
STARK-based Signatures from the RPO Permutation

Shahla Atapoor1, Cyprien Delpech de Saint Guilhem2, Al Kindi3

1COSIC, KU Leuven, shahla.atapoor@kuleuven.be
23MI Labs, Leuven, cyprien@3milabs.tech

3Polygon Labs, al.kindi@polygon.technology

3rd October 2024

Abstract

This work describes a digital signature scheme constructed from a zero-know-
ledge proof of knowledge of a pre-image of the Rescue Prime Optimized (RPO)
permutation. The proof of knowledge is constructed with the DEEP-ALI inter-
active oracle proof combined with the Ben-Sasson–Chiesa–Spooner (BCS) trans-
formation in the random oracle model. The EUF-CMA security of the resulting
signature scheme is established from the UC-friendly security properties of the
BCS transformation and the pre-image hardness of the RPO permutation.

The implementation of the scheme computes signatures in 13ms and verifies
them in 1ms on a single core when the BCS transform is implemented with the
Blake3 hash function. (The multi-threaded implementation signs in 9.2ms and
also verifies in 1ms.) These speeds are obtained with parameters achieving 122
bits of average-case security for 2122-bounded adversaries with access to at most
264 signatures.

Contents

1 Introduction 2
1.1 Recursive Zero-Knowledge Proofs . 3
1.2 Our Contribution . 4

2 Technical Overview 4
2.1 The Rescue-Prime Optimised Hash Function 4
2.2 The DEEP-ALI Interactive Oracle Proof 5
2.3 The BCS Transformation: from IOP to ZK-STARK 6
2.4 A Signature Scheme from a ZK-STARK 6

3 An AIR for RPO 6
3.1 Algebraic Intermediate Representation 7
3.2 AIR Constraints for the RPO Permutation 8

4 DEEP-ALI: an IOP for AIRs 10
4.1 Relations and Interactive Oracle Proofs 10
4.2 The DEEP-ALI IOP for AIR Satisfiability 10

4.2.1 The protocol . 10
4.2.2 Setting the zero-knowledge blow-up parameter β 12

1

4.2.3 Setting the degree of the quotient segment polynomials 12
4.3 The FRI IOP for Low-Degree Testing 13
4.4 Security Errors of the DEEP-ALI IOP 13

4.4.1 Zero-knowledge error . 13
4.4.2 Round-by-round knowledge soundness error 14

5 The BCS Transformation: a ZK-STARK for AIRs 15
5.1 Definitions of Schemes and Security Notions 15
5.2 The BCS Transformation and its UC Security 16
5.3 Zero-Knowledge Security . 16
5.4 True-Simulation Knowledge Soundness 19

6 A Signature Scheme from RPO Pre-Images 22
6.1 Hard Relations and RPO Pre-Image Resistance 22
6.2 Scheme and Security Definitions . 22
6.3 The Signature Construction . 23

7 Concrete Parameters and Performance 23
7.1 Concrete Security . 23

7.1.1 Signature scheme security . 24
7.1.2 RPO relation security . 24
7.1.3 NArg true-simulation knowledge soundness security 24
7.1.4 NArg zero-knowledge security . 25
7.1.5 List decoding regime analysis of IOP knowledge soundness . . . 25
7.1.6 Unique decoding regime analysis of IOP knowledge soundness . . 26
7.1.7 Concrete parameters . 26

7.2 Performance . 27

References 28

A Appendix 29
A.1 Correlated Agreement . 30
A.2 Correlated Weighted Agreement . 31

1 Introduction

Zero-knowledge scalable transparent arguments of knowledge (ZK-STARKs) are cryp-
tographic proof systems [Ben+18] that have gained significant attention for their
scalability and transparency, distinguishing themselves from other zero-knowledge sys-
tems. ZK-STARKs operate within the interactive oracle proof (IOP) framework in the
random oracle model (ROM), eliminating the need for trusted setups and making them
highly practical and efficient, especially in large-scale computational contexts.

The transparency of ZK-STARKs is due to their use of public-coin IOP systems and
keyless hash functions which do not require trusted setups. These hash functions are
also instrumental in converting interactive proofs into non-interactive ones. Techniques
like the Fiat–Shamir transformation for sigma protocols [FS86], the Micali transforma-
tion for probabilistically checkable proofs (PCPs) [Mic00] and the BCS transformation
for IOPs [BCS16] are based on this approach. In these scenarios, hash functions effect-
ively link theoretical models to practical implementations, with the ROM providing a
clear and effective framework for analyzing security.

2

The transparency of ZK-STARKs simplifies deployment by avoiding the need for
complex multi-party cryptographic ceremonies to generate setup parameters. The hash-
based transformations in ZK-STARKs further contribute to their efficient verification
processes.

Beyond their transparency, ZK-STARKs also offer significant advantages in scalab-
ility. They enable faster proof generation and verification, particularly as the witness
size increases, making them highly suitable for applications that involve large-scale
computations. This combination of scalability and transparency makes ZK-STARKs a
practical and effective solution for modern cryptographic requirements.

1.1 Recursive Zero-Knowledge Proofs

Recursive zero-knowledge proofs (ZKPs) represent an advanced class of proof systems
wherein the validation of a proof is proven within another proof system [Bit+13]. To
illustrate, consider a proof system Π1 = (P1,V1) where P1 is the prover and V1 is the
verifier. In this setup, P1 generates a proof π1, which is subsequently validated by V1.

In the context of recursive proofs, the role of V1 extends beyond mere validation.
While verifying the initial proof π1, V1 also produces a new proof π2, within a second
proof system Π2, that attests to the correctness of the verification. Consequently, V1
operates both as the verifier of the initial proof and as the prover for the subsequent
verifier.

The subsequent verifier, V2, receives and validates this new proof generated by V1.
A notable advantage of this recursive approach is its enhanced efficiency: the time
required to verify the second proof is substantially reduced compared to the verification
of the initial proof, and the size of the second proof is smaller.

Additionally, recursive ZKPs are particularly noteworthy for their capability to
handle multiple proofs simultaneously. In such cases, V1 can validate several different
proofs and produce a single proof of validity for the next set of verifiers. These sub-
sequent verifiers then only need to verify this single proof from V1, thereby simplifying
the validation process and ensuring the correctness of all proofs without having to
check each one individually. In this case, the potential of recursive ZKPs is further
highlighted, showing significantly greater efficiency.

The power of recursive ZKPs becomes even more evident when we link them with
cryptographic signature schemes. A signature scheme can be seen as a cryptographic
primitive that verifies the authenticity and integrity of messages or transactions. In
scenarios where multiple transactions or signatures need to be validated, recursive
ZKPs offer a more efficient method. Instead of verifying each signature individually,
which can be computationally expensive, recursive ZKPs allow for the aggregation of
these signature verifications into a single, compact proof, if the signature scheme’s
verification algorithm is based on an underlying proof system. This “proof of signature
verification” can then be passed to subsequent verifiers, reducing both the size of the
data they need to process and the time required for verification.

In this sense, the recursive ZKP mechanism effectively functions as a signature
system itself. It generates a single proof that guarantees the correctness of multiple
verifications—similar to how a cryptographic signature validates the authenticity of
a message. This idea highlights why designing a signature scheme built on recursive
ZKPs is crucial. Not only does it improve efficiency, but it also streamlines the veri-
fication process for large-scale systems where multiple proofs or signatures need to
be verified rapidly. The ability to generate a single proof from multiple verifications
makes this approach particularly appealing for applications such as blockchains, fin-
ancial transactions, and other distributed systems where efficiency and security are
paramount.

3

1.2 Our Contribution

In this paper, we first describe a zero-knowledge and round-by-round knowledge sound
IOP system. We then apply the BCS transformation to convert this IOP into a UC-
friendly zero-knowledge and UC-friendly knowledge sound non-interactive argument
(NArg) system using the results of Chiesa and Fenzi [CF24]. Our next step involves
demonstrating that this NArg system, endowed with these UC-friendly properties, is
sufficient to achieve zero-knowledge and true-simulation knowledge soundness (also
known as true-simulation extractability). These properties are crucial as they form the
prerequisites for constructing an EUF-CMA STARK-based signature scheme, using
the approach described by Do Dinh [Do24].

2 Technical Overview

This paper describes an instance of the “signature scheme from zero-knowledge proof
of a hard relation” paradigm. In reverse order, its various components are instantiated
by:

1. Knowledge of a Rescue-Prime Optimised pre-image as the hard relation,

2. The DEEP-ALI interactive oracle proof of knowledge as the zero-knowledge proof
system for the RPO pre-image hard relation,

3. The BCS transform of the DEEP-ALI IOP as the non-interactive proof system,

4. The construction of a signature scheme from a non-interactive zero-knowledge
proof of knowledge.

2.1 The Rescue-Prime Optimised Hash Function

An instance of the Marvellous design strategy, Rescue-Prime Optimised (RPO) is an
arithmetic hash function specifically desgined for the “Goldilocks field” Fp, where
p = 264 − 232 + 1 [Ash+22]. In this work only the parameter set targeting 128 bits of
security will be used.

At this security level, the RPO hash function operates on a state m⃗ ∈ F12
p of 12

field elements, which is composed of a capacity c⃗ ∈ F4
p of length 4 and a rate r⃗ ∈ F8

p

of length 8, such that m⃗ = c⃗∥r⃗. In one invocation of the permutation, this state is
acted upon sequentially by 7 round functions, which are identical in structure and
differ only in the round constants that they add onto the state. We refer the reader to
the RPO specification document for the description of the round constants; below we
only describe the generic round functions.

Each of the round functions is composed of two sequential half-rounds whose op-
erations are:

1. multiplication of the state vector by a 12× 12 MDS circulant matrix,

2. addition of the half-round constant vector to the state vector,

3. either: (a) raising each state vector element to the power of α = 7 ∈ Fp, in the
first half-round, or (b) raising each state vector element to the power of α−1 ∈ Fp,
in the second half-round.

4

2.2 The DEEP-ALI Interactive Oracle Proof

The DEEP-ALI IOP protocol enables a Prover to convince a Verifier that a computa-
tion was performed correctly. In our case, the computation is the evaluation of the RPO
hash function on a one-block message sk = (sk1, · · · , sk4, 0, · · · , 0) ∈ F8

p to produce a
four-element hash value pk = (pk1, · · · , pk4) = RPO(sk).

Algebraic intermediate representation of the RPO computation. To be com-
patible with the DEEP-ALI IOP protocol, this computation is represented as an 8×12
table, where the i-th row is the state vector of the RPO hash function after the com-
putation of the i-th round. To be proven as a valid representation of the computation
pk← RPO(sk), while not revealing the value of sk, this table should fulfill the following
public conditions:

1. its first row should have the form (0, 0, 0, 0, ∗, ∗, ∗, ∗, 0, 0, 0, 0) ∈ F12
p ,

2. any two adjacent rows should be a valid input-output pair of the corresponding
RPO round function,

3. its last row should have the form (∗, ∗, ∗, ∗, pk1, pk2, pk3, pk4, ∗, ∗, ∗, ∗) ∈ F12
p .

The DEEP-ALI IOP is then parameterised with an algebraic intermediate repres-
entation (AIR), which, together with some parameters, specifies multivariate polyno-
mials that capture the public conditions that define “correctness” of a computation
when represented as such a table, also known as an execution trace. In our case, the
conditions described above can be expressed with 24 such constraint polynomials.

These constraint polynomials are defined in such a way that they evaluate to zero
on the values of the execution trace if and only if the trace represents a correct com-
putation of the RPO hash function.

DEEP-ALI proof of AIR satisfiability. Given an AIR as public input and a
private execution trace that the Prover claims is correct, the DEEP-ALI protocol
allows the Verifier to check that the trace does indeed satisfy the constraint polynomials
defined by the AIR. This is achieved by the Prover first interpolating the columns of
the trace table into witness polynomials, randomising them to preserve the secrecy of
the initial and intermediary computation values, and committing to them as oracles.

Given these commitments, the Verifier provides combination randomness that the
Prover uses to compute a quotient polynomial. This linearly combines the compositions
of the constraint and witness polynomials in such a way that the satisfiability of the
AIR is equated with the divisibility of these composed polynomials by public nullifier
polynomials. The Prover then splits the quotient polynomial into quotient segment
polynomials and commits to a randomisation of these as oracles. Finally, the Verifier
performs two steps:

1. it requests the evaluations of the randomised witness and quotient segment poly-
nomials at a random point to check the correctness of the quotient polynomial
relative to the combination randomness and the constraint polynomials; and

2. it engages with the Prover in an instance of the FRI protocol using the oracle
commitments to the randomised witness and quotient segment polynomials to
verify that (a) the evaluations provided by the Prover are correct, and (b) the
randomised witness and quotient segment polynomials are of appropriately low
degree, which implies the divisibility of the combined constraint and witness
polynomials by the nullifier polynomials.

5

If the check on the evaluations passes and the FRI protocol accepts, then the Veri-
fier knows that, with high probability, the witness polynomials interpolated from the
execution trace does indeed satisfy the AIR for the RPO permutation.

2.3 The BCS Transformation: from IOP to ZK-STARK

The DEEP-ALI IOP presented above and its FRI sub-protocol are useful abstractions
but they rely on theoretical “oracles” that must be instantiated with concrete crypto-
graphic primitives. Furthermore, the interaction that they require between the Prover
and the Verifier must be done away with to construct a signature scheme where the
signature can be publicly verified without participation from the signing party.

The Ben-Sasson–Chiesa–Spooner (BCS) transformation [BCS16] handles both of
these requirements, constructing a succinct non-interactive argument of knowledge
(SNARK) in the random oracle model (ROM) when given an arbitrary IOP. It does
this with two main components: (a) a Merkle-tree commitment scheme in the ROM,
together with opening proofs, to replace the Prover producing oracle commitments that
the Verifier can query, and (b) a ROM-based replacement of the interactive Verifier,
where each Prover message is queried to the ROM to generate the next Verifier random
message, similarly to the Fiat–Shamir transformation.

Given an IOP with established zero-knowledge and knowledge soundness security
for a given relation, the BCS transformation then produces a ZK-STARK for the same
relation whose security properties can be related to those of the IOP and of the Merkle
tree commitment scheme with some security loss owing to the use of the random oracle
model and to the powers of the adversary in the corresponding security experiments

2.4 A Signature Scheme from a ZK-STARK

Finally, the ZK-STARK for proving knowledge of an RPO pre-image resulting from
the BCS transformation of the DEEP-ALI IOP is used to construct a signature scheme
where the secret signing key is the pre-image known by the Prover, the public verifying
key is the image of the signing key under the RPO hash function, and the signature is
an argument of knowledge where the message to be signed is appended to the instance
of the RPO relation being proven. Including the message in the instance in this way
does not change the RPO computation that is being proven, but it feeds the message
into the chain of calls to the random oracle made during the BCS transformation, thus
tying the proof to the individual message such that it cannot be re-purposed for a
different message.

This framework for constructing signature schemes was first introduced by Katz
and Vaikuntanathan [KV09], then refined and generalised by Dodis et al. [Dod+10],
and then adapted to the random oracle model by Faust et al. [Fau+12]. In this work,
we use the results recently obtained by Do Dinh [Do24] for the provable EUF-CMA
security of these signature schemes.

3 An AIR for RPO

In this section, we first formally define algebraic intermediate representations (AIRs)
and their satisfiability and then specify the specific AIR that we will use to verify the
correctness of an RPO hash function execution trace.

6

3.1 Algebraic Intermediate Representation

As defined by Ben-Sasson et al. [Ben+18] and the StarkWare Team [Sta21], an AIR
captures the step-by-step execution of a state machine by describing the set of con-
straints that the state of the registers of the machine must satisfy during correct
execution. More precisely:

Definition 1. An algebraic intermediate representation (AIR) is a tuple A = (F,w, w̃,
h, g,H, s,Cset, d) where:

• F is a finite field,

• w ∈ N>0 specifies the execution trace width (i.e., the number of registers),

• w̃ ∈ N≥0 specifies the width of an optional additional “virtual trace” table which
can contain public constants required in the execution of the state machine,1

• h ∈ N>0 specifies the logarithm of the trace height (i.e., the number of steps in
the trace),

• g ∈ F∗ is a generator of the multiplicative group H, called the trace domain,
such that H ⊂ F∗ and |H| = 2h,

• Cset := {C1, . . . ,Cs} is a finite set of size s of constraints, where each constraint
is a tuple of the form (Qi, Hi) with:

– Qi ∈ F[X⃗∥Y⃗ ∥Z⃗]≤di is a multivariate constraint polynomial of total degree

at most di in 2w + w̃ variables, where X⃗ and Y⃗ , both of length w, are
variables over adjacent rows of the execution trace, and Z⃗ of length w̃, are
optional variables over the additional public “virtual trace”.

– Hi ⊆ H is a subset of the trace domain, called the i-th enforcement domain,

• d = maxi∈[s]{di}.

Remark 1. This definition restricts the transition constraints Qi to apply only to two
adjacent rows of the execution trace. This simplifies the description of the IOP and is
enough for our purposes.

Definition 2. Given a width w ∈ N>0, an AIR assignment p⃗ of length w is a tuple of
polynomials:

p⃗ = (p1, . . . , pw) ∈ (F[X])w.

Given an AIR constraint Q ∈ F[X⃗∥Y⃗ ∥Z⃗]≤di and virtual trace polynomials z⃗ ∈
(F[X])w̃, the composition of Q, z⃗ and the assignment p⃗, is the univariate polynomial
denoted by Qz⃗ ◦ p⃗ ∈ F[X] that is the result of assigning Xi ← pi(X), Yi ← pi(g ·X)
and Zi ← zi(X):

(Qz⃗ ◦ p⃗)(X) = Q(p1(X), . . . , pw(X), p1(g ·X), . . . , pw(g ·X), z1(X), . . . , zw̃(X)).

Via interpolation, the columns of the execution trace of a state machine for a given
input can be encoded as polynomials in an AIR assignment, and the columns of the
public virtual trace can be encoded as the virtual trace polynomials. We can then
verify that this execution trace satisfies the constraints of a given AIR and suitable
public virtual trace, by checking, for every i-th constraint, whether the i-th univariate
polynomial resulting from the composition of the i-th constraint polynomial with the
AIR assignment vanishes on the i-th enforcement domain. This is formally defined as
follows:

1This is an instantiation of the concept of transparent oracles from IOPs where the values of the
virtual trace table are part of the instance being represented by the AIR.

7

Definition 3. Given an AIR A, an AIR assignment p⃗ ∈ (F[X])w satisfies A for virtual
trace polynomials z⃗ ∈ (F[X])w̃ if and only if

∀i ∈ [s], x ∈ Hi =⇒
(
Qz⃗

i ◦ p⃗
)
(x) = 0,

or equivalently,

∀i ∈ [s],
Qz⃗

i ◦ p⃗
vHi

∈ F[X],

where vHi
∈ F[X] is the unique monic polynomial of degree |Hi| which vanishes on Hi,

i.e., vHi
(X) :=

∏
h∈Hi

(X − h) .

3.2 AIR Constraints for the RPO Permutation

Given a vector pk ∈ F4, the following AIR, denoted ARPO(pk) describes one invocation
of the RPO permutation, as described by Ashur et al. [Ash+22], which outputs pk as
the hash value.

• F is the “Goldilocks field” Fp where p = 264 − 232 + 1,

• w = 12, for the size 12 of the RPO state vector,

• w̃ = 24, for the two vectors of half-round constants used in the RPO permutation,

• h = 3, for the 23 = 8 rows encoding 7 executions of the round function,

• g = 224 = 16 777 216, an 8-th root of unity in F,

• H = ⟨g⟩,

• Cset := CsetT ∪ CsetBf ∪ CsetBl consisting of

– |CsetT| = 12 transition constraints for the 7 round functions,

– |CsetBf | = 8 boundary constraints on the first row, and

– |CsetBl | = 4 boundary constraints on the last row,

• s = |Cset| = 12 + 8 + 4 = 24.

• d = 7.

Given these parameters and the structure of the RPO permutation, we then formalise
the different constraints as follows:

Transition constraints CsetT. The RPO permutation fRPO : Fw → Fw can be
factored into the following composition of maps

fRPO(m⃗) = fR7
◦ · · · ◦ fR1

(m⃗),

where fRi : Fw → Fw expresses the i-th round function. Each of these round functions
can itself be factored into the following composition of maps

fRi(x⃗) = fα−1 ◦ fARC2i ◦ fMDS ◦ fα ◦ fARC1i ◦ fMDS(x⃗),

with:

• fMDS(x⃗) = M · x⃗ where M is the MDS circulant matrix of the RPO primitive,

8

• fARC1i(x⃗) = x⃗+ k⃗1,i where k⃗1,i is the i-th vector of first half-round constants,

• fARC2i(x⃗) = x⃗+ k⃗2,i where k⃗2,i is the i-th vector of second half-round constants,

• fα(x⃗) : (xi) 7→ (xα
i) where α = 7,

• fα−1(x⃗) : (xi) 7→ (xα−1

i) where α−1 = 4(p−1)
7 = 10 540 996 611 094 048 183 ∈ F.

The execution trace should start with the input state vector to the RPO permuta-
tion as its first (0-th) row and end with the output state vector as the last (7-th)
row. For rows i = 1, . . . , 7, each of these should contain the output of the i-th round
function fRi

applied to the previous row.
Let x⃗ and y⃗ be two consecutive rows of the execution trace, then it should hold

that y⃗ = fRi(x⃗) for some i = 1, . . . , 7. This is equivalent to requiring that

fα(y⃗) = fARC2i ◦ fMDS ◦ fα ◦ fARC1i ◦ fMDS(x⃗). (1)

This can be expressed component-wise as requiring that yαj = pj(x⃗∥z⃗i) where, for

j ∈ [w], pj ∈ F[X⃗∥Z⃗]7 expresses the j-th component of the right hand side of Eq. (1)
when z⃗i ∈ Fw̃ takes the values of the two 12-element vectors of half-round constants
for the i-th round from the virtual trace table,2 i.e.,

pj(x⃗∥z⃗i) = (fARC2i ◦ fMDS ◦ fα ◦ fARC1i ◦ fMDS(x⃗))j .

This means that Cj = (Qj , Hj) ∈ CsetT, for j = [w], with

Qj(X⃗∥Y⃗ ∥Z⃗) = pj(X⃗∥Z⃗)− Y α
j ,

and Hj = {gi : i = 0, . . . , 6}; this choice of Hj selects all rows, except for the last one,
on which to enforce the constraints.

First row boundary constraints CsetBf . We enforce that the first four elements
of the state, containing the capacity, as well as the last four elements, containing the
second half of the rate, are all set to zero in the first row of the execution trace. This
constrains the Prover to only include a four-element secret key as input to the RPO
hash function. To this end, we define Cj = (Qj , Hj) ∈ CsetBf , for j ∈ [8], with

Qj(X⃗∥Y⃗ ∥Z⃗) = Xj , for j = 1, . . . , 4,

Qj(X⃗∥Y⃗ ∥Z⃗) = Xj+4, for j = 5, . . . , 8,

and Hj = {g0}, for j ∈ [8], to select only the first row to which apply these constraints.

Last row boundary constraints CsetBl To enforce that the final state of the RPO
permutation computation includes pk in the first half of its rate, we define the following
constraints Cj = (Qj , Hj) ∈ CsetBl , for j ∈ [4]:

Qj(X⃗∥Y⃗ ∥Z⃗) = Xj+4 − pkj ,

with Hj = {g7} to select only the last row to which to apply these constraints.

2That is, for the i-th round, elements (zi)1, . . . , (zi)12 take the values of the first half-round constant
vector, and elements (zi)13, . . . , (zi)24 takes the values of the second half-round constant vector.

9

4 DEEP-ALI: an IOP for AIRs

This section describes the DEEP-ALI interactive oracle proof (IOP) system for AIRs
as defined in Section 3.1.

Reed–Solomon code notation. For a finite field F, a domain D ⊂ F∗ of size
n ∈ N>0 and a degree k ∈ [n], we denote the Reed–Solomon code of length n and rate
ρ = k

n by

RS[F, D, k] =
{
(p(x))x∈D : p ∈ F[X]<k

}
.

4.1 Relations and Interactive Oracle Proofs

We refine the definition of relations to the case of AIRs for RPO computations which
output a specific four-element digest.

Definition 4 (RPO Relation). A relation R is a set of instance-witness pairs (x,w).
Letting ARPO(pk) denote an AIR for an RPO computation which outputs pk ∈ F4 as
its digest, we define the RPO-satisfiability relation

RRPO = {(ARPO(pk), w⃗ ∈ (F[X])w) : w⃗ satisfies ARPO(pk)}pk∈F4 .

We also formally define a k-round interactive protocol to prove satisfiability of an
AIR.

Definition 5 (adapted from [CY24, Section 23.1]). An IOP for AIR-satisfiability is
a tuple of algorithms IOP = (PIOP,VIOP) that works as follows. The IOP Prover PIOP

receives as input an instance x = A and a witness w = w⃗ ∈ (F[X])w and the IOP
Verifier VIOP receives as input the same instance x.

Over k ∈ N>0 rounds, they interact by, at each round i ∈ [k], PIOP sending an
oracle proof string Πi and VIOP optionally querying any of the previous oracles at any
location and sending a message ρi.

After the interaction, the Verifier VIOP outputs a bit denoting whether it accepts (⊤)
or rejects (⊥) the Prover’s claim that w⃗ satisfies A.

4.2 The DEEP-ALI IOP for AIR Satisfiability

We now detail the DEEP-ALI IOP protocol for AIR satisfiability [Sta21; Hab22] and
discuss its parameters and its soundness error.

4.2.1 The protocol

Protocol 1 (DEEP-ALI IOP for AIR). Given an AIR instance x = A, let G be a
degree-e extension field of F, i.e., [G : F] = e.

Prover setup. Given an execution trace T ∈ F2h×w, let w1, . . . , ww ∈ F[X]<|H| be
the polynomials interpolating each of the (execution) trace columns over the trace
domain H, i.e., it holds that wj(g

i) = Ti,j . These w witness polynomials form the AIR
assignment w⃗ that the Prover claims satisfies A.

10

Prover round 1. To protect its knowledge of the witness polynomial, the Prover
will instead prove that the AIR A is satisfied by a randomised version ˆ⃗w of the wit-
ness assignment w⃗. We denote by ŵ1, . . . , ŵw ∈ F[X]<β·|H| the randomised witness
polynomials constructed by the Prover as

ŵi = wi + vH · ri,

for randomly sampled witness randomising polynomials ri ←$ F[X]<(β−1)·|H|, where
the zero-knowledge blow-up parameter β is specified in Section 4.2.2.

The Prover next computes the Reed–Solomon encodings of the ŵi polynomials, for
i ∈ [w], over a domain D of size n = k/ρ that is a coset of a smooth subgroup of
(F∗,×) such that D ∩ H = ∅. The first oracle proof string Π1 sent by PIOP is the w
Reed–Solomon codewords:

Π1 = {(ŵi(x))x∈D}i∈[w].

Verifier round 1. In response to the first proof string, the Verifier challenges the
prover by sending random values λi ←$ G, for i ∈ [s], one for each constraint in the
AIR A:

ρ1 = (λ1, . . . , λs).

Prover round 2. With these challenges, the Prover linearly combines the com-
positions of the constraint polynomials with the randomised witness polynomials to
compute the quotient polynomial as follows:

First, the Prover interpolates the w̃ columns of the public virtual trace to obtain
z⃗ ∈ (F[X])w̃. Then, it computes the quotient polynomial q ∈ G[X]≤dq as:

q =

s∑
i=1

λi ·
Qz⃗

i ◦ ŵ
vHi

, (2)

where the degree dq = maxi∈s{di (β|H| − 1)− |Hi|}.
The Prover then splits q into the unique quotient segment polynomials qj ∈ G[X]<ℓ,

j ∈ [f], with degree parameter ℓ and number parameter f specified in Section 4.2.3,
such that

q =

f∑
j=1

Xℓ·(j−1) · qj . (3)

Finally, the Prover independently and uniformly samples quotient segment ran-
domizing polynomials ti ←$ G[X]<dt , i ∈ [f − 1], for some degree dt specified in
Section 4.2.3, and sets

q̂1 = q1 +Xℓ · t1,
...

q̂2 = q2 +Xℓ · t2 − t1, q̂f−1 = qf−1 +Xℓ · tf−1 − tf−2,

... q̂f = qf − tf−1.

Note that this construction of the randomised quotient segment polynomials q̂j implies

q =

f∑
j=1

Xℓ·(j−1) · q̂j , (4)

11

and q̂j ∈ G[X]<β·|H| for j ∈ [f]. The second oracle proof string Π2 sent by PIOP is then
the set of f Reed–Solomon codewords:

Π2 = {(q̂j(x))x∈D}j∈[f].

Verifier round 2. In response, the Verifier sends to the Prover a random DEEP
query ρ2 = r ←$ G \ (D ∪H).

Prover round 3. The Prover responds with a third oracle proof string Π3 which
contains the evaluation claims:

(vi,1, vi,2) = (ŵi(r), ŵi(g · r)) , for i ∈ [w],

vj = q̂j(r), for j ∈ [f].

This proof string is read in full by the Verifier.

Batched-FRI for low-degree and evaluation checks. Finally, the Prover and
Verifier engage in an instance of the batched-FRI protocol (Protocol 2) with the three
proof strings sent by PIOP, low degree parameter d = β · |H|, and for nFRI queries.

Output. The Verifier accepts if Protocol 2 accepts and if the evaluation claims con-
tained in Π3 satisfy the overall identity Eq. (2) evaluated at X = r, where the Verifier
can reconstruct q(r) from Eq. (4) and interpolate z⃗ for Eq. (2) from the public virtual
trace.

Notation. From now on, we denote by IOPRPO the specialisation of the DEEP-ALI
protocol above to instances of the RPO relation RRPO.

4.2.2 Setting the zero-knowledge blow-up parameter β

The degree (β−1) · |H| of the witness randomizing polynomials ri is set using Eq. (13)
in [HK24], i.e., it is set such that

(β − 1) · |H| ≥ 2 (e+ nFRI) . (5)

Note that, for a fixed rate ρ of the Reed–Solomon code, nFRI also circularly depends
on β through D. This means that one might need to increase the initial choice of nFRI

or of e after the first β is chosen using Eq. (5) because this initial choice of β might
require a larger Reed–Solomon domain D and hence might lead to a decrease in the
soundness of the IOP when all other parameters are fixed.

4.2.3 Setting the degree of the quotient segment polynomials

The degree dt of the quotient segment randomizing polynomials ti is determined using
Eq. (12) in [HK24], that is

1 + nFRI ≤ dt.

Let nq := dq + 1 be the number of coefficients in the quotient polynomial, then we
can set the number of quotient segment polynomials to be

f =

⌈
nq

β · |H| − dt

⌉
,

12

and using f we can define the number of coefficients in each segment polynomial to be

ℓ =

⌈
nq

f

⌉
.

This choice guarantees that each randomised quotient segment polynomial q̂j has de-
gree less than β · |H|, for j ∈ [f].

4.3 The FRI IOP for Low-Degree Testing

Protocol 2 (Zero-knowledge FRI batch evaluation proof [Ben+19]). Given oracle access
to the w + f randomised polynomials

ŵ1(X), . . . , ŵw(X) ∈ F[X]<β·|H|,

q̂1(X), . . . , q̂f (X) ∈ G[X]<β·|H|,

and to their 2w + f evaluation claims

(vi,1, vi,2) = (ŵi(z), ŵi(g · z)) , i = 1, . . . ,w,

vj = q̂j(z), j = 1, . . . , f,

the batched-FRI protocol proceeds as follows:

Prover round 1. The Prover samples a mask polynomial R(X) ←$ G[X]<β·|H|−1

and sends its Reed–Solomon encoding to the Verifier as the first proof oracle ΠFRI
1 .

Verifier round 1. The Verifier responds with trace batching random coefficients
γi ←$ G, for i ∈ [w], and quotient segment batching random coefficients δj ←$ G, for
j ∈ [f].

FRI low-degree and evaluation check. The Prover and Verifier then engage in
an instance of the FRI protocol for the batched polynomial

R(X) +

w∑
i=1

γi ·
(
ŵi(X)− vi,1

X − z
+

ŵi(X)− vi,2
X − g · z

)
+

f∑
j=1

δj
q̂j(X)− vj

X − z
, (6)

for the Reed–Solomon code RS[G, D, β · |H|] with nFRI query rounds and agreement

parameter α =
(
1 + 1

2m

)
·√ρ, for some proximity parameter m ≥ 3 and rate ρ = β·|H|

|D| .

4.4 Security Errors of the DEEP-ALI IOP

We analyse the zero-knowledge and knowledge soundness errors of the DEEP-ALI
protocol as presented above.

4.4.1 Zero-knowledge error

Theorem 7 of Haböck and Kindi [HK24] shows that, with the constraints on parameter
choices described in Section 4.2.2, Protocol 1 is perfect honest-verifier zero-knowledge
and hence the zero-knowledge error ϵZKIOP of the DEEP-ALI IOP is equal to zero.

13

4.4.2 Round-by-round knowledge soundness error

As we will see in Section 5, the stronger notion of state-restoration soundness is needed
to use the BCS transformation to obtain a secure STARK. The following theorem
allows us to reason instead about the DEEP-ALI IOP’s round-by-round soundness
error.

Theorem 1 ([CY24, Theorem 31.3.1]). Let IOP = (PIOP,VIOP) be a public-coin IOP
with round complexity k. If IOP has round-by-round knowledge soundness error ϵRbR

IOP

then IOP has straight-line state restoration knowledge soundness error ϵSRIOP against a
t-move malicious prover with

ϵSRIOP(n, t) ≤ (t+ k) · ϵRbR
IOP (n).

Then, in the list decoding regime, Theorem 5 in the updated analysis of [Sta21]
can be adapted to give the following theorem in our setting:

Theorem 2 (DEEP-ALI RbR Soundness (list decoding)). For any multiplicity para-
meter 3 ≤ m < k

2 where k = β · |H|, the DEEP-ALI IOP (Protocol 1) has k = 3 + |⃗t|
rounds, where t⃗ = (ti) and ti is the degree of the reduction map in the i-th round of
the FRI commit phase, see Section 5.4 in [Sta21], and is round-by-round sound with
error

ϵRbR
DEEP-ALI = max

i
{ϵ1, · · · , ϵk},

where:

1. ϵ1 = L
|G| , with L := m

ρ− 2·m
|D|

,

2. ϵ2 = L2·max{d·(k+−1)+(k−1),k+(f−1)·ℓ+(k+−1)}
|G|−|D∪H| , with k+ = β · |H|+ 2,

3. ϵ3 =
(m+ 1

2)
7

3·√ρ3 · |D|2
|G| ,

4. For any 4 ≤ i ≤ k− 1 : ϵi = (ti−4 − 1) ·
(
ϵ3
∏i−4

j=0
1
t2j

+ 2m+1√
ρ ·

|D|+1
|G|

)
,

5. ϵk =
(√

ρ ·
(
1 + 1

2m

))nFRI
.

Moreover, the IOP is RbR knowledge sound with the same error.

Proof. The analysis of RbR soundness in the proof of Theorem 5 in [Sta21] applies as
is, with the individual bounds on each ϵi updated, when needed, to take into account
the changes induced by our decomposition of the quotient polynomial into quotient
segment polynomials. Note that here, and also in the original analysis in [Sta21], the
parameter m should be constrained so that η :=

√
ρ ·
(
1 + 1

2m

)
−
√
ρ+, where

√
ρ+ :=

β·|H|+2
|D| , satisfies η > 0 in order to be able to apply Theorem 1 in [Sta21]. The upper

bound in the statement of the Theorem guarantees exactly this.
As for RbR knowledge soundness, the analysis in Section 2.5 in [Blo+23] goes

through, with the appropriate adaptation to the error bounds.

Under the unique decoding regime, a different result can be stated.

Theorem 3 (DEEP-ALI RbR soundness (unique decoding)). The DEEP-ALI IOP
(Protocol 1) has k = 3+ |⃗t| rounds, where t⃗ = (ti) and ti is the degree of the reduction
map in the i-th round of the FRI commit phase and is round-by-round sound with error

ϵRbR
DEEP-ALI = max

i
{ϵ1, · · · , ϵk}

where:

14

1. ϵ1 = 1
|G| ,

2. ϵ2 = max{d·(k+−1)+(k−1),k+(f−1)·ℓ+(k+−1)}
|G|−|D∪H| , with k = β · |H| and k+ = k + 2,

3. ϵ3 = |D|
|G| ,

4. For any 4 ≤ i ≤ k− 1 : ϵi = (ti−4 − 1) · |D|+1
|G| ,

5. ϵk =
(

1+ρ+

2

)nFRI

, where ρ+ := β·|H|+2
|D| .

Moreover, the IOP is RbR knowledge sound with the same error.

Proof. The proof proceeds as in the proof of Theorem 2 with the main difference being
that in the unique decoding regime we instead have the following bound

max{P,P r⃗} ≤ 1.

Moreover, we can take the agreement parameter to be the smallest possible for the
Reed–Solomon code with rate ρ, respectively ρ+, namely 1 − 1−ρ

2 , respectively 1 −
1−ρ+

2 . This, together with the adaptation to the degree due to our segment polynomial
decomposition, yields the expressions for ϵ1 and ϵ2.

Now, for ϵ3, we invoke Theorem 9 instead of Theorem 7.4 from [Ben+20]. The rest
of the argument goes through from then on unaltered.

For ϵi, 4 ≤ i ≤ k − 1, we can use Theorem 10 in the analysis of Lemma 8.2 in
[Ben+20] in order to derive the following bound

Pr
z(l)

[E(l+1)] ≤ (tl − 1) · |D|+ 1

|G|
,

which is exactly the expression above. Finally, for ϵk, we note that the agreement
parameter needs to be greater than or equal to one minus the unique decoding radius of

the Reed–Solomon code with rate ρ+, namely 1− 1−ρ+

2 . Hence, setting α = 1− 1−ρ+

2 =
1+ρ+

2 in the analysis of Theorem 8.3 in [Ben+20] yields the above expression on ϵk.

5 The BCS Transformation: a ZK-STARK for AIRs

This section gathers definitions of the random oracle model and non-interactive argu-
ments and results on the UC-security of ZK-STARKs produced with the BCS trans-
formation. It also reduces the non-UC zero-knowledge and knowledge soundness secur-
ity of such ZK-STARKs to their UC versions.

5.1 Definitions of Schemes and Security Notions

In this paper, we consider non-interactive argument systems in the ROM. This model
is a framework where algorithms can make arbitrary queries to an oracle f sampled at
random; such algorithms are called oracle algorithms.

Definition 6 (Random oracle [CY24]). For λ ∈ N, let U(λ) denote the uniform dis-
tribution over all functions of the form f : {0, 1}∗ → {0, 1}λ. A function f sampled
from U(λ) at random, is called a random oracle (with output size λ).

To realize certain protocols (such as provably zero-knowledge argument systems),
it is necessary to enable certain oracle algorithms to program the random oracle on
chosen inputs.

15

Definition 7 (Explicitly programmable ROM). The explicitly programmable ROM,
given a random oracle f , allows an oracle algorithm Sf to output a tuple µ of input-
output pairs which can be used to program f which is then denoted f [µ]; that is,
when queried on an input that appears in µ, f [µ] will return the corresponding output
instead of the value initially determined by f .

If a random oracle f is used in multiple places, we denote by f ← f [µ] the action
of programming f with µ such that future calls to f are answered by f [µ], instead.
This action can be repeated for several programming tuples.

Definition 8 (Non-interactive argument in the ROM [CY24]). Let f ← U(λ) be a
random oracle. A non-interactive argument (NARG) in the ROM is a tuple NArg =

(PNArg,VNArg) where Pf
NArg is an oracle algorithm that receives as inputs an instance x

and a witness w and outputs an argument string π, and where Vf
NArg is an oracle

algorithm that receives as inputs the instance x and the argument string π and outputs
a bit denoting whether to accept (⊤) or reject (⊥) the argument.

5.2 The BCS Transformation and its UC Security

The BCS transformation converts a public-coin IOP into a transparent and succinct
non-interactive argument system [BCS16, Construction 25.1.1, pp. 248–9].

In Chiesa and Fenzi’s work [CF24], the security of the BCS transformation, with
random oracle output length λ ∈ N and privacy parameter s ∈ N, is proven in the UC
framework against (tq, tp, tP , tV)-budget environments which can make (1) tq sampling
queries to the random oracle, (2) tp programming queries to the random oracle, (3)
tP queries to the prover, and (4) tV queries to the verifier. Their results can then be
summarised as follows.

Theorem 4 ([CF24, Lemma 9.9, 9.12]). Let IOP be a public-coin IOP with proof
length l, query complexity q and round complexity k.

• If IOP is honest-verifier zero-knowledge with error ϵZKIOP, then BCS[IOP, λ, s] is
UC-friendly zero-knowledge with error

ϵUC-ZK
BCS (λ, s, tq, tp, tP , tV) = tP ·

(
tq + tp
2s

+ ϵUC-Hid
MT (λ, s, l, q, tq, tp, k) + ϵZKIOP

)
,

where ϵUC-Hid
MT denotes the UC-friendly hiding error of MT, the Merkle tree com-

mitment scheme [CF24, Lemma 7.12].

• If IOP is state-restoration knowledge sound with error ϵSRIOP, then BCS[IOP, λ, s]
is UC-friendly knowledge sound with error

ϵUC-KS
BCS (λ, s, tq, tp, tP , tV) = tV ·

(
ϵSRIOP + ϵUC-Ext

MT

)
,

where ϵUC-Ext
MT denotes the UC-friendly extraction error of MT, the Merkle tree

commitment scheme [CF24, Lemma 7.15].

5.3 Zero-Knowledge Security

To use the results of Do Dinh [Do24] for the security of our signature scheme built with
a non-interactive argument scheme produced by the BCS transformation, we must first
show that it satisfies the following definition of zero-knowledge.

16

ZKf
NArg,A(λ, b)

1 : f ←$ U(λ)

2 : b′ ← Af,Prove
f
b (1λ)

3 : return b′

Provefb (x,w)

1 : if ¬R(x,w) then return ⊥

2 : if b
?
= 1 then

3 : π ← Prove
f (x,w)

4 : else

5 : (π, µ)← Sf
NArg(x)

6 : f ← f [µ]

7 : return π

Figure 1: The argument zero-knowledge game ZKf in the ROM.

Definition 9 (adapted from [Do24, Definition 2.8]). Let f ← U(λ) be a random
oracle. A non-interactive argument NArg in the ROM is zero-knowledge in the ROM
with error ϵZKNArg if there exists a PPT argument simulator SfNArg such that, for every
PPT algorithm A making tq queries to f and tP queries to Prove,

|Pr[ZKNArg,A(λ, 1) = 1]− Pr[ZKNArg,A(λ, 0) = 1]| ≤ ϵZKNArg(λ, s, tq, tP)

and game ZK is defined in Fig. 1.

However, the results of Chiesa and Fenzi [CF24] (restated in Theorem 4) prove the
(in appearance stronger) UC-friendly zero-knowledge property, defined as follows.

Definition 10 (adapted from [CF24, Definition 5.10]). Let f ← U(λ) be a random
oracle. A non-interactive argument NArg in the ROM is UC-friendly zero-knowledge
in the ROM with error ϵUC-ZK

NArg , for the UC-ZK game defined in Fig. 2, if there exists

a PPT argument simulator SfNArg such that

|Pr[UC-ZKNArg,A(λ, 1) = 1]− Pr[UC-ZKNArg,A(λ, 0) = 1]| ≤ ϵUC-ZK
NArg (λ, s, tq, tp, tP , tV).

We show that the UC-friendly notion of zero-knowledge is indeed stronger than the
one used by Do Dinh [Do24] by proving the following theorem:

Theorem 5. If NArg is UC-friendly zero-knowledge with error ϵUC-ZK
NArg in the ROM

(Definition 10), then NArg is zero-knowledge in the ROM (Definition 9) with

ϵZKNArg(λ, s, tq, tP) = ϵUC-ZK
NArg (λ, s, tq, 0, tP , 0).

Proof. We define the simulator of the ZK game, Sf , to be the argument simulator
Sf from the UC-ZK game, which exists and is PPT by the assumption that NArg is
UC-friendly zero-knowledge in the ROM. Let B be a reduction adversary against the
UC-friendly zero-knowledge game, using an arbitrary PPT adversary A against the
argument simulation distinguishing game ZK.

17

UC-ZK
f,SNArg

NArg,A(λ, b)

1 : µ, µp, Qπ, Qp ← ∅

2 : b′ ← Af,Progb,Prove
f
b
,Verif

f
b (1λ)

3 : return b′

f(x)

1 : y ← f(x)

2 : µ← µ ∪ (q, x, y)

3 : return y

Progb(µp)

1 : if (x, y) ∈ µp ∧ (q, x, ∗) ∈ µ then

2 : return ⊥
3 : else

4 : µ← µ ∪ (p, x, y)(x,y)∈µp

5 : if b
?
= 0 then

6 : Qp ← Qp ∪ (p, x, y)(x,y)∈µp

7 : return ⊤

Provefb (x,w)

1 : if b
?
= 1 then

2 : π
µP← Prove

f (x,w)

3 : µ← µ ∪ µP

4 : Qπ ← Qπ ∪ (x,w)

5 : else

6 : (π, µ′)
µS← Sf

NArg(x)

7 : if µ← µ ∪ µS ∪ µ′ is invalid then

8 : return ⊥
9 : return π

Veriffb (x, π)

1 : b
µV← Vf (x, π)

2 : µ← µ ∪ µV

3 : if (x, π) ∈ Qπ, return ⊤

4 : elseif b
?
= 1 then

5 : return b ∧ (µV ∩ µ|p = ∅)
6 : else

7 : return b̃ ∧ (µV ∩Qp = ∅)

Figure 2: The UC-friendly zero-knowledge game UC-ZKf in the ROM.

18

The reduction B initializes adversary A with input λ. Then, A receives the well-
formed input from B and a well-formed output y from its oracle f simulated by B
using its own f oracle; this implies that tUC-ZK

q = tZKq . Since A is not allowed to make

programming queries to the random oracle in the ZK game, it holds that tUC-ZK
p = 0

for B.
Next, in the ZK game, A’s oracle Provefb is answered with B’s prover query with

the given (x,w). This implies that tUC-ZK
P = tZKP . In the case where b = 1 in the ZK

game, B runs its real prover ProvefUC-ZK and returns the proof π as the well-formed

output of the oracle Provefb to A. In the case where b = 0 in the ZK game, B runs its

simulator SfUC-ZK(x) and returns the proof π as the well-formed output of the oracle

Provefb to A.
When A eventually outputs b′, the output of B is also set to b′; given that, A’s

queries are answered indistinguishably from the ZK we can conclude that the reduction
B has the same probability to win the UC-friendly zero-knowledge game as A does of
winning the ZK game, and we, therefore, have ϵZKNArg = ϵUC-ZK

NArg .

Corollary 1. If IOP is public-coin and honest-verifier zero-knowledge with error ϵZKIOP,
then the non-interactive argument BCS[IOP, λ, s] is zero-knowledge in the ROM against
(tq, tP)-adversaries with error

ϵZKBCS(λ, s, tq, tP) = tP ·
(
tq
2s

+ ϵUC-Hid
MT + ϵZKIOP

)
.

Proof. The corollary follows from Theorems 4 and 5.

5.4 True-Simulation Knowledge Soundness

Definition 11 (adapted from [Do24, Definition 3.3]). Let f ← U(λ) be a random
oracle. A non-interactive argument NArg in the ROM has true-simulation knowledge
soundness in the ROM with error ϵtSKS

NArg against (tq, tP)-adversaries relative to the PPT

simulator SfNArg if there exists a deterministic polynomial-time extractor algorithm

EfNArg such that

Pr[tSKSfNArg,R,A(λ)] ≤ ϵtSKS
NArg (λ, s, tq, tP),

where the game tSKS is defined in Fig. 3.

Definition 12 ([CF24]). Let f ← U(λ) be a random oracle. A non-interactive ar-
gument NArg has UC-friendly knowledge soundness in the ROM with respect to a
simulator SfNArg with error ϵUC-KS

NArg if there exists a PPT extractor EfNArg such that, for
every (tq, tp, tP , tV)-budget adversary A,

Pr

[
advWin

∣∣∣∣ f ← U(λ)
advWin← UC-KSfS,E(n,A)

]
≤ ϵUC-KS

NArg (λ, s, tq, tp, tP , tV),

where the UC-KS game is defined in Fig. 4.

Theorem 6. If NArg is UC-friendly knowledge sound in the ROM with error ϵUC-KS
NArg ,

then NArg is true-simulation knowledge sound in the ROM with error

ϵtSKS
NArg (λ, s, tq, tP) = ϵUC-KS

NArg (λ, s, tq, 0, tP , 1).

19

tSKSfNArg,R,A(λ)

1 : Q← ∅

2 : (x, π)← Af,Provef (1λ)

3 : w← EfNArg(x, π)

4 : if ¬ArgVerf (x, π) then return ⊥
5 : if x ∈ Q then return ⊥
6 : return ¬R(x,w)

Provef (x,w)

1 : if ¬R(x,w) then return ⊥

2 : (π, µ)← Sf
NArg(x)

3 : f ← f [µ]

4 : Q← Q ∪ {x}
5 : return π

Figure 3: The true-simulation knowledge soundness game tSKSf in the ROM.

Proof. We define the extractor of game tSKS as EftSKS to directly call the extractor

EfUC-KS from game UC-KS, which exists and is PPT by the assumption that NArg is
UC-friendly knowledge sound in the ROM. We also define the simulator of game tSKS
as SftSKS to directly call the simulator SfUC-KS from game UC-KS, which exists and is
PPT by the assumption that NArg is UC-friendly knowledge sound in the ROM.

Let B denote a reduction adversary against the UC-friendly knowledge soundness
game, using an arbitrary PPT adversaryA against the argument true-simulation know-
ledge soundness game.

The reduction B passes the input λ directly to the adversary A as an input. When
it makes queries to the random oracle f , A receives the well-formed output from B
which it obtains from its own oracle f ; this implies that tUC-KS

q = tKS
q . Also, since A is

not allowed to make programming queries in the tSKS, it holds that tUC-KS
p = 0 for B.

Next, in the tSKS game, A’s proving oracle Provef uses B’s own prover query
with the given instance-witness pair (x,w). To answer such a query, the UC-KS game

runs SfUC-KS(x) and returns to B the proof π which in turn it returns to A as the

output of the oracle Provef . Because the simulator is the same in both game, B’s
answer to A’s query is distributed identically to the tSKS.

Finally, when A outputs (x, π) and halts in the tSKS game, the reduction B submits
a verifier query to the UC-KS game with input (x, π); this implies that tUC-KS

V = 1.

Assuming that A wins the tSKS game relative to the extractor EfUC-KS implies that
the pair (x, π) it returned (1) passes verification, (2) does not contain an instance x
that was previously queried and (3) causes the extractor to output a witness w such
that (x,w) /∈ R. These three properties of the pair (x, π) imply that B’s query to the
verification oracle causes advWin ← ⊤ (in particular since Qp = ∅ due to the absence
of programming queries), and therefore imply that

ϵtSKS
NArg (λ, s, tq, tP) = ϵUC-KS

NArg (λ, s, tq, 0, tP , 1).

20

UC-KSf,S,E
NArg,A(λ)

1 : Qx, Qπ, µ,QE, Qp ← ∅
2 : advWin← ⊥

3 : Af,Prog,Provef ,Veriff (1λ)

4 : return advWin

f(x)

1 : y := f(x)

2 : µ← µ ∪ (q, x, y)

3 : return y

Prog(µp)

1 : if (x, y) ∈ µp ∧ (q, x, ∗) ∈ µ then

2 : return ⊥
3 : else

4 : µ← µ ∪ {(p, x, y)}(x,y)∈µp

5 : Qp ← Qp ∪ {(p, x, y)}(x,y)∈µp

6 : return ⊤

Provef (x,w)

1 : (π, µ′)
µS← Sf

NArg(x)

2 : if µ← µ ∪ µS ∪ µ′ is invalid, then

3 : return ⊥
4 : QE ← QE ∪ µS

5 : Qx ← Qx ∪ x
6 : Qπ ← Qπ ∪ (x, π)

7 : return π

Veriff (x, π)

1 : b
µV← Vf (x, π)

2 : µ← µ ∪ µV

3 : if (x, π) ∈ Qπ, return ⊤

4 : b′ ← b ∧ (µV ∩Qp|p
?
= ∅)

5 : w← EfNArg(x, π,QE \Qp)

6 : if b′ = ⊤ ∧ x /∈ Qx ∧ (x,w) /∈ R then

7 : advWin← ⊤
8 : return b′

Figure 4: The UC-friendly knowledge soundness game UC-KSf in the ROM.

21

EUF-CMAf
Sig,A(λ)

1 : Q← ∅

2 : (sk, vk)← Sig.KeyGen(1λ)

3 : (m, σ)← Af,Sign
f
sk(1λ, vk)

4 : return Sig.SigVer(1λ, vk,m, σ) ∧m
?

/∈ Q

Signf
sk(m)

1 : σ ← Sig.Signf (1λ, sk,m)

2 : Q← Q ∪ {m}
3 : return σ

Figure 5: The unforgeability game EUF-CMAf
Sig,A in the random oracle model.

Corollary 2. If IOP is straightline state restoration knowledge sound, then the non-
interactive argument system BCS[IOP, λ, s] has true-simulation knowledge soundness
in the ROM with error

ϵtSKS
BCS (λ, s, tq, tP) = ϵSRIOP + ϵUC-Ext

MT .

Proof. The corollary follows from Theorems 4 and 6.

6 A Signature Scheme from RPO Pre-Images

6.1 Hard Relations and RPO Pre-Image Resistance

Definition 13 ([Do24, Definition 4.4]). Given a relation R, a probabilistic algorithm
GR in an instance-witness sampler for R if, for every instance size bound n ∈ N,
GR(1n) outputs a valid instance-witness pair (x,w) ∈ R with |x| ≤ n.

Definition 14. An instance-witness sampler GR for a relation R has hardness error
ϵGR if for every security parameter λ ∈ N and PPT algorithm A,

Pr

[
(x,w′) ∈ R

∣∣∣∣ (x,w)← GR(1λ)
w

′ ← A(1λ,x)

]
≤ ϵGR(λ).

6.2 Scheme and Security Definitions

Definition 15 (Signature scheme). Let f ← U(κ) be a random oracle. For security
parameter λ ∈ N and message length m ∈ N, a signature scheme in the ROM is a
tuple of algorithms Sig[λ,m] = (KeyGen,Sign,SigVer) where:

• (sk, vk)← KeyGen[λ]() generates signing-verifying key pairs,

• σ ← Signf [λ,m](sk,m) generates signatures for messages m ∈ {0, 1}m,

• {⊤,⊥} ∋ b← SigVerf [λ,m](vk,m, σ) accepts or rejects a given signature for the
given message and verifying key.

Definition 16 (Unforgeable signature scheme). Let f ← U(κ) be a random oracle.
A signature scheme Sig[λ,m] in the ROM is unforgeable under chosen message attack
(EUF-CMA) with error ϵEUF

Sig in the ROM if, for every PPT algorithm A with RO
query complexity tq ∈ N and signing oracle query complexity tS ∈ N,

Pr[EUF-CMAf
Sig,A] ≤ ϵEUF

Sig (λ,m, tq, tS)

where the EUF-CMA game is defined in Fig. 5

22

Let NArgRPO be the non-interactive argument system for RRPO,m in the ROM of
Section 5. Given a random oracle f ← U(λ), the RPO-based signature scheme
SigRPO[λ,m] is defined by:

• SigRPO.KeyGen[λ]()→ (sk←$ F4, pk← RPO(sk∥04)),

• SigRPO.Sign
f [λ,m](sk,m)→ NArgRPO.Pf (1λ, (RPO(sk∥04),m), sk),

• SigRPO.SigVer
f [λ,m](pk,m, σ)→ NArgRPO.Vf (1λ, (pk,m), σ).

Figure 6: The RPO-based signature scheme

6.3 The Signature Construction

We specialise the signature scheme construction presented by Do Dinh [Do24, Sec-
tion 4.3] to the RPO relation from Definition 4,

RRPO,m = {((x,m),w) : (x,w) ∈ RRPO ∧m ∈ {0, 1}m} ,

together with the non-interactive argument system from Section 5. The resulting
scheme SigRPO is presented in Fig. 6.

Theorem 7 ([Do24, Theorem 4.7]). If RRPO has hardness error ϵRel
RPO and NArgRPO has

computational true-simulation knowledge soundness error ϵtSKS
NArgRPO

and computational

zero-knowledge error ϵZKNArgRPO , then SigRPO[λ,m] has unforgeability error ϵEUF
SigRPO

such
that

ϵEUF
SigRPO

(λ,m, tq, tS) ≤ ϵRel
RPO(λ)

+ ϵtSKS
NArgRPO

(λ, tq, tS, λ+m)

+ ϵZKNArgRPO(λ, tq, tS, λ+m).

7 Concrete Parameters and Performance

This section analyses the concrete security of the STARK-based signature scheme,
establishes parameters and presents performance results.

7.1 Concrete Security

When discussing the concrete parameters and performance of cryptographic systems,
one critical aspect to consider is the security level associated with these parameters.
Security levels are often defined in terms of either worst-case or average-case security,
providing a measure of how resistant a system is to attacks. In practice, determining the
average-case security of a cryptographic primitive can be more insightful when focusing
on real-world performance, as it represents the expected resistance an adversary would
encounter under typical conditions rather than the most extreme scenarios.

The average-case security level is determined by evaluating the resources an at-
tacker would need on average to succeed in an attack. Specifically, if t represents the
computational effort and ϵ(t) the probability of a successful attack, then the average-
case security level is given by t

ϵ(t) [CY24]. This value expresses the expected resources

23

required for a successful attack, making it a useful metric when selecting security
parameters that balance efficiency and protection.

By opting for average-case security, cryptographic systems can avoid the higher
costs and performance overhead associated with worst-case security. This allows for
more practical deployment, particularly when the objective is to maintain adequate
security while optimizing performance.

7.1.1 Signature scheme security

We first analyze the requirements to obtain κSig bits of average-case security for SigRPO
against t-queries adversaries. Let κRPO, κ

tSKS
NArgRPO

, κZK
NArgRPO

denote the average-case rela-
tion hardness security level for RPO and true-simulation knowledge soundness and
zero-knowledge security levels for NArgRPO against t-bounded adversaries and let

κ′ = min{κRPO, κ
tSKS
NArgRPO

, κZK
NArgRPO

}.

Following from Theorem 7, we have

ϵEUF
SigRPO

t
≤ ϵRel

RPO

t
+

ϵtSKS
NArgRPO

t
+

ϵZKNArgRPO
t

≤ 2−κRPO + 2−κtSKS
NArgRPO + 2−κZK

NArgRPO ,

≤ 3 · 2−κ′
,

=⇒ t

ϵEUF
SigRPO

≥ 2κ
′

3
= 2κ

′−log 3,

which implies that κSig = κ′ − log 3.

7.1.2 RPO relation security

For the RPO permutation, the hardness error of the relation RRPO is exactly equal
to the pre-image error. RPO was designed to operate in overwrite mode [Ash+22,
Sections 2.6 and 4.4.2] the security of which was analysed by Bertoni et al. [Ber+11,
Section 4.3]. From this we can conclude

ϵRel
RPO(λ) ≤ 2−2·log p and

t

ϵRel
RPO

≥ 2−4·log p,

for query bound t ≤ 2−4 log p, and Goldilocks prime p = 264 − 232 + 1.

7.1.3 NArg true-simulation knowledge soundness security

As demonstrated in Section 5, the BCS transformation of an IOP system provides true-
simulation knowledge soundness to the resulting NArg with some security loss com-
pared to the state-restoration soundness of the IOP owing to the use of the Merkle tree
commitment scheme. Our Corollary 2 and Chiesa and Yegev’s Theorem 26.1.1 [CY24]
(for the bound on the extraction error of the Merkle tree commitment scheme) give
the following error bound on the transformed IOP’s knowledge soundness.

ϵtSKS
NArgRPO

(λ, t) ≤ ϵSRIOPRPO
(λ, t) + 3 · t

2

2λ
,

for every security parameter λ ∈ N and query bound t ∈ N. Using the fact that state-
restoration knowledge soundness is implied by round-by-round knowledge soundness
(Theorem 1), we then have

ϵtSKS
NArgRPO

(λ, t) ≤ t · ϵRbR
IOPRPO

+ 3 · t
2

2λ
.

24

Assuming that λ ≥ 2κ + 3, and that IOPRPO has κ′ bits of worse-case security, i.e.,
ϵRbR
IOPRPO

≤ 2−κ′
, we can bound the average-case true-simulation knowledge soundness

security of NArgRPO as follows.

t

ϵtSKS
NArgRPO

≥ t

t · ϵRbR
IOPRPO

+ 3 · t2

2λ

=
1

ϵRbR
IOPRPO

+ 3 · t
2λ

≥ 1

2−κ′ + 3 · t
22κ+3

≥ 1

2−κ′ + t
22κ+1

≥ 1

2−κ′ + 2−κ−1

= 2κ,

where we used the bound t ≤ 2κ on the number of queries, and assumed that κ′ = κ+1.

7.1.4 NArg zero-knowledge security

Given Theorem 4, and assuming s ≤ 2 · λ, by Remark 18.6.9 in [CY24] which applies
to the UC-Hiding version of the MT commitment scheme, we have:

ϵZKNArg(λ, tq, tP) = tP ·
(
tq
2s

+ ϵUC-Hid
MT + ϵZKIOP

)
≤ tP ·

(
tq
2s

+
2 · q · l · tq

2s
+ ϵZKIOP

)
.

We conservatively assume that an adversary can obtain at most tP ≤ 264 arguments
from its Prove oracle and consider that t = tq for the average-case security analysis.
We also assume q ≤ 210 and l ≤ 218 (which will hold for IOPRPO). Furthermore, we
also know that, for suitable parameters, ϵZKIOP = 0 [HK24] and we therefore have

ϵZKNArg
t
≤ tP

t
·
(
tq
2s

+
2 · q · l · tq

2s
+ ϵZKIOP

)
≤ 264

2s
+

264 · 2 · 210 · 218

2s
+ 0 =

264(1 + 229)

2s

=⇒ t

ϵZKNArg
≥ 2s−94.

Therefore, for a given value of s ≥ 94, NArgRPO constructed from the BCS transform-
ation achieves κZK

NArgRPO
= s − 94 bits of average-case zero-knowledge security against

2κ
ZK
NArgRPO -bounded adversaries.

7.1.5 List decoding regime analysis of IOP knowledge soundness

We choose a Reed–Solomon rate ρ = 1
8 and a domain D ⊆ F\{0}, a coset of a subgroup

of the multiplicative group such that D ∩H = ∅, a number of FRI queries nFRI = 85
and a field extension degree e = 3.

Given this, we compute the zero-knowledge blow-up parameter β = 32, the number
of quotient segments polynomials f = 11 each with ℓ = 162 coefficients.

We pick the FRI folding factor to be 8 and let the degree of the final polynomial sent
by the FRI Prover to be at most 31. This means that there is only one fold during the
FRI commit phase. We choose the proximity parameter m = 58 as the best parameter
which reduces the FRI query phase error while still keeping the FRI commit phase
error smaller than 2−126.

The vector of RbR soundness errors is then equal to

25

1. log2 (ϵ1) = −182,

2. log2 (ϵ2) = −161,

3. log2 (ϵ3) = −126,

4. log2 (ϵ4) = −129,

5. log2 (ϵ5) = −126.

7.1.6 Unique decoding regime analysis of IOP knowledge soundness

We choose a Reed–Solomon rate ρ = 1
8 and a domain D ⊆ F\{0}, a coset of a subgroup

of the multiplicative group such that D∩H = ∅, a number of FRI queries nFRI = 126
and a field extension degree e = 2. Choosing a lower extension degree implies that
verification operations are easier to perform recursively within a subsequent proof
system.

Given this, we compute the zero-knowledge blow-up parameter β = 32, the number
of quotient segment polynomials f = 11 each with ℓ = 162 coefficients.

We start with ϵSFRI and pick the folding factor to be 2 and choose the degree of the
final polynomial sent by the FRI prover to be at most 255. This means that there is
only one fold during the FRI commit phase.

The vector of RbR soundness errors is then equal to

1. log2 (ϵ1) = −120,

2. log2 (ϵ2) = −116,

3. log2 (ϵ3) = −117,

4. log2 (ϵ4) = −117,

5. log2 (ϵ5) = −104.

As noted in Section 6.3 in [Sta21], we can use proof-of-work, also referred to as
grinding, to reduce ϵ5. Using the notation in the aforementioned work, we choose
z5 = 12 which gives log2 (ϵ

′
5) = −116.

7.1.7 Concrete parameters

Soundness in the list decoding regime. Under the list decoding regime ana-
lysis of Section 7.1.5, we see that IOPRPO has κ′ = 126 bits of worse-case round-by-
round knowledge soundness security. For the analysis of the true-simulation knowledge
soundness of NArgRPO of Section 7.1.3, this gives κ = κ′ − 1 = 125, which implies the
requirement that λ ≥ 2κ+ 3 = 255. We therefore set λ = 256 which then implies that
NArgRPO has 125 bits of average-case true-simulation knowledge soundness security
against 2125-bounded adversaries.

Soundness in the unique decoding regime. Under the unique decoding regime
analysis of Section 7.1.6, we see that IOPRPO has κ′ = 116 bits of worse-case round-by-
round knowledge soundness security. For the analysis of the true-simulation knowledge
soundness of NArgRPO of Section 7.1.3, this gives κ = κ′ − 1 = 115, which implies the
requirement that λ ≥ 2κ+3 = 233. We therefore also set λ = 256 in this regime which
then implies that NArgRPO has 115 bits of average-case true-simulation knowledge
soundness security against 2115-bounded adversaries.

26

Zero-knowledge parameters. The condition set by Section 7.1.4 is that s ≤ 2 ·λ =
512. Given the lower bound set by the knowledge soundness security, it is sufficient to
choose a convenient value of s such that κZK

NArgRPO
= s − 94 ≥ {115, 125} (since only

the minimum of these values matters for the security of the signature scheme). We
therefore set s = 256 which achieves 162-bits of average-case zero-knowledge security
against 2162-bounded adversaries.

Given these two security levels for NArgRPO and the security level ofRRPO discussed
in Section 7.1.2, the analysis of Section 7.1.1 implies that the signature scheme SigRPO
has

κSig = 115− log 3 > 113 or κSig = 125− log 3 > 122

bits of average-case existential unforgeability security, in the unique decoding regime or
list decoding regime respectively, against 2113-bounded, or 2122-bounded, adversaries
that can obtain up to 264 signatures under the same public key.

Parameters. These parameter choices, as well as those of the DEEP-ALI IOP for
RPO discussed in Sections 7.1.5 and 7.1.6, are summarised in Table 1.

Parameter Symbol UDR LDR
Random oracle output length λ 256 256

Commitment randomness length s 256 256
Zero-knowledge blow-up factor β 32 32

Trace domain size |H| 8 8
RS code rate ρ 1

8
1
8

LDE domain size |D| 2048 2048
Multiplicity parameter m - 58

Extension degree e 2 3

Agreement parameter α 1
2 + β·|H|+2

2|D|
√
ρ ·
(
1 + 1

2m

)
Number of FRI queries nFRI 126 85

FRI folding factor t = (t0) (2) (8)
Max degree of final FRI polynomial - 255 31

Table 1: Concrete parameters in the unique and list decoding regimes used in the
DEEP-ALI IOP for RPO.

7.2 Performance

We benchmarked our scheme on an Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz;
the results are provided in Table 2 for the unique decoding regime parameter set,
providing 113 bits of average-case unforgeability security, and in Table 3 for the list
decoding regime parameter set, providing 122 bits of average-case unforgeability se-
curity. The benchmarks were run in two modes, single threaded and multi-threaded
using all available 8 cores.

These benchmarks use either RPO or Blake3 as the hash function for the BCS
transformation. The first would be required for recursive verification of signatures
within a proof system since the Blake3 hash function is costly to prove. However,
using Blake3 within the BCS transformation provides much better performance when
executed on a CPU.

27

Hash function for BCS Signing (ms) Verifying (ms) Size (Kb)
RPO (single) 370 27 100
RPO (multi) 175 27 100
Blake3 (single) 23 1 100
Blake3 (multi) 17 1 100

Table 2: Performance of the signature scheme in the unique decoding regime.

Hash function for BCS Signing (ms) Verifying (ms) Size (Kb)
RPO (single) 210 22 80
RPO (multi) 94 21 80
Blake3 (single) 13 1 80
Blake3 (multi) 9.2 1.1 80

Table 3: Performance of the signature scheme in the list decoding regime.

References

[Ash+22] Tomer Ashur et al. Rescue-Prime Optimized. Cryptology ePrint Archive,
Paper 2022/1577. 2022. url: https://eprint.iacr.org/2022/1577.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa and Nicholas Spooner. ‘Interactive Or-
acle Proofs’. In: Theory of Cryptography - 14th International Conference,
TCC 2016-B, Proceedings, Part II. Vol. 9986. Lecture Notes in Computer
Science. 2016, pp. 31–60. doi: 10.1007/978-3-662-53644-5_2.

[Ben+18] Eli Ben-Sasson et al. Scalable, transparent, and post-quantum secure com-
putational integrity. Cryptology ePrint Archive, Paper 2018/046. 2018.
url: https://eprint.iacr.org/2018/046.

[Ben+19] Eli Ben-Sasson et al. ‘Aurora: Transparent succinct arguments for R1CS’.
In: Advances in Cryptology–EUROCRYPT 2019. Springer. 2019, pp. 103–
128. doi: 10.1007/978-3-030-17653-2_4.

[Ben+20] Eli Ben-Sasson et al. ‘Proximity gaps for Reed–Solomon codes’. In:
2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS). IEEE. 2020, pp. 900–909. doi: 10.1109/FOCS46700.2020.00088.

[Ber+11] Guido Bertoni et al. Cryptographic sponge functions. Keccak Team Web-
site. 2011. url: https://keccak.team/files/CSF-0.1.pdf.

[Bit+13] Nir Bitansky et al. ‘Recursive composition and bootstrapping for SNARKS
and proof-carrying data’. In: Symposium on Theory of Computing Confer-
ence, STOC’13. Ed. by Dan Boneh, Tim Roughgarden and Joan Feigen-
baum. ACM, 2013, pp. 111–120. doi: 10.1145/2488608.2488623.

[Blo+23] Alexander R. Block et al. ‘Fiat-Shamir Security of FRI and Related
SNARKs’. In: Advances in Cryptology - ASIACRYPT 2023. Ed. by Jian
Guo and Ron Steinfeld. Vol. 14439. Lecture Notes in Computer Science.
Springer, 2023, pp. 3–40. doi: 10.1007/978-981-99-8724-5_1.

[CF24] Alessandro Chiesa and Giacomo Fenzi. zkSNARKs in the ROM with
Unconditional UC-Security. Cryptology ePrint Archive, Paper 2024/724.
2024. url: https://eprint.iacr.org/2024/724.

[CY24] Alessandro Chiesa and Eylon Yogev. Building Cryptographic Proofs from
Hash Functions. Self published, 2024. url: https://github.com/hash-
based-snargs-book.

28

https://eprint.iacr.org/2022/1577
https://doi.org/10.1007/978-3-662-53644-5_2
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1109/FOCS46700.2020.00088
https://keccak.team/files/CSF-0.1.pdf
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-981-99-8724-5_1
https://eprint.iacr.org/2024/724
https://github.com/hash-based-snargs-book
https://github.com/hash-based-snargs-book

[Do24] Jérémi Do Dinh. ‘Simulation Security in the Random Oracle Model’.
https://jdodinh.io/assets/files/m-thesis.pdf. MA thesis. School
of Computer and Communication Science, EPFL, Aug. 2024.

[Dod+10] Yevgeniy Dodis et al. ‘Efficient Public-Key Cryptography in the Presence
of Key Leakage’. In: Advances in Cryptology - ASIACRYPT 2010. Ed. by
Masayuki Abe. Vol. 6477. Lecture Notes in Computer Science. Springer,
2010, pp. 613–631. doi: 10.1007/978-3-642-17373-8_35.

[Fau+12] Sebastian Faust et al. ‘On the Non-malleability of the Fiat-Shamir Trans-
form’. In: Progress in Cryptology - INDOCRYPT 2012. Ed. by Steven D.
Galbraith and Mridul Nandi. Vol. 7668. Lecture Notes in Computer Sci-
ence. Springer, 2012, pp. 60–79. doi: 10.1007/978-3-642-34931-7_5.

[FS86] Amos Fiat and Adi Shamir. ‘How to Prove Yourself: Practical Solutions
to Identification and Signature Problems’. In: Advances in Cryptology -
CRYPTO ’86. Ed. by Andrew M. Odlyzko. Vol. 263. Lecture Notes in
Computer Science. Springer, 1986, pp. 186–194. doi: 10.1007/3-540-
47721-7_12.

[Hab22] Ulrich Haböck. A summary on the FRI low degree test. Cryptology ePrint
Archive, Paper 2022/1216. 2022. url: https://eprint.iacr.org/2022/
1216.

[HK24] Ulrich Haboeck and Al Kindi. A note on adding zero-knowledge to
STARKs. Cryptology ePrint Archive, Paper 2024/1037. 2024. url: https:
//eprint.iacr.org/2024/1037.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. ‘Signature Schemes with
Bounded Leakage Resilience’. In: Advances in Cryptology - ASIACRYPT
2009. Ed. by Mitsuru Matsui. Vol. 5912. Lecture Notes in Computer Sci-
ence. Springer, 2009, pp. 703–720. doi: 10.1007/978- 3- 642- 10366-
7_41.

[Mic00] Silvio Micali. ‘Computationally Sound Proofs’. In: SIAM J. Comput. 30.4
(2000), pp. 1253–1298. doi: 10.1137/S0097539795284959.

[Sta21] StarkWare. ethSTARK Documentation. Tech. rep. 2021. url: https://
eprint.iacr.org/2021/582.

A Appendix

Let F be a field and let V := RS[F,D, k] be the Reed-Solomon code with rate ρ := k
n

and n = |D|.
For u, v ∈ FD, we define agree (u, v) := 1−∆(u, v) where ∆ is the relative Hamming

distance. We define agree (u, V) := 1−∆(u, V) where ∆ (u, V) = minw∈V ∆(u,w).
We restate the main results from [Ben+20] in the unique decoding regime i.e., when

the proximity parameter δ ∈ (0, 1−ρ
2] or equivalently when the agreement parameter

α = 1 − θ ∈ [1+ρ
2 , 1). We also give the specialization of Theorem 7.1 in [Ben+20] to

the unique decoding regime. Our version gives tighter bounds when α ∈ [1+ρ
2 , 1).

29

https://jdodinh.io/assets/files/m-thesis.pdf
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2022/1216
https://eprint.iacr.org/2022/1216
https://eprint.iacr.org/2024/1037
https://eprint.iacr.org/2024/1037
https://doi.org/10.1007/978-3-642-10366-7_41
https://doi.org/10.1007/978-3-642-10366-7_41
https://doi.org/10.1137/S0097539795284959
https://eprint.iacr.org/2021/582
https://eprint.iacr.org/2021/582

A.1 Correlated Agreement

Theorem 8 ([Ben+20, Theorem 6.1]). Fix δ ∈ (0, 1−ρ
2]. Let U := {u0, u1, . . . , ul} be

a subset of FD
q and let S ⊂ Fq be defined as

S :=

{
z ∈ Fq : agree

(
l∑

i=0

ziui, V

)
≥ 1− δ

}
.

If

Pz∈Fq
[|S|] > l · n

q
,

then, for all z ∈ Fq, we have

agree

(
l∑

i=0

ziui, V

)
≥ 1− δ.

Moreover, there exists a subset of code words V := {v0, . . . , vl} such that the subset
D′ ⊂ D defined by

D
′
:= {x ∈ D : (u0(x), . . . , ul(x)) = (v0(x), . . . , vl(x))} ,

satisfies
|D

′
| ≥ (1− δ)|D|.

The last point implies that, for all z ∈ Fq, we have

agree

(
l∑

i=0

ziui,

l∑
i=0

zivi

)
≥ 1− δ.

Theorem 9 ([Ben+20, Theorem 1.6]). Fix δ ∈ (0, 1−ρ
2]. Let U := {u0, u1, . . . , ul} be

a subset of FD
q and define U :=

{
u0 +

∑l
i=1 ziui : (z1, . . . , zl) ∈ Fl

q

}
.

If

Pu∈U [agree (u, V) ≥ (1− δ)] >
n

q
,

then
Pu∈U [agree (u, V) ≥ (1− δ)] = 1.

Moreover, there exists a subset of code words V := {v0, . . . , vl} such that the subset
D′ ⊂ D defined by

D
′
:= {x ∈ D : (u0(x), . . . , ul(x)) = (v0(x), . . . , vl(x))} ,

satisfies
|D

′
| ≥ (1− δ)|D|.

The last point implies that, for all z ∈ Fq, we have

agree

(
u0 +

l∑
i=1

ziui, v0 +

l∑
i=1

zivi

)
≥ 1− δ.

30

A.2 Correlated Weighted Agreement

Let µ : D → [0, 1], the (relative) µ-agreement is defined as

agreeµ(u, v) :=
1

|D|
∑
x∈D

µ(x) · 1{u(x)=v(x)}.

Note that when µ = 1, µ-agreement coincides with the standard notion of relative
agreement. We can also generalize the notion of agreement between a function u ∈ FD

q

and V and define
agreeµ(u, V) := max

v∈V
agreeµ(u, v).

For a D′ ⊂ D, we can define its µ-weighted size as

µ
(
D

′
)
:=

1

|D|
∑
x∈D′

µ(x).

This implies that
agreeµ(u, v) = µ ({x ∈ D : u(x) = v(x)}) .

We can also generalize the notion of correlated agreement and define the µ-weighted
correlated agreement between a subset U := {u0, u1, . . . , ul} ⊂ FD

q and V as the

maximal µ-weighted subset D′ ⊂ D defined as

D
′
:= {x ∈ D : (u0(x), . . . , ul(x)) = (v0(x), . . . , vl(x))} ,

for a subset of code words V := {v0, . . . , vl} ⊂ V.
We restrict our attention to the special case when the weight function µ has the

form µ(x) = mx

M for a fixed integer M ≥ 1 and mx ∈ [0,M] for all x ∈ D. We are now
ready to state the weighted version of the correlated agreement results stated in 8.

Theorem 10. Fix δ ∈ (0, 1−ρ
2]. Let U := {u0, u1, . . . , ul} be a subset of FD

q and let
S ⊂ Fq be defined as

S :=

{
z ∈ Fq : agreeµ

(
l∑

i=0

ziui, V

)
≥ 1− δ

}
.

for µ : D → [0, 1] a weighting function with common denominator M ≥ 1. Assume
that:

|S| > l · (M · n+ 1).

Then, there exists a subset of code words V := {v0, . . . , vl} such that the subset
D′ ⊂ D defined by

D
′
:= {x ∈ D : (u0(x), . . . , ul(x)) = (v0(x), . . . , vl(x))} ,

satisfies

µ
(
D

′
)
≥ (1− δ).

Proof. By definition of S, we have that for each z ∈ S there is Pz ∈ V such that

agreeµ

(∑l
i=0 z

iui, Pz

)
≥ (1− δ). By definition of µ, we get that

agree

(
l∑

i=0

ziui, Pz

)
≥ (1− δ).

31

Since |S| > l · (M · n+ 1) implies |S| > l · n, we get by Theorem 8, that there exists a
subset of code words V := {v0, . . . , vl} such that

D
′
:= {x ∈ D : (u0(x), . . . , ul(x)) = (v0(x), . . . , vl(x))} ,

satisfies
|D′ |
|D|
≥ (1− δ).

On the other hand, by unique decoding and the analysis in the proof of Theorem 6.1
in [Ben+20], we have that for each z ∈ S, Pz =

∑l
i=0 z

ivi. Thus we have that, for each
z ∈ S,

agreeµ

(
l∑

i=0

ziui,

l∑
i=0

zivi

)
≥ (1− δ).

We are now in the setting of Lemma 7.6 in [Ben+20] and we can conclude that

µ
(
D

′
)
≥ (1− δ).

32

	Introduction
	Recursive Zero-Knowledge Proofs
	Our Contribution

	Technical Overview
	The Rescue-Prime Optimised Hash Function
	The DEEP-ALI Interactive Oracle Proof
	The BCS Transformation: from IOP to ZK-STARK
	A Signature Scheme from a ZK-STARK

	An AIR for RPO
	Algebraic Intermediate Representation
	AIR Constraints for the RPO Permutation

	DEEP-ALI: an IOP for AIRs
	Relations and Interactive Oracle Proofs
	The DEEP-ALI IOP for AIR Satisfiability
	The protocol
	Setting the zero-knowledge blow-up parameter ß
	Setting the degree of the quotient segment polynomials

	The FRI IOP for Low-Degree Testing
	Security Errors of the DEEP-ALI IOP
	Zero-knowledge error
	Round-by-round knowledge soundness error

	The BCS Transformation: a ZK-STARK for AIRs
	Definitions of Schemes and Security Notions
	The BCS Transformation and its UC Security
	Zero-Knowledge Security
	True-Simulation Knowledge Soundness

	A Signature Scheme from RPO Pre-Images
	Hard Relations and RPO Pre-Image Resistance
	Scheme and Security Definitions
	The Signature Construction

	Concrete Parameters and Performance
	Concrete Security
	Signature scheme security
	RPO relation security
	NArg true-simulation knowledge soundness security
	NArg zero-knowledge security
	List decoding regime analysis of IOP knowledge soundness
	Unique decoding regime analysis of IOP knowledge soundness
	Concrete parameters

	Performance

	References
	Appendix
	Correlated Agreement
	Correlated Weighted Agreement

