
1

FLUENT: A Tool for Efficient Mixed-Protocol
Semi-Private Function Evaluation∗

Daniel Günther , Joachim Schmidt , Thomas Schneider , and Hossein Yalame
Technical University of Darmstadt, Darmstadt, Germany

Email: {guenther, schneider, yalame}@encrypto.cs.tu-darmstadt.de, joachim.schmidt@tu-darmstadt.de

Abstract—In modern business to customer interactions, han-
dling private or confidential data is essential. Private Function
Evaluation (PFE) protocols ensure the privacy of both the
customers’ input data and the business’ function evaluated on it
which is often sensitive intellectual property (IP). However, fully
hiding the function in PFE results in high performance overhead.
Semi-Private Function Evaluation (SPFE) is a generalization of
PFE to only partially hide the function, whereas specific non-
critical components remain public. Our paper introduces a novel
framework designed to make SPFE accessible to non-experts and
practical for real-world deployments.

To achieve this, we improve on previous SPFE solutions in two
aspects. First, we enhance the developer experience by leveraging
High-Level Synthesis (HLS), making our tool more user-friendly
than previous SPFE frameworks. Second, we achieve a 2×
speedup compared to the previous state-of-the-art through more
efficient underlying constructions and the usage of Lookup Tables
(LUTs).

We evaluate the performance of our framework in terms of
communication and runtime efficiency. Our final implementation
is available as an open-source project, aiming to bridge the gap
between advanced cryptographic protocols and their practical
application in industry scenarios.

Index Terms—Multi-Party Computation, Privacy, Private
Function Evaluation

I. INTRODUCTION

In today’s digital landscape, maintaining the confidentiality
of processes that handle private data is essential for both
economic and security reasons. Typically, these processes are
executed on servers rather than local devices, which requires
end users to trust that these services will manage their data
responsibly and ensure its deletion after processing. However,
numerous data leaks have demonstrated that this trust is
often not justified, with breaches impacting companies across
various sectors [2], [3].

A prominent example of the need for data protection
measures is hardware intellectual property (IP) protection.
Circuit designs are critical assets for companies as they
contain significant intellectual property. Manufacturers who
produce these designs have the potential to access and learn
these proprietary details, leading to IP theft and unauthorized
cloning, which can result in substantial financial losses and
diminished competitive edge [4].

Hardware logic locking [5], [6] has emerged as a potential
solution for hardware IP protection. This technique involves
embedding a locking mechanism within the hardware to

* Please cite the conference version published at ACSAC’24 [1].

prevent unauthorized use. However, current methods of logic
locking are not fully secure. Attackers can bypass or reverse-
engineer these protections, which compromises the security of
the designs [3].

Private Function Evaluation (PFE) [7] provides a technical
solution that protects both data and functions and is suitable
for applications like hardware IP protection. PFE is a general-
ization of Secure Function Evaluation (SFE), a cryptographic
protocol that allows N parties with private inputs x1, . . . , xN

to securely compute a public known function f on their private
inputs and obtain nothing but the result f(x1, . . . , xN). In
PFE, one of the parties, denoted as P1, provides a private
function f , and the other parties provide private input data
x1, . . . , xN . At the end of the protocol, all parties securely
compute f(x1, . . . , xN) while learning no additional informa-
tion about the inputs of other parties or the function (except
an upper bound on its size).

However, hiding the structure of the function in PFE comes
at a high cost: Today’s most flexible technique for PFE
is based on Universal Circuits (UCs) [8], Boolean circuits
programmable to compute any function consisting of n gates,
which yield inevitable complexity of Θ(n log n) [9]. In real-
world applications, the function f often contains non-critical
components that need not be kept confidential (e.g., it is
natural to run comparisons on an age input). Revealing these to
the users would still maintain privacy while allowing for much
better efficiency. Functions consisting of private and public
components are called semi-private and their secure evaluation
is called Semi-Private Function Evaluation (SPFE) [10].

There are two main implementations of SPFE: Fair-
playSPF [10] and the CBMC-GC based framework of [11],
both briefly described in §V. A common disadvantage of these
frameworks is their limited usability. They rely on a domain-
specific language and require a low-level understanding of
Boolean circuit designs. Moreover, in the CBMC-GC based
framework, complete refactoring of the function programming
is required when the implementation of a single function’s
component changes. Therefore, a significant gap exists for
an efficient SPFE tool that can completely hide the private
function components while remaining accessible to developers.

To fill this gap, we introduce FLUENT, an efficient and
user-friendly SPFE tool. Unlike FairplaySPF [10] and the
framework of [11], FLUENT simplifies the implementation
of semi-private functions in the high-level languages C and
C++ and allows for the first time to combine the private and
public function components easily. A developer can directly

https://orcid.org/0000-0002-3615-0583
https://orcid.org/0009-0006-6175-7631
https://orcid.org/0000-0001-8090-1316
https://orcid.org/0000-0001-6438-534X

2

mark a sub-function as public or private in the high-level
program. Additionally, FLUENT allows implementing semi-
private functions in the low-level hardware description lan-
guage Verilog. FLUENT is the first SPFE tool that compiles
from an existing programming language instead of a new
domain-specific language.

A. Practical Applications of SPFE

Hardware design processes typically involve multiple
parties such as IP vendors, toolchain developers, and
hardware designers. Each contributes proprietary products
to the development pipeline, which are trade secrets. The
collaboration in this industry thus relies on trust, which is
hard to earn for startups that are not established in their
respective space. One approach to fixing this issue was
proposed by Hashemi et al. [12] with their Garbled Electronic
Design Automation (EDA) framework. Using PFE, Garbled
EDA allows hardware designers to evaluate and test their
proprietary designs privately while toolchain and IP vendors
reveal minimal information about their IP. The main example
in [12] is a Verilog hardware module simulation. More
formally, the hardware IP is the function f evaluated on
private inputs x. FLUENT also supports this use case.

Other applications of PFE include privacy-preserving credit
checking [13]. Here, a financial institution can check the
suitability of a credit for a certain customer while respecting
the privacy of the customer who provides their sensitive
financial information. At the same time, the specific ruleset
governing the credit score calculation is a trade secret and
should, therefore, be kept hidden. Further (S)PFE use cases
from the literature include, but are not limited to, medical
diagnosis [14], stream filtering [15], private deep learning
accelerators [16], and remote software diagnosis [17].

B. Our Contributions

For the first time, FLUENT provides a user-friendly tool
that integrates PFE, SFE, and SPFE, along with support for
LUT-based circuits, enabling secure evaluation within an SFE
framework. We discuss related work in more detail in §V. Our
main contributions are as follows:

1. A Novel Tool for LUT-based SPFE. We develop and
implement FLUENT, a new accessible and comprehensive
SPFE tool. It allows to easily implement semi-private functions
in the high-level languages C/C++ and the low-level hardware
description language Verilog. FLUENT allows developers to
mark a sub-function as public or private directly in the high-
level program, using pragmas for C/C++ or module attributes
in Verilog, eliminating the need for refactoring the source code
after small function changes as in [11]. Moreover, in contrast
to [10], [11], our tool is designed to be easily extendable and
allows to compile sub-functions into Lookup Table (LUT)-
based circuits. Private sub-functions are evaluated with UCs
by integrating recent optimizations for LUT evaluation within
UCs [18]. However, that UC framework exclusively supports
complete private circuits, while FLUENT handles private sub-
circuits, making our tool the first to implement semi-private
functions with LUTs.

On top of that, FLUENT is not only suited to implement
semi-private functions for SPFE, but can also be used to fully
hide functions for PFE, providing a user-friendly tool for
developing private functions. Finally, our SPFE tool outputs a
circuit description file in a format for which we have integrated
support within the ABY [19] framework for SFE. We provide
an open source implementation of FLUENT.1 Leveraging
existing conversion capabilities of the ABY framework [19],
we allow users to use different protocols for certain parts of
an application to exploit the respective advantages of each.
Public modules can be evaluated with Yao’s Garbled Circuits
protocol [20] or with the SP-LUT protocol [21].

2. Benchmarks and Applications. We benchmark the per-
formance of FLUENT and demonstrate its practical relevance
by measuring the overhead of hiding basic and arithmetic
operations including floating point operations (51.3×−68.4×
overhead for hiding these operations) and SHA256 calcu-
lations (129.4× overhead for hiding). FLUENT provides a
straightforward solution to avoid this overhead by making
certain parts of the computation public, which can significantly
reduce overhead based on the specific application’s require-
ments. Taking the example of a car insurance tariff calculation
function, where only critical sub-functions are hidden while
non-critical operations remain public, FLUENT outperforms
the framework of [11] by 2× in runtime, and over full PFE (the
whole function is hidden) by 7.7×.

C. High-level Overview of Our Tool

In Fig. 1 we give an overview over the structure of our
tool FLUENT. The displayed process is controlled by a novel
compiler driver which is also responsible for merging different
components (cf. §III-C). In addition to implementing the
compiler driver, various components used in the compilation
process were modified to be compatible with our workflow.

Users of FLUENT can decide whether to write their de-
sired semi-private function in C/C++ or Verilog; the compiler
automatically performs an additional HLS pass using Google
XLS [22] if C/C++ source code is provided. In contrast to
the design of individual functions as in [11], this approach
removes the burden of manually compiling and integrating all
components.

When using C/C++ source files, some restrictions apply.
Dynamic memory allocation with malloc calls or the new
operator is disallowed. Furthermore, any control flow not
statically known at compile-time is not synthesizable. Among
these is setjmp/longjmp. Apart from being unsupported
by XLS, these constructs cannot be mapped to combinational
Boolean circuits. Additionally, loops must have a static bound
and be unrolled using a pragma. The unrolling requirement is
enforced in private modules as the evaluation of non-unrolled
loops in the MPC framework would leak the existence of
a loop in a private module. This requirement was extended
to public modules to support zero overhead when switching
module visibilities from public to private.

1Our code is published under MIT license at: https://encrypto.de/code/
FLUENT.

https://encrypto.de/code/FLUENT
https://encrypto.de/code/FLUENT

3

C/C++

XLS High-Level Synthesis [22]

Verilog

Yosys [24]

AND
XOR
INV

ORLUT circuit

LUT circuit

UC compiler [18]

UC

Automatic Merge

SPFE circuit

SFE framework

Public modules Private modules

Fig. 1: High-level comparison of the compiler pipeline of our
tool FLUENT.

While private modules are always compiled to kpriv-input
LUT circuits, our tool allows the user to choose the compila-
tion mode of public modules. Public modules can be lowered
to Boolean circuits composed of AND, XOR, and INV gates
for evaluation with Yao’s garbled circuits protocol [20], [23].
Alternatively, they can be compiled to kpub-input LUT circuits
for evaluation using the SP-LUT protocol [21]. The output
SPFE circuit description file combines all modules, public
and private, in a single file for secure evaluation in a SFE
framework like ABY [19].

II. PRELIMINARIES

Universal Circuits (UCs). Universal Circuits (UCs) [8] are
special Boolean circuits of size Θ(n log n) [9] that can be
programmed to compute any Boolean function f(x) of at most
n gates on input x. More formally, a universal circuit UC
takes programming bits pf describing the functionality of the
function f and the function’s input x as inputs and computes
UC(pf , x) = f(x). The idea and first two constructions of
UCs were provided by Valiant [8]. Today, these two con-
structions are known as 2-way and 4-way split constructions
referencing their recursive structure. These UC constructions
have sizes of ∼ 5n log n and ∼ 4.75n log n, respectively.

As Valiant already provided UC constructions of asymptot-
ically optimal size Θ(n log n), UC research mostly focused
on reducing the concrete size through optimizations [7], [25],
[26], [27] and the prefactor of the superlinear term of the
size [28], [29]. The state-of-the-art UC construction by Liu et
al. [29] removes redundancies of Valiant’s UC constructions
and achieves an asymptotic size of ∼ 3n log n.

All these works have in common that the UC is designed
to evaluate Boolean circuits consisting of 2-input and 1-output
gates. Recently, [18] extended the UC construction of Liu et
al. [29] to evaluate ρ-input and ω-output LUTs. They propose
two different constructions, both of which have advantages
and disadvantages.

Their first construction is called LUC and has asymptotic
size ∼ 1.5ρωn logωn. While this construction can hide a
function fully, it unfortunately has the LUT’s input dimension
ρ as a prefactor. Many functions can be most efficiently
represented as multi-input LUTs of various input dimensions,
e.g., AES SBoxes can naturally be implemented with 8-input
LUTs. However, mathematical operations like additions and
multiplications consist of full adders and thus benefit from
using 3-input LUTs. Combining a circuit that uses AES and
arithmetic operations and evaluating it with the LUC con-
struction brings a massive overhead as all 3-input LUTs need
to be extended into an 8-input LUT, i.e., the potential of many
8-input LUTs is not fully used, but its expensive prefactor
is omnipresent. For this reason, Disser et al. [18] proposed
a second construction called VUC that has asymptotic size
∼ 1.5(ωn + ∆) log(ωn + ∆) with ∆ =

∑n
i=1

Lin
i −2
2 , where

Lin
i is the number of inputs of the i-th LUT of the circuit.

Here, the actual size of the VUC constructions depends on
the used LUTs’s dimensions. However, this construction leaks
the number of inputs of each individual LUT and thus leaks
more information than the LUC construction.
Secure Function Evaluation (SFE). Secure Function Eval-
uation (SFE) allows N parties to compute a public known
function f(x1, . . . , xN) on their respective private input data
x1, . . . , xN without learning anything but the output. The
function f is commonly implemented as a Boolean circuit
consisting of AND and XOR gates, where XOR gates can be
evaluated without interaction [30], [31], whereas AND gates
require communication between the parties.

SFE protocols based on secret sharing [30], [32], [33],
[34], [35], [36], [37] require communication rounds that
are linear in the multiplicative depth of the circuit, but are
well-suited for high-throughput applications due to their low
amount of communication. Yao-based protocols [20] have
a constant number of rounds and are well-suited for low-
latency solutions. The mutually orthogonal goals of these two
approaches paved the way for LUT-based SFE, which provides
a balance between total communication and online round
complexity [21], [36]. An effective implementation of LUT-
based SFE was introduced under the name SP-LUT in [21].
To further enhance efficiency, an alternative approach involves
the initial transformation of the LUT representation into a
Boolean expression, which is evaluated with a multi-fan-in
inner product protocol, as proposed in FLUTE [36].

Yao’s Garbled Circuits [20] allows two parties to securely
evaluate a public function f(x, y) on their respective private
inputs x and y. Today’s most efficient solution for garbled
circuits combines point-and-permute [38], free-XOR [31],
fixed-key AES [39], and three-halves-garbling [40]. With these
optimizations, each AND gate requires communication 1.5κ
bits for security parameter κ in the setup phase and XOR gates
have no communication. In the context of PFE on UCs, a con-
stant number of communication rounds is preferable as UCs
have a depth of O(n), where n is the size of the function f ,
and thus would require O(n) communication rounds [9].
LUT-based Circuit Synthesis. There exists a spectrum of
commercial FPGA synthesis tools such as Intel HLS Com-
piler [41], Microchip SmartHLS [42], and AMD Xilinx Vi-

4

vado [43]. However, these tools synthesize LUT-based circuits
that are tailored to their devices’ specifics, such as the size
and quantity of physically available LUTs. In FLUENT, we
generate up to 8 input LUTs, which is not possible with com-
monly used commercial tools. The Berkeley Logic Synthesis
tool ABC [44] allows to map circuits to variable input LUTs
using a technology named priority cuts [45]. For both standard
gates and LUTs, ABC offers an experimental implementation
of various mapping and optimization techniques based on
optimal-delay directed acyclic graph (DAG) technology map-
ping. As ABC allows the user to choose the maximum number
of LUT inputs, regardless of any target-specific FPGA design
characteristics, it is a great fit for our needs. We combine the
mapping of ABC [44] with Yosys [24] as follows: ABC [44]:
The Boolean circuit network is first organized into a directed
acyclic graph (DAG) with 2-input, 1-output nodes, and then
this graph is mapped into multi-input LUTs via the Yosys-
ABC toolchain [24], [44]. Following [21], [36], the maximum
number of inputs to our LUTs is restricted to 8, as this offers
a good balance between performance and efficiency.

More concretely, in FLUENT, private modules are compiled
to kpriv-input LUT circuits which can be embedded into
UCs. Public modules are decomposed into multiple modules
and then each module is translated into two different
circuit formats, i.e., LUTs and Boolean gates. We utilize
the JSON [46] backend for public circuits as JSON is a
widespread format and JSON parsing is simpler than writing a
parser for another output format by hand. The state-of-the-art
UC compiler of [18] only supports the Bench [47] format,
which can be emitted by ABC. We describe the exact usage
of Yosys and ABC in §III-D.
High Level Synthesis Tools. Traditionally, hardware develop-
ment involved behavioral and structural descriptions of the de-
sired circuit in hardware descrpition languages (HDLs) such as
Verilog or VHDL. Since the late 1990s, High-Level Synthesis
(HLS) tools were developed to bridge the gap between high-
level programming languages and HDLs. One of the first was
Handel-C [48], released in 1996. These tools allow users to
write code in a high-level language and automatically convert
it into an equivalent hardware circuit description, which in turn
can be synthesized by classic logic synthesis. This makes it
easier for software developers to work with hardware, as they
can use their existing knowledge of high-level programming
languages rather than having to learn a specialized HDL.
As our intended use of HLS differs from the conventional
hardware development, we have specific requirements which
rule out some existing HLS tools. We require the output HDL
to preserve the structure of the input code so that different
functions will be lowered to different modules instead of being
flattened to one module. Merging functions of the same type
at this stage is possible and could be explored as a future
optimization, however, we decided against this in FLUENT to
maintain simplicity and ease of debugging. Furthermore, we
expect the output to describe a combinational Boolean circuit
which computes the desired function immediately instead of
a pipelined circuit which computes the result in several clock
cycles.

From the several available commercial and academic HLS

tools [41], [42], [43], we selected Google’s XLS toolchain [22]
for compiling C/C++ code to Verilog as this tool fulfilled
our requirements in addition to being open-source. The high-
level synthesis pipeline in XLS operates on an intermediate
representation (IR) which can either be generated from the
DSLX domain-specific language or generated from C/C++
code. The IR is subsequently optimized in multiple passes
and finally lowered to Verilog. Alternatively, XLS supports
interpreting IR code or generating native binaries from IR with
the help of the LLVM compiler infrastructure [49]. We provide
an example of HLS in §A.

Listing 1: Example Verilog code for privately comparing with
a threshold and publicly incrementing a counter.

1 (* private *)
2 module compare (input wire [31:0] a,

output wire b);
3 assign b = a > 4096;
4 endmodule
5 (* public *) // optional
6 module increment (input wire [31:0] a,

output wire [31:0] c);
7 assign c = a + 1;
8 endmodule
9 module count_over_threshold (input wire

[31:0] value, input wire [31:0]
counter, output wire [31:0] new_counter
);

10 wire over_threshold;
11 wire [31:0] incremented;
12 compare cmp (value, over_threshold);
13 increment inc (counter, incremented);
14 assign new_counter = over_threshold ?

counter : incremented;
15 endmodule // main

III. OUR FLUENT TOOL

In this section, we describe our FLUENT tool for Semi-
Private Function Evaluation (SPFE) that compiles a function
description in C/C++ or Verilog into a circuit for evaluation
in an SFE framework.

A. FLUENT in Verilog

Our FLUENT tool can interpret programs written in the
hardware description language Verilog. A semi-private func-
tion consists of private and public modules, where the private
modules of the function are only known to one party, and
the public parts are known to all parties. Our format allows
directly declaring the private modules inside the source code
by adding a private attribute to the code part. For the first
time, the whole semi-private function, including its privacy
requirements, can be completely described in the Verilog
language.

List. 1 depicts a Verilog source code example of a semi-
private function for SPFE that takes a 32-bit value input and a
32-bit counter input. When the value is over a certain thresh-
old, the incremented counter value is returned, otherwise,
the unmodified counter value is returned. We designate the
comparator module as private, while the increment module is
public.

5

The Verilog language supports adding attributes to modules.
These attributes have names and can have constant data
attached to them, such as integers or strings. FLUENT uses
module attributes to distinguish between public and private
modules. For instance, in our example, the compare module
has the private attribute attached to it, as shown in line 1.
By default, a module will be considered as public, and the
public attribute is optional, as seen in line 5. Note that our
input language is standard Verilog code, i.e., our semi-private
functions can be generated and processed with existing Verilog
tools, including industry-grade synthesis tools such as AMD
Xilinx Vivado [43].

B. FLUENT in C/C++

FLUENT can process C/C++ in addition to Verilog source
files. This is achieved using the Google XLS framework [22]
for an HLS pass, compiling C/C++ sources into Verilog.
List. 2 shows C/C++ source code for the same semi-private
function as the Verilog code in List. 1.

Listing 2: Example C code for privately comparing with a
threshold and publicly incrementing a counter.

1 #pragma spfe_private
2 int compare(int b) {
3 return b > 4096;
4 }
5

6 int increment(int a) {
7 return a + 1;
8 }
9

10 int count_over_threshold(int value, int
counter) {

11 return compare(value) ? counter :
increment(counter);

12 }

Benefits of using C/C++. Imperative programming languages
like C/C++ are more familiar to most programmers than a
hardware description language like Verilog. Existing code-
bases written in C or C++ can be reused with minimal
changes, provided they do not rely on features that cannot
be synthesized to circuits (see §I-C).

SystemVerilog supports structured data types, but these
types are more versatile in C++ (see List. 3). Methods in C++
significantly enhance code readability when working with
structured data types. While SystemVerilog supports classes
with member functions, these functions do not integrate into
the module hierarchy. Additionally, Yosys [24] currently does
not support SystemVerilog classes unless supplemented with
third-party plugins.

Listing 3: Example of methods in C++.
1 struct Rectangle {
2 int width;
3 int height;
4

5 int area();
6 };
7

8 #pragma spfe_private

9 int Rectangle::area() {
10 return width * height;
11 }
12

13 int area_difference(Rectangle r1, Rectangle
r2) {

14 return r1.area() - r2.area();
15 }

Listing 4: Array parameters in SystemVerilog and C/C++.
1 // Verilog source code
2 module sum(input byte x0, input byte x1,

output integer out);
3 integer x[2];
4

5 always_comb begin
6 x[0] = x0;
7 x[1] = x1;
8

9 out = 0;
10 for (integer i = 0; i < 2; i = i + 1)

begin
11 out = out + x[i];
12 end
13 end
14 endmodule

1 // C/C++ source code
2 int sum(const char x[2]) {
3 int sum = 0;
4 #pragma hls_unroll yes
5 for (int i = 0; i < 2; i++) {
6 sum += x[i];
7 }
8 return sum;
9 }

HDL synthesis frameworks vary greatly in their supported
language features. For example, Yosys forbids while loops in
always blocks and does not support passing SystemVerilog
unpacked arrays as parameters even though the SystemVerilog
standard [50] allows them. In contrast, XLS supports array
parameters, leading to simpler code when using C/C++ as
demonstrated in List. 4.
Integration into FLUENT. The HLS pass has three segments:

In the first segment, the xlscc tool is invoked to transform
the C/C++ code into the XLS intermediate representation (IR).
Besides translating high-level constructs into synthesizable
IR operations, functions annotated with the spfe_private
pragma in the source code are annotated in the IR to mark
that they are private modules.

The second segment optimizes the IR code with a separate
tool from the XLS toolchain. Unlike a typical hardware devel-
opment workflow, we deliberately skip the inlining pass, which
replaces all function calls with the body of the respective
function. If all functions were inlined, the Verilog code would
no longer include the boundaries between functions, thus
eliminating the possibility of distinguishing between private
and public modules.

The third segment uses the codegen_main utility to
convert the optimized IR to Verilog code. We communicate
to the code generator that we intend to emit combinational

6

instead of pipelined Verilog. If the output were pipelined, the
resulting circuit would compute the function during multiple
clock cycles instead of instantaneously. While pipelining is
essential in hardware development as it increases throughput,
neither UCs nor the SFE protocols we use in our tool support
such circuits. The final output is a Verilog module hierarchy,
where every function in the input C/C++ code is translated to
a Verilog module, and function calls are expressed as module
instantiations. An example of the HLS process is shown in §A.

C. Compiler Pipeline

Similar to traditional compilers, our FLUENT circuit com-
piler contains a pipeline (cf. Fig. 1) on page 3) with interme-
diate stages between the C/C++ input and the SPFE circuit
output.

The compiler pipeline is managed and executed by the
compiler driver. The compiler driver is a standalone executable
that executes the high-level synthesis framework XLS [22], the
synthesizer for the Verilog language Yosys [24], and the UC
compiler [18], described in detail in §III-D. In addition, it is
responsible for merging the public and the private modules
of the semi-private function into one resulting SPFE circuit,
described in §III-E. The resulting SPFE circuit can be com-
piled and evaluated with the ABY framework [19] for Secure
Function Evaluation (SFE) as described in §III-G.

The compiler driver is implemented in Zig [51], a low-level
general-purpose programming language inspired by C and
Rust. The Zig toolchain includes a C/C++ compiler and
can cross-compile to Windows, Linux, and macOS. Even
though Zig is less widely adopted than the Rust programming
language, it was chosen as its simplicity allowed faster
development and the integrated C/C++ toolchain enabled
tight integration with the existing codebases.

D. Yosys and UC compiler Invocations

Each module in the module hierarchy is processed differ-
ently in the compiler pipeline depending on the module’s
designated visibility. Our FLUENT tool distinguishes between
public and private modules: Public modules are those parts
of the function that are known to all parties in the Secure
Function Evaluation (SFE) protocol, while private modules are
the parts of the function only known to the party who inputs
the function. While public modules can directly be processed
by the underlying SFE framework, hiding the private modules
requires additional steps. For these, we use a Universal Circuit
(UC) for each private module that gets programmed such that
it simulates the private module’s functionality using the state-
of-the-art UC compiler of [18].
Public Modules. FLUENT allows the user to choose whether
to evaluate public modules with any of the following state-
of-the-art SFE protocols: Yao’s garbled circuits protocol [20]
(compiled to a Boolean circuit with 2-input gates) or with
the SP-LUT protocol [21] (compiled to a multi-input LUT-
based circuit). When choosing Yao’s garbled circuits protocol,
the public modules must be compiled into Boolean circuits
consisting of AND, XOR, and INV gates. Ideally, the resulting
Boolean circuit should minimize the number of AND gates as

XOR gates can be evaluated locally without any communica-
tion [31]. The compilation process for this set of gates involves
both Yosys [24] and ABC [44]. If the user instead chooses the
SP-LUT [21] protocol, Yosys is instructed to generate circuits
with kpub-input LUTs.

During synthesis, Yosys performs a variety of optimizations
on the intermediate circuit descriptions within the opt pass.
Among these is the opt_expr which performs constant
folding. For instance, it simplifies expressions like x∧1 to just
x, and x ∧ 0 becomes 0. Scenarios where constant inputs are
used include the compare function in List. 2 or SBOX LUTs
found in many AES implementations like OpenSSL [52].

As all public modules are of the same type (either all
evaluated with Yao’s garbled circuits or all have the same
number of LUT inputs kpub), all private modules are marked
as black box modules. These black box modules are treated
as modules with known ports but unknown cells. This
enables Yosys to flatten the module hierarchy, preserving only
the black box modules. Flattening the hierarchy of public
modules in Yosys instead of externally in our compiler driver
enables Yosys to optimize across module boundaries.

Allowing various public modules to have different
configurations could make flattening modules in Yosys
unfeasible, as it would blur the distinction between modules
suitable for marking as black boxes and those intended for
flattening. Future work could explore implementing diverse
public modules, each with its own optimizations.
Private Modules. To process private modules, we iterate
through all modules with the private attribute attached to
them. First, we compile each module in question to a kpriv-
input LUT circuit. The resulting circuit is then compiled to
a UC and the corresponding programming bits using the UC
compiler of [18]. Like the process for public modules, the syn-
thesis workflow for private modules involves Yosys [24] and
ABC [44]. However, we require the synthesized circuit to be in
the Bench [47] format as the UC compiler [18] does not sup-
port other Yosys or ABC output formats. Therefore, we manu-
ally invoke ABC, as Yosys does not support outputting Bench.

We invoke Yosys and convert the high-level cells to simple
Boolean operations. To transfer this intermediate data to
ABC, we output the processed circuit in the Berkeley Logic
Interchange Format (BLIF) [53] supported by Yosys and ABC.
Once loaded into ABC, we run various optimizations and map
the circuit to a kpriv-input LUT architecture using the if
field-programmable gate array (FPGA) technology mapping
pass. We then output the circuit into a Bench file and invoke
the UC compiler [18] to get the UC file and corresponding
programming bits. If the VUC construction is chosen by the
user (cf. ??), we additionally pass the -i flag to the UC
compiler.

E. Merging Public and Private Modules

Once all modules in the design hierarchy have been con-
verted to either UCs or LUT/Boolean circuits, the compiler
driver needs to flatten the hierarchy into a single circuit which
can be evaluated by the SFE framework ABY [19]. Although
Yosys [24] natively supports flattening of design hierarchies

7

with the flatten pass, we cannot utilize that feature as the
hierarchy may include UCs, which are described in a custom
format not supported by Yosys.

Our tool is the first for SPFE that supports nesting modules
inside other modules. Nested modules are implemented by
instantiating other modules in the internal definition of a
module. For merging the module hierarchy into a single circuit,
we consider the hierarchy as a tree of module instantiations.
Public modules that do not instantiate other modules are leaf
nodes. Furthermore, we consider all private modules to be leaf
nodes even though they might instantiate other modules, i.e., a
private module’s subtree of module instantiations is flattened.
This prevents function designers from accidentally leaking
implementation details of private sub-circuits. We summarize
the algorithm for merging public and private modules in
Algorithm 1.

Merging the hierarchy involves a depth-first search over the
tree of instantiated modules. Starting with the main module,
we iterate over all cells of the current module. Trivial logic
cells (AND, XOR, and INV) are lowered to gates in the circuit.
When encountering a new public module instantiation, we
apply depth-first search by pushing our current progress to a
stack and iterating deeper into the hierarchy. Private modules,
on the other hand, are already compiled to UCs and can be
added to the SPFE circuit without further descending into the
hierarchy.

When adding a gate in a submodule to the resulting SPFE
circuit, we need that gate’s input and output wires to refer to
the correct wire numbers. If module foo instantiates module
bar and cell c0 in foo refers to wire number 1 and cell c1
in bar also refers to wire number 1, these wires are different.
To disambiguate these wires, we add offsets to the respective
wire numbers. With every instantiated module, we increase the
offset by the maximum wire number in that module.

Another requirement for the correctness of the merge al-
gorithm is the connection of submodule ports to their parent
wires. This can either be achieved with copy gates or through
wire renaming. FLUENT uses wire renaming to minimize the
circuit size. Before descending into the submodule, we create a
translation map which assigns every wire number associated
with a port to the canonical wire number used in the final
circuit.
Insertion of Conversion Gates. As the final circuit may
comprise components evaluated through Yao’s Garbled Cir-
cuits [20] and components evaluated via the SP-LUT [21]
protocol, the compiler must insert gates to facilitate the neces-
sary conversion between the two protocols. In particular, the
inputs and outputs to public LUT gates are secret shared [30],
whereas all other gate types operate on wire labels in Yao’s
garbled circuits protocol [20].

After all modules are merged, the tool performs a pass
specific to the insertion of conversion gates. An integral part of
this pass is the assignment of types to wires, i.e., every wire is
either a Yao wire or an SP-LUT wire depending on whether the
origin of this wire is a Yao gate (AND, XOR, INV, and UCs)
or SP-LUT gate (LUTs). For every Yao gate, the compiler
checks whether all input wires are Yao wires. Similarly, inputs
to SP-LUT gates need to be SP-LUT wires. When this is not

Algorithm 1 Circuit merge algorithm

1: nextWire ← 0
2: stack ← {(main, 0, ∅, 0)} // Begin with the main module,

an empty translations set, and an offset of 0
3: while stack ̸= ∅ do
4: (module, offset , translations, index)← Pop(stack)
5: if index = 0 then
6: nextWire ← nextWire + MaxWire(module)
7: end if
8: for i = index , . . . ,module.cells.length do
9: cell = module.cells[i]

10: if cell is a primitive gate then
11: add cell to the circuit, respecting offset and

translations
12: else if cell is a UC then
13: add all UC gates to the circuit, respecting offset

and translations
14: else
15: set up submodule translations subTranslations
16: stack ← Push(stack , (module, offset , translations, i+

1))
17: stack ← Push(stack , (cell ,nextWire, subTranslations, 0))
18: break
19: end if
20: end for
21: end while

the case, additional conversion gates are added. This ensures
that no unnecessary conversion gates are added.

F. SPFE Circuit Description Format

The output of our tool is an SPFE circuit description file
with a .spfe extension. We intentionally designed the SPFE
circuit format to be a superset of the UC circuit format of [18]
to simplify parsing. Another consequence of this design is that
every UC circuit is also a valid SPFE circuit, thus the same
program used for evaluating SPFE functions can be reused for
evaluating PFE functions. In addition to the circuit descrip-
tion file, a separate programming bit file with the extension
.spfe.prog is generated, which includes the programming
bits for the UC. We show an example SPFE circuit file in §A.

G. Evaluation of SPFE Circuits in ABY

ABY [19] is a framework for mixed-protocol two-party
Secure Function Evaluation (SFE). It also implements the eval-
uation of Universal Circuits (UCs), thus enabling PFE [26],
[27], [18]. We extended ABY to support SPFE circuits for UCs
with multi-input gates. For this, we implemented a parser for
SPFE circuit description files that builds internal ABY circuits
from these descriptions. In particular, using multi-input gates
in UCs required additional support in ABY.

The circuits generated by our FLUENT tool are not
restricted to secure evaluation with ABY. As the circuit
format is simple to parse, it can be easily integrated into other
SFE frameworks such as MP-SPDZ [54], EZPC [55], and
MOTION [56]. We can apply Shannon’s decomposition [57]

8

to reduce a k-input LUT to a tree of 2k − 1 multiplexers
in case the underlying SFE protocol does not natively
support the evaluation of LUTs such as Yao’s garbled circuit
protocol [20]. The subsequent evaluation of multiplexers can
be implemented using only AND and XOR gates as required
by the underlying protocol [31]. The reduction works by
creating a complete binary tree with k+1 layers with the nodes
in the last layer representing the programming bit inputs. All
other nodes are multiplexers that allow the selection of the
correct programming bit for a specific input when combined.

In addition, we added support for hybrid Yao’s garbled
circuits [20] and SP-LUT [21] to the ABY framework [19].
Our SPFE compiler inserts the necessary conversion gates
based on the SPFE circuit description file. As noted in [21],
their LUT protocols can be freely combined with the GMW
protocol [30] as both use XOR-based secret sharing. There-
fore, the conversion routine between wire labels in Yao’s GC
scheme and wire shares in the SP-LUT protocol is identical to
the conversions B2Y and Y2B between Yao’s GC (Y) and the
GMW protocol (B) [30], implemented already in ABY [19].

H. Toolchain
While our tool mainly consists of the spfe application,

we provide additional tools for assistance in developing and
testing semi-private functions.
spfe. The spfe application is the main interface to our tool.
It converts a C/C++ or Verilog file passed on the command
line to an SPFE circuit. The compilation process described
in the preceding sections can be controlled with the -l, -L,
and -c flags. Furthermore, debugging assistance is provided
with the -k and -v flags. A complete reference on all flags
and their default values is provided in ??.
UC. The UC executable is the UC compiler used in our
pipeline. It is a modified version of the UC compiler im-
plemented by [18]. The modifications made include improve-
ments to the Bench [47] file parsing subroutine and a fix to
ensure the order of output wires is preserved throughout the
compilation.
convert. The convert tool performs direct circuit rewriting
between different circuit formats. The supported input formats
are Bristol [58] and SPFE (cf. §III-F), while Verilog and SPFE
are supported as outputs. As circuits are translated without any
modifications, the input circuit’s wire numbers and gate types
are preserved.
eval. By utilizing the eval tool, users can locally test their
generated SPFE circuits using various input values (e.g., for
debugging purposes). The eval tool operates by taking an
SPFE circuit and input bits, and then printing the output in
binary form. Compared to running an SFE protocol, circuit
evaluation in clear text via eval is substantially faster and
requires less memory. This tool is primarily employed for
integration testing within our FLUENT tool.

IV. EVALUATION

In this section, we describe our benchmarks of FLUENT.
Setup. We performed all benchmarks on two servers with
Intel i9-7900X CPUs and 128 GB RAM2 running Linux 6.0.

2For our benchmarks, less than 2 GB RAM would be sufficient.

Circuit Public Private Overhead (×)

i32add 102 6 138 60.2
i32cmp 150 4 850 32.3
i32mul 1 948 133 354 68.5
i64add 235 14 853 63.2
i64cmp 322 11 134 34.6
i64mul 8 106 688 213 84.9
f32add 2 196 127 301 58.0
f32cmp 311 15 969 51.3
f32mul 2 791 190 774 68.4
sha1 29 633 4 016 545 135.5
sha256 62 172 8 046 181 129.4

TABLE I: Circuit sizes (number of AND gates) of various
circuits implementing arithmetic and cryptographic operations
in SFE (operations implemented as public modules) and PFE
(operations implemented as private modules). The private
circuit size is the number of AND gates of the smallest UC
that implements the circuit. Overhead is the factor by which
the private circuit is larger than the public circuit, i.e., the cost
of hiding this circuit in the semi-private function.

Our modified version of the ABY framework [19] was used
to measure the runtime and communication of evaluating the
generated SPFE circuits. We used Yosys version 0.22 [24] in
our compiler pipeline. The execution runtime results provided
an average of over 10 executions.

A. SPFE Building Blocks

In the area of PFE, it is a well-known practice to benchmark
arithmetic integer and floating points operations [59], [26],
[27], [29], [18]. These circuits are frequently used as building
blocks in many functions and, therefore, build the core of our
benchmarks. Concretely, we benchmark each building block
in both visibility classes, namely as public (SFE) and private
(PFE) modules, and derive the additional cost to hide the build-
ing block in the function. In Tab. I, we provide the number
of AND gates contained in different circuits when compiled
as a public or private module. These circuits are addition,
comparison, and multiplication operations for 32-bit and 64-
bit unsigned integers and 32-bit IEEE floating-point numbers.

When looking at the largest circuit in Tab. I, sha256, we
see that the number of AND gates of the private module
is ∼ 129× larger than the equivalent public module. Even
the 32-bit integer addition as our smallest benchmark circuit
has an overhead of factor ∼ 60× when it is declared as
private. Therefore, we can conclude that any effort spent
on splitting the function into private and public modules,
whenever possible, is always worthwhile as it will result in
better evaluation performance.

B. Application: Car Insurance Tariff Calculation

To evaluate the practicality of our FLUENT tool, we
benchmark the semi-private function example provided by [11]
in our tool. This specific function represents a simple car
insurance price calculation algorithm used for demonstration.

Car insurance tariff calculations are one of many impor-
tant applications for SPFE as the insurance rate depends on
sensitive private data such as accident history and car usage
patterns. At the same time, it is in the interest of insurance

9

Method kpub kpriv Circuit size LAN Runtime [ms] WAN Runtime [ms] Communication [MB]
Setup Online Setup Online Setup Online

SFE
Y - 10 149 6.41 17.87 103.58 417.43 0.329 0.014
4 - - 3.09 112.20 93.69 4 732.93 0.008 0.030
8 - - 5.52 82.54 101.00 2 500.74 0.008 0.072

SPFE (Verilog)

Y 2 178 320 110.11 130.27 836.19 605.22 5.716 2.521
Y 3 155 455 107.28 117.90 705.00 602.45 4.989 2.043
Y 4 183 320 107.29 122.76 826.71 598.19 5.987 2.259
Y 8 557 602 250.72 216.31 1 894.69 698.48 17.863 2.646
Y 2’ 178 320 104.46 113.37 820.68 603.80 5.715 2.525
Y 3’ 176 839 104.52 119.84 829.02 583.98 5.667 2.462
Y 4’ 203 281 109.70 117.93 837.56 706.16 6.513 2.791
Y 8’ 316 087 147.69 142.25 1 222.00 696.59 10.123 3.320
4 2 - 101.59 192.20 798.06 3 286.61 5.342 2.539
4 3 - 110.13 186.57 686.16 3 296.17 4.606 2.061
4 4 - 111.53 190.76 822.02 3 275.43 5.613 2.277
4 8 - 263.23 301.21 1 885.41 3 379.97 17.488 2.664
8 2 - 115.22 173.87 785.14 1 933.31 5.342 2.604
8 3 - 102.13 162.23 726.69 1 923.78 4.614 2.126
8 4 - 105.17 171.54 834.02 1 900.63 5.613 2.343
8 8 - 247.32 271.26 1 865.02 2 022.54 17.488 2.730

SPFE (C)

Y 2 308 922 140.11 167.12 1 215.30 758.84 9.894 4.204
Y 3 251 180 124.83 142.55 999.02 706.25 8.046 3.117
Y 4 280 197 131.85 135.37 1 078.68 718.35 8.975 3.211
Y 8 809 386 340.90 295.86 2 561.35 878.21 25.909 3.805

SPFE [11] - - 358 170 185.60 207.18 1 326.06 888.04 11.470 5.129
improvement - - 2.01× 1.69× 1.59× 1.59× 1.47× 2.01× 2.03×

PFE

- 2 2 104 906 1 064.35 1 028.29 6 238.17 3 949.57 67.365 32.174
- 3 1 694 241 891.66 908.10 5 097.26 3 148.36 54.224 24.732
- 4 1 931 321 996.46 941.93 5 715.77 3 351.10 61.802 26.300
- 8 4 105 627 1 889.46 1 502.48 11 833.01 3 642.35 131.389 24.296

TABLE II: Circuit sizes, runtime, and communication for private car insurance application. kpub denotes the maximum input
size of public LUT gates or Y when public modules are evaluated using Yao’s Garbled Circuits [20] protocol. Similarly, kpriv
is the maximum number of inputs of private LUT gates. ’ in the kpriv column denotes usage of the VUC construction instead
of LUC [18].

companies to hide the exact price calculation algorithm as they
might otherwise lose a competitive advantage. However, many
aspects of the insurance rate calculation are public knowledge
and do not need to be hidden. For example, car insurance is
often more expensive for people under a certain age. SPFE is
an ideal protocol for evaluating this function.

To evaluate the example in FLUENT, minor changes to the
original C source code were necessary. CBMC-GC [60], a
compiler from ANSI C code into Boolean circuits initially
built for SFE, was used in the SPFE framework of [11].
It allows the return of multiple values from a function by
assigning them to variables with special names. As this feature
is not compliant with the C standard, functions returning
multiple values must be modified to return a struct containing
these values. In addition to the car insurance calculator in
C, we ported the complete code to Verilog for additional
comparison. The car insurance calculator accepts 35 different
input parameters of varying types and contains 15 modules
(excluding main), 6 of which are private. Additionally, mod-
ules for fixed point arithmetic (multiplication, division, and
exponentiation with an integer exponent) are included.

In the following benchmarks, we mostly investigate the
LUC construction [18] (cf. §II) as this choice achieved the
overall best performance while hiding the exact number of
inputs for each gate in private modules. We also provide
measurements for the VUC construction [18], which
generates larger circuits for all numbers of LUT inputs of
private modules kpriv tested, except for 8 LUT inputs.

To examine the performance gap between full PFE and
SPFE, we compare the original circuit to a modified version
where the entire module hierarchy is private. We also compile

public modules with kpub ∈ {4, 8} input LUTs or kpub =
Y for half-gates Yao [23], and private modules with kpriv ∈
{2, 3, 4, 8} input LUTs. To analyze the performance impact of
SPFE, we measure runtime and communication and compare
them with the recent SPFE framework of [11] in Tab. II.

We notice dramatic performance improvements in runtime
over PFE across the board when using SPFE. For kpub = Y
and kpriv = 3, the number of AND gates in the PFE circuit
is 1,694,241, while the SPFE circuit contains 155,455 AND
gates, which is an improvement of ∼ 10.8×. The evaluation
runtime and communication amount, which are proportional
to the number of AND gates, tell a similar story. For LAN,
the online runtime is reduced from 908 ms to 118 ms (∼ 7.7×
improvement). For WAN, the online runtime is improved from
3,148 ms to 602 ms (∼ 5.2× improvement).

The communication in the setup phase has an even better
improvement of ∼ 10.9× (54.224 MB for PFE, 5.0 MB
for SPFE), which is closely tied to the reduction in circuit
size. Evaluating the function using a mixed-protocol approach
results in slightly improved setup communication (∼ 5.0 MB
for kpub = Y, ∼ 4.6 MB for kpub = 4). However, due to
the SP-LUT [21] protocol requiring a non-constant number of
communication rounds, Yao outperforms the mixed-protocol
approach in online runtime.

In addition, we observe that a LUT size of kpriv = 3 achieves
the best overall results. For kpriv > 4, the gates added by
the UC compiler to hide the circuit topology outweigh the
efficiency gains resulting from the use of multi-input gates,
which matches the observations made by [18].
Comparison to [11]. A final observation is that we can
also compile more efficient circuits than the CBMC-GC-based
SPFE framework [11]. Using our Verilog port of the function

10

with kpriv = 3 and kpub = Y, we deliver a ∼ 2× circuit
size improvement, which translates to a ∼ 1.59× reduction
in online runtime. The adapted version of the original C code
yields a size improvement of ∼ 29.8% and an online runtime
improvement of ∼ 31.2%. These improvements stem from Liu
et al.’s UC construction [29], which provides smaller circuits
than Valiant’s construction [8] used by [11], but also from the
usage of multi-input LUTs.

V. RELATED WORK

A. Private Function Evaluation (PFE)

In this section, we summarize PFE approaches beyond these
based on the evaluation of a Universal Circuit (UC) with an
SFE protocol that we already summarized in §II.

A natural way to solve PFE is Fully Homomorphic Encryp-
tion (FHE) [61], [62], where a party encrypts their private
input x using their public key pk such that x̂ = Epk(x),
gives x̂ to the other party who then computes ŷ = Epk(f(x̂)),
which the first party can decrypt with their private key sk
to y = Dsk(ŷ). In contrast to other PFE approaches, the
efficiency of FHE does not directly depend on the size of the
computed function f , but on the size of the inputs and out-
puts [63]. However, the communication complexity is blown
up to a polynomial degree in the length of the ciphertexts (the
security parameter λ). Further, circuits are in general deep
and hence require expensive bootstrapping to achieve circuit
privacy [64], [65], [66].

Katz and Malka [67] proposed an approach for two-
party PFE that is based on additively Homomorphic
Encryption (HE) and has linear complexity in the size of the
function. Their scheme was optimized and implemented by
[68] showing that it improves over UC-based PFE already for
circuits with a few thousand gates. However, HE-based PFE is
not a very flexible solution as it cannot directly be combined
with SFE frameworks and SFE-specific optimizations such as
secure outsourcing [69] are not supported.

B. Semi-Private Function Evaluation (SPFE)

The work most relevant to our work is FairplaySPF [10].
FairplaySPF [10] extends the Fairplay SFE framework [70]
to evaluate semi-private functions. It offers flexible control
over function hiding, from SFE (no hiding) to PFE (complete
hiding). They use privately programmable blocks (PBBs)
within a public circuit topology. PBBs emulate functions from
a set F based on hidden programming bits.

Users compose semi-private functions in the custom Secure
Programmable Block Description Language (SPBDL). While
its syntax is straightforward, it poses a steep learning curve
for semi-private function programming. Unlike the clear pa-
rameters and return values in C/C++ functions that represent
module connections in our tool, SPBDL relies on wire num-
bers, making it less intuitive.

A further drawback of the SPBDL format is its lack of
modularity: If a user programs foo.spbdl and wants to
reuse its functionality in a larger SPFE project, direct module
referencing is not supported. This requires manual copying
of SPBDL code into the larger function, which requires the

user to recalculate wire numbers — a cumbersome process.
In contrast, our tool allows to reuse foo throughout the code
via simple function calls.

Furthermore, although UCs can be included as private
modules, they must be external files and cannot reside in
the SPBDL file itself. This makes it difficult to change
the visibility of a certain subcomponent quickly. In our
FLUENT tool, this only requires adding or removing the
spfe_private pragma of the function in question. Fair-
playSPF [10] also presents an optimization to their construc-
tion, which reduces gate sizes for specific PBBs when parts
of their input are known at circuit compile time. A similar
optimization named opt_expr is included in the Yosys [24]
synthesis suite. This optimization pass is included in our Yosys
workflows (cf. §III-D).

Another SPFE framework uses the CBMC-GC com-
piler [60] for SFE, which translates ANSI C code into Boolean
circuits. Public and private components are implemented in
separate source files, and the overall circuit is assembled
using a Merger tool. Like FairplaySPF [10], this tool requires
the function designer to manually assign wire numbers to the
input and output interfaces of the individual ANSI C files and
keep track of them during the circuit design. This method is
cumbersome and requires revising the entire circuit description
provided to the merger tool if the interfaces of a single ANSI C
file are changed or the visibility (public or private) changes.
Consequently, using this framework is inconvenient.

In comparison to these two mentioned works, we provide
the first SPFE framework that is both usable and allows the
efficient evaluation of LUTs, thus improving the efficiency of
SPFE.

C. Secure Function Evaluation (SFE)
SFE frameworks have seen significant research activity,

particularly over the past decade. They have proven effi-
cient in addressing privacy concerns across various real-
world applications, including financial services [71], feder-
ated learning [72], [73], [74], [75], [76], [77], and privacy-
preserving machine learning [78], [79], [80], [81], [82].
Compilers that translate high-level code into binary circuits
offer an abstraction layer for SFE in the binary domain.
Notable works in this area include Fairplay [70], Fair-
playMP [83], TASTY [84],VMCrypt [85], FastGC [86], Bil-
lion Gate malicious Yao [87], CBMC-GC [88], PCF [89],
Obli-VM [90], HyCC [91], LLVM-MPC [92], SynCirc [93],
and HyCaMi [94]. An in-depth overview and classification of
SFE frameworks, including their specific details, can be found
in [95]. The circuits generated by FLUENT are not restricted
to evaluation in ABY [19]; they can be seamlessly integrated
in various other SFE frameworks [96], [97], [90], [54], [56],
[55], [98]. Another approach involves using existing hardware
synthesis tools that take hardware description language (HDL)
code, such as Verilog, as input. Examples include TinyGar-
ble [99], TinyGMW [100], and Syncirc [93]. As showcased
in [21] and FLUTE [36], this approach can be extended to
LUT by re-purposing LUT-based synthesis tools. We currently
benchmark FLUENT with the LUT protocols of [21]. Using
those of FLUTE [36] would improve performance even further.

11

In this rich landscape of SFE frameworks, Garbled-
CPU [101] is as an alternative method for hiding executed
functions. In GarbledCPU, a CPU core circuit is garbled
and executed with private inputs corresponding to the CPU
core’s instructions, often implementing established instruction
sets such as MIPS [101], [102], [12] and ARM [103], [12].
Subsequently, the binary representation of the secure function
is loaded onto the circuit, allowing users to program in a
language of their choice. However, GarbledCPU cannot be
directly compared with FLUENT because they use a different
notion of SPFE. In FLUENT, we separate circuits into public
and private components, hiding only the private sub-circuits.
In contrast, achieving such a clear separation is not feasible in
GarbledCPU. Here, the term “semi-private” refers to certain
instructions being removed from the instruction set. However,
excluding operations like multiplications from an instruction
set containing addition and shift instructions does not inher-
ently reveal details about executed functions. Multiplication
operations can be restructured using additions and shifts. In
contrast, FLUENT does not simulate a CPU core, but it
provides precise control over the privacy of distinct function
components, offering a level of granularity unattainable in
GarbledCPU. This flexibility suggests the potential for integra-
tion into a CPU-based SPFE framework by migrating public
function components to custom instructions within established
instruction sets, like RISC-V. To our knowledge, no such
framework currently exists. Consequently, a direct one-to-one
comparison lacks meaningful context.

Moreover, GarbledCPU relies on an MPC backend that
supports sequential circuits, a feature shared with frameworks
like TinyGarble [99], [104] and FPGA-based circuit evaluators
used in both GarbledCPU [102] and Garbled EDA [12].
However, the majority of MPC frameworks primarily sup-
port only combinational circuits, including ABY [19], ABY
2.0 [34], MP-SPDZ [54], and MOTION [56]. FLUENT is fully
compatible with these frameworks.

VI. CONCLUSION

In this paper, we provide a tool for programming semi-
private functions in the C/C++ programming language. With
pragmas, programmers can easily control a component’s visi-
bility as public (SFE) or private (PFE). With that, we improve
the usability over earlier frameworks by seamlessly combining
the structural description of the function with the functionality
of the components in a single source file. Furthermore, we
demonstrate through benchmarking that the use of SPFE
results in significant performance improvements over PFE.
In future work, we will engineer a new compiler/toolchain
that generates LUT circuits that are fine-tuned for LUT-based
protocols, as the ones utilized in this work were generated
using standard hardware development tools instead of custom
solutions. It would also be interesting to investigate the benefits
of a hybrid approach that combines LUTs and standard arith-
metic gates, which can locally compute additions and compute
multiplications interactively, for SFE. In terms of applications,
it would be intriguing to investigate the impact of leveraging
our FLUENT tool with recent works on privacy-preserving
machine learning, federated learning, and logic locking.

Acknowledgements. This project received funding from the
ERC under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 850990 PSOTI).
It was co-funded by the DFG within SFB 1119 CROSS-
ING/236615297 and GRK 2050 Privacy & Trust/251805230.

REFERENCES

[1] D. Günther, J. Schmidt, T. Schneider, and H. Yalame, “FLUENT: A
Tool for Efficient Mixed-Protocol Semi-Private Function Evaluation,”
in ACSAC, 2024.

[2] J. Pecholt and S. Wessel, “Cocotpm: Trusted platform modules for
virtual machines in confidential computing environments,” in ACSAC,
2022.

[3] K. Shamsi, D. Z. Pan, and Y. Jin, “On the impossibility of
approximation-resilient circuit locking,” in HOST, 2019.

[4] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending piracy of integrated
circuits,” Computer, 2010.

[5] E. Masserova, D. Garg, K. Mai, L. Pileggi, V. Goyal, and B. Parno,
“Logic Locking-Connecting Theory and Practice,” 2022.

[6] P. Beerel, M. Georgiou, B. Hamlin, A. J. Malozemoff, and P. Nuzzo,
“Towards a Formal Treatment of Logic Locking,” TCHES, 2022.

[7] V. Kolesnikov and T. Schneider, “A Practical Universal Circuit Con-
struction and Secure Evaluation of Private Functions,” in FC, 2008.

[8] L. G. Valiant, “Universal circuits (Preliminary Report),” in STOC, 1976.
[9] I. Wegener, “The Complexity of Boolean Functions,” in Complexity

Theory: Exploring the Limits of Efficient Algorithms, 2005.
[10] A. Paus, A.-R. Sadeghi, and T. Schneider, “Practical Secure Evaluation

of Semi-private Functions,” in ACNS, 2009.
[11] D. Günther, Á. Kiss, L. Scheidel, and T. Schneider, “Poster: Frame-

work for Semi-Private Function Evaluation with Application to Secure
Insurance Rate Calculation,” in CCS, 2019.

[12] M. Hashemi, S. Roy, F. Ganji, and D. Forte, “Garbled EDA: Privacy
Preserving Electronic Design Automation,” in ICCAD, 2022.

[13] K. Frikken, M. Atallah, and C. Zhang, “Privacy-Preserving Credit
Checking,” in Electronic Commerce (EC), 2005.

[14] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and
T. Schneider, “Secure Evaluation of Private Linear Branching Programs
with Medical Applications,” in ESORICS, 2009.

[15] R. Ostrovsky and W. E. Skeith, “Private Searching on Streaming Data,”
in JoC, 2007.

[16] M. Hashemi, S. Roy, D. Forte, and F. Ganji, “HWGN2: Side-Channel
Protected NNs Through Secure and Private Function Evaluation,” in
Security, Privacy, and Applied Cryptography Engineering (SPACE),
2022.

[17] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel, “Privacy-
Preserving Remote Diagnostics,” in CCS, 2007.

[18] Y. Disser, D. Günther, T. Schneider, M. Stillger, A. Wigandt, and
H. Yalame, “Breaking the Size Barrier: Universal Circuits meet Lookup
Tables,” in ASIACRYPT, 2023.

[19] D. Demmler, T. Schneider, and M. Zohner, “ABY–A Framework for
Efficient Mixed-Protocol Secure Two-Party Computation,” in NDSS,
2015.

[20] A. C. Yao, “How to Generate and Exchange Secrets,” in FOCS, 1986.
[21] G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, S. Zeitouni,

and M. Zohner, “Pushing the Communication Barrier in Secure Com-
putation using Lookup Tables,” in NDSS, 2017.

[22] “XLS: Accelerated HW Synthesis,” https://google.github.io/xls, 2020.
[23] S. Zahur, M. Rosulek, and D. Evans, “Two Halves make a Whole:

Reducing Data Transfer in Garbled Circuits using Half Gates,” in
EUROCRYPT, 2015.

[24] C. Wolf, “Yosys Open SYnthesis Suite,” https://yosyshq.net/yosys/,
2016.

[25] A. Sadeghi and T. Schneider, “Generalized Universal Circuits for
Secure Evaluation of Private Functions with Application to Data
Classification,” in ICISC. Springer, 2008.

[26] D. Günther, Á. Kiss, and T. Schneider, “More Efficient Universal
Circuit Constructions,” in ASIACRYPT, 2017.

[27] M. Y. Alhassan, D. Günther, Á. Kiss, and T. Schneider, “Efficient and
Scalable Universal Circuits,” JoC, 2020.

[28] S. Zhao, Y. Yu, J. Zhang, and H. Liu, “Valiant’s Universal Circuits Re-
visited: An Overall Improvement and a Lower Bound,” in ASIACRYPT,
2019.

https://google.github.io/xls
https://yosyshq.net/yosys/

12

[29] H. Liu, Y. Yu, S. Zhao, J. Zhang, W. Liu, and Z. Hu, “Pushing
the Limits of Valiant’s Universal Circuits: Simpler, Tighter and More
Compact,” in CRYPTO, 2021.

[30] O. Goldreich, S. Micali, and A. Wigderson, “How to Play Any Mental
Game or a Completeness Theorem for Protocols with Honest Majority,”
in STOC, 1987.

[31] V. Kolesnikov and T. Schneider, “Improved Garbled Circuit: Free XOR
Gates and Applications,” in ICALP, 2008.

[32] T. Schneider and M. Zohner, “GMW vs. Yao? Efficient Secure Two-
Party Computation with Low Depth Circuits,” in FC, 2013.

[33] H. Yalame, H. Farzam, and S. Bayat-Sarmadi, “Secure Two-Party
Computation Using an Efficient Garbled Circuit by Reducing Data
Transfer,” in Applications and Techniques in Information Security,
2017.

[34] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: Improved
Mixed-Protocol Secure Two-Party Computation,” in USENIX Security,
2021.

[35] A. Brüggemann, O. Schick, T. Schneider, A. Suresh, and H. Yalame,
“Don’t Eject the Impostor: Fast Three-Party Computation With a
Known Cheater,” in IEEE S&P, 2024.

[36] A. Brüggemann, R. Hundt, T. Schneider, A. Suresh, and H. Yalame,
“FLUTE: fast and secure lookup table evaluations,” in IEEE S&P,
2023.

[37] C. Harth-Kitzerow, A. Suresh, Y. Wang, H. Yalame, G. Carle, and
M. Annavaram, “High-Throughput Secure Multiparty Computation
with an Honest Majority in Various Network Settings,” in PETS, 2025.

[38] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in STOC, 1990.

[39] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
Garbling from a Fixed-Key Blockcipher,” in IEEE S&P, 2013.

[40] M. Rosulek and L. Roy, “Three Halves Make a Whole? Beating the
Half Gates Lower Bound for Garbled Circuits,” in CRYPTO, 2021.

[41] Intel Corporation, “Intel® High Level Synthesis Compiler,”
https://www.intel.com/content/www/us/en/software/programmable/
quartus-prime/hls-compiler.html, 2018.

[42] Microchip Technology Inc., “SmartHLS Compiler,”
https://www.microchip.com/en-us/products/fpgas-and-plds/
fpga-and-soc-design-tools/smarthls-compiler, 2021.

[43] “Advanced Micro Devices, Xilinx Vivado,” https://www.xilinx.com/
products/design-tools/vivado.html, 2022.

[44] Berkeley Logic Synthesis and Verification Group, “ABC: A System
for Sequential Synthesis and Verification,” https://people.eecs.berkeley.
edu/∼alanmi/abc/, 2013.

[45] Cho, Sungmin and Chatterjee, Satrajit and Mishchenko, Alan and
Brayton, Robert, “Efficient FPGA Mapping using Priority Cuts,” in
Proc. FPGA, 2007.

[46] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange
Format,” Tech. Rep. RFC 8259, 2017.

[47] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles
of Sequential Benchmark Circuits,” in International Symposium on
Circuits and Systems (ISCAS), 1989.

[48] I. Page, “Closing the Gap between Hardware and Software: Hardware-
Software Cosynthesis at Oxford,” in IEE Colloquium on Hardware-
Software Cosynthesis for Reconfigurable Systems, 1996.

[49] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Symposium on Code
Generation and Optimization (CGO), 2004.

[50] “IEEE Standard for SystemVerilog: Unified Hardware Design, Speci-
fication and Verification Language,” in IEEE Standard, 2005.

[51] Zig Software Foundation, “Zig Programming Language,” https://
ziglang.org, 2016.

[52] The OpenSSL Project, “OpenSSL: The open source toolkit for SS-
L/TLS,” 2003, www.openssl.org.

[53] A. Mishchenko, “Berkeley Logic Interchange Format (BLIF),” Tech.
Rep., 1992.

[54] M. Keller, “MP-SPDZ: A Versatile Framework for Multi-Party Com-
putation,” in CCS, 2020.

[55] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi,
“EzPC: Programmable and Efficient Secure Two-Party Computation
for Machine Learning,” in EuroS&P, 2019.

[56] L. Braun, D. Demmler, T. Schneider, and O. Tkachenko, “MOTION
- A Framework for Mixed-Protocol Multi-Party Computation,” TOPS,
2022.

[57] G. Boole, “An Investigation of the Laws of Thought: On which
are Founded the Mathematical Theories of Logic and Probabilities.”
Walton and Maberly, 1854.

[58] S. Tillich and N. Smart, “(Bristol Format) Circuits of Basic Functions
Suitable For MPC and FHE,” https://homes.esat.kuleuven.be/∼nsmart/
MPC/old-circuits.html, 2011.

[59] Á. Kiss and T. Schneider, “Valiant’s Universal Circuit is Practical,” in
EUROCRYPT, 2016.

[60] M. Franz, A. Holzer, S. Katzenbeisser, C. Schallhart, and H. Veith,
“CBMC-GC: An ANSI C Compiler for Secure Two-Party Computa-
tions,” in Compiler Construction (CC), 2014.

[61] C. Gentry, “Fully Homomorphic Encryption using Ideal Lattices,” in
STOC, 2009.

[62] S. Halevi and V. Shoup, “Faster Homomorphic Linear Transformations
in HElib,” in CRYPTO, 2018.

[63] Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta, “Leveraging
Linear Decryption: Rate-1 Fully-Homomorphic Encryption and Time-
Lock Puzzles,” in TCC, 2019.

[64] C. Gentry and S. Halevi, “Compressible FHE with Applications to
PIR,” in TCC, 2019.

[65] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster
Packed Homomorphic Operations and Efficient Circuit Bootstrapping
for TFHE,” in ASIACRYPT, 2017.

[66] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x Faster
Bootstrapping in Fully Homomorphic Encryption through Memory-
centric Optimization with GPUs,” in TCHES, 2021.

[67] J. Katz and L. Malka, “Constant-Round Private Function Evaluation
with Linear Complexity,” in ASIACRYPT, 2011.

[68] M. Holz, Á. Kiss, D. Rathee, and T. Schneider, “Linear-Complexity
Private Function Evaluation is Practical,” in ESORICS, 2020.

[69] S. Kamara and M. Raykova, “Secure Outsourced Computation in a
Multi-tenant Cloud,” in IBM Workshop on Cryptography and Security
in Clouds, 2011.

[70] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella et al., “Fairplay-Secure Two-
Party Computation System.” in USENIX Security, 2004.

[71] S. Atapoor, N. P. Smart, and Y. T. Alaoui, “Private Liquidity Matching
using MPC,” in CT-RSA, 2022.

[72] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Möllering,
T. D. Nguyen, P. Rieger, A.-R. Sadeghi, T. Schneider, H. Yalame et al.,
“SAFELearn: Secure Aggregation for Private Federated Learning,” in
DLS@IEEE S&P, 2021.

[73] T. D. Nguyen, P. Rieger, R. De Viti, H. Chen, B. B. Brandenburg,
H. Yalame, H. Möllering, H. Fereidooni, S. Marchal, M. Miettinen
et al., “FLAME: Taming Backdoors in Federated Learning,” in USENIX
Security, 2022.

[74] F. Marx, T. Schneider, A. Suresh, T. Wehrle, C. Weinert, and
H. Yalame, “WW-FL: Secure and Private Large-Scale Federated Learn-
ing,” https://arxiv.org/abs/2302.09904, 2023.

[75] T. Gehlhar, F. Marx, T. Schneider, A. Suresh, T. Wehrle, and H. Yalame,
“SafeFL: MPC-Friendly Framework for Private and Robust Federated
Learning,” in DLS@IEEE S&P, 2023.

[76] M. Rathee, C. Shen, S. Wagh, and R. A. Popa, “ELSA: Secure
Aggregation for Federated Learning with Malicious Actors,” in IEEE
S&P, 2023.

[77] Y. Ben-Itzhak, H. Möllering, B. Pinkas, T. Schneider, A. Suresh,
O. Tkachenko, S. Vargaftik, C. Weinert, H. Yalame, and A. Yanai,
“Scionfl: Efficient and Robust Secure Quantized Aggregation,” in IEEE
SaTML, 2024.

[78] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow2: Practical 2-Party Secure Inference,” in
CCS, 2020.

[79] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“Mp2ml: A mixed-protocol machine learning framework for private
inference,” in ARES, 2020.

[80] H. Keller, H. Möllering, T. Schneider, and H. Yalame, “Balancing
Auality and Efficiency in Private Clustering with Affinity Propagation,”
in SECRYPT, 2021.

[81] A. Hegde, H. Möllering, T. Schneider, and H. Yalame, “SoK: Efficient
Privacy-Preserving Clustering,” in PETS, 2021.

[82] V. Duddu, A. Das, N. Khayata, H. Yalame, T. Schneider, and
N. Asokan, “Attesting Distributional Properties of Training Data for
Machine Learning,” in ESORICS, 2024.

[83] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP: A System for
Secure Multi-Party Computation,” in CCS, 2008.

[84] W. Henecka, S. Kögl, A. R. Sadeghi, T. Schneider, and I. Wehrenberg,
“TASTY: Tool for Automating Secure Two-PartY Computations,” in
CCS, 2010.

[85] L. Malka, “VMCrypt: Modular Software Architecture for Scalable
Secure Computation,” in CCS, 2011.

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/smarthls-compiler
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/smarthls-compiler
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/
https://ziglang.org
https://ziglang.org
www.openssl.org
https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html

13

[86] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster Secure Two-Party
Computation Using Garbled Circuits.” in USENIX Security, 2011.

[87] B. Kreuter, A. Shelat, and C.-H. Shen, “Billion-Gate Secure Compu-
tation with Malicious Adversaries,” in USENIX Security, 2012.

[88] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith, “Secure two-party
computations in ANSI C,” in CCS, 2012.

[89] B. Kreuter, A. Shelat, B. Mood, and K. R. B. Butler, “PCF: A
Portable Circuit Format for Scalable Two-Party Secure Computation,”
in USENIX, 2013.

[90] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM:
A Programming Framework for Secure Computation,” in IEEE S&P,
2015.

[91] N. Büscher, D. Demmler, S. Katzenbeisser, D. Kretzmer, and T. Schnei-
der, “HyCC: Compilation of Hybrid Protocols for Practical Secure
Computation,” in CCS, 2018.

[92] T. Heldmann, T. Schneider, O. Tkachenko, C. Weinert, and H. Yalame,
“LLVM-Based Circuit Compilation for Practical Secure Computation,”
in ACNS, 2021.

[93] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “SynCirc: Efficient
Synthesis of Depth-Optimized Circuits for Secure Computation,” in
IEEE HOST, 2021.

[94] H. Mantel, J. Schmidt, T. Schneider, M. Stillger, T. Weißmantel, and
H. Yalame, “HyCaMi: High-Level Synthesis for Cache Side-Channel
Mitigation,” in DAC, 2024.

[95] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “SoK:
General Purpose Compilers for Secure Multi-Party Computation,” in
IEEE S&P, 2019.

[96] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient
MultiParty computation toolkit,” https://github.com/emp-toolkit, 2016.

[97] S. Zahur and D. Evans, “Obliv-C: A Language for Extensible Data-
Oblivious Computation,” 2015.

[98] J.-P. Münch, T. Schneider, and H. Yalame, “VASA: Vector AES
Instructions for Security Applications,” in ACSAC, 2021.

[99] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar, “TinyGarble: Highly Compressed and Scalable Sequen-
tial Garbled Circuits,” in IEEE S&P, 2015.

[100] D. Demmler, G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider,
and S. Zeitouni, “Automated Synthesis of Optimized Circuits for
Secure Computation,” in CCS, 2015.

[101] X. Wang, S. D. Gordon, A. McIntosh, and J. Katz, “Secure Computa-
tion of MIPS Machine Code,” in ESORICS, 2016.

[102] E. M. Songhori, S. Zeitouni, G. Dessouky, T. Schneider, A.-R. Sadeghi,
and F. Koushanfar, “GarbledCPU: A MIPS Processor for Secure
Computation in Hardware,” in DAC, 2016.

[103] E. M. Songhori, M. S. Riazi, S. U. Hussain, A.-R. Sadeghi, and
F. Koushanfar, “ARM2GC: Succinct Garbled Processor for Secure
Computation,” in DAC, 2019.

[104] S. Hussain, B. Li, F. Koushanfar, and R. Cammarota, “TinyGarble2:
Smart, Efficient, and Scalable Yao’s Garble Circuit,” in Workshop on
Privacy-Preserving Machine Learning in Practice @ CCS, 2020.

APPENDIX

Listing 5: Example C++ HLS input code.
1 #pragma spfe_private
2 int age_premium(int age) {
3 if (age < 21) {
4 return 100;
5 } else {
6 return 0;
7 }
8 }
9 int base_price = 1000;

10

11 int main(int age) {
12 return base_price + age_premium(age);
13 }

List. 5 shows C++ code for an age-dependent price calculation
and List. 6 the converted Verilog code after using XLS [22].
This example illustrates the value of incorporating HLS into

our pipeline. The input C++ code describes a simple semi-
private function containing a private module. XLS [22] con-
verts the function call to age_premium to a module instan-
tiation of the respective Verilog module. Familiar language is
crucial for a good user experience.

Listing 6: Output Verilog generated by XLS[22].
1 (* private *)
2 module _Z11age_premiumi(
3 input wire [31:0] age,
4 output wire [31:0] out
5);
6 assign out = {32{$signed(age) < $signed

(32’h0000_0015)}} & 32’h0000_0064;
7 endmodule
8

9 module main(
10 input wire [31:0] age,
11 output wire [31:0] out
12);
13 wire [31:0] instantiation_output_83;
14 wire [28:0] add_78;
15 assign add_78 = instantiation_output_83

[31:3] + 29’h0000_007d;
16 _Z11age_premiumi invoke_75 (
17 .age(age),
18 .out(instantiation_output_83)
19);
20 assign out = {add_78,

instantiation_output_83[2:0]};
21 endmodule

We briefly show a manually crafted example of an SPFE
circuit file in List. 7 to demonstrate the syntax of our circuit
format in FLUENT. The SPFE circuit format is line-based,
i.e. each line describes inputs, outputs, or a circuit gate. Lines
are made up of fields separated by whitespace. The value of
the first field determines the object the line represents.

When the first character is C, the remaining fields represent
a list of input wire numbers. Similarly, lines starting with O
represent circuit outputs.

Lines describing gates first consist of their type, then a list
of inputs, and finally a list of outputs. Boolean gates evaluated
in Yao’s Garbled Circuits [20], [23] protocol are represented
with A (AND gates), E (XOR gates), and I (NOT gates).

When the mixed-protocol approach is enabled, the gate
types S, B, and L are used as well. An S gate converts a wire
label in Yao’s Garbled Circuit protocol [20], [23] to a Boolean
share [21]; the B gates performs the inverse operation, i.e., the
conversion from Boolean share to Yao’s Garbled Circuit. L
gates are kpub-input LUT gates. The corresponding table for
these gates is provided in the last field.

Universal circuits consist of X, Y, and U gates. All three gate
types require programming known only to the party owning
the function. An X gate has two inputs and two outputs and
forwards its inputs to its outputs either in the same order (when
programmed with 0) or swapped (when programmed with 1).
Y gates have two inputs and one output and forward either the
left input (when programmed with 1) or the right input (when
programmed with 0) to their output. U gates are kpriv-input
LUTs which are programmed with 2k programming bits.

https://github.com/emp-toolkit

14

Listing 7: Example of an SPFE circuit file
1 C 0 1 2 3
2 A 0 1 4
3 I 4 5
4 U 2 3 6
5 E 5 6 7
6 S 0 8
7 S 7 9
8 L 8 9 10 0001
9 B 10 11

10 O 11

	Introduction
	Practical Applications of SPFE
	Our Contributions
	High-level Overview of Our Tool

	Preliminaries
	Our FLUENT Tool
	FLUENT in Verilog
	FLUENT in C/C++
	Compiler Pipeline
	Yosys and UC compiler Invocations
	Merging Public and Private Modules
	SPFE Circuit Description Format
	Evaluation of SPFE Circuits in ABY
	Toolchain

	Evaluation
	SPFE Building Blocks
	Application: Car Insurance Tariff Calculation

	Related Work
	Private Function Evaluation (PFE)
	Semi-Private Function Evaluation (SPFE)
	Secure Function Evaluation (SFE)

	Conclusion
	References
	Appendix

