows. ⊓⊔

The proof of the following is almost identical to the proof of Claim 2. The
only difference is that we are now applying the argument to a set of classical
share registers {Cℓ

i}ℓ∈{−1,...,n−i−1} rather than a single classical share register.

Lemma 5. For i ∈ [n], and for every secret s,

TD
(
HybTi (s),Sim

T
i (s)

)
≤ negl(λ).

Proof. Recall that the only difference between HybTi (s) and SimT
i (s) is that in the

former experiment shares corresponding to ℓ ∈ {−1, ..., n− i− 1} are generated
based on previously corrupted shares, and in the latter they are generated as
uniform superposition states. We will prove the claim by induction on i.

To see that the claim holds for i = 0, note that prior to the first dele-
tion, it follows from the property of the classical secret sharing scheme that any
unauthorized set of shares (and in particular whichever subset is queried by the
adversary prior to the first deletion) is perfectly indistinguishable from uniformly

Secret Sharing with Publicly Verifiable Deletion 37

random strings. Therefore in Hyb0, each share is a uniform superposition, and
TD(HybT0 (s),Sim

T
0 (s)) = 0.

Now suppose that TD(HybTi (s),Sim
T
i (s)) ≤ negl(λ). We show that the claim

holds for i+ 1 by introducing the following sequence of hybrids.

– HybTi+1 : Run Hybi+1 but abort and output the adversaries register State as
soon as the (i+ 1)th deletion measurement has been passed.

– Hyb′Ti+1 : Run HybTi+1, up until A outputs its ith deletion. Then, for each
subsequent corruption j, prepare the following state on registers {Cℓ

j}ℓ∈[−1,n]
and {Shℓj}ℓ∈[−1,n]:
• For ℓ ∈ {−1, 0, ..., n− i− 1}, prepare

1

2m/2

∑
cshℓc∈{0,1}m

|cshℓc⟩Cℓ
c

⊗
k∈[m]

(
|xc,kℓ,0⟩+ (−1)csh

ℓ
c,k |xc,kℓ,1⟩

)
Shℓc

.

• For ℓ ∈ {n− i, ..., n}, prepare the state

Cℓ
c ← Sharec

(
kℓprf , {Cℓ

i}i∈C
)
,

and prepare the corresponding state on registers {Shℓj}ℓ∈{0,...,n−i} using
the corresponding evaluations of the PRF.

Once A outputs its (1 + 1)th deletion and the corresponding Hadamard
measurement has passed, abort and output the adversaries register State.

– SimT
i+1 :

We will first show that

TD
(
Hyb′Ti+1(s),Sim

T
i+1(s)

)
≤ negl(λ).

First, note that Hyb′Ti+1 is identical to Hybi up until the ith deletion (but prior
to the Hadamard measurement on the deleted share registers), and identical to
SimT

i+1 after the ith deletion. Additionally, by the inductive hypothesis we have
TD(HybTi ,Sim

T
i) ≤ negl(λ). Since the (mixed) states of the two experiments prior

to the ith deletion are negligibly close, and the procedures are identical after this
point, the result follows.

We now show that

TD
(
HybTi+1(s),Hyb

′T
i+1(s)

)
≤ negl(λ).

Let Goodi := {−1, ..., n − i − 1}. To show the above, we will prove that each
corrupted share generated after the ith deletion but before the (i + 1)th dele-
tion in HybTi+1 is in a uniform superposition if it corresponds to a PRF key in
{kℓprf}ℓ∈Goodi . To do so, we will argue that ignoring the deleted share registers
{Cℓ

i}i∈D,ℓ∈Goodi and generating each newly corrupted share based only on the
shares in C \ D does not change the outcome of the experiment. Since C \ D
is never authorized, it follows from the uniformity property of the classical se-
cret sharing scheme that generating each newly corrupted share based on C \D
results in a uniform superposition.

We introduce the following sequence of hybrids which give different ways of
generating the shares corrupted after the ith deletion in HybTi+1.

38 J. Katz and B. Sela

– Expt0: Run HybTi+1 with no changes. In particular, each newly corrupted is
generated as follows based on all shares in C, including those that have been
deleted:

Cℓ
j ← Sharej(k

ℓ
prf , {Cℓ

i}i∈C).

– Expt1: Run HybTi+1 but generate each share after the ith deletion as follows:
• For ℓ ∈ Goodi, generate fresh share registers for the deleted shares based

on the shares in C \D:

{C′ℓi }i∈D ← ShareD(kℓprf , {Cℓ
i}i∈C\D).

• For ℓ ∈ Goodi, generate each newly corrupted share based on the shares
in C \D together with the freshly generated share registers {C′ℓi }i∈D:

Cℓ
j ← Sharej(k

ℓ
prf , {Cℓ

i}i∈C\D ∪ {C′ℓi }i∈D).

– Expt2: Run HybTi+1 but generate each newly corrupted share as follows based
only on shares in C \D:

Cℓ
j ← Sharej(k

ℓ
prf , {Cℓ

i}i∈C\D).

The only difference between Expt1 and Expt2 is that in Expt2, additional share
registers for the indices in D are generated before generating Cℓ

j . Since random
variables in a joint distribution can be sampled in any order as a sequence of
samples from conditional distributions, it is clear that SD(Expt1,Expt2) = 0.

To prove that Expt0 and Expt1 are identical, note that the only difference
between these experiments is that each newly corrupted share Cℓ

j is generated
based on the original deleted share registers {Cℓ

i}i∈D in Expt0, and based on the
freshly generated registers {C′ℓi }i∈D in the case of Expt1. Since the distribution
Sharej(·) takes classical inputs and is being run coherently on superpositions,
it is enough to show that a computational basis measurement of the original
registers {Cℓ

i}i∈D and the new registers {C′ℓi }i∈D induce the same distribution.
This follows from the fact that each deleted share register Cℓ

d is in a Hadamard
basis state immediately after being deleted. However by the uniformity property
of the underlying classical secret-sharing scheme, if we were to regenerate Cℓ

d

based on the shares in C \D we would obtain a uniform superposition.
Therefore TD(HybTi+1(s),Expt2) = 0. However note that in Expt2, each cor-

rupted share Cℓ
j is generated based on a set C \ D such that (C \ D) ∪ {j} is

not authorized (for otherwise the adversary would obtain an authorized set).
Therefore by the uniformity property of the underlying secret sharing scheme,
the newly corrupted share registers contain uniform superpositions. It follows
that TD(HybTi+,Hyb

′T
i+1) ≤ negl(λ) as desired which completes the proof. ⊓⊔

Lemma 6. For i ∈ [0, n] and every secret s,

TD
(
Hybi(s),Hybi+1(s)

)
≤ negl(λ).

Secret Sharing with Publicly Verifiable Deletion 39

Proof. The only difference between Hybi and Hybi+1 is an additional Hadamard
measurement on registers {Cℓ

di+1
}ℓ∈Goodi in Hybi+1, where di+1 is the index of

the (i+1)th deleted share. We will show that the probability that the Hadamard
measurements corresponding to the (i+1)th deletion in Hybi+1 reject is negligi-
ble. We start by observing that the probability of acceptance is almost identical
in each of the following hybrids.

– Hybi+1 :

– HybTi+1 : Run Hybi+1 but abort and output State after the (i+1)st deletion.
– SimT

i+1 : Run Simi+1 but abort and output State after the (i+1)st deletion.
⊓⊔

Since Hybi+1 and HybTi+1 are identical up to the round where the (i + 1)th
Hadamard test is applied, the acceptance probability is identical in both cases.
By Lemma 5, we have

TD(HybTi+1,Sim
T
i+1) ≤ negl(λ).

Therefore it suffices to show that the probability that the final deletion test in
SimT

i+1 does not pass is negligible.

Recall that the projective measurement Πcertdi+1
=

{
Πcertℓdi+1

}
simply mea-

sures the classical share registers {Cℓ
di+1
} in the Hadamard basis to obtain strings

cℓ1...c
ℓ
m and checks if the deletion proof certℓdi+1

:= xℓb1 , ..., x
ℓ
bm

that was just out-
put by A is such that bℓk = cℓk for all k ∈ [m] and ℓ ∈ {−1, ..., n − i − 1}. Since
measurements on disjoint registers commute perfectly, we can instead measure
{Cℓ

di+1
} in the Hadamard basis at the start of the experiment to obtain string

cℓ1...c
ℓ
m and then run the experiment until A deletes the corresponding share and

outputs a proof xℓb1 ...x
ℓ
bm

. Since the measurements commute, the probability that
cℓk = bℓk for all i ∈ [m] and ℓ ∈ {−1, ..., n− i− 1} is identical in each case. With
this in mind, we define the following experiment which is essentially identical to
Simi+1 except that we perform the Hadamard measurement on {Cℓ

di+1
}ℓ before

running the adversary as described above.
Fix some share index d, and suppose that d has a non-negligible probability

of being deleted in the (i + 1)th round. We show that conditioned on share d
being deleted, the Hadamard test passes with high probability. Suppose other-
wise. Then the following experiment Expt0(d) must output 1 with non-negligible
probability.

– Expt0(d) Expt1(i0)

• Fix a share index d and set k−1prf = s.
• Sample PRF keys k0prf , ..., k

n
prf ← K.

• For ℓ ∈ {n − i, ..., n}, sample shares {cshℓi} ← Share(kℓprf), and for ℓ ∈
{0, ..., n− i}, sample uniform strings {cshℓi}i∈[n] ← {0, 1}m.

• For ℓ ∈ [n] \ [n− i− 1], set xi,kℓ,b = F (kℓprf , b||i||k).

40 J. Katz and B. Sela

• For ℓ ∈ {−1, ..., n− i− 1}, set xi,kℓ,b = F (kℓprf , b||i||k).

For ℓ ∈ {−1, ..., n− i− 1}, sample xi,kℓ,b ← {0, 1}κ.

• Proceed as in Simi+1 but with the following exception. If A corrupts the
dth share, prepare the states∑

csh

|csh⟩Cℓ
d

⊗
k∈[m]

(
|xd,kℓ+1,0⟩+ (−1)cshd,k |xd,kℓ+1,1⟩

)
Shℓd

on registers Sℓd and Cℓ
d for ℓ ∈ {−1, ..., n − i − 1}. Measure Cℓ

d in the
Hadamard basis to obtain measurement outcome cℓ1, ..., cℓm. Note that
the residual state on register Sℓd is given by⊗

k∈[m]

|xd,k
cℓk,ℓ
⟩

Continue to run Simi+1, sampling the shares uniformly, up until A out-
puts the (i+1)th proof of deletion {certj := (xbℓ1 , ..., xbℓm)}ℓ∈{−1,...,n−i−1}.

• If the (i+1)th proof of deletion is not for share d, then abort and output
⊥.

• If bℓk ̸= cℓk for some k ∈ [m], ℓ ∈ {−1, ..., n−i−1}, output 1, and otherwise
output ⊥.

We first show that

Pr[Expt0(d) outputs 1] ̸= negl(λ) =⇒ Pr[Expt1(d) outputs 1] ̸= negl(λ).

If this is not the case, then we can construct an adversary against the PRF.
Note that the only difference between Expt0 and Expt1 is that in the latter
experiment, the preimages corresponding to ℓ ∈ {0, ..., n − i} are uniform, and
in the former they are the evaluations of a PRF. However in both cases the PRF
keys are not in the adversaries view.

B|O⟩PRF

– Hardcode the index d.
– Parse the oracle O as a list of n− i oracles O0, ...,On−i.
– Sample uniform PRF keys kn−i+1

prf , ..., knprf .
– For ℓ ∈ [n]\ [n−i], compute xi,kℓ,b := F (kℓprf , b||i||k), and for ℓ ∈ {−1, ..., n−i},

compute xi,kℓ,b = Oℓ(b||i||k).
– For ℓ ∈ [n]\ [n−i] run {cshℓi}i∈[n] ← Share(kℓprf), and for i ∈ {−1, 0, ..., n−i},

sample uniform strings {cshℓi}i∈[n] ← {0, 1}m.
– Using the preimages and classical shares computed above, simulate Expt0(d)/Expt1(d).

Let cℓ1, ..., cℓm be the result of the Hadamard measurement on Cd in Expt0(d)/Expt1(d).
– If A outputs a proof of deletion certd = xb1 ...xbm for share d such that
bk ̸= ck for some k ∈ [m], then guess that the oracle is a PRF, and otherwise
output a uniform guess.

Secret Sharing with Publicly Verifiable Deletion 41

A straightforward hybrid argument shows that an adversary winning the above
game implies an adversary winning the standard PRF security game with a single
oracle. In the above, if the oracles are for uniform functions, then BPRF perfectly
simulates Expt1, and if the oracles are for PRFs with uniform keys, then BPRF
perfectly simulates Expt0. Note that BPRF outputs a random guess except in the
situation that corresponds to Expt0(d)/Expt1(d) outputting 1. It follows that the
distinguishing advanatage of BPRF is given by the following expression:

1

2

∣∣∣Pr[Expt0(d) outputs 1]− Pr[Expt1(d) outputs 1]
∣∣∣.

By assumption the first term above is non-negligible, and the second term is
negligible,. which implies BPRF has a non-negligible distinguishing advantage.

We now show that Pr[Expt1(d) outputs 1] ≤ negl(λ). If this is not the case,
then we can construct an adversary against the PRF. Our adversary on input a
uniform y will simulate Expt1(d), and try to get the adversary A to output of a
preimage of y by putting y in the verification key for share d. The adversary is
presented below.

BOWF(y)

– Hardcode the index d, and sample uniform k0 ← [m], b0 ← {0, 1}, and
ℓ0 ← {−1, 0, ..., n− i}.

– Set yd,k0

ℓ0,b0
:= y. For (i, k, ℓ, b) ̸= (d, k0, ℓ0, b0), sample uniform xi,kℓ,b ← {0, 1}κ

and set yi,kℓ,b = f(xi,kℓ,b).
– For ℓ ∈ {i, ..., n}, set
– Simulate Expt2 as follows. Initialize A with |ψ⟩. When A corrupts some share
q ∈ [n], do the following:
• If q ̸= d, sample uniform cshℓi ← {0, 1}m for ℓ ∈ {−1, 0, ..., n − i}, and

encode them with the corresponding preimages as the following state:⊗
k∈[m]

(
|xq,k0 ⟩+ (−1)cshq,k |xq,k1 ⟩

)
• If q = d, prepare prepare the states as above for ℓ ̸= ℓ0, but encode cshℓ0i

as the following state:⊗
k ̸=k0

(
|xq,kℓ,0 ⟩+ (−1)cshq,k |xℓ,1⟩q,k

)⊗
|xq,k0

ℓ,1−b⟩

– If A outputs as part of a certificate of deletion, a preimage of y, then output
y. Otherwise output ⊥.

If the input y to the adversary is the evaluation of f on a uniform preim-
age, then the above adversary perfectly simulates Expt2(d). If the simulation
of Expt2(d) outputs 1, then BOWF succeeds in outputting a preimage of y. There-
fore Pr[Expt1(d) outputs 1] ≤ negl(λ).

Proof (of Theorem 4). First, by Lemma 4 we have TD(Exptreal(s),Hyb
′
0(s)) ≤

negl(λ). Lemma 6 implies that TD(Hyb1(s),Hybn(s)) ≤ negl(λ) and Lemma 5
implies that TD(Hybn(s),Simn(s)) ≤ negl(λ). Putting the above together we have
TD(Exptreal(s),Simn(s)) ≤ negl(λ). ⊓⊔

42 J. Katz and B. Sela

C Adaptive Certified Deletion ≠⇒ No-Signaling
Certified Deletion

In this section we construct a secret sharing scheme which has adaptive certified
deletion but does not satisfy no-signaling certified deletion. First, we recall the
no-signaling certified deletion definition given by Bartusek and Raizes [5].

Definition 9. Let P = (P1, ..., Pℓ) be a partition of [n], let |ψ⟩ be an ℓ-part
state on registers State1, ...,Stateℓ, and let A = (A1, ...,Aℓ) be an ℓ-part QPT
adversary. Define the experiment SS-NSCDA(1

λ, P, |ψ⟩,A, s) as follows:

– Sample (Sh1, ...,Shn)← ShareA(1
λ, s).

– For each t ∈ [ℓ], run ({certi}i∈Pt
,State′t)← A({Si}i∈Pt

,Statet), where State′t
is an arbitrary output register.

– If for all S ∈ A, there exists i ∈ S such that Verify(vk, i, certi) = ⊤, then
output (State′1, ...,State

′
ℓ), and otherwise output ⊥.

A secret sharing scheme has no-signaling certified deletion security if for any
partition P = (P1, ..., Pℓ), any ℓ-part state |ψ⟩, any ℓ-part QPT adversary A,
and any pair of secrets s0, s1,

TD
(
SS-NSCDA(1

λ, P, |ψ⟩,A, s0),SS-NSCDA(1
λ, P, |ψ⟩,A, s1)

)
≤ negl(λ).

Our construction starts with an arbitrary secret-sharing scheme with adap-
tive certified deletion for an access structure A. We assume there are two disjoint
(unauthorized) subsets P1, P2 ⊂ [n] along with two indices i1 ∈ P1 and i2 ∈ P2

such that (1) {ib} ∪ P1−b ∈ A for b ∈ {0, 1}, and (2) that {i0, i1} ̸∈ A. We note
that this condition is satisfied for any threshold scheme with t < n/2 as we can
set P1 and P2 to be two disjoint subsets of size t− 1.

Our construction will make use of a quantum one-time pad, first introduced
by Ambainis et al. [1] which allows us to encrypt a quantum state with a classical
key. We present the syntax and security properties of a quantum one-time pad
below. Ambainis et al. gave a concrete construction of such an encryption scheme.

Definition 10 (Quantum one-time pad encryption). Let K be a key space,
and let M := (C2)⊗n be a quantum message space. The quantum one-time pad
encryption scheme is defined by the following pair of algorithms which have iden-
tical syntax:

– OTP.Enc(k, ρ): On input a quantum state ρ ∈M and a classical key k ∈ K,
output a state σ ∈M.

– OTP.Dec(k, ρ): On input a quantum state ρ ∈M and a classical key k ∈ K,
output a state σ ∈M.

Correctness: For all keys k ∈ K and any state ρ,

OTP.Dec (k,OTP.Enc(k, ρ)) = ρ.

Security: For any two states ρ and σ,∑
k∈K

1√
|K|

OTP.Enc(k, ρ) =
∑
k∈K

1√
|K|

OTP.Enc(k, σ).

Secret Sharing with Publicly Verifiable Deletion 43

We now present our construction.

Construction 4 Let SSadaptive be a secret sharing scheme with adaptive certified
deletion for a monotone access structure A, and let SS(t,n) be a (t, n)-threshold
secret sharing scheme with adaptive certified deletion. Let P0 and P1 be two
disjoint unauthorized subsets such that there exist indices i0 ∈ P0 and i1 ∈ P0

with the property that P0∪{i1}, P1∪{i0} ∈ A, and {i0, i1} ̸∈ A. Let OTP(pad, |ψ⟩)
denote the procedure that applies a quantum pad to its second argument, using
its first argument as a classical key.

– Share(1λ, s) :
• Generate shares {|qshi⟩}i∈[n] ← SSadaptive.Share(s).
• Create a (4, 4) sharing {|qshx0⟩, |qsh

x
1⟩, |qsh

y
0⟩, |qsh

y
1⟩} ← SS(4,4).Share(s).

• Sample random strings pad0 and pad1,
• Create the following (|Pb|, |Pb|)-sharing of padb for b ∈ {0, 1}:

{|qshpadbi ⟩}i∈Pb
← Share(|Pb|,|Pb|)(padb).

• Using padb as a quantum one-time pad, encrypt |qshx1⟩ and |qshb1⟩ to
obtain

|ct0⟩ ← OTP.Enc(pad0, |qsh
x
0⟩) and |ct1⟩ ← OTP.Enc(pad1, |qsh

x
1⟩)

• For i ∈ [n], initialize register Shi to the state |qshi⟩.
• For b ∈ {0, 1}, for i ∈ Pb, add state |qshpadbi ⟩|ctb⟩ to share register Shi.
• For b ∈ {0, 1}, add the state |qshyb ⟩ to the share register Shib .

– Reconstruct({Shi}i∈P) : Run the reconstruction algorithm for the underlying
scheme SSadaptive and ignore any of the additional shares.

– Delete(Shi) : If i ̸∈ P0 ∪ P1, run SSadaptive.Delete(Sh). if i ∈ Pb, run any
additional deletion algorithms for the corresponding state.

– Verify(i, vk, certi) : Run the corresponding verification algorithms for any
quantum shares contained on register Shi. If any verification fails then output
⊥, otherwise output ⊤.

Lemma 7. Construction 4 has adaptive certified deletion but is insecure against
a no-signaling adversary.

Proof. The scheme is clearly insecure against a no-signaling adversary by con-
struction. For any partition which includes P0 and P1 from the construction, Ab

does the following for b ∈ {0, 1}. Recover padb by computing

padb ← Reconstruct
(
{|qshpadbi ⟩}i∈Pb

)
.

The above is deterministic and therefore can be done without disturbing any
shares. Then compute |qshxb ⟩ ← OTP.Dec(padb, |ctb⟩). Finally delete all shares
except |qshyb ⟩, and output (|qshxb ⟩, |qsh

y
b ⟩). The combined views of A0 and A1 can

then be used to reconstruct the secret using {|qshx0⟩, |qsh
x
1⟩, |qsh

y
0⟩, |qsh

y
1⟩}.

44 J. Katz and B. Sela

We now prove that the scheme is adaptively secure. Let A be an adaptive ad-
versary. First note that we can replace the shares {|qshi⟩}i∈[n] ← SSadaptive.Share(s)
with shares of 0 by appealing to the security of SSadaptive. Therefore it remains
to show that the additional shares do not allow an adaptive adversary to break
the scheme.

Let SS′ denote the modified secret sharing where SSadaptive is used to generate
shares of 0 rather than of the secret. If A breaks SS′, we can assume that with
overwhelming probability, P0 and P1 are each contained in C \D at some point
(though not necessarily at the same time) in the experiment. If this is not the
case, then at least one of pad0 or pad1 remain hidden from A. Therefore it follows
from the security of the quantum one-time pad that the shares {|qshxib⟩}b∈{0,1}
remain hidden from A.

With the above in mind, assume that P0 is contained in C \ D before P1

is. Recall that by assumption Pb ∪ {i1−b} is an authorized set for b ∈ {0, 1}.
Therefore A must delete Shi1 before corrupting all shares in P1, and in particular
must delete the share |qshyi0⟩ prior to obtaining P1. This means that an adversary
against the (4, 4)-secret sharing can simulate A without ever being forced to
obtain an authorized set of shares, thus violating the security of the threshold
secret-sharing scheme if A is able to guess the secret that was shared. ⊓⊔

D Secret Sharing with No-Signaling PVD

In this section we provide a sketch of the secret sharing construction with no-
signaling certified deletion based on the construction in [5]. Their secret sharing
construction makes black-box use of a (2, 2)-secret sharing scheme for a single
bit in which one share is classical, and the other is a quantum state that can
be certifiably deleted. They additionally require that the deletion security is
sub-exponential. More precisely, they require that the post deletion states in
the cases that the secret was 0 or 1 have trace distance at most 1/subexp(λ).
Therefore if we can construct a (2, 2)-scheme with the above properties that
also has publicly verifiable deletion, we can simply plug the scheme into the
secret-sharing construction of Bartusek and Raizes to obtain the desired result.

We present such a (2, 2)-secret sharing scheme below, which is analogous
to the scheme used by Bartusek and Raizes. Since the security in the deletion
proof is lower bounded by the security of the one-way function, we will require
sub-exponential security. We omit the proof of deletion security for the following
construction, which is identical to the proof of [4, Theorem 3].

Construction 5 Let f : {0, 1}ℓin 7→ {0, 1}ℓout be a one-way function.

– Share(b): Sample uniform x0, x1 ← {0, 1}κ. The quantum and classical shares
are defined as follows:

|qsh⟩ := |x0⟩+ (−1)b|x1⟩, csh := x0 ⊕ x1

– Rec(|qsh⟩, csh): Measure |qsh⟩ in the Hadamard basis to obtain a string d,
and compute b = d · csh.

Secret Sharing with Publicly Verifiable Deletion 45

– Del(|qsh⟩): Measure |qsh⟩ in the computational basis and output the result.
– Ver(x): If f(x) ∈ {y0, y1} output ⊤, and otherwise output ⊥.

	Secret Sharing with Publicly Verifiable Deletion

