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Abstract

Keyed-verification anonymous credentials are widely recognized as among the most efficient tools for anonymous authenti-
cation. In this work, we revisit two prominent credential systems: the scheme by Chase et al. (CCS 2014), commonly referred
to as CMZ or PS MAC, and the scheme by Barki et al. (SAC 2016), known as BBDT or BBS MAC. We show how to make
CMZ statistically anonymous and BBDT compatible with the BBS RFC draft. We provide a comprehensive security analysis
for strong(er) properties of unforgeability and anonymity. These properties allow them to be composed with extensions that
users can pick and choose. We show that simpler variants satisfying one-more unforgeability can still be anonymous tokens
(Kreuter et al., CRYPTO 2020).

To enable faster proofs for complex presentations, we present a compiler that uses an interactive oracle proof and a
designated-verifier polynomial commitment to construct a designated-verifier non-interactive argument. For keyed-verification
anonymous credentials, designated-verifier proofs suffice since the verifier is known in advance. We explore extensions that
could benefit from this approach.

1 Introduction

Anonymous credential systems, introduced by David Chaum [Cha85], allow a user to obtain certified credentials from an organi-
zation, and later prove their possession, disclosing as little information as possible about the user’s identity. Chaum envisioned
a system where each organization would know a user by a different pseudonym. Pseudonyms are unlinkable, and colluding
organizations cannot track a user.

After Chaum, a practical anonymous credential system was proposed in Stefan Brands’s PhD thesis [Bra95, Bra00], leading
to what is known today as the U-Prove technology from Microsoft Research.1 Under the hood, Brands credentials tweak blind
Schnorr signatures [Sch01] to support complex statements about the user.

Shortly after, Camenisch and Lysyanskaya [CL01, CL03] approached the problem of anonymous credentials by constructing
a signature scheme over which it is possible to produce efficient zero-knowledge proofs (of knowledge). Their idea is to have
the issuer sign a commitment to the user’s attributes, and have the user later prove (in zk) knowledge of a signature on them.
The proof might partially reveal some properties of the predicates, e.g. an “age” attribute being within a specific range. If the
proof is valid, then via the knowledge extractor the reduction can recover a signature and a message, reducing the security of the
credential to the one of the signature or the commitment scheme. If the attribute space of the signature scheme is “compatible”
(algebraic) with the commitment space, proofs can be very efficient. This line of work led to the Idemix technology from IBM
Research [CV02].

Chase, Meiklejohn, and Zaverucha [CMZ14] remarked that, if the issuer and the redeemer are the same entity, it is sufficient
to rely on message authentication codes with similar algebraic properties (algebraic MACs), as opposed to signatures. They
show that such schemes can be instantiated on prime-order groups without a bilinear pairing map. Such credentials are called
keyed-verification anonymous credentials. Today, algebraic MACs are one of the most efficient and widespread approaches at
anonymous credentials.

The simplest feature of anonymous credential systems is selective disclosure, where the user wants to authenticate to the
server while keeping private some parts of their identity (we will call them attributes). However, this feature is woefully in-
sufficient for real-world deployments, for which more involved access policies are needed. Numerous extensions of (publicly
verifiable) anonymous credentials have been proposed in the literature to overcome this limitation: signatures with revoca-
tion [Sta96], rate-limiting credentials [TFS04], traceable anonymous credentials [BMW03], delegatable credentials [BCC+09],
updatable credentials [BBDE19], threshold issuance of credentials [SAB+19, RP22, DKL+23], redactable credentials [San20],
and more.

1https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/U-Prove20Cryptographic20Specification20V1.1.pdf
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Limitations. Ideally, one would like to support similar extensions in the keyed-verification setting. For instance, on the web,
often times a server needs to authenticate users and rate-limit their requests, or identify them under some context-based identity
– generally cookies. Yet, the security notions of keyed-verification credentials (differently from, say, attribute-based credential
systems) do not account for man-in-the middle attackers that can observe other user’s presentation messages, do not state
anything about the ability to recover an attribute from a credential, and do not support blind issuance with arbitrary predicates.
For many applications (e.g. rate-limiting via a PRF key, age verification via passports), it is desirable to have this stronger
security model.

Additionally, the concrete security and efficiency tradeoffs of the most widely known algebraic MACs ([CMZ14] and [BBDT17])
are unclear. To the best of our knowledge, the security of CMZ relies on the generic group model (or DDH), while the security
of BBDT relies on q-SDH in the standard model. BBDT is generally thought to outperform CMZ in communication and
computation (for issuance and redemption). The overall anonymity of the system is split into three security notions: key
consistency, blind issuance, and anonymity, and it’s hard to understand what are the long-term privacy guarantees of keyed-
verification anonymous credentials.

1.1 Our contribution

As our first main contribution, we revisit the definition of keyed-verification credentials, and provide stronger notions of anonymity
and unforgeability. We provide tight security proofs of the MAC of Chase, Meiklejohn, and Zaverucha [CMZ14], and Barki et
al. [BBDT17] in the algebraic group model. We notice that both schemes can be improved in terms of efficiency and security,
more specifically: CMZ is be made statistically anonymous, and issuance cost 1 group element instead of 2n+ 1 (where n is the
number of private attributes), and BBDT can be made compatible with the ongoing standardization effort, with presentation
and MAC cost accounting for 1 less group element. Our variants are denoted µCMZ and µBBS. We include a rigorous analysis
of more efficient anonymous tokens derived from the above with weaker unforgeability guarantees, and compare the resulting
schemes on the same grounds. Some of our techniques may also be of interest in the public verifiability case. The result, perhaps
surprising, is that for the same bits of security, µCMZ is actually more efficient than µBBS at issuance, and presentation is less
efficient for n > 1 attributes.

Then, we note that keyed-verification credentials can rely on malicious designated-verifier zero-knowledge proofs. We build a
compiler that uses an interactive oracle proof (IOP) and a designated-verifier polynomial commitment to produce a designated-
verifier zero-knowledge non-interactive argument. We build a designated-verifier polynomial commitment that does not require
pairings, inspired from KZG. As an example application, we instantiate an efficient constant-sized range proof that does not
require pairings. While it is common to think of designated-verifier proofs as “more expensive than normal proofs” (1 NIZK +
1 OR proof), we show that this is not always the case.

We provide efficient schemes for credential expiry, public metadata, pseudonyms, and rate-limiting. The schemes are agnostic
on the credential system and the proof system used. We prove that sometimes one can rely solely on one-more unforgeability
(instead of unforgeability) and thus use anonymous tokens where issuance even simpler.

1.2 Related work

The literature that builds modular credential systems is vast. Camenisch, Krenn, Lehmann et al. [CKL+16] develop a mod-
ular framework for constructing anonymous credentials called privacy-enhancing attribute-based credential systems. Using a
commitment scheme, a signature scheme (more precisely, a privacy-enhancing attribute-based signature scheme), a revocation
scheme and a pseudonym scheme, they show how to compose them into a full-fledged credential system. Their framework can
be instantiated with Camenisch–Lysyanskaya [CL01, CL03] and Brands signatures [Bra95, Bra00], and has been foundational
for extensions on credential systems, such as issuer-hiding attribute-based credentials [BEK+21], encrypted attribute-based cre-
dentials [KLSS17], and more. Chase and Lysyanskaya [CL06] introduce signatures of knowledge, signatures that can be issued
on behalf of any NP statement. Belenkiy et al. [BCKL07] introduce the notion of P-signatures, a cryptographic primitive that
consists of a signature scheme, a commitment scheme, a non-interactive protocol for obtaining signatures on committed values,
and a non-interactive proof system for proving that a pair of commitments are commitments to the same value. Abe, Fuchsbauer,
Groth et al. [AFG+16] introduced the notion of structure-preserving signatures, signatures that lie in a bilinear group for which
the verification equation consists of pairing products. Mercurial signatures [CL19] are signatures that can be re-randomized into
signatures valid under some (randomized) verification key for the same message, and some of them can be used for constructing
anonymous credentials. Compared to all above works, instead of showing how to build full-fledged credentials from smaller
cryptographic primitives, we define a (slightly different) “vanilla” credential system (that supports issuance predicates), and
then put on together optional extensions that can be added at discretion of the user.

Campanelli, Fiore, and Querol introduce LegoSNARK [CFQ19], a framework to build modular SNARKs that can be composed
to enable for different efficiency trade-offs. Their work is inscribed within the commit-and-prove paradigm and, more specifically,
investigates SNARKs about commitments made ahead of time, without knowing the statement they are going to be proven on.
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Our work is complementary, and is meant to be used in tandem with commit-and-prove systems. Malicious designated-verifier
zero-knowledge was introduced by Quach, Rothblum, and Wichs [QRW19]. The log-sized arguments of Bootle et al. [BCC+16]
have been proven to be simulation extractable [GOP+22, DG23].

Among real-world cryptographic deployments, we identify the following groups of credentials:
(a) Based on Camenisch–Lysyanskaya [CL01, CL03]. Bifold2 and Aries RFC3, both sponsored by the Open Wallet Foundation.
(b) Based on Chase–Meiklejohn–Zaverucha [CMZ14, PS16]. Used in Signal [CPZ20] for private group systems4, by NYM

Technologies5, Tor [TG23] for distribution of bridges.
(c) Based on BBS signatures [BBS04, TZ23]. TheW3C hosts multiple efforts in this direction, more specifically on decentralized

identity6 and verifiable credentials.7 The IETF currently has an ongoing proposal for BBS credentials.8 This is also what
is adopted by Idemix9 for their DLOG credentials, which are based on the work of Mu et al. [ASM06]. (Idemix is
also implemented by IRMA10.) BBS are also at the core of Dock11, a blockchain network that provides reusable digital
identification and verifiable credentials.

(d) Tokens Based on Blind Signatures. A number of show-once credentials have been created in the past years. The Privacy
Pass IETF working group12 internally relies either on the VOPRF of Jareki et al. [JKK14] or the Blind RSA signature
scheme of Chaum [Cha82]. Google’s BoringSSL implements anonymous tokens [KLOR20]. Blind RSA signatures are also
used by Apple Cloud Relay13 and Google One’s VPN service.14

(e) Based on SNARKs. This broad class of credentials generally relies on SNARKs and recursive SNARKs [Chi10], and
generally boils down to creating Merkle trees of secret keys in possession of users and then proving statements of membership
and non-membership in order to authenticate. This class generally lacks a public provable-security formalisation. The
Semaphore library15 and Anon Aadhaar protocol16 from Privacy Scaling Explorations (PSE) are a collection of tools
used for building applications that leverage anonymous signaling on the Ethereum blockchain, relying on general-purpose
zero-knowledge succinct arguments (zk-SNARKs). Zupass17 is an authentication system based on the proof-carrying data
paradigm.

Section 5 is relevant for (b); section 6 is relevant for (c); the anonymous token variants µCMZAT,µBBSAT may be relevant for
approaches based on blind signatures (item (d)); section 7 may be relevant for approaches conceding generic SNARKS (item (e)).

2 Technical overview

An anonymous credential is a signature or a MAC over some attributes. Instead of just revealing them, the user proves (in zk)
that the attributes satisfy some properties. We call this to present or show a credential. The entity issuing a credential is called
issuer ; the entity to which a credential is issued user. The entity that verifies the credential is called redeemer.

Public- and keyed-verification. It is possible to distinguish two lines of literature in the credential space: (i) keyed-
verification credentials, where the issuer and the redeemer are the same person, and both hold the same signing key sk; (ii)
public-verification credentials, where the issuer and the redeemer are different entities. In this case, the issuer holds a signing key
sk and the redeemer holds the respective verification key vk. The verification key vk is insufficient to produce new credentials.
It is a common practice to build public-verification credentials from keyed-verification credentials (and vice-versa) with the help
of a pairing map in a bilinear group, but this is not true for all credential systems.18 Two popular choices of credentials are
Chase–Meiklejohn–Zaverucha [CMZ14] MACs, with their publicly-verifiable variant Pointcheval–Sanders [PS16]; and Boneh–
Boyen–Shacham [BBS04], with their keyed-verification variant Barki et al. [BBDT17].

2https://github.com/openwallet-foundation/bifold-wallet
3https://hyperledger.github.io/aries-rfcs/latest/
4https://signal.org/blog/signal-private-group-system/
5https://nymtech.net/docs/coconut.html
6https://decentralized-id.com/web-standards/w3c/verifiable-credentials/data-integrity-bbs+/
7https://www.w3.org/TR/vc-data-model-2.0/
8https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/
9https://github.com/hyperledger/fabric/blob/main/docs/source/idemix.rst
10https://github.com/privacybydesign/irmago
11https://github.com/docknetwork/crypto
12https://datatracker.ietf.org/wg/privacypass/documents/
13https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
14https://one.google.com/about/vpn/howitworks
15https://semaphore.pse.dev/
16https://pse.dev/en/projects/anon-aadhaar
17https://github.com/proofcarryingdata/zupass
18For instance, it seems unlikely to produce a “keyed-verification variant” of Groth’s structure preserving signatures [Gro15] without a pairing map.
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Table 1: Concrete communication and space costs for some keyed-verification credential systems with n hidden attributes (public attributes at issuance/presentation
are for free). The bit size of G is denoted g, the scalar field bit size s, and the security parameter λ. In [square brackets] we indicate the size for empty predicates or
optional elements, using Schnorr proofs. ATR is checked if n = poly(λ) attributes are supported, PMB denotes private metadata bit feature, NYM refers to section 8.3,
RTL to section 8.2, THRLD to thresholding, and IBR to efficient issuer-hiding presentation [BEK+21]. Empty cell represent open problems, not impossibility.

Scheme
Key material Issuance Presentation Supported features Security
|pp| |σ| |I.Usr| |I.Srv| |P.Usr| ATR PMB NYM RTLT THRLD IHP Unforgeability Anonymity

µCMZ, figure 5 (n+1)g g + [g] g + [(n+ 2)s] 2g + [3s] (n+2)g + [(2n+2)s] ✓ ✓ ✓ ✓ ✓ AGM + 3-DL statistical
µBBS, figure 6 1g 1g + [2λ] g + [(n+ 2)s] g + 2λ+ [2s] 2g + [(n+ 4)s] ✓ ✓ ✓ ✓ AGM + q-DL statistical∗

[BBDT17] 1g 1g + [2λ] g + [(n+ 2)s] g + 2λ+ s+ [2s] 3g + [(n+7)s] ✓ ✓ ✓ ✓ q-SDH statistical
[CMZ14] (n+1)g g + [g] (2n+ 1)g + [(2n+ 2)s] 3g + [(2n+4)s] (n+2)g + [(2n+2)s] ✓ ✓ ✓ ✓ ✓ GGM DDH
[CPZ20] 2g 2g + s (3n+ 2)g + [4s] 3g + s+ [(n+6)s] (n+ 3)g + [4s] ✓ ✓ ✓ GGM DDH

[DGS+18] 1g 2λ+ [g] 1g 1g + [2s] 4λ ✗ ✗ ✗ näıve ✓ ✓ RO + gap-OMCDH statistical

∗A technicality in the simulator makes it difficult to simulate issuance when the user is invoked on a message m⃗ such that
∑

imiGi = −G0. This can be circumvented setting the message space to exclude this bad case or relying on the DL assumption during credential issuance.

Table 2: Concrete sizes over 256-bit curves. Relevant examples are secp256k1 [Qu99], Ristretto [Ber06, Ham15], BN254 curves [BN06], Pallas, Vesta, and JubJub
curves. Note that the comparison does not take into account that, to have comparable levels of security, µBBS and [BBDT17] should be instantiated over larger (≈300
bit) curves.

Attributes n = 1 Attributes n = 5

Scheme
Key material Issuance Presentation Key material Issuance Presentation
|pp| |σ| |I.Usr| |I.Srv| |P.Usr| |pp| |σ| |I.Usr| |I.Srv| |P.Usr|

µCMZ, figure 5 64B 64B 128B 160B 224B 192B 64B 256B 160B 608B
µBBS, figure 6 32B 64B 128B 128B 224B 32B 64B 256B 128B 352B

[BBDT17] 32B 64B 128B 160B 352B 32B 64B 256B 160B 480B
[CMZ14] 64B 64B 224B 288B 224B 192B 64B 736B 544B 608B
[CPZ20] 64B 96B 288B 352B 256B 64B 96B 672B 480B 384B

[DGS+18] 32B 64B 32B 96B 64B 32B 64B 32B 96B 64B

Table 3: Concrete sizes over ≈ 400-bit curves. Relevant examples are BLS12-381 and BLS12-377 [BLS04].

Attributes n = 1 Attributes n = 5

Scheme
Key material Issuance Presentation Key material Issuance Presentation
|pp| |σ| |I.Usr| |I.Srv| |P.Usr| |pp| |σ| |I.Usr| |I.Srv| |P.Usr|

µCMZ, figure 5 96B 96B 144B 192B 272B 288B 96B 272B 192B 720B
µBBS, figure 6 48B 80B 144B 144B 256B 48B 80B 272B 144B 384B

[BBDT17] 48B 80B 144B 176B 400B 48B 80B 272B 176B 528B
[CMZ14] 96B 96B 272B 336B 272B 288B 96B 912B 592B 720B
[CPZ20] 96B 128B 368B 400B 320B 96B 128B 944B 528B 512B

[DGS+18] 48B 80B 48B 112B 64B 48B 80B 48B 112B 64B



Security. Anonymous credentials enjoy two properties: unforgeability (it is not possible to present a credential that was not
previously authorized) and anonymity (no information about the user is disclosed beyond what the user gave their consent to).
Generally, it is desirable for anonymity to hold even against computationally unbounded adversaries. We call this property
statistical anonymity. If, on the other hand, anonymity holds against computationally unbounded eavesdroppers, we talk about
everlasting forward anonymity (Similarly to public-key encryption, where no information remains after a transaction is complete
which could later identify the participants if one side or the other is compromised [DFM01].)

2.1 Chase–Meiklejohn–Zaverucha MACs

Given a secret key (x0, x1, . . . , xn), a (n+ 1)-tuple of integers uniformly distributed modulo a large prime p, a CMZ credential
for attributes m⃗ ∈ Zn

p is a pair
(U ←$ G, V = (x0 +

∑
i ximi)U) (1)

where U is sampled uniformly at random from G, an additive group of order p where discrete logarithm is hard. Credentials can
be trivially checked given the message m⃗ and the secret key (x0, x⃗): the redeemer just has to re-compute the MAC and check
for equality, being careful about some edge cases (when U = 0G). Unforgeability of CMZ was historically shown in the generic
group model [CMZ14]. In theorems 7 and 11 we revisit the analysis for a more natural variant (illustrated below and denoted
µCMZ) in the algebraic group model. We prove that it is unforgeable in the algebraic group model assuming it is hard to find
x given (G, xG, x2G, x3G) ∈ G. (Differently from e.g. BBS credentials, where a polynomial number of powers is required.) In a
pairing group, when given a “verification key” in the “second group”, i.e., given vk = (X̄0 = x0Ḡ, X̄1 = x1Ḡ, . . . ) ∈ Ḡn+1, the
verification equation can be checked in the “target group” checking e(V, Ḡ) = e(U, Ḡ) +

∑
i e(miU, X̄i), where e : G× Ḡ 7→ GT

denotes the bilinear pairing map. The resulting scheme is known as the Pointcheval–Sanders signature scheme [PS16, PS18].

Keyed-verification credential µCMZ

Base MAC

Key generation: µCMZ.K(crs)

sk = (x0, x1, . . . , xn)←$ Zn+1
q

X0 = x0H

Xi = xiG for i ∈ [n]

return sk, pp = (X0, X⃗)

MAC sign: µCMZ.M((x0, x⃗), m⃗)

U ←$ G; V = (x0 +
∑

i mixi)U

return (U, V )

MAC verify: µCMZ.V((x0, x⃗), m⃗, (U, V ))

return U ̸= 0G ∧ V = (x0 +
∑

i mixi)U

Credential Issuance: User (left) and Server (right)

µCMZ.I.Usr((X0, X⃗), m⃗) µCMZ.I.Srv((x0, x⃗))

s←$ Zp; C′ =
∑

i miXi + sG

πiu ← ZKP
{

(m⃗,s):

C′=
∑

i miXi+sG

}
C′, πiu check πiu

u←$ Zp; U ′ = uG

V ′ = u(x0G+ C′)

check U ′ ̸= 0G ∧ πis
U ′, V ′, πis πis ← ZKP

{(x0,u):

U′=uG,X0=x0H

V ′=x0U+uC′

}
r ←$ Zp; U = rU ′

V = r(V ′ − sU ′)

return (U, V )

Credential Presentation: User (left) and Server (right)

µCMZ.P.Usr((X0, X⃗), m⃗, (U, V )) µCMZ.P.Srv((x0, x⃗))

r ←$ Zp; (U ′, V ′) = (rU, rV )

r′ ←$ Zp;CV = V ′ + r′H

for i ∈ [n]

ri ←$ Zp; Ci = miU
′ + riG

Z =
∑n

i riXi − r′H

πp ← ZKP
{(r′,r⃗,m⃗):

Z=
∑n

i riXi−r′H

Ci=miU
′+riG

}
U ′, CV , C⃗, πp Z = x0U

′ +
∑

i xiCi − CV

check πp ∧ U ′ ̸= 0G

Perfect blind issuance. Sometimes, we need to issue a
MAC over some hidden (“blind”) attributes, signed by the
server, without fully knowing them. A classic use-case is when
the credential is signing also a user’s secret key. In these
cases, the approach of Chase et al. [CMZ14] is to use the
linear-homomorphic properties of ElGamal: given ciphertexts
(E1,i = rG,E2,i = rY +mG) of each attribute mi (encrypted
under the user’s public key Y ), one can blindly issue a creden-
tial by sampling u←$ Zp, and computing[

D1

D2

]
=

[
0

ux0G

]
+ u

∑
i

xi

[
Ei,1

Ei,2

]
and sending (U = uG,D1, D2) along with a zero-knowledge
proof of correct computation. The above approach relies on se-
mantic security of ElGamal encryption and therefore the user’s
attributes are at best computationally hidden. We change this
to a Pedersen commitment to the attributes

C ′ =
∑
i

miXi + sG

where X1, . . . , Xn are part of the public parameters. Then,
the signer computes (U, V ) = (uG, x0U+uC ′) where u←$ Zp.
The user can unblind the credential subtracting sU ′ from C ′.
This variant of the issuance protocol is more efficient (as it is
independent of the number of attributes) and perfectly hides
the attributes.

One last remaining obstacle is in the way of statistical
anonymity: in the original CMZ scheme, X0 is computed as X0 = xrG + x0H. While this means that x0 is perfectly hid-
den, it also means that there exists many secret keys associated to the same public key, and a powerful adversary may be
able to de-anonymize users by finding logGH and “equivocating” X0 using a different secret key to authenticate the credential.
We fix this issue removing xr from the public parameters and setting X0 = x0H. In theorem 12 we show that this does not
affect unforgeability (in fact, satisfies an even stronger property), and it achieves statistical anonymity when instantiated with
a statistically knowledge-sound zero-knowledge proof.
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One-more unforgeability. The zero-knowledge proof πiu sent by the user at issuance time in µCMZ may be removed at the
price of trading off extractability with one-more unforgeability, which is the security notion of anonymous tokens [KLOR20,
CDV23], lightweight spend-once credentials. The MAC procedure can in fact be seen as computing an authentication code
(U = uG, x0U + uC) for a group element C ∈ G, where no assumption about the algebraic representation of C is made. We
prove this in theorem 14 by relying the algebraic group model. Surprisingly, this notion is sufficient also for complex systems
such as pseudonyms and rate-limiting tokens.

Presentation. Thanks to the algebraic structure of the MAC, it is possible to efficiently prove knowledge of a MAC without
revealing it. This is called to present a credential. A common approach here is to use Σ-protocols over prime-order groups for
linear relations, using the Fiat–Shamir heuristic. For instance, given a CMZ credential σ = (U, V ), for attributes (m1, . . . ,mn),
the user can perfectly blind the MAC via

(U ′, CV ) = (rU, rV + r′H) where r, r′ ←$ Zp

and commit to each attribute as a Pedersen commitment Ci = miU
′+ riG, where i ∈ [n] and ri ←$ Zp. To anonymously present

a valid MAC the user proves the following representation equality:∑
i riXi − r′H = x0U

′ +
∑

i xiCi − CV

where the left-hand side can be computed by the user and the right-hand side can be computed by the issuer. The Pedersen
commitments Ci’s can be used to prove arbitrary predicates over the credentials.

2.2 Boneh–Boyen–Shacham MACs Keyed-verification credential µBBS

Base MAC

Key generation: µBBS.K(crs)

return x←$ Zp, X = xG

MAC verify: µBBS.V(x, m⃗, (A, e))

return xA = (G0 +
∑n

i=1 miGi)− eA

MAC sign: µBBS.M(x, m⃗)

e, s←$ Zp

A = (x+ e)−1(G0 +
∑n

i=1 miGi)

return (A, e)

Credential Issuance: User (left) and Server (right)

µBBS.I.Usr(X, m⃗) µBBS.I.Srv(x)

s←$ Zp; C′ = s−1(
∑

i miGi +G0)

πiu ← ZKP
{

(m⃗,s):

sC′−
∑

i miGi=G0

}
C′, πiu check C′ ̸= 0G ∧ πiu

e←$ Zp

A′ = (x+ e)−1C′

check πis
e,A′, πis πis ← ZKP

{
x: xG=X ∧
C′−eA′=xA′

}
return (A = sA′, e)

Credential Presentation: User (left) and Server (right)

µBBS.P.Usr(X, m⃗, (A, e)) µBBS.P.Srv(x)

r, r′ ←$ Zp; A′ = rr′A

D′ = r(G0 +
∑

i miGi)

B′ = r′D′ − eA′

πp ← ZKP
{ (m⃗,e,r−1,r′):

B′=r′D′−eA′

G0=r−1D′−
∑

i miGi

}
A′, D′, πp B′ = xA′

check πp ∧ D′ ̸= 0G∧
A′ ̸= 0G

A BBS+ anonymous credential [BBS04, ASM06] for attributes
m⃗ ∈ Zn

p is a triple(
A =

1

x+ e
(G0 +

∑
imiGi + sG), e←$ Zp, s←$ Zp

)
(2)

where x is the signing key, e, s are random in Zp, and (G0, . . . ,
Gn) are random independent generators of G. The verifier
may check in a pairing group that e(A, X̄ + eḠ) = e(G0 +∑

imiGi, Ḡ) where X̄ = xḠ is the verification key. Barki et
al. [BBDT17] propose a keyed-verification variant where ver-
ification is performed using x, without relying on a pairing
map. We propose a variant of BBDT’s MAC scheme fixing
s = 0 and thus considers the shorter MAC (A, e). We denote
this variant µBBS and prove it is unforgeable in the algebraic
group model under the q-DL assumption in lemma 19 and the-
orem 20. This analysis is similar to Tessaro and Zhu [TZ23],
except that here we lack a pairing map for checking MAC va-
lidity, which requires a higher degree for the discrete logarithm
challenge in the q-DL assumption. Additionally, to prove the
security of the keyed-verification scheme, the reduction needs
to re-compute B′ without knowledge of the secret key x. We
solve this problem proving a slightly stronger unforgeability
game where the adversary is also given a DDH oracle.

Dropping the nonce on blind issuance. To issue a BBS MAC without knowing the message being authenticated, BBDT
relies on the “s” term: the user computes the commitment C = sG +

∑
imiGi , and sends it to the server, together with

a zero-knowledge proof of representation in G1, . . . , Gn, G. The server computes the MAC over the commitment as (A =
(x + e)−1(C + G0), e) for a random e ←$ Zp.

19 A similar approach is taken in the current RFC draft20, where “s” term
component it called secret blind. The main challenge here is to “unblind” the s term once signed, without carrying it along as
part of the final MAC. We show how to do so considering multiplicative (instead of additive) blinding: C = s−1(

∑
imiGi +G0)

19In [BBDT17], the server actually also re-randomises the commitment, but this shouldn’t be required in light of [TZ23].
20https://www.ietf.org/archive/id/draft-kalos-bbs-blind-signatures-01.html
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for a uniformly random s ̸= 0. A representation proof can still be given, proving knowledge of m⃗, s such that sC−
∑

imiGi = G0.
(This is needed to reduce blind issuance of a credential to unforgeability of the underlying MAC scheme.) The commitment C is
still uniformly distributed and perfectly hiding m⃗, unless

∑
imiGi = −G0, in which case a solution for DL has been found. The

server computes the MAC as before, that is (A = (x+ e)−1(C +G0), e) for a random e←$ Zp. The server’s computation must
be shown to have been done using x = logGX, which is generally done with the help of a zero-knowledge proof. The user can
unblind the MAC by multiplying A by s. The resulting scheme still satisfies statistical anonymity for unbounded adversaries,
except for the edge case described above where, at issuance time, the user’s commitment is zero. Here, the simulator won’t be
able to reproduce the user distribution. However, it is possible to build a reduction to DL. To circumvent the problem, one may
decide to exclude this bad case from the attribute space (that is, the user and server do not consider such message to be valid).
We study this in more detail in theorem 21.

One-more unforgeability. Just like the previous scheme, also in this MAC it is possible to remove the user’s issuance proof
πiu, maintaining one-more unforgeability. However, without any guarantee of the actual form of the user’s message, a concrete
attack (section 6.2.3) relying on Cheon [Che06] can be shown (nota bene, the reduction still relies on q-DL). The only way in which
we know to break µBBS (with πiu) and BBS signatures is the reduction by Jao and Yoshida [JY09], which requires all signatures
to be on the same message, an important restriction of real-world cases. In the one-more unforgeability setting, this restriction
is lifted (cf. lemma 24). When concretely evaluating the bits of security, the best attack known for the q-DL assumption is
O(
√
d +

√
(p± 1)/d) where d | p ± 1 is the number of issuance sessions required. Realistically, d can be upper-bounded at 240

and around 20 bits of security are lost.

2.3 Extensions beyond selective disclosure
Extension example: pseudonyms

Setup: µCMZ credential with n = 1 attributes.
Server has: (x0, x1) associated to public parameters (X0 = x0H,X1 = x1G).
User has: (U, V ) valid for a hidden attribute k ∈ Zp.
User wants to access some “scope” scp ∈ {0, 1}∗ with a unique identity.
Hg is a random oracle with output in G.

P.Usr((X0, X1), k, (U, V )) P.Srv((x0, x1))

nym = k · Hg(scp)

r ←$ Zp; (U ′, V ′) = (rU, rV )

r′ ←$ Zp;CV = V ′ + r′H

r1 ←$ Zp; C1 = kU ′ + r1G

Z = r1X1 − r′H

πp ← ZKP
{(r′,r⃗,m⃗): nym=kHg(scp)

Z=r1X1−r′H

C1=kU′+r1G

}
nym, U ′, CV , C1, πp Z = x0U

′ + x1C1 − CV

check πp ∧ U ′ ̸= 0G

At credential issuance and presentation time, the zero-
knowledge proofs πiu and πp prove knowledge of some at-
tributes m⃗ (in the case of credential presentation, also knowl-
edge of a valid MAC). If the proof system is powerful enough,
it is possible additional “predicates” about the authenticated
attributes. We denote such predicates as ϕ(m⃗), and in the
formal descriptions of µCMZ and µBBS (figures 5 and 6) they
will be embedded in the credential issuance and presentation
protocols.

Camenisch et al. [CHK+06] showed that, if the proof
system allows proving PRF evaluations, various interesting
credential extensions are possible. One such example are
pseudonyms (section 8.3). In this scenario, the user possesses
(as an attribute) a PRF key k generated (and MAC’d) at issuance time during a credential issuance protocol. The PRF key
is used to generate context-based identities. Upon presenting the credential e.g. for accessing a website url (a scope) identified
by a string scp, the user can produce a random and unlinkable pseudonym via nym = PRF(k, scp). Upon logging in, the user
presents a valid credential for the PRF key (without revealing it) and proves that nym has been evaluated correctly. On the
right, we provide an illustration of how presentation can be done for CMZ credentials highlighting the additional presentation
material. The intuition behind the security of this system is that, since the PRF is a function, one cannot produce more than
one identity for the same scope; since the PRF is pseudorandom, the ephemeral identities look random to any adversary that
does not possess the key k. Some simple PRF choices, such as Naor–Pinkas–Reingold NPR(k, scp) = kHg(scp) are particularly
efficient, and is the one used on the right.

Extension example: rate limiting

Setup: µCMZ credential with n = 1 attributes.
Access at most ℓ times a server, each time spending a token “tkn”.
Server has: (x0, x1) associated to public parameters (X0 = x0H,X1 = x1G).
User has: (U, V ) valid for a hidden attribute k ∈ Zp.
User wants to access some “scope” scp ∈ {0, 1}∗ for the i-th time (i ≤ ℓ).
Hg is a random oracle with output in G.

P.Usr((X0, X1), k, (U, V )) P.Srv((x0, x1))

tkn = (k + i)−1 · Hg(scp)

r ←$ Zp; (U ′, V ′) = (rU, rV )

r′ ←$ Zp;CV = V ′ + r′H

r1 ←$ Zp; C1 = kU ′ + r1G

Z = r1X1 − r′H

πp ← ZKP
{(r′,r⃗,m⃗,i):Z=r1X1−r′H

Hg(scp)=k·tkn+i·tkn∧ i≤ℓ

C1=kU′+r1G

}
tkn, U ′, CV , C1, πp Z = x0U

′ + x1C1 − CV

check πp ∧ U ′ ̸= 0G

Another example, relevant in practice, is rate-limiting
anonymous tokens (section 8.2). In this scenario, a server
wants to budget the number of requests users can make, with-
out tracking them. In other words, we are looking for an
efficient credential that is keyed-verification and allows users
to present many times. The protocol must be correct (all to-
kens issued to honest users verify), unforgeable (users cannot
present more tokens than allowed by the system), and unlink-
able (all tokens are indistinguishable, even if coming from the
same user). A common approach here is to issue many blind
signatures (or VOPRFs) upon authentication: the server holds
a list of “spent tokens”, and issues batches of credentials to
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users, each for a different hidden attribute (a token), that is revealed upon presentation.21 However, this approach is very
expensive per-se, and different techniques have been introduced to scale this solution in large services doing rate-limiting across
different scopes (e.g., a URL) [SS22, AYY23]. An alternative approach, initially described in the context of k-times anonymous
credentials [TFS04, CHK+06], is to use a PRF evaluation over the pair (scp, i), where 0 ≤ i < ℓ is a counter kept by the user for
each access in scp.

A variant of Dodis–Yampolskiy HashDY(k, (i, scp)) = (k + i)−1Hg(scp) allows for even easier proofs in cases where parts of
the scope (e.g. “i ”, a rate-limit counter) are meant to be hidden. The use of Dodis–Yampolskiy in the way we describe it has
been introduced in [ASM06], but we give a formal proof of its security in theorem 35 with more precise security bounds.

2.4 Instantiating the zero-knowledge proofs

Straight-line extraction for Σ-protocols. For all above proofs, Σ-protocols are the go-to choice given the simplicity of the
relations. However, formally the security of the resulting system is tedious to argue. Σ-protocols have been historically studied
using rewinding, whereas credentials often times need to rely on straight-line extraction techniques. Theoretically, this problem
has been circumvented with the Fischlin transform [Fis05] but, due to the lack of concrete attacks over the strong Fiat–Shamir
heuristic [FS87, BPW12] its adoption has been underwhelming. To fill the gap between theory and practice, we show straight-line
extractability in the algebraic group model for linear relations:

RF =

{
(x⃗, X⃗) ∈ Zn

p ×Gm :
n∑
k

xkF1,k = X1 ∧ · · · ∧
n∑
k

xkFm,k = Xm

}
,

where:
− each linear constraint F⃗j is hard: it is computationally hard to find a non-zero vector w⃗ ∈ Zn

p such that
∑

k wkFj,k = 0G;
− all non-trivial group elements appearing in the matrix are independent. In other words, for any p.p.t. adversary A, it is

computationally hard to find a non-zero vector w⃗ such that
∑

k wkGk = 0, where (Gk)k are the distinct non-zero elements
appearing in F.

Informally, the above conditions are necessary to avoid the adversary “malleating” a simulated proof, for instance (R⃗, s⃗) with

w⃗ ∈ ker(F), and returning (R⃗, s⃗ + w⃗). While not all our instantiations rely on statements of this form, we restrict the possible
attack vectors, and consider it to be of independent interest.

Designated-verifier polynomial commitment dvKZG

Parameter generation

dvKZG.K(((G, p,G), d))

τ, η ←$ Z×
p

T0 = G

for i ∈ [d] : Ti = τTi−1

R = ηG

check T1, R ̸= 0G
T⃗ ,R, πkzg.s πkzg.s ← ZKP

{
(τ):

∀i∈[d] : Ti=τTi−1

}
check πkzg.s

return pk = (T⃗ , R) return vk = (τ, η)

Commitment to a polynomial f(x) of degree d

dvKZG.C((T⃗ , R), f(x))

s←$ Zp

F =
∑

i fiTi + sR F

Evaluation proof f(z) = y with opening information s

dvKZG.E((T⃗ , R), f(x), s, z, y) dvKZG.V((τ, η), C, z, y)

q(x) = (f(x)− y)/(x− z)

δ(x) = s− s′(x− z) where s′ ←$ Zp

Q =
∑

i qiTi + s′R

D =
∑

i δiTi
(Q,D)

check (τ − z)Q+ yG+ ηD = C

Compatibility with modern SNARKs. For keyed-
verification credentials, since the verifier is known in advance,
designated-verifier zero-knowledge proofs are sufficient for is-
suance and presentation. We present a slightly-modified ver-
sion of the Kate–Zaverucha–Goldberg [KZG10] that is desig-
nated verifier and does not rely on pairing-friendly groups.
Consider the KZG commitment scheme, where the commit-
ment key is:

pk = (G, τG, τ2G, . . . , τn−1G) (3)

and the trapdoor τ is set to be the verification key. A KZG
commitment to a polynomial f ∈ Zp[x] is a group element
C = f(τ)G computed via add-and-multiply operations over
the commitment key. An opening proof for z ∈ Zp, that is, a
proof that f(z) = y is

Q = q(τ)G

where q(x) is the quotient of the Euclidian division of f(x)−y
by (x−z). The proof can be trivially checked in the group using the trapdoor, and soundness follows the same argument given in
[KZG10]. Kohrita and Towa [KT23] provide an efficient way for hiding KZG commitments. The user now “blinds” f committing
to it as f(τ)G+ rH for r ←$ Zp, and proceeds similarly for the quotient polynomial. An evaluation proof now has an additional
term to “balance out” the blinding factors of the verification equation.

In the designated-verifier case, the (malicious) verifier can build the trapdoor information itself, preserving extractability of
the commitment. But zero-knowledge doesn’t hold! In fact, we have no guarantees that the proving key doesn’t come from

21https://datatracker.ietf.org/doc/draft-ietf-privacypass-rate-limit-tokens/
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a bad distribution that does not preserve hiding (a trivial example is when H = 0G). We show that it is possible to prove
zero-knowledge (see theorem 27) for any proving key that is “well-formed”, independently of its distribution.

One can prove that the commitment key is well-formed (and argue security against malicious verifiers) by equipping pk with
a proof that the powers of τ have been correctly encoded. Concretely, this amounts to 1 DLEQ proof (2 group elements). Upon
receiving pk, a user would check that the proof is valid, and that no trivial (identity) elements are present in pk.

The most common ingredients for building non-interactive SNARKs today are interactive oracle proofs (IOPs) [BCS16] and
commitment schemes. In an IOP, the prover may send field elements as messages, as well as special “oracle messages”, that the
verifier can query. Roughly speaking, the “IOP oracles” are replaced by commitments to instantiate the protocol and build an
argument. Among the most common combinations of IOP+commitment we have polynomial IOPs (PIOPs), where the prover
may send polynomial as oracle messages and the verifier may ask for polynomial evaluations to those oracles, and polynomial
commitment scheme (PCS). We show that, in the designated-verifier case, one can build a designated-verifier argument via a
variant of the IOP compiler given in [CHM+20], that uses a polynomial IOP and a designated-verifier commitment scheme. See
theorem 29.

As an example application, we provide a constant-sized range proof protocol that is both asymptotically and concretely more
efficient than generic algebraic approaches for keyed-verification credentials. The LegoSNARK framework [CFQ19] is a helpful
tool to bridge presentation proofs (which are generally done with Σ-protocols over generic linear relations) with the arguments
resulting from our compiler, via the commit-then-prove paradigm.

3 Preliminaries

Notation. The security parameter is denoted λ. We consider the group generation procedure GrGen(1λ) which takes as input
the security parameter in unary form 1λ and outputs a group description Γ = (G, p,G) consisting of a group G of odd prime
order p generated by G ∈ G where discrete logarithm (DL) is hard. Throughout this work we will use two random oracles: Hp,
with image over the field Zp, and Hg, with image over the group G. The domain of both oracles is the set of strings of arbitrary
length.

The writing [n] denotes the range {1, . . . , n} and [n,m] denotes the range {n, n+ 1, . . . ,m} if n ≤ m, otherwise it denotes the
empty set. Assignment is denoted “:=”, which we distinguish from assignment of the output of a randomized algorithm, where
we use the symbol “←” to underscore the sampling of random coins before assignment. The range of a p.p.t. algorithm A (that is,
the set of possible outputs that happen with non-zero probability) is denoted [A(x)]; the number of random coins as A.rl(λ). The
notation z ← (A(x) ⇌ B(y)) denotes the interaction of the interactive Turing machine A on the input x with the (interactive)
Turing machine B on input y. The output of A (the machine on the left-hand side) is assigned to z. When both machines return
some value, respectively z0 for A and z1 for B, we separate them with the semicolon, i.e. (z0; z1)← (A(x) ⇌ B(y)).

3.1 Cryptographic assumptions

The discrete logarithm (DL) assumption is hard for GrGen if it is computationally hard, given X ∈ G uniformly distributed, to
compute x ∈ Zp such that xG = X, where (G, p,G) is output by GrGen. The decisional Diffie–Hellman (DDH) assumption holds
for GrGen if it is hard to distinguish the tuple (P, aP, bP, abP ) from (P, aP, bP, cP ) with a, b, c←$ Zp and P ∈ G. Their advantage

w.r.t. an adversary A will be denoted respectively as AdvdlGrGen,A(λ), Adv
ddh
GrGen,A(λ). The gap discrete logarithm assumption is

hard if DL is hard even in the presence of a DDH oracle for the DL challenge.

q-type assumptions. The q-strong discrete logarithm (q-DL) assumption holds for the group generator GrGen if it is hard for
any p.p.t. adversary to recover x uniformly distributed over Zp given as input (G, xG, x2G, . . . , xqG). Its advantage w.r.t. an

adversary A is denoted Advq-dlGrGen,A(λ). The q-DDHI assumption holds for the group generator GrGen if it is hard for any p.p.t.

adversary to distinguish (xG, x2G, . . . , xqG, x−1G) from (xG, x2G, . . . , xqG,Z) for x←$ Zp and Z ←$ G. Its advantage w.r.t. an

adversary A is denoted Advq-ddhiGrGen,A(λ).

Algebraic Group Model. In the algebraic group model [FKL18], adversaries are assumed to know a representation of any
group element they return. This means that, after having received group elements Z1, . . . , Zn, whenever the adversary returns
a group element X, it must also return coefficients ζ1, . . . , ζn so that X =

∑
i ζiZi. We call such adversaries algebraic.

Generic Group Model. In the generic group model [Sho97] the adversary is only given access to randomly-chosen encodings
of group elements, and an oracle that executes the group operation: the oracle takes two encodings and returns the encoding of
the sum. If the oracle supports a pairing operation, an oracle for the pairing map is also given.
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Game UF-CMVAMAC,A (λ, n)

Qrs := ∅; crs← MAC.S(λ, n)

(sk, pp)← MAC.K(crs)

(m⃗∗, σ∗)← ASign,Verify(pp)

return m⃗∗ ̸∈ Qrs ∧ MAC.V(pp, m⃗∗, σ∗) = 1

Oracle Sign(m⃗)

Qrs := Qrs ∪ {m⃗}
return MAC.M(sk, m⃗)

Oracle Verify(m⃗, σ)

return MAC.V(sk, m⃗, σ)

Figure 1: Unforgeability of an algebraic message authentication code MAC.

3.2 Algebraic message authentication codes

Definition 1. An algebraic message authentication code (MAC) for n attributes over message family M = {Mλ}λ is a
tuple MAC = (S,K,M,V):

• crs ← MAC.S(1λ, n) The setup algorithm, which takes as input the security parameter in unary form and the number of
attributes, and outputs a common-reference string crs.

The setup algorithm implicitly defines an attribute space Mcrs = M (we drop the “index” crs to ease notation) describing
the family of messages supported by the MAC scheme.

• (sk,pp) ← MAC.K(crs) The key generation algorithm, which takes as input the crs and outputs a secret key sk and some
public parameters pp.

In the remainder of this paper, we will omit crs from inputs of the algorithms below for brevity, and assume that it can be
implicitly derived from either sk or pp.

• σ ← MAC.M(sk, m⃗) The MAC algorithm, which takes as input the signing key sk and attributes m⃗ ∈ Mn and outputs a
message authentication code σ.

• 0/1 := MAC.V(sk, m⃗, σ) The (deterministic) verification algorithm, which takes as input the signing key sk, a message m⃗,
and a MAC σ, and outputs 1 if the MAC is valid, and 0 otherwise.

MAC must satisfy correctness (every honestly-generated MAC verifies) and unforgeability (it is hard to forge MACs). We
denote the unforgeability advantage of A with respect to the algebraic message authentication code MAC on n attributes as
Advufcmva

MAC,A (λ, n) := |Pr
[
UF-CMVAMAC,A (λ, n)

]
|, where UF-CMVAMAC,A (λ, n) is illustrated in figure 1.

Remark 1. Differently from MACs, algebraic MACs are randomized algorithms. It is possible to construct a “de-randomized”
algebraic mac in the random oracle model using the message to seed the randomness, i.e. letting H(m⃗) be the random coins for
the MAC algorithm.

3.3 Zero-knowledge proofs of knowledge

A non-interactive proof system ZKP for a relation family R = {Rλ}λ consists of the following three algorithms:

• crs← ZKP.S(1λ), the setup algorithm, which takes as input the security parameter in unary form and outputs a common
reference string crs. It implicitly selects a relation Rcrs.

• π ← ZKP.P(crs, x, w), a prover which takes as input (x,w) ∈ R and outputs a proof π.

• 0/1 ← ZKP.V(crs, x, π), a verifier that, given as input an instance x together with a proof π outputs 0 if the proof is
rejected and 1 otherwise.

For clarity, we will talk about a relation R assuming it is indexed by the range of crs, and omit the common reference string from
the prover and verifier algorithms. A proof system is complete if every correctly-generated proof for an element of R verifies.

A proof system is a knowledge-sound argument [BLCL91] if there exists an extractor Ext that takes as input the random
coins and the code of the p.p.t. adversary A (optionally, a trapdoor for the crs, bot not required in our instantiations) such that,
whenever A(crs) outputs (x, π), then Ext outputs w. The adversary wins if ZKP.V(crs, x, π) = 1 ∧ (x,w) ̸∈ R. The advantage
is denoted as AdvksndZKP,Ext,A(λ). A proof system is zero-knowledge [GMR89] if there exists a simulator Sim such that, for any
adversary A,

AdvzkZKP,Sim,A(λ) :=

∣∣∣∣Pr[b′ = 1 :
crs← ZKP.S(1λ)
b′ ← AProve0(crs)

]
− Pr

[
b′ = 1 :

crs← ZKP.S(1λ)
b′ ← AProve1(crs)

]∣∣∣∣ ≤ negl(λ) .
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Game OMUFAT,A (λ, n)

q := 0

crs← AT.S(1λ, n)

(sk, pp)← AT.K(crs)

(m⃗i, σi)
q+1
i=1 ← ASign,Verify(pp)

return ∀i ̸= j : m⃗i ̸= m⃗j ∧ ∀i ∈ [q + 1] : AT.V(sk, m⃗i, σi) = 1

Oracle Sign(µ)

q = q + 1

return AT.I.Srv(sk, µ)

Oracle Verify(m⃗, σ)

return AT.V(sk, m⃗, σ)

Figure 2: One-more unforgeability game for an anonymous token scheme AT with non-interactive issuance. The variable “µ” denotes the
issuance request message from the user.

Game UNFKVC,A (λ, n)

Qrs := ∅

crs← KVC.S(1λ, n)

(sk, pp)← KVC.K(crs)

(ϕ∗, ρ∗)← ASign,Present(pp)

b← KVC.P.Srv(sk, ϕ∗, ρ∗)

return (b = 1) ∧ (∀m⃗ ∈ Qrs : ϕ∗(m⃗) = 0)

Oracle Sign(m⃗)

Qrs := Qrs ∪ {m⃗}
return KVC.M(sk, m⃗)

Oracle Present(ϕ, ρ)

return KVC.P.Srv(sk, ϕ, ρ)

Figure 3: Canonical unforgeability game for a keyed-verification credential system KVC [CMZ14]. The variables “ϕ, ϕ∗” denotes the
algebraic predicate to be shown on m⃗ (cf. definition 2) while “ρ” denotes the presentation message.

where Proveb(x,w) checks if (x,w) ∈ R and outputs ZKP.P(crs, x, w) if b = 0 and Sim(crs, x) if b = 1. We assume that both
adversary and simulator have access to a random oracle, and that the simulator can explicitly re-program the random oracle.
A proof system is (strongly) simulation-extractable [DHLW10] if it is knowledge-sound even when the adversary has access
to simulated proofs, and the output pair (x, π) was not previously returned by the zero-knowledge simulator. For the formal
definitions, see Dao and Grubbs [DG23, Fig. 2, 3, and 4].

3.4 Anonymous Tokens

An anonymous token [KLOR20] is a keyed-verification blind signature (with an optional private metadata bit). More formally, an
anonymous token scheme AT for n > 0 attributes over attribute familyM is a tuple AT = (S,K, I,V) where AT.S(1λ, n) outputs a
crs; AT.K(crs) outputs a signing key sk and some public parameters pp; the issuance protocol involves a user AT.I.Usr(pp, m⃗) and
a server AT.I.Srv(sk) and produces a token σ for the user; the verification algorithm AT.V(sk, m⃗, σ) returns 0/1 if the credential
is accepted for the message m⃗. We demand anonymous tokens to be correct, one-more unforgeable, and unlinkable.

Correctness means that all tokens generated via AT.I.{Usr,Srv} for messages in the family successfully verify. One-more
unforgeability asks that, after blindly issuing at most q credentials, no adversary can successfully present q + 1 valid message/-
credential pairs. More formally, given an anonymous token scheme AT for n > 0 attributes over attribute familyM, an adversary
A has one-more unforgeability advantage

Advomuf
AT,A (λ) := Pr

[
OMUFAT,A (λ, n) = 1

]
where OMUFAT,A (λ, n) is illustrated in figure 2.

Unlinkability (similarly to blindness for blind signatures) demands that, any malicious issuer, after blindly issuing q credentials
to honest users and then observing a permutation of the issued credentials, cannot to better than guessing the link between
a credential and its issuance. Looking ahead, keyed-verification credential systems (definition 3) are also anonymous tokens:
the syntax is the same (except for predicates) but the security guarantees are weaker: instead of asking for extractability
(definition 6) and anonymity (definition 5), we demand one-more unforgeability and unlinkability. We will exploit the weaker
security requirements of unforgeability to produce more efficient schemes, but will maintain the stronger anonymity properties
and therefore omit the definition of unlinkability in this work, and direct the curious reader to Kreuter et al. [KLOR20, Fig. 4]
and Chase, Durak, Vaudenay [DVC22, Fig. 3].
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4 Keyed-verification credential systems

We first generalize the issuance algorithm of credential systems (procedures BlindIssue and BlindObtain in Chase et al. [CMZ14]
and here KVC.I.{Usr,Srv}) so that arbitrary predicates about the attributes over which a credential is about to be issued can be
proven. Then, we re-define security and given a unique notion unforgeability and anonymity.

4.1 Syntax

We enrich the classical definition of keyed-verification anonymous credentials (KVAC) with issuance with predicates beyond
partial disclosure of attributes. In this setting, at issuance time the user can partially disclose some attributes satisfying a
predicate ϕ ∈ Φ over them. For the sake of simplicity, we use the same predicate family employed in the presentation protocol,
and make it explicit when they are not. This is a generalization of the traditional definition, where the predicate ϕ is concerned
with disclosure of only some attributes, and where the server has no memory of previously-seen credentials.

Definition 2. An algebraic predicate is an efficiently-computable function ϕ(m⃗) mapping some elements m⃗ ∈Mn (M referred
to as attribute space) to a boolean value (1 if the predicate is satisfied, 0 otherwise). With ϕ∅ we denote the trivial predicate
that always returns 1. A predicate family is a non-empty set of algebraic predicates Φ = {ϕ : Mn → {0, 1}} containing the
trivial predicate and closed under conjunction of statements (i.e., if ϕ1, ϕ2 ∈ Φ then ϕ1 ∧ ϕ2 ∈ Φ).

Whenever the predicates is parametrized by some constants a⃗ we will denote it as ϕa⃗(m⃗).

Definition 3. A keyed-verification credential system KVC = (S,K, I,P) for predicate family Φ over a message family
M = {Mλ}λ for n ∈ N attributes is a tuple of algorithms:

• crs← KVC.S(1λ, n) The setup algorithm, which takes as input the security parameter in unary form and the max number
of attributes n > 0, and outputs a common-reference string crs.

The setup algorithm implicitly defines an attribute space M and a predicate family Φ.

• (sk,pp) ← KVC.K(crs) The key generation algorithm, which given as input the crs produces a signing key sk and some
public issuer parameters pp.

In the remainder of this work, we will omit crs from inputs to the algorithms below for brevity, and assume that it can
be implicitly derived from either sk or pp. We will also assume that it is possible to efficiently test whether some given
keypair (sk,pp) is correctly generated, i.e.,(sk,pp) ∈ [KVC.K(crs)]. This is without loss of generality: it is always possible
to consider the secret key sk as the random coins used in the key generation algorithm as a syntactical change.

• σ ← (KVC.I.Usr(pp, m⃗, ϕ) ⇌ KVC.I.Srv(sk, ϕ)) The issuance algorithm allows a user to obtain a credential σ for a set of
attributes m⃗, kept hidden from the issuer, but satisfying a predicate ϕ ∈ Φ.

All future issuance algorithm will be non-interactive, i.e. the server will receive a message from the user and respond with
a (blinded) credential, that will be further processed by the user. Therefore, to simplify the description, we will split the
protocol into 3 non-interactive algorithms:

− (stu, µ)← KVC.I.Usr1(pp, m⃗, ϕ), producing the first message µ and the user state stu.
− σ′ ← KVC.I.Srv(sk, ϕ, µ), producing the server’s blinded credential σ′.

If the server does not accept the user’s message, the server will return σ′ = ⊥.
− σ ← I.Usr2(stu, σ

′), producing the credential σ given as input the state stu and the server message σ′.

The canonical definition of keyed-verification anonymous credentials, instead of arbitrary predicates, admit a set J of
hidden attributes. This can be seen as a special instance of this definition: for any set J ∈ 2[n] the corresponding predicate
of partial disclosure is ϕa⃗J(m⃗) := (∀j ∈ [n] \ J : aj = mj).

• 0/1← (KVC.P.Srv(sk, ϕ) ⇌ KVC.P.Usr(pp, m⃗, σ, ϕ)) The present (or show) algorithm allows a user to prove possession of a
credential σ over some (partially disclosed) attributes satisfying a predicate ϕ ∈ Φ, without revealing any information other
than what can be explicitly inferred from ϕ. Optimizations related to the above two special cases are straightforward to
obtain for the schemes we will present. We will mention how to make proofs more efficient for the case of partial disclosure,
so that the presentation proof will be independent of the total number of attributes.

All presentation algorithms in this document are non-interactive, i.e. the user will send a single message to the server and
the server will output a single bit. Consequently, we will split the protocol into two non-interactive algorithms:

– ρ← KVC.P.Usr(pp, m⃗, σ, ϕ), producing the presentation message ρ.

– 0/1← KVC.P.Srv(sk, ϕ, ρ), verifying the presentation message ρ for ϕ with sk.
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A keyed-verification credential system KVC satisfies correctness, anonymity, and unforgeability.

Similarly to previous works [CMZ14, CR19], we define two extra algorithms to simplify formalism:

• σ ← KVC.M(sk, m⃗) generates a credential σ for the attributes (m1, . . . ,mn). This is syntactic sugar for running (µ, st)←
KVC.I.Usr1(pp, m⃗, ϕ∅), σ

′ ← KVC.I.Srv(sk, ϕ∅, m⃗, µ), and returning σ ← KVC.I.Usr2(st, σ
′).

• 0/1 ← KVC.V(sk, m⃗, σ) verifies that the credential σ for the attributes m⃗ using sk. This is syntactic sugar for running
ρ← KVC.P.Usr(pp, m⃗, σ, ϕ∅) and returning KVC.P.Srv(sk, ϕ∅, ρ).

The notation clash with the MAC and verification algorithms of a MAC scheme is on purpose, as we will focus on credentials
derived from algebraic MACs.

4.2 Correctness

Correctness informally states that messages satisfying the issuance predicate should lead to correct credential issuance, and
credential presentation should succeed for any valid statement.

Definition 4 (Correctness). A keyed-verification credential system KVC for a family of n ≤ poly(λ) attributes and nontrivial
predicates Φ ⊇

{
ϕa⃗J : J ∈ 2[n], a⃗ ∈Mn

}
and a non-empty message family M is correct if for any p.p.t. adversary A, for any

crs ∈ [KVC.S(1λ, n)] and (sk,pp) ∈ [KVC.K(crs)] and for any ϕ, ϕ′ ∈ Φ, m⃗ ∈Mn
crs such that ϕ(m⃗) = ϕ′(m⃗) = 1:

Pr

[
b = 1 :

σ ← (KVC.I.Usr(pp, m⃗, ϕ) ⇌ KVC.I.Srv(sk, ϕ))
b← (KVC.P.Srv(sk, ϕ′) ⇌ KVC.P.Usr(pp, m⃗, σ, ϕ′))

]
is overwhelming in λ.

4.3 Anonymity

Anonymity is captured with an indistinguishability game where the adversary, given as input crs, is asked to distinguish between
the interaction with an honest user and a simulator that does not know any of the attributes (for issuance and presentation).
Users for which the issuance/presentation predicates hold are then indistinguishable. More formally, the simulator is a pair of
procedures Sim = (Sim.I,Sim.P) where Sim.I(pp, ϕ) is an interactive procedure whose distribution is meant to be indistinguishable
from KVC.I.Usr, returning at the end some simulator state stSim, and Sim.P(stSim, ϕ) returns a transcript that can be used to
distinguish the “real” from the “simulated” interaction. During its execution it has access to a presentation oracle, either
consisting of the user procedure or of Sim.P.

Definition 5. A keyed-verification credential system KVC for a family of n ≤ poly(λ) attributes, predicate family Φ, and a non-
empty message family M is anonymous if there exists a simulator Sim = (Sim.I,Sim.P) such that, for all crs ∈ [KVC.S(1λ, n)]
and (sk,pp) ∈ [KVC.K(crs)], m⃗ ∈Mn

crs, ϕ ∈ Φ, adversaries A,D, the advantage AdvanonKVC,A,D(λ, n) defined as:∣∣∣∣Pr[b′ = 1 :
(σ; stA)← (KVC.I.Usr(pp, m⃗, ϕ) ⇌ A(sk,pp, ϕ, m⃗))
b′ ← DPresent0(stA)

]
− Pr

[
b′ = 1 :

(stSim; stA)← (Sim.I(pp, ϕ) ⇌ A(sk,pp, ϕ, m⃗))
b′ ← DPresent1(stA)

]∣∣∣∣
is negligible in λ, where the Presentb(ϕ) oracle checks if ϕ(m⃗) holds for m⃗, and if so returns KVC.P.Usr(pp, m⃗, σ, ϕ) otputus
(if b = 0) or Sim.P(stSim, ϕ) outputs (if b = 1)

A KVC has statistical anonymity if AdvanonKVC,A,D(λ, n) is negligible for unbounded adversaries A,D. A KVC has everlasting
forward anonymity if AdvanonKVC,A,D(λ) is negligible when D is unbounded.

Comparison with original KVACs [CMZ14]. The canonical definition of anonymity for keyed-verification credentials is
concerned solely with anonymity of different presentation sessions. Formally, it asks that for any p.p.t. adversary A, for any
crs ∈ [KVC.S(1λ, n)] and (sk,pp) ∈ [KVC.K(crs)] and for any ϕ ∈ Φ, m⃗ ∈Mn

crs such that ϕ(m⃗) = 1,∣∣∣∣Pr[A(sk,pp, ϕ, ρ) = 1 :
σ ← KVC.M(sk, m⃗)
ρ← KVC.P.Usr(pp, m⃗, σ, ϕ)

]
− Pr

[
A(sk,pp, ϕ, ρ) = 1 : ρ← Sim.P(sk, ϕ)

]∣∣∣∣
is negligible in λ. In some credentials such as Chase–Meiklejohn–Zaverucha, where anonymity is only computational, this
difference is tangible. (In [CMZ14], other notions such as key-parameter consistency and blind issuance are concerned with user
anonymity.)
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Game EXTKVC,Ext,A (λ, n)

Qrs := ∅; PQrs := []; Usrs := []; ctr := 0

crs← KVC.S(1λ, n)

(sk, pp)← KVC.K(crs)

(ϕ∗, ρ∗)← A
Issue,Present , NewUsr, PresentUsr

(pp)

m⃗∗ := Ext.P(sk, ϕ∗, ρ∗)

return KVC.P.Srv(sk, ϕ∗, ρ∗) = 1 ∧ (ϕ∗, ρ∗) ̸∈ PQrs ∧

(m⃗∗ ̸∈ Qrs ∨ ϕ∗(m⃗∗) = 0)

Oracle NewUsr(m⃗)

σ ← KVC.M(sk, m⃗)

Usrs[ctr] := (m⃗, σ)

return ctr := ctr+ 1

Oracle PresentUsr(i, ϕ)

(m⃗, σ) := Usrs[i]

ρ← KVC.P.Usr(pp, m⃗, σ, ϕ)

PQrs := PQrs ∪ {(ϕ, ρ)}
return ρ

Oracle Issue(ϕ, µ)

σ′ ← KVC.I.Srv(sk, ϕ, µ)

if σ′ = ⊥ : return ⊥
m⃗ := Ext.I(sk, ϕ, µ)

if ϕ(m⃗) = 0 : abort

Qrs := Qrs ∪ {m⃗}
return σ′

Oracle Present(ϕ, ρ)

return KVC.P.Srv(sk, ϕ, ρ)

Figure 4: Extraction game for a keyed-verification credential system KVC with extractors Ext.I and Ext.P, and adversary A. The variables
“ϕ” and “ϕ∗” denote the predicate to be shown on m⃗ (cf. definition 2) whereas “µ” denotes the issuance message, and “ρ” the presentation

message. Boxed , the experiment in the multi-user setting with man-in-the-middle attacks.

4.4 Extractability

In keyed-verification credential systems, unforgeability states that an adversary should not be able to present a credential for
a predicate ϕ that does not hold over any of the previously-issued credentials. The notion we propose is stronger: we require
an extractor than can recover the attributes from issuance/presentation messages, and consider man-in-the-middle adversaries.
The adversary wins if at the end of the game it presents a valid credential from which the extracted message was not previously
issued to the adversary or an honest user.

Definition 6. A keyed-verification credential system KVC for a family of n ≤ poly(λ) attributes, predicate family Φ, and a
non-empty message family M is extractable if there exists Ext = (Ext.I,Ext.P) such that, for any p.p.t. adversary A:

AdvextKVC,Ext,A(λ) := Pr
[
EXTKVC,Ext,A (λ, n) = 1

]
is negligible in λ, where EXTKVC,Ext,A (λ, n) is defined in figure 4.

In the game, the adversary receives as input some public parameters (from which it is possible also to infer the common
reference string crs) and can interact with issuance and presentation oracles. The oracles NewUsr and PresentUsr deal
with issuance and presentation of credentials of other users, and are meant to model man-in-the-middle attackers that might
re-use presentation messages for other presentation predicates. The oracles Issue and Present instead deal with issuance and
presentation of a credential: the Issue oracle returns a server message σ′ representing the blinded credential that the adversary
may unblind. The Present oracle returns the result of the presentation protocol. The adversary is then asked to output a pair
(m⃗∗, ϕ∗) that was not queried to the oracles, and that is valid for the predicate ϕ∗.

Comparison with original KVACs [CMZ14]. The original definition of unforgeability for keyed-verification anonymous
credentials (illustrated in figure 3) is implied by extractability. Any adversary A for the game UNFKVC,A (λ, n) can in fact be
used to construct an adversary B for the game EXTKVC,Ext,B (λ, n). B will receive as input pp and internally run A(pp). For
every query of the form Sign(m⃗) made by A, then B will run µ← KVC.I.Usr1(pp, m⃗, ϕ∅) and query the issuance oracle. Since the
game does not abort during issuance (except with negligible probability), the extractor Ext.P will recover m⃗ with non-negligible
probability (it is the only element of Mn satisfying ϕm⃗∅ ). For every presentation oracle query from A, the adversary B forwards
it to the respective oracle Present of the extractability game. B returns the same output as A, a pair (ϕ∗, ρ∗). By the winning
condition of the unforgeability game we have that ϕ∗(m⃗) = 0 for every m⃗ previously queried, and yet (by winning condition),
ϕ∗(m⃗∗) = 1. This means that m⃗∗ is different from all previously-queried messages, and therefore AdvunfKVC(λ) ≤ AdvextKVC(λ).

Comparison with PABSs [CKL+16]. Extraction is similar to the unforgeability experiment for privacy-enhancing attribute-
based signatures (PABSs), with some syntactical differences, mostly due to the modularity of PABSs, where each attribute is
committed with an opening extractable commitment (a commitment equipped with a zero-knowledge proof of knowledge for the
opening relation). Their notion of unforgeability schemes demands that there exist extractors (Ec,Es) recovering the attributes
from respectively issuance and presentation. For any adversary that outputs a valid credential presentation message (composed
of a signature presentation token spt satisfying SignTokenVf for public attributes a⃗, committed attributes c⃗, and a message M),
one of the following is true: (i) the extractor Es failed to recover a valid opening for one of the commitments returned from the
adversary (ComOpenVf); (ii) the extractor Es failed to recover a valid signature from the adversary’s output (SigVf); (iii) the
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Keyed-verification credential µCMZ

Base MAC

Procedure µCMZ.S(1λ, n)

(G, p,G) := Γ← GrGen(1λ)

H ←$ G
return crs := (Γ, H)

Procedures µCMZ.K(crs)

sk := (x0, x1, . . . , xn)←$ Zn+1
q

X0 := x0H

Xi := xiG for i ∈ [n]

return sk, pp := (X0, X⃗)

Procedure µCMZ.M((x0, x⃗), m⃗)

U ←$ G
V := (x0 +

∑
i mixi)U

return σ := (U, V )

Procedure µCMZ.V((x0, x⃗), m⃗, (U, V ))

return U ̸= 0G ∧ V = (x0 +
∑

i mixi)U

Credential Issuance

µCMZ.I.Usr((X0, X⃗), m⃗, ϕ) µCMZ.I.Srv((x0, x⃗), ϕ)

C′ :=
∑

i miXi + sG where s←$ Zp

πiu ← ZKPcmz.iu.P((C
′, X⃗, ϕ), (m⃗, s))

C′, πiu
check ZKPcmz.iu.V((C

′, X⃗, ϕ), πiu)

U ′ := uG where u←$ Zp

V ′ := x0U + uC′

check U ′ ̸= 0G
U ′, V ′, πis πis ← ZKPcmz.is.P((X0, C

′, U ′, V ′), (x0, u))

check ZKPcmz.is.V((X0, C
′, U ′, V ′), πis)

U := rU ′ where r ←$ Zp

V := r(V ′ − sU ′)

return σ := (U, V )

Credential Presentation

µCMZ.P.Usr((X0, X⃗), m⃗, (U, V ), ϕ) µCMZ.P.Srv((x0, x⃗), ϕ)

(U ′, V ′) := (rU, rV ) where r ←$ Zp

CV := V ′ + r′H where r′ ←$ Zp

for i ∈ [n]

Ci := miU
′ + riG where ri ←$ Zp

Z :=
∑n

i=1 riXi − r′H

πp ← ZKPcmz.p.P((U
′, X⃗, C⃗, Z, ϕ), (r′, r⃗, m⃗))

U ′, CV , C⃗, πp Z := x0U
′ +

∑n
i=1 xiCi − CV

return
(
U ′ ̸= 0G ∧

ZKPcmz.p.V((U
′, X⃗, C⃗, Z, ϕ), πp)

)

Figure 5: The keyed-verification credential system µCMZ. Differs from [CMZ14] in key generation and issuance algorithms to achieve

statistical anonymity. Boxed , the part that may be removed for anonymous tokens (one-more unforgeability). The variable ϕ denotes
the arbitrary predicates that must be enforced on the attributes during issuance or presentation. The relations to be proven are defined in
equations (4) to (6).

message and credentials (as extracted from Ec) were not previously queried. Throughout the game, the issuance oracle checks
that the commitment verification proof is satisfied, which by opening extraction, implies that the issuance message is correctly
extracted similarly to the abort condition in Issue. Items (i) and (ii) ask that a valid message is extracted every time that the
credential verification equation is successful (similarly to our request on Ext.P); item (iii) is similar to our request of the forgery
not being present in Qrs, the set of credentials extracted from Ext.I.

Strategy employed in our analysis. When proving our keyed-verification credential systems, we do not consider the multi-
user setting. All credentials examined internally rely on a proof system ZKP that is zero-knowledge and knowledge-sound, and
it is sufficient to replace knowledge-soundness with strong simulation extractability to prove the definition of extractability as
presented in figure 4. In fact, the output of PresentUsr is always a prover message ρ composed of commitments and proofs (the
commitments, included in ρ, are part of the statement of the proofs). Therefore, the additional winning condition guarantees
extraction in the strong simulation extractability game.

5 Chase–Meiklejohn–Zaverucha credentials

Figure 5 formally illustrates our credential µCMZ. It can be seen as a variant of MACGGM, secure in the generic group model,
as introduced by Chase, Meiklejohn, and Zaverucha [CMZ14].

5.1 Protocol description

Message authentication code. The key generation procedure samples random (x0, x⃗)←$ Zn+1
p , and sets the public param-

eters (X0 = x0H,X1 = x1G, . . . ,Xn = xnG). The signing algorithm computes V = (x0 +
∑

imixi)U . The special property of
this MAC is that they are structure-preserving, i.e. given a MAC (U, V ) for m⃗, then (U ′, V ′) := (rU, rV ) for r ̸= 0 still satisfies
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the verification equation V ′ = (x0 +
∑

imixi)U . The verification algorithm µCMZ.V((x0, x⃗), m⃗, (U, V )) checks U ̸= 0G and
V = (x0 +

∑
i ximi)U . We prove the following theorem:

Theorem 7. In the algebraic group model, µCMZ is an algebraic MAC for n = poly(λ) attributes over Zp with advantage:

Advufcmva
µCMZ (λ, n) ≤ Adv3-dlGrGen(λ) + AdvdlGrGen(λ) +

3

p
,

Previous analyses in the generic group model, for schemes slightly different to this one, can be found in Chase et al. [CMZ14,
Thm. 2] and the analysis of Pointcheval and Sanders [PS16, Assumption 2].

Blind issuance. The user commits to the attributes as C =
∑

imiXi + sH, where s is sampled uniformly at random in Zp.

Then, it proves that m⃗ satisfies the issuance predicate ϕ, i.e., that ((C, X⃗, ϕ), (m⃗, s)) is in the relation:

Rcmz.iu :=
{
((C ′, X⃗, ϕ), (m⃗, s)) : C ′ =

∑
imiXi + sG ∧ ϕ(m⃗) = 1

}
(4)

and sends a proof of knowledge πiu for (m⃗, s). Public messages don’t need to be committed (nor proven in zk) and the server
can add them itself using the homomorphic properties of C ′. The server computes a MAC for the message m⃗ and proves its
correctness via a proof πis for the relation:

Rcmz.is :=

{
((X0, C

′, U ′, V ′), (x0, u)) :
U ′ = uG ∧ X0 = x0H ∧
V ′ = uC ′ + x0U

′

}
(5)

Credential presentation. To present a credential, the user first re-randomizes the MAC σ = (U, V ) into σ′ = (U ′ = rU, V ′ =
rV ) with r ←$ Zp, produces commitments Ci to each message mi, and finally prove that the committed messages satisfy a
predicate ϕ.22 The user will prove the relation:

Rcmz.p :=

{
((U ′, X1, . . . , Xn, C1, . . . , Cn, Z, ϕ), (r

′, r⃗, m⃗)) :
(∀i ∈ [n] Ci = miU

′ + riG) ∧ Z =
∑n

i=1 riXi − r′H ∧ ϕ(m⃗) = 1

}
. (6)

The case of partial disclosure of attributes, where a subset of attributes J ⊆ [n] is meant to be hidden, can be optimized in
a straightforward way: the user will commit only to the attributes in J and the server will compute Z = x0U

′ +
∑

i∈J xiCi +∑
i∈[n]\J miU

′ − CV , using the hidden attributes as input to the proof. The case of full disclosure of messages is also straight-

forward: it consists in sending (U ′, V ′ + r′G) and proving the relation fixing ri = 0 for all i ∈ [n].
If the predicate ϕ only concerns a subset J ∈ [n] of attributes then the presentation proof message can be optimized via

standard batching techniques. The user will still send to the server commitments for all hidden attributes, but instead of proving
knowledge of an opening for each Ci, the user computes Ĉ =

∑
i∈[n]\J µ

iCi where µ := H(C⃗) and proves knowledge instead of

m̂ =
∑

i∈[n]\J µ
imi and r̂ =

∑
i∈[n]\J µ

iri.
Let Rcmz := Rcmz.iu ∪ Rcmz.is ∪ Rcmz.p. We prove the following:

Theorem 8. If ZKP is a proof system for the relation R ⊇ Rcmz, then µCMZ is a keyed-verification extractable credential for
n = poly(λ) attributes with anonymity advantage:

AdvanonµCMZ(λ, n) ≤ AdvzkZKPcmz.iu
(λ) + AdvzkZKPcmz.p

(λ) + AdvksndZKPcmz.is
(λ) ,

and extractability advantage:

AdvextµCMZ(λ, n) ≤ Advufcmva
µCMZ (λ, n) + AdvzkZKPcmz.is

(λ) + AdvksndZKPcmz.iu
(λ) + AdvksndZKPcmz.p

(λ) .

In particular, µCMZ[ZKP = Σ] has statistical anonymity if we conjecture that Σ is statistically knowledge sound.
Let µCMZAT denote the variant of µCMZ in figure 5 where the issuance algorithm does not return the proof πiu (that is, the

boxed areas are removed). From the above, and theorem 14, we also have:

Theorem 9. If ZKP is a proof system for the relation R ⊇ Rcmz.p∪Rcmz.is, then µCMZAT is an anonymous token for n = poly(λ)
attributes with anonymity advantage:

AdvanonµCMZAT
(λ, n) ≤ AdvzkZKPcmz.iu

(λ) + AdvzkZKPcmz.p
(λ) + AdvksndZKPcmz.is

(λ) ,

and (in the algebraic group model) one-more unforgeability advantage:

Advomuf
µCMZAT

(λ, n) ≤ Adv2dlGrGen(λ) + qAdvdlGrGen(λ) +
q + 5

p
,

where q is the number of queries to the issuance oracle.
22Despite not explicit in the original work, the check U ′ ̸= 0G is required as otherwise a user having a credential for m⃗ = 0 will verify for m⃗ = 0⃗, r′ =
0, ri = 0.
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5.2 Analysis

5.2.1 Algebraic MAC

We prove that µCMZ is an algebraic MAC first for the case n = 1 (lemma 10) and then reduce the case for many attributes to
the case n = 1 (theorem 11). Looking ahead, the keyed-verification scheme will reduce to unforgeability of the base MAC, but

will need access to the secret key in order to check that Z + CV = x0U
′ +

∑
i xiCi where U ′, CV , C⃗ are adversarially chosen

and (x0, x⃗) are the MAC secrets. To solve this technicality, we study a stronger experiment where the adversary is also given an
oracle Help(A0, A1, Z) that returns 1 if Z = x0A0 + x1A1 and 0 otherwise.

Lemma 10. In the algebraic group model, µCMZ is an algebraic MAC for n = 1 attributes in Zp with advantage:

Advufcmva
µCMZ (λ, 1) ≤ Adv3-dlGrGen(λ) +

1

p
.

Proof. Statistical correctness follows by inspection; we prove unforgeability. Let A be an adversary that receives as input some
public parameters pp = (X0, X1) has access to a sign oracle Sign, a verification oracle Verify, and a helper oracle Help. It
outputs a forgery (m∗, (U∗, V ∗)). The j-th oracle query to Sign(mj) takes as input mj ∈ Zp and outputs a MAC σj = (Uj , Vj).
Let q be the number of signing queries made during the execution of the adversary. The output of an algebraic adversary is
accompanied by an algebraic representation α⃗, β⃗ of the form

U∗ = αgG+ αhH + αx0
X0 + αx1

X1 +

q∑
j

αj,uUj + αj,vVj ,

V ∗ = βgG+ βhH + βx0X0 + βx1X1 +

q∑
j

βj,uUj + βj,vVj .

The verification equation requires that U∗ is non-zero and that the following polynomial equation in Zp[η,x0,x1,u1, . . . ,uq](
αg + αhη + αx0x0η + αx1x1 +

∑q
j αj,uuj + αj,vuj(x0 +mjx1)

)
(x0 +m∗x1) =

βg + βhη + βx0
x0η + βx1

x1 +
∑q

j βj,uuj + βi,vuj(x0 +mjx1)
(7)

holds when evaluated in x0 = logH X0, x1 = logGX1, η = logGH and uj = logG Uj . We first study the case that equation (7)
holds over the polynomial ring, and then argue equality over the field. For the equation to hold, we must have that all monomials
on the left-hand side must appear also on the right-hand side of the equation. Thus, it can be simplified as:

(αg +
∑
i

αi,uuj)x0 + αhηx0 +m∗(αg +
∑
j

αj,uuj)x1 = (
∑
j

βj,vuj)x0 + βx0ηx0 + (βx1 +
∑
j

βj,vmjuj)x1

and therefore: αj,u = βj,v for all j ∈ [q], αg = 0, αh = βx0 , βx1 = 0 (from αg = 0), and βj,vmj = αj,um
∗ for all j ∈ [q] which in

turn means that m∗ = mj for some j. This is a contradiction to the fact that m∗ was not queried to the signing oracle. It must
therefore be the case that, for a winning adversary, equation (7) does not hold over Zp[η,x0,x1,u1, . . . ,uq] but does hold when
evaluated in the relative discrete logarithms.

We build a reduction B to 3-DL. The adversary B takes as input some group description Γ and (X,X ′, X ′′) ∈ G3. It samples
random ah, bh, ax0 , bx0 , ax1 , bx1 ←$ Zp and invokes A with public parameters

pp := (Γ, H = ahG+ bhX, X0 = ahax0G+ (bhax0 + ahbx0)X + bhbx0X
′, X1 = ax1G+ bx1X) , (8)

which is identically distributed to the one of an honest signer. During its execution, the adversary can make queries to the
oracles Sign,Verify,Help. For the j-th signing query on a message mj , the reduction B samples au,j , bu,j ←$ Zp and returns

(Uj = au,jG+ bu,jX ,

Vj = au,i(ax0
+miax1

)G+ (au,jbx0
+mjau,jbx1

+ bu,jax0
+mbu,jax1

)X + bu,j(bx0
+mbx1

)X ′) .
(9)

A query to the verification oracle consists of a message m and a MAC (U, V ), accompanied by the algebraic representation α⃗, β⃗
such that:

U = αgG+ αhH + αx0
X0 + αx1

X1 +

ns∑
j

αj,uUj + αj,vVj ,

V = βgG+ βhH + βx0
X0 + βx1

X1 +

ns∑
j

βj,uUj + βj,vVj
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where ns < q is the current number of queries made to Sign. The oracle tests the verification equation plugging equations (8)
and (9) into the verification equation and checking it using (X,X ′, X ′′) as the maximum degree of the resulting polynomial is 3.
If the equation is not satisfied, the oracle returns 0. Otherwise, it returns 1.

Any Help query of the form (A0, A1, Z) ∈ G3 has algebraic representation:

A0 = γ(0)g G+ γ
(0)
h H + γ(0)x0

X0 + γ(0)x1
X1 +

∑
j

γ
(0)
j,uU + γ

(0)
j,vV ,

A1 = γ(1)g G+ γ
(1)
h H + γ(1)x0

X0 + γ(1)x1
X1 +

∑
j

γ
(1)
j,uU + γ

(1)
j,vV ,

Z = δgG+ δhH + δx0X0 + δx1X1 +
∑
j

δj,uU + δj,vV ,

(10)

and, similarly to the verification oracle, B can respond to the query evaluating the associated polynomial in X via (G,X,X ′, X ′′),
as the maximum degree of the resulting expression is 3. At the end, the adversary A returns a forgery (m∗, (U∗, V ∗)) satisfying
the verification equation and such that m∗ ̸= mi for all i ∈ [q]. From equation (7) we know that (since m∗ ̸= mi for all i’s) the
polynomial of equation (7)

φ(η,x0,x1,u1, . . . ,uq) := (αg + αhη + αx0
x0η + αx1

x1 +
∑q

j αj,uuj + αj,vuj(x0 +mjx1))(x0 +m∗x1)−(
βg + βhη + βx0

x0η + βx1
x1 +

∑q
j βj,uuj + βi,vuj(x0 +mjx1)

)
is non-zero. Since the bh, bx0

, bx1
, bu,j ’s are all uniformly random and perfectly hidden by the respective ah, ax0

, ax1
, au,j ’s, the

partial evaluation
ψ(χ) = φ(ah + χbh, ax0 + χbx0 , ax1 + χbx1 , au,1 + χbu,1, . . . , au,q + χbu,q)

is still a non-zero polynomial in Zp[χ], of degree at most 3, with overwhelming probability. Yet, since the verification equation
is satisfied, ψ(logGX) = 0. Therefore, one of the roots of ψ is in the field and is the discrete logarithm of X with respect to G.
The reduction finds the root of ψ and returns the one that is the discrete logarithm of X.

Theorem 11. µCMZ is an algebraic MAC for n = poly(λ) attributes in Zp with advantage:

Advufcmva
µCMZ (λ, n) ≤ Advufcmva

µCMZ (λ, 1) + AdvgapdlGrGen(λ) +
2

p
.

Proof. Let A be an adversary against MAC unforgeability, taking as input the public parameters (Γ, H,X0, . . . , Xn) and out-
putting some forgery (m⃗∗, (U∗, V ∗)). During its execution, A has access to the oracles Sign, Verify, and Help. Sign outputs
a MAC (Uj , Vj) for a queried message m⃗j . Verify outputs the verification output of µCMZ. We distinguish two events:

(i) the output m⃗∗ is a valid forgery and
∑n

i=1m
∗
iXi =

∑n
i=1mj,iXi for some previously-queried message m⃗j (j ∈ [q]);

(ii) the output m⃗∗ is a valid forgery and
∑

im
∗
iXi ̸=

∑
imj,iXi for all j ∈ [q],

where q is the number of queries done to Sign.
We claim that (i) happens at most with negligible probability. To do so, we build an adversary B that solves gap DL for

GrGen every time that the (bad) event of A returning a forgery m⃗∗ such that
∑

im
∗
iXi =

∑
imj,iXi for some j ∈ [q] occurs.

The adversary B has access, during its execution, to an oracle Ddh(A,Z) that returns 1 if Z is the DH of X and A. B takes as
input (Γ, X) with X ∈ G and samples ai, bi ←$ Zp and computes Xi = aiG + biX for i ∈ [n] and X0 = zH for some z ←$ Zp.
Invokes A with pp = (Γ, X0, X1, . . . , Xn). For every signing query on message m⃗j it returns

(U := uG, V := (z +
∑

i aimj,i)U + u (
∑

i bimi)X)

for u ←$ Zp. For every Verify(m⃗, (U, V )) query, it checks if
∑

i bimi = 0. If
∑

i bimi = 0, it returns 1 if zU +
∑

i aimiU = V

and 0 otherwise. If
∑

i bimi ̸= 0, it returns the output bit of Ddh(U, (
∑

i bimi)
−1V − zU). For every Help(A0, A⃗, Z) query,

it returns the output bit of Ddh(
∑

i biAi, Z − zA0 −
∑

i aiAi). At the end, if the adversary A returns m⃗∗ and a forged MAC
(U∗, V ∗) satisfying ∑

i

mj,i(aiG+ biX) =
∑
i

m∗
i (aiG+ biX)

and m⃗∗ ̸= m⃗j , for some j ∈ [q]. Thus, (
∑

i(mj,i−m∗
i )ai)G = (

∑
i(mj,i−m∗

i )bi)X. The equation is non-trivial with overwhelming
probability 1/p, since the bi’s are uniformly random and perfectly hidden in Xi’s by ai. Therefore, except with negligible
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probability 1/p the reduction B solves the above equation and returns x = (
∑

i ai(mj,i−m∗))(
∑

i bi(mj,i−m∗))−1, the discrete
logarithm of X.

For item (ii), we reduce to the security of µCMZ for n = 1. The reduction B gets as input the public parameters (Γ, H,X0, X1).
For each i ∈ [n], sample zi ←$ Zp and compute Xi = ziX1 for i ∈ [2, n]. Assuming X1 ̸= 0G (which happens with probability
1/p), all the Xi’s are uniformly distributed. The reduction then internally runs the adversary A for the unforgeability game with
public parameters (X0, X1, . . . , Xn). For every MAC query of the form m⃗, forward the query to the oracle Sign at disposal to
B for the message m1 +

∑n
i zimi, obtaining (U, V ). Return (U, V ) to A. For every verification query for a message m⃗ and a

MAC (U, V ), forward the query to the oracle Verify with (m1 +
∑

i zimi, (U, V )). Similarly, proceed for Help queries. Given
an output forgery (U∗, V ∗) for a message m⃗∗, we have that

∑
im

∗
iXi ̸=

∑
imj,iXi for all j ∈ [q], B outputs the forged message

m1 +
∑n

i=2 zimi along with the MAC (U∗, V ∗). Therefore, m∗
1 +

∑n
i=2m

∗
i zi ̸= mj,1 +

∑
i=2mj,izi for all j ∈ [q] and thus the

output message was never queried to the Sign oracle; by construction of the Xi’s we have that

(U∗, V ∗) = (U, x0U +

n∑
i=1

m∗
i xiU) = (U, x0U + (m∗

1 +

n∑
i=2

zim
∗
i )x1U)

where x0 = logH X0, x1 = logGX1, and zix1 = logGXi for i ∈ [2, n]. Hence, the forgery is valid and B produces a forgery every
time A produces a forgery.

Thus, the overall advantage is 2/p+ Advufcmva
µCMZ (λ, 1) + AdvgapdlGrGen(λ).

5.2.2 Keyed-verification credential

Theorem 12. If ZKP a proof system for the relation R ⊇ Rcmz, then µCMZ is anonymous for n = poly(λ) attributes with
advantage:

AdvanonµCMZ,A,D(λ, n) ≤ AdvzkZKPcmz.iu,A′(λ) + AdvzkZKPcmz.p,D′(λ) + AdvksndZKPcmz.is,A′′(λ) ,

where A,D are adversaries in the anonymity game and A′,A′′,D′ are described in the proof.

Overall, the technical challenges here are making sure that extracting x0 is sufficient for simulating proofs (it is the only
witness of πis), and keeping track of the different adversaries in the game.

Proof. We define the simulator Sim as:

− The issuance simulator Sim.I((X0, X⃗), ϕ) samples a random group element C ′ ←$ G and simulates a representation proof

πiu for the instance (C, X⃗, ϕ)). Upon receiving the response from the server (U ′, V ′, πis), the simulator checks if the proof
is valid and U ′ ̸= 0. If so, it invokes the extractor for the instance (X0, U

′, V ′) and proof πis recovering (x0, u) satisfying
x0 = logH X0 and u = logG U . Note that x0 is the unique value associated to the public parameter’s X0. Finally, stores

the state as stSim = (x0, X⃗).
− The presentation simulator Sim.P((x0, X1), m⃗), which does not know the message. It samples random group elements

U ′, CV ←$ G2, and (C1 = γ1G, . . . , Cn := γnG) where γi ←$ Zp for i ∈ [n], and computes πp via ZKPcmz.p.Sim((U ′, X0, X⃗,

C⃗, Z)) where Z = x0U
′ +
∑

i γiXi − CV . The simulator outputs (U ′, CV , C⃗, πp).

Let A be a p.p.t. machine taking as input a keypair (sk,pp), a predicate ϕ ∈ Φ, and a message m⃗ such that ϕ(m⃗) = 1.
Indistinguishability is shown via a hybrid argument.

H0 This is the real interaction.

H1 Instead of generating πiu using the witness, do so via the zero-knowledge simulator Sim with input (C ′, X⃗, ϕ). If A’s output
is noticeably different after this hybrid change, then it is possible to build an adversary A′ that is able to distinguish real
from simulated proofs from ZKPcmz.iu. Therefore:

AdvH1

A,D(λ, n) ≥ AdvH0

A,D(λ, n)− AdvzkZKPcmz.iu,A′(λ) .

H2 Instead of generating πp using the attributes m⃗ and MAC σ, use the zero-knowledge simulator Sim with input (U ′, X0, X⃗).
Similarly to the previous hybrid, there exists an adversary D′ that wins every time D’s output is noticeably different.
Therefore:

AdvH2

A,D(λ, n) ≥ AdvH1

A,D(λ, n)− AdvzkZKPcmz.iu,D′(λ) .
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H3 Use the extractor of πis for the statement (X0, U
′, V ′) and check its validity.

The extractor will produce a witness (x0, u) satisfying:H 0
0 G
U ′ C ′

[x0
u

]
=

X0

U ′

V ′


except with probability AdvksndZKPcmz.is,A′′(λ), where A′′ is the adversary in the knowledge soundness game that runs A internally
and returns the proof πis for which extraction fails. In other words,

AdvH3

A,D(λ, n) ≥ AdvH2

A,D(λ, n)− AdvksndZKPcmz.iu,A′′(λ) .

H4 At issuance time, instead of computing C ′ using the message as C ′ =
∑

imiXi + sG for some s ←$ Zp, send a random
element C ′ ←$ G and extract from the response πis the witness (u, x0). Then, using the extracted witness, compute a fresh
MAC (U = ruG, x0rU +

∑
i rumiXi) for r ←$ Zp and return it. The distribution in this hybrid is identical to the previous

one: U is distributed identically, and V is the (unique) group element satisfying V = (logH X0)U +
∑

imi(logG U)Xi.
Hence:

AdvH4

A,D(λ, n) = AdvH3

A,D(λ, n) .

H5 At presentation time, sample U ′, CV ←$ G2 and C⃗ such that Ci = γiG with γi ←$ Zp. The (simulated) proof πp is made

for the statement (U ′, CV , C⃗, Z) where Z is computed as:

Z = x0U
′ +
∑
i

γiXi − CV .

The elements C⃗, CV are perfectly indistinguishable from the real ones by the perfect hiding property of Pedersen commit-
ments. The element U ′ is also perfectly indistinguishable from the real one, since r is uniformly distributed and U ̸= 0G.
Finally, the value Z, despite being computed differently, is exactly the same in both distributions since γiXi = xiCi where
xi = logGXi. Hence:

AdvH5

A,D(λ, n) = AdvH4

A,D(λ, n) .

The last hybrid is the simulated interaction; the result follows.

Remark 2 (Knowledge soundness vs simulation extractability). To extract from πiu after seeing (simulated) issuance proofs πis,
one would formally need to make sure that the proofs πis cannot be turned into proofs for Rcmz.iu. This is generally achieved by
proofs that are simulation extractable, but in many cases the actual requirement can be weaker. For instance, in Schnorr proofs,
the vector sizes mismatch and knowledge soundness suffices.

Theorem 13. If ZKP is a proof system for the relation R ⊇ Rcmz, then µCMZ is extractable for n = poly(λ) attributes with
advantage:

AdvextµCMZ(λ, n) ≤ Advufcmva
µCMZ (λ, n) + AdvzkZKPcmz.is

(λ) + AdvksndZKPcmz.iu
(λ) + AdvksndZKPcmz.p

(λ) .

Roughly speaking, the extractor matches the zero-knowledge extractor and a reduction is made to unforgeability of the
underlying MAC. However, the term “Z” which is computed using the MAC key (x0, x⃗), which is not available during the
reduction and can’t be computed by the unforgeability adversary. To circumvent this, we are going to assume that Z is also sent
at presentation time and that the oracle Help (introduced in section 5.2.1) is able to check that Z is indeed correctly computed.
In practice, this requirement can often be dropped, as for many proof systems (including Schnorr) it is possible to recover the
statement from the actual proof by looking at the trace of random oracle queries.

Proof. We use the extractors of ZKP to define the extractors for the credential system.

− Ext.I(ϕ, (C ′, πiu)) is the zero-knowledge extractor of ZKPcmz.iu which takes as input the proof πiu and an instance (C ′, X, ϕ)
and (m⃗, s) such that ϕ(m⃗) = 1 and

[
X1 X2 . . . Xn G

]

m1

m2

...
mn

s

 = C ′ .

If no such message is found, the extractor returns ⊥ and the game aborts.
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− Ext.P(ϕ∗, (U ′, CV , C⃗, πp, Z)) runs the extractor of ZKPcmz.p, which takes as input the proof πp and an instance (U ′, X⃗, C⃗, Z, ϕ∗)
and returns (m⃗, r⃗, r′) such that ϕ(m⃗) = 1 and


U ′ G

U ′ G
. . .

. . .

X1 X2 . . . Xn −H





m1

...
mn

r1
...
rn
r′


=


C1

...
Cn

Z

 .

If the extracted witness does not satisfy the above, the extractor returns ⊥ and the game aborts. Internally, the extractor
checks that Z was correctly computed via the secret key (x0, x⃗).

Let A be an adversary for extraction that gets as input ((Γ, H), X0, X1, . . . , Xn) and has access to oracles Issue,Present.
At the end the adversary wins if one of the following holds: (i) there exists a query to Issue of the form (ϕ, (C ′, πiu)) such that

ZKPcmz.iu.V((C
′, X⃗, ϕ), πiu), but extraction failed (in particular this happens if ϕ(m⃗) = 0); (ii) the adversary returned a pair

(ϕ∗, ρ∗ = (U ′, CV , C1, . . . , Cn)) such that ZKPcmz.p.V((U
′, X⃗, C⃗, Z), πp) = 1, but extraction failed (in particular this happens if

ϕ∗(m⃗) = 0); (iii) the adversary returned a pair (ϕ∗, ρ∗ = (U ′, CV , C1, . . . , Cn)) and extraction recovered a valid witness (m⃗∗, r⃗, r′)
such that ϕ∗(m⃗∗) = 1 and m⃗∗ has not been previously queried.

From the first two cases it is immediate to build an adversary for knowledge soundness of the zero-knowledge proof system
ZKP. Item (iii) can be reduced to unforgeability of the underlying MAC as follows. Let B be an adversary that gets as input
pp = ((Γ, H), X0, . . . , Xn) and has access to the oracles Sign,Verify of the MAC unforgeability game. B internally runs A(pp).
For every Issue(C ′, πiu) query, it recovers a valid witness m⃗, s. It queries Sign(m⃗) and obtains (U, V ). Returns (U, V + sU) and

simulates the proof πis. For every query Present(ϕ, (U ′, CV , C⃗, πp, Z)) from the adversary, B uses the zero-knowledge extractor

to recover (m⃗, r⃗, r′) and returns Verify(m⃗, (U ′, CV − r′H)). At the end A returns a value ϕ∗, ρ∗ = (U ′, CV , C⃗, πp). B runs the
extractor to obtain m∗ and returns (U ′, CV − r′H).

The signing queries are answered in the same way. For presentation messages, we have:

CV − r′G = x0U
′ +
∑
i

xiCi − Z − r′H = (x0 +
∑
i

ximi)U
′

where the first equality follows from the answer of Help and the second follows from the representation proof πp. Thus, the
output (U ′, CV −r′G) is a valid MAC only if CV is a valid presentation message that the server accepted. Validity of the returned
forgery from B follows from the winning condition m⃗∗ ̸∈ Qrs.

5.2.3 One-more unforgeability

Let µCMZAT be the µCMZ scheme of figure 5 where the boxed parts are removed.

Theorem 14. In the algebraic group model, µCMZAT is an anonymous token for n = poly(λ) attributes in Zp with advantage:

Advomuf
µCMZAT

(λ, n) ≤ 2Adv2dlGrGen(λ) + qAdvdlGrGen(λ) +
q + 5

p
,

where q is the number of signing queries allowed to the adversary.

This is a generalization of the proof from Chase, Durak, and Vaudenay [CDV22]. Anonymity follows from theorem 12. We
are left with one-more unforgeability. We prove first the case n = 1, as the case for n = poly(λ) can be shown later using
techniques similar to the ones of the previous section.

Proof. Let A be an algebraic adversary that receives as input (γ,H, (X0, X1)). During its execution, it makes at most q queries
to the signing oracle, each indexed in j ∈ [q] and accompanied by an algebraic representation γ⃗(j) satisfying:

Cj = γ(j)g G+ γ
(j)
h H + γ(j)x0

X0 + γ(j)x1
X1 +

∑
k<j

γ
(j)
k,uUk + γ

(j)
v,kVk (11)

Consider the associated polynomial in Zp[η,x0,x1,u1, . . . ,uq]:

cj(η,x0,x1,u1, . . . ,uj−1) = γ(j)g + γ
(j)
h η + γ(j)x0

x0η + γ(j)x1
x1 +

∑
k<j

γ
(j)
k,uuk + γ

(j)
v,k(x0uk + ukck) (12)
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where η = logGH,x0 = logH X0,x1 = logGX1 For instance, we have:

c1(η,x0,x1) = γ(1)g + γ
(1)
h η + γ(1)x0

x0η + γ(1)x1
x1

c2(η,x0,x1,u1) = γ(2)g + γ
(2)
h η + γ(2)x0

x0η + γ(2)x1
x1 + γ

(2)
1,uu1 + γ

(2)
1,v(x0u1 + u1c1)

c3(η,x0,x1,u1,u2) = γ(3)g + γ
(3)
h η + γ(3)x0

x0η + γ(3)x1
x1 + γ

(3)
1,uu1 + γ

(3)
1,v(x0u1 + u1c1) + γ

(3)
2,uu2 + γ

(3)
2,v(x0u2 + u2c2)

and so on. Equation (12) lives in Zp[η,x0,x1,u1, . . . ,uj−1], no (individual) quadratic terms are present, and the total degree

of at most i. At the end of the execution, A returns the MACs (m∗
i , (U

∗
i , V

∗
i ))

q+1
i=1 followed by algebraic representations α⃗(i), β⃗(i)

such that

U∗
i = α(i)

g G+ α
(i)
h H + α(i)

x0
X0 + α(i)

x1
X1 +

q∑
j

α
(i)
j,uUj + α

(i)
j,vVj ,

V ∗
i = β(i)

g G+ β
(i)
h H + β(i)

x0
X0 + β(i)

x1
X1 +

q∑
j

β
(i)
j,uUj + β

(i)
j,vVj .

(13)

From the verification equation U∗ ̸= 0 and the polynomial equality(
α(i)
g + α

(i)
h η + α(i)

x0
x0η + α(i)

x1
x1 +

∑q
j=1 α

(i)
j,uuj + α

(i)
j,v(x0uj + cjuj)

)
(x0 +m∗

ix1) =

β(i)
g + β

(i)
h η + β(i)

x0
x0η + β(i)

x1
x1 +

∑q
j=1 β

(i)
j,uuj + β

(i)
j,v(x0uj + cjuj)

(14)

holds for i ∈ [q + 1] when evaluated in η = logGH,x0 = logH X0,x1 = logGX1 and uj = logG Uj . We study the equation in
the polynomial ring Zp[η,x0,x1,u1, . . . ,uq] first. The individual degree is 1 and the total degree is q.

For the verification equation to hold, β
(i)
g , β

(i)
h = 0 (since the left-hand side does not contain constant terms or terms in η),

α
(i)
g , β

(i)
h = 0 (since the right-hand side has no monomial in x0 nor ηx1), α

(i)
x0 , α

(i)
x1 = 0 (since the equation right-hand side does

not contain any quadratic term), α
(i)
j,v = 0 (since there are no quadratic terms on the right-hand side), and β

(i)
x0 , β

(i)
x1 = 0 (since

all monomials on the left-hand sides now have a factor uj). We therefore have: q∑
j=1

α
(i)
j,uuj

 (x0 +m∗
ix1) =

q∑
j=1

β
(i)
j,uuj + β

(i)
j,v(x0uj + cjuj) (15)

We can now remark that cj = γ
(j)
g + γ

(j)
x1 x1, since η,ηx0, and factors in ujuk (for some k < j) are not present. Therefore:

q∑
j=1

α
(i)
j,uujx0 + α

(i)
j,um

∗
iujx1 =

q∑
j=1

(β
(i)
j,u + β

(i)
j,vγ

(i)
g )uj + β

(i)
j,vujx0 + β

(i)
j,vγ

(j)
x1

ujx1

which implies that α
(i)
u,j = β

(i)
u,j (when looking at the terms in ujx0) and there exists at least one nonzero j-indexed term since

U∗
i ̸= 0G, and m∗

iαu,j = βv,jγ
(j)
x1 (looking at the terms in ujx1) implies m∗

i = γ
(j)
x1 . However, since i ∈ [q + 1] and j ∈ [q],

two forgeries must be on the same message, which contradicts the winning condition that requires all forgeries to be on distinct
messages.

We conclude that the adversary’s forgeries are accompanied by algebraic representations α⃗(i), β⃗(i) such that the polynomial

φi(η,x0,x1,u1, . . . ,uq) =
(
α(i)
g + α

(i)
h η + α(i)

x0
x0η + α(i)

x1
x1 +

∑q
j=1 α

(i)
j,uuj + α

(i)
j,v(x0uj + cjuj)

)
(x0 +m∗

ix1)−(
β(i)
g + β

(i)
h η + β(i)

x0
x0η + β(i)

x1
x1 +

∑q
j=1 β

(i)
j,uuj + β

(i)
j,v(x0uj + cjuj)

)
̸= 0

(16)

And yet its evaluation in logGH, logH X0, logGX1, logG U1, . . . , logG Uq is zero. Note that φ is a multivariate polynomial of
maximum total degree q + 1 and individual degree 1.

We first prove that, if φ possesses a monomial in uj for j ∈ [q], then a solution for DL can be found. Let B be an adversary
for DL that receives as input a group description Γ and a DL challenge X ∈ G. The adversary samples a random a, b←$ Zp and
an index ι ∈ [q + 3]. The index will determine the coefficient where we embed the DL challenge.

If 0 < ι ≤ q, B internally runs A with public parameters generated as in µCMZ: sample η, x0, x1 ←$ Zp and invoke
A(Γ, H := ηG,X0 = x0H,X1 = x1G). Queries to Sign(Cj , γ⃗

(j)) (γ⃗(i) being the algebraic representation of Cj) are responded as
follows:
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− For all j < ι, each query is responded following the issuance procedure: sample uj ←$ Zp and return (Uj = ujG,Vj =
x0Uj + ujCj). Note that each signing or verification query up to this point contains an algebraic representation in
H,X0, X1, U1, . . . , Uι−1 and that therefore the discrete logarithm of every group element sent by the adversary is known.
We denote γ̂(j) = logG Cj (for j < ι) the discrete logarithm of the j-th signed element queried. γ̂(j) is computed with the
inner product ⟨γ⃗, (1, η, x0, x1, u1, . . . , uj−1)⟩.

− For the ι-th query, return (Uι = aG+ bX, Vι = x0aG+ x0bX + aC + bγ̂(ι)X)

− All queries ι < j ≤ q are responded as in the issuance procedure. Sample uj ←$ Zp and return (Uj = ujG,Vj = x0Uj+ujCj).
Each Verify(mi, (Ui, Vi)) query is responded with 1 if Ui ̸= 0 and Vi = (x0+mix1)Ui, 0 otherwise. At the end of the execution,

A returns forgeries (m∗
i , (U

∗
i , V

∗
i ))

q+1
i=1 and algebraic representations α⃗(i), β⃗(i). If ∃i ∈ [q + 1] such that

ϕ
(u,ι)
i (x) = φi(η, x0, x1, u1, . . . , a+ bx, uι+1, . . . , uq) ̸= 0 ,

then it is possible to solve the linear equation and find the discrete logarithm of X. Note that, if φ of equation (16) has a
monomial in uι with a nonzero coefficient, then the polynomial ϕ(x) is nonzero with high probability, since b is uniformly
distributed and has a monomial in uj for j ∈ [q].

We now prove that if φ has a monomial in η, then a solution for DL can be found. Similarly to before, let X ∈ G be a DL
challenge. The adversary B samples a, b ←$ Zp and invokes A(Γ, H := aG + bX,X0 = x0aG + x0bX,X1 = x1G). Signing and
verification queries are responded as prescribed in the protocol description. At the end, if ∃i ∈ [q + 1] such that

ϕ
(h)
i (x) = φi(a+ bx, x0, x1, u1, . . . , . . . , uq) ̸= 0 ,

it is possible to solve the linear equation and find the discrete logarithm of X with high probability.
We prove that if φ has a monomial in x0, then a solution for 2-DL can be found. (The case of x1 is analogous.) Let

B(Γ, X,X ′) be an adversary for 2-DL. The adversary samples η, a, b, x1 ←$ Zp and internally runs the one-more unforgeability
adversary as A(Γ, H := ηG,X0 := aH + bηX,X1 := x1G). During its execution, the adversary may query the signing oracle with
query Sign(Cj) which is responded as (Uj := ujG, aUj + bujX + ujCj). The adversary may also query the verification oracle
with query Verify(mi, (Ui, Vi)) which is responded with the help of the algebraic representation and X,X ′: if Ui ̸= 0 then its
algebraic representation has degree one in x0 at most, and therefore the verification equation can be tested with the help of X ′

for the quadratic term. At the end of the execution, the adversary returns forgeries (m∗
i , (U

∗
i , V

∗
i ))

q+1
i=1 and, if ϕ

(x0)
i (x) similar to

the above is nonzero, then a solution for DL can be found with high probability.

Theorem 15. In the algebraic group model, if DL holds for GrGen, then µCMZ is one-more unforgeable for n = poly(λ)
attributes.

The strategy is to distinguish the two winning events:

(i) The adversary returns forgeries (m∗
k, (U

∗
k , V

∗
k ))

q+1
k=1 such that ∀k1 ̸= k2 :

∑
im

∗
i,k1

Xi ̸=
∑

im
∗
i,k2

Xi.

(ii) The adversary returns forgeries (m∗
k, (U

∗
k , V

∗
k ))

q+1
k=1 such that ∃k1 ̸= k2 :

∑
im

∗
i,k1

Xi =
∑

im
∗
i,k2

Xi.

The first case reduces to theorem 14, while the second case can be reduced to DL using an argument similar to theorem 11.

6 Boneh–Boyen–Shacham credentials

Anonymous credentials from Boneh–Boyen–Shacham signatures were first introduced as BBS+ withing the framework of k-times
anonymous authentication primitive [ASM06], and as algebraic MACs by Barki, Brunet, et al. [BBDT17]. We propose a variant
in figure 6 and study it in the algebraic group model.

6.1 Protocol description

Message authentication code. The algebraic MAC for BBS is identical to standard µBBS signatures. A MAC (A, e) for a
message m⃗ is

(A = (x+ e)−1(G0 +
∑n

i=1miGi), e←$ Zp) .

Verification consists in checking (x + e)A = G0s +
∑n

i=1miGi. This is identical to the MAC presented by Barki, Brunet, et
al. [BBDT17] setting s = 0. For the purpose of the proof, it is actually not needed that e is randomly chosen and the sole
requirement for is that they are all different. This property can be formalized with a stateful procedure EGen that takes as input
some internal state, the input message m⃗, and outputs an e-value for m⃗. Some examples are:
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Keyed-verification credential µBBS

Public parameters

Procedure µBBS.S(1λ, n)

(G, p,G) := Γ← GrGen(1λ)

(G0, G1, . . . , Gn)←$ Gn+1

return crs = (Γ, G0, . . . , Gn)

Procedure µBBS.K(crs)

sk := x←$ Zp

X := xG

return sk := x, pp := X

Procedure µBBS.M(x, m⃗)

e←$ Zp

A := (x+ e)−1(G0 +
∑n

i=1 miGi)

return σ := (A, e)

Credential Issuance

µBBS.I.Usr(X, m⃗, ϕ) µBBS.I.Srv(x, ϕ)

C′ := s−1(
∑

i miGi +G0) where s←$ Zp

πiu ← ZKPbbs.iu.P((C
′, ϕ), (m⃗, s))

C′ , πiu
check C′ ̸= 0G ∧ ZKPbbs.iu.V((C

′, ϕ), πiu)

A′ := (x+ e)−1C′ where e←$ Zp

check ZKPbbs.is.V((e,X,C′, A′), πis)
e,A′, πis πis ← ZKPbbs.is.P((e,X,C′, A′), x)

return σ := (A := sA′, e)

Credential Presentation

µBBS.P.Usr(X, m⃗, σ = (A, e), ϕ) µBBS.P.Srv(x, ϕ)

A′ := rr′A where r, r′ ←$ Zp

D′ := r(G0 +
∑

i miGi)

B′ := r′D′ − eA′

πp ← ZKPbbs.p.P((X,A′, D′, B′, ϕ), (m⃗, e, r−1, r′))
A′, D′, πp check A′, D′ ̸= 0G

B′ := xA′

return ZKPbbs.p.V((X,A′, D′, B′, ϕ), πp)

Figure 6: The keyed-verification credential system µBBS. Differs from [BBDT17] in issuance and presentation. The variable ϕ denotes

the arbitrary predicates that must be enforced on the attributes during issuance or presentation. Boxed , the part that may be removed
for anonymous tokens (one-more unforgeability). The zero-knowledge relations associated to the proof system (for user issuance, server
issuance, and presentation respectively) are defined in equations (17) to (19).

• The server picks e uniformly at random from Zp for each signature (as displayed in figure 6). In this case, EGen does not
require a state nor a message. In the case where p > 22λ, EGen may just sample a uniformly random string of length 2λ
and read it as an integer (mod p).

• The server can hash the message into e = Hs(m⃗). In this case, EGen does not require a state.
• The server can be stateful and set e to be a counter. In this case, EGen does not require a message, but it is stateful; the
counter concretely may be much smaller than 2λ bits – e.g., 64 bits would suffice, and the probability that any two e-values
are equal is zero.

We denote the collision advantage for this procedure as δ(λ, q), that is, the probability that an adversary A has, making q queries
to an oracle that for the i-th query m⃗i returns (ei, sti+1)← EGen(sti, m⃗i) with st0 := (crs, 0). In [TZ23], this quantity is indicated
as δeS,eG(q, λ).

A special property of BBS signatures is that it is possible to extend the credential system for more attributes without
requiring a new key generation or re-issuance of a credential, and that the public parameters pp are a single element. We prove
the following theorem:

Theorem 16. In the algebraic group model, µBBS is an algebraic MAC for n = poly(λ) attributes in Zp with advantage:

Advufcmva
µBBS (λ, n) = Adv

(q+2)-dl
GrGen (λ) + AdvdlGrGen(λ) +

3

p
+ δ(λ, q) ,

where q is the number of signing queries made by the adversary.

In particular, when e is sampled as a uniformly-random 2λ-bit string, we have δ(λ, q) ≤ q2/22λ. The proof follows along the
lines of [TZ23] with the major difference being that we need to expose two additional oracles: one for (keyed-)verification, and
a helper oracle that will be indispensable for proving the credential system.

Blind issuance. The user commits to the message as C ′ = s−1(
∑

imiGi +G0) where s←$ Zp, and proves knowledge of the
discrete logarithm of C ′ with respect to (G0, G1, . . . , Gn) via ZKPbbs.iu, a simulation-extractable proof system for the relation

Rbbs.iu := {((C ′, ϕ), (m⃗, s)) : G0 = sC ′ −
∑

imiGi ∧ ϕ(m⃗) = 1} (17)

The server then computes A′ = (x + e)−1C ′ and proves knowledge of the discrete logarithm of (e,X,C ′, A′) via ZKPbbs.is, a
simulation-extractable proof system for the relation:

Rbbs.is := {((e,X,A′, C ′), x) : X = xG ∧ C ′ − eA′ = xA′} . (18)
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Remark 3. This is different from the original approach of Barki et al. [BBDT17] where the user commits to the message as
C ′ =

∑
imiGi + sG and proves knowledge of the discrete logarithm of C ′ with respect to (G0, G1, . . . , Gn).

Presentation. The core idea for presentation is to note that:

xA−G0 =

n∑
i=1

miGi − eA

where the right-hand side can be seen as a Pedersen commitment over the attributes. So, all the user has to do is provide a
proof for the above equality, after “blinding’ A in order to provide anonymity across presentations. To present a credential, the
user will send a commitment to A (denoted A′) and then prove that xA′ is a commitment to the different mi’s, and they satisfy
the given predicate. More formally πp is a zero-knowledge proof of knowledge for:

Rbbs.p :=

{
((X,A′, D′, B′, ϕ), (m⃗, e, r′′, r′)) :

B′ = r′D′ − eA′ ∧ G0 = r′′D′ −
∑

imiGi ∧
ϕ(m⃗) = 1

}
(19)

as shown by Tessaro and Zhu [TZ23].

Remark 4 (Difference with [BBDT17]). In Barki et al., the user algorithm takes as input the private attributes m⃗ along with
the tuple (A, e, s, C), where (A, e) ∈ G × Zp is the standard BBS signature (denoted “(A, r)”), s ∈ Zp is the nonce attribute

(denoted “su”), and C ∈ G is the commitment to the message (denoted “C̃m”). To present the credential, the user sends
(B0 := lA, C0 := lC− eB0, E := l−1C0+ tF ) for l, t←$ Zp. The guarantees are the same, the proof is only slightly less efficient.

Remark 5 (Differences with [BBS04]). The original BBS paper introduces a protocol for proving knowledge of a signature
in the scope of group signatures. The main difference is in that the honest-verifier zero-knowledge of their protocol is only
computational while here it is perfect.

Let Rbbs := Rbbs.iu ∪ Rbbs.is ∪ Rbbs.p. We prove the following theorems.

Theorem 17. If ZKP is a proof system for R ⊇ Rbbs, then µBBS is a keyed-verification extractable credential for n = poly(λ)
attributes with anonymity advantage:

AdvanonµBBS(λ, n) ≤ AdvzkZKPbbs.iu
(λ) + AdvzkZKPbbs.p

(λ) + AdvksndZKPbbs.is
(λ) + AdvdlGrGen(λ) +

1

p
,

and extractability advantage:

AdvextµBBS(λ, n) ≤ Advufcmva
µBBS (λ, n) + AdvksndZKPbbs.iu

(λ) + AdvksndZKPbbs.p
(λ) .

In particular, µBBS[ZKP = Σ] has everlasting forward anonymity.23

Let µBBSAT denote the variant of µBBS in figure 6 where the issuance algorithm does not return the proof πiu (that is, the
boxed areas are removed). From the above and theorem 23 we also have

Theorem 18. If ZKP is a proof system for the relation R ⊇ Rbbs.is ∪ Rbbs.p, them µBBSAT is an anonymous token system for
n = poly(λ) attributes with anonymity advantage:

AdvanonµBBSAT
(λ, n) ≤ AdvzkZKPbbs.iu

(λ) + AdvzkZKPbbs.p
(λ) + AdvksndZKPbbs.is

(λ) + AdvdlGrGen(λ) ,

and (in the algebraic group model) one-more unforgeability advantage:

Advomuf
µBBSAT

(λ, n) ≤ Adv
(q+2)-dl
GrGen (λ, 1) + AdvdlGrGen(λ) +

1

p
.

6.2 Analysis

6.2.1 Algebraic MAC

We prove that µBBS is a MAC for n = 1 attributes and then reduce the case of n = poly(λ) attributes to it. The proof will
actually be about a stronger game where the adversary may also query an oracle Ddh(A,B) to check if B = xA.

23Recall that forward anonymity is concerned with unbounded presentation distinguishers.
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Lemma 19. In the algebraic group model, µBBS is an algebraic MAC for n = 1 attributes in Zp with advantage:

Advufcmva
µBBS (λ, 1) ≤ Adv

(q+2)-dl
GrGen (λ) +

1

p
+ δ(λ, q) ,

where q is the number of signing queries made by the adversary.

Proof. An algebraic adversary A for the unforgeability game receives as input the public parameters ((Γ, G0, G1, . . . , Gn), X) and
during its execution can query an oracle Sign(m⃗) that returns a MAC (A, e) valid on m⃗ and a verification oracleVerify(m⃗, (A, e))
that returns 1 if the MAC is valid and 0 otherwise. During its execution, it makes at most q queries to the oracle Sign. The
output forgery is a message m∗ not previously queried, a MAC (A∗, e∗) accompanied by an algebraic representation α⃗ such that

A∗ = αg,0G0 + αg,1G1 + αgG+ αxX +

q∑
j=1

αa,jAj , (20)

where q is the number of MACs produced so far. Form the algebraic group model, we have that the equality

A∗ =
g0 +m∗g1
x+ e∗

G (21)

holds when g0, g1,x are the discrete logarithm of the respective group elementsG0, G1, X baseG. Putting together equations (20)
and (21), we obtain the rational function in g0, g1,x over Zp

g0 +m∗g1
x+ e∗

= αg + αg,0g0 + αg,1g1 + αxx+

q∑
j=1

αa,j
g0 +mjg1
x+ ej

we have two possibilities: e∗ ∈ {e1, . . . , eq} or e∗ ̸∈ {e1, . . . , eq}.
In the first case, let f(x) =

∏
j(x + ej) and fk(x) =

∏
j ̸=k(x + ej) = f(x)/(x + ek). Let the ei’s be all different (this will

always happen except with probability δ(λ, q)). Without loss of generality, let e∗ = e1. We have:

((1− αa,1)g0 + (m∗ − αa,1m1)g1) f1(x) = (αg + αg,0g0 + αg,1g1 + αxx)f(x) +

q∑
j=2

αa,j(g0 +mjg1)fj(x)

and since (x+e1) divides the right-hand side but not the left-hand side, then α1 = 1 andm1 = m∗ which leads to a contradiction.

If e∗ ̸∈ {e1, . . . , eq}, then let for simplicity eq+1 = e∗ and let f∗ =
∏q+1

j (x+ ej) and, similarly to before, f∗k = f(x)/(x+ ek).
Then we have

(g0 +m∗g1)f
∗
q+1(x) = (αg + αg,0g0 + αg,1g1 + αxx)f

∗(x) +

q∑
j=1

αa,j(g0 +mjg1)f
∗
j (x)

Similarly to the previous case, we have that the right-hand side is divisible by (x+ e∗), but the left-hand side is not, leading to
a contradiction. This implies that, in the above polynomial equation, at least two monomials are different.

We build a reduction to (q + 2)-DL. The reduction B receives as input (Γ = (G, p,G), X(1), X(2), . . . , X(q+1), x(q+2)). Let
X(0) := G. B samples e1, . . . , eq from EGen. (In the figure, ei ←$ Zp.) In the fortunate case where logGX ∈ {0, 1,−e1, . . . ,−eq},
B stops and returns the discrete logarithm found. Let f =

∏q
j=1(x + ej) and fk = f(x)/(x + ek) for k ∈ [q]. Note that, f

and fk can be evaluated the group G using the “powers of X” (the X(j)’s) given as input. Sample a0, b0, a1, b1 ←$ Zp and let
G′ := f(X), X := X(1), G0 := ((a0 + xb0)f) (X) and G1 := ((a1 + xb1)f) (X).(By f(X) we mean

∑
i fiX

(i).) The degree of
both polynomials is at most q + 1. Invoke A with public parameters ((Γ, G0, G1), X). To respond the j-th query to the signing
oracle, denoted Sign(mj), compute

Aj = (a0 +mja1)

q∑
i=0

fj,iX
(i) + (b0 +mjb1)

q∑
i=0

fj,iX
(i+1)

and return (Aj , ej). For any verification query Verify(m, (A, e, α⃗)), where α⃗ denotes the algebraic representation of A (similar
to equation (20)) check the verification equation over the algebraic representation. To do so, consider the following multivariate
polynomial in Zp[g0, g1,x]

φm,e(g0, g1,x) := (g0 +mg1)f(x)− (x+ e)
(
αgf(x) + αg,0g0 + αg,1g1 − αxx+

∑
j αa,j(g0 + g1mj)fj(x)

)
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The polynomial φm,e(a0+xb0, a1+xb1,x) can be tested for zero when evaluated in logGX using the inputs G,X(1), . . . , X(q+2)

since the resulting polynomial is of degree at most q + 2. For every Ddh oracle (A,B), consider the algebraic represen-
tation of A, which is similar to equation (20). Replacing each group element with its representation in the DL challenge

(G,X(1), X(2), . . . , X(q+1)) we obtain a vector α⃗′ such that A = α′
0G+

∑q+1
j=1 α

′Xj). Return 1 if B =
∑q+2

j=1 α
′
jX

(j). At the end
the adversary returns a forgery (m∗, (A∗, e∗)).

From the argument at the beginning of the proof, we have φm∗,e∗(g0, g1,x) ̸= 0. Consider then the partial evaluation
ϕ(x) := φ((a0 + b0x), (a1 + b1x),x) and note that the resulting polynomial is of degree at most q + 2 and is with overwhelming
probability non-trivial too since b0, b1 are uniformly random and perfectly hidden in G0, G1 by a0, a1. One of the root of this
polynomial must be the discrete logarithm of X. The reduction B uses Berlekamp’s algorithm to factor ϕ and recovers the
discrete logarithm of X.

Theorem 20. µBBS is an algebraic MAC for n = poly(λ) attributes in Zp with advantage:

Advufcmva
µBBS (λ, n) ≤ Advufcmva

µBBS (λ, 1) + AdvdlGrGen(λ) +
2

p
.

Proof. Let A be a p.p.t. adversary for unforgeability. It receives as input the public parameters pp = (Γ, (G0, . . . , Gn), X), during
its executions it queries Sign with messages m⃗j for j ∈ [q] (q denoting the number of queries of A); finally, it returns a forgery
satisfying one of the following:

(i) the output (m⃗∗, (A∗, e∗)) is a valid forgery and
∑

im
∗
iGi =

∑
imj,iGi for some j ∈ [q]

(ii) the output (m⃗∗, (A∗, e∗)) is a valid and
∑

im
∗
iGi ̸=

∑
imj,iGi for all j ∈ [q]

We claim that (i) happens at most with negligible probability. To do so, we build an adversary B that solves DL every time
A wins the game with a forgery satisfying

∑
i(m

∗
i −mj,i)Gi = 0G. Let B(Γ, Y ) be an adversary for DLGrGen (λ). B samples at

random a0, a1, . . . , an, b1, . . . , bn, x ←$ Zp and sets G0 := a0G, Gi = aiG + biY for all i ∈ [n] and finally sets X := xG for a

random x←$ Zp. It invokes A((Γ, G0, G⃗), X). Queries to the oracles Sign(m⃗j) are answered with (Aj , ej), where ej ←$ Zp and
Aj = (x + ej)

−1(G0 +
∑

imiGi); queries Verify(m⃗, (A, e)) are answered testing the equality (x + e)A = G0 +
∑

imiGi. To
any Ddh(A,B) query, it responds 1 if xA = B. Given as output a forgery satisfying item (i), we have that there exists a j ∈ [q]
such that:

n∑
i=1

(m∗
i −mj,i)aiG =

n∑
i=1

(m∗
i −mj,i)biY

and the above equation is non-trivial with overwhelming probability since m⃗∗ ̸= m⃗j (and thus ∃i.m∗
i ̸= mj,i) and the bi’s are

uniformly distributed and perfectly hidden. Therefore, with overwhelming probability B can compute logG Y = (
∑

i(m
∗
i −

mj,i)bi)
−1(
∑

i(m
∗
i −mj,i)ai).

The claim item (ii) reduces to unforgeability of µBBS for n = 1. Let B be an unforgeability adversary receiving as in-
put Γ, G0, G1, X. Let Gi = aiG1 for i ∈ [2, n] with ai ←$ Zp. The two are identically distributed if G1 ̸= 0G. Invoke
A((Γ, G0, G1, . . . , Gn), X). For every signing query for a message m⃗j , respond with Sign(

∑
i aimj,i). For every verification

query for a message m⃗, respond with Verify(
∑

i aimi). All Ddh queries are sent to the challenger as-is. At the end, we obtain
an output forgery satisfying item (ii) and therefore (

∑
i aim

∗
i , (A

∗, e∗)) is a valid forgery also for µBBS for n = 1.

6.2.2 Keyed-verification credential

Theorem 21. Let ZKP be a proof system for the relation R ⊇ Rbbs, then µBBS is anonymous for n = poly(λ) attributes over
Zp with advantage:

AdvanonµBBS,A,D(λ, n) ≤ AdvzkZKPbbs.iu,A′(λ) + AdvksndZKPbbs.is,A′′(λ) + AdvzkZKPbbs.p,D′(λ) + AdvdlGrGen,A′′′(λ) +
1

p
,

where A,D are adversaries in the anonymity game and A′,A′′,A′′′,D are described in the proof.

Proof. We define the simulator Sim as follows.

− Let Sim.I sample a uniformly-random group element C ′ ←$ G and invoke ZKPbbs.iu.Sim on the statement (C ′, ϕ) obtaining a
simulated proof πiu. Upon receiving the server response (e,A′, πis), verify the zero-knowledge proof via ZKP.V((e,X,A

′, C ′), πis)
and (if the output is 1) proceed extracting a witness x from πis via the extractor for ZKPbbs.is for the statement (e,X,A′, C ′).
Store the simulator state stSim = (x).

− The presentation simulator Sim.P(x, ϕ) samples random A′, D′ and simulates the zero-knowledge proof πp for the statement
(X,A′, D′, B′, ϕ) where B′ = xA′. It returns (A′, D′, πp).
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We show that the real and simulated distributions are indistinguishable via a hybrid argument.

H0 This first hybrid is the honest interaction, where issuance and presentation are done honestly using the input message m⃗.
H1 Instead of generating πiu using the witness, we do so via the zero-knowledge simulator of ZKPbbs.iu with input (C ′, ϕ). If A’s

output is noticeably different after this hybrid change, then it is possible to build an adversary A′ that is able to distinguish
real from simulated proofs for ZKPbbs.iu. Therefore:

AdvH1

A,D(λ, n) ≥ AdvH0

A,D(λ, n)− AdvzkZKPbbs.iu,A′(λ) .

H2 Instead of generating πp using the attributes m⃗ and MAC σ, use the zero-knowledge simulator of ZKPbbs.p with input
(X,A′, D′, B′, ϕ). Similarly to the previous hybrid, there exists an adversary D′ that wins every time D’s output is
noticeably different. Therefore:

AdvH2

A,D(λ, n) ≥ AdvH1

A,D(λ, n)− AdvzkZKPbbs.p,A′(λ) .

H3 Extract from πis a witness for the statement (e,X,A′, C ′) and check its validity.
The extractor will produce a witness x satisfying:

x

[
G
A′

]
=

[
X

C ′ − eA′

]
,

except with probability AdvksndZKPbbs.is,A′′(λ) where A′′ is the adversary in the knowledge soundness game that runs A internally
and returns the proof πis for which extraction fails. In other words:

AdvH1

A,D(λ, n) ≥ AdvH3

A,D(λ, n)− AdvksndZKPbbs.is,A′′(λ) .

H4 If G0 +
∑

imiGi = 0G, abort.
In the real distribution, if G0 +

∑
imiGi = 0G the user will always send C ′ = 0G, whereas in the simulated case the

simulator aborts. The above bad event happens only with advantage AdvdlGrGen(λ). Let (Γ, Y ) be a DL challenge and A be
an adversary for the anonymity game. The reduction A′′′ invokes A with inputs

pp := (Γ, X := xG,G0 = a0G+ b0Y, . . . , Gn := anG+ bnY )

where x, a0, . . . , an, b0, . . . , bn ←$ Zp. At issuance time the adversary makes queries a message m⃗ and A′′′ checks if
G0 +

∑
imiGi = 0G. If so, then we have (a0 +

∑
imiai)G = (b0 +

∑
imibi)Y and the equation is non-trivial with

overwhelming probability 1/p. The reduction A′′′ can thus recover the discrete logarithm of Y . Therefore:

AdvH3

A,D(λ, n) ≥ AdvH4

A,D(λ, n)− AdvdlGrGen,A′′′(λ) .

H5 Replace C ′ with a uniformly-distributed group element C ′ ←$ G. The two distributions are perfectly indistinguishable,
that is:

AdvH4

A,D(λ, n) = AdvH5

A,D(λ, n) .

H6 Finally, we replace the responses of the presentation oracle. Sample A′, D′ ←$ G and compute B′ differently: instead of
setting B′ := rr′((G0 +

∑
imiGi)− eA) with r, r′ ←$ Zp and (A, e) the MAC obtained from the server, we set B′ := xA′.

The distribution of the two is exactly the same. In fact, fixed A′, D′, for any message m⃗ ∈ Zn
p and e ∈ Zp there exist

(ρ′, ρ′′) ∈ Z2
p such that:

B′ = xA′ = ρ′D′ − eA′ ,

ρ′′D′ =
∑
i

miGi +G0 ,

if D′ ̸= 0G. Thus:

AdvH5

A,D(λ, n) = AdvH6

A,D(λ, n) +
1

p
.

The last hybrid is running the simulator code. By the difference lemma, the result follows.

Theorem 22. If ZKP is a proof system for the relation R ⊇ Rbbs, then µBBS for n = poly(λ) is extractable with advantage:

AdvextµBBS(λ, n) ≤ Advufcmva
µBBS (λ, n) + AdvksndZKPbbs.iu

(λ) + AdvksndZKPbbs.p
(λ) .

Proof. We define the extractors for the credential system as follows.
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− Ext.I receives as input (x, ϕ,C ′, πiu) and recovers a witness (m⃗, s) for the instance (C ′, ϕ) such that ϕ(m⃗) = 1 and

[
C ′ −G1 · · · −Gn

]

s
m1

...
mn

 = G0 . (22)

If extraction fails the extractor aborts and the adversary wins.
− Ext.P receives as input (x, ϕ) and a prover message (A′, D′, πp, B

′). It checks if B′ is well-formed via Ddh and, if that is
the case, it internally runs ZKPbbs.p.Ext on input (X,A′, D′, B′, ϕ) where X = xG and obtain a witness (m⃗, e, r′′, r′) such
that ϕ(m⃗) = 1 and

[
−G1 −G2 · · · −Gn D′

D′ −A′

]


m1

...
mn

e
r′′

r′


=

[
G0

B′

]
. (23)

If the recovered witness does not satisfy the above equation, return ⊥. A wins if one of the following happens:

(i) Takahashihe adversary returns (ϕ, µ = (C ′, πiu)) such that ZKPbbs.iu verifies πiu for the statement (C ′, ϕ) but extraction
failed.

(ii) The adversary returns (ϕ∗, ρ∗ = (A′, D′, πp, B
′)) such that extraction fails for the instance (A′, D′, B′, ϕ∗).

(iii) The presentation message returned from the adversary ρ∗ = (A′, D′, πp, B
′) satisfies µBBS.P.Srv(x, ϕ∗, ρ∗) and the message

m⃗∗ extracted from πp is such that m⃗ ̸∈ Qrs.

The first two cases can be reduced to knowledge soundness of the proof system. We are left with the last case, which reduces to
unforgeability of µBBS. We do so by building an adversary B for unforgeability that internally uses the adversary A.

The reduction B receives as input the public parameters pp = (Γ, G0, G1, . . . , Gn, X) and internally invokes the adversary A.
For every Issue(ϕ, (C ′, πiu)) query, it runs the extractor and obtains (m⃗, s) satisfying equation (22). It queries Sign(m⃗) obtaining
a MAC (A, e). Returns (A′ := s−1A, e) (or ⊥ if s = 0). For every Present(ϕ∗, (A′, D′, πp, B

′)) query, B queries Ddh(A′, B′)
to check that B′ = xA′ and then runs the extractor to obtain (m⃗, e, r′′, r′) satisfying equation (23). It queries the verification
oracle on the message m⃗ and MAC (A = r′′/r′A′, e). It proceeds similarly for the returned message, outputting a forgery m⃗∗

(the message extracted from ρ∗) and (A = r′′/r′A′, e).
The output of Sign follow exactly the same distribution as in the original game, since from equation (22) (and commutativity

in Zp)

1

x+ e
C ′ = s−1

(
1

x+ e
(G0 +

n∑
i=1

miGi)

)
The unfortunate case where s = 0 implies (via equation (22)) that G0 +

∑
imiGi = 0 and therefore C ′ = 0, so we return ⊥ in

both cases. The output of Verify is also well-formed since, from πp:

B′ = xA′ = r′D′ − eA′ =
r′

r′′
(
∑
i

miGi +G0)− eA′ =⇒ A′ =
r′

r′′
· 1

x+ e
· (
∑
i

miGi +G0)

The result follows.

6.2.3 One-more unforgeability

Theorem 23. In the algebraic group model, µBBSAT is one-more unforgeable with advantage:

Advomuf
µBBSAT

(λ, n) ≤ Adv
(q+2)-dl
GrGen (λ) + AdvdlGrGen(λ) +

1

p
.

The proof is the same as in [TZ23]. We complement their analysis with a more direct reduction to the q-DL assumption.

Lemma 24. There exists a reduction for the game OMUFµBBSAT,A
(λ, n) to q- DLGrGen,A (λ) with: q signing queries, O(q3)

group operations, O(q) space.
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We construct an adversary A that, given as input X ∈ G and access to a signing oracle Sign(·) performing a MAC on the
input group element, outputs a q-DL challenge (P, xP, . . . , xqP ) for some generator P ∈ G.

Let A0 := G. For each i ∈ [q], the attacker A queries Sign(Ai−1) obtaining the MACs (Ai, ei). We have the invariant

xAi = Ai−1 − eiAi , (24)

for each i ∈ [q], with x denoting the unknown. In particular, we have that:

Aq−k =

q∏
i=k

(x+ ei)Aq =
∑
i

ν
(k)
i xiAq

where the polynomial coefficients ν
(k)
i can be computed in time O(q2) näıvely for each k ∈ [q]. In particular, the k-th polynomial

is monic, and the leading term can always be isolated by recursively applying equation (24) to obtain an expression independent
of x, that is:

xAq = Aq−1 − eqAq =: B1

x2Aq = Aq−2 − eq−1Aq−1 − eqB1 =: B2

...

(Since i < q, then xiAq will stop when replacing the term Aq−i). A returns (Aq, B1, B2, . . . , Bq−1).

Corollary 25. There exists a p.p.t. adversary A for one-more unforgeability of µBBSAT that can recover the signing key in time

O(
√
p/d+

√
d) and space max

{√
p/d,
√
d
}

where d | p± 1 is the number of signing queries allowed.

7 Designated-verifier fully-succinct SNARKs without pairings

A polynomial commitment scheme (PCS) is designated-verifier (dv) if only the holder of the secret verification key vk can verify
the proof, as opposed to standard PCS definitions where vk can be efficiently computed from the proving key pk. The definition
below, is an adaptation of [CHM+20].

Definition 26. A designated-verifier polynomial commitment scheme (PCS) over the field family F = {Fλ}λ∈N is a
tuple of algorithms PCS = (S,K,C,E,V) where

• crs← PCS.S(1λ, d) given as input the security parameter in unary form and a maximum degree d > 0, outputs a common
reference string crs and defines the field F ∈ F .

• (pk, vk)← PCS.K(crs, d) outputs a key pair (pk, vk) called respectively proving key and verification key. The proving key
allows committing to polynomials over F up to degree d.

• (C, r)← PCS.C(pk, f) outputs a commitment C to a polynomial f(x) ∈ F[x] represented via its coefficients fi’s, together
with some opening information r.

When clear from the context, to facilitate exposition, we will write C ← PCS.C(f ; r), omit pk and using the random coins
r.

• π ← PCS.E(pk, (f, r), z, y) outputs an evaluation proof π, showing that y = f(z).

• 0/1← PCS.V(vk, C, z, y, π) outputs 1 if the evaluation proof is correct and 0 otherwise.

A PCS satisfies completeness, extractability, and hiding.

Completeness requires that all honestly-generated proofs verify. More precisely, for any f ∈ Zp[x] of degree d > 0, z ∈ Zp and
y = f(z):

Pr

PCS.V(vk, C, z, y, π) = 1 :

crs← PCS.S(1λ, d)
(pk, vk)← PCS.K(crs)
(C, r)← PCS.C(pk, f)
π ← PCS.E(pk, (f, r), z, y)

 = 1 .
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Extractability asks that there exists an extractor Ext such that, for any p.p.t. adversary A, B, and query sampler Q24 sharing
the same random coins:

Pr


PCS.V(vk, C, z, y, π) = 1

⇓
deg(f) ≤ d ∧ y = f(z)

:

crs← PCS.S(1λ, d)
(pk, vk)← PCS.K(crs)
ρ←$ {0, 1}A.rl(λ)
C := A(pk; ρ)
f := Ext(pk; ρ)
z := Q(pk; ρ)
(π, y) := B(pk; ρ)


≤ negl(λ) .

Hiding asks that for any d > 0, adversaries A, D, and any crs ∈ [PCS.S(1λ, d)], (pk, vk) ∈ [PCS.K(crs)] following experiments
are indistinguishable:∣∣∣∣∣∣Pr

b′ = 1 :
f ← A(pk, vk)
(C, r)← PCS.C(pk, f)
b′ ← DEval(pk, C)

− Pr

b′ = 1 :
f ← A(pk, vk)
C ← Sim.C(vk,deg(f))
b′ ← DEval(pk, C)

∣∣∣∣∣∣ ≤ negl(λ) ,

where Eval(z) sets y := f(z) and, if the condition holds, in the real game returns PCS.E(pk, (f, r), z, y) and in the simulated
game Sim.E(vk, z, y).

For the remainder of this work, we will consider homomorphic polynomial commitments, that is, PCS.C(f ; r)+PCS.C(g; s) =
PCS.C(f + g; r + s), where r, s are the randomness of the commit algorithms In particular the opening algorithm trivially
recomputes the commitment with the randomness provided and checks that it matches the commitment given as input.

Malicious designated-verifier zero-knowledge [QRW19]. In practical applications, we would like the verifier to publish
the proving key pk and privately store the secret key sk without relying on a trusted third party. In the context of keyed-
verification credential systems, in fact, the verifier is also the entity publishing the public parameters. While the definition
of hiding above holds for every keypair (pk, vk), one must make sure that the keypair is in the range of the setup algorithm
to guarantee that hiding holds against malicious servers. (The proving key of the next section, for instance, holds a specific
structure and proving pk is a correct output of the key generation is not immediate.) Our approach here will be to prove security
for a proving key that is within the range of PCS.S, and then expect the verifier publishing the proving key to prove that it is
indeed in the range of PCS.S.

Remark 6. The compiler of Chiesa et al. [CHM+20] introduces another procedure Trim which, given as input a prover key pk
for a PCS of size D, and an integer d < D, it returns a new prover key pk′ for a PCS of size d. This is trivial to implement
for our schemes and is a technicality of the compiler, which requires the prover key to be generated before seeing the actual
size of the index. The opening algorithm PCS.O and verification algorithms PCS.V (called Open and Check in the literature)
can also be generalized as in [CHM+20, BDFG20] to allow for batch opening and evaluation checking. Given polynomials
f1(x), . . . , fm(x) ∈ F[x] claimed to evaluate in y1, . . . , ym in points z1, . . . , zm, and given a random challenge r ∈ F one can
consider euclidean division of the batch polynomial f(x) :=

∑
i r

ifi(x) by Z(x) =
∏

i(x− zi):

f(x) = Z(x)q(x) + r(x) ,

where q(x) is the polynomial that will be sent as proof to the verifier, and the polynomial r(x) of degree m−1 is the polynomial
defined by interpolation as r(zi) = yi.

7.1 Designated-verifier Kate–Zaverucha–Goldberg commitments

We describe a variant of KZG meant for designated-verifier proof systems. We assume that the polynomial is given in coefficient
form as a vector of field elements.

Procedure dvKZG.S(1λ, d)

Γ := GrGen(1λ)

return crs := (Γ, d)

Procedure dvKZG.K(crs)

τ ←$ Z×
p

Ti := τ iG for i ∈ [0, d+ 1]

T⃗ := (T0, . . . , Td)

R := ηG where η ←$ Z×
p

return pk := (T0, T⃗ , R), vk := (pk, τ, η)

Procedure dvKZG.C(pk, f(x))

s←$ Zp

return C :=
∑d

i=0 fiTi + sR

24A query samples for an interactive oracle proof is an efficient algorithm that, given as input the random coins of the verifier, returns the point at
which the oracle messages of the prover is queried. See [CHM+20] for a more formal definition.
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The idea for evaluation proofs stems from the observation that for a polynomial f ∈ Zp[x], the Euclidian division by (x− z) has
reminder y = f(z):

f(x) = (x− z)q(x) + y

The proof consists into exhibiting a quotient polynomial q(x) satisfying the above (and accounting for the additional term r(z)
introduced in the commitment).

Procedure dvKZG.E(pk, f(x), s, z, y)

q(x) := (f(x)− y)/(x− z)

Q :=
∑

i qiTi + s′R where s′ ←$ Zp

D :=
∑

i δiTi where δ(x) := s− s′(x− z)

return π := (Q,D)

Procedure dvKZG.V(vk, C, z, y, (Q,D))

return (τ − z)Q+ yG+ ηD = C

Knowledge soundness holds in the algebraic group model under the (q+1)-DL assumption, and the proof is the same as [KT23,
B.2.2]. We now focus on hiding.

Theorem 27. dvKZG is a perfectly hiding polynomial commitment scheme.

Proof. The simulator Sim obtains as input vk = (pk = (T0, . . . , Td, R), (τ, η)) such that:

η, τ ∈ Z×
p ⇐⇒ T1, R ̸= 0G ∧
∀τ ∈ [d] : τTi−1 = Ti

(25)

Given vk along with a commitment C and an evaluation proof y, samples uniformly at random Q ←$ G and computes D :=
η−1(C − (τ − z)Q− yG).

We have thus a distinguishing game where an adversary A returns a polynomial f and pk = (T0, T⃗ , R), vk = (τ, η) are
well-formed and satisfying equation (25). A has to distinguish between:

• a real interaction, where:

C =
∑
i

fiTi + sR = (f(τ) + rη)G

with s ←$ Zp, τ := logG T1 and η := logGR with τ, η ̸= 0. A can query on any point z the evaluation oracle for Eval(z)
which in turn computes dvKZG.E(pk, (f, s), z, f(z)) returning (Q,D) such that:

Q =
∑
i

qiTi + s′H = (q(τ) + s′η)G

D = (r + s′z)T0 − s′T1 = (s+ s′z − s′τ)G
(26)

where the right-hand side is given by equation (25). From correctness, we have:

(τ − z)(q(τ) + s′η) + y + η((s+ s′z)− s′τ) = f(τ) + ηs

• a simulated interaction, where the simulator Sim returns a commitment C = αG with α←$ Zp as a commitment, and, for
every evaluation query on z ∈ Zp and y, the proof returned is:

Q = βG

D = η−1(C − (τ − z)Q− y) = η−1(α− (τ − z)β − y)G

which satisfies the verification equation since:

(τ − z)β + y + (α− (τ − z)β − y) = α

(note that, since R ̸= 0G, η is invertible).

The two distributions are perfectly indistinguishable: both α and f(τ) + sη are uniformly distributed (since η ̸= 0 and s is
uniformly distributed), and the same can be argued about β and q(τ) + s′η. Finally, D is uniquely determined by τ, η, C,Q, z, y
and the verification equation is satisfied in both cases.

Degree-check for polynomials whose degree may be less than d can be enforced using standard techniques as described in
Kohrita and Towa [KT23, 5.2], roughly speaking by checking instead the equation:

(f − z)xd−deg(f) = qxd−deg(f)(x− y) ,

by having the prover commit to the polynomial f(x)xd−deg(f).
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7.2 IOP compiler for designated-verifier polynomial commitments

An indexed relation is a relation R = {((i, x), w)} consisting of an index i, an instance x, and a witness w. An interactive proof
for an indexed relation generally has the prover’s first message depend only on the index i and not depending on the prover’s
randomness. The first-message function is called indexer, and is relevant in the context of preprocessing SNARKs [CHM+20].

Definition 28 (PIOP). A polynomial interactive oracle proof for an indexed relation R over a field family F is a tuple
IOP = (k, o, d, I,P,V) where k, o, d are maps {0, 1}∗ → N and I,P,V are algorithms called respectively indexer, prover, and
verifier. The map k specifies the number of interaction rounds, o the number of polynomials in each round, and d the degree
bound of these polynomials.

In the 0-th round (offline phase), the indexer IOP.I receives as input a field F ∈ F and an index i for R, and outputs o(0)

polynomials p
(0)
1 (x), . . . , p

(0)
o(0) ∈ F[x] of degree at most d(|i|, 0, 1), . . . , d(|i|, 0, o(n)) respectively.25

In any other round (online phase), given an instance x and a witness w such that (i, x, w) ∈ R, the prover IOP.P receives
as input (F, i, x, w) and IOP.V receives as input oracle access to the polynomials output by IOP.I(F, i). The prover IOP.P and
the verifier IOP.V interact over k(|i|) rounds. For j ∈ [k(i)], in the j-th round of interaction the verifier IOP.V sends messages

mj ∈ F to the verifier IOP.P; the prover then replies with o(j) oracle polynomials p
(j)
1 , . . . , p

(j)
o(j)−1 ∈ F[x]. The verifier may query

any of the polynomial it has received any number of times. A query consists of a point z ∈ F and the prover replies with the
evaluation of the polynomial at that point. After the interaction the verifier accepts or rejects. The function d determines which
prover to consider for the completeness and soundness properties of the proof system. In more detail, a prover P is admissible if

for every j ∈ [k(|i|)] and i ∈ [o(j)] the degree of p
(j)
i is at most d(|i|, j, i).

Construction. The compiler ARK[IOP,PCS] that transforms the polynomial IOP IOP into an interactive argument of knowl-
edge using the polynomial commitment scheme PCS.is almost identical to the one of Chiesa et al. [CHM+20] with minimal
syntactical variations.

• The trusted party invokes crs← PCS.S(1λ). Then computes (pk, vk)← PCS.K(crs, d) where the integer d is computed as
the maximum degree bound of the polynomial degrees of IOP of indices of size at most N :

d := max{d(N, j, i) : j ∈ [k(|i|)], i ∈ [o(j)]}

It publishes the proving key pk and stores the (secret) verification key vk.26

• The indexer, given as input the index in a relation R computes the commitment to any polynomials in the 0-th round using

no randomness as C0,i := PCS.C(pk, p
(0)
i ; 0) for i ∈ [o(0)]. The indexer returns ρ0 = (i, C0,i, . . . , C0,o(0)).

• The prover P(pk, ρ0, x, w) receives as input the proving key pk and the indexer’s output ρ0, the instance x and witness w.
The verifier V(vk, ρ0, x) receives as input the verification key vk, the indexer’s output and the instance.

At the i-th round, the verifier internally runs the verifier to receive the challenge ci and sends it to the prover. The prover

internally runs the next-message function of the prover IOP.P obtaining the polynomials p
(j)
i for i ∈ [o(n)]. It commits to

each of them running C
(i)
j ← PCS.C(pk, p

(j)
i ). The verifier notifies IOP.V that the round has finished.

At the end of the interactive phase, the verifier sends the randomness for the query phase ck(|i|)+1. The verifier computes
the query set Q = QIOP.V(x; c1, . . . , cn+1) and sends those to the prover. The prover responds with claimed evaluations

z
(j)
i for each polynomial p

(j)
i queries at location y

(j)
i from the query set. The verifier sends a batch opening challenge

ζ and the prover replies with the batch open procedure using pk, the list of polynomials sent throughout the protocol

(p
(j)
i )j∈[k(|i|)],i∈[o(j)], their respective degree d, the query set Q and the batch opening challenge ζ. The verifier accepts if

the verification equation is satisfied and the polynomial verification is correct with respect to PCS.V.

The proof of the following theorems is omitted as mostly identical to the one of Chiesa et al. [CHM+20, Thm. 8.3,8.4].

Theorem 29. Let IOP be a knowledge-sound, polynomial interactive oracle proof over field family F for R, and PCS be a
designated-verifier extractable polynomial commitment scheme over F . Then ARK[IOP,PCS] is a designated-verifier argument
of knowledge for the relation R.

Theorem 30. Let IOP be a q-query bounded zero-knowledge polynomial interactive oracle proof for R over field family F ,
and PCS be a designated-verifier hiding polynomial commitment scheme over F . Then ARK[IOP,PCS] is a designated-verifier
argument of knowledge for the relation R. Let PCS be a designated-verifier zero-knowledge proof system.

25The 0-th round does not depend on any particular instance or witness, and merely considers the task of encoding a given index i.
26In practice, we seek PCS.K to be generated by the (potentially malicious) verifier. The verifier will then prove that the key is well-formed.
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Let ZKPpcs.k be a designated-verifier zero-knowledge proof system for the relation Rpcs.k = {(vk,pk) : (vk,pk) ∈ [PCS.K(crs)]}.
Let ARK[IOP,PCS,ZKPpcs.k] denote the compiler above where PCS.K is performed by the verifier, and pk is accompanied by a
proof πpcs.k that pk lives in the range of the key generation algorithm. Then, we have the following corollary.

Corollary 31. Let IOP be a q-query bounded zero-knowledge polynomial interactive oracle proof for R over field family F , and
PCS be a designated-verifier hiding polynomial commitment scheme over F , and ZKPpcs.k as above. Then ARK[IOP,PCS,ZKPpcs.k]
is a designated-verifier argument of knowledge for the relation R.

Example 1 (A designated-verifier range proof RAP). We consider the protocol sketched by Boneh, Fisch, Gabizon, Williamson27

to prove that a committed value v is in a range [0, 2d]. Let H := ⟨ω⟩ be a subgroup of F× of size d and Z(x) be the polynomial
where H vanishes. A common choice here is to select the group of the d-th roots of unity for which the vanishing polynomial
can be computed in log d field operations.

The proof RAP is for a witness v ∈ [0, 2d − 1] opening a previously-committed polynomial such that f(ωd) = v. (The
polynomial f is committed using the designated-verifier polynomial commitment scheme; proving that the commitment opens
to a signed value boils down to a DLEQ proof.) A common choice is d = 64 to prove 64-bit integers.

At a high level, the verifier generates the proving key vk,pk via dvKZG.S(1λ, d+ 2) and then proves in πkzg.s knowledge of τ
such that:

τ ·

(
n∑

i=0

µiGi

)
=

n−1∑
i=0

µiGi+1

where µ := Hs(pk). Upon downloading the proving key, the prover checks that none of the elements in pk is zero and πkzg.s is
verified. The prover RAP.P considers the binary decomposition (b0, . . . , bd−1) of v and define the polynomial g(x) such that
g(ωi) =

∑
j<i 2

jbj for i ∈ [0, d]. The polynomial satisfies:

g(ω0) ∈ {0, 1}
g(ωd) = f(ωd)

g(ωi+1)− 2g(ωi) ∈ {0, 1}
(27)

To provide zero-knowledge for the query bound of this interactive oracle proof, interpolate g on two additional random points
δ1, δ2 ̸∈ H such that g(δ1) = α1 ←$ Zp and g(δ2) = α2 ←$ Zp. The prover commits to g(x) via dvKZG.C.

The verifier samples ρ←$ Zp and sends it to the prover.

The prover computes:

w1(x) :=
Z(x)

xω0
· g(x) · (1− g(x))

w2(x) :=
Z(x)

xωd
· (g(x)− f(x))

w3(x) :=
Z(x)∏

i̸=d−1 ω
ix

(g(ωx)− 2g(x))(1− g(ωx) + 2g(x))

and “batches” them into w(x) = w1 + ρw2 + ρ2w3. To show that Z | w (which implies equation (27)) it is sufficient to exhibit
q(x) such that:

q(x)Z(x) = w(x) (28)

=
Z(x)

xω0
· g(x) · (1− g(x)) + Z(x)

xωd
· (g(x)− f(x)) + Z(x)∏

i ̸=d−1 x− ωi
(g(ωx)− 2g(x))(1− g(ωx) + 2g(x)) (29)

The prover sends a commitment to q(x) to the verifier.

The verifier samples r ←$ Zp and the proves sends openings of g(ωr), g(r), q̂(r) where:

q̂(x) :=
Z(r)

r − ωd
f(x) + q(x)Z(r) (30)

The verifier checks the polynomial openings well-formedness of equation (28) Performances of the above range proof and
comparisons are displayed in table 4.

27Descriptions of the protocols can be found in https://hackmd.io/@dabo/B1U4kx8XI, https://decentralizedthoughts.github.io/2020-0
3-03-range-proofs-from-polynomial-commitments-reexplained/ and the SoK of Christ et al. [CBC+24, sec. 3.2].
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Table 4: Table of range proof sizes for 64-bit integers fit for credentials applications. The column |π| indicates the size of the range proof
over a 64-bit integer, and in parentheses is the size of the range proof over secp256k1. In Sharp, which involves check of small norm for
scalar elements, only concrete size is given as it can’t be expressed simply in terms of group elements. Note that batch range proofs will
be more performing than the näıve approach. We omit the proving key from the table, which in our case amount to at least 64g. Timing
estimates are based on zka.lc [ECK+23].

Scheme |π| (64-bits) P time V time Notes
Bulletproofs++ [Eag22] 10g + 3s (416B) 4ms 1.8ms

Sharp [CGKR22] n/a (389B) 1.17ms 0.75ms Requires fine-tuning on the chosen elliptic curve
HashWires [CCL+21] n/a (200B) 0.65ms 0.61ms Relies on a trusted party generating the commitment
This example (RAP) 6g (192B) 1.16ms 0.752ms Designated-verifier NIZK

8 Building on keyed-verification credential systems

In this section we gather some simple extensions and techniques that could be of interest for future applications.

8.1 Time-based policies

To limit the lifetime of a credential and guarantee safe expiry without key rotation is a desirable feature in many applications.
As a warm-up example, we study the case of credentials subject to time-based policies such as expiry.

Let KVC be a keyed-verification credential over message family the integers modulo p satisfying 64 < ⌈log p⌉, and assume
time is represented in unix time as a 64-bit signed integer. During issuance, server and user agree on a timestamp t and run
the issuance protocol with attributes (m⃗, t). At presentation time, the user proves that the credential is not yet expired (that is,
t < e where e denotes the expiry time) via:

ϕeexp(m⃗) :=
(
(e− t) mod p ∈ {0, . . . , 264−1}

)
where t denotes the timestamp attribute and e denotes the expiry timestamp, after which credentials are to be considered stale.
Christ et al. [CBC+24] present and detail state-of-art range proofs and the trade-offs between them. In example 1 we present
an example range proof.

No adversary in possession of an expired credential (that is, with attribute t > e) can have a successful presentation for the
above statement as long as log p > 64. Any two users with valid attributes for which ϕexp holds are indistinguishable to the
server, by anonymity (which in turn implies indistinguishability of two credentials satisfying the same predicate)

Therefore, any keyed-verification credential system supporting n > 1, attribute space M = Zp with ⌈log p⌉ > 64 and a
predicate space Φ sufficiently expressive, can be used to implement the above feature.

Remark 7. Other ways are possible to enforce expiry of a credential. One of them is to partition expiration into time frames.
When issuing a credential, the user is associated to an expiration time frame and their credential embedded with it. This
approach, while simpler, entails a more complex trade-off with anonymity as it may fraction the anonymity set into users per
time-frame.

8.2 Rate-limiting

In keyed-verification credentials, authorizations can be presented an indefinite number of times while preserving privacy. A valid
specialization of the authorization case is to control the limited use of some finite resource, while preserving anonymity of the
users. This problem is treated in k-times anonymous authentication [CHK+06, TFS04, NS04], a credential system where users, a
group manager (in charge of distributing credentials), and some application providers (in charge of moderating accesses) enforce
rate-limiting access to users.

Here we work in a simple scenario composed only of a server and a user, without revocation to target a simple and efficient
rate-limiting system similar to Privacy Pass [DGS+18]. In this model, we don’t consider revocation, nor credential hijacking.
At a high level, the approach here is to have the user get a credential for a PRF key k and evaluate the PRF over a counter to
generate pseudorandom “tokens” that are unlinkable. The server maintains a list of “spent tokens” and enforces double-spending
by ensuring no token is ever re-used for the same scope. The user, to present a valid token, proves the PRF has been correctly
evaluated and that its input is “small”.

8.2.1 Syntax

A rate-limiting anonymous token RTL = (S,K, I,P) is composed of:
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Game UNFRTL,A (λ, ℓ)

q := 0; ctr := 0;Qrs := [ ]

crs← RTL.S(1λ)

(sk,pp)← RTL.K(crs)

(scp∗, (t∗i , ρ
∗
i )

ℓq+1
i=1 )← AIssue,Present,NewUsr,PresentUsr(pp)

return ∀i : RTL.P.Srv(sk, ℓ, scp∗, t∗i , ρ
∗
i ) = 1

∀i ̸= j : ti ̸= tj ∧
∀i : (t∗i , ρ∗i ) ̸∈ Qrs

Game UNLINKb
RTL,A,D (λ, ℓ)

crs← RTL.S(crs)

Ctr := [ ]

(pp, stA)← A(crs)

(σ0; st
′
A)← (RTL.I.Usr(pp) ⇌ A(stA))

(σ1; stD)← (RTL.I.Usr(pp) ⇌ A(st′A))

b′ ← DGet,Chal(stD)

return b′ = 1

Oracle NewUsr()

σ̂ := RTL.M(sk)

Usrs[ctr] := σ̂

ctr := ctr+ 1

return ctr

Oracle PresentUsr(i, scp)

(t, ρ)← RTL.P.Usr(pp,Usrs[i], ℓ, scp, i)

Qrs := Qrs ∪ {(t, ρ)}

Oracle Get(β, scp)

Ctr[scp][β] := Ctr[scp][β] + 1 or 1

if Ctr[scp][0] > ℓ ∨ Ctr[scp][1] > ℓ : return ⊥
return RTL.P.Usr(sk, σ̂β , (ℓ, scp,Ctr[scp][β]))

Oracle Chal(scp)

return (Get(b, scp),Get(1− b, scp))

Oracle Issue(µ)

q := q + 1

return RTL.I.Srv(sk, µ)

Oracle Present(scp, t, ρ)

return RTL.P.Srv(sk, ℓ, scp, t, ρ)

Figure 7: Unforgeability and unlinkability game for a rate-limiting anonymous token RTL. The adversary of unlinkability is assumed to
be stateful and to preserve state across calls.

• crs← RTL.S(1λ) the setup algorithm, which generates a common reference string.

• (sk,pp)← RTL.K(crs) the key generation algorithm, which produces a secret key sk and some public parameters pp.

• σ̂ ← (RTL.I.Usr(pp) ⇌ RTL.I.Srv(sk)) the issuance algorithm, which produces a credential σ̂. We consider the procedure
to be non-interactive, that is, we consider the following 3 algorithms:

– (µ, st)← RTL.I.Usr1(pp) the first part of the issuance algorithm, returning µ and some user state st.
– σ′ ← RTL.I.Srv(sk, µ), the server signing algorithms, which returns a blinded credential σ′.

If the input was malformed, σ′ = ⊥.
– σ̂ ← RTL.I.Usr2(st, σ

′) the second part of the user issuance algorithm, which returns the credential σ̂.

• 0/1 ← (RTL.P.Usr(pp, σ̂, (ℓ, scp, i)) ⇌ RTL.P.Srv(sk, ℓ, scp)) the presentation algorithm, which takes as input a scope
scp ∈ {0, 1}∗ identifying the resource and (for the user) a counter i for generating the i-th token. It returns a bit (and
updates the server state). We assume presentation to be non-interactive and thus consider the following two algorithms:

– (t, ρ)← RTL.P.Usr(pp, σ, (ℓ, scp, i)) the user presentation algorithm, which returns a pair (t, ρ) where t identifies the
token.

– 0/1 ← RTL.P.Srv(sk, (ℓ, scp, t), ρ) the server presentation algorithm, which returns 1 if the token (t, ρ) is considered
valid and for at most ℓ accesses and 0 otherwise.

Similarly to the case of keyed-verification credentials, we will consider the procedure RTL.M(sk) that generates a fresh
credential using sk interacting with a mock user. This is syntactic sugar of a server emulating the user and returning its result.

A rate-limiting scheme must be correct, unforgeable, and unlinkable. Correctness means that for every crs ∈ [RTL.S(1λ)],
(sk,pp)← RTL.K(crs), ℓ > 0 and 0 ≤ i < ℓ, scp ∈ {0, 1}∗

Pr

[
b = 1:

σ̂ ← (RTL.I.Usr(pp) ⇌ RTL.I.Srv(sk))
b← (RTL.P.Usr(pp, σ̂, (ℓ, scp, i)) ⇌ RTL.P.Srv(sk, (ℓ, scp)))

]
= 1 .

A rate-limiting anonymous token is one-more unforgeable if for every ℓ ≥ 0, and any adversary A, the advantage Advomuf
RTL,A(λ) :=

Pr
[
OMUFRTL,A (λ, ℓ) = 1

]
(defined in figure 7) is negligible in λ. A rate-limiting anonymous token is unlinkable if for any ℓ > 0

and (stateful) adversary A, the advantage AdvunlinkRTL,A (λ, ℓ) defined in figure 7 is negligible in λ.
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8.2.2 Our compiler

Let ϕℓrange denote the predicate that checks if the input is in the range [0, ℓ − 1]. Let PRF(k, (x, y)) denote a pseudo-random
function (PRF) evaluation on key k and message (x, y). The message is presented as a pair so to make it easy to prove statements
about parts of the rate-limiting input. A PRF is compatible with the keyed-verification credential KVC if the attribute space
of the credential system is equal to the key space of the PRF, and ϕm,e

prf (k) := (PRF(k,m) = e) is part of the predicate family.
The more general case is easy to derive from this one.

We describe a compiler that, given a keyed-verification credential KVC and a pseudorandom function PRF compatible with
KVC, produces a rate-limiting scheme. We denote such system as cRTL[KVC,PRF] and define it as follows:

• cRTL.S(1λ), the setup algorithm runs crs← KVC.S(1λ, 1) and returns crs.
• cRTL.K(crs), the key generation algorithm returns (sk,pp)← KVC.K(crs).
• (cRTL.I.Usr(pp) ⇌ cRTL.I.Srv(sk)), the credential issuance algorithm has the server run KVC.I.Srv(sk, st, ϕ[1]), while the
user algorithm samples a random k ←$ M and runs KVC.I.Usr(pp, k, ϕ[1]). At the end of the interaction, the user obtains
a credential σ and returns the pair σ̂ := (k, σ).

• (cRTL.P.Usr(pp, σ̂ = (k, σ), (ℓ, scp, i)) ⇌ cRTL.P.Srv(sk, (ℓ, scp))), the credential presentation algorithm has the server run
KVC.P.Srv(sk, ϕscp,tprf ∧ ϕℓrange), while the user runs KVC.P.Usr(pp, k, σ, ϕscp,tprf ∧ ϕℓrange).

The next section is devoted to proving the following:

Theorem 32. Let ℓ > 0, and Φ ⊃ {ϕprf , ϕrange}. If KVC be a keyed-verification credential for n = 1 attributes and predicate
family Φ, and PRF is a pseudorandom function compatible with KVC, then cRTL[KVC,PRF] is a rate-limiting anonymous token
with one-more unforgeability advantage:

Advomuf
cRTL[KVC,PRF](λ, ℓ) ≤ (qℓ+ 1)AdvextKVC(λ, 1) + qAdvanonKVC (λ, 1) + qAdvprndPRF (λ) ,

(where q is the number of queries to the issuance oracles) and unlinkability advantage:

AdvunlinkcRTL[KVC,PRF](λ, ℓ) ≤ 2(AdvanonKVC (λ, 1) + AdvprndPRF (λ)) .

Remark 8. The restriction on the PRF being compatible with KVC may be lifted, provided that the user proves at issuance
time well-formedness of the PRF key.

Remark 9. In the proof, extraction is required solely to carry out a counting argument after making sure that all tokes are
evaluated from keys issued to the user. In fact, for the credentials µCMZ and µBBS it is still possible to extract from the
zero-knowledge proofs sent at presentation time and carry out a reduction to one-more unforgeability.

Corollary 33. Let ℓ > 0, and Φ ⊃ {ϕprf , ϕrange}. Consider a one-more unforgeable keyed-verification credential KVCAT ∈
{µCMZAT,µBBSAT}, for attribute damily Φ and let PRF be a pseudorandom function compatible with KVCAT, then cRTL is a
rate-limiting anonymous token with one-more unforgeability advantage:

Advomuf
cRTL[KVCAT[ZKP],PRF](λ, ℓ) ≤ Advomuf

KVCAT
(λ, 1) + (qℓ+ 1)AdvksndZKP (λ) + qAdvanonKVCAT

(λ, 1) + qAdvprndPRF (λ) ,

and unlinkability advantage:
AdvunlinkcRTL[KVCAT,PRF](λ, ℓ) ≤ 2(AdvanonKVCAT

(λ, 1) + AdvprndPRF (λ)) ,

where q is the number of oracle queries made by the adversary.

8.2.3 Analysis

Correctness follows by inspection; unlinkability follows directly from pseudorandomness and anonymity. We focus on unforge-
ability.

Lemma 34. Let ℓ > 0, and Φ ⊃ {ϕprf , ϕrange}. If KVC be a keyed-verification credential for n = 1 attributes and predicate
family Φ, and PRF is a PRF, then cRTL[KVC,PRF] has one-more unforgeability advantage:

Advomuf
cRTL[KVC,PRF](λ, ℓ) ≤ (qℓ+ 1)AdvextKVC(λ, 1) + quAdv

anon
KVC (λ, 1) + quAdv

prnd
PRF (λ) ,

where q is the number of queries to Issue and qu is the number of queries to NewUsr.

Proof. Consider an adversary A for OMUFcRTL[KVC,PRF] (λ). A receives as input pp and during the execution has access to oracles:
− Issue, to issue a credential to the adversary;
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− Present, to present a credential to the adversary;
− NewUsr, and PresentUsr, to respectively create new honest users, and have them produce a new presentation token.

We build a reduction B for extractability of KVC. B receives as input pp and initializes a list Keys = []. It runs internally A(pp),
responding to each oracle query as follows:

• each issuance query with input µ is responded with Issue(µ, ϕ[1]) (Issue being the issuance oracle of the extractability
game);

• each present query with input (scp, t, ρ) is responded with Present(ϕscp,tprf ∧ ϕℓrange, ρ);
• each new user query is responded by sampling k ←$ M, appending it to Keys, and querying NewUsr(k);
• each user presentation query with input (i, scp) has the adversary B compute t := PRF(Keys[i], scp) and respond with the
answer of PresentUsr(i, ϕscp,tprf ∧ ϕℓrange).

At the end of the execution, A outputs valid (for scp∗) forgeries (t∗i , ρ
∗
i )

ℓq+1
i such that t∗i ̸= t∗j for all i ̸= j and (t∗i , ρ

∗
i ) was not

previously queried. We distinguish the following events:

• ∃i ∈ [ℓq + 1] : t∗i ̸= PRF(k∗
i , scp

∗, j∗i ) (for some j∗i ∈ [0, ℓ − 1]), in which case extraction failed, and the predicate does
not hold. This can be shown with a reduction to the extractability game, where the reduction at the end guesses the
presentation message of the adversary output that constitutes a valid forgery.

• ∃i ∈ [ℓq + 1] : k∗
i ∈ Keys, which means that a forgery was made from an honest user. However, it can be shown that since

the PRF evaluations are pseudorandom (and independent of the keys), satisfying this event is equivalent to guessing the
PRF key of a user. This can be shown with a hybrid argument, first replacing the honest user issuance and presentation
sessions with simulated ones, and then replacing the PRF evaluations with random ones. At the end of both changes, the
NewUsr and PresentUsr oracles do not create any PRF key, nor credentials. The resulting proofs are not part of the
(winning) adversary output (as they are not part of PQrs).

By the pigeonhole principle on PRF(·, scp, ·), where the first argument is Qrs (the set of issued credentials in the extractability
game, of size q) and the last argument is in [0, ℓ− 1] (of size ℓ), it must be that ∃i, j ∈ [ℓq + 1] : k∗

i = k∗
j (which contradicts one

of the winning conditions) and so the adversary can never win the game in this case.

8.2.4 Instantiation

We describe a variation of the Dodis–Yampolskiy’s PRF [DY05] that makes it easy to reason and prove statements on the
counter. The PRF is defined as:

HashDY(k, (scp, ctr)) := (k + ctr)−1 · Hg(scp)

for ctr ∈ Zp and ctr ≤ ℓ = poly(λ) and Hg : {0, 1}∗ → G a hash that maps elements in the group. In this case, a “token” is
T ∈ G (indicated here in uppercase to match the group description). Note that the predicate:

ϕscp,T,ℓ
prf (m⃗, k, i) := ((k + i)T = Hg(scp) ∧ 0 ≤ i < ℓ)

can be proven easily within Schnorr proofs, with the help of a range proof. We prove that HashDY is a PRF.

Theorem 35. In the random oracle model, if q-DDHI holds over GrGen, then HashDY is pseudorandom with advantage:

AdvprndHashDY,A(λ) ≤ qAdv
q-ddhi
GrGen (λ) +

q2

p
,

where q is the number of evaluation queries.

Proof. Let A be a p.p.t. adversary for pseudorandomness. A has access to an oracle Eval for arbitrary scp ∈ {0, 1}∗ and counters
0 ≤ i < ℓ. Consider a hybrid argument where, in the i-th step, we replace the Eval responses up to the i-th query with uniformly
random group elements. Consider an adversary Ai able to distinguish the i-th hybrid. We construct an adversary Bi for the i-th
hybrid able to distinguish every time that the adversary Ai’s output is different during the i-th hybrid change.

Bi receives as input a group description Γ and a q-DDHI challenge G⃗ = (G, τG, τ2G, . . . , τ qG) and P ∈ G (either P = 1/τ ·G
in q- DDHI0A,GrGen (λ), or a uniformly distributed random element P ←$ G in q- DDHI1A,GrGen (λ)), with q ≤ ℓ. Let α := τ − i
and define A⃗ := (G,αG,α2G, . . . , αqG). These can be computed using the binomial theorem using G⃗ only. Once computed, B
internally runs the adversary A using the crs received as input. During its execution, the adversary A query to Hg and Eval:
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Game ANONb
NYM,A,D (λ)

crs← NYM.S(λ)

(pp, stA)← A(crs)

(σ0; st
′
A)← (NYM.I.Usr(pp) ⇌ A(stA))

(σ1; stD)← (NYM.I.Usr(pp) ⇌ A(stA))

b′ ← DGet,Chal(stD)

return b′

Oracle Get(scp,m)

Qrs := Qrs ∪ {(scp,m)}
for β ∈ {0, 1}

nymβ := NYM.E(pp, kβ , scp)

ρβ ← NYM.P.Usr(pp, (kβ , σβ), (scp, nymβ ,m))

return ((nym0, ρ0), (nym1, ρ1))

Oracle Chal(scp,m)

if (scp,m) ∈ Qrs : return ⊥
(α0, α1)← Get(scp,m)

return (αb, α1−b)

Figure 8: Anonymity game for a keyed-verification pseudonym system NYM.

• Upon receiving the j-th query to the random oracle Hg of the form Hg(scpj) such that scpj ∈ {0, 1}∗, B checks if the

element was previously queried. If that is not the case, B computes the polynomial f(x) :=
∏ℓ

ι=1
ι̸=i

(x + ι) =
∑

k fkx
k and

samples θj ←$ Zp. Finally, it computes Tj = θjf(α)G = θj ·
∑

k fkAk and stores in a table (scpj , θj , Tj) and returns to the
user Tj . If such a query was already made, B fetches Tj from its records and returns it the same value as before.

• Upon receiving the j-th Eval query of the form (scpj , ιj) from the adversary A, the reduction B checks if scpj was already
queried in Hg and, if not, proceeds doing so. Then, it checks if ιj is equal to i. If it is not equal, it retrieves the record
(scpj , θj , Tj) and returns (τ + ιj)

−1 · Tj , computed via h(x) :=
∏

ι̸=i,ιj
(x + ι) and returning θj ·

∑
k hkGk. If ιj = i,

then by euclidean remainder we can write f(x) = h(x)(x + i) + r where r = f(i). Therefore, (α + i)−1 · θj · f(α) · G =
θj · (h(α) + r/(α+ i))G = θj(

∑
k hkAk + f(i)P ).

The output distribution of Hg is uniformly random except with statistically negligible probability (when α is a root of f).
n the case q- DDHI0A,GrGen (λ) the output distribution of Eval is identically distributed, while it is uniformly distributed in

q- DDHI1A,GrGen (λ). (Recall that P = 1/τG = 1/(α + i)G in q- DDHI0A,GrGen (λ) and Ai = αiG.) Indistinguishability then is
straightforward by the distance lemma over each of the hybrid changes.

8.2.5 Other methods for rate-limiting

We briefly mention below other approaches that may be used to enforce rate limiting.

Grinding. Simpler methods for rate-limiting are folklore, such as providing a proof of work associated with the request. This
technique can be embedded in the rate-limiting token part t: roughly speaking, upon presentation the token t must also satisfy
that t is “small”. This is sometimes referred to as grinding in the literature and may be implemented appending a random nonce
to the scope, having then the user attempt to find a nonce such that the PRF output is small.

Batch issuance of spend-once credentials. Another common approach is to issue multiple spend-once credentials: the user
sets (at issuance time) a blind attribute to be a nonce, and fully discloses it to the server upon presentation. The server, on the
other hand, keeps a list of previously-spend nonces and enforces rate-limiting by adjusting the number of spend-once credentials.
This approach näıvely incurs in a n-times communication and computation overhead in the issuance phase for limiting n-accesses
per-user, but classical batching techniques may be available to partially reduce this cost.

8.3 Pseudonyms

In some cases, the server might require the user to adopt an identity for a specific resource denoted scp ∈ {0, 1}∗, and have that
identity be otherwise unlinkable. Such pseudonym can be used for blocking and logging in users in a specific service seamlessly
(that is, without making requests to third-party services or requiring another registration process.). The scope scp ∈ {0, 1}∗
identifies the scope to be accessed, but one may also make other valid choices. For instance, a timestamp can restrict access over
time, a unique random nonce for spend-once credentials, the identifier of a group chat to select a group-dependent pseudonym,
etc.

8.3.1 Syntax

A keyed-verification pseudonym system NYM consists of the following efficient procedures:

• crs ← NYM.S(1λ), the setup algorithm, getting as input the security parameter in unary form and returning a common
reference string crs;
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Game UNFNYM,A (λ)

PQrs := []; Creds := []; Keys := []; q := 0

crs← NYM.S(1λ)

(sk,pp)← NYM.K(crs)

(scp∗, (nym∗
i ,m

∗
i , ρ

∗
i )

n
i=1)← AIssue,Present,NewUsr,PresentUsr(pp)

return ∀i ∈ [n] : NYM.P.Srv(sk, (scp∗
i , nym

∗
i ,m

∗
i ), ρi) = 1 ∧

(scp∗, nym∗
i ,m

∗
i ) ̸∈ PQrs ∧(

(∀i ̸= j : nym∗
i ̸= nym∗

j ∧ n > q) ∨

∃i, j : nym∗
i = NYM.E(pp,Keys[j], scp∗)

)

Oracle Issue(µ)

q := q + 1

return NYM.I.Srv(sk, µ)

Oracle Present((scp,nym,m), ρ)

return NYM.P.Srv(sk, (scp, nym,m), ρ)

Oracle Eval(i, scp)

return NYM.E(pp,Keys[i], scp)

Oracle NewUsr()

k ←$ M
σ ← NYM.M(sk, k)

(Keys[q],Creds[q]) := (k, σ)

return 1

Oracle PresentUsr(i, scp,m)

nym := NYM.E(Keys[i], scp)

PQrs := PQrs ∪ {(i, scp,nym,m)}
ρ← NYM.P.Usr(pp, (scp,nym,m))

return (nym, ρ)

Figure 9: Unforgeability for a keyed-verification pseudonym system NYM.

• (sk,pp)← NYM.K(crs), the key-generation algorithm produces a signing key sk together with some public parameters pp;

• (k, σ) ← (NYM.I.Usr(pp) ⇌ NYM.I.Srv(sk)), the issuance algorithm, producing an identity key k and a credential σ over
it. We consider the issuance to be non-interactive, that is, we consider the following 3 algorithms:

– (µ, st)← NYM.I.Usr1(pp) the first part of the issuance algorithm, returning µ and some user state st.
– σ′ ← NYM.I.Srv(sk, µ), the server signing algorithms, which returns a blinded credential σ′.

If the input was malformed, σ′ = ⊥.
– (k, σ) ← NYM.I.Usr2(st, σ

′) the second part of the user issuance algorithm, which returns the identity key k and
credential σ.

• nym := NYM.E(pp, k, scp) the evaluation algorithm generates a pseudonym nym for the scope scp ∈ {0, 1}∗.

• 0/1 ← (NYM.P.Srv(sk, (scp,nym,m)) ⇌ NYM.P.Usr(pp, (k, σ), (scp,nym,m))) the presentation algorithm, which authen-
ticates as message m for an authorized identity nym within the scope scp, using the identity key k and credential σ. Since
we consider non-interactive presentations, we can simplify the above as:

– µ← NYM.P.Usr(pp, (k, σ), (scp,nym,m)),
– 0/1← NYM(sk, (scp,nym,m), µ).

The core security requirements of a pseudonym system are correctness (all honestly-generated nyms verify), unforgeability
(that is, a user cannot generate multiple identities for the same scope or act of behalf of another user), and anonymity (that is,
two users are indistinguishable across different scopes). More formally, correctness requires that, for all scp,m ∈ {0, 1}∗:

Pr

b = 1:

crs← NYM.S(1λ)
(sk,pp)← NYM.K(crs)
(k, σ)← (NYM.I.Usr(pp) ⇌ NYM.I.Srv(sk))
nym := NYM.E(pp, k, scp)
b← (NYM.P.Srv(sk, (scp,nym,m)) ⇌ NYM.P.Usr(pp, (k, σ), (scp,nym,m)))


is overwhelming in λ. Unforgeability asks that AdvunfNYM,A(λ) := Pr

[
UNFNYM,A (λ) = 1

]
is negligible in λ, where UNFNYM,A (λ) is

defined in figure 9. Anonymity requires that AdvanonNYM,A(λ) is negligible in λ, where the distinguishing game ANONb
NYM,A (λ) is

illustrated in figure 8.

Remark 10 (Differences with VRFs.). It is possible to re-state those properties in terms of verifiable random functions, but the
syntax here is slightly different. Verifiable random functions have a verification algorithm that relies on a “public key” (which
here is not used) and require uniqueness, that is, it is not possible to prove two different VRF outputs are valid for the same
input and the same secret key. Pseudonym evaluation is a deterministic algorithm, and therefore uniqueness perfectly holds.

8.3.2 Our compiler

We say that a keyed-verification credential KVC supports labelled presentation if the presentation message of the user can
be labeled. This is denoted as a “dummy predicate” ϕmlbl. For the credentials we present, this boils down to demading ZKP to
supporting labelling, e.g. with a message embedded in the Fiat–Shamir transformation.
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As in the previous section, we say that a pseudorandom function PRF is compatible with a keyed-verification credential
KVC if the attribute space of the credential system is equal to the key space of the PRF and ϕm,e

prf is in the predicate family of
KVC.

We say that a keyed-verification credential KVC supports i-rerandomizable issuance if there exists an issuance protocol
KVC.Irnd which, as long as at least one of the two participants (user or server) is honest, the credential at the end of the protocol
is such that the i-th attribute is uniformly distributed over M.

Let KVC be a keyed-verification credential for n = 1 attributes supporting re-randomizable issuance and labels. Let PRF be
a pseudorandom function compatible with KVC. We describe a compiler cNYM[KVC,PRF] and define it as follows:

• crs← cNYM.S(1λ), the setup algorithm internally runs KVC.S(1λ, 1) and return its common reference string;

• (sk,pp)← cNYM.K(crs) returns the output of the keyed-verification credential key generation;

• (k, σ) ← (cNYM.I(pp) ⇌ cNYM.I.Srv(sk)), the issuance algorithm has the user run KVC.Irnd.Usr(pp, [], ϕ∅) and the server
KVC.Irnd.Srv(sk, ϕ∅). At the end of the protocol execution, the user gets a uniformly-distributed attribute k and a credential
σ on it.

• nym := cNYM.E(pp, k, scp), the pseudonym evaluation function returns nym := PRF(k, scp).

• 0/1← (cNYM.P.Usr(pp, (k, σ), (scp,nym,m) ⇌ cNYM.P.Srv(sk, (scp,nym,m))), the presentation algorithm has the user re-
ceive as input a pseudonym nym := PRF(k, scp) and a messagem to be authenticated. It runs KVC.P.Usr(pp, k, σ, ϕscp,nymprf ∧
ϕmlbl), while the server responds with whatever the underlying protocol KVC.P.Srv(sk, (scp,nym,m)) returns.

Theorem 36. Let KVC be a keyed-verification credential for n = 1 attributes, with re-randomizable issuance and labelled pre-
sentation, for predicate family Φ ⊃ {ϕprf}. Let PRF be a pseudorandom function compatible with KVC. Then, cNYM[KVC,PRF]
is a keyed-verification pseudonym system with unforgeability advantage:

AdvunfcNYM[KVC,PRF](λ) ≤ qAdv
ext
KVC(λ, 1) + qAdvanonKVC (λ) + qAdvprndPRF (λ) +

q2

|M|
,

(where q is the number of oracle queries) and unlinkability advantage:

AdvunlinkcNYM[KVC,PRF](λ) ≤ 2(AdvanonKVC (λ, 1) + AdvprndPRF (λ)) .

Remark 11. The requirement of PRF compatibility and re-randomization of KVC can be relaxed with an alternative construction,
that we sketch below.

At issuance time, the user generates a key k ← NYM.K(crs) and an evaluation nym0 ← NYM.E(k, ε) (where ε denotes the
empty string). At issuance time, the user sets the key k to be one of the (hidden) credential attributes, and adds to the user
message the registration identity nym0. Along with the predicate associated with the other attributes, the user proves knowledge
of a valid PRF key k ∈ K (a hidden attribute) and that nym0 is well-formed (via the predicate ϕnym). The server, on the
receiving side, checks that nym0 has not already been used in the past and that it is indeed correctly generated by verifying
the predicate (via ϕnym). If both checks pass, the server proceeds with the issuing of a credential. Upon accessing any other
resource scp ̸= ε the user can provide an identity associated to that resource computing nym← NYM.E(k, scp) and proving via
the predicate ϕnym that the computation was done correctly.

Remark 12. In the proof, extraction is used to carry out a counting argument after making sure that nym∗
i are all correct

evaluations of the function PRF(·, scp∗). Therefore, one may wonder if one-more unforgeability is sufficient for proving security.
While we don’t have at disposal the final messages, the credentials µCMZ and µBBS both rely on a presentation message
that is sound, and therefore the argument still applies. In fact, by relying on knowledge soundness of the proofs πp in both
protocols, one can show that µCMZAT and µBBSAT (the schemes without the issuance user proofs) are sufficient for achieving the
desired security properties. Note that the “q” factor required to “guess” the forgery is now moved to the knowledge soundness
experiment.

Corollary 37. Consider a one-more unforgeable keyed-verification credential KVCAT ∈ {µCMZAT,µBBSAT}, for predicate family
Φ ⊃ {ϕprf}. Let PRF be a pseudorandom function compatible with KVCAT. Then, cNYM[KVCAT,PRF] is a keyed-verification
pseudonym system with unforgeability advantage:

AdvunfcNYM[KVCAT,PRF](λ) ≤ Advomuf
KVCAT

(λ, 1) + qAdvksndZKP (λ) + qAdvanonKVCAT
(λ) + AdvprndPRF (λ) +

q2

|M|
,

(where q is the number of oracle queries) and unlinkability advantage:

AdvunlinkcNYM[KVC,PRF](λ) ≤ 2(AdvanonKVCAT
(λ, 1) + AdvprndPRF (λ)) .
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8.3.3 Analysis

Correctness follows by inspection; unlinkability follows directly from pseudorandomness and anonymity. We focus on unforge-
ability.

Lemma 38. Let KVC be a keyed-verification credential for n = 1 attributes, with re-randomizable issuance and labelled presen-
tation, for predicate family Φ ⊃ {ϕprf}. Let PRF be a pseudorandom function compatible with KVC. Then, cNYM[KVC,PRF] is
a keyed-verification pseudonym system with unforgeability advantage:

AdvunfcNYM[KVC,PRF](λ) ≤ qAdv
ext
KVC(λ, 1) + qAdvanonKVC (λ) + qAdvprndPRF (λ) +

q2

|M|
,

where q is the number of queries to the issuance oracles.

Proof. We consider, without loss of generality, two types of adversaries:

• a “one-more” adversary A1(pp) that returns (scp, (nym
∗
i ,m

∗
i , ρ

∗
i )

q+1
i=1 ), such that (nymi)i are all different and q is the number

of queries to the Issue oracle. This attacker can be reduced to extractability of the underlying keyed-verification credential
system. To do so, we build a reduction B for the extraction game EXTKVC,Ext,A (λ, 1).

B receives as input pp and internally runs A1, mapping each oracle query to the respective one in the extractability game:

– each issuance query with adversarial user message µ is forwarded as Issue(ϕscp,nymprf , µ)

– each presentation query of the form (scp,nym,m), ρ is forwarded as Present(ϕscp,nymprf ∧ ϕmlbl, ρ)
– each new user query has B sample k ←$ M, runs NewUsr(k) and upon receiving a counter ctr for the given user, it

stored Keys[ctr] := k. Finally, returns ctr.
– each user presentation query of the form (i, scp,m) is forwarded to the extractability oracle asPresentUsr(i, ϕscp,nymprf ∧
ϕmlbl) where nym := NYM.E(Keys[i], scp). (If the index is invalid, we assume the oracle returns ⊥).

– finally, for each Eval(i, scp), returns PRF(Keys[i], scp).

The oracles provide the exact same output distribution as in the original game. At the end, the adversary B guesses an
index j ∈ [q + 1] and returns (scp∗,nym∗

j ,m
∗
j , ρ

∗
j ).

Since there are at most q different issuance queries, at most q keys have been issued. However, the adversary produced
q+1 different evaluations of the function PRF(·, scp). This implies that either one of the keys is not present as a part of the
issued credentials (and the winning condition “m⃗ ̸∈ Qrs” in the extractability game is satisfied) or an extracted credential
does not satisfy the pseudonym predicate (so the condition “ϕ(m⃗) = 0” in the extractability game is satisfied).

• an adversary stealing pseudonyms from honest users A2(pp) that returns a valid forgery (scp∗,nym∗,m∗, ρ∗) not previously
queried, and such that there exists an index j ∈ [qu] (qu being the number of queries to NewUsr) such that nym∗ =
NYM.E(Keys[j], scp∗). This can be proven via a hybrid argument:

H0 the first hybrid runs the extractor for the credential presentation and checks if the extracted values satisfy the predicate.
Similarly to the previous argument, if the extracted values are not correct PRF evaluation than it is possible to build
a reduction to extractability of the underlying credential system.

H1, . . . ,Hqu replace the i-th query to NewUsr() and queries of the form PresentUsr(i, ·) to simulated responses. Upon
receiving a NewUsr() query, sample ki ←$ M and run sti ← Sim.I(pp, ϕ[1]). Store ki in Keys and the simulator
state sti in Creds. Upon receiving a PresentUsr(i, scp,m), run the pseudonym evaluation using ki and return the
simulated proof via Sim.P(pp, ϕscp,nymprf ∧ ϕmlbl). Evaluation queries are dealt as before using the relative PRF key.
If the adversary’s output is distinguishable with non-negligible probability then it is possible to build a distinguisher
for anonymity of KVC.

Hqu+1, . . . ,H2qu replace all pseduonyms with uniformly-random PRF images. The challenger now holds a table Nyms of
evaluations and each Eval(i, scp) query is responded as follows: if Nyms[i, scp] has associated a pseudonym already,
then return it; if no such entry exists, then sample a fresh pseudonym nym←$ I, where I is the image of the PRF.

At this point we have that the returned pseudonyms collides with a random string only if there is a collision within PRF.
The probability that this bad event occurs is upper bounded by q2/|I|.

8.3.4 Instantiation

A suitable PRF that composes well with the studied keyed-verification systems is the PRF from Naor, Pinkas, and Rein-
gold [NPR99]:

NPR(k, scp) := k · Hg(scp) (31)
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Credential Issuance with (n+ 1)-rerandomization

µCMZ.Irnd.Usr((X0, X⃗), m⃗, ϕ) µCMZ.Irnd.Srv((x0, x⃗), ϕ)

C′ :=
∑

i miXi+k′Xn+1 + sG where s, k′ ←$ Zp

πiu ← ZKPcmz.iu.P((C
′, X⃗, ϕ), (m⃗, k, s))

C′, πiu
check ZKPcmz.iu.V((C

′, X⃗, ϕ), πiu)

U ′ := uG where u←$ Zp

V ′ := x0U + u(C′ + k′′Xn+1) where k′′ ←$ Zp

check U ′ ̸= 0G
U ′, V ′, πis, k

′′
πis ← ZKPcmz.is.P((X0, C

′+k′′Xn+1, U
′, V ′), (x0, u))

check ZKPcmz.is.V((X0, C
′+k′′Xn+1, U

′, V ′), πis)

U := rU ′ where r ←$ Zp

V := r(V ′ − sU ′)

return (k := k′ + k′′,σ := (U, V ))

µBBS.Irnd.Usr(X, m⃗, ϕ) µBBS.Irnd.Srv(x, ϕ)

s, k′ ←$ Zp

C′ := s−1(
∑

i miGi + k′Gn+1+G0)

πiu ← ZKPbbs.iu.P((C
′, ϕ), (m⃗, k,s))

C′ , πiu
check C′ ̸= 0G ∧ ZKPbbs.iu.V((C

′, ϕ), πiu)

A′ := (x+ e)−1(C′+k′′Gn+1) where e, k′′ ←$ Zp

check ZKPbbs.is.V((e,X,C′+k′′Gn+1, A
′), πis)

e,A′, πis, k
′′

πis ← ZKPbbs.is.P((e,X,C′, A′), x)

A := sA′

return (k := k′ + sk′′,σ := (A, e))

Figure 10: Randomized issuance of µCMZ and µBBS credentials. The relation πis is defined in equations (5) and (18) for µCMZ and µBBS

respectively. Highlighted, the differences with the vanilla protocol; boxed , the parts that may be removed for one-more unforgeability.

The PRF is secure in the random oracle model under the DDH assumption: distinguishing a tuple (Hg(scp0), kHg(scp0),Hg(scp1),
kHg(scp1)) from a uniformly random element of G4 is equivalent to solving the DDH problem: given a DDH challenge (with
generator) (P,U,Q, V ), set Hg(scp0) = P , Hg(scp1) = Q, and k = logP U .

8.3.5 One-time linking

It is also possible to upgrade to statistical anonymity in a different model. Instead of providing a nym, the user can commit to
it and prove it has the same value of a commitment sent in a previous interaction. Given two pseudonyms C0 = kHg(scp) + rH
and C1 = kHg(scp) + r′H the user can prove knowledge of the discrete logarithm of C0−C1 base H and that C0, C1 are correct
commitments to nym evaluations. The advantage of this last approach is that the user has perfect hiding.

9 Straight-line extraction from Σ-protocols

The notion of soundness required for credentials that we use is strong, as it demands that the simulator is able to extract a witness
from an oracle query in order to properly answer the challenge. In the literature, it has sometimes been called online [Fis05] or
straight-line [GMY06, Sah99] extraction, and is believed not to be satisfied by traditional non-interactive Schnorr proofs relying
on rewinding techniques.

The Fiat–Shamir transform of a Σ-protocol is however the most common tool for instantiating the NIZK in credential systems.
To complement this heuristic and resolve the theoretical gap, we prove that representation proofs are straight-line extractable
in the algebraic group model.

We denote with Σ such a protocol for generic linear relations (m of them) over vectors of size n:

RF :=

{
(X⃗, x⃗) ∈ Zn

p ×Gm :

n∑
k

xkF1,k = X1 ∧ · · · ∧
n∑
k

xkFm,k = Xm

}

We will employ the more compact matrix-vector notation Fx⃗ = X⃗ where F ∈ Gm×n denotes the matrix whose j-th row vector
is F⃗j . Denote with Uniq(F) the list G1, . . . , Gℓ with ℓ ≤ |F| the non-trivial group elements appearing in F, repeated only once.

Definition 39. A relation family RF is admissible if: for any p.p.t. adversary A, it is computationally hard to find a non-zero
vector in ker(F⃗j) (for j ∈ [m]) or in ker(Uniq(F)), where Uniq denotes the set of non-trivial group elements appearing in F.

We recall here the protocol Σ for the relation RF:
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Procedure Σ.P(X⃗, x⃗)

R⃗ := Fr⃗ where r ←$ Zn
p

c := Hp(X⃗, R⃗)

s⃗ := r⃗ + cx⃗

return (R⃗, s⃗)

Procedure Σ.V(X⃗, (R⃗, s⃗))

c := Hp(X⃗, R⃗)

return Fs⃗ = R+ cX⃗

in the above, the notation Fr⃗ indicates standard matrix-vector product, i.e., R⃗ is the vector of m elements indexed in j ∈ [m]
such that Rj :=

∑
k Fj,krk. Similarly one proceeds for Fs⃗. This protocol is a standard Fiat–Shamir transform for a Σ-protocol

proving knowledge of a group morphism [Mau09]. The transform as presented here is sometimes also known as “strong Fiat–
Shamir transform” [BPW12]. It is a well-known result in the literature that such protocol is zero-knowledge in the random oracle

model: the simulator samples s⃗, c at random from Zn
p ,Zp respectively and sets R⃗ := Fs⃗− cX⃗. Finally, it programs the random

oracle to respond with c for the query (X⃗, R⃗) finally returns (R⃗, s⃗). The proof distribution is identical to the one generated by

the prover: R⃗ and s⃗ are uniformly distributed satisfying the verification equation.

Theorem 40. The protocol Σ for an admissible relation RF is strongly simulation-extractable in the algebraic group model and
the random oracle model.

Proof. Let A be the algebraic adversary in the game for simulation extractability, and q the number of queries made to the
random oracle during its execution. For a statement (F, X⃗), let F⃗j denote the j-th row of the matrix F and Xj the j-th

element of X. During its execution, the adversary A queries the simulation oracle for instance X⃗ ∈ Gm and witness x⃗ ∈ Zn
p .

Being algebraic, A also provides an algebraic representation of X⃗. Upon receiving the i-th simulation query, the simulator picks
ci, s⃗i ←$ Zp, sets

R⃗i := Fs⃗i − ciX⃗i (32)

and programs the random oracle to respond to Hp(X⃗i, R⃗i) with ci. If such query exists, the simulator aborts and the adversary
wins. Since Ri is uniformly distributed over G, no such query has been previously made except with probability at most q/p

which is negligible. Finally, the simulator returns (R⃗i, s⃗i). The algebraic representation (χi, δi) of the i-th queried statement X⃗i

is such that:

Xi,j =

ℓ∑
k

χi,j,kGk +
∑
ι<i

κ∈[m]

δi,ι,κRι,κ

where the generators G1, . . . , Gℓ = Uniq(F) are the group elements appearing in F. The elements Rk,j can be simplified thanks
to equation (32). In fact, for the first query, we have that for every element j ∈ [m]:

X1,j =

ℓ∑
k

α1,j,kGk where α1,j,k = χ1,j,k

since no previous query has been made. For the second query we can consider:

X2,j =

ℓ∑
k

α2,j,kGk where α2,j,k = χ2,j,k + δ2,1,k(s1 − c1α1,j,k)

and so on. We can partition the indices k ∈ [ℓ] into Ij – the set of indices of Uniq(F) appearing in F⃗j and Īj the set if indices
that do not. We can thus see the i-th simulation query (i ∈ [q]) as:

Xi,j =
∑
k∈Ij

αi,j,kGk +
∑
k∈Īj

αi,j,kGk

for all j ∈ [m], with αi,j,k in Zp. At the end of the execution the adversary returns a final statement X⃗∗ and a proof π∗ = (K⃗∗, s⃗∗)

such that (X⃗∗, R⃗∗, s⃗∗) ̸= (X⃗i, R⃗i, s⃗i) for all i ∈ [q] satisfying Fs⃗∗ = K⃗∗ + c∗X⃗∗ and c∗ = Hp(X⃗
∗, R⃗∗).

We claim that (X⃗∗, R⃗∗) ̸= (X⃗i, R⃗i) for all i ∈ [q]. In fact, by contradiction, if ∃i ∈ [q] such that s⃗i ̸= s⃗∗ and X⃗i = X⃗∗,

R⃗i = R⃗∗ then F(s⃗i − s⃗∗) = 0⃗ and non-trivial element of the kernel was found. From the algebraic representation we have that,
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for each j ∈ [m]

R⃗∗
j =

∑
k∈Ij

β∗
j,kGk +

∑
k∈Īj

β̄∗
j,kGk

X⃗∗
j =

∑
k∈Ij

α∗
j,kGk +

∑
k∈Īj

ᾱ∗
j,kGk

(33)

where the algebraic representation already reduced the terms Ri as linear combinations of the Gk’s in Ij ∪ Īj = Uniq(F) using
the verification equation as shown above. We distinguish the following possibilities:

1. If ∃j∗ ∈ [m], k∗ ∈ Īj∗ s.t. ᾱ∗
j∗,k∗ ̸= 0, then plugging equation (33) into the verification equation we have that:∑

k∈Ij∗

(
β∗
j∗,k + c∗ · α∗

j∗,k − s∗k
)
Gk +

∑
k∈Īj∗\{k∗}

(
β̄∗
j∗,k + c∗ᾱ∗

j∗,k

)
Gk +

(
β̄∗
j∗,k∗ + c∗ᾱ∗

j∗,k∗

)
Gk∗ = 0

and the coefficient of Gk∗ is uniformly distributed and nonzero with overwhelming probability since c∗ is uniformly dis-
tributed and ᾱ∗

j∗,k∗ ̸= 0, β̄∗
j∗,k∗ are chosen before seeing the challenge. Therefore, we have a non-trivial relation of Uniq(F).

2. If ∀i, j, k : ᾱ∗
j,k = 0 modulo p then we can rearrange the indices of α∗

j,k and can consider vectors α⃗j (j ∈ [m]) such that
X1 = ⟨F1, α⃗1⟩, . . . , Xm = ⟨Fm, α⃗m⟩. We claim that α⃗1, . . . , α⃗m can be used to reconstruct a unique witness vector.

(a) If ∃j ̸= j′ such that for some k ∈ Ij ∩ Ij′ : αj,k ̸= αj′,k then

F⃗j · (β⃗j + c∗α⃗j − s⃗∗) = 0 and F⃗j′ · (β⃗j′ + c∗α⃗j′ − s⃗∗) = 0

and the adversary found another nontrivial relation of the kernel of F⃗j or F⃗j′ : if (β⃗j + c∗α⃗j − s⃗∗) ̸= 0 we are done,

and if it is instead equal to zero then the term (β⃗j′ + c∗α⃗j′ − s⃗∗) will be also zero only with negligible probability 1/p

since (β⃗j′ − β⃗j) + c(α⃗j′ − α⃗j) = 0 only if the adversary guessed c correctly (note that all the terms are sent to the
random oracle before seeing the challenge).

(b) Otherwise, the extractor defines x⃗∗ ∈ Zn
p as the vector whose k-th entry is the (unique) element αj,k for all j ∈ [m]

such that k ∈ Ij . The witness is correct since, by construction, F⃗j x⃗
∗ = F⃗jα⃗j = Xj for all j ∈ [m].

The witness output from item 2b is correct, and all other cases happen with negligible probability, thus the protocol is strongly
simulation-extractable.
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