
DART: Distributed Argument of knowledge

for Rough Terrains

Steve Thakur

Mozak

Abstract

We describe a fully distributed KZG-based Snark instantiable with any pairing-friendly curve
with a sufficiently large scalar field. In particular, the proof system is compatible with Cocks-Pinch
or Brezing-Weng outer curves to the the widely used curves such as secp256k1, ED25519, BLS12-381
and BN254.

This allows us to retain the fully parallelizable nature and the O(1) communication complexity of
Pianist ([LXZ+23]) in conjunction with circumventing the huge overhead of non-native arithmetic for
prominent use cases such as scalar multiplications and/or pairings for Bitcoin (secp256k1), Cosmos
(Ed25519) and Ethereum PoS (BLS12-381) signatures.

As in [LXZ+23], we use a bivariate KZG polynomial commitment scheme, which entails a universal
updatable CRS linear in the circuit size. The proof size is constant, as are the verification time -
dominated by three pairings - and the communication complexity between the Prover machines. With
a 9-limb pairing-friendly outer curve to Ed25519, the proof size is 5 KB. With this same curve, the
communication complexity for each worker node is 5 KB and that of the master node is 5 KB per
machine.

The effective Prover time for a circuit of size T ·M on M machines is O(T · log(T)+M · log(M)).
The work of each Prover machine is dominated by the MSMs of length T in the group G1 and a single
sum of univariate polynomial products computed via multimodular FFTs1 of size 2T . Likewise, the
work of the master node is dominated by the MSMs of length M in the group G1 and a single sum
of univariate polynomial products via multimodular FFTs of size 2M .

1 Introduction

The goal of this work was to construct a Snark with the following properties/attributes:

1 Compatibility with a wider class of prime fields

In particular, we need compatibility with pairing-friendly outer curves to widely used curves
such as Ed25519, secp256k1, BN254 and BLS12-381. This was the key goal of the paper.

The use cases necessitated a Snark that could sidestep the overhead of non-native field
arithmetic that arises when statements in the base fields of these curves are proved using a
Snark in a mismatched finite field. These use cases include EdDSA, ECDSA signatures and
one layer recursion with the widely used curves BN254 and BLS12-381. As far as we know,
the existing Snarks that allow for constant-sized proofs and constant verification times explicitly
assume the existence of a sparse vanishing polynomial that splits completely over the scalar field
and hence, need the scalar field to have a large smooth order subgroup.

2 Fully distributed proof generation with O(1) communication complexity between the machines.

As in Pianist ([LXZ23]), we use a bivariate KZG polynomial commitment scheme, which
allows for this.

1The Prover machines use ordinary FFTs when the 2-adicity is high enough

1

3 A constant-sized proof and a constant verification time.

4 A bare minimum of pairings in the verification

It is widely known that pairings are expensive, especially in curves that fall outside of highly
optimized families. The pairing-friendly curves we instantiate the scheme with for our primary
use cases are constructed via the Cocks-Pinch or Brezing-Weng algorithms and the pairings are
not as highly optimized as those in the BLS, BN or MNT families. This makes it all the more
desirable to have a bare minimum of pairings in the verification.

The verification time in our scheme is dominated by three pairings. The verication does
not involve pairings with Prover defined G2 points,which makes recursive aggregation of proofs
convenient.

5 A universal updateable trusted setup and a CRS size linear in the circuit size

We use the bivariate KZG10 commitment scheme which allows for this. While we certainly
would have preferred a transparent setup, there is - as far as we know - no scheme at the moment
that achieves a transparent setup in conjunction with a constant proof size, constant verification
time and a quasi-linear Prover time.

6 Support for custom gates

The scheme uses Plonkish arithmetization and hence, supports custom gates, albeit at the
cost of slightly larger proof sizes. Our primary use cases benefit from the use of elliptic curve
custom gates since they reduce point additions and point doublings to 2 gates instead of 9.

1.1 The setup

LetG1, G2, GT be cyclic groups of prime order p such that there exists a bilinear, non-degenerate
and efficiently computable pairing

e : G1 ×G2 −→ GT

We fix generators g1, g2 in G1, G2 respectively. For a trapdoors s1, s2 ∈ F∗
p, the common

reference string (CRS) generated via a multi-party computation is given by[
g
si1·s

j
2

1 : (i, j) ∈ [0, T − 1]× [0, M − 1]
]
, [g2, g

s1
2 , gs2

2]

for appropriate upper bounds N,M . The verification key is

[g1, g
s1
1 , g

sT1
1 , gs2

1 , g
sM2
1] , [g2, g

s1
2 , gs2

2].

We denote the KZG commitment g
f(s1,s2)
1 to a polynomial f(X,Y) by

[
f(X,Y)

]
G1

and the

G2-element g
f(s1,s2)
2 by

[
f(X,Y)

]
G2
. Thus, the CRS can be rephrased as[[

XiY j
]
G1

: (i, j) ∈ [0, T − 1]× [0, M − 1]
]

,
[[
1
]
G2
,
[
X
]
G2
,
[
Y
]
G2

]
and the Verifier key as[[

1
]
G1
,
[
X
]
G1

,
[
XT

]
G1
,
[
Y
]
G1
,
[
Y M

]
G1

]
,
[[
1
]
G2
,
[
X
]
G2
,
[
Y
]
G2

]

2

1.2 Notations and terminology

As usual, Fq denotes the finite field with q elements for a prime power q and Fq denotes
its algebraic closure. F∗

q denotes the cyclic multiplicative group of the non-zero elements of Fq.
Fq[X,Y] denotes the UFD of bivariate polynomials and Fq(X,Y) denotes its fraction field.

For a polynomial f(X), deg(f) denotes its degree. Coef(f, i) denotes the coefficient at the
position Xi and Coef(f) denotes the set {Coef(f, i) : i ≤ deg(f)}. Similarly, for a bivariate
polynomial f(X,Y), Coef(f, (i, j)) denotes the coefficient at XiY j . The Hadamard and dot
products of f1(X,Y) and f2(X,Y) are given by

f1 ⊙ f2(X,Y) :=
∑
i,j

Coef(f1 , (i, j)) · Coef(f2 , (i, j)) ·XiY j

f1 ◦ f2(X,Y) :=
∑
i,j

Coef(f1 , (i, j)) · Coef(f2 , (i, j)) = f1 ⊙ f2(1, 1).

We fix a hashing algorithm HashFS that generates random and uniform challenges in Fp to
make the protocols non-interactive.

We denote by λsec ∈ Z+ a security parameter. We denote by negl(λsec) an unspecified
function that is negligible in λsec (namely, a function that vanishes faster than the inverse of any
polynomial in λsec). When a function can be expressed in the form 1− negl(λsec), we say that
it is overwhelming in λsec. We say some events are equivalent with overwhelming probability, if
the probability of any proper subset of this set of events being true and the other events false is
negligible in λsec.

Definition 1.1. An argument system is complete if an honest Prover can efficiently output an
accepting transcript.

Definition 1.2. An argument system is sound if the probability of a cheating Prover successfully
convincing a Verifier is negligible.

Definition 1.3. An argument system is knowledge sound if for any probabilistic polynomial time
algorithm APPT that outputs an accepting transcript, there exists an extractor EPPT that, with
overwhelming probability, succeeds in extracting a valid witness.

1.3 The AGM model

In order to achieve additional efficiency, we also construct polynomial commitment schemes
in the Algebraic Group Model (AGM) [FKL18], which replaces specific knowledge assumptions
(such as Power Knowledge of Exponent assumptions). In our protocols, by an algebraic adversary
APPT in a CRS-based protocol, we mean a PPT algorithm which satisfies the following:

Whenever APPT outputs an element A ∈ Gi (i = 1, 2), it also outputs a vector
v = (v0, · · · , vn−1) ∈ Fn

p such that

A =
〈
v , CRS

〉
=

n−1∏
i=0

(gsn

1)vi = g

n−1∑
i=0

vi·si

1 .

The AGM allows a Prover to commit to multiple polynomials fi(X) ∈ Fp[X] of a bounded
degree and open these polynomials at some point α ∈ Fp. To show that fi(α) = βi for each index

3

i , it suffices for the Prover to show that for a randomly and uniformly generated challenge λ,
the polynomial

fλ(X) :=
∑
i

λi−1 · fi(X)

is valued β :=
∑

i λ
i−1 · βi at X = α. If the Prover were dishonest about one or more of the

elements f(αi), the pairing check would fail with overwhelming probability.

The algebraic group model implies that there is an efficient extractor Emulti−PC that - given
access to the multi-commitment opening proof - can extract the polynomials in expected polynomial
time. We refer the reader to [GWC19], [CHHMVW20] and [FKL18] for a more detailed exposition
of the AGM.

1.4 Distributed KZG commitments and openings

For a polynomial

f(X,Y) =
M−1∑
j=0

fj(X) · Y j ,

we say the Prover machines collaboratively compute f(X,Y) and send the commitment
[
f(X,Y)

]
G1

as shorthand for the following process:

- Each Prover machine Pj computes fj(X) and sends the commitment
[
fj(X) · Y j

]
G1

to the

master node P̃.

- The master node P̃ computes[
f(X,Y)

]
G1

=
M−1∏
j=0

[
fj(X) · Y j

]
G1
.

by adding the M points in G1.

For a committed bivariate polynomial f(X,Y) and element (α, β) ∈ F2
p with θ = f(α, β), we

have the equation

f(X,Y)− θ = (X − α) · f(X,Y)− f(α, Y)

X − α
+ (Y − β) · f(α, Y)− θ

Y − β

and the opening boils down to sending the commitments

Qα :=
[
(X − α)−1 · [f(X,Y)− f(α, Y)]

]
G1

, Qα,β :=
[
(Y − α)−1 · [f(α, Y)− f(α, β)]

]
G1

which satisfy the pairing equation

e
([
f(X,Y)− θ

]
G1

,
[
1
]
G2

)
= e

(
Qα ,

[
X − α

]
G2

)
· e

(
Qα,β ,

[
Y − β

]
G2

)
.

Consider a distributed setting with

f(X,Y) =

M−1∑
j=0

fj(X) · Y j ,

where each fj(X) is univariate of degree ≤ T − 1 and is held by the Prover machine Pj . Each Pj

computes the quotient qj(X) := (X − α)−1 · [fj(X)− fj(α)] and sends

fj(α) , Qα,j :=
[
qj(X) · Y j

]
G1

4

to the master node P̃, who then computes

Qα =
M−1∏
j=0

Qα,j , f(α, Y) =
M−1∑
j=0

fj(α) · Y j , Qα,β =
[
(Y − β)−1 · [f(α, Y)− θ]

]
G1

and sends Qα, Qα,β to the Verifier. This entails:

- O(T) work for each machine Pj , dominated by the MSM of length T.

- O(M) work for the master node P̃, dominated by the MSM of length M.

1.5 Commitments to index sets and permutations

For an index set I ⊆ [0, T −1]× [0, M−1], we commit to I by committing to the polynomial

χI (X,Y) :=
∑

(i,j)∈I

XiY j ,

which we refer to as the indicator polynomial of I. Thus, the commitment is given by

Com(I) :=
[
χI (X,Y)

]
G1

= g
χI (s1,s2)
1 = g

∑
(i,j)∈I

s1i·sj2

1 .

For a bijection σ : [0, T − 1] × [0, M − 1] −→ [0, T ·M − 1], we commit to σ by committing
to the polynomial

Sσ(X,Y) :=

T−1∑
i=0

M−1∑
j=0

σ(i, j) ·XiY j .

In particular, we commit to the identity bijection

id : [0, T − 1]× [0, M − 1] −→ [0, T ·M − 1] , (i, j) 7→ i ·M + j

via the polynomial

Sid,T,M (X) :=
T−1∑
i=0

M−1∑
j=0

(i ·M + j) ·XiY j .

2 Building blocks

2.1 Preliminary lemmas

Let p be a prime of bitsize ≥ 2λsec and d an integer ≥ 1. For brevity, we write R := Fp[X1, · · · , Xd]
and denote its field of fractions Fp(X1, · · · , Xd) by F := Frac(R). Note that R is a UFD and in
particular, is integrally closed.

Lemma 2.1. For rational functions hi ∈ F := Frac(R), if the sum
∑

i∈I λ
i · hi lies in R for a

randomly generated λ ∈ Fp, then with overwhelming probability, each rational function hi lies in
R.

Proof. For each index i ∈ I, choose elements hi,1, hi,2 ∈ R such that hj = hj,1 ·hj,2−1. Suppose
there exists at least one index j ∈ I such that hj does not lie in R. Then there exists a maximal
ideal m ⊆ R and an integer tj ≥ 0 such that

hj,1 ∈ mtj \mtj+1 , hj,2 ∈ mtj+1.

Let Rm denote the localization of R at m.

5

Write ĥk,1 := h−1
k,1 · (

∏
i∈I hi,1) ∈ R for each index k ∈ I, so that∑

i∈I
λi · hi = (

∏
i∈I

hi,2)
−1 ·

[∑
i∈I

λi · ĥi,1
]
.

Let f(X) ∈ R(X) denote the univariate polynomial
∑

i∈I ĥi,1 ·Xi. Let F̃ /F be a splitting field of

f(X) and let R̃m ⊆ F̃ denote the integral closure with respect to Rm ⊆ F . Fix a maximal ideal
m̃ in R̃m lying over mRm.

Let α1, · · · , αn ∈ F̃ denote the zeros of f(X), so that f(X) = c ·
∏n

k=1(X − αk) for some
c ∈ F. Now, for any element λ ∈ Fp,

(
∏
i∈I

hi,2)
−1 · f(λ) ∈ R =⇒ λ− αk ∈ m̃ for at least one index k,

which occurs with probability ≤ n
p .

2.2 Batched proof of divisibility

The Snark proof generation requires verifiably sending commitments
[
ft(αi, Y)

]
G1

(t = 0, · · · , 6)
for 7 distinct committed polynomials ft(X,Y) and elements αt ∈ Fp. This requires showing that:

- the elements
[
ft(αt, Y)

]
G1

are commitments to univariate Fp[Y] polynomials, i.e. these committed
polynomials have X-degrees 0

- the polynomial ht(X,Y) := ft(X,Y)− ft(αi, Y) is divisible by X − αt for each t.

Näıvely, this would mean 7 additional G1-MSMs of length T for each Prover machine. Instead,
we describe a protocol to show that given committed polynomials ft(X,Y) and sparse polynomials
et(X), each ft(X,Y) is divisible by et(X), with the following costs for the Prover machines:

- Two KZG commitments to bivariate polynomials ofX-degree≤ T and Y -degree≤ M , computed
in effective runtime O(T/ log(T)) via the distributed approach

- One KZG commitment to univariate polynomials of Y -degree ≤ M computed in runtime
O(M/ log(M)) by the master node P̃.

The protocol hinges on the simple observation (lemma 2.1) that for a set of rational functions
in Fp(X,Y) := Frac(Fp[X,Y]), if a randomized sum of these rational functions is a polynomial,
then with overwhelming probability, all of the rational functions are polynomials. Write at :=[
ft(X,Y)

]
G1

for brevity. We impose the condition that the univariate polynomials et(X,Y) are
sparse so that the Verifier can evaluate them at a challenge. In response to a randomly generated
challenge λ ∈ Fp, the Prover machines collaboratively compute the polynomial

fλ(X,Y) :=

k∑
t=1

λt−1 · et(X)−1 · ft(X,Y)

and the master node sends the commitment

Bλ :=
[
fλ(X,Y)

]
G1

=

M−1∏
j=0

[
hλ,j(X) · Y j

]
G1

to the Verifier. Lemma 2.1 implies that proving the well-formation of Bλ is sufficient to show
that the polynomial committed in the element at is divisible by et(X) for each t = 0, · · · , k − 1.

6

Protocol 2.2. Batched proof of divisibility (BatchDiv)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS[[
XiY j

]
G1

: (i, j) ∈ [0, T − 1]× [0, M − 1]
]

,
[[
1
]
G2
,
[
X
]
G2
,
[
Y
]
G2

]
Common Inputs: Elements at ∈ G1; sparse public polynomials et(X) ∈ Fp[X]; t =
0, · · · , k
Claim: The Prover knows polynomials ft(X,Y) such that

at =
[
ft(X,Y)

]
G1

, ft(X,Y) ≡ 0 (mod et(X)).

Proof generation algorithm

1. The hashing algorithm HashFS generates a challenge λ̃.

2. The Prover machines collaboratively compute the polynomial

f
λ̃
(X) :=

k∑
t=0

λ̃t · et(X)−1 · ft(X,Y)

and send the G1-element
B

λ̃
:=

[
f
λ̃
(X,Y)

]
G1
.

3. The hashing algorithm HashFS generates challenges α, β ∈ Fp.

4. P sends the Fp-elements θt := ft(α, β) (t = 0, · · · , k − 1) to the Verifier V.

5. The hashing algorithm HashFS generates a challenge ξ̃.

6. The Prover machines collaboratively compute the commitments

Qα,β =
[
qα,β(X,Y)

]
G1

, Qβ := qβ(Y)

to the polynomials such that

(X − α) · qα,β(X,Y) + (Y − β) · qβ(Y) =
[
f
λ̃
(X,Y)− f

λ̃
(α, β)

]
+

k∑
t=1

ξ̃t · [ft(X,Y)− θt]

and send Qα, Qβ to the Verifier.

Verification algorithm

7. The Verifier V computes the Fp-element

θ̃ :=
[k∑
t=1

λ̃t−1 · θt · et(α, β)−1
]
+

k∑
t=1

ξ̃t · βt

7

8. V verifies the equation

(Qα,β)
s1−α · (Qβ)

s2−β = B
λ̃
·
[k∏
t=1

aξ̃
t

t

]
· g−θ̃

1

via the pairing checks.

2.3 The degree upper bound

Unlike Plonk ([GWC19]) and Pianist ([LXZ+23]), our scheme needs a protocol for upper
bounds on the degrees of committed polynomials. We first describe how our protocol works in
the univariate setting before extending the techniques to the distributed bivariate setting.

For a committed univariate polynomial f(X) and an integer n, we have

deg(f) ≤ n ⇐⇒ Xn · f(X−1) ∈ Fp[X].

Thus, a Prover can demonstrate this upper bound on the degree by verifiably sending the
commitment to the polynomial f̂(X) := Xn · f(X−1). This can be accomplished by showing
that for a random challenge α, the equality f̂(α−1) = α−n · f(α) holds.

We note that the protocol for the degree upper bound is batchable. For committed polynomials
fi(X) and integers ni, we have deg(fi) ≤ ni for each index i if and only if, for a randomly generated
challenge λ, the rational function

fλ(X) :=
k∑

i=1

λi−1 ·Xni · fi(X−1)

is a polynomial (lemma 2.1). Thus, a Prover can demonstrate all of these degree upper bounds
by verifiably sending the KZG commitment to fλ(X).

We now describe a degree upper bound for bivariate polynomials in a distributed setting.
Consider a bivariate polynomial

h(X,Y) =
M−1∑
j=0

hj(X) · Y j

where the univariate hj(X) is held by the Prover machine Pj . We note that for an integer n, the
following are equivalent:

- degX(h) ≤ n

- deg(hj) ≤ n ∀ j ∈ {0, · · · ,M − 1}
- The univariate rational function ĥj(X) := Xn · hj(X−1) lies in Fp[X] ∀ j ∈ {0, · · · ,M − 1}
- The rational function

ĥ(X,Y) := Xn · h(X−1, Y) =

M−1∑
j=0

ĥj(X) · Y j

lies in Fp[X,Y].

Each machine Pj computes the polynomial ĥj(X) := Xn ·hj(X−1) and sends the commitment[
ĥj(X) ·Y j

]
G1

to the master node P̃, who then computes the commitment
[
ĥ(X,Y)

]
G1

by adding

8

M G1-points. It now suffices to show that for a randomly generated challenge α ∈ Fp, the

committed polynomials h(X,Y) and ĥ(X,Y) satisfy the equation

ĥ(α, Y) = αn · h(α−1, Y) ∈ Fp[Y]

To show that degY (h) ≤ m, it suffices to show that the polynomial h(α, Y) ∈ Fp[Y] has

degree ≤ m. To that end, each Prover machine Pj sends hj(α) to the master node P̃, who in
turn, verifiably sends the commitments

[
h(α, Y)

]
G1
,
[
Y m · h(α, Y −1)

]
G1
. to the Verifier.

Protocol 2.3. Degree upper bound (DegUp)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS[[
XiY j

]
G1

: (i, j) ∈ [0, T − 1]× [0, M − 1]
]

,
[[
1
]
G2
,
[
X
]
G2
,
[
Y
]
G2

]
Common Inputs: Elements a ∈ G1; integers n, m

Claim: The Prover knows a polynomial f(X,Y) such that

a =
[
f(X,Y)

]
G1

, degX(f) ≤ n , degY (f) ≤ m

Proof generation algorithm

1. The Prover machines collaboratively compute the polynomial f̂(X,Y) := Xn · f(X−1, Y)
and send the commitment

â :=
[
f̂(X,Y)

]
G1

to the Verifier.

2. The hashing algorithm HashFS generates a challenge α.

3. The Prover machines collaboratively compute the polynomial f̂(α, Y) and send the
commitment

âα :=
[
f̂(α, Y)

]
G1

to the Verifier.

4. The Prover machines collaboratively compute the polynomials

qα(X,Y) :=
f(X,Y)− f(α, Y)

X − α
, q̂α(X,Y) :=

f̂(X,Y)− α−n · f(α, Y)

X − α−1

and send the commitments

Qα :=
[
qα(X,Y)

]
G1

, Q̂α :=
[
q̂α(X,Y)

]
G1

to the Verifier.

5. The master node P̃ computes the polynomial f∨
α (Y) := Y m · f(α, Y −1) and sends the

commitment
a∨α :=

[
f∨
α (Y)

]
G1

9

6. The hashing algorithm HashFS generates a challenge β.

7. The master node P̃ sends

θ := f(α, β) , Qα,β :=
[f(α, Y)− θ

Y − β

]
G1

, Q∨
α,β :=

[f∨
α (Y)− θ · β−m

Y − β−1

]
G1

and to the Verifier.

Verification algorithm

8. The Verifier V verifies the equations

Qs1−α
α

?
= a · a−1

α , Q̂s1−α−1

α
?
= â · a−α−n

α

Qs2−β
α,β

?
= aα · g−θ

1 , (Q∨
α,β)

s2−β−1 ?
= a∨α · g−θ·β−m

1

via the pairing checks.

2.3.1 Batched degree upper bounds

We note that multiple degree upper bounds can be batched. Consider k bivariate polynomials

ft(X,Y) =
M−1∑
j=0

ft,j(X) · Y j , t = 0, · · · , k − 1

with
degX(ft) = min(deg(ft,j)) ≤ nt

and each univariate polynomial ft,j(X) held by the Prover machine Pj . We assume k is a fairly
small integer. The resulting number of G1 elements in the proof (ergo the number of MSMs in
the proof generation) will be independent of k, although the number of Fp elements in the proof
will be O(k). For the basic version of the distributed Snark with a 3-ary circuit and without
custom gates or lookups, we need 10 degree upper bounds. Three of these are for the wire
polynomials (degX(.) ≤ T). One is for the low degree part of the sum of twisted polynomial
products (degX(.) ≤ T − 1), which is necessary for the batched Hadamard product protocol.
The other six (degX(.) ≤ T) are for the polynomials arising from the LogUp-esque permutation
argument.

It suffices to show that for a randomly generated challenge λ̂, the rational function given by
the randomized sum

f̂
λ̂
(X,Y) :=

k−1∑
t=0

λ̂t ·Xnt · ft(X−1, Y) =
M−1∑
j=0

[k−1∑
t=0

[
λ̂t ·Xnt · ft,j(X−1)

]]
· Y j

is a polynomial. The Prover machine Pj computes the polynomial

f̂
λ̂,j

(X) :=

k−1∑
t=0

λ̂t ·Xnt · ft,j(X−1)

and sends the KZG commitment
[
f̂
λ̂,j

(X) · Y j
]
G1

to the master node P̃, who, in turn, computes
the KZG commitment

10

[
f̂
λ̂
(X,Y)

]
G1

=
M−1∏
j=0

[
f̂
λ̂,j

(X) · Y j
]
G1
.

and sends it to the Verifier.

It then remains to show that that the commitment to f̂λ(X,Y) is well-formed. This can be
achieved by showing that for a randomly generated challenge (α, β) ∈ F2

p,

f̂
λ̂
(α, β) =

k−1∑
t=0

λ̂t · αnt · ft(α−1, β).

Thus, it suffices to send the evaluations ft(α
−1, β) (t = 0, · · · , k − 1) and f

λ̂
(α, β) along with a

batched proof of these openings.

2.4 The Hadamard product

For bivariate polynomials f1(X,Y), f2(X,Y), the Hadamard product f1⊙f2(X,Y) (alternatively
denoted by f1(X,Y)⊙ f2(X,Y)) is given by

f1 ⊙ f2(X) :=
∑
i,j

Coef(f1 , (i, j)) · Coef(f2 , (i, j)) ·XiY j .

The dot product f1 ◦ f2(X,Y) is the evaluation of the Hadamard product f1 ⊙ f2(X,Y) at
(X,Y) = (1, 1). Note that for polynomials

ft(X,Y) =
M−1∑
j=0

ft,j(X) · Y j , t = 1, 2,

we have the equation

f1 ⊙ f2(X,Y) =
M−1∑
j=0

f1,j ⊙ f2,j(X) · Y j .

By a proof of a Hadamard triple (a1,a2,a1,2) ∈ G3
1, we refer to a succinct argument attesting to

the knowledge of polynomials f1(X,Y), f2(X,Y), f1,2(X,Y) such that

a1 =
[
f1(X,Y)

]
G1

, a2 =
[
f2(X,Y)

]
G1

, a1,2 =
[
f1,2(X,Y)

]
G1

, f1,2(X,Y) = f1 ⊙ f2(X,Y).

We briefly review the Hadamard product protocol from [Th23] for univariate polynomials in
Fp[X] before adapting the techniques to bivariate polynomials in Fp[X,Y] in a distributed setting.
For univariate polynomials f1(X), f2(X) and for a fixed integer N ≥ deg(f2) and a randomly
generated challenge γ, the product

fΠ,γ(X) := f1(γ ·X) ·XN · f2(X−1)

is a polynomial of degree

deg(fΠ,γ) = deg(f1) +N − val(X)(f2(X)) ≤ deg(f1) +N.

The product fΠ,γ(X) can be computed via a Multimodular FFT. Its coefficient Coef(fΠ,γ , N)
at XN is given by the sum

min(deg(f1) , deg(f2))∑
i=0

Coef(f1 , i) · Coef(f2 , i) · γi ,

11

which happens to coincide with the evaluation of the Hadamard product f1 ⊙ f2(X) at γ. We
exploit this simple fact in conjunction with the protocol for the degree upper bound to obtain a
protocol for the Hadamard product.

It is straightforward to show that a committed univariate polynomial is divisible by the
monomial XN+1. To show that a committed polynomial f(X) is of degree ≤ n for a public
integer n, the Prover verifiably sends a commitment to the polynomial f̂(X) := Xn ·f(X−1). This
implies that with overwhelming probability, the rational function Xn · f(X−1) is a polynomial,
whence it follows that deg(f) ≤ n.

Lastly, for a tuple

(λt)
k−1
t=0 ∈ Fk

p , (at, bt)
k−1
t=0 ∈ (G2

1)
k, C ∈ G1 ,

we use the term batched univariate Hadamard product over Fp[Y] as shorthand for the master
node proving the knowledge of at(Y), bt(Y), C(Y) ∈ F[Y] such that:

- at =
[
at(Y)

]
G1

, bt =
[
bt(Y)

]
G1

, C =
[
C(Y)

]
G1

.

-
k−1∑
t=0

λt · at ⊙ bt(Y) = C(Y).

As in [Th23a], this is demonstrated by showing that for a randomly sampled γ ∈ Fp, the

polynomial
k−1∑
t=0

λt · at(γ · Y) · Y M · bt(Y −1) has coefficient C(γ) at Y M .

We now move to the distributed bivariate setting. Consider k Hadamard product equations

(2.1) At ⊙Bt(X,Y) = Ct(X,Y) , t = 0, · · · , k − 1

of committed polynomials

At(X,Y) =
M−1∑
j=0

At,j(X) · Y j , Bt(X,Y) =
M−1∑
j=0

At,j(X) · Y j , Ct(X,Y) =
M−1∑
j=0

Ct,j(X) · Y j

where the polynomials At,j(X), Bt,j(X), Ct,j(X) are held by the Prover machine Pj .

It suffices to show that for a challenge λ ∈ Fp randomly and uniformly generated after the
commitments

[
At(X,Y)

]
G1
,
[
Bt(X,Y)

]
G1
,
[
Ct(X,Y)

]
G1

have been added to the transcript - or
are linear combinations of elements added to the transcript thus far - the polynomial

fΠ,γ,λ(X,Y) :=

k∑
t=0

M−1∑
j=0

λt ·
[
At,j(γ ·X) ·XT ·Bt,j(X

−1)
]
· Y j

=
M−1∑
j=0

[
k−1∑
t=0

λt ·
[
At,j(γ ·X) ·XT ·Bt,j(X

−1)
]]

· Y j

is of the form

fγ,λ,−(X,Y) +
[k−1∑
t=0

λt · Ct(γ, Y)
]
·XT + XT+1 · fγ,λ,+(X,Y) , degX(fγ,λ,−) ≤ T − 1.

The X-degree upper bound on fγ,λ,−(X,Y) can be proven via the mechanism described in the
preceding section, namely verifiably sending the commitment to the polynomial

12

f̂γ,λ,α,−(X,Y) := XT−1 · fγ,λ,α,−(X−1, Y).

This is more optimal than sending a KZG commitment to a low degree and a high degree part
for each individual Hadamard product. We note that fΠ,γ,λ(X,Y) is the unique polynomial such
that for any α ∈ Fp,

fΠ,γ,λ(α, Y) =
k−1∑
t=0

λt · [At(γ · α, Y)]⊙ [αT ·Bt(α
−1, Y)]

and hence, verifiably committing to fΠ,γ,λ(X,Y) boils down to a Hadamrd product equation over
Fp[Y].

For a challenge α generated after the commitments
[
fγ,λ,−(X,Y)

]
G1
,
[
f̂γ,λ,α,−(X,Y)

]
G1
,[

fγ,λ,+(X,Y)
]
G1

have been sent to the Verifier, the master node needs to send the commitments
to the univariate polynomials

fγ,λ,α,−(Y) := fγ,λ,−(α, Y) , fγ,λ,α,+(Y) := fγ,λ,+(α, Y) , Cγ,λ(Y) :=

k−1∑
t=0

λt · Ct(γ, Y)

At,γ,α(Y) := At(γ · α, Y) , B̂t,α(Y) := αT ·Bt(α
−1, Y) (t = 0, · · · , k − 1).

Furthermore, it is necessary to prove the following claims about these committed Fp[Y] elements:

• At,γ,α(Y) ≡ At(X,Y) (mod X − γ · α) (t = 0, · · · , k − 1)

• B̂t,α(Y) ≡ αT ·Bt(X,Y) (mod X − α−1) (t = 0, · · · , k − 1)

• Cγ,λ(Y) ≡
k−1∑
t=0

λt · Ct(X,Y) (mod X − γ)

• fγ,λ,α,−(Y) ≡ fγ,−(X,Y) (mod X − α) , fγ,λ,α,+(Y) ≡ fγ,+(α, Y) (mod X − α).

• fγ,λ,α,−(X,Y) ≡ αT−1 · f̂γ,λ,α,−(X,Y) (mod X − α−1)

• At,γ,α(Y), B̂t,α(Y), Cγ,λ(Y), fγ,λ,α,−(Y), fγ,λ,α,+(Y) ∈ Fp[Y], i.e. the X-degrees of these
committed Fp[X,Y]-elements are 0. This can be demonstrated by showing that a randomized
sum is an element of Fp[Y].

• The univariate Hadamard product equation

k−1∑
t=0

λt ·At,γ,α ⊙ B̂t,α(Y) = fγ,λ,α,−(Y) + αT · Cγ,λ(Y) + αT+1 · fγ,λ,α,+(Y) ∈ Fp[Y].

For a randomly generated challenge θ ∈ Fp, it suffices to show that the polynomial

k−1∑
t=0

λt ·At,γ,α(θ · Y) · Y M · B̂t,α(Y
−1)

has coefficient fγ,λ,α,−(θ) + αT · Cγ,λ(θ) + αT+1 · fγ,λ,α,+(θ) at the position Y M .

The last two claims can be proven independently by the master node P̃. The first four boil
down to a batched divisibility subprotocol and entail two MSMs of length T in G1 for each worker

13

node Pj . Thus, in the distributed bivariate setting, a proof of k Hadamard products of committed
polynomials entails the following costs for each Prover machine Pj :

- five MSMs of length T .

- a sum of k products over Fp[X]≤T

Protocol 2.4. Batched proof of Hadamard Products (PoHadProd)

The CRS[[
XiY j

]
G1

: (i, j) ∈ [0, T − 1]× [0, M − 1]
]

,
[[
1
]
G2
,
[
X
]
G2
,
[
Y
]
G2

]
Common Inputs: Elements At, Bt, Ct ∈ G1 (t = 0 · · · , k − 1)

Claim: The Prover knows polynomials At(X,Y), Bt(X,Y) such that:[
At(X,Y)

]
G1

= At ,
[
Bt(X,Y)

]
G1

= Bt ,
[
At ⊙Bt(X,Y)

]
G1

= Ct

Proof generation

Randomized sum of twisted products

1. The hashing algorithm HashFS generates challenges γ, λ.

2. Each worker node Pj sends the element Ct,j(γ) to the master node P̃.

3. The master node P̃ computes the Fp[Y] polynomial

Cγ,λ(Y) :=
∑
t

λt · Ct(γ, Y) =

k−1∑
t=0

M−1∑
j=0

λt · Ct(γ) · Y j

4. Each worker node Pj computes the polynomial

fγ,λ,j(X) :=
k∑

t=1

λt−1 ·At,j(γ ·X) ·XT ·Bt,j(X
−1)

The low degree part

5. Each worker node Pj computes the residue

fγ,λ,−,j(X) := fγ,λ(X) (mod XT)

and sends the G1-element a−,j :=
[
fγ,λ,−(X) · Y j

]
G1

to the master node P̃.

Degree upper bound on the low degree part

14

6. Each worker node Pj computes the polynomial

f̂γ,λ,−,j(X) := XT−1 · fγ,λ,−(X−1)

and sends the G1-element â−,j :=
[
f̂γ,λ,−(X) · Y j

]
G1

to the master node P̃.

The high degree part

7. Each worker node Pj computes the polynomial

fγ,λ,+,j(X) :=

deg(fγ,λ,j)∑
i=T+1

Coef(fγ,λ,j , i) ·Xi−T−1

and sends the G1-element a+,j :=
[
fγ,λ,+,j(X) · Y j

]
G1

to the master node P̃.

8. The master node P̃ computes the G1-elements

a− :=

M−1∏
j=0

a−,j , â− :=

M−1∏
j=0

â−,j , a+ :=

M−1∏
j=0

a+,j

and sends them to the Verifier.

The evaluation challenge

9. The hashing algorithm HashFS generates a challenge α.

10. Each worker node Pj sends the Fp-elements

At,j(γ · α) , Bt,j(α
−1) (t = 0, · · · , k − 1)

k−1∑
t=0

λt ·At,j ⊙Bt,j(γ) , fγ,λ,−,j(α) , fγ,λ,+,j(α)

to the master node P̃.

11. The master node P̃ computes the Fp[Y]-elements

At(γ · α, Y) , αT ·Bt(α
−1, Y) , Cγ,λ(Y) :=

k−1∑
t=0

λt ·At ⊙Bt(γ, Y)

and sends the G1-elements

At,γ,α,Y :=
[
At(γ · α, Y)

]
G1

, Bt,α,Y :=
[
αT ·Bt(α

−1, Y)
]
G1

, Cα,λ,Y :=
[
Cγ,λ

]
G1

a−,Y :=
[
fγ,λ,−(α, Y)

]
G1

,
[
a+,Y := fγ,λ,+(α, Y)

]
G1

to the Verifier.

15

12. The hashing algorithm HashFS generates challenge λ1, β.

The batched divisibility subprotocol

13. The Prover machines send a batched divisibility proof for the following (G1,Fp[X]≤1)
pairs:

-
k−1∏
t=0

(At ·A−1
t,γ,α,Y)

λt
1 , X − γ · α

-
k−1∏
t=0

(Bt ·B−αT

t,α,Y)
λt
1 , X − α−1

-
[k−1∏
t=0

C
λt1

t

]
·C−1

γ,λ,Y , X − γ

- a− · (a−,Y)
−1 , X − α

- a+ · (a+,Y)
−1 , X − α

- â− ·
(
a−,Y

)−α1−T

, X − α−1

Master node’s work over Fp[Y]

14. The master node P̃ computes the polynomial

h(Y) :=

k−1∑
t=0

λt
1 ·At,γ,α(Y) +

k−1∑
t=0

λk+t
1 ·Bt,γ,α(Y) + λ2k

1 · Cγ,λ(Y)

+λ2k+1
1 · fγ,λ,−(α, Y) + λ2k+2

1 · fγ,λ,+(α, Y)

and sends
β0 := h(β) , Qβ :=

[h(Y)− β0
Y − β

]
G1

to the Verifier.

15. The master node P̃ sends a batched Hadamard product proof over Fp[Y] for the tuple[
(λt)t=0,··· ,k−1 ,

(
At,γ,α,Y , Bt,α,Y

)
t=0,··· ,k−1

, a−,Y · (Cγ,λ,Y)
αT · (a+,Y)

αT+1
]

The verification

16. The Verifier V computes the elements

k−1∏
t=0

(At ·A−1
t,γ,α,Y)

λt
1 ,

k−1∏
t=0

(Bt ·B−αT

t,α,Y)
λt
1

[k−1∏
t=0

C
λt1

t

]
·C−1

γ,λ,Y ,

16

a−,Y · (a−,Y)
−1 , â− ·

(
a−,Y

)−α1−T

, a+,Y · (a+,Y)
−1

and runs the verification of the batched divisibility subprotocol.

17. V verifies the equation

(Qβ)
s2−β ?

=
k−1∏
t=0

(At,γ,α,Y)
λt
1 ·

k−1∏
t=0

(Bt,α,Y)
λt+k
1 ·Cλ2k

1
γ,λ,Y · aλ

2k+1
1

−,Y · aλ
2k+2
1

+,Y · g−β0
1

via the pairing check

e(Qβ ,
[
Y
]
G2
)

?
= e(

k−1∏
t=0

(At,γ,α,Y)
λt
1 ·

k−1∏
t=0

(Bt,α,Y)
λt+k
1 ·Cλ2k

1
γ,λ,Y ·a

λ2k+1
1

−,Y ·aλ
2k+2
1

+,Y ·g−β0
1 ·Qβ

β ,
[
1
]
G2
).

18. V runs the verification of the batched Hadamard product equation over Fp[Y].

2.5 The permutation argument

Since the proof system uses Plonkish arithmetization, it is fundamental to have an efficient
succinct permutation argument for the copy constraints. We first describe the mechanism of
the permutation argument on committed bivariate polynomials in the monomial basis. We
subsequently describe how the (extended) permutation argument is used to prove the copy
constraints in the Snark.

Consider two committed bivariate polynomial f(X,Y), h(X,Y) with

degX(f), degX(h) ≤ T − 1 , degY (f), degY (h) ≤ M − 1.

Let σ̃ be a permutation of [0, T − 1]× [0, M − 1] and let

σ : [0, T − 1]× [0, M − 1] −→ [0, T ·M − 1]

be the composition with the map

[0, T − 1]× [0, M − 1] −→ [0, T ·M − 1] , (i, j) 7→ i ·M + j.

We commit to σ̃ (or equivalently, to σ) via the polynomial

Sσ(X,Y) :=
M−1∑
j=0

T−1∑
i=0

σ(i, j) ·XiY j .

As before, we commit to the identity permutation via the polynomial

Sid(X,Y) =

M−1∑
j=0

T−1∑
i=0

(i ·M + j) ·XiY j .

We describe a protocol to show that σ maps f(X,Y) to h(X,Y) in the following sense:

Coef(f , σ̃(i, j)) = Coef(h , (i, j)) ∀ (i, j) ∈ [0, T − 1]× [0, M − 1].

Note that this is equivalent to the polynomials

h(X,Y) + δ1 · Sσ(X,Y) , f(X,Y) + δ1 · Sid(X,Y)

17

having the same multiset of coefficients for a randomly generated challenge δ1 ∈ Fp. This, it turn,
is equivalent - with overwhelming probability- to the polynomials

fid,δ1,δ2(X,Y) := f(X) + δ1 · Sid(X,Y) + δ2 ·
XT − 1

X − 1
· Y

M − 1

Y − 1

hσ,δ1,δ2(X,Y) := f(X,Y) + δ1 · Sσ(X,Y) + δ2 ·
XT − 1

X − 1
· Y

M − 1

Y − 1

satisfying the equation∑
(i,j)∈[0, T−1]×[0, M−1]

[
Coef

(
fid,δ1,δ2 , (i, j)

)]−1
=

∑
(i,j)∈[0, T−1]×[0, M−1]

[
Coef

(
fσ,δ1,δ2 , (i, j)

)]−1

for randomly generated challenges δ1, δ2 ∈ Fp. Thus, it suffices to show that there exist polynomials

ĥσ,δ1,δ2(X,Y), f̂id,δ1,δ2(X,Y) such that:

• The X-degrees are ≤ T and the Y -degrees are ≤ M.

• the following Hadamard product equations hold

hσ,δ1,δ2 ⊙ ĥσ,δ1,δ2(X,Y) =
XT − 1

X − 1
· Y

M − 1

Y − 1
= fid,δ1,δ2 ⊙ f̂id,δ1,δ2(X,Y)

• The evaluations at (X,Y) = (1, 1) coincide, i.e.

ĥσ,δ1,δ2(1, 1) = f̂id,δ1,δ2(1, 1)

or equivalently, the difference ĥσ,δ1,δ2(X,Y)− f̂id,δ1,δ2(X,Y) evaluates to 0 at (1, 1).

2.5.1 Copy constraints

We now describe how the permutation argument is incorporated into the Snark to prove the
copy constraints in a distributed setting. For simplicity, we consider a two input, one output
circuit with left/right/output bivariate polynomials L(X,Y), R(X,Y), O(X,Y). We store the
circuit permutation in the form of three injective maps

σt : [0, T − 1]× [0, M − 1] −→ [0, 3T ·M − 1] , t = 1, 2, 3

with disjoint images, i.e.

[0, 3T ·M − 1] = im(σ1)⨿ im(σ2)⨿ im(σ3).

The maps σt are committed via the preprocessed polynomials

Sσt(X,Y) :=
∑

(i,j)∈[0, T−1]×[0, M−1]

σt(i, j) ·XiY j =
M−1∑
j=0

Sσt,j (X) · Y j

with the polynomials

Sσt,j (X) :=
∑

i∈[0, M−1]

σt(i, j) ·Xi , t = 1, 2, 3

stored by the Prover machine Pj . The identity bijection is stored via the maps idt (t = 1, 2, 3)

idt : [0, T − 1]× [0, M − 1] −→ [0, 3T ·M − 1] , (i, j) 7→ (i+ T · (t− 1)) ·M + j

18

and the preprocessed polynomials Sidt(X,Y) are defined accordingly. The Prover machines need
to show that for randomly generated challenges δ1, δ2 the triplet of polynomials

Lid1,δ1,δ2(X,Y) := L(X,Y) + δ1 · Sid1(X,Y) + δ2 ·
XT − 1

X − 1
· Y

M − 1

Y − 1

Rid2,δ1,δ2(X,Y) := R(X,Y) + δ1 · Sid2(X,Y) + δ2 ·
XT − 1

X − 1
· Y

M − 1

Y − 1

Oid3,δ1,δ2(X,Y) := O(X,Y) + δ1 · Sid3(X,Y) + δ2 ·
XT − 1

X − 1
· Y

M − 1

Y − 1

have the same sum of coefficient inverses∑
(i,j)∈ [0, T−1]×[0, M−1]

[
Coef(Lid1,δ1,δ2 , (i, j))

]−1
+
[
Coef(Rid2,δ1,δ2 , (i, j))

]−1
+
[
Coef(Oid3,δ1,δ2 , (i, j))

]−1

as the triplet

Lσ1,δ1,δ2(X,Y) := L(X,Y) + δ1 · Sσ1(X,Y) + δ2 ·
XT − 1

X − 1
· Y

M − 1

Y − 1

Rσ2,δ1,δ2(X,Y) := R(X,Y) + δ1 · Sσ2(X,Y) + δ2 ·
XT − 1

X − 1
· Y

M − 1

Y − 1

Oσ3,δ1,δ2(X,Y) := O(X,Y) + δ1 · Sσ3(X,Y) + δ2 ·
XT − 1

X − 1
· Y

M − 1

Y − 1

Thus, it boils down to verifiably committing to the six unique polynomials L̂id1,δ1,δ2(X,Y),

L̂σ1,δ1,δ2(X,Y), R̂id2,δ1,δ2(X,Y), R̂σ2,δ1,δ2(X,Y), Ôid3,δ1,δ2(X,Y), Ôσ3,δ1,δ2(X,Y) such that:

1. The X-degrees are ≤ T and the Y -degrees are ≤ M

2. All six of the following Hadamard products equal XT−1
X−1 · Y M−1

Y−1 :

L̂id1,δ1,δ2 ⊙ Lid1,δ1,δ2(X,Y) , L̂σ1,δ1,δ2 ⊙ Lσ1,δ1,δ2(X,Y) , R̂id2,δ1,δ2 ⊙Rid,δ1,δ2(X,Y)

R̂σ2,δ1,δ2 ⊙Rσ2,δ1,δ2(X,Y) , Ôid3,δ1,δ2 ⊙Oid3,δ1,δ2(X,Y) , Ôσ3,δ1,δ2 ⊙Oσ3,δ1,δ2(X,Y)

3. The two polynomials

L̂id1,δ1,δ2(X,Y) + R̂id2,δ1,δ2(X,Y) + Ôid3,δ1,δ2(X,Y) ,

L̂σ1,δ1,δ2(X,Y) + R̂σ2,δ1,δ2(X,Y) + Ôσ3,δ1,δ2(X,Y)

have the same evaluation at (X,Y) = (1, 1). Equivalently, the difference evaluates to 0 at (X,Y) =
(1, 1).

19

3 The batched protocol

Protocol 3.1. The distributed Snark

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

Common preprocessed inputs:

� Integers T , M.

� The CRS
[[
XiY j

]
G1

: (i, j) ∈ [0, T]× [0, M − 1]
]
,
[[
1
]
G2
,
[
X
]
G2
,
[
Y
]
G2

]
.

� Index sets IAdd, IMul, IPub ⊆ [0, T − 1] × [0, M − 1] corresponding to the addition,
multiplication gates and public inputs respectively and their indicator polynomials χIAdd

(X,Y),
χIMul

(X,Y), χIPub
(X,Y)

� The polynomials

Sidt(X,Y) :=
∑

(i,j)∈[0, T−1]×[0, M−1]

[
[i+ (t− 1) ·M] · T + j

]
·XiY j , t = 1, 2, 3.

� Three injective maps

σt : [0, T − 1]× [0, M − 1] −→ [0, 3MT − 1] , t = 1, 2, 3

with disjoint images, i.e.

[0, T − 1]× [0, 3M − 1] = im(σ1)⨿ im(σ2)⨿ im(σ3)

committed via the polynomials

Sσt(X,Y) :=
∑

(i,j)∈[0, T−1]×[0, M−1]

σt(i, j) ·XiY j .

� We denote by
σt : [0, T − 1]× [0, 3M − 1] −→ [0, 3MT − 1]

the bijection

(i, j +M · (t− 1)) 7→ σt(i, j) ∀ (i, j) ∈ [0, T − 1]× [0, M − 1] , t = 1, 2, 3.

Prover Machine Pj ’s preprocessed inputs: For each polynomial

f(X,Y) =

M−1∑
j=0

fj(X) · Y j

in the common preprocesed input, the machine Pj stores the polynomial fj(X).

Verifier preprocessed inputs:[
1
]
G1
,
[
X
]
G1
,
[
XT

]
G1
,
[
Y
]
G1
,
[
Y M

]
G1
,
[
1
]
G2
,
[
X
]
G2
,
[
Y
]
G2

20

ĈAdd :=
[
χ̂IAdd

(X,Y)
]
G1

, ĈMul :=
[
χ̂IMul

(X,Y)
]
G1

, ĈPubt :=
[
χ̂IPubt

(X,Y)
]
G1

APubt :=
[
Ppubt

(X,Y)
]
G1

, Cσt :=
[
Sσt(X,Y)

]
G1

, Cidt :=
[
Sidt(X,Y)

]
G1

(t = 1, 2, 3)

C1 :=
[∑
(i,j)∈[0, T−1]×[0, M−1]

XiY j
]
G1

=
[XT − 1

X − 1
· Y

M − 1

Y − 1

]
G1

Claim: The Prover knows polynomials L(X,Y), R(X,Y), O(X,Y) such that:

� degX(L), degX(R), degX(O) ≤ T − 1

� degY (L), degY (R), degY (O) ≤ M − 1

� [L⊙R(X,Y)−O(X,Y)] ⊙ χIMul
(X,Y) = 0

� [L(X,Y) +R(X,Y)−O(X,Y)] ⊙ χIAdd
(X,Y) = 0

� [L(X,Y)− Ppub1
(X,Y)]⊙ χIPub1

(X,Y) = [R(X,Y)− Ppub2
(X,Y)]⊙ χIPub2

(X,Y)

= [O(X,Y)− Ppub3
(X,Y)]⊙ χIPub3

(X,Y) = 0.

� The concatenated polynomial

Wires(X,Y) := L(X,Y) + Y M ·R(X,Y) + Y 2M ·O(X,Y)

is stable under the action of the permutation σ, i.e.

Coef(Wires , σ(i, j)) = Coef(Wires , (i, j)) ∀ (i, j) ∈ [0, T − 1]× [0, 3M − 1].

The proof generation:

Committing to the wire polynomials

1 The Prover machines collaboratively compute the polynomials L(X,Y), R(X,Y), O(X,Y),
L⊙R(X,Y) and send the commitments

AL :=
[
L(X,Y)

]
G1

, AR :=
[
R(X,Y)

]
G1
, AO :=

[
O(X,Y)

]
G1

, AL,R :=
[
L⊙R(X,Y)

]
G1

to the Verifier V.

The permutation polynomials

2 The hashing algorithm HashFS generates challenges δ1, δ2.

21

3 The Prover machines collaboratively compute the polynomials

L̂id1,δ1,δ2(X,Y) :=
∑

(i,j)∈[0,T−1]×[0,M−1]

[
Coef(L , (i, j)) + δ1 · id1(i, j) + δ2

]−1 ·XiY j

L̂σ1,δ1,δ2(X,Y) :=
∑

(i,j)∈[0,T−1]×[0,M−1]

[
Coef(L , (i, j)) + δ1 · σ1(i, j) + δ2

]−1 ·XiY j

R̂id2,δ1,δ2(X,Y) :=
∑

(i,j)∈[0,T−1]×[0,M−1]

[
Coef(R , (i, j)) + δ1 · id2(i, j) + δ2

]−1 ·XiY j

R̂σ2,δ1,δ2(X,Y) :=
∑

(i,j)∈[0,T−1]×[0,M−1]

[
Coef(R , (i, j)) + δ1 · σ2(i, j) + δ2

]−1 ·XiY j

Ôid3,δ1,δ2(X,Y) :=
∑

(i,j)∈[0,T−1]×[0,M−1]

[
Coef(O , (i, j)) + δ1 · id3(i, j) + δ2

]−1 ·XiY j

Ôσ3,δ1,δ2(X,Y) :=
∑

(i,j)∈[0,T−1]×[0,M−1]

[
Coef(O , σ3(i, j)) + δ1 · σ3(i, j) + δ2

]−1 ·XiY j

and send the six G1-elements

ÂL,id2,δ1,δ2 :=
[
L̂id1,δ1,δ2(X,Y)

]
G1

, ÂL,σ1,δ1,δ2 :=
[
L̂σ1,δ1,δ2(X,Y)

]
G1

ÂR,id2,δ1,δ2 :=
[
R̂id1,δ1,δ2(X,Y)

]
G1

, ÂR,σ2,δ1,δ2 :=
[
R̂σ2,δ1,δ2(X,Y)

]
G1

ÂO,id3,δ1,δ2 :=
[
Ôid3,δ1,δ2(X,Y)

]
G1

, ÂO,σ3,δ1,δ2 :=
[
Ôσ3,δ1,δ2(X,Y)

]
G1

4 The Prover machines send a batched proof of the following Hadamard product triples of
committed polynomials:

- AL , AR , AL⊙R

- AL ·AR ·A−1
O , Cadd , 1G1

- AL⊙R ·A−1
O , Cmul , 1G1

- AL ·Cδ1
id1

·Cδ2
1 , ÂL,id1,δ1,δ2 , C1

- AL ·Cδ1
σ1

·Cδ2
1 , ÂL,σ1,δ1,δ2 , C1

- AR ·Cδ1
id2

·Cδ2
1 , ÂR,id2,δ1,δ2 , C1

- AR ·Cδ1
σ2

·Cδ2
1 , ÂR,σ2,δ1,δ2 , C1

- AO ·Cδ1
id3

·Cδ2
1 , ÂO,id3,δ1,δ2 , C1

- AO ·Cδ1
σ3

·Cδ2
1 , ÂO,σ3,δ1,δ2 , C1

- AL ·A−1
Pub1

, CPub1 , 1G1

- AR ·A−1
Pub2

, CPub2 , 1G1

- AO ·A−1
Pub3

, CPub3 , 1G1

22

5 The Prover machines collaboratively send a degree upper bound proof to show that the
polynomials committed in

AL , AR , AO ,

ÂL,id1,δ1,δ2 , ÂR,id2,δ1,δ2 , ÂO,id3,δ1,δ2 , ÂL,σ1,δ1,δ2 , ÂR,σ2,δ1,δ2 , ÂO,σ3,δ1,δ2

have X-degrees ≤ T and Y -degrees ≤ M.

6 The Prover machines collaboratively send an opening proof to show that the polynomial
committed in the element

ÂL,id1,δ1,δ2 · ÂR,id2,δ1,δ2 · ÂO,id3,δ1,δ2 ·
[
ÂL,σ1,δ1,δ2 · ÂR,σ2,δ1,δ2 · ÂO,σ3,δ1,δ2

]−1

evaluates to 0 at (X,Y) = (1, 1).

The verification:

7 The Verifier V verifies the degree upper bounds, the batched Hadamard product protocol
and the opening proof from Step 6.

Each worker node’s work is dominated by the 15 MSMs of length T and to a lesser extent,
the single sum of polynomial products computed via multimodular FFTs of size 2T .

References

[BCKL21] E. Ben-Sasson, D. Carmon, S. Kopparty, D. Levit, Elliptic Curve Fast Fourier Transform (ECFFT)
Part I: Fast Polynomial Algorithms over all Finite Fields, https://arxiv.org/abs/2107.08473

[Bl22] R. Bloemen, NTT transform argument, https://xn–2-umb.com/22/ntt-argument/

[CHMMVW20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely and N.P. Ward. Marlin: Preprocessing zk-
SNARKs with universal and updatable SRS. Eurocrypt 2020, Part I, volume 12105 of LNCS

[EFG22] L. Eagen, D. Fiore, and A. Gabizon. cq: Cached quotients for fast lookups,
https://eprint.iacr.org/2022/1763

[EG23] L. Eagen and A. Gabizon, cqLin: Efficient linear operations on KZG commitments with cached quotients,
https://eprint.iacr.org/2023/393

[FST06] D. Freeman, M. Scott, E. Teske, A taxonomy of pairing-friendly elliptic curves

[FS87] A. Fiat, A. Shamir, How to prove yourself: Practical solutions to identification and signature problems. In
Andrew M. Odlyzko, editor, Crypto’86, volume 263 of LNCS

[FK] D. Feist and D. Khovratovich. Fast amortized Kate proofs, https://eprint.iacr.org/2023/033

[FKL18] G. Fuchsbauer, E. Kiltz,and J. Loss. The algebraic group model and its applications. In Advances in
Cryptology - Crypto 2018- 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
1923, 2018, Proceedings, Part II, pages 33–62, 2018.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs
without PCPs. In Advances in Cryptology - Eurocrypt 2013

[GWC19] A. Gabizon, Z. Williamson, O. Ciobotoru, PLONK: Permutations over Lagrange-bases for Oecumenical
Noninteractive arguments of Knowledge, https://eprint.iacr.org/2019/953

23

https://arxiv.org/abs/2107.08473
https://xn--2-umb.com/22/ntt-argument/
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2023/393.pdf
https://eprint.iacr.org/2023/033
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953

[GW20] A. Gabizon, Z. Williamson, Plookup: A simplified polynomial protocol for lookup tables,
https://eprint.iacr.org/2020/315.pdf

[Hab22] U. Habock, Multivariate lookups based on logarithmic derivatives, https://eprint.iacr.org/2022/1530

[KZG10] A. Kate, G. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their applications.
In Masayuki Abe, editor, Asiacrypt 2010, volume 6477 of LNCS, pages 177–194. Springer, Heidelberg, December
2010.

[LXZ+23] Liu et al, Pianist: Scalable zkRollups via Fully Distributed Zero-Knowledge Proofs,
https://eprint.iacr.org/2023/1271

[Mil86] V. Miller, Short Programs for functions on Curves

[Sh01] V. Shoup, The NTL Library, https://libntl.org/

[SS71] A. Schönhage, V. Strassen. Schnelle multiplikation großer zahlen. Computing, 7(34):281–292,197.

[Th23] S. Thakur, A flexible Snark via the monomial basis, https://eprint.iacr.org/2023/1255

A Multimodular FFTs

A consequence of using the monomial basis is that the only superlinear computations the
Prover performs are products of polynomials in Fp[X]. More precisely, the only superlinear
computation is the sum of twisted polynomial products arising from the bathced Hadamard
product equation. The simplest and the most efficient way to do so is to use multimodular FFTs
(terminology as in the NTL library).

We fix highly 2-adic primes p1, p2 such that p < min(p1, p2) and the product p1 · p2 is larger
than p2 · M where M is an upper bound on the degrees of any polynomials to be multiplied.
Given polynomials f1(X), f2(X), ∈ Fp[X], a the Prover computes the product f1(X) · f2(X) as
follows.

1. Lift the polynomials f1(X), f2(X) to characteristic zero. Denote these polynomials by
f̃1(X), f̃2(X) ∈ Z≥0[X]

2. Compute the polynomials f̃1(X) · f̃2(X) (mod pi · Z[X]) using FFTs in Fpi for i = 1, 2.

3. Use the Chinese remainder theorem on the coefficients of these polynomials to recover the
polynomial f̃1,2(X) := f̃1(X) · f̃2(X) ∈ Z≥0[X].

4. Reduce the coefficients of f̃1,2(X) modulo p to retrieve the Fp-polynomial f1(X) · f2(X).

Computing a sum
∑k

j=1 fj,1(X) · fj,2(X) entails k FFTs and a single inverse FFT per prime
modulus used in addition to the Chinese remainder theorem and reduction of the coefficients
modulo p.

B Deferred proofs

Proposition B.1. The protocol BatchDiv is secure in the algebraic group model.

Proof. (Sketch) The completeness is straightforward. It suffices to prove soundness. Suppose
a PPT algorithm APPT outputs an accepting transcript consisting of the G1 elements B

λ̃
, Qα,β,

Qβ and the Fp-elements θ0, · · · , θk−1.

Since the challenges α, β were randomly and uniformly generated after the elements B
λ̃
and

θ0, · · · , θk−1 were sent, the pairings checks imply that with overwhelming probability, an extractor
EPPT can run the extractor Emulti−PC to extract a polynomial f∗(X,Y) such that

24

https://eprint.iacr.org/2020/315.pdf
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2023/1271
https://libntl.org/
https://eprint.iacr.org/2023/1255

B
λ̃
·
[k−1∏
t=0

(at)
ξ̃t
]
=

[
f∗(X,Y)

]
G1

, f∗(α, β) = θ̃.

The Verifier independently computes the Fp-element

θ̃ :=
[k−1∑
t=0

λ̃t−1 · θt · et(α)−1
]
+

k∑
i=1

ξ̃i · βi.

Hence, it follows that with overwhelming probability, the extracted polynomial f∗(X,Y) satisfies
the equation

f∗(α, β) = [
k−1∑
t=o

λ̃t · βt · et(α)−1] +
k∑

i=1

ξ̃i · βi.

Since the challenge ξ̃ was randomly and uniformly generated after the G1 element B
λ̃
and the

Fp-elements β1, · · · , βk were sent, it follows that with overwhelming probability, EPPT can run the
extractor Emulti−PC to extract polynomials f∗

λ(X,Y) and f∗
t (X,Y) (t = 0, · · · , k − 1) such that

B
λ̃
=

[
f∗
λ(X,Y)

]
G1

, f∗
λ(α, β) = θ̃ , at =

[
f∗
t (X,Y)

]
G1

, f∗
t (α, β) = θt (t = 0, · · · , k − 1).

Thus, with overwhelming probability, the extracted polynomials f∗
λ(X,Y) and f∗

t (X,Y) (t =
0, · · · , k − 1) satisfy the equation

f∗
λ(α, β) =

[k−1∑
t=0

λ̃t · θt · et(α)−1
]
+

k−1∑
t=0

ξ̃t · βi =
[k−1∑
t=0

λ̃t · βt · et(α)−1
]
+

k−1∑
t=0

ξ̃t · f∗
t (α, β).

Since the challenges α, β were randomly and uniformly generated after the element B
λ̃
was

sent, the Schwartz-Zippel lemma implies that with overwhelming probability, the extracted
polynomials f∗

λ(X,Y), f∗
t (X,Y) (t = 0, · · · , k − 1) satisfy the equation

f∗
λ(X,Y) =

[k−1∑
t=0

λ̃t · f∗
t (X) · et(X)−1

]
+

k−1∑
t=0

ξ̃t · f∗
t (X).

In particular, it follows that with overwhelming probability, the rational function

k−1∑
t=0

λ̃t · f∗
t (X) · et(X)−1 ∈ Fp(X)

formed by the extracted polynomials f∗
t (X,Y) and the public polynomials ei(X) is a polynomial in

Fp[X]. The challenge λ̃ was randomly and uniformly generated and hence, lemma 2.1 implies that
with overwhelming probability, each of the rational functions f∗

t (X,Y) · ej(X)−1 is a polynomial,
whence it follows that et(X) divides f∗

t (X,Y) for each index t = 0, · · · , k − 1.

Proposition B.2. The protocol HadProd is secure in the algebraic group model.

Proof. (Sketch) The completeness is straightforward. It suffices to prove soundness. Suppose a
PPT algorithm APPT outputs an accepting transcript. The equation

(Qβ)
s2−β ?

=
k−1∏
t=0

(At,γ,α,Y)
λt
1 ·

k−1∏
t=0

(Bt,α,Y)
λt+k
1 ·Cλ2k

1
γ,λ,Y · aλ

2k+1
1

−,Y · aλ
2k+2
1

+,Y · g−β0
1

25

implies that with overwhelming probability, an extractor E can run the extractor Emulti−PC to
obtain a polynomial h∗(Y) ∈ Fp[Y] such that[

h∗(Y)
]
G1

=
k−1∏
t=0

(At,γ,α,Y)
λt
1 ·

k−1∏
t=0

(Bt,α,Y)
λt+k
1 ·Cλ2k

1
γ,λ,Y · aλ

2k+1
1

−,Y · aλ
2k+2
1

+,Y , h(β) = β0.

Since the challenge λ1 was randomly and uniformly generated, it follows that with overwhelming
probability, E can run the extractor Emulti−PC to obtain polynomials A∗

t (Y), B∗
t (Y), C∗

λ(Y),
fγ,λ,−,Y (Y), fγ,λ,+,Y (Y) such that[

A∗
t,γ,α,Y (Y)

]
G1

= At,γ,α,Y ,
[
B̂∗

t,α,Y (Y)
]
G1

= Bt,α,Y , C∗
γ,λ,Y (Y)

]
G1

= Cγ,λ,Y[
f∗
γ,λ,−,Y (Y)

]
G1

= a−,Y ,
[
f∗
γ,λ,+,Y (Y)

]
G1

= a+,Y

Furthermore, E can run the extractor of the univariate Hadamard product protocol ([Th23a])
over Fp[Y]. Hence, it follows that with overwhelming probability, these extracted Fp[Y] elements
satisfy the equation

k−1∑
t=0

λt ·A∗
t,γ,α,Y ⊙ B̂∗

t,α,Y (Y) = = f∗
γ,λ,−,Y (Y) + αT · C∗

γ,λ,Y (Y) + αT+1 · f∗
γ,λ,+,Y (Y)

Now, E can, with overwhelming probability, run the extractor of the batched divisibility
subprotocol to obtain polynomialsA∗

t (X,Y), B∗
t (X,Y), C∗

t (X,Y), f∗
−(X,Y), f̂∗

−(X,Y), f∗
+(X,Y)

such that

[
A∗

t (X,Y)
]
G1

= At , B∗
t (X,Y)

]
G1

= Bt , C∗
t (X,Y)

]
G1

= Ct[
f∗
−(X,Y)

]
G1

= a− ,
[
f̂∗
−(X,Y)

]
G1

= â− ,
[
f∗
+(X,Y)

]
G1

= a+

A∗
t (X,Y) ≡ A∗

t,γ,α,Y (Y) (mod X − γ · α) , B∗
t (X,Y) ≡ αT · B̂∗

t,γ,α,Y (Y) (mod X − α−1)

k−1∑
t=0

λt · C∗
t (X,Y) ≡ C∗

γ,λ,Y (Y) (mod X − γ)

f∗
−(X,Y) ≡ f∗

γ,λ,−,Y (Y) (mod X − α) , f∗
−(X,Y) ≡ α1−T · f̂∗

γ,λ,−,Y (Y) (mod X − α−1)

f∗
+(X,Y) ≡ f∗

γ,λ,+,Y (Y) (mod X − α)

The challenge γ was randomly and uniformly generated after the elements At, Bt, Ct were added
to the transcript. Furthermore, the challenge α was randomly and uniformly generated after the
elements a−, â−, a+ were added to the transcript. Thus, Schwartz-Zippel implies that with
overwhelming probability, these extracted polynomials satisfy the equations

A∗
t (γ · α, Y) = A∗

t,γ,α,Y (Y) , αT ·B∗
t (α

−1, Y) = B̂∗
t,γ,α,Y (Y)

k−1∑
t=0

λt · C∗
t (γ, Y) = C∗

γ,λ,Y (Y)

f∗
−(α, Y) = f∗

γ,λ,−,Y (Y) , f∗
−(α, Y) = α1−T · f̂∗

γ,λ,−,Y (Y)

f∗
+(α, Y) = f∗

γ,λ,+,Y (Y)

26

In particular, it follows that with overwhelming probability,

XT−1 · f∗
−(X−1, Y) = f̂∗

−(X,Y) ∈ Fp[X,Y]

and hence, degX(f∗
−) ≤ T − 1. Write

A∗
t (X) =

M−1∑
j=0

·A∗
t,j(X) · Y j , A∗

t (X) =
M−1∑
j=0

·B∗
t,j(X) · Y j , B∗

t (X) =
M−1∑
j=0

·C∗
t,j(X) · Y j .

Then we have the equation

k−1∑
t=0

M−1∑
j=0

λt · [A∗
t,j(γ · α) · αT ·B∗

t,j(α
−1)] · Y j = f∗

−(α, Y) + αT · [
k−1∑
t=0

λt · C∗
t (γ, Y)] + αT+1 · f∗

+(α, Y)

and the Schwartz-Zippel lemma implies that with overwhelming probability,

k−1∑
t=0

M−1∑
j=0

λt · [A∗
t,j(γ ·X) ·XT ·B∗

t,j(X
−1)] · Y j = f∗

−(X,Y) +XT · [
k−1∑
t=0

λt · C∗
t (γ, Y)] +XT+1 · f∗

+(X,Y)

Thus, with overwhelming probability,

Coef(A∗
t,j(γ ·X) ·XT ·B∗

t,j(X
−1) , XT) = C∗

t (γ) ∀ (t, j) ∈ [0, k − 1]× [0,M − 1] ,

and the Scwartz-Zippel lemma implies with overwhelming probability,

A∗
t,j ⊙B∗

t,j(X) = C∗
t,j(X) , ∀ (t, j) ∈ [0, k − 1]× [0,M − 1]

or equivalently,
A∗

t ⊙B∗
t (X) = C∗

t (X) ∀ t ∈ [0, k − 1].

27

	Introduction
	The setup
	Notations and terminology
	The AGM model
	Distributed KZG commitments and openings
	Commitments to index sets and permutations

	Building blocks
	Preliminary lemmas
	Batched proof of divisibility
	The degree upper bound
	Batched degree upper bounds

	The Hadamard product
	The permutation argument
	Copy constraints

	The batched protocol
	Multimodular FFTs
	Deferred proofs

