
Private Laconic Oblivious Transfer with Preprocessing

Rishabh Bhadauria1, Nico Döttling2, Carmit Hazay3, and Chuanwei Lin2

1 Georgetown University
rishabh.bhadauria@georgetown.edu

2 CISPA Helmholtz Center for Information Security
nico.doettling@gmail.com, chuanwei.lin@cispa.de

3 Bar-Ilan University
carmit.hazay@biu.ac.il

Abstract. Laconic cryptography studies two-message protocols that securely compute on large
amounts of data with minimal communication cost. Laconic oblivious transfer (OT) is a central
primitive where the receiver’s input is a large database DB and the sender’s inputs are two
messages m0, m1 along with an index i, such that the receiver learns the message determined
by the choice bit DBi. OT becomes even more useful for secure computation when considering its
laconic variants, which offer succinctness and round optimality. However, existing constructions
are not practically efficient because they rely on heavy cryptographic machinery and non-black-
box techniques.
In this work, we initiate the study of laconic OT correlations, where the model allows an offline
phase to generate the correlations later used in a lightweight online phase. Our correlation is
conceptually simple, captured by an inner product computation, and enables us to achieve a
private laconic OT protocol where the sender’s index i is also hidden from the receiver. Our
construction is the first private laconic OT with database-dependent preprocessing based solely
on symmetric-key assumptions, achieving sublinear online computational complexity for the
receiver. Furthermore, we enhance our construction with updatability and receiver privacy.
Finally, we demonstrate the applications of private laconic OT to laconic function evaluation
for RAM programs and laconic private set intersection with preprocessing.

1 Introduction

Secure two-party computation protocols allow two parties to jointly compute a function over their
inputs while ensuring that no more information is revealed than what can be inferred from the output
itself. A central primitive in this area is oblivious transfer (OT) [Rab81,Kil88a] where, the receiver
holds a bit b, and the sender holds two messages m0 and m1. At the end of the protocol, the receiver
learns the message mb, but nothing about m1−b. Conversely, the sender learns nothing about the
bit b. The importance of oblivious transfer stems from the fact that it is complete for secure two-
party computation [Kil88b], in the sense that any efficient two-party function F (x, y) can be securely
computed given access to a secure OT protocol.

While early results in secure two-party computation established the feasibility of this task [Yao82,
Rab81,Kil88a,GMW87], the resulting protocols were prohibitively expensive in several respects. In
particular, these protocols incurred large overheads in terms of round, communication, and compu-
tational complexity compared to the underlying insecure protocol task.

To address some of these challenges, the offline/online paradigm introduces a preprocessing phase
that generates correlated randomness and shifts the expensive computations to the offline phase,
thereby reducing the burden during the online phase. Originating from the work of Beaver [Bea92],
this setting has been extensively explored for secure multi-party computation. A substantial body of
works has been studying different types of two-party correlations [IKNP03,Bea96,BDOZ11,DPSZ12,
NNOB12,IKM+13,DKL+13,DZ13,DNNR17,HOSS18,CDE+18,BGI19,Cou19,BCG+19a,BCG+19b,
YWZ20,YWL+20,BLN+21,BCG+22,BCG+23] including multiplication triples, one-time truth-tables,
garbled circuit correlations, and OT and OLE correlations. Protocols designed under such a paradigm
offer significant efficiency gains and are conceptually simpler. Once the preprocessing is finished, the
online phase only involves lightweight computations, typically symmetric key operations or combina-
torial operations.

Orthogonally, the advent of fully homomorphic encryption (FHE) [Gen09,BV11b,BV11a,GSW13]
had introduced a new approach to secure two-party computation, enabling protocols in just two

2 Rishabh Bhadauria, Nico Döttling, Carmit Hazay, and Chuanwei Lin

messages and with asymptotically optimal communication. In addition, FHE allows the receiver to
delegate almost the entire computational burden to the sender. In particular, this allows for protocols
where the receiver has a very large input, while the communication grows with this size. This drawback
makes FHE-based approaches unsuitable for scenarios where the sender, often a resource-constrained
client, cannot handle such a computational load or communication overhead.

An emerging trend termed laconic cryptography addresses the delegation imbalance described
above. It studies two-message protocols where the receiver has a large input x, while the sender has
a small input y. The key requirement for laconism is that the communication size be independent of,
or at least sublinear in, the size of x. In this setting, the computational burden shifts to the receiver
rather than the sender, leading to what is often referred to as reverse delegation.

Just as oblivious transfer is a fundamental primitive in standard two-party computation protocols,
laconic oblivious transfer [CDG+17] plays a similarly central role in laconic cryptographic protocols.
In a laconic OT protocol, the receiver commits to a large database DB ∈ {0.1}n via a succinct hash
value. Given this hash value, the sender, whose inputs are two messages m0, m1 and an index i ∈ [n],
computes a ciphertext c from which the receiver can decrypt mDBi

. For sender security, we require
that the receiver learn nothing about m1−DBi . In terms of communication efficiency, the size of the
hash value is independent of the size of the database.

Generalizing the concept of laconic OT, laconic function evaluation (LFE), introduced by Quach
et al. [QWW18], allows any function to be inversely delegated to the receiver. In an LFE protocol,
the receiver computes a succinct hash value of a large circuit C. Given this hash value, the sender
can encrypt his input y into a ciphertext c. Using the circuit C, the receiver can decrypt c to C(y).
Regarding security, we require that the receiver learn nothing about y beyond C(y). When two parties
want to compute a function F (x, y) in this setting, the receiver will hash a circuit C[x](·) that computes
the function F (x, ·) with her input x hardwired. Regarding assumptions and communication efficiency
(or laconism), Quach et al. [QWW18] constructed an LFE scheme for circuits based on the learning
with error (LWE) assumption [Reg05], and the communication size scales with the depth of the circuit
C but not with its overall size.

Private laconic OT [DGI+19] imposes a stricter security requirement than laconic OT, where
the index i is hidden from the receiver and is useful for more advanced applications such as laconic
function evaluation for RAM [DHMW24]. In this setting, the receiver commits to a database DB
via a succinct hash value. The sender, whose input is a RAM program P of runtime T , encrypts
the program P into a ciphertext c. With the database DB in hand, the receiver can decrypt c to
PDB, i.e., the output of P when executed on DB. For communication efficiency, the size of the hash
h is independent of the size of the database DB, whereas the ciphertext c scales linearly with the
runtime T . Regarding security, the receiver must learn nothing about P beyond its output PDB and
the runtime T . Private laconic OT guarantees full security by hiding the index i from the receiver,
thereby concealing the access pattern of PDB on the database.

These works mentioned above represent early results on laconic OT and related concepts, achieving
near-optimal asymptotic communication and computational overheads. However, they rely heavily
on non-black-box use of cryptographic primitives, requiring intensive public-key operations within
garbled circuits. As a result, they are primarily considered feasibility results with limited practical
implications.

More recently, several works have made significant progress towards truly efficient laconic cryp-
tography by avoiding using garbled circuits. Döttling et al. [DKL+23] introduced a construction from
the LWE assumption, Green et al. [GJL23] proposed one from a new assumption over pairing-friendly
elliptic curves in the generic group model, and Fleischhacker et al. [FHAS24] developed a construc-
tion in the algebraic group model. However, these constructions fall short when applied to advanced
applications of laconic cryptography, such as RAM-LFE, because they still rely on non-black-box use
of the underlying laconic OT protocols. This reliance negates much of the potential efficient gains
even with the improved laconic OT, as cryptographic operations within the circuits introduce signifi-
cant computational overhead. To fully unlock the benefits of laconic OT in advanced applications, we
need lightweight constructions where, even if laconic OT is integrated within a circuit, the operations
are limited to lightweight tasks such as arithmetic computations and bitwise operations as opposed
to costly public-key operations. Additionally, from a theoretical perspective, exploring constructions
based on weaker assumptions could lead to more efficient and versatile protocols. This would make
them easier to implement and expand the applicability of laconic OT to a broader range of advanced
cryptographic systems.

Private Laconic OT with Preprocessing 3

In summary, although laconic cryptography harbors great potential for advanced applications be-
yond theoretical interest, practical implementations remain elusive due to the prohibitive costs by the
non-black-box techniques in current constructions. To achieve a conceptually simple and practically
efficient solution for advanced applications, merely optimizing existing techniques is insufficient. In-
stead, a fundamental rethinking of the core laconic primitives and a new model tailored to the laconic
setting will be required.

1.1 Our Results

Inspired by the extensive research on OT correlations, we initiate the study of laconic OT correla-
tions and introduce preprocessing into laconic cryptography. Our contributions focus on constructing
private laconic OT with preprocessing, drawing remote inspiration from the recent advances in private
information retrieval (PIR) with preprocessing [CK20]. We present the following key results:

Our Model. We propose a relaxed notion of laconism by modeling laconic OT with preprocessing
in a two-server offline/online paradigm. In our model, two non-colluding servers hold replicas of the
database. During the offline phase, the offline server generates database-dependent correlations and
becomes silent after the preprocessing. In the online phase, the client, acting as the OT sender, sends
a single message to the online server, which acts as the OT receiver. Regarding laconism, we ensure
that the size of the correlations is sublinear in the size of the database. Furthermore, the entire
protocol consists of only two messages: one from the offline server to the client in the offline phase
and another from the client to the online server in the online phase. The key advantage of our new
model is that it allows us to decouple the expensive public-key operations from simpler computations
by abstracting the particular randomness correlations required for the underlying protocol, shifting
the costly computation to the offline phase, and leaving the online phase to handle only lightweight
primitives.

Our model can be reduced to the standard two-party setting by having the sender and receiver
emulate the role of the offline server, e.g., using laconic function evaluation [QWW18], while main-
taining sublinear communication in the overall protocol. Notably, due to the modular nature of our
model, any generic or custom protocol can replace the offline server in a black-box manner. Given
that the primary goal of this work is to identify the structured correlations that are essential for
laconic OT, we leave the challenge of developing simplified, customized protocols that can effectively
replace the offline server for future study.

Our Construction. We process to introduce the first laconic OT correlation that can be captured by
inner product computations. Like standard OT correlations, these laconic OT correlations are single-
use. The use of these correlations allows for the construction of a private, laconic OT protocol with
database-dependent preprocessing based solely on symmetric cryptographic primitives. In our model,
the offline server generates these correlations locally and subsequently transmits them to the sender
for use during the online phase. Inner product computations have demonstrated their versatility across
various domains, serving as fundamental components in areas such as zero-knowledge proof systems,
such as [BCC+16]. We therefore anticipate that insights derived from prior work may prove beneficial
in the present context, particularly with regard to enhancing security against malicious adversaries
and unlocking further optimization opportunities. By drawing on techniques from these diverse areas,
the scope of inner product-based correlations can be expanded and new possibilities.

With the inner product-based laconic OT correlations, we present the first private laconic OT
with preprocessing which achieves sublinear online computational complexity for the receiver in the
two-server setting. Specifically, assuming the existence of one-way functions, for a database of n bits
and a security parameter λ, our scheme has the following complexities,

– Offline communication: Õλ(
√
n),

– Online communication: Õλ(
√
n),

– Computational overhead for the sender during the online phase: Oλ(
√
n),

– Computational overhead for the receiver during the online phase: Oλ(
√
n),

where Õ(·) hides arbitrary polylogarithmic factors, and Oλ(·) hides arbitrary polynomial factors in
the security parameter λ.

4 Rishabh Bhadauria, Nico Döttling, Carmit Hazay, and Chuanwei Lin

Previous work on private laconic OT includes the construction by [DGI+19], which only achieved
ciphertexts of size sublinear in n and incurred linear complexity for the receiver. More recently, the
private laconic OT implied by the work of Dong et al. [DHMW24] achieved fully compact ciphertexts
that achieve polylogarithmic complexity for the receiver by leveraging the recent breakthrough of
Lin et al. [LMW23], who constructed a doubly efficient private information retrieval scheme under
standard assumptions. Our construction, operating in the alternate two-server model, achieves cipher-
texts of size sublinear in n and sublinear complexity for the receiver, relying exclusively on symmetric
primitives.

We also show how to lift our construction to achieve updatability and receiver privacy, ensuring
a broader class of applicability.

Applications. Our private laconic OT with preprocessing has broad potential across various appli-
cations, such as laconic function evaluation for RAM programs (RAM-LFE) and laconic private set
intersection (PSI). It offers a more efficient alternative to standard protocols, especially in scenarios
that align with the two-server model. Specifically, by incorporating preprocessing, query latency is
reduced by shifting the heavier computations to the offline phase, making it an ideal solution for
time-sensitive operations.

RAM-LFE. In our two-server model, for a RAM program with runtime T and a database of size n,
our RAM-LFE with preprocessing has the following complexities,

– Offline communication: Õλ(T ·
√
n),

– Online communication: Õλ(T ·
√
n),

– Computational overhead for the sender during the online phase: Oλ(T ·
√
n),

– Computational overhead for the receiver during the online phase: Oλ(T ·
√
n).

Previous constructions [DHMW24,DHM+24] suffer from the bottleneck of evaluating public-key
primitives within garbled circuits, which is notoriously expensive. Operating in the two-server model,
our RAM-LFE with preprocessing still uses garbled circuits, but only for symmetric primitives. Given
the extensive research on evaluating symmetric primitives with garbled circuits, e.g., [PAP24], our
approach reduces computational overhead and also results in smaller circuits, thereby improving
concrete communication efficiency.

Laconic PSI. We further show that given a collision-free hash function for a receiver with a database
of size n (derived from a large dataset) and a sender with a dataset of size m, our laconic PSI with
preprocessing has the following complexities,

– Offline communication: Õλ(
√
n),

– Online communication: Õλ(m ·
√
n),

– Computational overhead for the sender during the online phase: Oλ(m ·
√
n),

– Computational overhead for the receiver during the online phase Oλ(m ·
√
n).

While previous constructions [ABD+21, ALOS22, DKL+23] have the server time scaling linearly in
the large input size, our laconic PSI with preprocessing, operating in a different two-server model,
achieves sublinear online time.

Future Directions. Our work opens a new avenue for private laconic OT with preprocessing,
drawing inspiration from advances in the PIR domain. However, due to the unique requirements of
laconism and the reversed roles of sender and receiver, PIR techniques cannot be directly applied to
our context. Nevertheless, some follow-up research in PIR may be relevant to our future work, such
as the exploration of efficiency lower bounds and the development of methods for generating reusable
correlations on the sender side. These provide fertile ground for further research on private laconic
OT with preprocessing.

Furthermore, recalling that our correlations are based on inner product computations, it remains
open to explore simpler custom-made protocols that compute these correlations, and whether insights
from other fields, such as inner product arguments in zero-knowledge proofs, could enhance security
and lead to further optimizations, potentially enabling a private laconic OT with preprocessing that
provides malicious security. Another interesting direction is to explore alternative types of laconic OT
correlations.

Private Laconic OT with Preprocessing 5

2 Technical Overview

To introduce our protocol, we start by revisiting the concept of a laconic OT scheme and then relax
the notion of laconism to accommodate preprocessing for generating the laconic OT correlations in an
offline/online two server model. We then propose our laconic OT correlations, which can be captured
by inner product computation, and show a laconic OT protocol with weak index privacy. To strengthen
the privacy guarantee, we explore the potential of adopting techniques such as bias sampling and
parallel repetition from recent work on private information retrieval (PIR) with preprocessing [CK20].
However, the differing functionality, where the roles of the sender and the receiver are reversed,
and the unique requirements of laconism, which restrict the protocol to only two messages, make it
insufficient to simply incorporate these techniques. To overcome these challenges, we integrate secret
sharing alongside these two techniques and construct the first private laconic OT with preprocessing.
Lastly, we demonstrate how the protocol can be extended to support updatability and receiver privacy,
along with its applications to laconic function evaluation for RAM programs and laconic private set
intersection.

2.1 Our New Model for Laconic OT

Laconic OT. We begin by outlining the overview of a laconic OT protocol. In such a protocol [CDG+17],
two parties are involved: the receiver holding a database DB ∈ {0, 1}n where each entry DBi serves as
a choice bit, and the sender holding an index i ∈ [n] and a pair of messages m0,m1. At the end of the
protocol, the receiver learns the message mDBi

but nothing about the other message. The protocol
consists of four algorithms:

– A setup algorithm that takes the security parameters and outputs a public parameter pp.
– A hash algorithm which takes pp and a database DB ∈ {0, 1}n as input and outputs a digest

digest and a state st.
– A sender algorithm which takes pp, a digest digest, a index i ∈ [n] and two messages m0,m1 as

input and produces a ciphertext e.
– A receiver algorithm which takes st, a index i and a ciphertext e as input and outputs a message

m.

Correctness requires that, given the digest of the database DB and a ciphertext computed against
it, a valid database index i, and two messages m0,m1, the receiver can decrypt the ciphertext to
mDBi . Security ensures that a semi-honest receiver does not learn anything about m1−DBi . It should
be noted that in a laconic OT protocol, in contrast to standard oblivious transfer, there is no receiver
privacy, i.e., no security guarantee against a corrupted sender. Efficiency, or laconism, requires that
the size of digest is independent of the database size n and that the runtime of both the sender and
the receiver algorithm are at most polynomially dependent on log n.

Two-server Model. Recall that current laconic OT constructions either rely on heavy cryptographic
machinery or are not suited for advanced cryptographic applications that require non-black-box use
of laconic OT. To address this, we introduce preprocessing into laconic cryptography to achieve a
conceptually simpler and more efficient solution. The offline/online paradigm, commonly used in
MPC, allows computationally expensive tasks to be shifted to an offline phase, leaving a lightweight
online phase. By leveraging this approach, we generate database-dependent correlations during the
offline phase, which are then used in the online phase to reduce the computational overhead.

To enable database-dependent preprocessing, we model our protocol within a two-server of-
fline/online setting involving three parties: a client, an offline server, and an online server. Both
the offline and online servers possess a replica of the database DB, but crucially, they do not interact
or collude, as in the models from [BGKW88,CK20]. In this setting, the client acts as the OT sender,
and the online server acts as the OT receiver. In the offline phase, the offline server locally generates
laconic OT correlations and sends them to the client. Then, in the online phase, the client (OT sender)
sends a single message to the online server (OT receiver), completing the laconic OT protocol.

Regarding laconism, we require that the size of the correlations produced during preprocessing
be sublinear in the database size. Additionally, this model involves only two messages: the first one
from the offline server to the client (the OT sender) and the second one from the client (OT sender)
to the online server (OT receiver). This model offers a relaxed version compared to the standard
two-message laconic cryptographic protocols, where a short digest, generated by a hash algorithm, is
in size independent of or at least sublinear in that of the database.

6 Rishabh Bhadauria, Nico Döttling, Carmit Hazay, and Chuanwei Lin

2.2 Our (Private) Laconic OT Construction

Laconic OT Correlations. We observe that the OT correlations can be realized via inner product
computations. The computation is conceptually simple: for two vectors a,b ∈ Fn

q and all i ∈ [n], it
holds that

⟨a,b⟩ = ai · bi + ⟨a−i,b⟩

where a−i represents the vector a with its i-th entry ai set to 0.
Recall that in the standard laconic OT functionality, the receiver holds a database DB, while the

sender holds an index i and a pair of messages, m0 and m1. For now, we assume the sender also holds
the correlation (v, ⟨v,DB⟩) ∈ Fn

q ×Fq such that vi ̸= 0. The inner product computation shown above
can then be reformulated as

⟨v,DB⟩ − vi · DBi = ⟨v−i,DB⟩

where v−i is the vector v with the i-th element set to 0, denoted as a punctured vector in this work.
Based on this formula, if the sender sends the punctured vector v−i to the receiver, the receiver,

with access to the database DB, can compute ⟨v−i,DB⟩, thus learning either ⟨v,DB⟩ if DBi = 0 or
⟨v,DB⟩− vi if DBi = 1. Since vi is uniform from the receiver’s perspective, she cannot infer the other
value. Leveraging this observation, these two values can serve as keys: the sender can encrypt m0 with
⟨v,DB⟩ and m1 with ⟨v,DB⟩− vi, ensuring that the receiver learns only mDBi

and nothing about the
other message.

To instantiate this idea, we require an IND-CPA secure symmetric encryption scheme. Specifically,
the sender sets two distinct keys as k0 = ⟨v,DB⟩ and k1 = ⟨v,DB⟩ − vi. The ciphertexts are then
encrypted as ctxtb = Enckb

(mb∥0λ) for b ∈ {0, 1} where 0λ is a padding to ensure the ciphertexts are
of the same size and indistinguishable under encryption. Afterward, the sender sends the punctured
vector v−i and the two ciphertexts ctxt0 and ctxt1 to the receiver.

Upon receiving this message, the receiver computes the key k = ⟨v−i,DB⟩. Then it decrypts both
ciphertexts using this key to recover mDBi

: The decryption yields the message concatenated with the
padding, but only the one corresponding to mDBi will have a valid padding structure of the form
m∥0λ. Since the receiver can only learn the key depending on her choice bit DBi, the receiver cannot
learn the other message m1−DBi

.

Index Privacy. For the advanced applications we aim to achieve, standard laconic OT is insufficient.
Instead, we require private laconic OT with a stronger privacy guarantee by hiding the index i from
the receiver. In the strawman protocol outlined above, we may seem to achieve such a notion since the
receiver does not explicitly get the index i. However, the transmitted vector v−i, zeroed out at the
sender’s index i, could leak information about i due to zero entries at specific positions. To address
this, we need to obfuscate the punctured vector v−i, ensuring that it does not reveal the exact position
of the sender’s index. To implement this, we rely on techniques from private information retrieval
(PIR) with preprocessing [CK20]. Specifically, we construct sparse vectors v with approximately

√
n

non-zero entries. Now, we can instantiate the previous idea, but i remains somewhat hidden, i.e.,
from the receiver’s view, it is random among the approximately n−

√
n zero entries.

To minimize the leakage, we employ a technique known as biased sampling as a potential solution
used in PIR protocols. In such protocols, the PIR client punctures an alternative index i∗ with a
small probability, rather than the actual index i. This introduces an additional layer of randomness
that makes it harder for the PIR server to infer the correct index i. Once the PIR client receives the
answer to its query, it can decide whether to use or drop it because the client knows whether a true
or an alternative index was punctured. While this technique introduces a minor error in correctness
(since i∗ is not the actual index), this can be addressed by running the protocol multiple times in
parallel and reducing the error rate.

However, in the case of private laconic OT, biased sampling and parallel repetition are insufficient
to guarantee index privacy. This is mainly because the roles of the sender and receiver are reversed.
During parallel repetition, the receiver can simply focus on the session where a valid message is yielded
and infers the information about i from the punctured vector v−i.

To address this limitation, we introduce parallel repetition along with secret sharing as a comple-
mentary approach to ensure privacy and correctness. In this approach, the sender secret-shares the
messages m0 and m1 across multiple independent sessions. Each session uses a different punctured
vector v−i by bias sampling and encrypts the shares for that session, making it hard for the receiver to
infer information from any single session to determine the sender’s index. For correctness, the sender

Private Laconic OT with Preprocessing 7

generates the shares such that in the session where the vector v−i was punctured at an alternative
index, the shares for m0 and m1 are identical. In these cases, the receiver still recovers the correct
shares for m0 or m1 without knowing which one it is. Along with the shares computed from the
session where v−i is punctured at the index i, the receiver can recover the message mDBi .

Generating Correlations. Up to this point, we have assumed that the sender directly learns the
correlation for his chosen index i. Next, we introduce a method to generate the correlations such
that the sender must obtain a set of vectors with inner product correlations, ensuring that for each
index in the database, at least one vector has a non-zero entry at that index. The challenges are
constructing these vectors so that the representation and transmission of these vectors require less
space than storing all entries individually and to enable efficient retrieval of the corresponding vector
for any given index i.

We leverage the set representation from [CK20] and represent a vector v by a pseudorandom
permutation (PRP) key and a pseudorandom function (PRF) key as follows: First, using the PRP key
sk0, we can generate a set of

√
n elements, where S = {PRP(sk0, 1), . . . ,PRP(sk0,

√
n)}, representing

the indices with non-zero values. Next, the PRF key sk1 is used to assign the non-zero values to these
indices, with each value computed as vx ← PRF(sk1, x) for all x ∈ S. To determine if an index i
belongs to the set S, we check if PRP−1(sk0, i) ≤

√
n.

We adopt the “shifting” feature from [CK20] to generate “shifted” vectors. This feature allows the
underlying set S, containing the indices of non-zero values, to be shifted by a random shift δ ∈ [n].
Importantly, only the indices are shifted; the corresponding values are then recomputed using the
PRF based on the new, shifted indices. By precomputing

√
n · log n random shifts, we ensure that for

any index i ∈ [n], there exists a shift δj such that the vector v shifted by δj has a non-zero entry at
the index i with non-negligible probability.

Private Laconic OT with Preprocessing. Based on all the previous discussions, we are now in a position
to present a full protocol, which consists of the following algorithms:

– A setup algorithm that takes as input the security parameter and outputs some public parameters
pp.

– An offline algorithm that takes the public parameters pp and a database DB as input and outputs
the correlation cor.

– An online sender algorithm that takes as input the public parameters pp, the correlation cor, an
index i, and a pair of messages m0,m1, and outputs a ciphertext e.

– An online receiver algorithm that takes as input the public parameters pp, the database DB, and
the ciphertext e, and outputs a message m.

We illustrate the execution flow of our private laconic OT with a database-dependent preprocessing
scheme in the two-server setting in Figure 1. In our construction, the offline server prepares a PRP
key sk0, a PRF key sk1 and m =

√
n · log n random shifts δ1, . . . , δm ∈ [n]. Using these keys and shifts,

the offline server generates the initial vector v and the “shift” vectors v1, . . . ,vm as discussed before.
Each “shifted” vector vj is then associated with the inner product ipj = ⟨vj ,DB⟩.

The offline server runs this process independently λ times. At the end of the offline phase, it sends
λ sets of correlations to the sender. Each correlation set is of the form

(
sk0, sk1, {δj , ⟨vj ,DB⟩}j∈[m]

)
.

These λ sets will be used in the online phase, with each set corresponding to a different session. In
our instantiation, the PRP key sk0 and PRF key sk1 can be generated once and reused for λ sessions
by appending the session index to the keys.

In the online phase, after the sender determines the index i and a pair of messages m0,m1, the
following procedure is repeated λ times, using the corresponding λ correlations for each session. For
simplicity, the session ID and correlation index are omitted from the steps below:

1. The sender chooses the pair (δ, ip) from the corresponding session’s correlation, such that PRP−1(sk0, i−
δ) ≤

√
n, which ensures that the chosen shift and inner product correspond to the index i.

2. Next, the sender generates the underlying initial set S using the PRP key sk0 from this session’s
correlation and then derives a “shifted” set S′ by applying the shift δ. The vector v, used in the
inner product computation for ip, is then reconstructed using the set S′ and the PRF key sk1
from the same session’s correlation.

8 Rishabh Bhadauria, Nico Döttling, Carmit Hazay, and Chuanwei Lin

Private laconic OT with preprocessing in 2-server model

Trusted Setup: pp← Setup(1λ)

. .Offline Phase. .

Sender Offline Server(DB)
cor← Offline(pp,DB)

cor

. .Online Phase. .

Sender(i,m0,m1) Online Server(DB)
e← Send(pp, cor, i,m0,m1)

e

m← Receive(pp,DB, e)

Fig. 1: An illustration of laconic OT with preprocessing in two-server model

3. The sender removes i from S′ to create a punctured set of size
√
n−1. But with a small probability,

a different index is removed instead of i. The set with i removed is referred to as a correctly
punctured set, and the set with a different index removed is called a wrongly punctured set.

4. The sender prepares an additional ordered set that contains the corresponding non-zero values for
the indices in the punctured set, generated using the PRF key in the same session’s correlation.
Each pair consisting of a set of indices and its corresponding ordered set of values is called a set
pair.

5. The sender generates two keys k0 = ⟨v,DB⟩ and k1 = ⟨v,DB⟩ − vi∗ where i∗ is the actual index
removed in Step 3.

After completing these steps, the sender holds λ set pairs and key pairs, with each set pair and key
pair corresponding to a session. The sender then generates additive secret shares for m0 and m1, using
a λ-out-of-λ additive secret shares. Each pair of shares with be associated with the corresponding
set pair generated earlier for its respective session. The shares are generated such that, for wrongly
punctured sets, the shares for m0 and m1 are identical, ensuring that the receiver can infer no useful
information. Finally, he encrypts the share pairs with key pairs respectively. The final message e from
the sender to the receiver consists of λ set and ciphertext pairs.

Upon receiving e, in the λ sessions, the receiver (online server) recovers the punctured vector v′

for each session. This is done by initializing a zero vector, then using the first set in the set pair to
determine which indices should have non-zero values, and then assigning those corresponding values
from the second ordered set. Then she computes the key by k = ⟨v′,DB⟩, with which she can decrypt
both ciphertexts, and only one of them will yield a valid plaintext that will be the share for that
session. After obtaining the shares from all λ sessions, she sums up all the λ shares and gets the
message.

In each session, bias sampling makes it harder for the receiver to infer the correct index i. While
there is a small probability that the vector (or the underlying set of indices with non-zero values)
is wrongly punctured in any individual session, running itλ times drives down the probability to
negligible that no correctly punctured vector will occur. Since each session outputs a valid random
share, the receiver cannot distinguish the correctly or wrongly punctured set based on the observed
shares. This approach addresses the earlier challenge of directly importing biased sampling and parallel
repetition from the PIR domain into our setting.

Private Laconic OT with Preprocessing 9

2.3 Extensions and Applications

Updatable Private Laconic OT. We further show our laconic OT correlations can be naturally up-
dated. Namely, when a bit of the database DB changes, the cor for the database can be partially
updated rather than regenerated from scratch. Briefly, given a location i that requires an update
and a pair of correlations (v, y = ⟨v,DB⟩) such that vi ̸= 0. Once the i-th entry in the database is
changed, the offline server can update the new correlation as follows

y∗ = y + (DB∗
i − DBi) · vi

where DB∗
i is the new entry to be written at the i-th position of the database.

Receiver Privacy. In the previous discussion, we do not require receiver privacy as opposed to standard
oblivious transfer. Now, we show that our construction can be simply enhanced with receiver privacy
against semi-honest senders. We recall that the first laconic OT protocol [CDG+17] achieves receiver
privacy by having the two parties run the algorithm Send via a two-round secure 2PC protocol,
which can be instantiated via a two-message OT protocol and garbled circuits. For our construction,
however, this can be done by secretly sharing the correlations given to the sender.

For this purpose, the offline and online servers hold an extra PRF key k for a PRF fk. During the
offline phase, for each correlation indexed by j ∈ [m] in the correlation sequence, instead of giving
⟨v,DB⟩ to the sender, the sender only gets a share a = ⟨v,DB⟩−fk(j). Then, in the online phase, once
the sender has determined his input, he takes the correlation (v, a) indexed by l in the correlation
sequence and sets the two keys k0 = a and k1 = a − vi. He then encrypts his two messages with
the two keys and sends the punctured key v−i, two ciphertexts, and the correlation index l to the
receiver. The receiver reveals the key by computing k = ⟨v−i,DB⟩ − fk(l) and decrypts as before.

Without knowledge of the PRF key k, each share of correlations looks uniformly random to
the sender, thus achieving receiver privacy. Furthermore, in our two-server setting, revealing the
correlation index l to the receiver does not reveal any information about i or messages m0,m1 to the
receiver.

Laconic Function Evaluation for RAM Programs Our construction of LFE for RAM programs
with preprocessing proceeds along the same lines as constructions of RAM-LFE without preprocess-
ing [CDG+17,DHMW24]. The birds-eye view of this construction is roughly this: Assume we have
laconic OT correlations between a sender and receiver with respect to a receiver database DB. Assume
the sender holds a RAM program P with runtime T . Assume for now that P is a read-only RAM
program. Such a RAM program can be represented by step-circuits C1, . . . ,CT , where each Ci makes
a single query to DB. To encrypt this program P , we will garble augmented versions C′

i of the step
circuits Ci. The augmented circuit C′

i will receive a preprocessed laconic OT correlation as part of its
hardwired input. When the underlying circuit Ci wants to query DB at an index ind, C′

i consumes
this correlation to compute a laconic OT for index ind which transfers input labels for the garbling of
the next step circuit C′

i+1. The final circuit C′
T simply outputs the result of the RAM computation.

We can augment this construction to LFE for RAM programs which can perform both read and
write queries by simulating an additional writable RAM memory via garbled RAM [GLO15,HKO22].
Furthermore, by hardwiring the laconic OT correlations in their expanded form in the augmented
circuits C′

i, we can avoid costly non-black box operations needed to puncture PRF keys in the laconic
OT sender algorithm Send.

Laconic Private Set Intersection. Private laconic OT enables the construction of a private membership
test. In this test, a receiver holding a dataset X and a sender holding an element y want to jointly
compute whether y is in the set X. We now present a private membership test protocol based on our
private laconic OT with preprocessing that achieves receiver privacy.

Given a collision-resistant hash function h that maps from the universe to the range [n] (where n
is the size of the database), the offline and online servers initialize a database where all coordinates
corresponding to elements (mapped by h) are set to 1. The offline server then generates the correlations
based on this database and sends them to the sender.

The sender maps his private element y to the corresponding index i using the same hash function
h. He then sets m0 as a random string and m1 as the actual element prefixed with zeros to ensure

10 Rishabh Bhadauria, Nico Döttling, Carmit Hazay, and Chuanwei Lin

uniform length. Using these inputs, the sender runs the laconic OT Send algorithm with the index i
and associated messages m0 and m1.

Next, the online server (receiver) performs our laconic OT Receive algorithm. Since h is assumed to
be collision-resistant, the probability of two distinct elements mapping to the same index is negligible.
If and only if the receiver’s element matches the element mapped to a database entry set to 1, she
can decrypt the ciphertexts correctly and reveal m1, which signals the matched element.

The security against semi-honest senders follows directly from the privacy of the receiver of the
laconic OT scheme, and the security against semi-honest receivers follows from the sender’s privacy.
To extend this private membership test to a laconic private set intersection (PSI) protocol, the sender
simply repeats the online procedure for all elements in his set.

3 Cryptographic Preliminaries

3.1 Notations

We use λ to denote the security parameter. We use bold lower-case letters such as v to represent row
vectors, vi to denote the i-th coordinate of v, and the punctured vector v−i to represent the vector
identical to v with the exception that vi = 0.

We use N to denote the set of positive integers. We denote by [n] the set {1, . . . , n} for an integer
n ∈ N, and by [a, b] the set {a, . . . , b} for a, b ∈ N and a < b. We use ∥ to denote a concatenation of
two binary strings.

We use x ←$ S to denote sampling x uniformly at random from a finite set S and x ←$ D to
denote sampling x according to the distribution D. For p ∈ [0, 1], the notation b←$ Bernoulli(p) refers
to choosing the bit b as 1 with probability p and as 0 with probability 1− p.

We denote by negl(·) a negligible function in its parameter, and poly(·) a fixed polynomial in its
parameter. In this work, logarithms are taken to the base 2, and we treat expressions, e.g.,

√
n, log n,

and m/n as integers, ignoring integrality.

3.2 Private-Key Encryption

In our work, we instantiate private-key (or symmetric-key) encryption scheme with IND-CPA security
(Indistinguishability of ciphertext under chosen plaintext attack). A private-key encryption scheme
consist of message spaceM, key space K, ciphertext space C and three algorithms (KeyGen,Enc,Dec).
We define the private-key encryption scheme in Definition 1.

Definition 1 (Private-Key Encryption with IND-CPA Security)). A private-key encryp-
tion scheme consist of message space M, key space K, ciphertext space C and three algorithms
(KeyGen,Enc,Dec) with following syntax and security properties.

– k ← KeyGen(1λ): Given the security parameter 1λ, it outputs a key k ∈ K.
– ctxt← Enck(m): Given a message m and key k, it outputs a ciphertext ctxt ∈ C.
– m← Deck(ctxt): Given a key k and ciphertext ctxt, it outputs a message m ∈M.

Correctness: For every λ ∈ N, all m ∈M and for all k ← KeyGen(1λ), it holds that:

m = Deck(Enck(m)).

IND-CPA security: For every λ ∈ N and for any PPT adversary A has at most a negligible negl(n)
advantage in the following game played against a challenger:

1. The challenger runs k ← KeyGen(1λ) and samples a bit b ∈ {0, 1}.
2. A sends a pair of message m0,m1 ∈M to the challenger and the challenge sends a ciphertext

ctxt = Enck(mb) to A.
3. A outputs a bit b∗ ∈ {0, 1} and A wins if b∗ = b.

Private Laconic OT with Preprocessing 11

3.3 Garbled Circuits

A garbled circuit is an essential cryptographic tool used to evaluate a functionality jointly between
two parties.

Definition 2 (Garbled Circuits). A garbling scheme consists of two algorithms (Garble,Eval) with
the following syntax, correctness and security properties.

– (C, {lbi,b})← Garble(1λ, C) : Given the security parameter λ and circuit C : {0, 1}ℓ → {0, 1}n, it
outputs the garbled circuit C along with all the input labels of the garbled circuit {lbi,b}.

– y ← Eval(C, {lbi}) : Given the garbled circuit C and a label for each input wire denoted by {lbi},
it outputs a value y.

We also require the following properties to be satisfied:

Correctness: For all circuits C and input x ∈ {0, 1}ℓ:

Pr
[
Eval(C, {lbi,x[i]}) = C(x)

∣∣ (C, {lbi,b})← Garble(1λ, C)
]
= 1

Security: For all circuits C and input x ∈ {0, 1}ℓ, there exists a simulator such that on input the se-
curity parameter λ and output value y and outputs a simulated garbled circuit Ĉ and corresponding
simulated label values ˆ{lbi,b}, and it holds that:

{(C, {lbi,x[i]} | (C, {lbi,b})← Garble(1λ, C)} c≈ {(Ĉ, ˆ{lbi,x[i]} | (Ĉ, ˆ{lbi,b})← Sim(1λ, y)}

4 Database-Dependent Preprocessing

In this section, we describe the offline/online two-server model and the necessity of database-dependent
preprocessing for our laconic OT protocol.

4.1 Offline/Online Two-server Model

We model our laconic OT with preprocessing in the offline/online two-server setting. In this setting,
there are three parties: a client, an offline server, and an online server. We refer to the online server
that receives the OT output as the receiver and the client as the sender. Both the offline and the
online server hold a replica of a database DB, but they are not allowed to interact or collude, as
established in the model in [BGKW88,CK20].

During the offline phase, the offline server locally generates correlations or preprocessed data based
on the database and sends them to the sender. In the online phase, the sender uses these preprocessed
correlations to interact with the receiver. The security of the model crucially relies on the offline server
and the online server (OT receiver) not communicating or colluding with each other.

4.2 On the Necessity of Database-Dependent Preprocessing

In this part, we will argue that laconic OT with database-independent preprocessing, where the
online phase has at most two rounds, implies a standard OT protocol. Hence, it is unlikely that there
exists a laconic OT with database-independent preprocessing from symmetric assumptions alone.
In particular, such a protocol would need to overcome classical and newer black-box impossibility
results [IR90,GHMM18].

We observe that we can strengthen this result by showing that it still holds even if the prepro-
cessing step is allowed to use arbitrarily strong public key primitives. The reason is simple: In our
transformed protocol, the preprocessing is entirely performed by the sender, i.e., the receiver runs
none of the preprocessing algorithms. In other words, in the transformed protocol, the receiver still
only uses symmetric key algorithms, which effectively means it does not matter whether the public
key primitives used by the sender were secure or insecure, i.e., the transformed protocol would still
have to be secure even if we used an insecure instantiation of these public key primitives.

We will establish these results in the following steps.

12 Rishabh Bhadauria, Nico Döttling, Carmit Hazay, and Chuanwei Lin

1. If the protocol we start with has receiver privacy, we will ignore this feature, i.e., consider it a
protocol without receiver privacy.

2. Since the preprocessing phase is independent of the database and as there is no receiver privacy,
we can collapse the preprocessing into a single message from the sender to the receiver.

3. We will argue that such a protocol, i.e., laconic OT with a one-message database-independent
preprocessing, implies a standard OT protocol with weak receiver security.

4. Such a protocol can be amplified into an OT protocol with standard security against semi-honest
senders.

Steps 1 and 2 are trivial. We will hence focus on Step 3 and Step 4.
In the following, since this is only a complementary result, we will assume familiarity with standard

notions concerning oblivious transfer and forgo providing the most formal definitions.
As mentioned above, we will consider a weak notion of receiver privacy. Specifically, we will

consider a setting where the receiver’s choice bit is chosen at random, and security only guarantees
that the receiver’s choice bit is not fully determined by the view of the sender, i.e., the choice bit has
some residual Shannon entropy given the view of the sender. A body of works considers the problem
of constructing OT protocols with standard security from weakly secure protocols, e.g., [BCW03]. In
a nutshell, one can amplify residual Shannon entropy to min-entropy by parallel repetition and then
extract a uniformly random choice bit via standard privacy amplification techniques. We will use the
following notion of receiver privacy.

Definition 3 (Weak Receiver Privacy). Let OT be an OT protocol with a sender S and a receiver
R, and let ϕ > 0. We say an OT protocol satisfies ϕ-weak receiver privacy, if H(b|view(S)) ≥ ϕ. Here

H(X|Y) = −
∑
x,y

Pr[X = x, Y = y] log

(
Pr[X = x, Y = y]

Pr[X = x]

)

is the conditional Shannon entropy.

We will finally turn to Step 3, constructing an OT protocol with weak receiver privacy. The idea of
this transformation is simple: The receiver chooses a uniformly random database DB, and the sender
chooses a random index i. As the first round laconic OT message lOT1 is short, the entropy of DB
cannot be reduced by a lot given lOT1, i.e., it cannot encode too much information about DB. Even
though the first laconic OT message lOT1 may somehow reveal the bit DBi for a wrong choice of i,
we can show that since i is chosen at random, it holds that the bit DBi has high (Shannon) entropy
on average.

We will thus focus on Step 3. Let lOT = (Offline,Rec1,Send,Rec2) be a 2-message laconic OT
protocol with database-independent preprocessing Offline. Consider the following OT protocol OT =
(Send1,Rec1,Send2,Rec2).

– Send1(1
λ, n): Compute (stSend, stRec,1) = Offline(1λ, n). Output stSend and stRec,1.

– Rec1(stRec,1): Choose DB ← {0, 1}n uniformly at random. Compute (lOT1, stRec,2) =
lOT.Rec1(stRec,1,DB) and output lOT1 and stRec,2.

– Send1(stSend,m0,m1): Choose i ← [n] uniformly at random. Compute and output lOT2 =
lOT.Send(stSend,m0,m1).

– Rec2(stRec,2, lOT2): Compute b = DBi and m∗ = lOT.Rec2(stRec,2, lOT2). Output b,m∗.

We will briefly and informally argue the correctness and sender-privacy of this protocol. Clearly,
by the correctness of lOT it holds that m∗ = mDBi = mb. Moreover, by the sender-privacy of lOT it
holds that lOT2 can be simulated given only m∗ = mDBi

= mb.
We will now establish weak receiver security of our protocol above.

Lemma 1 The protocol OT above satisfies 1− k
n weak receiver security.

Proof. To establish weak receiver privacy, we must show that the receiver’s choice bit b = DBi

has non-trivial Shannon entropy given the sender’s view. The view of the sender consists of the

Private Laconic OT with Preprocessing 13

database-independent preprocessing stSend, as well as the first laconic OT message lOT1. By the
Shannon-entropy chain rule, it holds that

H(DB|lOT1, stSend) = H(DB, lOT1|stSend)−H(lOT1|stSend)
≥ H(DB)− k

= n− k

as stSend is independent of DB and |lOT1| ≤ k.
By the Shannon-entropy chain rule, it holds that

H(DB|lOT1, stSend) = H(DB1, . . . ,DBn|lOT1, stSend)

=

n∑
j=1

H(DBj |DB1, . . . ,DBj−1, lOT1, stSend)

≤
n∑

j=1

H(DBj |lOT1, stSend)

= n ·
n∑

j=1

1

n
H(DBj |lOT1, stSend)

= n ·
n∑

j=1

Pr[i = j]H(DBi|lOT1, stSend, i = j)

= n ·H(DBi|lOT1, stSend, i).

Hence, we obtain that

H(DBi|lOT1, stSend, i) ≥
1

n
·H(DB|lOT1, stSend)

≥ n− k

n
= 1− k

n
.

⊓⊔

5 Private Laconic OT with Preprocessing

This section presents our definition and construction of private laconic OT with preprocessing. Private
laconic OT [DGI+19] inherits all the properties and features of Laconic OT with an additional privacy
measure, where the queried index on the database i should not be revealed or leaked to the receiver.
Therefore, the message mDBi received by the receiver does not reveal which message, m0 or m1, the
receiver has received, which differs from the traditional definition of OT. Our construction follows
the model of two servers, where they have the same copy of the database DB ∈ {0, 1}n, but do not
interact with each other. One server interacts with the sender in the offline phase, while the other
server, acting as the OT receiver, interacts with the sender in the online phase.

5.1 Definition

In this work, to achieve sublinear online time, we define our private laconic OT with preprocessing
as follows:

Definition 4 (Private Laconic Oblivious Transfer with Preprocessing). A private laconic
OT with a preprocessing scheme consists of four algorithms (Setup,Offline,Send,Receive) with the
following syntax, correctness, security, and efficiency properties.

– pp← Setup(1λ): Given the security parameter 1λ, it outputs a public parameter pp.
– cor← Offline(pp,DB): Given the public parameter pp and a database DB ∈ {0, 1}n, it outputs the

correlation cor.
– e← Send(pp, cor, i,m0,m1): Given the public parameter pp, the correlation cor, a database location

i ∈ [n] and a pair of messages m0,m1 of length λ, it outputs a ciphertext e.

14 Rishabh Bhadauria, Nico Döttling, Carmit Hazay, and Chuanwei Lin

– m ← Receive(pp,DB, e): Given the public parameter pp, the database DB and a ciphertext e, it
outputs a message m.

Correctness: For all λ ∈ N, n = poly(λ) for any polynomial function poly(·), any database DB ∈
{0, 1}n and any pair of messages (m0,m1) ∈ {0, 1}λ × {0, 1}λ, it holds that

Pr

m = mDBi

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ)

cor← Offline(pp,DB)

e← Send(pp, cor, i,m0,m1)

m← Receive(pp,DB, e)

 ≥ 1− negl(λ).

Sender Privacy Against Semi-honest Receivers: For all λ ∈ N, n = poly(λ) for any polynomial
function poly(·), any database DB ∈ {0, 1}n, any location i ∈ [n] and any pair of messages
(m0,m1) ∈ {0, 1}λ × {0, 1}λ there exists a PPT simulator Sim, such that:

(pp, e)
c≈ (pp,Sim(pp,DB,mDBi

))

where pp← Setup(1λ), e← Send(pp, cor, i,m0,m1) and cor← Offline(pp,DB).
Efficiency: The length of cor, and the runtime of the online algorithms Send and Receive are sublinear

in the size of the database n.

We illustrate the execution of the private laconic OT with the database-dependent preprocessing
protocol defined above in Figure 1 (Section 2.2) in the two-server setting. The Setup algorithm is run
by a trusted party. During the offline phase, the offline server, holding the database DB, generates
the correlations cor by the Offline algorithm and sends them to the sender. In the online phase, once
the sender decides his private index i and a pair of messages m0,m1, he computes the ciphertext e
with Send algorithm and sends the ciphertext e to the online server. The online server, acting as the
OT receiver, decrypts the ciphertext and retrieves m using the Receive algorithm.

5.2 Construction

We present our construction below, as previously explained in Section 2.2.

Construction 1 (Private Laconic OT with preprocessing) The protocol is parameterized by a
security parameter λ ∈ N and database size n ∈ N and uses (1) a pseudorandom permutation PRP :
Kλ × [λ] × [n] 7→ [n], (2) a pseudorandom function PRF : Kλ × [λ] × [n] 7→ F∗

q and (3) a symmetric
encryption scheme (KeyGen,Enc,Dec) with key space Fq. We define m =

√
n · log n.

– pp← Setup(1λ):
1. Output pp← Setup(1λ).

– cor← Offline(pp,DB):
1. Sample a PRP key sk0 ←$ PRP.Kλ and a PRF key sk1 ←$ PRF.Kλ.
2. For each γ ∈ [λ]:

(a) Generate a sequence of random shifts δγ1 , . . . , δ
γ
m ←$ [n].

(b) Generate the initial support sets S0 =
⋃

ζ∈[
√
n] PRP(sk0, γ, ζ) and a sequence of shifted

sets as Sj = {x+ δγj mod n | x ∈ S0} for j ∈ [n].
(c) Generate m vectors vγ

1 , . . . ,v
γ
m ∈ Fn

q from the sets S1, . . . , Sm respectively: For each Sj,
initialize a zero vector v 4 and set the coordinates vx = PRF(sk1, γ, x) for all x ∈ Sj.

3. Output cor = (sk0, sk1, {(δγj , ⟨v
γ
j ,DB⟩)}γ∈[λ],j∈[m]).

– e← Send(pp, cor, i,m0,m1):
1. Parse cor = (sk0, sk1, {(δγj , ip

γ
j)}γ∈[λ],j∈[m]).

2. Initialize a zero vector l of size λ and generate λ sets S1, . . . , Sλ as follows. For each γ ∈ [λ]:
(a) Generate a base set S0 =

⋃
ζ∈[

√
n] PRP(sk0, γ, ζ).

(b) Find an lγ ∈ [m] such that PRP−1(sk0, γ, i− δγl) ≤
√
n.

(c) Sample a choice bit bγ ←$ Bernoulli
(√

n−1
n

)
. If bγ = 0, then set i∗γ = i otherwise sample

i∗γ ←$ S0 \ {i}.
4 For simplicity, we omit the index for the vector in this step.

Private Laconic OT with Preprocessing 15

(d) Set Sγ = {x+ δγl mod n | x ∈ S0} \ {i∗}.
3. Generate λ-out-of-λ additive secret shares {sγ0}γ∈[λ] and {sγ1}γ∈[λ] for m0 and m1 respectively

subject to the constraint that sγ0 = sγ1 for bγ = 1. Specifically,
(a) For γ ∈ [λ] such that bγ = 1, sample sγ0 = sγ1 ←$ {0, 1}λ.
(b) Set s∗0 =

⊕
{γ∈[λ]|bγ=1} s

γ
0 and s∗1 =

⊕
{γ∈[λ]|bγ=1} s

γ
1 .

(c) For γ ∈ [λ] such that bγ = 0, sample sγ0 such that
⊕

{γ∈[λ]|bγ=0} s
γ
0 = m0⊕s∗0 and sγ1 such

that
⊕

{γ∈[λ]|bγ=0} s
γ
1 = m1 ⊕ s∗1.

4. For γ ∈ [λ], execute the following:
(a) Set two keys kγ0 and kγ1 as kγ0 = ipγlγ and kγ1 = ipγlγ − vi∗γ .
(b) Toss a random coin β ∈ {0, 1} and encrypt the share pair as ctxtγ0 = Enckγ

β
(sγβ ||0λ) and

ctxtγ1 = Enckγ
1−β

(sγ1−β ||0λ).
(c) Set an ordered set S∗

γ = {PRF(sk1, γ, x) | x ∈ Sγ}.
5. Output e = {(Sγ , S

∗
γ , ctxt

γ
0 , ctxt

γ
1)}γ∈[λ].

– m← Receive(pp,DB, e):
1. Parse e = {(Sγ , S

∗
γ , ctxt

γ
0 , ctxt

γ
1)}γ∈[λ].

2. For γ ∈ [λ], execute the following:
(a) Generate the vector vγ using the set pair Sγ and S∗

γ , both of size
√
n − 1. The set Sγ

represents the indices with non-zero values, and the set S∗
γ contains the corresponding

values, ordered to match the indices in Sγ . Specifically, for i ∈ [
√
n − 1], assign vγSγ [i]

=

S∗
γ [i].

(b) Compute the key kγ = ⟨vγ ,DB⟩.
(c) Check whether Deckγ (ctxtb) is of form sγ∥0λ for b ∈ {0, 1} and if so, store sγ .

3. Output m =
⊕

γ∈[λ] s
γ .

Correctness. Correctness follows from the underlying correlations, the encryption scheme, and the
secret sharing. In each session, the receiver can compute a key kDBi∗ determined by her choice bit
DBi∗ , where i∗ is the actual index punctured by the sender. This key is then used to decrypt the
ciphertext and reveal a share for that session. The secret shares are constructed such that if there
is at least one correctly punctured session, summing up all shares will result in the message mDBi .
While there is a small probability that the vector is wrongly punctured in an individual session, doing
bias sampling λ times in parallel reduces the probability of having no correctly punctured vector to
negligible.

Efficiency. We analyze the size of the correlations as a function of the database size n, implying
sublinear communication complexity. The online algorithms Send and Receive run in time sublinear
in n. By setting m =

√
n · log n :

– The Offline algorithm outputs a PRF and PRP key of size poly(λ) each, along with λ
√
n log n

random shifts δ and inner products (correlations), each represented by log n bits and log q bits,
respectively. This results in the communication of poly(λ)+

√
nλ log n(log n+ log q) bits from the

offline server to the client in the offline phase, achieving offline communication Õλ(
√
n).

– The Send algorithm outputs λ sets of size
√
n with each element being represented as log n bits,

another λ sets of size
√
n but with each element represented as log q bits and 2λ ciphertext of

size poly(λ) each. This results in the communication of poly(λ)+λ
√
n(log q+ log n) bits from the

sender to the receiver during the online phase, achieving online communication Õλ(
√
n).

– The Send algorithm runs in time
√
n · poly(λ). The client runs Send where the running time is

dominated by the PRP ,PRF , and PRP−1 queries and encrypts the ciphertexts. PRP , PRP−1

and PRF oracles/protocol is queried
√
n times which takes time

√
n · poly(λ) and generates λ

ciphertext that requires time poly(λ). This leads to the online sender time Oλ(
√
n).

– The Receive algorithm runs in time λ
√
n+ poly(λ). The online server runs Receive, dominated by

the λ inner products and λ decryptions. The λ inner product is between DB and a sparse vector
of size

√
n, resulting in a running time of λ

√
n while the λ decryptions require poly(λ) time. This

leads to the online server time Oλ(
√
n).

16 Rishabh Bhadauria, Nico Döttling, Carmit Hazay, and Chuanwei Lin

Sender Security. The following theorem establishes sender security for our private laconic OT with
preprocessing in Construction 1.

Theorem 1 If PRP and PRF have pseudorandom property and the symmetric encryption scheme
Sym = (Enc,Dec) is IND-CPA secure, then the private laconic OT with preprocessing in Construc-
tion 1 guarantees sender privacy against a semi-honest receiver.

Proof. We show that it is possible to simulate the transcripts from the sender to the receiver which
are indistinguishable from the view in a real world. On input the public parameter pp, a database
DB and the learned message m, we simulate the view of a corrupted receiver in the following way:

1. Choose a random message m̂←$ {0, 1}λ.
2. For each γ ∈ [λ]:

(a) Sample a set Sγ ⊂ [n] of size
√
n− 1 representing the indices with non-zero values.

(b) Sample an ordered set S∗
γ ←$ (F∗

q)
√
n−1 representing the non-zero values.

3. Generate λ-out-of-λ additive secret shares {sγ}γ∈[λ] and {ŝγ}γ∈[λ] randomly for m and m̂ respec-
tively subject to the constraint that:
(a)

⊕
γ∈[λ−1] s

γ = m⊕ sλ.
(b)

⊕
γ∈[λ−1] s

γ = m̂⊕ ŝλ.
4. For each γ ∈ [λ]:

(a) Generate the vector vγ using the set pair Sγ and S∗
γ by assigning vγSγ [i]

= S∗
γ [i] for i ∈ [

√
n−1]

and 0 elsewhere.
(b) Toss a random coin βγ ∈ {0, 1} and set kγβ = ⟨vγ ,DB⟩ and kγ1−β ←$ Fq.
(c) Compute ctxtγβγ = Enckγ

β
(sγ ||0λ) and ctxtγ1−βγ = Enckγ

1−β
(ŝγ ||0λ).

5. Output e = {(Sγ , S
∗
γ , ctxt

γ
0 , ctxt

γ
1)}γ∈[λ].

We now show that the simulated view is indistinguishable from the view in the real execution
using the following sequence of hybrids.
– Hyb0: This hybrid proceeds as the real world.
– Hyb1: Same as Hyb0 except that the two messages in the real world will be replaced with the input

message m and another random message m̂←$ {0, 1}λ. As the shares are generated randomly and
by tossing a random coin to switch the position of ciphertexts, this hybrid will be indistinguishable
from Hyb0 due to the semantic security of the encryption scheme.

– Hyb2: Same as Hyb1 except that the vector used to compute the keys for the encryption scheme
is not reconstructed by the PRP and PRF, but by randomly sampling a vector of length n and
hamming weight

√
n−1. By Lemma 2, this is indistinguishable from the previous Hyb1: It is indis-

tinguishable whether a set, which represents the vector indices with non-zero values, is correctly
or wrongly punctured in each session. And since the non-zero values for the indices are generated
via a PRF in the real-world case, it is indistinguishable between the PRF generated value and
a uniformly random value. This concludes that the freshly generated vector is indistinguishable
from the one generated from PRP and PRF.

– Hyb3: Same as Hyb2 and note that this is identical to the view of the receiver in the simulation.
This conlcues the proof.

Lemma 2 Given a pseudorandom permutation PRP : Kλ × [λ] × [n] 7→ [n], for λ ∈ N, n = poly(λ)
and every i ∈ [n], γ ∈ [λ], define the following distribution

Dλ,n,i,γ =

sk←$ PRP.Kλ s.t. PRP−1(sk, γ, i) ≤
√
n

S = {PRP(sk, γ, 1), . . . ,PRP(sk, γ,
√
n)}

b←$ Bernoulli
(√

n−1
n

)
if b = 0 : i∗ = i
if b = 1 : i∗ ←$ S \ {i}
output S \ {i∗}

.

Then, for every i, j ∈ [n], it holds that

Dλ,n,i,γ
c≈ Dλ,n,j,γ .

This lemma is the key result from the PIR work (Lemma 36, [CK20]). It shows that it is possible
to sample a PRP key sk for a set S and a punctured set in such a way that a chosen element i ∈ [n]
is in the set S and the punctured set completely hides the chosen point i. We represent the lemma
with the syntax of pseudorandom permutation. ⊓⊔

Private Laconic OT with Preprocessing 17

6 Extensions

In this section, we show how to extend our construction to support updatability and receiver privacy,
broadening its applicability to a wider range of scenarios.

6.1 Updatability

In many applications of laconic OT, an updatable version is crucial. We present an updatable variant
of our private laconic OT with preprocessing, where the correlations cor committed to a database DB
can be partially updated when a bit of the database changes, rather than being regenerated entirely.

Definition 5 (Updatable Private Laconic OT with Preprocessing). An updatable private la-
conic OT with preprocessing scheme consists of the algorithms (Setup,Offline,Send,Receive) as defined
in Definition 4 and additionally one algorithm Upd with the following syntax.

– ⟨cor∗,DB∗⟩ ← Upd(pp,DB, cor, i, b): Given the public parameter pp, the database DB ∈ {0, 1}n,
the correlation cor, a location l ∈ [n] and a bit b ∈ {0, 1} to be written,it outputs an updated
correlation cor∗ to the sender and an updated database DB∗ to the receiver.

We require the following properties with regards to update on top of those properties of a private
laconic OT with preprocessing scheme.

Correctness w.r.t. Update: For all λ ∈ N, n = poly(λ) for any polynomial function poly(·), any
database DB ∈ {0, 1}n, any location i ∈ [n] and any pair of messages (m0,m1) ∈ {0, 1}λ×{0, 1}λ,
given the public parameter pp ← Setup(1λ), let DB∗ be identical to DB except that DB∗

i = b, the
following are from the identical distribution:

{cor∗ | ⟨cor∗,DB∗⟩ ← Upd(pp, cor, i, b) ∧ cor← Offline(pp,DB)}
{cor | cor← Offline(pp,DB∗)}

Our proposed laconic OT correlation shows that the correlation can be efficiently updated.

Construction 2 (Updating Private OT Correlations) Given the public parameter pp, the database
DB to be updated, a location i to be written, a correlation cor, a bit b ∈ {0, 1}, the Upd algorithm
performs the following steps:

1. Parse cor = (sk0, sk1, {(δγj , ip
γ
j)}γ∈[n],j∈[m]).

2. For each γ ∈ [λ]:
(a) Find an l ∈ [m] such that PRP−1(sk0, γ, i− δγl) ≤

√
n.

(b) Replace ipγl with the following one:

ipγl
∗
= ipγl + (b− DBi) · PRF(sk1, γ, i).

Then get the updated correlations cor∗.
3. Update the database into DB∗ such that DB∗

i = b and identical to DB at remaining indices.
4. Output ⟨cor∗,DB∗⟩.

Intuitively, the correctness follows from the randomness of the vectors we sample. We consider the
following two cases when we update i-th entry of the database DB to b ∈ {0, 1} (session id γ omitted):

– In the real world of Upd, we have the correlation as

⟨v,DB⟩+ (b− DBi) · vi =
∑

j∈support(v)

DBj · vj + (b− DBi) · vi = ⟨v−i,DB⟩+ b · vi

where support(v) represents the set S = {PRP(sk0, 1), . . . ,PRP(sk0,
√
n)} and vi ← PRF(sk1, i).

– In the ideal world where the correlation is freshly generated based on the updated database DB∗

where DBl = b, we have the correlation

⟨v,DB∗⟩ = ⟨v−i,DB⟩+ b · vi

where vi ← PRF(sk1, i).

It is straightforward that the two distributions are indistinguishable and the update algorithm
preserves correctness.

18 Rishabh Bhadauria, Nico Döttling, Carmit Hazay, and Chuanwei Lin

6.2 Receiver Privacy

In the definition of private laconic OT with preprocessing provided in Definition 4, we do not re-
quire receiver privacy, meaning there is no privacy guarantee against a corrupted sender, as defined
in [CDG+17]. Typically, adding receiver privacy to laconic OT can be achieved straightforwardly
using garbled circuits and two-message OT. However, we demonstrate that our protocol in the two-
server setting can be enhanced with this property without introducing additional costly cryptographic
primitives.

Definition 6 (Receiver Privacy). A private laconic OT with preprocessing scheme defined in Def-
inition 4 provides receiver privacy against semi-honest senders if for all λ ∈ N, n = poly(λ) for any
polynomial function poly(·) and any database DB ∈ {0, 1}n, that there exists a PPT simulator Sim,
such that

(pp,Offline(pp,DB))
c≈ (pp,Sim(pp))

where pp← Setup(1λ).

Construction 3 (Receiver-private plOT with Preprocessing) Given a pseudorandom function
PRF∗ : Kλ × [λ] × [m] 7→ Fn

q with the PRF key k ∈ Kλ to the two servers only, the private laconic
OT with preprocessing protocol with algorithms (Setup,Offline,Send,Receive) shown in Construction 1
can be extended to that with algorithms (Setup∗,Offline∗,Send∗,Receive∗) supporting receiver privacy
as follows:

– pp← Setup∗(1λ):
1. Output pp← Setup(1λ)

– cor← Offline∗(pp,DB):
1. Compute (sk0, sk1, {(δγj , ip

γ
j)}γ∈[n],j∈[m])← Offline(pp,DB).

2. For all γ ∈ [λ], set aγj = ipγj − PRF∗(k, γ, j) for all j ∈ [m].
3. Output cor = ((sk0, sk1, {(δγj , a

γ
j)}γ∈[n],j∈[m])).

– e← Send∗(pp, cor, i,m0,m1):
1. Parse cor = ((sk0, sk1, {(δγj , a

γ
j)}γ∈[n],j∈[m])).

2. Proceed with Step 2 to 4 of the Send algorithm in Construction 1, except that each ip is replaced
as a in this case (index j and γ omitted here).

3. Output e = {(Sγ , S
∗
γ , lγ , ctxt

γ
0 , ctxt

γ
1)}γ∈[λ], where lγ is generated in Step 2b of the Send algo-

rithm, indicating the index of the used correlation for the γ-th session.
– m← Receive∗(pp,DB, e):

1. Parse e = {(Sγ , S
∗
γ , lγ , ctxt

γ
0 , ctxt

γ
1)}γ∈[λ].

2. Proceed with Step 2 in the Receive algorithm in Construction 1, except that the key is now
computed as kγ = ⟨vγ ,DB⟩ − PRF∗(k, γ, lγ).

3. Output m =
⊕

γ∈[λ] s
γ .

Correctness. The correctness of the above modified scheme follows from that of Construction 1.
Intuitively, secret sharing the correlations, i.e., inner product computations, does not change the
correlation argument at all.

Efficiency. Compared with Construction 1, the efficiency is preserved as well except that the two
servers hold extra λ PRF key each of size λ bits, and the size of e is increased by λ correlation indices
lγ each of size λ bits.

Security. The sender privacy is remained the same as in Construction 1 given the correlation index l
looks uniformly random to the online server (OT receiver). The following theorem establishes receiver
privacy.

Theorem 2 If the extra PRF∗ have pseudorandom property, then the private laconic OT with pre-
processing in Construction 3 guarantees receiver privacy against a semi-honest sender.

Proof. We show that we can simulate the transcript for a semi-honest sender. We define a PPT Sim
as follows:

1. On input the public parameters pp, it generates a PRP key sk0 ←$ PRP.Kλ and a PRF key
sk1 ←$ PRF.Kλ, and generate a sequence of random shifts δγ1 , . . . , δ

γ
m ←$ [n] for γ ∈ [λ].

Private Laconic OT with Preprocessing 19

2. For each δγj , pair it with a fresh sampled rγj ←$ Fq.
3. Output cor = ((sk0, sk1, {(δγj , r

γ
j)}j∈[m], γ ∈ [λ])).

We now show that the simulated view is indistinguishable from the view in the real execution
using the following sequence of hybrids.

– Hyb0: Identical to the view of the sender in the real protocol.
– Hyb1: Instead of relying on DB and a PRF∗ key k to generate a share for each correlation, we

change each share as a randomness rj ←$ Fq for j ∈ [m]. Without the knowledge of PRF∗ key k,
the distribution of rγj is indistinguishable from that of aγj in the real world. Therefore, Hyb0 and
Hyb1 is indistinguishable.

– Hyb2: Identical to the view in the simulation. In Hyb1, each component from the real protocol
has been replaced with that from the simulation. Therefore, Hyb1 and Hyb2 are identical. This
concludes this proof.

⊓⊔

7 Laconic Function Evaluation for RAM Programs

In this section, we discuss the main application of our private laconic OT with preprocessing: laconic
function evaluation for RAM programs (RAM-LFE) in our two-server model.

7.1 RAM Programs

We will briefly describe the RAM model considered in this paper. A RAM program P with runtime
T as a sequence of step-circuits C1, . . . ,CT . The circuits get access to a large input database and a
work database, where the latter is initialized with zeros. Each circuit can make a single read query
to the input database D, as well as a single read and a single write query to the work database W .
More formally, each step-circuit Ci receives as input a state sti, an input d which is the result of
a read-query to D by Ci−1, and an input w which is the result of a write-query to W by Ci−1. Ci

returns a state sti+1, an index indD for a read-query on D and an index indW for a read-query on W ,
and a pair (¯ind, y) that instructs to write symbol y to location ¯ind in database W .

We will make a few additional assumptions about the RAM program P , in particular, that read-
queries may fail. In this case, the read-query returns a special symbol ⊥. We will briefly argue that
if the probability of a read-query failing is sufficiently small, then a small increase in runtime can
compensate for read errors without changing the overall program structure.

7.2 Construction

We will now present a construction of RAM-LFE for read-only RAM programs. We will then discuss
how this can be extended to RAM-LFE for RAM programs that make both read and write requests
via efficient garbled RAM schemes.

Definition 7 (RAM-LFE). A laconic function evaluation for RAM programs (RAM-LFE) consists
of the four algorithms (Setup,Offline,Send,Receive) with the following syntax, correctness, security and
efficiency properties.

– pp← Setup(1λ): Given the security parameter 1λ, it outputs a public parameter pp.
– cor ← Offline(pp,DB, T): Given the public parameter pp, a database DB ∈ {0, 1}n and a runtime

T , it outputs the correlation cor.
– e← Send(pp, cor, P): Given the public parameter pp, the correlation cor, a program P , it outputs

a ciphertext e.
– m ← Receive(pp,DB, e): Given the public parameter pp, the database DB and a ciphertext e, it

outputs a value m.

Correctness: For all λ ∈ N, n = poly(λ) for any polynomial function poly(·), any database DB ∈
{0, 1}n and any program P with runtime T = poly(λ), it holds that

Pr

m = PDB

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ)

cor← Offline(pp,DB, T)

e← Send(pp, cor, P)

m← Receive(pp,DB, e)

 ≥ negl(λ).

20 Rishabh Bhadauria, Nico Döttling, Carmit Hazay, and Chuanwei Lin

Sender Privacy Against Semi-honest Receivers: For all λ ∈ N, n = poly(λ) for any polynomial
function poly(·), any database DB ∈ {0, 1}n, any program P with runtime T = poly(λ), it holds
that there exists a PPT simulator Sim, such that

(pp,Send(pp, cor, P))
c≈ (pp,Sim(pp,DB,m))

where pp← Setup(1λ), cor← Offline(pp,DB, T).
Efficiency: The length of cor, and the runtime of the algorithm Offline, Send and Receive are sublinear

in the size of the database n.

The idea for our read-only RAM-LFE follows naturally from combining private laconic OT cor-
relations with garbled circuits: In the offline phase, we generate private laconic OT correlations with
respect to the receiver’s database DB for each step-circuit Ci, and in the online phase, we hardwire
these correlations into an extended version C′

i of Ci to allow access to the database DB.
Hence, let Ci be a step circuit. Assume for convenience that Ci takes as input a state sti as well

as a bit wi (which is the result of the previous read-query), and outputs a state sti+1 and an index
ind for a read-query. The circuit C′

i has hardwired inputs labsti+1
, labwi+1

and a private laconic OT
correlation cori. Here, labsti+1

are the input labels corresponding to sti+1 for a garbling of the next
step-circuit C′

i+1, whereas labwi+1
are likewise input labels corresponding to the bit wi+1.

The augmented step circuit c′i is given as follows.

– Circuit C′
i[pp, labsti+1

, labwi+1
, cori](sti, wi):

• Compute (sti+1, indi+1)← C(sti, wi)
• Set lbsti+1 ← LabelEncoding(labsti+1 , sti+1)
• Compute ei+1 ← Send(pp, cori, indi+1, labwi+1,0, labwi+1,1)
• Output (lbsti+1 , ei+1)

Our RAM-LFE scheme RLFE = (RLFE.Setup,RLFE.Offline,RLFE.Send,RLFE.Receive) in the pre-
processing model is now given as follows.

Construction 4 (RAM-LFE) Let (Setup,Offline,Send,Receive) be a private laconic OT with pre-
processing scheme. Further (GC.Garble,GC.Eval) be a projective garbling scheme. The scheme RLFE =
(RLFE.Setup,RLFE.Offline,RLFE.Send,RLFE.Receive) is given as follows.

– RLFE.Setup(1λ): Compute and output pp← Setup(1λ).
– RLFE.Offline(pp,DB, T):

1. For i ∈ [T] compute cori ← Offline(pp,DB);
2. Output cor∗ ← (cori)i∈[T].

– RLFE.Send(pp, cor∗, P):
1. Parse cor∗ = (cori)i∈[T] and P = (C1, . . . ,CT);
2. Compute (C̃T , labstT , labwT

)← GC.Garble(CT);
3. For i = T − 1, . . . , 1 compute

(C̃i, labsti , labwi)← GC.Garble(Ci[labsti+1 , labwi+1 , cori]);
4. Set lbst1 = LabelEncoding(labst1 , 0

∗), lbw1
= LabelEncoding(labw1

, 0);
5. Output e∗ = (lbst1 , lbw1

, C̃1, . . . , C̃T).
– RLFE.Receive(pp,DB, e∗):

1. Parse e∗ = (lbst1 , lbw1
, C̃1, . . . , C̃T);

2. For i = 1, . . . , T − 1:
(a) Compute (lbsti+1

, ei+1)← GC.Eval(C̃i, lbsti , lbwi
)

(b) Compute lbwi+1
← Receive(pp,DB, ei+1)

3. Compute and output y ← GC.Eval(C̃T , lbstT , lbwT
).

Correctness. The correctness of the above scheme RLFE routinely follows from the correctness of the
underlying garbling scheme GC = (GC.Garble,GC.Eval) and the correctness of the private laconic OT
with preprocessing scheme (Setup,Offline,Send,Receive).

Efficiency. The ciphertext size of RLFE is dominated by the hardwired correlations cori. In Construc-
tion 1, given that the size of cori is Õλ(

√
n), the total ciphertext size is Õλ(T ·

√
n). Thus, due to the

efficiency properties of the underlying laconic OT with preprocessing scheme, the overhead for sender
and receiver will also be Oλ(T ·

√
n).

Private Laconic OT with Preprocessing 21

Sender Security. The following theorem establishes sender security for RLFE.

Theorem 3 Assume that GC = (GC.Garble,GC.Eval) is a simulation secure garbling scheme and that
laconicOT = (Setup,Offline,Send,Receive) has sender privacy against semi-honest receivers. Then the
scheme RLFE = (RLFE.Setup,RLFE.Offline,RLFE.Send,RLFE.Receive) also has sender privacy against
semi-honest receivers.

Proof. The proof proceeds via a hybrid argument. We will define 2T + 1 hybrids Hyb0, Hybi,0 and
Hybi,1 for i = 1, . . . , T .

– Hyb0: This is the real experiment.
– Hybi,0 is identical to Hybi−1,1 (or Hyb0 if i = 1), except that we compute C̃i, lbsti and lbwi

via
(C̃i, lbsti)← GC.Sim(Ci[pp, labsti+1

, labwi+1
, cori](sti, wi))

Indistinguishability follows by the simulation security of GC.
– Hybi,1 is identical to Hybi,0, except that we compute ei+1 (which is computed by Ci) via ei+1 ←

Sim(lbwi+1,DBindi+1
). Indistinguishability follows by the sender privacy of laconic OT.

Note that in the last hybrid, the output of the receiver depends only on CT (stT , wT) (i.e., the
correct output of P), but is otherwise independent of P , since all labels used during the simulation
are chosen uniformly at random. This concludes the security proof. ⊓⊔

Beyond read-only RAM Programs We will briefly discuss how the RLFE scheme can be upgraded to
support RAM programs that support both read and write queries. Instead of relying on updatable
laconic OT like previous work [CDG+17,DHMW24], we can combine the scheme RLFE with a garbled
RAM scheme [LO13,GHL+14,GLO15,HKO22]. Specifically, such schemes also proceed by successively
garbling the step circuits of the RAM, but also provide a garbled data-structure for the work database,
which can be both read from and written to. For a garbled work database of size L, these constructions
incur only an additive overhead of size Õ(L) (in addition to the size of the garbled step circuits).
Assuming that the work memory is initialized with zeros, we observe that a RAM program running
in time T can read from and write to at most T locations of the work memory. Consequently, a work
memory of size O(T) is sufficient in this setting. We can obtain a full-fledged RAM LFE scheme by
interleaving the circuits C′

i in our construction above (which essentially perform read queries on the
receiver’s database) with the circuits C′′

i originating from an underlying garbled RAM.
As a result, we get a fully-fledged RAM LFE scheme with ciphertext size, sender, and receiver

overheads of Oλ(T ·
√
n). By relying on a black-box garbled RAM scheme [GLO15,HKO22] and storing

the expanded laconic OT correlations, the garbled circuits need only perform black-box operations.
Consequently, for moderately large parameters n, the overhead of our scheme compares favorably to
the RAM-LFE scheme in [DHMW24], which relies on heavy non-black-box techniques.

8 Laconic Private Set Intersection with Preprocessing

In a laconic private set intersection (PSI) protocol [ABD+21,ALOS22,DKL+23], a receiver holding
a potentially huge set X of size n and a sender holding a small set Y of size m can jointly compute
the intersection X ∩ Y without revealing any other information about their sets to each other. In
previous works, they all require a linear computation complexity on the receiver’s side. We now use
our private laconic OT with preprocessing scheme which guarantees receiver privacy to construct a
preprocessed laconic PSI protocol where the receiver computation complexity is consistent with our
private laconic OT scheme.

Construction 5 (Laconic PSI with Preprocessing) Let h : {0, 1}∗ 7→ {0, 1}n be a
collision-resistent hash function and lOT = (Setup,Offline,Send,Receive) be a private
lOT with preprocessing scheme that guarantees receiver privacy. The scheme LPSI =
(LPSI.Setup, LPSI.Offline, LPSI.Send, LPSI.Receive) is given as follows.

– pp← LPSI.Setup(1λ):
1. Compute and output pp← lOT.Setup(1λ).

– cor← LPSI.Offline(pp, X):
1. Initialize a database DB of length n, and for xj ∈ X, set DBh(xj) = 1;

22 Rishabh Bhadauria, Nico Döttling, Carmit Hazay, and Chuanwei Lin

2. Compute and output cor← lOT.Offline(pp,DB).
– msg← LPSI.Send(pp, cor, Y):

1. For all yj ∈ Y , generate two messages mj,0,mj,1 as follows: set a message mj,1 = 0λ∥yj and
sample a randomness mj,0 of the same length with the first bit being 1, and then compute
(ej , l)← lOT.Send(pp, cor, h(yj),mj,0,mj,1);

2. Pick a permutation π : [m] 7→ [m];
3. Output msg = {eπ(j)}j∈[m].

– c← LPSI.Receive(pp,DB,msg):
1. Parse msg = {ej}j∈[m] and initialize an empty intersection set Z;
2. For j ∈ [m], compute mj = lOT.Receive(pp,DB, ei). If mj is of form 0λ∥z, add z into the set

Z.
3. Output Z.

Correctness. For simplicity, we first assume the sender holds an element y and y ∈ X. Upon receiving
e, the receiver will output y since 0λ∥y = mDBh(y)

← lOT.Receive(pp,DB, e) where DBh(y) = 1. To get
the correctness of the entire protocol, we repeat this procedure for each element in the sender’s set.

Efficiency. The efficiency of our laconic PSI with preprocessing protocol aligns with that of the
underlying private laconic OT protocol. Specifically, the offline communication takes Õλ(

√
n), the

online communication takes Õλ(m ·
√
n). During the online phase, the sender and the online server

both run in time Oλ(m ·
√
n).

Security. The following theorem establishes security for our laconic PSI with preprocessing.

Theorem 4 If lOT is a private laconic OT with preprocessing scheme and provides receiver privacy
and the hash function h is collision-resistant, the laconic PSI with preprocessing protocol shown in
Construction 5 is secure in the semi-honest model.

Proof. Intuitively, the security against corrupted sender is from the receiver privacy, i.e., the correla-
tions cor hide the indices of non-zero entries with respect to the receiver’s private input. The security
against corrupted receiver is from the security property of the encryption scheme such that a cipher-
text with respect to an index not registered looks pseudorandom. We now show that it is possible to
simulate the transcripts for both parties which are computationally indistinguishable from the view
in a real world.

Security Against Corrupted Sender. On input the set SS and nothing else, we simulate the view of
the corrupted sender by running the simulator for receiver privacy of the underlying private laconic
OT protocol which outputs an indistinguishable transcript as in the real world.

Security Against Corrupted Receiver. On input the set SR and the intersection set Z, we simulate the
view of a corrupted receiver in the following way:

1. Simulate the setup phase as an honest party, i.e., pp← Setup(1λ).
2. Pick a random subset Γ ⊂ [m] with |Γ | = ζ. Let Γ = {γ1, . . . , γζ}. For all j ∈ [ζ], set a message

mγj
= 0λ∥zj and invoke the simulator for sender privacy of the underlying laconic OT with

preprocessing scheme to compute eγj
← lOT.Sim(pp,DB,mγj

). This, (eγj
)j∈[ζ], simulates the

positions where the receiver gets a match.
3. Let the complimentary set be ∆ = [m] \Z = {δ1, . . . , δη} where η = m− ζ. For all j ∈ [η], sample

a pair of randomness rδj , r
′
δj
←$ {0, 1}λ, a vector v ←$ Fn

q constrained by hw(v) =
√
n and∑

i∈[n] vi ·DBi = 0. and compute (eηj , lj)← lOT.Send
(
pp, ⟨v,DB⟩, h(w), r′δj , rδj

)
with a random

w /∈ Z. This, (eδj)j∈[η], simulates the positions where the receiver does not get a match.
4. Output {ej}j∈[m] as the simulated view.

We now show that the simulated view is indistinguishable from the view in the real execution
using the following sequence of hybrids.

– Hyb0: Identical to the view of the receiver in the real protocol.

Private Laconic OT with Preprocessing 23

– Hyb1,0: Instead of sampling the permutation π, we pick sets (Γ,∆) where Γ = {γ1, . . . , γζ} and
∆ is the complimentary set, like in the simulation. For each j we find the index σ(j) such that
zj = yσ(j) and choose a random permutation π such that π(γj) = σ(j) and the remaining positions
are filled at random.
The indistinguishability between Hyb0 to Hyb1,0 is immediate since in both cases π is a uniform
permutation in [m].

– Hyb1,j for j ∈ [n]: In each hybrid, we change the distribution of a single ej such that in Hyb1,j−1

it is generated as in the real protocol while in Hyb1,j it is generated as in the simulation.
For j ∈ Γ , ej is indistinguishable from that in the real protocol given the sender privacy of the
private laconic OT protocol, and thus Hyb1,j−1 and Hyb1,j for j ∈ Γ is indistinguishable.
For j ∈ ∆, since when there is not a match, there is no correlation that holds. Given that the
non-zero entries on the vector are sampled randomly, the keys for the IND-CPA secure symmetric
encryption in the lOT.Send algorithm are just random and in the real protocol the ciphertext is
pseudorandom. Therefore ej is indistinguishable from that in the real protocol, and thus Hyb1,j−1

and Hyb1,j for j ∈ ∆ is indistinguishable.
– Hyb2: Identical to the view of R in the simulation.

In Hyb1,n, each ej from the real protocol has been replaced with that from the simulation. There-
fore, Hyb1,n and Hyb2 are indistinguishable, and this concludes the proof.

⊓⊔

Acknowledgments

We thank Lisa Kohl and Stella Wohnig for discussing index privacy in our construction.
Nico Döttling and Chuanwei Lin are funded by the European Union (ERC, LACONIC, 101041207).

Views and opinions expressed are however those of the authors only and do not necessarily reflect
those of the European Union or the European Research Council. Neither the European Union nor
the granting authority can be held responsible for them.

Carmit Hazay is supported by the United States-Israel Binational Science Foundation (BSF)
through Grant No. 2020277.

References

ABD+21. N. Alamati, P. Branco, N. Döttling, S. Garg, M. Hajiabadi, and S. Pu. Laconic private set
intersection and applications. In TCC 2021, Part III, LNCS 13044, pages 94–125. Springer,
Cham, November 2021.

ALOS22. D. F. Aranha, C. Lin, C. Orlandi, and M. Simkin. Laconic private set-intersection from pairings.
In ACM CCS 2022, pages 111–124. ACM Press, November 2022.

BCC+16. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge arguments for
arithmetic circuits in the discrete log setting. In EUROCRYPT 2016, Part II, LNCS 9666, pages
327–357. Springer, Berlin, Heidelberg, May 2016.

BCG+19a. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl. Efficient two-round
OT extension and silent non-interactive secure computation. In ACM CCS 2019, pages 291–308.
ACM Press, November 2019.

BCG+19b. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom
correlation generators: Silent OT extension and more. In CRYPTO 2019, Part III, LNCS 11694,
pages 489–518. Springer, Cham, August 2019.

BCG+22. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, N. Resch, and P. Scholl. Correlated pseu-
dorandomness from expand-accumulate codes. In CRYPTO 2022, Part II, LNCS 13508, pages
603–633. Springer, Cham, August 2022.

BCG+23. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, N. Resch, and P. Scholl. Oblivious transfer
with constant computational overhead. In EUROCRYPT 2023, Part I, LNCS 14004, pages 271–
302. Springer, Cham, April 2023.

BCW03. G. Brassard, C. Crépeau, and S. Wolf. Oblivious transfers and privacy amplification. Journal of
Cryptology, 16(4):219–237, September 2003.

BDOZ11. R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multi-
party computation. In EUROCRYPT 2011, LNCS 6632, pages 169–188. Springer, Berlin, Heidel-
berg, May 2011.

Bea92. D. Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO’91, LNCS
576, pages 420–432. Springer, Berlin, Heidelberg, August 1992.

24 Rishabh Bhadauria, Nico Döttling, Carmit Hazay, and Chuanwei Lin

Bea96. D. Beaver. Correlated pseudorandomness and the complexity of private computations. In Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996, pages 479–488. ACM, 1996.

BGI19. E. Boyle, N. Gilboa, and Y. Ishai. Secure computation with preprocessing via function secret
sharing. In TCC 2019, Part I, LNCS 11891, pages 341–371. Springer, Cham, December 2019.

BGKW88. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs: How to
remove intractability assumptions. In 20th ACM STOC, pages 113–131. ACM Press, May 1988.

BLN+21. S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Orlandi, E. Orsini, P. Scholl, and N. P.
Smart. High-performance multi-party computation for binary circuits based on oblivious transfer.
Journal of Cryptology, 34(3):34, July 2021.

BV11a. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS, pages 97–106. IEEE Computer Society, 2011.

BV11b. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security
for key dependent messages. In CRYPTO, pages 505–524, 2011.

CDE+18. R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing. SPD Z2k : Efficient MPC mod 2k

for dishonest majority. In CRYPTO 2018, Part II, LNCS 10992, pages 769–798. Springer, Cham,
August 2018.

CDG+17. C. Cho, N. Döttling, S. Garg, D. Gupta, P. Miao, and A. Polychroniadou. Laconic oblivious
transfer and its applications. In CRYPTO 2017, Part II, LNCS 10402, pages 33–65. Springer,
Cham, August 2017.

CK20. H. Corrigan-Gibbs and D. Kogan. Private information retrieval with sublinear online time. In
EUROCRYPT 2020, Part I, LNCS 12105, pages 44–75. Springer, Cham, May 2020.

Cou19. G. Couteau. A note on the communication complexity of multiparty computation in the correlated
randomness model. In EUROCRYPT 2019, Part II, LNCS 11477, pages 473–503. Springer, Cham,
May 2019.

DGI+19. N. Döttling, S. Garg, Y. Ishai, G. Malavolta, T. Mour, and R. Ostrovsky. Trapdoor hash functions
and their applications. In CRYPTO 2019, Part III, LNCS 11694, pages 3–32. Springer, Cham,
August 2019.

DHM+24. F. Dong, Z. Hao, E. Mook, H. Wee, and D. Wichs. Laconic function evaluation and ABE for
RAMs from (ring-)LWE. In CRYPTO 2024, Part III, LNCS 14922, pages 107–142. Springer,
Cham, August 2024.

DHMW24. F. Dong, Z. Hao, E. Mook, and D. Wichs. Laconic function evaluation, functional encryption
and obfuscation for RAMs with sublinear computation. In EUROCRYPT 2024, Part II, LNCS
14652, pages 190–218. Springer, Cham, May 2024.

DKL+13. I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly
secure MPC for dishonest majority - or: Breaking the SPDZ limits. In ESORICS 2013, LNCS
8134, pages 1–18. Springer, Berlin, Heidelberg, September 2013.

DKL+23. N. Döttling, D. Kolonelos, R. W. F. Lai, C. Lin, G. Malavolta, and A. Rahimi. Efficient laconic
cryptography from learning with errors. In EUROCRYPT 2023, Part III, LNCS 14006, pages
417–446. Springer, Cham, April 2023.

DNNR17. I. Damgård, J. B. Nielsen, M. Nielsen, and S. Ranellucci. The TinyTable protocol for 2-party
secure computation, or: Gate-scrambling revisited. In CRYPTO 2017, Part I, LNCS 10401, pages
167–187. Springer, Cham, August 2017.

DPSZ12. I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat
homomorphic encryption. In CRYPTO 2012, LNCS 7417, pages 643–662. Springer, Berlin, Hei-
delberg, August 2012.

DZ13. I. Damgård and S. Zakarias. Constant-overhead secure computation of Boolean circuits using
preprocessing. In TCC 2013, LNCS 7785, pages 621–641. Springer, Berlin, Heidelberg, March
2013.

FHAS24. N. Fleischhacker, M. Hall-Andersen, and M. Simkin. Extractable witness encryption for kzg
commitments and efficient laconic ot. In ASIACRYPT. Springer-Verlag, 2024.

Gen09. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.
GHL+14. C. Gentry, S. Halevi, S. Lu, R. Ostrovsky, M. Raykova, and D. Wichs. Garbled RAM revisited.

In EUROCRYPT 2014, LNCS 8441, pages 405–422. Springer, Berlin, Heidelberg, May 2014.
GHMM18. S. Garg, M. Hajiabadi, M. Mahmoody, and A. Mohammed. Limits on the power of garbling

techniques for public-key encryption. In CRYPTO 2018, Part III, LNCS 10993, pages 335–364.
Springer, Cham, August 2018.

GJL23. M. Green, A. Jain, and G. V. Laer. Efficient set membership encryption and applications. In
ACM CCS 2023, pages 1080–1092. ACM Press, November 2023.

GLO15. S. Garg, S. Lu, and R. Ostrovsky. Black-box garbled RAM. In 56th FOCS, pages 210–229. IEEE
Computer Society Press, October 2015.

Private Laconic OT with Preprocessing 25

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In 19th ACM STOC, pages 218–229. ACM Press,
May 1987.

GSW13. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, pages 75–92. Springer,
2013.

HKO22. D. Heath, V. Kolesnikov, and R. Ostrovsky. EpiGRAM: Practical garbled RAM. In EURO-
CRYPT 2022, Part I, LNCS 13275, pages 3–33. Springer, Cham, May / June 2022.

HOSS18. C. Hazay, E. Orsini, P. Scholl, and E. Soria-Vazquez. Concretely efficient large-scale MPC with
active security (or, TinyKeys for TinyOT). In ASIACRYPT 2018, Part III, LNCS 11274, pages
86–117. Springer, Cham, December 2018.

IKM+13. Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-Cherniavsky. On the power of
correlated randomness in secure computation. In TCC 2013, LNCS 7785, pages 600–620. Springer,
Berlin, Heidelberg, March 2013.

IKNP03. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In
CRYPTO 2003, LNCS 2729, pages 145–161. Springer, Berlin, Heidelberg, August 2003.

IR90. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations. In
CRYPTO’88, LNCS 403, pages 8–26. Springer, New York, August 1990.

Kil88a. J. Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31. ACM
Press, May 1988.

Kil88b. J. Kilian. Zero-knowledge with log-space verifiers. In 29th FOCS, pages 25–35. IEEE Computer
Society Press, October 1988.

LMW23. W. Lin, E. Mook, and D. Wichs. Doubly efficient private information retrieval and fully homo-
morphic RAM computation from ring LWE. In STOC, pages 595–608. ACM, 2023.

LO13. S. Lu and R. Ostrovsky. How to garble RAM programs. In EUROCRYPT 2013, LNCS 7881,
pages 719–734. Springer, Berlin, Heidelberg, May 2013.

NNOB12. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical active-
secure two-party computation. In CRYPTO 2012, LNCS 7417, pages 681–700. Springer, Berlin,
Heidelberg, August 2012.

PAP24. E. Pohle, A. Abidin, and B. Preneel. Fast evaluation of s-boxes with garbled circuits. IEEE
Trans. Inf. Forensics Secur., 19:5530–5544, 2024.

QWW18. W. Quach, H. Wee, and D. Wichs. Laconic function evaluation and applications. In 59th FOCS,
pages 859–870. IEEE Computer Society Press, October 2018.

Rab81. M. O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR-81, Aiken
Computation Lab, Harvard University, 1981.

Reg05. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

Yao82. A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd FOCS, pages
160–164. IEEE Computer Society Press, November 1982.

YWL+20. K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang. Ferret: Fast extension for correlated OT
with small communication. In ACM CCS 2020, pages 1607–1626. ACM Press, November 2020.

YWZ20. K. Yang, X. Wang, and J. Zhang. More efficient MPC from improved triple generation and
authenticated garbling. In ACM CCS 2020, pages 1627–1646. ACM Press, November 2020.

	Private Laconic Oblivious Transfer with Preprocessing

