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Abstract

In quantum cryptography, there could be a new world, Microcrypt, where cryptography is possible but
one-way functions (OWFs) do not exist. Although many fundamental primitives and useful applications
have been found in Microcrypt, they lack “OWFs-free” concrete hardness assumptions on which they are
based. In classical cryptography, many hardness assumptions on concrete mathematical problems have
been introduced, such as the discrete logarithm (DL) problems or the decisional Diffie-Hellman (DDH)
problems on concrete group structures related to finite fields or elliptic curves. They are then abstracted to
generic hardness assumptions such as the DL and DDH assumptions over group actions. Finally, based on
these generic assumptions, primitives and applications are constructed. The goal of the present paper
is to introduce several abstracted generic hardness assumptions in Microcrypt, which could connect the
concrete mathematical hardness assumptions with applications. Our assumptions are based on a quantum
analogue of group actions. A group action is a tuple (G,S, ⋆) of a group G, a set S, and an operation
⋆ : G×S → S. We introduce a quantum analogue of group actions, which we call quantum group actions
(QGAs), where G is a set of unitary operators, S is a set of states, and ⋆ is the application of a unitary on a
state. By endowing QGAs with some reasonable hardness assumptions, we introduce a natural quantum
analogue of the decisional Diffie-Hellman (DDH) assumption and pseudorandom group actions. Based on
these assumptions, we construct classical-query pseudorandom function-like state generators (PRFSGs).
PRFSGs are a quantum analogue of pseudorandom functions (PRFs), and have many applications such as
IND-CPA SKE, EUF-CMA MAC, and private-key quantum money schemes. Because classical group
actions are instantiated with many concrete mathematical hardness assumptions, our QGAs could also
have some concrete (even OWFs-free) instantiations.
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1 Introduction

Background. In classical cryptography, the existence of one-way functions (OWFs) is the minimum
assumption [IL89], because many primitives (such as pseudorandom generators (PRGs), pseudorandom
functions (PRFs), zero-knowledge, commitments, digital signatures, and secret-key encryptions (SKE)) are
equivalent to OWFs in terms of existence, and almost all primitives (including public-key encryption (PKE)
and multi-party computations) imply OWFs.

On the other hand, recent active studies have demonstrated that in quantum cryptography, OWFs would not
necessarily be the minimum assumption. Many fundamental primitives have been introduced, such as pseudo-
random unitaries (PRUs) [JLS18], pseudorandom function-like state generators (PRFSGs) [AQY22, AGQY22],
unpredictable state generators (UPSGs) [MYY24], pseudorandom state generators (PRSGs) [JLS18], one-way
state generators (OWSGs) [MY22], EFI pairs [BCQ23], and one-way puzzles (OWPuzzs) [KT24a]. They
seem to be weaker than OWFs [Kre21, KQST23, LMW24], but still imply many useful applications such
as commitments [MY22, AQY22, BCQ23, Yan22], multi-party computations [MY22, AQY22], message
authentication codes (MAC) [AQY22, MYY24], secret-key encryptions (SKE) [AQY22, MYY24], digital
signatures [MY22], private-key quantum money [JLS18], etc.

In classical cryptography, many hardness assumptions on concrete mathematical problems have been
introduced, such as the discrete logarithm (DL) problems or the decisional Diffie-Hellman (DDH) problems
on concrete group structures related to finite fields or elliptic curves. They are then abstracted to generic
hardness assumptions such as the DL and DDH assumptions over group actions. Finally, based on these
generic assumptions, primitives and applications are constructed.

On the other hand, in quantum cryptography, the first step has not yet been studied. Because PRUs can
be constructed from OWFs [HM24b], and PRUs imply PRFSGs, UPSGs, PRSGs, OWSGs, EFI pairs, and
OWPuzzs, all of them can also be constructed from OWFs. (See Figure 2 for the relations.) However, no
“OWFs-free” concrete mathematical hardness assumptions on which they are based are known.1

1.1 Our Results

The goal of the present paper is to introduce several abstracted generic hardness assumptions, which could
connect the concrete mathematical hardness assumptions with applications. As we will explain later, these
new assumptions are a quantum analogue of cryptographic group actions [BY91, Cou06, JQSY19, ADMP20].
Because classical group actions have many concrete instantiations [JD11, CLM+18, DD24], our quantum
versions of group actions could also have concrete (even OWFs-free) instantiations by considering natural
quantum analogue of classical hard problems.

Based on these quantum assumptions, we construct classical-query PRFSGs. PRFSGs are a quantum
analogue of PRFs. A PRFSG is a quantum polynomial-time (QPT) algorithm StateGen that takes a classical
key k and a bit string x as input, and outputs a quantum state |ϕk(x)⟩. The security roughly means that no
QPT adversary can distinguish whether it is querying to StateGen(k, ·) with a random k or an oracle that
outputs Haar random states, which we call the Haar oracle.2 PRFSGs imply almost all known primitives
such as UPSGs, PRSGs, OWSGs, OWPuzzs, and EFI pairs. PRFSGs also imply useful applications such as
IND-CPA SKE, EUF-CMA MAC, private-key quantum money, commitments, multi-party computations,
(bounded-poly-time-secure) digital signatures, etc.

1See Section 1.2.
2More precisely, the oracle works as follows. If it gets x as input and x was not queried before, it samples a Haar random state ψx

and returns it. If x was queried before, it returns the same state ψx that was sampled before when x was queried for the first time.
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Unfortunately, PRFSGs that we construct in this paper are secure only against classical queries.3 It is
an open problem whether PRFSGs secure against quantum queries or even PRUs can be constructed from
quantum group actions.

Group actions. Our quantum assumptions are based on a “quantization” of group actions. A group action
(⋆,G, S) is a tuple of a groupG, a set S, and an operation ⋆ : G×S → S such that g1 ⋆ (g2 ⋆ x) = (g1g2) ⋆ s
for any g1, g2 ∈ G and s ∈ S. Cryptographic group actions [Cou06, JQSY19, ADMP20, BY91] are group
actions endowed with some hardness assumptions. For example, a one-way group action [BY91] is a group
action such that given s← S4 and t := g ⋆ s with g ← G, it is hard to find a g′ such that g′ ⋆ s = t. One-way
group actions are abstractions of several well-studied cryptographic assumptions such as the Discrete-Log
assumptions [DH76], isogeny-based assumptions [JD11, CLM+18], and code-based assumptions [DD24].
They have several applications such as identifications, digital signatures, and commitments [BY91].

A pseudorandom group action [ADMP20, JQSY19] is a group action such that (s, g ⋆ s) and (s, u) are
computationally indistinguishable, where s is a (fixed) element in S, u← S, and g ← G. Pseudorandom
group actions are abstractions of several well-studied cryptographic assumptions such as the Decisional
Diffie-Hellman (DDH) assumptions [DH76] and isogeny-based assumptions [CLM+18].5 They also have
attractive applications such as key exchange, smooth projective hashing, dual-mode PKE, two-message
statistically sender-private OT, and PRFs [BY91, ADMP20, JQSY19, Cou06].

Quantum group actions. In this paper, we introduce a quantum analogue of cryptographic group actions,
which we call quantum group actions (QGAs). A QGA (G,S, ⋆) is a tuple of a setG, a set S, and an operation
⋆. G is a set of efficiently-implementable unitary operators6 and S is a set of efficiently generable states. The
action ⋆ is just the application of a unitary in G on a state in S. Then the property g1(g2|s⟩) = (g1g2)|s⟩ is
trivially satisfied for any g1, g2 ∈ G and |s⟩ ∈ S.

We endow QGAs with several hardness assumptions. In particular, we construct PRFSGs from these
assumptions.

Naor-Reingold PRFs, DDH, and (weak) pseudorandomness. To give an idea, we briefly review the
classical construction of the Naor-Reingold (classical) PRFs [NR04] based on some classical assumptions. The
Naor-Reingold PRFs can be constructed from a group action as follows [NR04, BKW20, ADMP20, MOT20].
The key k of the PRF fk is k := (g0, g1, ..., gℓ), where gi ← G for i = 0, 1, ..., ℓ. For an input x =
(x1, ..., xℓ) ∈ {0, 1}ℓ, fk(x) is defined as

fk(x) := (gxℓ
ℓ · · · · · g

x1
1 g0) ⋆ s0, (1)

where s0 is a fixed element in S. Roughly speaking, its security is shown by the computational indistinguisha-
bility 7

{(gi ⋆ s0, (g̃gi) ⋆ s0) : g̃, gi ← G}i∈[Q] ≈c {(gi ⋆ s0, hi ⋆ s0) : gi, hi ← G}i∈[Q], (2)
3IND-CPA SKE and EUF-CMA MAC constructed from such PRFSGs are also secure against classical queries.
4In this paper, s← S means that an element s is sampled uniformly at random from the set S.
5While we can treat some code-based assumptions as group actions, they are unlikely to be weakly pseudorandom and weakly

unpredictable with large samples [DD24, BCDD+24].
6Note that we do not require that G is a group.
7Here ≈c means that the two distributions are computationally indistinguishable.
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Haar-PR (eq.9)
+ Haar-DDH (eq.10)

G’s commutativity
+ DDH

Weak PR (eq.8) NR (eq.6) PRFSGs (eq.5)

PR (eq.7)

Figure 1: Diagram for our construction.

which, for clearness, we call the Naor-Reingold (NR) assumption. Here, Q is a polynomial of the security
parameter. Applying the NR assumption repeatedly, Naor and Reingold showed that fk(x) is computationally
indistinguishable from f ′k(x) := gx ⋆ s0, where gx ← G for each x [NR04].

Naor and Reingold [NR04] showed that the NR assumption is derived from the DDH assumption. The
DDH assumption says that

(s0, g̃ ⋆ s0, g ⋆ s0, (g̃g) ⋆ s0) ≈c (s0, g̃ ⋆ s0, g ⋆ s0, h ⋆ s0), (3)

where s0 is a fixed element in S and g̃, g, h ← G. If G is a commutative ring with (·,+) and S has a
binary operation ◦ such that (g ⋆ s0) ◦ (g′ ⋆ s0) = (g + g′) ⋆ s0, then the DDH assumption tightly implies
the NR assumption, because we can re-randomizing the samples [NR04, BMR10].8 Boneh, Kogan, and
Woo [BKW20] considered the case thatG is a commutative group and showed that the DDH assumption implies
the NR assumption via a hybrid argument. Alamati, De Feo, Montgomery, and Patranabis [ADMP20] took a
different approach; they defined weak pseudorandomness,9 which is the computational indistinguishability

{(si, g̃ ⋆ si) : g̃ ← G, si ← S}i∈[Q] ≈c {(si, s′i) : si, s′i ← S}i∈[Q]. (4)

If the group action is regular,10 then the distribution si ← S is equivalent to the distribution of gi ⋆ s0 with
gi ← G. Thus, by replacing si and s′i with gi ⋆ s0 and hi ⋆ s0, where gi ← G and hi ← G, respectively, the
weak pseudorandomness is tightly equivalent to the NR assumption.

We note that while Alamati et al. focused only on the case that G is commutative, their approach can be
extended to non-commutative groups G. We also note that we will not need some properties of G in the proof
in Boneh et al. [BKW20] when we employ pseudorandom group actions. For details, see Appendix B.

Construction of PRFSGs. Based on these classical constructions of the Naor-Reingold PRFs, we try to
construct PRFSGs. Jumping ahead, our construction is summarized in Figure 1. Let (G,S) be a QGA.11 This
means that G is a set of efficiently implementable unitary operators and S is a set of efficiently generatable
states. We will construct a PRFSG, StateGen(k, x) → |ϕk(x)⟩, as follows: The key k of the PRFSG is
k := (g0, g1, ..., gℓ, |s0⟩), where gi ← G for i = 0, 1, ..., ℓ and |s0⟩ is a (fixed) element in S. For an input

8[LW09, EHK+13, ABP15] treated some non-commutative cases related to the Matirx DDH assumptions.
9Correctly speaking, they defined it as the assumption that πg̃ : s 7→ g̃ ⋆ s is a weak pseudorandom permutation.

10A group action is regular if it is transitive, that is, for every s1, s2 ∈ S, there exists g ∈ G satisfying s2 = g ⋆ s1, and free, that
is, for each g ∈ G, g is the identity element if and only if there exists s ∈ S satisfying s = g ⋆ s [ADMP20].

11We omit ⋆, because this is trivial.
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x = (x1, ..., xℓ) ∈ {0, 1}ℓ, the output of PRFSG |ϕk(x)⟩ is defined as12

|ϕk(x)⟩ := (gxℓ
ℓ · · · · · g

x1
1 g0)|s0⟩. (5)

The question is which hardness assumptions should we endow the QGA with so that StateGen satisfies
the security of PRFSGs. In quantum group actions, we cannot expect that G has algebraic structures, and
the simple analogue of the DDH assumption or/and weak pseudorandomness would not imply the quantum
analogue of the NR assumption that roughly states the computational indistinguishability13

{(gi|s0⟩, g̃gi|s0⟩) : g̃, gi ← G}i∈[Q] ≈c {(gi|s0⟩, hi|s0⟩) : gi, hi ← G}i∈[Q], (6)

where |s0⟩ is a (fixed) element in S. Thus, we need to put forth simple, plausible assumptions over quantum
group actions that imply the quantum analogue of the NR assumption.

In the quantum case, moreover, Equation (6) is not enough to construct PRFSGs unlike the classical case.
In the classical construction of NR PRFs, by applying the classical NR assumption repeatedly, we can show
that fk(x) is indistinguishable from gx ⋆ s0 with gx ← G for each x. In the classical case, because of the
regularity, gx ⋆ s0 with gx ← G is equivalent to sampling s← S. However, in the quantum case, we do not
have regularity in general, and we cannot expect that gx|s0⟩ with gx ← G is uniformly at random in some
efficiently samplable set S′.14 Thus, we will require the additional assumption that gx|s0⟩ with gx ← G is
indistinguishable from Haar random states. We call this assumption pseudorandomness (PR), which roughly
says the computational indistinguishability

(|s0⟩, h|s0⟩) ≈c (|s0⟩, |s′⟩), (7)

where |s0⟩ is a (fixed) element in S, h← G, and |s′⟩ ← µ. (Here, |s′⟩ ← µ means that a state |s′⟩ is sampled
uniformly at random with the Haar measure.)15 By combining the quantum analogue of the NR assumption
(Equation (6)) and this PR assumption, we get PRFSGs.

Then, the question is how can we get the quantum analogue of the NR assumption? In the classical case,
we get it from the weak pseudorandomness, Equation (4), [ADMP20]. We can introduce a quantum analogue
of it, which is the computational indistinguishability

{(|si⟩, g̃|si⟩) : g̃ ← G, |si⟩ ← µ}i∈[Q] ≈c {(|si⟩, |s′i⟩) : |si⟩, |s′i⟩ ← µ}i∈[Q]. (8)

In the classical case, the weak pseudorandomness is equivalent to the classical NR assumption, but in the
quantum case, again because of the fact that we do not have regularity in general, Equation (8) will not imply
the quantum analogue of the NR assumption, Equation (6). However, combining this with the PR assumption
(Equation (7)), we will recover Equation (6).

Therefore the goal is to realize the quantum analogue of weak pseudorandomness, Equation (8). To
achieve it, we put forth two new assumptions, which we believe plausible and reasonable: The one is
Haar-pseudorandomness (Haar-PR), which roughly states the computational indistinguishability

(|s⟩, h|s⟩) ≈c (|s⟩, |s′⟩), (9)
12We note that Ananth, Gulati, and Lin [AGL24] gave a similar construction of selectively-secure PRFSGs in the common Haar

state model, which is inspired by GGM [GGM86].
13Actually, our security game is such that the adversary receives many copies of the state. Hence, the assumption should be read as

the computational indistinguishability {(gi|s0⟩, g̃gi|s0⟩)⊗t : g̃, gi ← G}i∈[Q] ≈c {(gi|s0⟩, hi|s0⟩)⊗t : gi, hi ← G}i∈[Q] for any
polynomial t. However, in this introduction, we ignore the number of copies for ease of notation and use the word “roughly”.

14S′ might differ from S.
15Again, here, the computational indistinguishability is that for many copies of states, but for simplicity we omit it.
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where |s⟩, |s′⟩ ← µ and h ← G.16 Interestingly, PR and Haar-PR are not equivalent, because, unlike the
classical case with regularity, h|s0⟩ in the LHS of PR (Equation (7)) may not be distributed according to the
Haar measure.

The other is a quantum analogue of the DDH assumption with multiple samples and with respect to Haar
random states. We call it Haar-DDH, which roughly states the computational indistinguishability

{(|si⟩, g|si⟩) : |si⟩ ← µ, g ← G}i∈[Q] ≈c {(|si⟩, hi|si⟩) : |si⟩ ← µ, hi ← G}i∈[Q]. (10)

The combination of Haar-PR and Haar-DDH assumptions implies the quantum analogue of weak
pseudorandomness, Equation (8). Combining it with the PR assumption, we can show a quantum analogue of
the NR assumption (Equation (6)). We can show the security of our NR-style PRFSGs from the quantum
analogue of the NR assumption and the PR assumption.

In general, PRFSGs are defined against quantum-query adversaries [AQY22, AGQY22]. This means that
the security holds against any QPT adversary that can query x in superposition. Unfortunately, our proof only
works for classical-query cases, and there are several barriers to the construction of PRFSGs secure against
quantum queries. For details, see Section 4.2. It is an open problem to construct PRFSGs secure against
quantum queries or even PRUs from QGAs (or other OWFs-free assumptions).

In the classical case, PRFs can be constructed from pseudorandom group actions [JQSY19]. On the
other hand, we do not know how to construct PRFSGs from PR or Haar-PR QGAs. One reason is that the
construction of PRFs in [JQSY19] is the GGM one [GGM84], and we do not know how to use the GGM
technique in the quantum setting. For example, we do not know how to hash quantum states. Moreover, in
the classical case, we can construct PRFs from PRGs [GGM84], but it is an open problem whether we can
construct PRFSGs from PRSGs.17

PRSGs from PR QGAs. As we have explained, PR QGAs is the computational indistinguishability
(|s0⟩, h|s0⟩)⊗t ≈c (|s0⟩, |s′⟩)⊗t for any polynomial t, where |s0⟩ is a (fixed) element in S, h ← G, and
|s′⟩ ← µ. As an additional result, we observe that PRSGs can be constructed from PR QGAs.

Lemma 1.1. PR QGAs imply PRSGs.

OWSGs from one-way QGAs. It is also natural to define a quantum analogue of one-way group actions. In
the security game of classical one-way group actions, the adversary receives classical bit strings s and g ⋆ s. In
our one-way QGAs, the adversary receives |s⟩⊗t and (g|s⟩)⊗t for any polynomial t. We show the following.

Lemma 1.2. One-way QGAs imply pure one-way state generators (OWSGs).

Candidates of QGAs. Finally, we briefly argue about some candidates for QGAs. We expect that QGAs
based on random quantum circuits and random IQP circuits are PR, Haar-PR, and DDH QGAs.

Open Problems. Figure 2 is a summary of the new and known relations between cryptographic primitives
and QGAs, in which we separate primitives with classical-query and quantum-query securities. As is shown in
the figure, our results could open a new avenue to connect quantum cryptographic applications with concrete
OWFs-free hardness assumptions.

We leave some interesting open problems:
16Note that we give unbounded-polynomial copies of the sample to the adversary. If the number of copies is constant, then there

exists a statistical construction [AGL24, Section 4].
17PRFSGs with O(log) input length can be constructed from PRSGs [AQY22], but it is open for PRFSGs with poly input length.
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1. Do PR, Haar-PR, and Haar-DDH assumptions over QGAs imply quantum-query PRFSGs? Or, can we
show the separation between quantum-query/classical-query PRFSGs?

2. Can we construct PR, Haar-PR, and Haar-DDH QGAs from PRUs?

3. Can we construct PRUs from PR, Haar-PR, and Haar-DDH QGAs, or from other “genuinely quantum”
assumptions?

1.2 Related Works

As we have explained in Introduction, the important open problem is to base “Microcrypt” primitives on
“OWFs-free” concrete mathematical hardness assumptions. Recently, the following three papers that tackle
the problem have been uploaded on arXiv during the preparation of this manuscript.

Khurana and Tomer [KT24b] constructed OWPuzzs from some hardness assumptions that imply sampling-
based quantum advantage [BFNV19, AA11, TD04, BJS11, BMS16, FKM+18] (plus a mild complexity
assumption, P#P ̸⊆ (io)BQP/qpoly).

Hiroka and Morimae [HM24a] and Cavalar, Goldin, Gray, and Hall [private communication] constructed
OWPuzzs from quantum-average-hardness of GapK problem. GapK problem is a promise problem to decide
whether a given bit string x has a small Kolmogorov complexity or not. Its quantum-average-hardness
means that the instance x is sampled from a quantum-polynomial-time samplable distribution, and no
quantum-polynomial-time algorithm can solve the problem.

Their assumptions are more concrete and already studied in other contexts than cryptography, namely,
quantum advantage and (classical) meta-complexity. On the other hand, the present paper construct PRFSGs
(and therefore UPSGs, PRSGs, OWSGs, private-key quantum money schemes, IND-CPA SKE, EUF-CMA
MAC, OWPuzzs, and EFI pairs). It is an interesting open problem whether our QGAs assumptions can be
instantiated with some concrete assumptions related to quantum advantage or meta-complexity.

2 Preliminaries

2.1 Basic Notations

We use the standard notations of quantum information and cryptography. For a finite set X , x← X means
that an element x is sampled from X uniformly at random. We write µm to denote the Haar measure over
m-qubits space. We often drop the subscription m. For an algorithm A, y ← A(x) means that A is run on
input x and output y is obtained. For a non-negative integer Q, [Q] is the set {1, 2, ..., Q}. QPT stands for
quantum polynomial time. λ is the security parameter. negl is a negligible function. For two distributions D
and D′, we sometimes use D ≈c D′ to denote D and D′ are computationally indistinguishable with respect
to a quantum adversary.

2.2 Quantum Cryptographic Primitives

We review quantum cryptographic primitives in the literature.

Definition 2.1 (Pseudorandom State Generators (PRSGs) [JLS18]). A pseudorandom state generator
(PRSG) is a tuple (KeyGen, StateGen) of algorithms such that

• KeyGen(1λ)→ k : It is a QPT algorithm that, on input 1λ, outputs a key k.

9



• StateGen(k)→ |ϕk⟩ : It is a QPT algorithm that, on input k, outputs a quantum state |ϕk⟩.

We require that for any QPT adversary A and any polynomial t,∣∣∣∣∣ Pr
k←KeyGen(1λ)

[1← A(1λ, |ϕk⟩⊗t)]− Pr
|ψ⟩←µ

[1← A(1λ, |ψ⟩⊗t)]
∣∣∣∣∣ ≤ negl(λ), (11)

where µ is a Haar measure.

Definition 2.2 (One-Way State Generators (OWSGs) [MY22, MY24]). A one-way state generator (OWSG)
is a tuple (KeyGen,StateGen,Ver) of algorithms such that

• KeyGen(1λ)→ k : It is a QPT algorithm that, on input 1λ, outputs a classical bit string k ∈ {0, 1}κ(λ),
where κ is a polynomial.

• StateGen(k)→ |ϕk⟩ : It is a QPT algorithm that, on input k, outputs a quantum state |ϕk⟩.

• Ver(k′, |ϕk⟩)→ ⊤/⊥ : It is a QPT algorithm that, on input k′ and |ϕk⟩, outputs ⊤/⊥.

We require the following correctness and one-wayness.

Correctness.

Pr[⊤ ← Ver(k, |ϕk⟩) : k ← KeyGen(1λ), |ϕk⟩ ← StateGen(k)] ≥ 1− negl(λ). (12)

One-wayness. For any QPT adversary A and any polynomial t,

Pr[⊤ ← Ver(k′, |ϕk⟩) : k ← KeyGen(1λ), |ϕk⟩ ← StateGen(k), k′ ← A(1λ, |ϕk⟩⊗t)] ≤ negl(λ). (13)

Remark 2.3. If all |ϕk⟩ are pure and Pr[⊤ ← Ver(k, |ϕk⟩)] ≥ 1− negl(λ) is satisfied for all k, we can replace
Ver with the following canonical verification algorithm: Project |ϕk⟩ onto |ϕk′⟩. If the projection is successful,
output ⊤. Otherwise, output ⊥.

Definition 2.4 (Weak OWSGs [MY24]). The definition of weak OWSGs is the same as that of OWSGs except
that the one-wayness is replaced with the following weak one-wayness: there exists a polynomial p such that
for any QPT A and polynomial t

Pr[⊤ ← Ver(k′, |ϕk⟩) : k ← KeyGen(1λ), |ϕk⟩ ← StateGen(k), k′ ← A(1λ, |ϕk⟩⊗t)] ≤ 1− 1
p(λ) . (14)

Remark 2.5. It is shown in Theorem 3.7 of [MY24] that OWSGs exist if and only if weak OWSGs exist.

Definition 2.6 (Pseudorandom Function-Like State Generators (PRFSGs) [AQY22]). A pseudorandom
function-like state generator (PRFSG) is a tuple (KeyGen,StateGen) of algorithms such that

• KeyGen(1λ) → k : It is a QPT algorithm that, on input 1λ, outputs k ∈ {0, 1}κ(λ), where κ is a
polynomial.

• StateGen(k, x)→ |ϕk(x)⟩ : It is a QPT algorithm that, on input k and x ∈ {0, 1}ℓ, outputs a quantum
state |ϕk(x)⟩, where ℓ is a polynomial.
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We require the following security: For any QPT adversary A,∣∣∣∣∣ Pr
k←KeyGen(1λ)

[1← AStateGen(k,·)(1λ)]− Pr[1← AOHaar(1λ)]
∣∣∣∣∣ ≤ negl(λ). (15)

The oracle OHaar is the following oracle:

1. When x is queried and it is not queried before, sample |ψx⟩ ← µ and return |ψx⟩.

2. When x is queried and it was queried before, return |ψx⟩.

Definition 2.7 (Classical-Query PRFSGs). A PRFSG is called a classical-query PRFSG if it is secure
against only adversaries that query the oracle classically.

Remark 2.8. In [AQY22, AGQY22], general PRFSGs where adversaries can quantumly query the oracle are
defined and constructed from PRUs or OWFs. In this paper, however, we mainly focus on classical-query
ones.

2.3 Design and Haar Measure

We will use the following lemmas to show our results.

Lemma 2.9 (Lemma 20 and Lemma 21 of [Kre21]). For each n, t ∈ N and ϵ > 0, there exists a
poly(n, t, log 1

ϵ )-time quantum algorithm S that outputs an n-qubit state such that for any quantum algorithm
A

(1− ϵ) Pr
|ψ⟩←µ

[1← A(|ψ⟩⊗t)] ≤ Pr
|ψ⟩←S

[1← A(|ψ⟩⊗t)] ≤ (1 + ϵ) Pr
|ψ⟩←µ

[1← A(|ψ⟩⊗t)]. (16)

Lemma 2.10.

E|ψ⟩,|ϕ⟩←µn
|⟨ψ|ϕ⟩|2 ≤ 1

2n . (17)

Proof. It is known that E|ψ⟩←µn
|ψ⟩⟨ψ| = I⊗n

2n , where I := |0⟩⟨0|+ |1⟩⟨1| is the two-dimentional identity
operator. Therefore,

E|ψ⟩,|ϕ⟩←µn
|⟨ψ|ϕ⟩|2 = E|ϕ⟩←µn

⟨ϕ|[E|ψ⟩←µn
|ψ⟩⟨ψ|]|ϕ⟩ = 1

2n . (18)

3 Quantum Group Actions and Hardness Assumptions

In this section, we define quantum group actions (QGAs) and endow them with several hardness assumptions
including one-wayness and variants of pseudorandomness.
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3.1 Quantum Group Actions

We first define quantum group actions (QGAs).

Definition 3.1 (Quantum Group Actions (QGAs)). A quantum group action (QGA) is a pair (G,S) of
algorithms such that

• G(1λ)→ [g] : It is a QPT algorithm that takes 1λ as input, and outputs an efficient classical description
[g] of a unitary operator g.

• S(1λ) → [|s⟩] : It is a QPT algorithm that takes 1λ as input, and outputs an efficient classical
description [|s⟩] of a quantum state |s⟩.

Remark 3.2. Note that we do not require that the set {g : [g] ← G(1λ)} is a group of unitary operators.
However, we call (G,S) a quantum group action, because it is a quantum analogue of a group action.

Remark 3.3. Note that G and S are not deterministic. This means that each execution of G or (S) can output
different [g] (or [|s⟩]).

Remark 3.4. An efficient classical description [g] of g means, for example, a classical description of a
poly(λ)-size quantum circuit that implements g. An efficient classical description [|s⟩] of |s⟩ means, for
example, a classical description of a poly(λ)-size quantum circuit that generates |s⟩. For simplicity, we often
write [g] and [|s⟩] just as g and |s⟩, respectively, if there is no confusion.

3.2 One-Way QGAs

We next define a quantum analogue of one-way group actions.

Definition 3.5 (One-Way QGAs (OW QGAs)). A QGA (G,S) is called a one-way QGA (OW QGA) if for any
QPT adversary A and any polynomial t, Pr[⊤ ← C] ≤ negl(λ) is satisfied in the following security game.

1. The challenger C runs [|s⟩]← S(1λ) and [g]← G(1λ).

2. C sends |s⟩⊗t and (g|s⟩)⊗t to A.

3. A returns an efficient classical description [g′] of a unitary g′.18

4. C projects g|s⟩ onto g′|s⟩. If the projection is successful, C outputs ⊤. Otherwise, it outputs ⊥.

Lemma 3.6. If OW QGAs exist then OWSGs exist.

Proof. Let (G,S) be a OW QGA. From it, we construct a weak OWSG (KeyGen,StateGen,Ver) as follows.

• KeyGen(1λ)→ k : Run [|s⟩]← S(1λ) and [g]← G(1λ). Output k := ([|s⟩], [g]).

• StateGen(k)→ |ϕk⟩ : Parse k = ([|s⟩], [g]). Output |ϕk⟩ := |s⟩ ⊗ g|s⟩.

• Ver(k′, |ϕk⟩)→ ⊤/⊥ : Parse k′ = ([|s′⟩], [g′]). Apply g′ ⊗ I on |ϕk⟩ and do the SWAP test between
the two registers.

18[g′] could be outside of the support of G.
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Assume that this is not weak one-way. Then, for any polynomial p, there exists a QPT A and a polynomial t
such that

∑
[|s⟩],[g]

Pr[[|s⟩]← S(1λ)] Pr[[g]← G(1λ)]
∑

[|s′⟩],[g′]
Pr[([|s′⟩], [g′])← A(1λ, (|s⟩ ⊗ g|s⟩)⊗t)] · 1 + |⟨s|(g′)†g|s⟩|2

2

(19)

≥ 1− 1
p(λ) , (20)

which means that∑
[|s⟩],[g]

Pr[[|s⟩]← S(1λ)] Pr[[g]← G(1λ)]
∑

[|s′⟩],[g′]
Pr[([|s′⟩], [g′])← A(1λ, (|s⟩ ⊗ g|s⟩)⊗t)] · |⟨s|(g′)†g|s⟩|2

(21)

≥ 1− 2
p(λ) . (22)

It is clear that we can construct a QPT adversary that breaks the OW QGA from this A.
From Theorem 3.7 of [MY24], we obtain a pure OWSG (KeyGen′, StateGen′,Ver′) from this weak

OWSG. Moreover, we can check that Pr[⊤ ← Ver′(k, |ϕk⟩)] ≥ 1− negl(λ) is satisfied for all k. Then, as is
shown in Appendix B of [MY24], we can construct another OWSG with the canonical verification.

3.3 Pseudorandom QGAs

We also introduce quantum analogue of pseudorandom group actions. We define three types of pseudoran-
domness of QGAs, which we call pseudorandom (PR), Haar-pseudorandom (Haar-PR), and DDH.

Definition 3.7 (PR QGAs). We say that a QGA (G,S) is pseudorandom (PR) if the following two distributions
are computationally indistinguishable for any polynomial t:

Dpr,0 : |s0⟩ ← S, h← G; return (|s0⟩, h |s0⟩)⊗t

Dpr,1 : |s0⟩ ← S, |s⟩ ← µ; return (|s0⟩, |s⟩)⊗t.

We can show that the multiple samples are also pseudorandom.

Lemma 3.8. Let (G,S) be a PR QGA. Then the following two distributions are computationally indistin-
guishable for any polynomials Q and t:

D′pr,0 : |s0⟩ ← S, for q ∈ [Q] hq ← G; return {(hq |s0⟩)⊗t}q∈[Q]

D′pr,1 : for q ∈ [Q] |sq⟩ ← µ; return {|sq⟩⊗t}q∈[Q].

Proof. Let (G,S) be a PR QGA. Define the distributions Ht,Q
j for j = 0, . . . , Q as follows.

• |s0⟩ ← S

• For q ∈ {1, 2, ..., j}, |sq⟩ ← µ.

• For q ∈ {j + 1, ..., Q}, hq ← G.
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• Output {|sq⟩⊗t}q∈{1,...,j} and {(hq |s0⟩)⊗t}q∈{j+1,...,Q}.

It is clear that D′pr,0 = Ht,Q
0 and D′pr,1 = Ht,Q

Q . We claim that for any QPT adversary A, any polynomials
Q, t, and any j ∈ [Q] ∣∣∣Pr[1← A(Ht,Q

j−1)]− Pr[1← A(Ht,Q
j )]

∣∣∣ ≤ negl(λ).

To show this claim, assume that there exist a QPT A, polynomials Q, t, p, and j ∈ [Q] such that∣∣∣Pr[1← A(Ht,Q
j−1)]− Pr[1← A(Ht,Q

j )]
∣∣∣ ≥ 1

p(λ)

for infinitely many λ. Then we can construct a QPT adversary B that breaks the security of the PR QGA as
follows:

1. The challenger C chooses |s0⟩ ← S and b← {0, 1}.

2. If b = 0, C chooses h← G and sends (|s0⟩, h|s0⟩)⊗Qt to B. If b = 1, C chooses |s⟩ ← µ and sends
(|s0⟩, |s⟩)⊗Qt to B.

3. B runsA on input{|sq⟩⊗t}q∈{1,...,j−1}, the received state (i.e., (h|s0⟩)⊗t or |s⟩⊗t), and {(hq|s0⟩)⊗t}q∈{j+1,...,Q},
and outputs A’s output. Here, all |sq⟩ are t-designs and each hq ← G. (From Lemma 2.9, we
can replace Haar random states with t-design states.) Note that B can efficiently generate the
{(hq|s0⟩)⊗t}q∈{j+1,...,Q} because B receives |s0⟩⊗Qt from C.

We have ∣∣∣Pr[1← B | b = 0]− Pr[1← A(Ht,Q
j−1)]

∣∣∣ ≤ negl(λ),∣∣∣Pr[1← B | b = 1]− Pr[1← A(Ht,Q
j )]

∣∣∣ ≤ negl(λ).

Therefore, we have

|Pr[1← B | b = 0]− Pr[1← B | b = 1]|

≥
∣∣∣Pr[1← A(Ht,Q

j−1)]− Pr[1← A(Ht,Q
j )]

∣∣∣− negl(λ)

≥ 1
p(λ) − negl(λ)

for infinitely many λ, which means that the PR QGA is broken.

It is obvious that PR QGAs directly imply PRSGs.

Lemma 3.9. If PR QGAs exist, then PRSGs exist.

Proof. Let (G,S) be a PR QGA. From it, we construct a PRSG, (KeyGen, StateGen), as follows.

• KeyGen(1λ)→ k : Run |s⟩ ← S(1λ) and g ← G(1λ). Output k := (|s⟩, g).

• StateGen(1λ, k)→ |ϕk⟩ : Parse k = (|s⟩, g). Output |ϕk⟩ := g|s⟩.

It is clear that this satisfies the security of PRSGs.
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Next, we give a variant of pseudorandomness, which we call Haar-pseudorandom (Haar-PR) because
underlying states are generated according to the Haar measure.

Definition 3.10 (Haar-PR QGAs). A QGA (G,S) is called Haar-pseudorandom (Haar-PR) if the following
two distributions are computationally indistinguishable for any polynomial t:

DHaarPR,0 : |s⟩ ← µ, h← G; return (|s⟩ , h |s⟩)⊗t

DHaarPR,1 : |s⟩ ← µ, |s′⟩ ← µ; return (|s⟩ , |s′⟩)⊗t

Remark 3.11. Haar-PR QGAs can be considered as a computational version of the statistical construction of
PRSGs in the common Haar state model [AGL24, CCS24].

We can show that the multiple samples are also pseudorandom as in the case of PR QGAs Lemma 3.8.

Lemma 3.12. Let (G,S) be a Haar-PR QGA. Then the following two distributions are computationally
indistinguishable for any polynomials Q and t:

D′HaarPR,0 : for q ∈ [Q] |sq⟩ ← µ, hq ← G; return {(|sq⟩ , hq |sq⟩)⊗t}q∈[Q]

D′HaarPR,1 : for q ∈ [Q] |sq⟩ ← µ, |s′q⟩ ← µ; return {(|sq⟩ , |s′q⟩)⊗t}q∈[Q].

Proof. Let (G,S) be a Haar-PR QGA. For each j ∈ {0, 1, ..., Q}, define the following distribution Ht,Q
j .

• For q ∈ {1, 2, ..., j}, |sq⟩ ← µ and |s′q⟩ ← µ.

• For q ∈ {j + 1, j + 2, ..., Q}, |sq⟩ ← µ and hq ← G.

• Output {(|sq⟩ , |s′q⟩)⊗t}q∈{1,...,j} and {(|sq⟩ , hq |sq⟩)⊗t}q∈{j+1,...,Q}.

It is clear that D′HaarPR,0 = Ht,Q
0 and D′HaarPR,1 = Ht,Q

Q . We claim that for any QPT adversary A, any
polynomials Q, t, and any j ∈ [Q]∣∣∣Pr[1← A(Ht,Q

j−1)]− Pr[1← A(Ht,Q
j )]

∣∣∣ ≤ negl(λ).

To show it, assume that there exist a QPT A, polynomials Q, t, p, and j ∈ [Q] such that∣∣∣Pr[1← A(Ht,Q
j−1)]− Pr[1← A(Ht,Q

j )]
∣∣∣ ≥ 1

p(λ)

for infinitely many λ. Then we can construct a QPT adversary B that breaks the security of the Haar-PR QGA
as follows.

1. The challenger C chooses b← {0, 1}.

2. If b = 0, C chooses |s⟩ ← µ and h← G. and sends (|s⟩, h|s⟩)⊗t toB. If b = 1, C chooses |s⟩, |s′⟩ ← µ,
and sends (|s⟩, |s′⟩)⊗t to B.

3. B prepares {(|sq⟩, |s′q⟩)⊗t)}q∈{1,...,j−1} and {|sq⟩, hq|sq⟩)⊗t}q∈{j+1,...,Q} by using t-designs. It then
runsA on input {(|sq⟩, |s′q⟩)⊗t)}q∈{1,...,j−1}, the received state, and {|sq⟩, hq|sq⟩)⊗t}q∈{j+1,...,Q}, and
outputs its output. Here, all |sq⟩, |s′q⟩ are t-designs.
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We have ∣∣∣Pr[1← B | b = 0]− Pr[1← A(Ht,Q
j−1)]

∣∣∣ ≤ negl(λ),∣∣∣Pr[1← B | b = 1]− Pr[1← A(Ht,Q
j )]

∣∣∣ ≤ negl(λ).

Therefore, we have

|Pr[1← B | b = 0]− Pr[1← B | b = 1]|

≥
∣∣∣Pr[1← A(Ht,Q

j−1)]− Pr[1← A(Ht,Q
j )]

∣∣∣− negl(λ)

≥ 1
p(λ) − negl(λ)

for infinitely many λ, which means that the Haar-PR QGA is broken.

We also define a natural quantum analogue of Decisional Diffie-Hellman (DDH).

Definition 3.13 (DDH QGAs). A QGA (G,S) is called Decisional Diffie-Hellman (DDH) if the following
two distributions are computationally indistinguishable for any polynomials Q and t:

DDDH,0 : |s0⟩ ← S, g̃, g ← G; return {(|s0⟩ , g̃ |s0⟩ , g |s0⟩ , g̃g |s0⟩)⊗t}q∈[Q]

DDDH,1 : |s0⟩ ← S, g̃, g, h← G; return {(|s0⟩ , g̃ |s0⟩ , g |s0⟩ , h |s0⟩)⊗t}q∈[Q].

We next give another variant of DDH, which we call Haar Decisional Diffie-Hellman (Haar-DDH). We
will use it for the case that G is non-commutative.

Definition 3.14 (Haar-DDH QGAs). A QGA (G,S) is called Haar-Decisional Diffie-Hellman (Haar-DDH)
if the following two distributions are computationally indistinguishable for any polynomials Q and t:

DHaarDDH,0 : g ← G, for q ∈ [Q] |sq⟩ ← µ; return {(|sq⟩ , g |sq⟩)⊗t}q∈[Q]

DHaarDDH,1 : for q ∈ [Q] |sq⟩ ← µ, hq ← G; return {(|sq⟩ , hq |sq⟩)⊗t}q∈[Q].

3.4 Naor-Reingold QGAs

We also introduce an assumption that is a key for our construction of PRFSGs from pseudorandom QGAs.
We dub it as Naor-Reingold (NR) QGAs because this assumption will be used to show the pseudorandomness
of the Naor-Reingold-style PRFSGs.

Definition 3.15 (NR QGAs). A QGA (G,S) is called Naor-Reingold (NR) if the following two distributions
are computationally indistinguishable for any polynomial Q and t:

DNR,0 : |s0⟩ ← S, g̃ ← G, for q ∈ [Q] gq ← G; return {(gq |s0⟩ , g̃gq |s0⟩)⊗t}q∈[Q]

DNR,1 : |s0⟩ ← S, for q ∈ [Q] gq ← G, hq ← G; return {(gq |s0⟩ , hq |s0⟩)⊗t}q∈[Q].

If we consider classical group actions with special properties, the NR-GA follows from the pseudorandom-
ness of group actions. (See Appendix B for the details.) In the case of QGA, we will face several problems
since we cannot use algebraic structures; G might not be a group, and S is not closed. Fortunately, the NR
property of QGA follows from its PR, Haar-PR, and Haar-DDH properties.
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Lemma 3.16. If a QGA is PR, Haar-PR, and Haar-DDH, then it is NR.

Proof. To show the lemma, we introduce an intermediate distribution D′NR defined as follows:

D′NR : for q ∈ [Q] |sq⟩ ← µ, h̃q ← G; return {(|sq⟩ , h̃q |sq⟩)⊗t}q∈[Q].

We show that DNR,0 ≈c D′NR ≈c DNR,1 under our assumptions.

Proof of DNR,0 ≈c D′NR. We first show that DNR,0 ≈c D′NR if QGA is PR and Haar-DDH. Let us consider
the following distribution:

D′NR,0 : g̃ ← G, for q ∈ [Q] |sq⟩ ← µ; return {(|sq⟩ , g̃ |sq⟩)⊗t}q∈[Q].

As in Claim 3.17 below, we have DNR,0 ≈c D′NR,0 if QGA is PR. We also have D′NR,0 ≈c D′NR, which
directly follows from the Haar-DDH assumption (Definition 3.14). Hence, we have DNR,0 ≈c D′NR.

Claim 3.17. If QGA is PR, then DNR,0 ≈c D′NR,0.

Proof of Claim 3.17. Assuming that QGA is PR, we know that D′pr,0 and D′pr,1 are computationally indistin-
guishable due to Lemma 3.8. To show DNR,0 ≈c D′NR,0, it is enough to show that we can efficiently convert
samples from D′pr,0 and D′pr,1 into DNR,0 and D′NR,0, respectively, in an oblivious way. Suppose that we are
given samples {|yq⟩⊗2t}q∈[Q] from D′pr,0 or D′pr,1, where |yq⟩ = hq |s0⟩ for Dpr,0 and |yq⟩ = |sq⟩ for Dpr,1.
To prepare samples for DNR,0 or D′NR,0, we choose g̃ ← G and compute (|yq⟩ , g̃ |yq⟩)⊗t for q ∈ [Q]. If the
input distribution is Dpr,0, then the output distribution is DNR,0. On the other hand, if the input distribution
is Dpr,1, then the output distribution is D′NR,0.

Proof of D′NR ≈c DNR,1. We then show D′NR ≈c DNR,1 if QGA is PR and Haar-PR. We consider the
following distribution:

D′NR,1 : for q ∈ [Q] |sq⟩ ← µ, |s′q⟩ ← µ; return {(|sq⟩ , |s′q⟩)⊗t}q∈[Q].

The following claim (Claim 3.18) shows that DNR,1 ≈c D′NR,1 if QGA is PR. Lemma 3.12 shows that, if
QGA is Harr-PR, then we have that D′NR ≈c D′NR,1. This completes the proof.

Claim 3.18. If QGA is PR, then DNR,1 ≈c D′NR,1.

Proof of Claim 3.18. We construct an efficient quantum algorithm that converts samples from D′pr,0 and
D′pr,1 in Lemma 3.8 and into samples from DNR,1 and D′NR,1, respectively. Suppose that we are given
samples {|yq⟩⊗t}q∈[2Q] from D′pr,0 or D′pr,1, where |yq⟩ = hq |s0⟩ for Dpr,0 and |yq⟩ = |sq⟩ for Dpr,1. The
converter outputs {(|y2q−1⟩ , |y2q⟩)⊗t}q∈[Q] by rearranging samples. If the input distribution isDpr,0, then the
output distribution is DNR,1. On the other hand, if the input distribution is Dpr,1, then the output distribution
is D′NR as we wanted.

Wrapping up the lemmas and claims, we have shown thatDNR,0 ≈c D′NR ≈c DNR,1 in Lemma 3.16.

If G is commutative, then we only need the DDH assumption as Boneh et al. [BKW20].

Lemma 3.19. Let (G,S) be a QGA. If G is commutative and (G,S) is DDH, then (G,S) is NR.

Proof. For i = 0, . . . , Q, we consider the following hybrid distributions D̄i of {(|ϕq⟩, |ψq⟩)⊗t}q∈[Q]:
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• g̃ ← G and |s0⟩ ← S.

• For j = 1, . . . , i, |ϕq⟩ := gq|s0⟩ and |ψq⟩ := hq|s0⟩, where gq, hq ← G.

• For j = i+ 1, . . . , Q, |ϕq⟩ := gq|s0⟩ and |ψq⟩ := g̃hq|s0⟩, where gq, hq ← G.

By using the following claim, we have D̄0 ≈c D̄1 ≈c · · · ≈c D̄Q if the DDH assumption holds.

Claim 3.20. Let (G,S) be a QGA. If G is commutative and (G,S) is DDH, then, for i = 1, . . . , Q,
D̄i−1 ≈c D̄i holds.

Proof. Suppose that there exists A distinguishing D̄i−1 from D̄i. We construct an adversary B against the
DDH assumption as follows:

• Given a sample (|s0⟩, g̃|s0⟩, g|s0⟩, h|s0⟩)⊗tQ, where h = g̃g or random, B prepares a sample
{(|ϕq⟩, |ψq⟩)⊗t}q∈[Q] as follows:

– for q = 1, . . . , i− 1, take random gq, hq ← G and set (|ϕq⟩, |ψq⟩) := (gq|s0⟩, hq|s0⟩);
– for q = i, set (|ϕq⟩, |ψq⟩) = (g|s0⟩, h|s0⟩);
– for q = i+ 1, . . . , Q, take random gq ← G and set (|ϕq⟩, |ψq⟩) = (gq|s0⟩, gq g̃|s0⟩).

• It runs A on input {(|ϕq⟩, |ψq⟩)⊗t}j∈[Q] and outputs A’s decision.

We note that, due to commutativity ofG, the lastQ− i samples are equivalent to (gq|s0⟩, g̃gq|s0⟩). If h = g̃g,
then (|ϕi⟩, |ψi⟩) = (g|s0⟩, g̃g|s0⟩) and B perfectly simulates the distribution D̄i−1 since G is a group and
the distribution of If h is random, then B perfectly simulates the distribution D̄i. Thus, B’s advantage is
equivalent to A’s advantage distinguishing D̄i−1 and D̄i.

4 Construction of (Classical-Query) PRFSGs

4.1 Construction

We construct a Naor-Reingold-style PRFSG from QGA (that is secure against classical queries) in this section.

Theorem 4.1. Let (G,S) be a QGA. If (G,S) is PR and NR, then the following (KeyGen,StateGen) is a
PRFSG whose input space is {0, 1}ℓ.

• KeyGen(1λ)→ k : Sample g0, g1, ..., gℓ ← G and |s0⟩ ← S. Output k := (g0, g1, ..., gℓ, |s0⟩). (Note
that |s0⟩ here is not a physical quantum state but its classical description.)

• StateGen(k, x) → |ϕk(x)⟩ : Parse k = (g0, g1, ..., gℓ, |s0⟩) and x = (x[1], . . . , x[ℓ]) ∈ {0, 1}ℓ.
Output

|ϕk(x)⟩ := g
x[ℓ]
ℓ g

x[ℓ−1]
ℓ−1 · · · gx[1]

1 g0 |s0⟩ . (23)

From Lemma 3.16 and Lemma 3.19, we obtain the following corollaries.

Corollary 4.2. If a QGA is PR, Haar-PR, and Haar-DDH, then the above construction is a PRFSG.

Corollary 4.3. If a QGA is DDH and G is commutative, then the above construction is a PRFSG.
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To show Theorem 4.1, we define three games Real, Hybrid, and Ideal defined as follows:

• Real: This is the PRFSG security game whose oracle is StateGen(k, ·). That is, the challenger C
chooses k ← KeyGen(1λ) and runsA with the oracle StateGen(k, ·), which takes x ∈ {0, 1}ℓ as input
and returns |ϕk(x)⟩. C outputs A’s decision.

• Hybrid: This is the PRFSG security game whose oracle is defined as follows: On query x, if it is
not queried before, then the oracle samples hx ← G and returns hx |s0⟩; otherwise, it returns stored
hx |s0⟩.

• Ideal: This is the PRFSG security game whose oracle is OHaar defined as follows: On query x, if it is
not queried before, then OHaar samples |sx⟩ ← µ and returns |sx⟩; otherwise, it returns |sx⟩.

Lemma 4.4 below shows that Real is computationally indistinguishable from Hybrid if QGA is NR. The proof
is obtained by following the proofs in Naor and Reingold [NR04] and Alamati et al. [ADMP20]. It is easy
to show that Hybrid and Ideal are computationally indistinguishable if QGA is PR (Lemma 4.6). Thus, we
obtain Theorem 4.1. The lemmas follow.

Lemma 4.4. Real and Hybrid are computationally indistinguishable if QGA is NR.

Proof. We define the following hybrid games Gamej for j = 0, . . . , ℓ: The challenger samples |s0⟩ ← S,
g0 ← G, and gi ← G for i ∈ [j + 1, ℓ]. Let q-th adversary’s query be xq = (xq[1], . . . , xq[ℓ]) ∈ {0, 1}ℓ. The
challenger returns a quantum state |fj,q⟩ defined as follows:

1. If j = 0, then the challenger let |yq⟩ = g0 |s0⟩.

2. Otherwise

• if there exists q′ < q satisfying (xq[1], . . . , xq[j]) = (xq′ [1], . . . , xq′ [j]), then |yq⟩ = |yq′⟩;
• otherwise, it samples gq ← G and |yq⟩ := gq |s0⟩.

3. Return |fj,q⟩ := g
xq [ℓ]
ℓ · · · gxq [j+1]

j+1 |yq⟩.

It is easy to verify Game0 and Gameℓ are Real and Hybrid, respectively. The following claim shows
Game0 ≈c Game1 ≈c · · · ≈c Gameℓ if the QGA is NR.

Claim 4.5. For j = 0, . . . , ℓ− 1, Gamej and Gamej+1 are computationally indistinguishable if the QGA is
NR.

Proof. The definition of NR QGAs implies that DNR,0 ≈c DNR,1 under our hypothesis. Thus, it is enough to
construct a reduction algorithm B distinguishing DNR,0 and DNR,1 by using an adversary A distinguishing
Gamej and Gamej+1. Our reduction algorithm is defined as follows:

1. B is given {(|yq⟩ , |zq⟩)⊗Q}q∈[Q], where (|yq⟩ , |zq⟩) = (gq |s0⟩ , g̃gq |s0⟩) inDNR,0 or (gq |s0⟩ , hq |s0⟩)
in DNR,1. It prepares gj+2, . . . , gℓ ← G. It initializes c = 1.

2. Receiving a q-th query xq from A, it checks if there exists q′ < q satisfying (xq[1], . . . , xq[j]) =
(xq′ [1], . . . , xq′ [j]). If so, it uses previously-defined consistent quantum states, that is, sets |ỹq⟩ := |ỹq′⟩
and |z̃q⟩ := |z̃q′⟩. Otherwise, it picks new quantum states from the pool, that is, sets |ỹq⟩ := |yc⟩ and
|z̃q⟩ = |zc⟩ and increments c. It then answers

|fj,q⟩ :=

 g
xq [ℓ]
ℓ · · · gxq [j+2]

j+2 |ỹq⟩ if xq[j + 1] = 0
g
xq [ℓ]
ℓ · · · gxq [j+2]

j+2 |z̃q⟩ if xq[j + 1] = 1.
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3. B outputs A’s decision.

If the given samples follow DNR,0, then the above simulation perfectly simulates Gamej by considering g̃ as
gj+1. If the given samples follow DNR,1, then the above simulation perfectly simulates Gamej+1 since gq’s
and hq’s in DNR,1 are chosen independently. Thus, the claim follows.

Lemma 4.6. Hybrid and Ideal are computationally indistinguishable if QGA is PR.

Proof. This lemma immediately follows from Lemma 3.8.

4.2 On Quantum-Query PRFSGs

As remarked in Remark 2.8, we only consider classical-query PRFSGs (Definition 2.6). Currently, we fail to
show either positive results that our NR-type PRFSG is secure against quantum queries or negative results,
that is, the separation of classical-query and quantum-query PRFSGs. We discuss barriers for positive or
negative results in the following.

Barriers for positive results. We tried to show our NR-type PRFSG is secure against quantum queries, but
we faced some problems. For example, we can consider the quantum-query version of Hybrid and Ideal. Can
we show the computational indistinguishability between them from PR QGAs?

For simplicity, we consider the case of small input space {0, 1}ℓ with ℓ = O(log(λ)).19 We identify
{0, 1}ℓ with [2ℓ]. If we consider PRFs, then classical-query PRFs against a quantum adversary is also
quantum-query PRFs. This is because a classical-query adversary can ask all inputs 1, . . . , 2ℓ to its oracle and
simulate answers on quantum queries. However, in the case of PRFSGs, we do not have such implications. A
classical-query adversary can obtain all states |sx⟩, which is |ϕk(x)⟩ or |ψx⟩, for all x ∈ [2ℓ]. How can we
simulate the answers to quantum queries?

For example, if we implement a mapping |x⟩ 7→ |x⟩ |sx⟩ by using a controlled swap, then the results will
be as follows:

|x⟩ |0n⟩ ⊗ (|s1⟩⊗Q ⊗ · · · ⊗ |s2ℓ⟩⊗Q)

7→controlled swap |x⟩ |sx⟩ ⊗ (|s1⟩⊗Q ⊗ · · · ⊗ |0n⟩ |sx⟩⊗(Q−1) ⊗ · · · ⊗ |s2ℓ⟩⊗Q).

Unfortunately, these operations produce an entanglement between the states for the adversary and the reduction
algorithm B and our attempt fails.

Barriers for negative results. Zhandry showed that if there exists a classical-query PRF, then there is a
classical-query PRF insecure against quantum-query attacks [Zha12a, Theorem 3.1]. One would consider we
can show its analogy for PRFSGs by mimicking his proof. Unfortunately, this strategy does not work because
of the following reasons.

We briefly review Zhandry’s strategy: Suppose that there exists a PRF PRF whose input space is
[N ], where N = 2ω(log(λ)). (Otherwise, there is no separation as we explained in the above.) We then
define a new PRF whose input space is [N ′], where N ′ is a power of 2 larger than 4N2. The new
key is a pair of the original key k and a random prime a ∈ (N/2, N ]. The new PRF is defined as
PRF′ : ((k, a), x) 7→ PRF(k, x mod a), which has a secret period a. Zhandry then showed that 1) if PRF
is classical-query secure, then PRF′ is also and 2) if PRF is quantum-query secure, then PRF′ is not,

19If ℓ = ω(log(λ)), we then invoke the small-range distribution argument in Zhandry [Zha12b].
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which implies there exists a PRF that is classical-query secure but quantum-query insecure. To show
2), Zhandry constructed a quantum-query adversary breaking the security of PRF′. Roughly speaking,
using the period-finding algorithm in Boneh and Lipton [BL95], the adversary can find a period a in
polynomial time with a probability of at least 1/2. The Boneh-Lipton period-finding algorithm uses a
sufficiently large number W and prepare a quantum state 1√

W

∑
x,s∈ZW

exp(2πixs/W ) |s⟩ |PRF′k,a(x)⟩ =
1√
W

∑
x,s∈ZW

exp(2πixs/W ) |s⟩ |PRFk(x mod a)⟩. We note that the success probability of the algorithm
strongly depends on the distinctness of PRF(k, 0), . . . ,PRF(k, a − 1) and good measurements. The
distinctness follows from the quantum-query security of PRF. The measurement is done by using the
computational basis.

In the case of PRFSGs, we can construct an analogue of a new PRF in the same way. While the distinctness
follows from the quantum-query security of PRFSG, we fail to give the measurement to distinguish a
independent samples |ψ1⟩, . . . , |ψa⟩ from the Haar measure.

5 Candidates of QGA

In this section, we provide some examples of candidate constructions of QGAs. The one is taken from
random quantum circuits. The other candidates are inspired by Instantaneous quantum polynomial (IQP)
circuits [BMS16, BJS11]. Those ones feature a commutativity of two unitaries taken by G.

Definition 5.1 (Candidate 1: Random circuit QGA). We define

• G(1λ)→ [g] : Output a random quantum circuit g.

• S(1λ)→ [|s⟩] : Output |s⟩ := |0λ⟩.

Random quantum circuits are conjectured to be PRUs [AQY22], while PR, Haar-PR, and Haar-DDH
QGA seem to be incomparable with PRUs.

Inspired by IQP, we conjecture that the following two QGAs are PR, Haar-PR, and Haar-DDH.

Definition 5.2 (Candidate 2: IQP QGA with random Z-diagonal circuit). We define an IQP QGA (G,S)
as follows:

• G(1λ) → [g] : Take a random Z-diagonal circuit D 20 and output a description [D]. This defines
g = H⊗λ ·D ·H⊗λ.

• S(1λ)→ [|s⟩] : Output |s⟩ := |0λ⟩.

Definition 5.3 (Candidate 3: IQP QGA with random sparse polynomials). Let d ∈ [1, λ] and polynomial
w = w(λ). Let Dd,w be

Dd,w :=
{
D : |x1, . . . , xλ⟩ → (−1)f(x1,...,xλ) |x1, . . . , xλ⟩
| f ∈ F2[x1, . . . , xλ],deg(f) ≤ d, term(f) ≤ w

}
,

where deg is a total degree of f and term is a number of terms of f . We then define a set of IQP circuits with
respect to D:

Gd,w := {H⊗λ ·D ·H⊗λ | D ∈ Dd,w}.

We define an IQP QGA (G,S) as follows:
20E.g., a random circuit with gates {T,CS} [BMS16].
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• G(1λ) → [g] : Take a random sample D ← Dd,w and output a description [D]. This defines
g = H⊗λ ·D ·H⊗λ.

• S(1λ)→ [|s⟩] : Output |s⟩ := |0λ⟩.

Candidates 2 and 3 differ the way to choose the Z-digaonal circuit D. We note that gh = hg holds for
any g = H⊗λDgH

⊗λ and h = H⊗λDhH
⊗λ chosen by G in both candidates.

IQP random circuits are not PRUs. In fact, if the adversary queries H⊗λ|0λ⟩ to the oracle, the oracle
always returnsH⊗λ|0λ⟩ if the oracle is the IQP oracle, but such probability is exponentially small if the oracle
is the Haar random unitary oracle.21 Currently, we do not know that IQP random circuits are PR QGAs; It is
shown that the state

∑
x(−1)f(x)|x⟩ with random f is Haar random [BS20]. We do not find any evidence that

IQP random circuits are not Haar-PR or DDH QGAs.
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Appendix
A Haar-PR and Haar-Haar-DDH imply SKE

Preliminaries. We first review the definitions of SKE. Our IND-CPA definition is “real-or-fixed” style22. It
is easy to show that this security implies left-or-right IND-CPA security23. via a hybrid argument. It is also
easy to show that left-or-right IND-CPA security implies find-then-guess IND-CPA securities24 defined in
[BJ15, ABF+16, MYY24] by following the proof in [BDJR97].

Definition A.1 (Classical-message SKE). A symmetric-key encryption (SKE) scheme for ℓ-bit classical
messages consists of three algorithms (KeyGen,Enc,Dec) such that

• KeyGen(1λ)→ K : This is a QPT algorithm that takes the security parameter 1λ as input and outputs
a classical secret key K.

• Enc(K, b) → ct : This is a QPT algorithm that takes K and a message b ∈ {0, 1}ℓ and outputs a
quantum ciphertext ct.

• Dec(K, ct)→ b′/⊥ : This is a QPT algorithm that takes K and a quantum ciphertext ct and outputs a
classical message b′ ∈ {0, 1}ℓ or a rejection symbol ⊥.

Definition A.2 (IND-CPA-secure 1-bit SKE). We say that a SKE scheme (KeyGen,Enc,Dec) is IND-CPA-
secure 1-bit SKE if it satisfies the following two properties:

• Correctness: We have

Pr
K←KeyGen(1λ)

[Dec(K,Enc(K, 0)) = 0] = 1,

Pr
K←KeyGen(1λ)

[Dec(K,Enc(K, 1)) = 1] ≥ 1/5.

• IND-CPA security: We call SKE indistinguishable against chosen-plaintext attacks (IND-CPA secure) if
the following holds: For any QPT adversary A,∣∣∣∣∣ Pr

K←KeyGen(1λ)
[1← AEnc(K,·)(1λ)]− Pr

K←KeyGen(1λ)
[1← AEnc(K,1)(1λ)]

∣∣∣∣∣ ≤ negl(λ),

where A queries the encryption oracles Enc(K, ·) or Enc(K, 1) only classically.

Definition A.3 (IND-CPA-secure multi-bit SKE). We say that a SKE scheme (KeyGen,Enc,Dec) is
IND-CPA-secure multi-bit SKE if it satisfies the following two properties:

• Correctness: for any m ∈ {0, 1}ℓ,

Pr
K←KeyGen(1λ)

[Dec(K,Enc(K,m)) = m] ≥ 1− negl(λ).

22An adversary has access to the oracle that takes an input x and returns an encryption of x or a fixed element x′ depending on
fixed b ∈ {0, 1} and guesses b.

23An adversary has access to the oracle that takes two inputs x0, x1 and returns an encryption of xb with fixed b ∈ {0, 1} and
guesses b.

24An adversary has access to the oracle that takes an input x and returns an encryption of x and distinguish an encryption of x∗
0 or

x∗
1.
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• IND-CPA security: We call SKE indistinguishable against chosen-plaintext attacks (IND-CPA secure) if
the following holds: For any QPT adversary A,∣∣∣∣∣ Pr

K←KeyGen(1λ)
[1← AEnc(K,·)(1λ)]− Pr

K←KeyGen(1λ)
[1← AEnc(K,1ℓ)(1λ)]

∣∣∣∣∣ ≤ negl(λ),

where A queries the encryption oracles Enc(K, ·) or Enc(K, 1ℓ) only classically.

Lemma A.4. Suppose that there exists an IND-CPA-secure 1-bit SKE (KeyGen,Enc,Dec). Let t = t(λ) =
ω(log(λ)) and ℓ = ℓ(λ) be polynomials. We define the following new SKE scheme:

• KeyGen′ : Run KeyGen(1λ) tℓ-times and obtain K1, . . . ,Ktℓ. Output K ′ = (K1, . . . ,Ktℓ).

• Enc′(K ′,m) : Let m = (m1, . . . ,mℓ) ∈ {0, 1}ℓ. For i ∈ [ℓ] and j ∈ [t], generate ct(i−1)t+j ←
Enc(K(i−1)t+j ,mi). Output ct′ = (ct1, . . . , cttℓ).

• Dec′(K ′, ct′) : For i ∈ [ℓ] and j ∈ [t], let m(i−1)t+j ← Dec(K(i−1)t+j , ct(i−1)t+j). For i ∈ [ℓ], if
m(i−1)t+j = 0 for all j ∈ [t], then set m′i = 0; otherwise, set m′i = 1. Output m′ = (m′1, . . . ,m′ℓ).

This new SKE (KeyGen′,Enc′,Dec′) is IND-CPA-secure multi-bit SKE with plaintext space {0, 1}ℓ.

Proof. The correctness of the new multi-bit SKE follows from that of the underlying 1-bit SKE: If mi = 0,
then the new decryption algorithm always outputs m′i = 0. If mi = 1, then the new decryption algorithm
outputs m′i = 1 with probability at least 1− (1− 1/5)t = 1− (4/5)ω(log(λ)) = 1− δ(λ) for some negligible
function δ(λ). Thus, for any m ∈ {0, 1}ℓ, we have

Pr
K′←KeyGen′(1λ)

[Dec′(K ′,Enc′(K ′,m)) = m] ≥ 1− Pr
K′←KeyGen′(1λ)

[∃i ∈ [ℓ] : 1 = mi ̸= m′i = 0]

≥ 1− ℓ · δ(λ)
= 1− negl(λ)

as we wanted.
The IND-CPA security of the new multi-bit SKE immediately follows from that of the underlying 1-bit

SKE via a hybrid argument.

Construction. We can construct a simple IND-CPA-secure 1-bit SKE from the HaarPR and Haar-DDH
assumptions:

Theorem A.5. Let (G,S) be a HaarPR and Haar-DDH QGA. Then, the following SKE is IND-CPA-secure
1-bit SKE.

• KeyGen(1λ) : Generate g ← G(1λ) and output K = g.

• Enc(K, b) : If b = 0, then generate |s⟩ ← µ by using a 1-design and output a ciphertext ct = (|s⟩, g|s⟩).
If b = 1, then generate |s⟩, |s′⟩ ← µ by using a 1-design and output ct = (|s⟩, |s′⟩)

• Dec(K, ct) : Let ct = (|ϕ⟩, |ψ⟩). Compute g⊗I on ct and run the SWAP test between registers. Output
the result of the SWAP test.
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Proof of correctness. If b = 0, then |ψ⟩ = g|s⟩, then the registers after applying g ⊗ I is (g|s⟩, g|s⟩). Thus,
the SWAP test always outputs 0. On the other hand, if b = 1, then |ψ⟩ = |s′⟩ is independent of |ϕ⟩ = |s⟩.
Thus,

Pr[Dec(K,Enc(K, 1)) = 0] ≤ Eg←G,|s⟩,|s′⟩←µ

[
1 + |⟨s′|g|s⟩|2

2

]
+ negl(λ) (24)

≤ E|s⟩,|s′⟩←µ

[
1 + |⟨s′|s⟩|2

2

]
+ negl(λ) (25)

≤ (1 + 1/2)/2 + negl(λ) ≤ 4/5, (26)

where we used Lemma 2.9 for Equation (24), the fact that, for any g, the distribution of g|s⟩ ← µ is equivalent
to that of g|s⟩ ← µ for Equation (25), and Lemma 2.10 for Equation (26).

Proof of IND-CPA security. If the QGA is Haar-PR, then D′HaarPR,0 ≈c D′HaarPR,1 holds in Lemma 3.12.
Notice that D′HaarPR,0 = DHaarDDH,1 in Definition 3.14. Thus, if the underlying QGA is Haar-PR and
Haar-DDH, then D′HaarPR,1 ≈c DHaarDDH,0, where

D′HaarPR,1 : for q ∈ [Q] |sq⟩ ← µ, |s′q⟩ ← µ; return {(|sq⟩, |s′q⟩)⊗t}q∈[Q],

DHaarDDH,0 : g ← G, for q ∈ [Q] |sq⟩ ← µ; return {(|sq⟩, g|sq⟩)⊗t}q∈[Q].

Let A be an adversary against the IND-CPA security and let Q be the number of queries A making. We
construct a reduction algorithm B distinguishing D′HaarPR,1 and DHaarDDH,0 with t = 1 as follows:

1. Receive samples {(|sq⟩, |s′q⟩)}q∈[Q] as input, where |s′q⟩ is g|sq⟩ with g ← G or chosen from µ.

2. Run A and simulate the oracle as follows:

• If the i-th query is 0, then return cti = (|sq⟩, |s′q⟩).
• If the i-th query is 1, then generate two independent samples |ϕ⟩, |ψ⟩ by using 1-design and return

cti = (|ϕ⟩, |ψ⟩).

3. Output A’s decision.

If the input samples are chosen from DHaarDDH,0, then B perfectly simulates the encryption oracle Enc(K, ·),
where K = g ← G. On the other hand, if the input samples are chosen from D′HaarPR,1, then B statistically
simulates the encryption oracle Enc(K, 1). Thus, B’s advantage is statistically close to that of A against
IND-CPA security. This completes the proof.

Since an IND-CPA-secure multi-bit SKE implies an IND-CPA-secure quantum-message SKE [BJ15]
(and the formal proof in [MYY24, Appendix A]), we have the following corollary.

Corollary A.6. Let (G,S) be a HaarPR and Haar-DDH QGA. Then, an IND-CPA-secure quantum-message
SKE exists.

B Discussion on Naor-Reingold-style PRFs from Group Actions

Here, we discuss how to weaken algebraic structures of group actions in the existing proofs [BKW20,
ADMP20]. We first briefly review group actions and their notions. We then discuss the existing proofs by
Boneh et al. [BKW20] and Alamati et al. [ADMP20].
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B.1 Preliminaries

We first review the definition of group actions.

Definition B.1 (Group action). Let G be a group with an identity element 1G and let S be a set. Let
⋆ : G × S → S be a map. We say that (G,S, ⋆) is a group action if the map satisfies the following two
properties:

1. Identity: For any s ∈ S, we have 1G ⋆ s = s.

2. Compatibility: For any g, h ∈ G and any s ∈ S, it holds that (gh) ⋆ s = g ⋆ (h ⋆ s).

We next review the standard notions of group actions.

Definition B.2 (Properties of group actions).

1. Transitive: (G,S, ⋆) is said to be transitive if for arbitrary s1, s2 ∈ S, there exists a group element
g ∈ G satisfying s2 = g ⋆ s1.

2. Faithful: (G,S, ⋆) is said to be faithful if for each group element g ∈ G, either g = 1G or there exists
an element s ∈ S satisfying s ̸= g ⋆ s. In other words, a group action is faithful if g = 1G if and only if
s = g ⋆ s for all s ∈ S.

3. Free: (G,S, ⋆) is called free if for each group element g ∈ G, if there exists some element s ∈ S
satisfying s = g ⋆ s then g = 1G. Note that if group action is free, then it is also faithful.

4. Regular: (G,S, ⋆) is said to be regular if it is transitive and free.

For an element s ∈ S, we consider a mapping fs : g ∈ G 7→ g ⋆ s ∈ S. We also consider, for an element
g ∈ G, a mapping Lg : s ∈ S 7→ g ⋆ s ∈ S. We note that, for any s ∈ S, if a group action is transitive (or
free, resp.), then fs is subjective (or injective, resp.). We also note that, if a group action is faithful, then for
any g ̸= h ∈ G, Lg ̸= Lh.

Lemma B.3. Suppose that G is finite and a group action (G,S, ⋆) is transitive and faithful. Then, for any
s0 ∈ S, then the distribution of si ← S is equivalent to that of gi ⋆ s0 with gi ← G.

Proof. The proof is easily obtained by considering a subgroup H = {g : g ⋆ s0 = s0} and left cosets {gH}
induced by H and using the facts in above.

We then review effective group actions in [ADMP20].

Definition B.4 (Effective group actions (EGAs) [ADMP20, Definition 3.4]). We say that a group action
(G,S, ⋆) is effective if the following properties are satisfied:

1. The group G is finite and there exist efficient algorithms for:

(a) Membership testing, that is, to decide if a given bit-string represents a valid group element in G
or not.

(b) Equality testing, that is, to decide if two bit-strings represent the same group element in G or not.
(c) Sampling, that is, to sample an element g from a distribution that is statistically close to the

uniform over G.
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(d) Operation, that is, to compute gh from g, h ∈ G.
(e) Inversion, that is, to compute g−1 from g ∈ G.

2. The set X is finite and there exist efficient algorithms for:

(a) Membership testing, that is, to decide if a given bit-string represents a valid set element in S or
not.

(b) Unique representation, that is, given any s ∈ S, to compute a string ŝ that canonically represents
s.

3. Origin: There exists an element s0 ∈ S, called the origin, such that its representation is known in
public.

4. Operation ⋆: There exists an efficient algorithm that takes g ∈ G and s ∈ S and outputs g ⋆ s.

We next define several computational assumptions of group actions.

Definition B.5 (Assumptions).

1. Pseudorandom: A GA is called pseudorandom (PR) if

{(s0, g ⋆ s0) : g ← G} ≈c {(s0, s1) : s1 ← S}.

2. Weakly pseudorandom: A GA is called weakly pseudorandom (wPR) if for any polynomial Q = Q(λ),

{(si, g ⋆ si) : g ← G, si ← S} ≈c {(si, s′i) : si, s′i ← S}.

3. Decisional Diffie-Hellman (DDH): A GA is called Decisional Diffie-Hellman (DDH) if

{(s0, g̃ ⋆ s0, g ⋆ s0, (g̃g) ⋆ s0) : g̃, g ← G} ≈c {(s0, g̃ ⋆ s0, g ⋆ s0, h ⋆ s0) : g̃, g, h← G}.

4. Naor-Reingold (NR): A GA is called Naor-Reingold (NR) if for any polynomial Q = Q(λ),

{(gi ⋆ s0, (g̃gi) ⋆ s0) : g̃, gi ← G} ≈c {(gi ⋆ s0, hi ⋆ s0) : gi, hi ← G}.

NR-style PRF. Let (G,S, ⋆) be an EGA. We define f : Gℓ+1 × {0, 1}ℓ → S as

fg0,...,gℓ
(x1, . . . , xℓ) := (gxℓ

ℓ · · · · · g
x1
1 · g0) ⋆ s0.

We say that this function is PRF is this f is computationally indistinguishable with a random function
f ′ : x ∈ {0, 1}ℓ 7→ sx ∈ S, where sx ← S for each x ∈ {0, 1}ℓ.

By adopting the proof for the NR-style PRFSG (Theorem 4.1), we obtain the following theorem for the
NR-style PRF f :

Theorem B.6. Let (G,S, ⋆) be an EGA. If it is PR and NR, then the function f is a PRF.

We then review the proofs in [BKW20] and [ADMP20] and weaken the requirements of them.

31



B.2 BKW20 Proof

Boneh et al. [BKW20] assumed that a group action is transitive and faithful and G is commutative.

Theorem B.7 ([BKW20, Section 8], adapted). Let (G,S, ⋆) be an EGA. Suppose that the EGA is transitive
and faithful and G is commutative. If the EGA is DDH, then the function f is a PRF.

The following lemma (Lemma B.9) shows that if G is commutative and the EGA is DDH, then it is NR.
Combining the lemma with Theorem B.6, we obtain the following corollary.

Corollary B.8. Let (G,S, ⋆) be an EGA. If G is commutative, and the EGA is PR and DDH, then the function
f is a PRF.

Lemma B.9. Let (G,S, ⋆) be an EGA. If G is commutative and the EGA is DDH, then the EGA is NR.

Proof. Let us consider hybrid distributions D̄i: For j = 1, . . . , i, (ai, bi) = (gi ⋆ s0, hi ⋆ s0) and j =
i+ 1, . . . , Q, (ai, bi) = (gi ⋆ s0, g̃gi ⋆ s0). By using the following claim, we have D̄0 ≈c D̄1 ≈c · · · ≈c D̄Q

if the DDH assumption holds.

Claim B.10. If (G,S, ⋆) is an EGA, G is commutative, and the DDH assumptions hold, for i = 1, . . . , Q,
D̄i−1 ≈c D̄i holds.

Proof. Suppose that there exists A distinguishing D̄i−1 from D̄i. We construct an adversary B against the
DDH assumption as follows:

• Given a sample (s0, g̃ ⋆s0, g ⋆s0, h⋆s0), where h = g̃g or random, B prepares a sample {(aj , bj)}j∈[Q]
as follows:

– for j = 1, . . . , i− 1, take random gj , hj ← G and set (aj , bj) := (gj ⋆ s0, hj ⋆ s0);
– for j = i, set (aj , bj) = (g ⋆ s0, h ⋆ s0);
– for j = i+ 1, . . . , Q, take random gj ← G and set (aj , bj) = (gj ⋆ s0, gj g̃ ⋆ s0).

• It runs A on input {(aj , bj)}j∈[Q] and outputs A’s decision.

We note that, due to commutativity of G, the last Q − i samples are equivalent to (gj ⋆ s0, g̃gj ⋆ s0). If
h = g̃g, then (aj , bj) = (g ⋆ s0, (g̃g) ⋆ s0) and B perfectly simulates the distribution D̄i−1 since G is a group
and the distribution of If h is random, then B perfectly simulates the distribution D̄i. Thus, B’s advantage is
equivalent to A’s advantage distinguishing D̄i−1 and D̄i.

B.3 ADMP20 Proof

Alamati et al. [ADMP20] assumed that a group action is weakly pseudorandom and G is regular and
commutative.

Theorem B.11 ([ADMP20, Section 3.1 and Section 4.4], adapted). Let (G,S, ⋆) be an EGA. Suppose that
the EGA is regular andG is commutative.25 If the EGA is weakly pseudorandom, then the function f is a PRF.

25[ADMP20, Section 3.1 and Section 4.4]
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As in our discussion in the introduction, we do not require commutativity of G. It is easy to show that if
the EGA is wPR and PR, then the EGA is NR (Lemma B.13 below). In addition, due to Lemma B.3, if the
EGA is wPR and G is transitive and faithful, then the EGA is NR (Corollary B.14). Thus, we obtain the
following corollary of Theorem B.6.

Corollary B.12. Let (G,S, ⋆) be an EGA.

• If it is PR and wPR, then the function f is a PRF.

• If it is wPR and G is transitive and faithful, then the function f is a PRF.

Lemma B.13. Let (G,S, ⋆) be an EGA. If it is wPR and PR, then it is NR.

Proof. It is easy to see that if the EGA is PR, then we can replace “si ← S” with “gi ⋆ s0 with gi ← G”.
Thus, we have that

{(si, g ⋆ si) : g ← G, si ← S}i∈[Q] ≈c {(gi ⋆ s0, ggi ⋆ s0) : g, gi ← G}i∈[Q] (27)
{(si, hi ⋆ si) : hi ← G, si ← S}i∈[Q] ≈c {(gi ⋆ s0, higi ⋆ s0) : hi, gi ← G}i∈[Q]. (28)

We obtain that

{(gi ⋆ s0, ggi ⋆ s0) : g, gi ← G}i∈[Q]

≈c {(si, g ⋆ si) : g ← G, si ← S}i∈[Q] (from Equation (27))
≈c {(si, s′i) : si, s′i ← S}i∈[Q] (from wPR)
≈c {(si, hi ⋆ si) : hi ← G, si ← S}i∈[Q] (from wPR)
≈c {(gi ⋆ s0, higi ⋆ s0) : hi, gi ← G}i∈[Q] (from Equation (28))
≡ {(gi ⋆ s0, hi ⋆ s0) : hi, gi ← G}i∈[Q] (G is a group),

where we apply wPR Q-times to obtain third computational indistinguishability.

Recall that if G is transitive and faithful, then an EGA (G,S, ⋆) is perfectly PR (Lemma B.3). Thus, we
obtain the following corollary.

Corollary B.14. Let (G,S, ⋆) be an EGA. If G is transitive and faithful, and the EGA is wPR, then the EGA is
NR.
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