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Abstract—Decentralized storage networks, including IPFS and
Filecoin, have created a marketplace where individuals exchange
storage space for profit. These networks employ protocols that
reliably ensure data storage providers accurately store data with-
out alterations, safeguarding the interests of storage purchasers.
However, these protocols lack an effective and equitable payment
mechanism for data retrieval, particularly when multiple data
queriers are involved. This necessitates a protocol that ensures
both data integrity and fair compensation for data providers.

In decentralized storage, data is fragmented into small blocks
and stored across multiple nodes, a process known as data swarm-
ing. Due to this property, traditional data exchange protocols are
inadequate in terms of communication and economic efficiency.

We propose the Proof of Unified Data Retrieval proto-
col (PoUDR). PoUDR incorporates ZK-SNARK to facilitate a
fair data exchange protocol. PoUDR reduces the number of
blockchain transactions for both single block and data swarming
retrieval. The protocol requires only a single key-revealing
transaction submitted by the provider to the blockchain for each
data block. This architecture allows for further optimization of
transaction numbers through a batched proof technique on the
provider’s side. This approach necessitates only NP transactions
within a specific time frame when data consisting of ND blocks,
provided by NP providers, is queried by NQ queriers.

This work provides a comprehensive definition for Secure
Swarming Data Exchange (SSDE), including security assump-
tions. Also it offers a detailed game-based security analysis for
the PoUDR protocol. Moreover, the PoUDR protocol has been
fully integrated into the Bitswap protocol (IPFS). Within this
integration, our proposed Relaxed Groth16 algorithm addresses
the significant technical challenge of generating zero-knowledge
proofs, leading to substantial cost reductions for overall feasibility
of secure data retrieval in decentralized storage networks.

I. INTRODUCTION

Exchange of data for money online presents the challenge
of establishing mechanisms that ensures fair trade between
sellers selling data to buyers [28], [10]. Fair refers to equitable
transaction outcomes where a seller gets paid upon delivering
the specified data and a buyer pays only after receiving the
correct data [13]. The challenge arises from the fact that
mutual trust ought not be assumed naturally. As noted by
Pagnia and Gärtner [34], such fair trades require a trusted
third party for mediation, otherwise designing protocols that
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ensure such fairness is unfeasible. As further research has been
conducted on fair data exchange mechanisms employing de-
centralized blockchain, various protocols have been developed
to tackle the aforementioned challenge by using the blockchain
to function as a trusted third party [24], [7], [11], [12].

We are examining our work from two perspectives: one
focuses on enhancing protocol-level performance and features
compared to the aforementioned protocols, and the other
addresses practical technical challenges and associated costs
to ensure feasibility upon deployment on IPFS, problems that
other protocols have not thoroughly addressed.

In the context of IPFS, Files are segmented into smaller
blocks and then disseminated across various nodes within
the peer-to-peer network. When a user requests a file, these
protocols use swarming retrieval mechanism, aggregating the
necessary blocks from multiple nodes simultaneously as shown
in Figure 1. IPFS distinctly identifying each fragment of the
file through its cryptographic hash [2]. The secure swarming
data exchange for money problem discussed in our study
emerges in a process involving queriers Q and providers P.
Considering a data file D is fragmented into ND blocks and
each provider Pi ∈ P hosts a subset of the blocks, BPi

, with
possible overlaps among other providers. One querier Q ∈ Q
issues a query q for D, triggering a subset of providers Pq ⊆ P,
to collaborate to assemble and deliver the entire set of ND

blocks constituting D. The blocks provided to q by a provider
Pi ∈ Pq is denoted as Bq,Pi

. This collaboration ensures that⋃
Pi∈Pq

Bq,Pi
= D for data correctness, and ensures that each

provider receives payment for their specific contribution to q.
At the protocol-level, one of the objectives is to optimize

this process, reducing the number of blockchain transactions
required to function as a trusted third party for achieving
fair trade. Another objective is to tackle the problem of
unauthorized key sharing. Protocols such as ZKCP are unable
to address the unauthorized key sharing (key reselling) issue
[30], [21], as outlined in Table I. The issue arises when a
decryption key, once sold, remains valid and could be further
reused or distributed to others to decrypt the same or other data
blocks, and thus avoid payment leading to unfairness, which
has been a subject of longstanding scholarly [3]. Circumvents



mechanisms designed to prevent key reselling, even though
cannot prevent data from reselling since off-line agreements
could operate outside the system’s control, still have positive
impact on the resource utilization of providers. Protocols like
OptiSwap [12] can address this issue, will incur escalated
costs in attaining fairness under this retrieval process due
to the focus on cryptographic schemes for individual files.
Since adapting those file-level fair data exchange solutions
considering a block as a file would lead to the costs attributable
to the markedly increased number of transactions required.

At the deployment-level, we explored the technical chal-
lenges and cost considerations involved in deploying these
protocols on the IPFS platform. The primary challenges in
enabling fair exchange on IPFS involve the integration of
zero-knowledge proofs (ZKPs) with IPFS block content iden-
tification. The generation of a proof that a specific block
corresponds to a given content ID, which is typically highly
computationally expensive in ZK, as each block to content ID
calculation requires thousands of SHA256 block computation.
Therefore, the objective is to develop a mechanism for ZKP
integration with IPFS to streamline the content ID verification
process and reduce overall computational costs. We outline in
below I-A how our protocol meets these objectives, addressing
the aforementioned problems from both the protocol enhance-
ment and practical implementation perspectives.

A. Contribution

ADDRESSING KEY RESELLING IN DATA SWARMING. In
data swarming retrieval, the encryption key for each data block
must not only differ for various blocks but also vary for the
same block when queried by different queriers, to prevent
key reselling attacks. Prior protocols have not specifically
addressed this issue. The PoUDR protocol implements a
strategy to combat the key reselling problem in data swarming
contexts through a combination of private key encryption and
commitment schemes. This protocol ensures the independent
creation of encryption keys, each uniquely committed and
encrypted, making each data block exchange distinct and
eliminating the possibility of key reuse. The implementation
of the secure and zero-knowledge (ZK)-friendly One-Time
Pad (OTP) cipher over finite field Fp and the key deriva-
tion function PBKDF2-Poseidon significantly diminishes
the computational burden of generating ZK proofs on the
provider side, enhancing the protocol’s practicality in real-
world decentralized storage networks.
REDUCING ON-CHAIN TRANSACTION OVERHEADS. The
PoUDR protocol reduces the quantity of on-chain transactions
for both individual block retrieval and data swarming retrieval
through its batched key-revealing proof approach. In the case
of a single block, the protocol decreases the transaction count
to just one. For a specific period in which NQ queriers request
data from NP providers for a file comprising ND blocks,
the total on-chain transactions correspond to the number of
providers NP . This is contrast to other protocols that ne-
cessitate transactions equating to twice the number of blocks
transmitted, that is, 2NDNQ, as illustrated in Table I. Given

that the number of providers holding file blocks is usually
substantially lower than the total number of blocks transmitted,
especially in scenarios involving large files, this optimization
reduces the number of on-chain transactions. This markedly
lowers the gas cost for real-world data swarming retrieval.
DEFINITIONS AND GAME-BASED SECURITY PROOF. A
formal definition for Secure Swarming Data Exchange (SSDE)
and the PoUDR protocol is presented, accompanied by a
comprehensive security analysis. This analysis is grounded in
various attack games designed to deviate from the protocol,
demonstrating that the PoUDR protocol meets the security
requirements of SSDE. Furthermore, we propose strategies to
mitigate Sybil attacks targeting data providers in data swarm-
ing retrieval contexts, which involve economic deterrents, such
as time-locked staking, to enhance security.
TACKLING COST CHALLENGE FOR FEASIBILITY Existing
protocols (in Table I) have not fully addressed the complexities
of fair data exchange when employing decentralized storage.
When implementing a data exchange protocol built on de-
centralized storage such as IPFS, substantial technological
challenges arise. The challenge arises from the necessity to
generate zero-knowledge (ZK) proofs for IPFS blocks to verify
content IDs, where each block pointed to its content ID must
be validated through a computationally intensive ZK circuit.
This proof generation renders the system infeasible without
significant cost reductions. To overcome this challenge, our
solution leverages recursive zero-knowledge succinct non-
interactive arguments of knowledge (recursive zk-SNARKs),
which reduce the computational overhead by folding the SHA-
256 circuit in a recursive manner. This approach significantly
reduces the ZK circuit size and thus greatly amortizes the
memory overhead. Furthermore, this folding-based optimiza-
tion is applicable to all kinds of ZK-unfriendly circuits with
repeated modules, such as other commonly used hash func-
tions, non-native elliptic curve computation, etc.
RELAXED GROTH16 WITH FORMAL SECURITY PROOF In
current decentralized storage projects, each piece of data is
assigned a content ID, typically a ZK-unfriendly hash value
of the data. Existing data exchange protocols require proving
the hash computation in a zero-knowledge proof, which results
in unacceptably high costs for proving a ZK-unfriendly hash
value. This paper introduces the Relaxed Groth-16 protocol,
based on relaxed R1CS [25], to recursively prove hash com-
putations. Additionally, this work provides a formal security
proof for the Relaxed Groth-16 protocol and implements the
NOVA folding scheme [25] and Relaxed Groth-16 protocol in
the Go language.
CROSS-PLATFORM COMPATABILITY. The PoUDR proto-
col attains cross-platform decentralized storage compatibility
by employing a modular approach, conforming to prevalent
modules and data formats in these systems. This focus is
particularly on the concepts of data block segmentation and
decentralized data retrieval. Complete implementation and
integration of the PoUDR protocol within Bitswap have been
accomplished, with its functionality tested in the actual IPFS
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Fig. 1. Overview of Data Storage and Retrieval Pattern in Decentralized
Storage Network

TABLE I
Comparison of PoUDR and other protocols.

PoUDR ZKDET [35] ZKCP [31] ZKCPLUS [27] OptiSwap [12]

#Txns/Data Block 1 2 2 2 2+
#Txns/(NP , NQ, ND)-Slot NP 2NDNQ 2NDNQ 2NDNQ 2NDNQ+

Key-Reselling Resistance
Data Swarming Friendly
Feasibility-compatible in IPFS

setting to confirm its practicality. Such implementation guar-
antees straightforward integration into various decentralized
storage environments.

B. Related Work

Zero Knowledge Contingent Payment (ZKCP) proposed by
Maxwell pioneered fair data exchange using zero knowledge
proofs to eliminate centralized intermediary in 2011 [31]. The
protocol enabled payments to be released only when specific
knowledge is disclosed by the payee, representing that the
payee truly possess a specific secret without revealing the
secret itself. Secret refers to information or data the payee
has and the payor wants to purchase. Subsequently, ZKCP
protocol was first used on the bitcoin network in 2016 [32].

Further, enhancements and extensions for ZKCP encom-
passed. Banasik et al. [1] constructed ZKCP protocol with
transactions only meaning no contracts or scripts, specifically
adopted for the users are allowed only to post standard
transactions. ZKCP revisited [7] presented by Campanelli et
al. discussed a fix to some concerns of traditional ZKCP
scenarios, where the verifier is responsible for generating the
common reference string (CRS) that will be later used for
generating and verifying proofs. Should the verifier engage
in malicious activities, there exists a potential to contrive
a CRS that enables the extraction of information from the
proof. In the protocols outlined in [7] the proof maintains a
cryptographic condition where the specific secret information
used in the proof remains confidential, the secret information
cannot be identified or singled out. ZKCPlus proposed by Li
et al. [27] later targeted at improving prover efficiency for
parallel computations for making it more suitable for more
practical real-world hardware applications.

Within fair data exchange research, a blockchain-related
research field is the exploration of using smart contracts as
a trusted third party, which is necessary for fair exchange
[34]. FairSwap proposed by Dziembowski [11] discussed
digital goods exchange by introducing a smart contract-
based protocol that circumvents the computational intensity
of zero-knowledge proofs. Compared to approaches using
zero-knowledge proofs, FairSwap’s mechanism: proof of mis-
behavior tackled the cost associated with expensive ZKPs
with the limitation of its potential exposure of transactional
details in dispute resolutions. Eckey et al. [12] incorporated
an interactive dispute resolution sub-protocol to extend the
FairSwap so that the proposed extended protocol OptiSwap
reduced communication and computational for the scenarios
without disputes. Fujitani et al. [15] discussed related problems
of automated service fee collection, which could potentially
lead to reduced gas costs since it avoids the interactive dispute
resolution process that OptiSwap employs.

II. BACKGROUND

A. Decentralized Storage

In the Web3 ecosystem, decentralized storage represents a
considerable shift in data storage and access methodologies,
diverging from conventional centralized systems. In contrast to
centralized storage systems, which manage data in specific and
often exclusive data centers, decentralized storage disperses
data throughout a network of nodes, frequently managed
by a diverse group of independent operators. This method
reinforces data security, strengthens resilience against outages,
and fortifies resistance to censorship. Decentralized systems
not only store data but often replicate it across multiple nodes,
promoting redundancy and ensuring high availability. These
systems employ blockchain technology to augment security
and facilitate transparent operations, aligned with Web3’s
foundational principles of decentralization, privacy, and user
sovereignty.

Prominent examples of decentralized storage solutions
within the Web3 domain include InterPlanetary File System
(IPFS)* and Filecoin†. IPFS implements a peer-to-peer proto-
col specially crafted for storing and distributing data in a dis-
tributed file system. Unlike conventional web protocols, IPFS
utilizes content-based data addressing rather than location-
based, enhancing robustness and efficiency. Conversely, File-
coin constitutes a decentralized storage network, rewarding
participants with tokens for contributing storage capacity.
Filecoin seamlessly integrates with IPFS, adding an incentive
layer that fosters data retention and distribution. Collectively,
these platforms demonstrate the capabilities of decentralized
storage, presenting scalable, effective, and secure alternatives
to traditional data storage approaches.

*https://ipfs.tech/
†https://filecoin.io/
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B. BitSwap

As a vital component of the IPFS, Bitswap serves as the
protocol for data exchange, facilitating the exchange of data
blocks among IPFS nodes [9].

At its foundation, Bitswap operates on a straightforward
principle: a node first checks locally for a specific data piece
before seeking it externally. If absent locally, the node initiates
a request to its peers for that specific data. Peers possessing
the data respond with it, or they may relay the request further
within their network. The distinctive feature of Bitswap lies in
its exchange mechanism. Nodes actively monitor peers’ inter-
est in their data, leveraging this information to preferentially
send data to previously cooperative peers, thereby creating
a data exchange strategy. This strategy motivates nodes to
actively share data, fostering a robust and efficient distribution
network. Furthermore, Bitswap’s algorithm is designed for ro-
bustness and efficiency. It minimizes redundant data transfers
and adeptly identifies the most direct path to the required
data, a crucial feature for reliable data distribution in extensive
networks.

C. ZKCP

In the progression of modern decentralized financial sys-
tems, Zero-Knowledge Contingent Payment (ZKCP) protocol
represents a significant advancement. It offers a robust mech-
anism for secure and private transactions between different
parties. It leverages zero-knowledge proofs to enable the seller
S and the buyer B to complete the transparent transaction
without revealing sensitive details of themselves. Traditionally,
this challenge would require a trusted third-party intermediary
with sacrifice on security and privacy. However, ZKCP utilizes
a smart contract C implemented on a blockchain network
with cryptographic techniques to solve the challenge with an
inspiring solution.

1) The process begins with S generating a zero-knowledge
proof that unequivocally demonstrates their possession of
the requisite information. This proof is then sent to B,
who verifies its validity without gaining access to the
actual data. This step is crucial as it ensures that B’s
payment commitment is based on the certainty of the
seller’s knowledge, thereby eliminating the risk of fraud
or misrepresentation.

2) Once the proof is validated, B proceeds to send the
payment to C deployed on the blockchain. C acts as an
impartial intermediary, holding the payment in escrow
until the transaction’s conditions are satisfied.

3) Upon receiving confirmation of the payment, S releases
the information, which B can then access and utilize. C
then finalizes the transaction by releasing the payment to
the seller. This meticulously designed sequence of events
ensures that both parties’ interests are safeguarded— B
receives the promised information, and S is compensated
for their knowledge.

The implications of ZKCP are far-reaching, offering a solu-
tion to the perennial problem of trust in transactions involving

sensitive information or digital goods. In scenarios where
traditional mechanisms require intermediaries or rely heavily
on mutual trust, ZKCP provides a decentralized alternative
that guarantees fairness and security. Its applications extend
to various domains, including secure information sharing,
digital content distribution, and any transaction where the
buyer needs assurance of receiving the correct information
upon payment [7]. Related works including [1], [7], [14],
[27] have implemented different aspects of experiments on
basic ZKCP protocol on its shortcomings, introducing new
optimization or modification to the protocol details. In this
paper, our motivation also starts with addressing the issue and
deficiency in ZKCP protocol to further extend the protocol to
better serve as a data exchange technique in the cross-platform
decentralized storage aspect.

D. ZK-SNARK

Zero-Knowledge Proofs (ZKPs) [17], [18] are a crypto-
graphic method by which a prover can prove to a verifier that
she knows a statement x, without conveying any information
apart from the fact that she knows x. Formally, a ZKP consists
of three algorithms (P, V, S), where P is the prover, V is
the verifier, and S is the simulator. A ZKP has the following
properties:
• Completeness: If the statement is true, the honest verifier

(that is, one following the protocol properly) will be con-
vinced of this fact by an honest prover. Formally, for any
x,w such that x ∈ Lw and any verifier strategy V ∗,

Pr[(P (x,w), V ∗(x)) = 1] = 1.

• Soundness: If the statement is false, no cheating prover can
convince the honest verifier that it is true, except with some
small probability. Formally, for any x /∈ Lw, any prover
strategy P ∗, and any w′,

Pr[(P ∗(x,w′), V (x)) = 1] ≤ negl(λ),

where negl(λ) is a negligible function.
• Zero-knowledge: If the statement is true, no verifier learns

anything other than this fact. This is formalized by showing
that every verifier has some simulator that, given only the
statement to be proved (and no access to the prover), can
produce a transcript that ”looks like” an interaction between
the honest prover and the verifier in question. Formally, for
any x,w such that x ∈ Lw, any verifier strategy V ∗, and
any w′,

{(P (x,w), V ∗(x))} ≈ {(S(x,w′), V ∗(x))},

where the approximation symbol ≈ denotes computational
indistinguishability.
Zero Knowledge Proof of Knowledge (ZKPoK) extends

the concept of a ZKP by adding a guarantee that the prover
possesses certain knowledge. In addition to the properties
of completeness, soundness, and zero-knowledge, a ZKPoK
includes:
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• Knowledge Soundness: The proof system has knowledge
soundness if a witness can be extracted from any success-
ful prover strategy. Specifically, there exists a polynomial-
time extractor X such that for all adversaries A, if A
can produce a valid proof with non-negligible probability,
then X can extract a witness w such that x ∈ Lw.
Formally,

Pr


(R, z)← R(1λ); (σ, τ)← Setup(R);
(ϕ,Π)← A(R, z);w ← X (R,ϕ,Π) :
Π ∈ Fm×k ∧ Vfy(R, σ, ϕ,Πσ) = 0∧

x /∈ Lw

 ≤ negl(λ).

Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge (ZK-SNARKs) [20], [6], [36], [16], [37] are a
special form of ZKPs that have the properties of being non-
interactive and succinct. Non-interactivity means that the proof
consists of a single message from the prover to the verifier.
Succinctness means that the size of the proof is relatively small
compared to the statement, and verification of the proof is fast.

E. Relaxed R1CS

Rank-1 Constraint System (R1CS) are a fundamental com-
ponent in various cryptographic protocols, particularly those
involving zero-knowledge proofs. Traditional R1CS is a sys-
tem of equations designed to represent computations efficiently
verifiable. However, for applications like folding schemes used
in incrementally verifiable computations (IVC), traditional
R1CS can be overly restrictive. To address this, we introduce
the concept of Relaxed-R1CS (Relaxed Rank-1 Constraint
Systems), which modifies the traditional framework to better
suit the needs of folding schemes, thus offering a more
adaptable framework that retains necessary expressiveness for
complex computations.

A Relaxed-R1CS is defined over a finite field F. Given
matrices A,B,C ∈ Fm×m, which are typically sparse and
contain at most n = Ω(m) non-zero entries per row or col-
umn, the Relaxed-R1CS framework accommodates an instance
consisting of a vector x ∈ Fℓ (public inputs), augmented with
an error vector E ∈ Fm and a scalar u ∈ F. The witness
w ∈ Fm−ℓ−1 satisfies the system if the following relaxed
constraint is met:

(A · z) ◦ (B · z) = u · (C · z) +E

where z = (w,x, 1) and ”◦” denotes the Hadamard prod-
uct (element-wise multiplication). This formulation introduces
flexibility through the error vector E and the scaling factor u,
which are not present in traditional R1CS. This flexibility is
crucial for accommodating the combination and reduction of
constraint systems in a folding scheme.

III. POUDR PROTOCOL

In this section, we first provide the formal definition of the
system model and argue about the security assumption. Then,
we give an overview of the PoUDR Protocol and provide
details of its important components.

A. System Model and Security Assumptions

This section provides a formal definition of the Secure
Swarming Data Exchange (SSDE).

Let [n] denote the set of all the integers from 1 to n, i.e.,
[n] = {1, 2, ..., n}. The security parameter is represented by
λ. In a decentralized storage context, for simplicity, we define
a file as D, partitioned into ND blocks of equal size, denoted
as D := {di | i ∈ [ND]}. There are NP providers involved in
storing D, represented by P := {Pi | i ∈ [NP ]}. All blocks
stored by provider Pi are denoted by BPi

, which means if Pi

participants providing D, then BPi
∩ D ̸= ∅. It is possible

for providers in P to have overlapping blocks. Thus, a query
q queried by querier Q on D requires a subset of providers
Pq ⊆ P, s.t. D ⊆

⋃
BPq

to supply all blocks in D. Addi-
tionally, the blocks provided to Q by each provider Pi ∈ Pq

are denoted as Bq,Pi
, ensuring that

⋃
Pi∈Pq

Bq,Pi
= D and

∀Pi,Pj ∈ Pq where i ̸= j, Bq,Pi
∩Bq,Pj

= ∅. For simplicity,
we assume a universal price for each data block, meaning
each successful data query results in the corresponding data
provider receiving t tokens. The goal of the protocol is to
make the querier Q receive correct data D, and all providers
in Pq get the corresponding payments. Below is the formal
definition of a secure swarming data exchange protocol.

Definition 1 (Secure Swarming Data Exchange (SSDE)).
Formally, given the system model described above, an Secure
Swarming Data Exchange (SSDE) protocol should satisfy the
following two security properties:

• Data Correctness: When a querier Q query D with content
ID cid, she finally receives data D′ and the probability that
she accepts wrong data satisfies:

Pr{D′ ̸= D ∧Q accepts D′} ≤ negl(λ). (1)

• Guaranteed Payment: During Query q querying on D with
content ID cid, the querier Q received D′. Denote the
payment sent from the querier Q to provider Pi as ti. If
D only consists of one data block sent by Pi, then

Pr{D′ = D ∧ ti < t} ≤ negl(λ). (2)

If the data D consists of multiple data blocks sent by a set
of providers Pq , then

Pr{D′ = D ∧ (∨i,Pi∈Pq
ti < t · |Bq,Pi

|)} ≤ negl(λ). (3)

PoUDR operates under the same security assumptions as the
IPFS system. This implies that both data providers and queriers
may potentially exhibit malicious behavior. In essence, either
party is capable of arbitrarily deviating from the established
protocol. Regarding the underlying blockchain infrastructure,
it is assumed that the blockchain system itself is secure.
This means that all transactions submitted to the blockchain
system will be executed through smart contracts, ensuring both
correctness and liveness.
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Algorithm 1 Rehashing Contract
Registry:

Require ZK-friendly and unfriendly hash values: cid′, cid.
Rehashing proof πrehash and rehashing proof verifier
Vrehash.

if Vrehash.Verify(πrehash, cid, cid
′) = 1 then

mapping[cid′] = cid
else

Abort
CheckHash:

Require ZK-friendly and unfriendly hash value cid′, cid.
if mapping[cid′] == cid then

return True
else

return False

Algorithm 2 Query Protocol
Require: Content ID cid, Querier’s public key pkQ, Encryp-

tion proof verifer Venc, Signature scheme Sig, Private key
and public key encryption scheme Edata and Ekey

1: σquery ← Sig.Sign(skQ, cid)
2: Denc, πdata, pk

P , scom, cid′ ← DHT(cid, σquery, pk
Q)

3: if Venc.Verify(π, cid,Denc, pkP , pkQ, scom) = 1 ∧
RPC.CheckHash(cid, cid′) == True then

4: msg ← “Recevied||n||pkQ||pkP ||scom”
5: σmsg ← Sig.Sign(skQ,msg)
6: Send(msg, σmsg)
7: Upon listened event e on chain:
8: s← Ekey.Dec(skQ, e.senc)
9: return Edata.Dec(s,Denc)

B. Overview of PoUDR

Current Data Retrieval solutions [7], [27] assume the use
of ZK-friendly hashing algorithms to ensure data integrity, or
that the data size remains small (several bytes). However, most
existing decentralized storage projects employ ZK-unfriendly
hashes, with each data block significantly exceeding 1KB;
for example, IPFS uses SHA256 for computing a data file’s
content ID and recommends a block size of 256KB [29].
Previous solutions are impractical for ZK-unfriendly hash
scenarios since proving the hashing process for large files
directly demands prohibitive computational resources (Hun-
dreds of GB for RAM). PoUDR employs the Relaxed-QAP
and Relaxed Groth16, which are based on relaxed R1CS [25],
to prove the hash process in a folding manner, thereby reducing
machine requirements. Furthermore, the Rehashing Protocol,
which maps a ZK-friendly hash value to an unfriendly hash
value for the same data, reduces proof generation costs by
enabling the prover to directly prove the ZK-friendly hash
computation.

A trusted third party, such as a blockchain, is required to
ensure security and fairness in the exchange of data between
two parties [34]. Yet, interacting with a blockchain frequently
incurs inescapable time and financial cost. Especially in data

Algorithm 3 Response Protocol
Require: Secret & public key pair skP , pkP . Provers for

encryption and key revealing Penc, Pkey . Commitment
scheme Commit. Private key encryption scheme Edata,
Public key encryption scheme Ekey

1: Upon Receiving Query (cid, σquery, pk
Q):

2: if Sig.Verify(cid, σquery, pk
Q) = 1 then

3: s← Rand(λ)
4: scom ← Commit(s)
5: D ← Retrieve(cid)
6: cid′ ← Hashzk(D)
7: Denc ← Edata.Enc(s,D)
8: πdata ← Penc.Prove(s, scom, D,Denc, cid′)
9: Send(Denc, πdata, pk

P , scom, cid′)
10: Upon Receiving Message (msg, σmsg):
11: if Sig.Verify(pkQ,msg, σ) == 1 then
12: senc ← Ekey.Enc(pkQ, s)
13: πkey ← Pkey.Prove(scom, s, senc, pkQ)
14: txn← WrapTxn(msg, σmsg, pk

P , pkQ, senc, πkey)
15: SendTransaction(txn)

Algorithm 4 Verifier Contract
Require: msg, σmsg, pk

Q, senc, scom, πkey

1: Assert txn.sender == msg.pkP ∧ pkQ == msg.pkQ

2: Assert msg.scom == scom ∧ Unused(msg.n)
3: Assert Sig.Verify(msg, σmsg, pk

Q) == 1
4: if Vkey(πkey, pk

Q, senc, scom) == 1 then
5: addrP ← addr(msg.pkP)
6: addrQ ← addr(msg.pkQ)
7: Transfer(addrQ, addrP , t)
8: Emit event e(addrQ, addrP ,msg.n, senc)
9: else Revert

swarming scenarios, where a file gets split and scattered among
several data providers, numerous blockchain transactions are
necessary to retrieve a single file. Consequently, the expense of
transferring a single file becomes excessively high. Consider-
ing these difficulties, the PoUDR protocol also aims to reduce
blockchain interactions and lower the costs related to data
transmission in scenarios of data exchange between queriers
and providers. The protocol achieves this while maintaining
the security and fairness for all parties involved.

Both ZKCP [7] and ZKCPlus [27] employ the same en-
cryption key for encrypting different queries on the same data,
which poses a risk of key reselling. As highlighted in Section
I-A, the use of unique keys for each query is critical to prevent
key-reselling attacks in data swarming retrieval. Conversely, in
a scenario where NQ queriers request data from NP providers
for a file containing ND blocks, ZKDET [35] necessitates an
on-chain key exchange between the querier and provider, re-
sulting in two transactions for transferring a single data block,
i.e., 2NDNQ transactions in data swarming contexts. PoUDR
addresses this by substituting the key exchange with a secure
and verifiable encryption approach. This change eliminates
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Fig. 2. The PoUDR protocol for a single block retrieval.

the need for on-chain key exchanges, thereby reducing the
transaction count to precisely one for each data block transfer.
Moreover, this design is also in line with the batched key-
revealing proof enhancement on the provider side, effectively
lowering the transaction number to just NP in data swarming
scenarios.

The PoUDR protocol, as illustrated in Figure 2, operates in
conjunction with a blockchain system. The blockchain system
is modeled as a trusted arbiter whose security is out of the
scope of this paper.

The PoUDR protocol is formally defined as a tuple:
(Sig,Hash,Hashzk, Commit, Edata, Ekey, Penc, Venc, Pkey,
Vkey, Prehash, Vrehash). Here, Sig represents a signature
scheme, Hash is the ZK-unfriendly hash function used in
Decentralized Hash Table, Hashzk is a ZK-friendly hash
function, and Commit is a commitment scheme. Edata stands
for a private key encryption scheme, while Ekey denotes a
public key encryption scheme. Penc and Pkey are designated
as two ZK provers, focusing on encryption and key revealing
proof, respectively. Venc and Vkey are the corresponding ZK
verifiers for these proof systems. Prehash and Vrehash are the
recursive prover and verifier in the Rehashing Protocol. Within
the PoUDR protocol, the process by which data queriers
acquire information from data providers is divided into five
distinct phases: Rehashing Phase, Query Phase, Verifiable
Encryption Phase, Signing Confirmation Phase, and the Key
Revealing Phase. The Rehashing Phase is an optional phase
since this phase is only necessary for the newly uploaded data.

If a data provider intends to supply brand new data D,
participation in the Rehashing Phase (Phase ❋) is required.
During the Rehashing Phase, the provider must execute the
Rehashing Protocol III-C, thereby registering a ZK-friendly
content ID cid′ for the new data on the blockchain.

In the Query phase (Phase ❶ and shown in lines 1 and 2 in
Protocol 2) of the PoUDR protocol, a querier Q transmits a
data request to the relevant providers P . The protocol aligns
with the data querying method utilized by the IPFS system.
This method involves the use of a Decentralized Hash Table
(DHT), which necessitates a content ID cid as the search key
to identify providers holding the requested data. Under the
PoUDR protocol framework, the data query must include not
just the content ID but also a signature σquery, authenticated

by the public key associated with the on-chain account address
of the data querier. This requirement is vital as it provides the
data provider with knowledge about the identity and pertinent
specifics of the data querier.

Following the establishment of a connection between Q and
P , the subsequent stage is the Verifiable Encryption Phase
(Phase ❷, lines 1 to 9 in Protocol 3), during which encrypted
data is transmitted. First, P should compute a zk-friendly hash
value cid′ such that cid′ = Hashzk(D), which will be utilized
in proving the correctness of encryption. Encrypting the data
D by an encryption key s before transfer ensures that the data
querier remains unaware of the content until payment is made.
Simultaneously with the data transfer, the data provider must
also validate the encrypted data, Denc’s accuracy to the querier
by sending a Zero-Knowledge Proof πdata. The proof πdata

demonstrates the following statement: cid′ == Hashzk(D)∧
scom == Commit(s) ∧ Denc == Edata.Enc(s,D) where
cid′, scom, and Denc are public witnesses, and s,D are secret
witnesses. P directly proves the ZK-friendly hash because the
Rehashing Protocol already ensures the alignment between cid
and cid′. Upon receiving the encrypted data and its associated
proof, Q first checks the mapping value of cid′ on-chain to
ensure it matches cid. She then verifies the proof’s validity
and then returns a signed confirmation message (Phase ❸,
line 3 to 6 in Protocol 2) to the data provider. This signed
confirmation message acts as an authorization of payment by
the data querier, acknowledging receipt of the encrypted data.
The data provider will later use this confirmation to claim
payment on the blockchain.

When the data provider receives the confirmation mes-
sage, the procedure advances to the Key Revealing Phase,
illustrated in Phase ❹ (lines 10 to 15 in Protocol3). In this
phase, it is incumbent upon the data provider to unveil the
encryption key s to the querier. The data provider publishes
the encryption key on the blockchain, ensuring the exclusive
access to the querier, accomplished via public key encryption
using the querier’s public key pkQ. Concurrently, a zero-
knowledge key revealing proof πkey is provided to authenticate
the encryption’s accuracy and to confirm the consistency
of the prior key commitment established in Phase ❷. The
proof πkey guarantees the truth of the following statement:
senc = Ekey.Enc(pkQ, s)∧ scom = Commit(s), where pkQ,
senc, and scom are public witnesses, with s being the sole
secret witness. Upon the key’s revelation and the subsequent
verification of the proof, the smart contract autonomously
processes the payment from the querier to the provider, thereby
finalizing the data exchange for an individual data block.

C. Rehashing Protocol

As mentioned above, the Rehashing Protocol creates a
mapping from a ZK-unfriendly hash to a ZK-friendly hash of
the same data D. This protocol allows data providers to prove
a ZK-friendly hash instead of an unfriendly hash in πdata.

The data provider P must first register the data D by
generating the Rehashing proof πrehash, a Relaxed Groth16
proof, and sending it to the Rehashing Contract (shown in
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Algorithm 1) to register D if it has not been registered
previously. The Rehashing proof πrehash demonstrates the
statement:

cid′ == Hashzk(D) ∧ cid == Hash(D)

where cid, cid′ are two public witnesses and D is a secret
witness. Once P obtains the proof πrehash, it will be submitted
to the blockchain by sending a transaction and calling the
Registry function in the Rehashing Contract 1. The contract
will successfully store the relationship between cid and cid′

if πrehash is valid.
Afterward, P can prove the correctness of D by showing

that cid′ == Hashzk(D) instead of using the ZK-unfriendly
hash. A data receiver Q can verify the data’s correctness
by performing an RPC call to the CheckHash function in
Contract 1 and looking up the relationship between cid and
cid′.

D. Relaxed-QAP & Relaxed Groth16

Since hash protocols like SHA256 have a clear block
structure similar to block ciphers, applying recursive proof can
significantly reduce the circuit size. Given the industry usage
and the requirement for the proof to be easily verifiable in a
smart contract, a recursive version of the Groth16 protocol is
one of the most suitable proof systems. Additionally, NOVA
[25] introduces a folding strategy for R1CS called relaxed
R1CS. Based on the construction of relaxed R1CS, this paper
introduces the Relaxed Groth16 proof system.

1) Relaxed-QAP: In the original R1CS, if there are n
constraints, we first construct z = (1,w,x) ∈ Rm we have
the following n equations, for q ∈ {1, . . . , n}(∑

i

ziAi,q

)
·

(∑
i

ziBi,q

)
=
∑
i

ziCi,q

Then we can convert this representation to QAP as follows:
First construct the polynomials {Ai}mi=1, {Bi}mi=1, {Ci}mi=1,
and randomly pick n number {rq}nq=1

Ai(rq) = Ai,q, Bi(rq) = Bi,q, Ci(rq) = Ci,q

then we can convert the above equation to the following,(∑
i

ziAi(rq)

)
·

(∑
i

ziBi(rq)

)
=
∑
i

ziCi(rq)

for q ∈ {1, ..., n}. For relaxed R1CS, we can set z =
(u,w,x) ∈ Rm. The relaxed R1CS has a structure similar to
the original R1CS but introduces scalar u and error term E,
therefore we can use the same trick to construct polynomials
{Ai}mi=1, {Bi}mi=1, {Ci}mi=1. If there are two relaxed R1CS
instances with same constraints, (E1, u1,x1) and (E2, u2,x2),
and witness w1 and w2. Then, to prove these two statements
at the same time, the new instance is (E, u,x), and the new
witness is w, and z = (u,w,x) satisfying(∑

i

ziAi,q

)
·

(∑
i

ziBi,q

)
= u

(∑
i

ziCi,q

)
+ Eq

where u = u1 + r · u2, w = w1 + r · w2,
x = x1 + r · x2, and Eq = E1,q + r[(

∑
i z1,iAi,q) ·

(z2,iBi,q) + (
∑

i z2,iAi,q) · (z1,iBi,q) − u1(
∑

i z2,iCi,q) −
u2(
∑

i z1,iCi,q)] + r2E2,q for q ∈ {1, . . . , n}. Then we can
construct an n − 1 degree polynomial e using E1, . . . , En.
Using the same approach as in R1CS, we can construct
polynomials {Ai}mi=1, {Bi}mi=1, {Ci}mi=1. Finally we got, for
all rq ,(∑

i

ziAi(rq)

)
·

(∑
i

ziBi(rq)

)
= u

(∑
i

ziCi(rq)

)
+e(rq).

2) Relaxed Groth16: Let G0, G1, and GT be three cyclic
groups of prime order q. Let g0 ∈ G0 and g1 ∈ G1 be genera-
tors. In the following paper, the notation [·]1, [·]2 represents the
point on the elliptic curve 1 and 2, respectively. A pairing is an
efficiently computable function e : G0 ×G1 → GT satisfying
the following properties:

• Bilinear: For all u, u′ ∈ G0 and v, v′ ∈ G1, we have

e(u · u′, v) = e(u, v) · e(u′, v), e(u, v · v′) = e(u, v) · e(u, v′).

• Non-degenerate: gT := e(g0, g1) is a generator of GT .
Then we can try to build the variant of Groth16 protocol based
on the equation derived from relaxed-QAP.

(σ, τ) ← SETUP(R): Pick α, β, γ, δ, x ← F. Set τ =
(α, β, γ, δ, x) and compute σ = ([σ1]1, [σ2]2), where

σ1 =

(
α, β, δ, {xn

i }n−1
j=0 ,

{
βAi(x) + αBi(x)

γ

}ℓ

j=0

,{
Ci(x)

γ

}ℓ

j=0

,

{
βAi(x) + αBi(x)

δ

}m

j=ℓ+1

,{
Ci(x)

δ

}m

j=ℓ+1

,

{
xit(x)

δ

}n−2

j=0

)
,

σ2 =
(
β, γ, δ, {xn

i }
n−1
j=0

)
.

π ← PROVE(R, σ, a1, . . . , am, e). Pick r, s uniformly at ran-
dom from Zp and compute π = ([K]1, [Z]1, [E]1, [Y]2), where

E = e(x),K = α+

m∑
i=0

aiAi(x)+rδ,Y = β+

m∑
i=0

aiYi(x)+sδ

Z =
1

δ

( m∑
i=ℓ+1

ai
(
(βAi(x) + αBi(x) + uCi(x)

)
+ h(x)t(x)

)
+Ks+Br − rsδ

0/1 ← VERIFY(R, σ, a1, . . . , aℓ, π). Accept the proof if and
only if

[K]1 · [Y]2 − [E]1 · [1]2 = [α]1 · [β]2 + [Z]1 · [δ]2

+
[ ℓ∑
i=0

ai

(
(βAi(x) + αBi(x)) + u · Ci(x)

γ

)]
1
· [γ]2.

π̂ ← SIM(R, τ, a1, . . . , aℓ). Pick K̂, Ŷ , Ê uniformly at
random from Zp and compute a simulated proof π̂ =
([K̂]1, [Ẑ]1, [Ê]1, [Ŷ ]2) with
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Ẑ =
K̂Ŷ − Ê − αβ −

∑ℓ
i=0 ai(βAi(x) + αBi(x) + uCi(x))

δ
.

3) Security Arguments for Relaxed Groth16: In this section,
we show a formal security proof for the proposed relaxed
Groth16 protocol.

Theorem 1. The relaxed Groth16 protocol is a non-interactive
zero-knowledge argument which holds completeness, zero-
knowledge, and computational knowledge sound against affine
prover.

Proof. The proof of completeness is easy to verify. The proof
of zero-knowledge is given by the construction of simulation
algorithm SIM.
The proof idea of knowledge soundness against affine prover
is ”copy and paste” the proof of theorem 1 in Groth16. When
using an affine prover strategy, the knowledge extractor can
believe the proof π = Π∗ · σ for some valid proof matrix
Π∗ ∈ R4×(5+3n+2m). Given the valid proof matrix Π∗, the
knowledge extractor can treat the random value(α, β, γ, δ, r, s)
used during PROVE as indeterminates. Thanks to the do-
main separation property on the elliptic curve, the knowledge
extractor can compute the witness from Π∗ by canceling
these indeterminates from the verification equation. The formal
proof is the following:
Refer to the notation in Groth16, we use σ = (σ1, σ2) ∈
R5+3n+2m, and Π =

(
Π1 0
0 Π2

)
∈ R4×(5+3n+2m), where

Π1 ∈ R3×(5+3n+2m) and Π2 ∈ R1×(5+3n+2m). When consid-
ering affine provers,

K = Kαα+Kββ +Kδδ +Kγγ +K(x) +Kh(x)
t(x)

δ

+

l∑
i=0

Ki
βAi(x) + αBi(x)

γ
+

l∑
i=0

K ′
i

Ci(x)

γ

+

m∑
i=l+1

Ki
βAi(x) + αBi(x)

δ
+

m∑
i=l+1

K ′
i

Ci(x)

δ

for known field element Kα,Kβ ,Kδ,Kγ ,Ki,K
′
i and known

polynomial K(x),Kh(x). We also can derive the similar form
of Y,Z,E. Now there is term Kα · Yα · α2 when computing
K ·Y, however this term with indeterminate α2 does not show
in the right-hand side of the verification equation, therefore
Kα · Yα · α2 implies that either Kα = 0 or Yα = 0. We
assume with loss of generality that Yα = 0. Similiarly, we can
deduce that Kβ = 0 by the term with indeterminate β2. Also
we have the coefficient of the product of indeterminate α and
β to be KαYβ +KβYα = KαYβ . Therefore, we can assume
Kα = Yβ = 1. Now we have

K = α+Kδδ +Kγγ +K(x) + . . .

Y = β + Yδδ + Yγγ + Y (x) + . . .

Then, the part term of 1
δ2 missing in the right-hand side

gives

(
m∑

i=l+1

Ki(βAi(x) + αBi(x)) +
m∑

i=l+1

K ′
iCi(x) +Kh(x)t(x)

)

·

(
m∑

i=l+1

Yi(βAi(x) + αBi(x)) +
m∑

i=l+1

Y ′
i Ci(x) + Yh(x)t(x)

)
= 0

If we assume
∑m

i=l+1 Ki(βAi(x) + αBi(x)) + K ′
iCi(x) +

Kh(x)t(x)) = 0, then from indeterminate term

α·

(
m∑

i=l+1

Yi(βAi(x) + αBi(x)) + Y ′
i Ci(x) + Yh(x)t(x)− Eα

)
= 0

(∗)
Then for the part 1

γ2 ,

1

γ2

(
l∑

i=0

Yi(βAi(x) + αBi(x)) + Y ′
i Ci(x)

)

·

(
l∑

i=0

Yi(βAi(x) + αBi(x)) + Y ′
i Ci(x)

)
= 0

If we assume
∑m

i=l+1 Ki(βAi(x) + αBi(x)) + K ′
iCi(x) +

Kh(x)t(x) = 0, then

α ·

(
l∑

i=0

Yi(βAi(x) + αBi(x)) + Y ′
i Ci(x)− Eα

)
= 0 (∗∗)

The affine prover has negligible success probability to find
nonzero Eα to satisfy both (∗), (∗∗). Therefore, we can
assume

m∑
i=l+1

Yi(βAi(x) + αBi(x)) + Y ′
i Ci(x) + Yh(x)t(x) = Eα

l∑
i=0

Yi(βAi(x) + αBi(x)) + Y ′
i Ci(x) = Eα

Then Yγγα = 0 and Kγγβ = 0 gives Yγ = Kγ = 0. Now,
we can simplify the form of K,Y to be

K = α+K(x) +Kδδ, Y = β + Y (x) + Yδδ + 2Eα

KY −E = αβ + αY (x) + αYδδ + βK(x) +K(x)Y (x)

+K(x)Yδδ +Kδδβ +KδδY (x) +Kδ + 2αEα

+ 2EαK(x) + 2EαKδδ + Yδδ
2 − Eαα− Eββ

− Eδδ − Eγγ − E(x)−
l∑

i=0

Ei
βAi(x) + αBi(x)

γ

−
l∑

i=0

E′
i

Ci(x)

γ
−

m∑
i=l+1

Ei
βAi(x) + αBi(x)

δ

−
m∑

i=l+1

E′
i

Ci(x)

δ
− Eh(x)

t(x)

δ

The remaining part in the right-hand side of the verification
equation gives us the coefficients for indeterminate 1

γ , 1
δ and

γ are 0. This implies that
∑l

i=0 Ei(βAi(x) + αBi(x)) +
E′

iCi(x) = 0,
∑m

i=l+1 Ei(βAi(x) + αBi(x)) + EiCi(x) +
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Eh(x)t(x) = 0, and Eγ = 0. Then we have the left-hand side
to be

KY −E = αβ + αY (x) + αYδδ + βK(x) +K(x)Y (x)

+K(x)Yδδ +Kδδβ +KδδY (x) +KδYδδ
2 − E(x)

+ αEα + 2EαK(x) + 2EαKδδ

By observing the left part in the verification equation, we can
find that Eα = Eβ = 0 because of the domain separation
of indeterminate α δ, and β. Therefore, we can simplify the
above formula as

KY −E = αβ + αY (x) + αYδδ + βK(x) +K(x)Y (x)+

K(x)Yδδ +Kδδβ +KδδY (x) +KδYδδ
2 − E(x)

The term involving α now gives equation

αY (x) = α

l∑
i=0

aiBi(x) + α

m∑
i=l+1

ZiBi(x)

and the term involving β now gives equation

βK(x) = β

l∑
i=0

aiAi(x) + β

m∑
i=l+1

ZiAi(x)

If we define ai = Zi for i = 1, . . . , l, then we have

K(x) =

m∑
i=1

ai ·Ai(x), Y (x) =

m∑
i=1

ai ·Bi(x)

The coefficient of ei can also be extracted as the coefficients
of E(x). Finally, if we only observe the polynomial of x in the
verification equation, we can get the original relaxed QAP.

E. Gadgets

Key-Reselling Resistance via One-time Pad over Fp. In
data swarming scenarios, a key aspect is that a single data
provider might transmit multiple data blocks to one querier.
Furthermore, a particular data block can be dispatched from
one provider to various queriers. If the data provider does
not alter the encryption key for each data request, this could
lead to key-reselling attack risks. Key-reselling attacks occur
when a decryption key is sold to access unpaid data blocks,
meaning the querier could obtain the decryption key from a
third party at a lower cost than paying the provider. As a
result, the provider sends the encrypted data block but fails to
receive a response or payment from the querier, who manages
to decrypt the data block with the purchased key.

To counteract key-reselling attacks, employing distinct keys
for encrypting each data block is essential. For this purpose,
we utilize One-time Pad over finite field Fp (OTP-Fp) to ensure
perfect cipher security while minimizing computational ex-
penses. OTP is an exceptionally lightweight cipher, using each
encryption key only once, thereby preventing key-reselling
attacks. Traditional OTP operates at the bit level, employing
XOR to perfectly conceal each data block bit. However,
given XOR’s inefficiency in constructing constraint systems
for zero-knowledge proofs, which predominantly operate on

finite fields, we modify the OTP cipher to function over finite
field Fp, maintaining perfect security.

OTP-Fp requires converting the data block into finite field
representations. Consider Fp with ⌊log p⌋ = Lp. An LD-bit
data block D ∈ {0, 1}LD is parsed as: d0||d1||d2||...||dL,
where L = ⌈LD/Lp⌉ − 1, each di ∈ Fp for i = 0, 1, ..., L,
and each di comprises exactly Lp bits from D to form a field
element in big-endian, except for dL. Due to big-endianness’s
sensitivity to trailing 0s, this parsing is distinct for each data
block. After obtaining the finite field representation, OTP-
Fp generates a random key K = k0||k1||k2||...||kL, with
each ki ∈ Fp for i = 0, 1, ..., L. The cipher text Denc =
denc0 ||denc1 ||denc2 ||...||dencL is created by adding each data block
segment to its corresponding key segment within Fp, i.e.,
denci = di + ki for i = 0, 1, ..., L. Note that each cipher text
segment denci may occupy up to Lp+1 bits, potentially larger
than the original data block. Hence, accurately converting and
parsing both the data block and cipher text is crucial.
Key Size Reduction via ZK-friendly Key Derivation Func-
tion. While OTP-Fp achieves perfect security with mini-
mal field computation, its encryption key’s size, potentially
equivalent to the data size, could incur significant costs if
disclosed on the blockchain. Generating the complete key from
a small random seed via a Key Derivation Function (KDF),
such as PBKDF2 [33], offers an efficient solution to shrink
the key size. However, incorporating a KDF necessitates the
inclusion of key generation computations in the ZK statement
during the Verifiable Encryption Phase. Direct integration of
PBKDF2 leads to an excessively large ZK circuit, mainly due
to extensive bit-level operations like bit-wise XOR and the use
of ZK-unfriendly hash functions like SHA256.

To address this issue, we adopt Poseidon [19] hash as
the internal hash function for PBKDF2 and replace XOR
operations in PBKDF2 with direct field addition, thus signifi-
cantly reducing the ZK circuit size. We refer to this modified
version as PBKDF2-Poseidon. The detailed structure of
PBKDF2-Poseidon is as follows:

K =PBKDF2-Poseidon(Seed, Salt,NumIter, Len) (4)
=K0||K1||...||KLen−1, (5)

where Ki = F (Seed, Salt,NumIter, i) =
∑NumIter−1

j=0 Uj ,
and

U0 =Poseidon(Seed, Salt, i), (6)
Uj =Poseidon(Seed, Uj−1) ∀1 ≤ j < NumIter. (7)

Integrating PBKDF2-Poseidon into a ZK circuit
with any constraint system type is relatively
straightforward. With this alteration, the ZK statement
in the Verifiable Encryption Phase modifies to:

K = PBKDF2-Poseidon(s, Salt,NumIter, ⌈LD/Lp⌉) ∧
cid = Hash(D) ∧ scom = Commit(s) ∧Denc = E .Enc(K,D),

where Salt is an added public witness, NumIter is a
predefined constant, and D is the data block with LD bits
converted into Fp representation. Thus, only the seed s
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Fig. 3. Optimizing #txns via batch proof.

requires publication on the blockchain, rendering the protocol
significantly more cost-effective and practical.

Optimizing #Txns via Batching. While each data block will
generate only a single on-chain transaction, the volume of
data blocks in practical scenarios can be substantial due to
the immense size of data stored on the decentralized storage
network, leading to numerous data blocks. Consequently,
generating a transaction for every data block in the swarming
data retrieval protocol can incur significant costs.

Given that the primary gas expense in the key-revealing
transaction arises from the validation of the key-revealing
proof πkey for an individual data block, a logical approach
is to amalgamate key-revealing proofs from several blocks
into a collective batch, validating them through a solitary ZK-
SNARK proof. As a provider might receive requests from
multiple queriers for numerous data blocks and is responsi-
ble for submitting transactions to the blockchain, grouping
key-revealing proofs on a provider-centric basis becomes a
sensible strategy. In particular, a provider has the option to
group key-revealing proofs based on either time intervals or a
predefined batch size. For instance, the provider might submit
a batched proof for all blocks requested within a specific
time frame T , or upon reaching a predetermined block count
threshold Nbatch, which denotes the maximum batch size,
depending on practical scenarios. Consequently, the state-
ment that needs verification in the batch key-revealing proof
πbatch−key transforms into:∀i ∈ {0, 1, ..., Nbatch − 1}, senci =
Ekey.Enc(pkQi , si) ∧ scomi = Commit(si). Utilizing a fixed
maximum batch size Nbatch is crucial to standardize the ZK
circuit, eliminating the need for repeated compiling, setup,
and deployment. However, the actual number of keys revealed
through this batch proof might be lower than Nbatch. This
is achievable by replicating the witnesses of the last valid
key as placeholder witnesses to ensure the proof’s validity.
Addressing these placeholder keys can be efficiently managed
within smart contracts through basic duplication checks. Ad-
ditionally, designing multiple circuits with varied batch sizes
is a viable option to optimize efficiency and cost-effectiveness
to the fullest extent. Ultimately, the provider P only needs to
upload all valid confirmation messages with signatures and the

batch key-revealing proof πbatch−key to the smart contracts for
verification. This method ensures that the optimal number of
transactions within a given time frame T is NP , representing
the count of data providers, and is independent of the quantity
of data blocks transferred. Should the transmitted blocks
during time slot T exceed the maximum batch size Nbatch, the
provider can distribute these blocks across multiple batches. If
the number of blocks transmitted by provider i is Ki, the total
transaction count in this scenario becomes

∑NP−1
i=0 ⌈ Ki

Nbatch
⌉.

This approach effectively reduces the transaction count to
1

Nbatch
of that in a non-batching protocol. In practical applica-

tions, the number of data providers is considerably lower than
the number of data blocks transmitted within the decentralized
storage network, rendering the PoUDR protocol a feasible
solution for current decentralized storage networks.

F. PoUDR in IPFS
Incorporating the PoUDR protocol into decentralized stor-

age networks (DSNs), such as IPFS, can significantly boost
both efficiency and fairness for data swarming retrieval.
Bitswap, a core component of IPFS, manages the exchange
of data blocks within DSNs. The integration of PoUDR
into Bitswap implements a Plug’n’Play approach, allowing
for seamless enhancements to the existing infrastructure of
DSNs. This section will detail both the original architecture
of Bitswap and the modifications for the PoUDR integration.
The code structure of Bitswap, depicted in Figure 4, comprises
four primary modules: Data, Message, Client, and Server.
Data. Bitswap handles data in file segment blocks, identified
by content IDs, and tracks block transfers to avoid redundan-
cies and optimize network use. It also eliminates duplicate
data and unnecessary block requests, thereby boosting effi-
ciency. This study updates data handling to better facilitate
transmission beyond raw data, incorporating proofs, keys, and
signatures in sent blocks and creating getters for accessing
these elements in various code sections.
Message. Bitswap messages include want lists broadcasts, data
block transfers, and block request canceling. The protocol
emphasizes efficient, structured messaging to enhance network
communication and ensure reliable data distribution among
nodes. This study adds a confirmMsg field to the Message
class as the receipt for encrypted data and proof, incorporates
AddEntryConfirm, and extends the Message_Block
subclass with proof, key, and signature fields for data block
transmission and related functionalities.
Server. In Bitswap, a server is a peer responding to want
lists with needed data blocks, checking local storage for
availability. Peers may send requested blocks based on their
exchange policies and interaction history in the Bitswap ledger,
upholding network efficiency and fulfilling data requests under
the protocol’s fairness strategy. Server modifications entail
sending encrypted data blocks, with the Engine class produc-
ing encryption proofs. The server aligns these proofs in the
data block for client-side verification upon receipt.
Client. In Bitswap, the client is the peer requesting data
blocks, compiling a want list of Content IDs for needed blocks
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Fig. 4. Structure of the Bitswap protocol with modifications highlighted in green

and broadcasting it to network peers. Clients manage incoming
blocks, duplicates, and want list updates. The Sessions class
functions as the primary control on the client side, facilitating
block requests and provider searches. PoUDR’s client side
includes private and public key fields for verifying received
data and proof, with the aforementioned transmission process.
Modifications also add a confirmation phase to the request
mechanism for acknowledging received data.

IV. IMPLEMENTATION & EVALUATION

A. Implementation

The PoUDR protocol was developed using Go 1.19, specif-
ically tailored to integrate with the Bitswap protocol [22]
utilized in kubo [23], a Go implementation of IPFS. The En-
cryption and Key-Revealing Proof circuits are constructed with
the Gnark [5] framework into R1CS and further proved and
verified via the Groth16 protocol [20]. Thus, the circuit size
is the number of R1CS constraints in the compiled constraint
system. We used Poseidon hash [19], a ZK-friendly hash
function, implemented in [26] as the key commitment scheme.
Additionally, we implemented the NOVA folding scheme in
the Go language and modified the Groth16 algorithm in Gnark
[5] to our Relaxed Groth16, compatible with Relaxed-QAP.
The rehashing proof for SHA-256 is built on the Relaxed
Groth16 code base. During the Key Revealing phase, providers
are required to reveal the random seed s to the querier,
which mandates providers to use a public key encryption
scheme to encrypt s with the querier’s public key pkQ. In this
implementation, we chose to use Elliptic-Curve-based Elgamal
encryption and developed the circuit with the elliptic curve
primitives from Gnark-Crypto [8].

The Verifier Contract was implemented in Solidity and
deployed on the Polygon‡ testnet. During the period of our
experiments, the price of Matic was approximately 1 USD

‡https://polygon.technology/

TABLE II
Performance of the relaxed Groth16 ZKP protocol. G1, G2 denote a point

on Curve 1 and 2 respectively. E1, P denote an exponentiation operation on
Curve 1 and pairing operation, respectively. n, m, and l represent the
number of constraints, wires, and public wires in the relaxed R1CS.

Parameter Relaxed Groth16 Groth16

CRS size (2n+ 2m)G1, nG2 (2n+m)G1, nG2

Proof size 3G1, 1G2 2G1, 1G2

Prover’s comp. (4m+ n− l)E1, mE2 (3m+ n− l)E1, mE2

Verifier’s comp. lE1, 4P lE1, 3P

per token, with the gas price set at 30gwei. All experimental
evaluations were conducted EC2 instance r5a.4xlarge, which
is equipped with 16 vCPUs and 128 GB of RAM.

B. Theoretical Performance

In this section, we compare the theoretical performance of
the relaxed Groth16 protocol with the original Groth16 pro-
tocol. The performance metrics considered are the Common
Reference String (CRS) size, proof size, prover’s complexity,
and verifier’s complexity. These metrics are summarized in
Table II. The CRS is the information between the prover
and verifier. The proof size refers to the amount of data the
prover sends to the verifier, which in both protocols consists of
points on elliptic curves. The prover’s complexity measures the
computational effort required by the prover to generate a proof,
while the verifier’s complexity measures the computational
effort required by the verifier to check the proof.

The performance of zero-knowledge proofs is primarily
determined by exponentiation and pairing operations due to
their computational intensity. Exponentiation involves raising
a point on an elliptic curve to a scalar, which is significantly
more complex than simple arithmetic operations like addition.
Pairing operations, which map pairs of points from two elliptic
curves to a target group, are even more computationally ex-
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pensive. Therefore, the number of these operations dominates
the efficiency and practicality of the protocol.

C. PoUDR in IPFS

The cost involved in transferring IPFS data blocks via the
PoUDR protocol encompasses both time and monetary com-
ponents. Generating proof to verify the correctness of SHA256
computation incurs costs in terms of time and the monetary
expense required for computational resources. Additionally,
monetary costs arise from on-chain expenses, such as gas fees
when calling a smart contract. To accurately assess the cost
of querying a file, an empirical analysis was conducted. This
study primarily focused on two key aspects: the duration and
RAM required to generate the SHA256 hash proof, and the
gas expenditure for executing on-chain transactions.

1) SHA256 Proof Generation: To demonstrate the perfor-
mance of Relaxed Groth16 in proving SHA256 computation,
we compare the Relaxed and original versions of Groth16
across three aspects: proof generation time, maximum memory
usage, and constraint number for hashing data of different
sizes. Fig. 5 illustrates the performance of both versions. The
absence of records for the original Groth16 when data size
exceeds 64KB is due to memory usage surpassing the maxi-
mum RAM size of the experiment machine. Although Relaxed
Groth16 requires slightly more time than the original Groth16
to generate the proof, the feasibility of the original Groth16
is constrained by memory usage. Relaxed Groth16 overcomes
this limitation, maintaining constant memory usage and circuit
size for any file size (approximately 0.32GB memory and
161,057 constraints). In practice, the proof generation time is
not critical since proving SHA256 computation is only needed
in the Rehashing protocol, which runs once for each piece of
newly arriving data.

2) On-Chain Cost: The constraint system size for the Key
Revealing Proof in PoUDR varies with batch size. Table III
shows this size grows linearly with batch size. Even for a batch
of 10, proof generation takes only about 0.24s, indicating
that batching can combine many proofs into one, reducing the
number of proofs for smart contract verification and improving
efficiency. Batching significantly reduces gas costs for on-
chain verification of key revealing proofs in PoUDR. The
key revealing proof includes commitment scom and cipher-
text senc as public witnesses. Larger batches increase public
witness size, leading to more data and computations for the
Groth16 verifier, thus higher gas usage. Table III shows gas
requirements for various batch sizes. Graph 6 illustrates the
relationship between file size (batch size×256KB) and gas
costs, showing a clear cost benefit with batching. Calculating
costs based on Polygon network’s gas price of 30gwei and
Matic token value at $1 USD, the graph indicates that trans-
ferring a 2500KB file costs around $0.077 without batching,
but only $0.02 with batching. The graph also shows gas
consumption per KB, revealing a decrease in average gas
usage with batching, from 1000 gas/KB for smaller files to
300 gas/KB for larger files. This highlights the efficiency of
batching in reducing costs, especially for larger file transfers.

TABLE III
Performance of the Key Revealing Proof πkey

Batch Size Circuit Size Prove Time Gas

1 8,326 0.03s 256,833
2 16,652 0.06s 307,234
3 24,978 0.10s 357,591
4 33,304 0.12s 407,970

10 83,260 0.24s 710,244

V. CONCLUSION

In conclusion, this paper proposes the PoUDR protocol that
enhances decentralized storage networks by ensuring fair and
efficient data retrieval mechanisms. Utilizing ZK-SNARKs,
PoUDR maintains data integrity and reduces blockchain trans-
actions, improving communication and cost efficiency. Its in-
tegration into IPFS’s Bitswap protocol demonstrates practical
feasibility, while our proposed Relaxed Groth-16 algorithm ad-
dresses the cost and complexity of zero-knowledge proofs for
feasibility. This work defines Secure Swarming Data Exchange
(SSDE) and offers a comprehensive security analysis. The
experimental results demonstrate that the proposed Relaxed
Groth16 protocol provides a scalable solution for generating
SHA256 proofs with significantly lower memory usage, and
batching techniques reduce on-chain verification costs.
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APPENDIX

SECURITY ARGUMENTS

In this section, we present the detailed security proof for
the critical components and the PoUDR protocol as outlined
below.

Theorem 2 (OTP-Fp is a perfectly secure Shannon cipher).
Let Fp denote the finite field over modulus p where p is a prime
and ⌊log p⌋ = Lp. Let M = {0, 1}M denote the message
space, K = C = Fp denote the key space and the cipher text
space, respectively. Let E = (E,D) denote the OTP-Fp cipher
where the encryption E and decryption D work as follows:
• For any message m ∈ M and any key k ∈ K, c =
E(k,m) = m+ k, where the addition works over Fp.

• For any cipher text c ∈ C and the corresponding decryption
key k ∈ K, the decryption first calculates m′ = D(k, c) =
c− k, where the subtraction also works over Fp. Then the
decryption checks if ⌊logm′⌋ < Lp. If true, accept m′ as
the decrypted message, otherwise, abort.

The Shannon cipher E defined above is perfectly secure.

Proof. According to Theorem 2.1 in [4], the perfect security
of E is equivalent to the following statement: for each c ∈ C,
a specific Nc exists, ensuring that for any m ∈ M, |{k ∈
K : E(k,m) = c}| = Nc. To establish this, demonstrating
that Nc = 1 for all c ∈ C within OTP-Fp is sufficient. This
requires computing the quantity of k satisfying k+m = c for
a given c ∈ C and any m ∈M. Simple field operations yield
a distinct k = c−m, signifying a sole viable k ∈ K for each
message m ∈M. Hence, Nc = 1 for every c ∈ C, confirming
the perfect security of E .

Theorem 3. The PoUDR protocol delineated in Section III-B
is a Secure Swarming Data Exchange (SSDE) protocol.

Proof. It is sufficient to prove that the PoUDR protocol
satisfies the following two security properties:
• Data Correctness: Considering each data block query is

independent, this proof focuses on verifying the data correct-
ness for a single data block. The proof involves two attack
games, Attdata and Attkey , played between an honest data
querier, Q, and a deceitful data provider, P . The blockchain
system is assumed to be a reliable arbiter, J , and its security
is not the focus of this paper.
Attdata unfolds in the following manner:
– Querier Q queries a content ID cid from provider P ,

corresponding to the data block d where Hash(d) = cid.
– Provider P prepares another data block d′ such that

d′ ̸= d. Then, P selects a seed s ∈ Fp, generates
k = PBKDF2-Poseidon(s), and encrypts d′ to get
denc

′
= OTP-Fp(k, d

′). Then, the provider P generates
an encryption proof πenc for d′ and sends both πenc and

the public witnesses cid, scom
′
, and denc

′
to querier Q.

Here, the provider P chooses to set cid instead of cid′ as
the public witness to pass the consistency check.

– Querier Q outputs a bit b0 to indicate whether the
encryption proof is acceptable.

The provider’s advantage is quantified as:
DCAdvdata = Pr{b0 = 1}. Let W1 and W2

denote the event that Hash(d) = Hash(d′) and
cid′ ̸= cid ∧ Venc(πenc, cid, s

com′
, denc

′
) = 1, respectively.

The probability of Q accepting the proof is:

Pr{b0 = 1} = Pr{W1 ∨W2} ≤ ϵhash + ϵzk−soundness.
(8)

Attkey is structured as follows:
– Querier Q communicates the content ID cid to provider
P , corresponding to Hash(d) = cid.

– The provider P selects two different seeds s, s′ ∈ Fp

such that s ̸= s′, generates k = PBKDF2-Poseidon(s),
and encrypts d to get denc = OTP-Fp(k, d). Then, the
provider P generates an encryption proof πenc for d and
sends both πenc and the public witnesses cid, scom, and
denc to querier Q. The provider P can also send scom

′

instead of scom in order to open s′ later.
– The querier Q verifies the proof and sends the signed

confirmation message msg||σmsg .
– The provider P prepares and sends the key revealing

proof πkey along with public witnesses pkQ, senc
′
, scom

′
,

and querier’s message msg||σmsg to the arbiter J .
– The arbiter J sends the querier Q an encrypted seed senc.

If the verification fails, senc =⊥. The querier Q does all
the decryption steps to get data d. If any of the steps fails,
d =⊥. Then, Q outputs a bit b1 to state if Hash(d) = cid
and the verification of πenc passes.

The provider’s advantage in this scenario is defined as
DCAdvkey = Pr{b1 = 1}. Let W3 denote the event that
scom = Commit(s′), W4 denote the event that scom ̸=
scom

′ ∧ Venc(πenc, cid, s
com′

, c) = 1, and W5 denote the
event scom ̸= scom

′ ∧ Vkey(πkey, pk
Q, senc

′
, scom

′
) = 1.

We have

Pr{b1 = 1} = Pr{W3 ∨W4 ∨W5} ≤ Pr{W3}+ Pr{W4}
+ Pr{W5} ≤ ϵcommit−binding + 2ϵzk−soundness. (9)

Thus, the total advantage of the adversarial provider P is

DCAdvtotal ≤ DCAdvdata + DCAdvkey

≤ ϵhash + ϵcommit−binding + 3ϵzk−soundness, (10)

which is negligible when a secure hash function, a com-
putationally binding commitment scheme, and a secure ZK
protocol are adopted. This proves that the PoUDR protocol
is capable of ensuring data correctness.

• Guaranteed Payment: For the case of retrieving a single
block, we examine two additional attack scenarios involving
an honest data provider P and a deceitful data querier
Q. These attacks, termed Attforge and Attdec, involve
the querier attempting to access data without compensating
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P , either by forging signatures or decrypting data without
legitimately acquiring the necessary key.
Attforge proceeds as follows:
– The querier Q picks a public key on the blockchain pkQ

′

with balance greater than the block price t, and tries
to forge a signature σ′

query over the desired content ID
cid without knowing the corresponding secret key skQ

′
.

Then, she sends cid||σ′
query to the provider P who has

the underlying data block d such that Hash(d) = cid.
– The provider P prepares the encrypted data denc and the

encryption proof πenc, and sends to the querier Q.
– The querier Q again tries to forge a signature σ′

msg over
the confirmation msg = “Ack||n||pkQ′ ||pkP ||scom”, and
sends them to the provider.

– The provider P outputs a bit b2 to decide whether to
disclose the key. If b2 is set to 1, P proceeds to reveal
the key to the arbiter J . Following this, the arbiter J
is responsible for transferring t tokens from the address
linked with pkQ

′
to the address linked with pkP .

Define the advantage of the querier Q as GPAdvforge =
Pr{b2 = 1}. Let W6 and W7 denote the event that σ′

query =

Sig.Sign(skQ
′
, cid) and σ′

msg = Sig.Sign(skQ
′
,msg)

respectively. We can see that

Pr{b2 = 1} = Pr{W6 ∧W7} ≤ ϵ2sig−forge. (11)

Attdec proceeds as follows:
– The querier Q sends the content ID cid to the provider
P who has the data block d such that Hash(d) = cid.

– The provider P prepares the encrypted data denc and the
encryption proof πenc, and sends them together with the
public witness cid and scom to the querier Q.

– The querier Q tries to decrypt c with the information
from πenc and scom to get d′. Then she outputs a bit b3
to indicate if Hash(d′) = cid.

Define the advantage of the querier Q as GPAdvdec =
Pr{b3 = 1}. Let W8 denote the event that the querier Q
recovers s from scom and W9 denote the event that the
querier Q recovers s from πenc. We can see that

Pr{b3 = 1} = Pr{W8∨W9} ≤ ϵcommit−hiding+ϵzk. (12)

Thus, the total advantage of the adversarial querier Q is

GPAdvtotal ≤ GPAdvforge + GPAdvdec

≤ ϵ2sig−forge + ϵcommit−hiding + ϵzk, (13)

which is negligible when a secure signature scheme, a com-
putationally hiding commitment, and a secure ZK protocol
are adopted. This method effectively demonstrates that the
PoUDR protocol can ensure the transfer of payment from
the querier Q to the provider P for a single data block.
Given the possibility of a querier querying multiple blocks
from one provider, coupled with the potential for a querier
to acquire the key for a data block off-chain from other
queriers who have previously accessed the same block, it
becomes essential to establish that the PoUDR protocol

maintains its efficacy in securing payments even under these
more complex scenarios. Specifically, the protocol needs to
demonstrate resistance to key-reselling, ensuring that the
provider P receives proper compensation irrespective of the
number of blocks transmitted or the involvement of multiple
data queriers. Consider the attack game Attresell between
two colluded querier QA, QB and an honest provider P ,
defined as follows:
– The querier QA queries two data blocks with content ID

cid1 and cid2 from the provider P who has the corre-
sponding data blocks d1 and d2 such that Hash(d1) =
cid1 and Hash(d2) = cid2.

– Meanwhile, the querier QB requests the data block with
content ID cid2 from the same provider P .

– The querier QA only proceeds the payment for data block
d1 and gets the seed sA1 . The querier QB proceeds with
the payment for d2 and gets the seed sB2 . Then, the querier
QB sends sB2 to the querier QA.

– Since the querier QA also gets the encrypted data denc,A2 ,
the encryption proof πA

enc, and the commitment scom,A

for d2, she tries to derive d2 from sA1 , sB2 , denc,A2 , πA
enc,

and scom,A to get d′2. Finally, the querier QA outputs a
bit b4 to indicate if Hash(d′2) = cid2.

Define the advantage of the querier QA as GPAdvresell =
Pr{b4 = 1}. Let W10 denote the event that the querier QA

recovers sA2 from scom,A and πA
enc, and W11 denote the

event that the querier QA decrypts denc,A2 from sA1 and sB2 .
In PoUDR, since each time the seed is chosen randomly and
independently, the querier QA cannot decrypt denc,A2 unless
KDF (sA1 ) = KDF (sA2 ) or KDF (sB2 ) = KDF (sA2 ).
Thus,

Pr{b3 = 1} = Pr{W10 ∨W11} ≤ GPAdvdec + 2ϵkdf

≤ ϵcommit−hiding + ϵzk + 2ϵkdf−collision, (14)

which is negligible when a computationally hiding com-
mitment, a secure ZK protocol, and a collision-resistent
KDF are adopted. In this way, we illustrate that the PoUDR
protocol is capable of ensuring payment from the querier Q
to the provider P in scenarios involving data swarming.

Remark 1 (Security Arguments for PBKDF2-Poseidon).
Regarding the security of the altered version of PBKDF2,
while proving the collision-resistance property theoretically
may be challenging, we can argue that this modification does
not compromise the original security of PBKDF2 in three
key aspects. Firstly, the Poseidon hash function, designed to
operate directly within finite fields, is frequently utilized in
the construction of ZK circuits. Its use aims to reduce circuit
size while still maintaining the collision-resistance attribute, as
noted in [19]. Secondly, both the seed space and key space are
exceedingly vast, with s, Salt ∈ Fp and K ∈ F⌈LD/Lp⌉

p . This
expansive size renders pre-computed hashing attacks extremely
impractical, especially when the prime p is approximately 254
bits in size. Thirdly, as demonstrated in Theorem 2, substituting
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XOR with addition in Fp preserves the perfect security char-
acteristic of One-time Pad encryption. This implies that field
addition possesses an equivalent level of fusion property as
XOR, further reinforcing the security strength of the modified
PBKDF2.

Remark 2 (Sybil Attack Mitigation). The PoUDR protocol is
susceptible to a Sybil attack targeting data providers, where a
querier requests numerous data pieces from a single provider
but fails to respond after receiving the encrypted data. This
results in the provider expending computation and network
resources to generate the encryption proof and transmit the en-
crypted data, only to receive no response. To counter this, the
PoUDR protocol employs a strategy of mandatory time-locked
staking for data queriers. This approach involves each data
provider maintaining a queue for individual queriers. Upon
receiving a data query, the provider can verify two key aspects:
whether the querier has staked sufficient tokens to cover the
payment and whether there are any outstanding unpaid queries
in the querier’s queue. If either of these conditions is met, the
data provider has the option to decline the retrieval service
for that particular querier. This measure significantly raises
the economic cost of executing a Sybil attack, as attackers
would be required to stake and lock a substantial amount of
tokens to successfully orchestrate the attack. Through these
mechanisms, the PoUDR protocol effectively mitigates the risk
of Sybil attacks against data providers, safeguarding them from
unnecessary losses of computation and network resources.
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