
HEonGPU: a GPU-based Fully Homomorphic Encryption

Library 1.0

Ali Şah Özcan∗

alisah@sabanciuniv.edu

Erkay Savaş
erkays@sabanciuniv.edu

October 2024

Abstract

HEonGPU is a high-performance library designed to optimize Fully Homomorphic Encryption
(FHE) operations on Graphics Processing Unit (GPU). By leveraging the parallel processing capac-
ity of GPUs, HEonGPU significantly reduces the computational overhead typically associated with
FHE by executing complex operation concurrently. This allows for faster execution of homomorphic
computations on encrypted data, enabling real-time applications in privacy-preserving machine learn-
ing and secure data processing. A key advantage of HEonGPU lies in its multi-stream architecture,
which not only allows parallel processing of tasks to improve throughput but also eliminates the over-
head of data transfers between the host device (i.e., CPU) and GPU. By efficiently managing data
within the GPU using multi-streams, HEonGPU minimizes the need for repeated memory transfers,
further enhancing performance. HEonGPU’s GPU-optimized design makes it ideal for large-scale
encrypted computations, providing users with reduced latency and higher performance across various
FHE schemes.

1 Introduction

In contrast to conventional symmetric and asymmetric encryption methods, fully homomorphic encryp-
tion (FHE) is a secure cryptographic method that enables meaningful arithmetic and logic calculations
to be conducted directly on encrypted data without introducing any security vulnerabilities and without
relying on the secret key. Since data remains encrypted and is not decrypted even during homomorphic
operations, FHE can ensure the confidentiality of customer data in outsourced (cloud) computing scenar-
ios where privacy preservation is necessary, when faced with both internal and external attacks. Several
open-source software libraries implement FHE schemes such as Concrete [1], HEAAN [2], HElib [3],
Lattigo [4], Microsoft SEAL [5], OpenFHE [6], PALISADE [7]. However, all of these libraries execute
their operations on the Central Processing Unit (CPU), which allows only limited parallel execution ca-
pacity. Here, we introduce an open-source FHE library, HEonGPU, optimized for Graphics Processing
Unit (GPU, Nvidia® GPUs) utilization, enabling all operations to be conducted on GPU and transferred
back-and-forth between GPU and CPU only when strictly needed. This approach effectively eliminates
the memory transfer overhead between the CPU and GPU. Furthermore, while HEonGPU is based on
CUDA [8], users do not require any prior knowledge of GPU, even at a fundamental level. This is due to
the fact all CUDA kernels are embedded within object-oriented written in C++. Additionally, the class
interface is exceptionally straightforward, drawing inspiration from the user-friendly design of Microsoft
SEAL [5]. Currently, the HEonGPU library exclusively supports Brakerski/Fan-Vercauteren (BFV) [9]
and Cheon-Kim-Kim-Song (CKKS) [10] schemes. However, in the near future, HEonGPU will extend its
support to include additional FHE schemes along with their new features:

• Bootstrapping support for Both CKKS [11–14] and BFV [15,16] is expected to be available in the
near future.

• It is planned to include other FHE schemes such as Brakerski-Gentry-Vaikuntantan (BGV) [17] and
THFE [18], which are not currently included, in the future.

∗Developer and corresponding author

1

• The support for a multi-GPU architecture is planned, along with the implementation of a multi-
GPU memory pool structure to facilitate the execution of larger-scale applications.

• Future plans for the HEonGPU library include the addition of various features, such as the inte-
gration of Threshold Encryption [19,20] for Federated Learning [21,22], along with the provision of
corresponding elementary examples.

This article explains the fundamental features of HEonGPU 1.0 and endeavors to offer a practical
guide to GPU-based Fully Homomorphic Encryption (FHE), which provides more efficient implementation
compared to other existing FHE libraries by harnessing the parallel execution capacity of GPU devices.
HEonGPU is publicly accessible at the following address:

https://github.com/Alisah-Ozcan/HEonGPU

2 Roadmap

In Section 3, we briefly outline the notation used in this paper, including RNS, NTT, and FFT. Section 4
provides a comprehensive overview of HEonGPU, encompassing FHE scheme support, the Bootstrapping
feature, and the External Product feature. Additionally, we delve into parameter selection considerations
for optimizing both performance and security. In Section 5, we present timing results for HEonGPU
operations, comparing them with those of other libraries. Furthermore, we contrast the results obtained
from Multi-Thread CPU and Multi-Stream GPU implementations across various applications to facilitate
a nuanced comparison between GPU and CPU performance. Finally, in Section 6, we discuss its future
trajectory.

3 Preliminaries

This section presents the notation used throughout the article. Additionally, the Residue Number
System (RNS), which facilitates efficient arithmetic for large moduli, and Number Theoretic Trans-
form (NTT) and Fast Fourier Transform (FFT), which are used for fast polynomial multiplication, are
introduced briefly.

3.1 Notation

Table 1 provides a list of notation used, along with their descriptions and corresponding names in
HEonGPU 1.0. The notation not included in Table 1, but used throughout the article are as follows:
The symbols ⌈⋅⌉, ⌊⋅⌋, and ⌈⋅⌋ indicate rounding up, rounding down, and rounding to the nearest integer,
respectively. The notation [a]b signifies that the integer a is reduced into the range [−b/2, b/2], whereas
∣a∣b reduces a to the interval [0, b − 1]. The symbols +,− and × (or just ⋅) denote addition, subtraction,
and multiplication, respectively, in either Zq or Rq. The symbol ⊙ represents modular element-wise
multiplication for vector representations of the elements of Rq in the NTT or FFT domains; an operation
sometimes referred as the Hadamard product. The notation for random sampling is as follows: a ← Rq

indicates that the coefficients of a are sampled from Zq uniformly randomly. On the other hand, e ← χ
means that the coefficients of e are sampled from the distribution χ.

3.2 Residue Number System (RNS)

We start with a brief overview of the RNS system:

• Q is an integer that can be written as Q = ∏r−1
i=0 qi, where the base vector Br

Q = [q0, q1, . . . , qr−1]
consists of pairwise co-prime integers.

• Any positive integer X < Q can be represented with the residues [x0, x1, . . . , xr−1], where xi =
X mod qi. Computing residues of X < Q is sometimes referred as RNS decomposition. This is
known as RNS representation and by Chinese Remainder Theorem (CRT), any number less than
Q has a unique RNS representation.

• Whenever needed, numbers in RNS bases can be converted to actual numbers. This operation is
sometimes called composition. The algorithm to perform this conversion is defined in Equation 1.

2

https://github.com/Alisah-Ozcan/HEonGPU

Parameter Description Name in HEonGPU

Q̃ =∏ℓ̃−1
i=0 qi Key modulus, (Q̃ = Q ⋅ P) coeff modulus

Q =∏ℓ−1
i=0 qi Ciphertext modulus, coeff modulus

P =∏ℓ̃−1
i=ℓ qi Additional primes for base extension coeff modulus

t Plaintext modulus plain modulus

N Number that is power of 2 n
xN + 1 Reduction polynomial which specifies the ring R
R The ring Z[x]/(xN + 1)
RQ The ring ZQ[x]/(xN +1), i.e., same as the ring R but

with coefficients reduced modulo q

ℓ̃ RNS base dimension of Q̃ Q prime size
ℓ RNS base dimension of Q Q size
∆ Quotient on division of Q by t, i.e., ⌊Q/t⌋
χ Error distribution (a truncated discrete Gaussian

distribution)
σ Standard deviation of χ noise standard devia-

tion

Table 1: Symbols and terminology used in this document.

∣X ∣Q = ∣ ∑r−1
i=0 ∣ xi ⋅Q−1i ∣

qi
⋅Qi ∣

Q
, where Qi =

Q

qi
(1)

As there is a unique RNS representation, addition, subtraction, multiplication, and division modulo Q
can be executed in parallel using single precision base elements (qi) without resorting to multi-precision
arithmetic (when Q exceeds the word size). These operations can be performed as

X ∓RNS Y ∼ ∣ xi ∓ yi, ∣qi , (2)

X ×RNS Y ∼ ∣ xi × yi, ∣qi , (3)

Given gcd(Y,Q) ≡ 1⇒X ÷RNS Y ∼ ∣ xi × (Y)−1qi , ∣qi , (4)

for i ∈ {0,1, . . . , r − 1}. RNS representation also supports base extension and base conversion ca-

pabilities. In base extension, an integer X < Q in Bℓ
Q can be represented in a larger base Bℓ̃

Q̃
=

Bℓ
Q ∪ {qℓ, qℓ+1, . . . , qℓ̃−1}, where Q̃ = Q ×∏

ℓ̃−1
i=ℓ qi. To this end, the residues of X with respect to each

new modulus are calculated xi =X mod qi for i = ℓ, . . . , ℓ̃ − 1.
Base conversion, on the other hand, transforms an RNS representation of an integer into another, by

changing the base vector, namely Bℓ
Q →Br′

P ′ , where B
r′

P ′ = {p′0, . . . , p′r′−1} and P ′ =∏
r′−1
i=0 p′i. For accuracy

of all integers in ZQ, we should have Q ≤ P ′. However, depending on the range of integers represented
one can also consider conversion to a smaller base [23,24]..

3.3 Number Theoretic Transform (NTT)

Let n, q ∈ Z+ where N is a power of 2. The ring, Rq ∈ Zq/ ⟨xN + 1⟩, consists of polynomials with
integer coefficients of degree less than N , where the coefficients are in modulo q. Given a(x), b(x) ∈ Rq,
the multiplication operation c(x) = a(x) × b(x) ∈ Rq is one of the most time consuming operations
in RLWE based homomorphic encryption schemes. To compute c(x), traditional techniques, such as
the schoolbook multiplication given in Equation 5, necessitate O(N2) multiplication operations and the
subsequent polynomial reduction operation given in Equation 6.

c̃(x) = a(x) × b(x) =
N−1

∑
i=0

N−1

∑
j=0

aibjx
i+j mod q (5)

ci = c̃i − c̃N+i mod q, i ∈ {0,1, . . . ,N − 1} (6)

On the other hand, with Number Theoretic Transform (NTT) which is a form of Discrete Fourier
Transform (DFT), the multiplication in Rq can be performed in O(N log(N)). The coefficients of a

3

a(x) ∈ Rq can be considered as a vector of integers, a = [a0, a1, . . . , aN−1], which can be converted to
another vector ā = [ā0, ā1, . . . , āN−1] of the same dimension using NTT, where ā = NTT (a). The inverse
of the NTT operation, denoted as iNTT converts a vector ā in the NTT domain back to coefficient
domain with a = iNTT (ā). Then, the NTT-based multiplication can be defined as in Equation 7.

c(x) = INTT (NTT (a(x)⊙NTT (b(x)) (7)

where the symbol ⊙ stands for the element-wise multiplication in Zq; i.e., c̄i = āi ⋅ b̄i mod q for i =
0,1, . . . ,N − 1.

The N -point negacyclic NTT and iNTT operations can be defined as, respectively,

āi =
N−1

∑
j=0

ajψ
i×j mod q, i ∈ {0,1,2, . . . ,N − 1} (8)

ai =
1

N

N−1

∑
j=0

ājψ
−i×j mod q, (9)

for i ∈ {0,1, . . . ,N − 1}. The definition of negacyclic NTT requires the existence of a NTT friendly
prime q ∈ Z+, where q ≡ 1 mod 2N and an integer value (2N -th root of unity) ψ ∈ Zq. ψ has to satisfy
both conditions ψ2N ≡ 1 mod q and ψi ≠ 1 mod q, ∀i < 2N . The HEonGPU library uses an iterative
algorithm to compute NTT, which represents the state-of-the-art in the literature to perform NTT-iNTT
operations on GPU [25]1.

3.4 Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) algorithm computes Discrete Fourier Transform (DFT), in a similar fash-
ion to the Number Theoretic Transform (NTT). A fundamental difference with NTT, FFT works with
complex numbers. Similar to the NTT, the FFT can be used for polynomial multiplication in Rq. As the
complex numbers are represented as floating point numbers in computers, the precision of the mantissa of
the floating point number determine the largest value of the modulus q. In the IEEE 754 standard, single
and double precision floating point numbers have 23- and 52-bit mantissa size2, respectively. Thus, the co-

efficients of polynomials must not exceed
√

223

logN
any
√

252

logN
for single and double precision, respectively.

The N -point negacyclic versions of FFT and inverse FFT operations can be defined as follows:

āk =
2N−1

∑
j=0

aj exp(
−2πijk
2N

) , (10)

ak =
1

2n

2N−1

∑
j=0

āj exp(
2πijk

2N
) , (11)

for k = 0,1, . . . ,N − 1. Then, we have ā = FFT(a) and a = iFFT(ā).
In HEonGPU, the NTT is preferred over the FFT for polynomial multiplications due to its higher

efficiency. Nonetheless, the FFT remains in use for CKKS encoding. The HEonGPU Library leverages
the Merge FFT function3 from the GPU-FFT library, which is considered the state-of-the-art in the
literature, to execute FFT and iFFT operations on GPU [25].

4 Overview of HEonGPU

HEonGPU is a high-performance, GPU-based Fully Homomorphic Encryption library written in CUDA.
Despite its dependency on CUDA, it is an object-oriented library that can be fully utilized with C++,
similar to HEAAN [2], HElib [3], Microsoft SEAL [5], OpenFHE [6] and PALISADE [7] libraries. More-
over, its interface is designed to resemble Microsoft SEAL [5] for user-friendliness, as visualized in List-
ings 1 and 2. The library aims to incorporate all HE schemes in terms of cryptographic capability.
Currently, HEonGPU supports only BFV and CKKS, and its comparison with other libraries in terms
of cryptographic capability is presented in Table 2.

1See https://github.com/Alisah-Ozcan/GPU-NTT for the source code.
2https://ieeexplore.ieee.org/document/8766229
3https://github.com/Alisah-Ozcan/GPU-FFT

4

https://github.com/Alisah-Ozcan/GPU-NTT
https://ieeexplore.ieee.org/document/8766229
https://github.com/Alisah-Ozcan/GPU-FFT

1 #include "seal.h"
2 int main() {
3 seal:: EncryptionParameters parms(seal::

scheme_type ::ckks);
4 size_t poly_modulus_degree = 8192;
5 parms.set_poly_modulus_degree(

poly_modulus_degree);
6 parms.set_coeff_modulus(seal::

CoeffModulus :: Create(
7 poly_modulus_degree , { 60, 40, 40, 60 }))

;
8 double scale = pow(2.0, 40);
9

10 seal:: SEALContext context(parms);
11

12 seal:: KeyGenerator keygen(context);
13 seal:: SecretKey sk = keygen.secret_key ();
14 seal:: PublicKey pk;
15 keygen.create_public_key(pk);
16 seal:: RelinKeys rlk;
17 keygen.create_relin_keys(rlk);
18

19 seal:: Encryptor encryptor(context , pk);
20 seal:: Evaluator evaluator(context);
21 seal:: Decryptor decryptor(context , sk);
22 seal:: CKKSEncoder encoder(context);
23

24 size_t slot_count = encoder.slot_count ();
25 size_t row_size = slot_count / 2;
26

27 std::vector <double > M1(slot_count , 0.5);
28 seal:: Plaintext P1;
29 encoder.encode(M1, scale , P1);
30

31 seal:: Ciphertext C1;
32 encryptor.encrypt(P1 , C1);
33

34 evaluator.multiply_inplace(C1 , C1);
35 evaluator.relinearize_inplace(C1, rlk);
36 evaluator.rescale_to_next_inplace(C1);
37

38 seal:: Plaintext P2;
39 decryptor.decrypt(C1 , P2);
40

41 std::vector <double > M2;
42 encoder.decode(P2, M2);
43

44 return EXIT_SUCCESS;
45 }

Listing 1: Code Example of SEAL

1 #include "heongpu.cuh"
2 int main() {
3 size_t poly_modulus_degree = 8192;
4 heongpu :: Parameters context(
5 heongpu :: scheme_type ::ckks ,
6 heongpu :: keyswitching_type ::

KEYSWITHING_METHOD_I);
7 context.set_poly_modulus_degree(

poly_modulus_degree);
8 context.set_coeff_modulus ({60, 40, 40},

{60});
9 context.generate ();

10 double scale = pow(2.0, 40);
11

12 heongpu :: HEKeyGenerator keygen(context);
13 heongpu :: Secretkey sk(context);
14 keygen.generate_secret_key(sk);
15 heongpu :: Publickey pk(context);
16 keygen.generate_public_key(pk, sk);
17 heongpu :: Relinkey rlk(context);
18 keygen.generate_relin_key(rlk , sk);
19

20 heongpu :: HEEncryptor encryptor(context , pk)
;

21 heongpu :: HEOperator operators(context);
22 heongpu :: HEDecryptor decryptor(context , sk)

;
23 heongpu :: HEEncoder encoder(context);
24

25 size_t row_size = poly_modulus_degree / 2;
26 std::vector <double > message(row_size , 0.5);
27

28 heongpu :: Message M1(message , context);
29 heongpu :: Plaintext P1(context);
30 encoder.encode(P1, M1, scale);
31

32 heongpu :: Ciphertext C1(context);
33 encryptor.encrypt(C1, P1);
34

35 operators.multiply_inplace(C1,C1);
36 operators.relinearize_inplace(C1 ,rlk);
37 operators.rescale_inplace(C1);
38

39 heongpu :: Plaintext P2(context);
40 decryptor.decrypt(P2, C1);
41

42 heongpu :: Message M2(context);
43 encoder.decode(M2, P2);
44

45 return EXIT_SUCCESS;
46 }

Listing 2: Code Example of HEonGPU

In this section, we explore the supported FHE schemes of the HEonGPU library, its forthcoming
feature set, and its structural attributes.

Library/ Scheme BGV BFV CKKS CKKS Bootstrapping TFHE

HEAAN [2] ✓ ✓

HELib [3] ✓ ✓ ✓

HEonGPU Very Soon ✓ ✓ Soon *

OpenFHE [6] ✓ ✓ ✓ ✓ ✓

PALISADE [7] ✓ ✓ ✓ ✓ ✓

SEAL [5] ✓ ✓ ✓

* Plan with Collaboration

Table 2: Current Capabilities and Schemes of Existing Fully Homomorphic Encryption (FHE) Libraries

4.1 FHE Schemes

Practical lattice-based fully homomorphic encryption (FHE) schemes rely on the hardness of the Ring
Learning with Errors (RLWE) problem to ensure their security. Thus, ciphertext contains certain level
of noise, which increases as operations are performed homomorphically over ciphertext, eventually po-
tentially making it undecipherable after a certain number of homomorphic operations. The ciphertext
modulus Q is the main factor that determines the noise budget which is a measure of the number of

5

homomorphic operations that are allowed. While a larger ciphertext modulus extends the noise budget,
it reduces the security level of the ciphertext when the ring dimension N is fixed. For this, larger ring
dimensions are utilized to maintain security, which further raises the cost of homomorphic operations. An
alternative approach involves using a smaller ciphertext modulus and ring dimension, and the noise bud-
get is replenished periodically by applying the so-called bootstrapping operation to the ciphertext, which
is essentially a homomorphic operation that reduces the noise level in the ciphertext, which allows further
homomorphic operations. Although using large ring dimensions increases the homomorphic operation
cost, BFV, BGV, and CKKS schemes support batching whereby a ciphertext encrypts many plaintext in
what is called as its slots. This way, a single homomorphic operation can be applied on plaintext in the
slots, which is commonly known as single instruction multiple data (SIMD) paradigm. In other words, it
can perform homomorphic operations over vectors of integers or real numbers in a SIMD manner. The
number of plaintext slots is related to the ring dimension, N ; in BGV and BFV the number of slots is
N , while it is N/2 in CKKS.

HEonGPU currently implements only the Residue Number System (RNS) variants of the BFV and
CKKS schemes for efficiency reason. As elaborated in Section 3.2, the RNS enables the representation of
large integers by smaller ones that fit in computer word size (e.g., 64 bit), facilitating fast and concurrent
arithmetic operations of large integers, typically used in HE operations. Due to inherent parallelism
in RNS arithmetic, the approach enables the efficient utilization of the GPU’s multi-core architecture.
Although Nvidia GPUs are equipped with 32-bit Arithmetic Logic Units (ALUs), the HEonGPU library
performs 64-bit arithmetic operations as well. While using 32-bit RNS bases may seem to enhance
parallelism, our experience has shown that, in terms of computational overhead, 64-bit operations are
the optimal choice when compared to 32-bit or 128-bit alternatives.

Although HEonGPU presently supports only the BEHZ [26] variant, future updates will include the
HPS [27] variant and its optimized forms [28], along with the addition of leveled implementation for each
variant. At present, users must manually perform the relinearization operation following homomorphic
multiplication. Further homomorphic multiplication is not permitted without applying relinearization
after multiplication and the elimination of the nonlinear term, ct[2]; thus, the formation of an addi-
tional term ct[3] is not allowed. However, operations such as homomorphic addition and homomorphic
subtraction can still be performed while the nonlinear term is present.

The RNS variant of the CKKS scheme employs a uniform scaling factor across all levels. Given that
the scaling factor is a power of 2 (2p), the RNS primes corresponding to the multiplication levels must
be selected very close to 2p (2p ≈ qi); otherwise, the error amount will increase significantly [29]. As
with the BFV implementation, the relinearization operation after homomorphic multiplication in CKKS
must be performed manually. Additionally, CKKS requires a modulus division, or rescaling operation,
to reduce error and this must also be done also manually. If not performed, HEonGPU will not permit
further multiplication operations. All these manual operations will be automated and integrated into the
library in the near future. A brief overview of the basic operations in both BFV and CKKS schemes are
provided below.

Let Q = ∏ℓ−1
i=0 qi, P = ∏ℓ̃−1

i=ℓ qi and Q̃ = Q ⋅ P , where ℓ̃ = ℓ + π for some integer π. Note also that qi ≤ P
for i = 0, . . . , ℓ − 1.

• SecretKeyGeneration(λ): sk = s, where s←R2.

• PublicKeyGeneration(sk): pk = (p0, p1) = (∣−(a ⋅ s + e)∣Q̃ , a), where a←RQ̃, e← χ.

• EvaluationKeyGeneration(sk): evki =
⎛
⎝
∣−a′ ⋅ s + s′ ⋅ P ⋅ Q

qi
⋅ ∣(Q

qi
)−1∣

qi
+ e′∣

Q̃
, a′
⎞
⎠

for 0 ≤ i < ℓ − 1, where s = sk, a′←RQ̃, e
′ ← χ. Here, evk can be relinearization, key switching or

rotation keys. If it is a relinearization key, then s′ = s2 or a higher power of the secret key, depending
on the ciphertext size. For key switching, it is the new key while for rotation it is the rotation key.

Also, note also that each part of the evaluation key is written in RNS representation with Bℓ̃
Q̃
.

Finally, the term Q
qi
⋅ ∣(Q

qi
)−1∣

qi
is the RNS gadget for RQ and included for RNS composition with

respect to Q, as will be observed in the subsequent section devoted to relinearization. Therefore,

the evaluation keys can be rewritten as rlki =
⎛
⎝
∣−a′ ⋅ s + s2 ⋅ P ⋅ gi + e′∣Q̃ , a

′
⎞
⎠
for i = 0, . . . ℓ − 1.

• Encryption(pk,m):

6

◇ BFV:

ct =
⎛
⎝
∣∆ ⋅m +

∣p0 ⋅ u + e1∣Q̃
P

∣
Q

, ∣
∣p1 ⋅ u + e2∣Q̃

P
∣
Q

⎞
⎠
, (11)

where m ∈Rt, u←R2 and e1, e2 ← χ.

◇ CKKS:

ct =
⎛
⎝
∣ḿ +

∣p0 ⋅ u + e1∣Q̃
P

∣
Q

, ∣
∣p1 ⋅ u + e2∣Q̃

P
∣
Q

⎞
⎠
, (11)

where m ∈ R, ḿ = encode(m), u←R2 and e1, e2 ← χ.

Note that we only show the message encoding of the CKKS scheme, which is slightly different than
that of BFV as it encodes messages that are real numbers.

• Decryption(sk,ct):

◇ BFV: RRRRRRRRRRRR

⎡⎢⎢⎢⎢⎢

t

Q
⋅ ∣ct[0] + ct[1] ⋅ s∣Q

⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRt
(11)

◇ CKKS:
∣ct[0] + ct[1] ⋅ s∣Q (11)

Note that we do not show the message decoding operations, which should be normally applied after
the decryption operations.

• Addition(ct0,ct1): (ct0[0] + ct1[0], ct0[1] + ct1[1]).

• Subtraction(ct0,ct1): (ct0[0] − ct1[0], ct0[1] − ct1[1]).

• Multiplication(ct0,ct1): ct2 = ct0 × ct1

◇ BFV:

ct2[0] =
RRRRRRRRRRRR

⎡⎢⎢⎢⎢⎢

t

Q
⋅ ct0[0] ⋅ ct1[0]

⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRQ

ct2[1] =
RRRRRRRRRRRR

⎡⎢⎢⎢⎢⎢

t

Q
⋅ (ct0[0] ⋅ ct1[1] + ct0[1] ⋅ ct1[0])

⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRQ

ct2[2] =
RRRRRRRRRRRR

⎡⎢⎢⎢⎢⎢

t

Q
⋅ ct0[1] ⋅ ct1[1]

⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRQ
(9)

◇ CKKS:
ct2[0] = ∣ct0[0] ⋅ ct1[0]∣Q

ct2[1] = ∣ct0[0] ⋅ ct1[1] + ct0[1] ⋅ ct1[0]∣Q
ct2[2] = ∣ct0[1] ⋅ ct1[1]∣Q (7)

• Relinearization(ct,rlk) ∶

c̃t[0] =
RRRRRRRRRRRR
ct[0] +

⎡⎢⎢⎢⎢⎢

ct[2] ⋅ rlk[0]
P

⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRQ
,

c̃t[1] =
RRRRRRRRRRRR
ct[1] +

⎡⎢⎢⎢⎢⎢

ct[2] ⋅ rlk[1]
P

⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRQ
,

7

4.2 Key Switching Operations

Despite their fundamentally different encryption, and decryption methods, both cryptosystems (BGV
can also be included) require a ‘key switching’ operation for rotation and relinearization, the latter of
which is necessary after homomorphic multiplication operations. In summary, key switching is a core
operation in HE. HEonGPU support three different variants of key switching for both BFV and CKKS
schemes, where we refer them as Method I [9], Method II [30, 31], and Method III [32], respectively.
While Method I and Method II are essentially based on the same algorithm, they are implemented as
separate methods in the library to provide users with ease of deployment depending on the application
requirements. The primary distinction of these three methods are that they require different numbers of
NTT, iNTT, Hadamard product, and base conversion operations, which are listed in Table 3.

Method1 NTT INTT H.P. Base Conv

I ℓ × ℓ̃ 2 × ℓ̃ 2 × ℓ × ℓ̃ -

II d × ℓ̃ 2 × ℓ̃ 2 × d × ℓ̃ d

III d × r′ 2 × d̃ × r′ 2 × d × d̃ × r′ d + 2d̃

1Definitions of d, d̃, and r′ are given in [32]

Table 3: The number of NTT, iNTT, hadamard product, and base conversion Operations

The numbers of both NTT operations and Hadamard products decrease in Method II with respect to
Method I while it incurs extra base conversion operations. As the based conversion is not necessarily an
expensive operation, Method II is expected to accelerate the key switching significantly for large values of
N and Q. On the other hand, the overhead of Method III is more substantial. While it further decreases
the number of NTT operations, it may significantly increase the numbers of Hadamard products, iNTT
and base conversion operations depending on the values of ℓ̃, d̃, and r′. In a CPU implementation of
Method II presented in [32] for large values of N and Q, the authors report that Method III leads to
significant speedup values over Method II. The advantage of Method III heavily depends on the extent the
forward NTT operations dominates the execution time of the external product. However, our observations
indicate that the advantage of Method III diminishes when NTT operations are accelerated using the
parallel architecture of GPU devices, particularly in comparison to Method II. Additionally, usage of
Method III is not recommended for use in HEonGPU due to its significantly larger key size compared to
the other methods, and the requirement for separate keys at each level in CKKS. The primary reason
for this is that all keys are stored in GPU memory, which can quickly filled GPU memory at high ring
dimensions and large RNS bases. Lastly, while Method I and Method II involve key switching, rotation,
and relinearization operations, Method III is limited to relinearization only, due to the aforementioned
constraints.

4.3 Bootstrapping

Bootstrapping in homomorphic encryption is a technique used to reduce the noise that accumulates during
computations on encrypted data. As operations are performed, the noise increases and can eventually
corrupt the plaintext data, limiting the number of permissible homomorphic operations. Bootstrapping
refreshes the ciphertext by decrypting it within the encrypted domain, effectively resetting the noise level.
This theoretically enables an unlimited number of homomorphic operations, rendering the encryption
scheme ‘fully’ homomorphic [33]. Additionally, it is useful in scenarios where switching between different
FHE schemes is advantageous.

HEonGPU currently does not have a bootstrapping implementation. However, in the short term,
approximate bootstrapping will be implemented for the CKKS scheme (with RNS variant) described in
word [12–14]. Additionally, when the TFHE scheme is added to the library in the short term, it will be
integrated together with bootstrapping [18]. In the long term, bootstrapping operations for the BFV and
BGV schemes may be added to the HEonGPU library, though this is not currently on our immediate
agenda. We anticipate that, as the library evolves, bootstrapping operations for all schemes and various
optimizations will be incorporated over time.

4.4 Encoding

A crucial aspect of making homomorphic encryption both practical and efficient is the selection of an
appropriate encoder for the specific task. Since messages are situated in cyclotomic ring; Rt for BFV and

8

R for CKKS where they can be encoded and converted into vectors, enabling the use of SIMD structures.
In its current state, HEonGPU implements only ‘batch encoding’, but ‘integer’ and ‘fractional encoders’
will be added shortly. This limitation does not restrict users from performing integer or fractional encod-
ing, as these methods utilize the batch encoding structure; users simply need to apply a preprocessing
step beforehand.

4.5 Noise Estimation

HEonGPU includes invariant noise estimation exclusively for the BFV scheme; it does not provide noise
estimation for the CKKS scheme. Consequently, when utilizing the CKKS scheme, users must monitor
the ciphertext depth during operations. Specifically for CKKS, users should perform a rescale operation
following each homomorphic multiplication until the available RNS bases are exhausted.

In the BFV scheme, HEonGPU employs the error calculation method used by the SEAL library [5].
This method computes the invariant noise budget of a ciphertext, expressed in bits, which quantifies the
remaining capacity for noise growth while still ensuring correct decryption. As shown in Equation 8 used
for decryption, the invariant noise polynomial, v, associated with a ciphertext, is a rational coefficient
polynomial, where correct decryption is guaranteed as long as the absolute value of the polynomial’s
coefficients remains less than 1/2.

t

Q
(ct ⋅ sk) = t

Q
(ct[0] + ct[1]s) =m + v + at (8)

Initially, the noise bugdet is given by Q/t, where Q and t are the modulus of the ciphertext and the
modulus of the plaintext, respectively. As homomorphic operations are performed, the noise budget
decreases, and once it reaches 0, the ciphertext becomes too noisy to be decrypted correctly [5]. During
the processes, the instantaneous value of the noise budget in terms of the number of bits can be estimated
as follows:

Remaining noise budget = logQ − log (t ⋅ (ct ⋅ sk)) (9)

If the Remaining noise budget in Equation 9 is 0 or less, the ciphertext becomes too noisy to be
decrypted accurately.

4.6 Random Number Generation

In this work, we employed the CURAND library [34] for random number generation on NVIDIA GPUs
to enhance computational efficiency. CURAND offers various random number generators (RNGs), such
as XORWOW, MRG32k3a, MTGP32, and Sobol, each optimized for different performance characteris-
tics [35–37]. Our implementation utilizes the curandState t structure, which employs the XORWOW
RNG, known for its speed and low memory footprint [34]. However, it is important to note that XOR-
WOW, like the other RNGs provided by CURAND, is not cryptographically secure [38]. While these
RNGs are well-suited for high-performance computing tasks, they lack the robustness required for cryp-
tographic applications. Specifically, our use case involved initializing the RNG state with curand init

and generating random values using CURAND.
Given these limitations, future versions of the library will explore the integration of a cryptograph-

ically secure random number generator (CSPRNG). We plan to implement an AES-based CSPRNG,
which offers the requisite security properties for generating unpredictable and tamper-resistant random
numbers [38]. This enhancement will allow us to extend the applicability of our methods to security-
critical domains, such as cryptographic key generation and secure data processing, where the integrity
and confidentiality of random number generation are paramount.

4.7 Memory Management

In HEonGPU, we utilized the RAPIDS Memory Manager (RMM) to implement an efficient memory
pool, optimizing the allocation, deallocation, and management of GPU memory [39]. RMM, developed
by the RAPIDS AI team at NVIDIA, is an essential component within the RAPIDS ecosystem, specif-
ically designed to handle memory management in GPU-accelerated data science and machine learning
workflows. By offering a more sophisticated approach to memory management compared to traditional
CUDA APIs, RMM significantly enhances performance, particularly in scenarios involving frequent and
dynamic memory allocations.

9

Since HEonGPU is a GPU-based HE library and store data on GPU, the design and implementation
of a dedicated memory pool for both on CPU and GPU are as important as fast and efficient kernel
implementations. Utilizing RMM, we developed a memory pool leveraging the rmm::pool memory -

resource class, which allows for efficient and dynamic memory allocation. The design is carefully crafted
to provide flexibility by enabling the memory pool to operate with either a rmm::pool memory resource

or a rmm::cuda memory resource, depending on the specific needs of the application for GPU memory
pool. This adaptability ensures that our memory management approach can be tailored to different
scenarios, maximizing performance across a variety of workloads. On the CPU memory pool side, a
dedicated physical partition is established in the CPU RAM via rmm::pinned memory resource. This
approach significantly accelerates memory transfers between the GPU and CPU compared to the use of
pageable memory.

The rmm::pool memory resource is a sophisticated memory resource class within the RMM library
designed to optimize memory allocation by pooling CPU and GPU memory resources. It operates by
pre-allocating large blocks of memory and managing these blocks internally, minimizing the need for
frequent and expensive calls to cudaMalloc, cudaFree, cudaHostAlloc and cudaFreeHost which are
standard CUDA functions for memory allocation and deallocation. When a memory request is made,
rmm::pool memory resource checks its internal pool of pre-allocated memory. If a suitable block is
available, it is allocated to the request without needing to interact with the CUDA API, resulting in
significantly lower latency. If no suitable block is available, rmm::pool memory resource allocates ad-
ditional memory blocks as needed, either from the remaining GPU memory or by expanding the pool
size, depending on the configuration. This pooling mechanism not only reduces the overhead associated
with dynamic memory allocations but also helps to mitigate fragmentation issues that can arise when
memory is frequently allocated and deallocated. By reusing memory blocks from the pool, rmm::pool -

memory resource ensures that memory is utilized more efficiently, which is particularly important in
GPU-accelerated applications where memory is a critical resource.

To further enhance the control and flexibility of the memory pool, we defined the initial and maximum
pool sizes in a configuration header file (define.h). By default, the GPU memory pool is configured
with an initial pool size set to 50% of the available GPU memory, while the maximum pool size is set to
80%. For the CPU memory pool, these parameters are set to 10% of the available system memory for
the initial pool size and 20% for the maximum pool size. It should be noted that, since the CPU memory
pool allocates pinned memory, creating and destroying large CPU memory pools can be time-consuming.
This approach allows us to preconfigure the memory pool’s capacity based on the anticipated workload,
ensuring that memory is utilized efficiently without unnecessary overhead. By setting these parameters
in define.h, we can easily adjust the memory pool’s behavior across different runs or projects, providing
an additional layer of optimization and customization to our computational framework. Currently, our
memory pool is designed for single-GPU environments, focusing on optimizing memory usage. However,
recognizing the growing importance of multi-GPU setups in high-performance HE computing, we plan to
extend this memory pool design to support multi-GPU configurations in the future. This extension will
involve ensuring efficient memory allocation, synchronization, and data transfer across multiple GPUs,
leveraging the advanced features of RMM to maintain performance scalability.

Additionally, considering the relatively smaller size of GPU memory compared to CPU RAM, man-
aging data overflow effectively is crucial. As the dataset sizes continue to grow, there may be instances
where the GPU memory becomes saturated. To address this, we are also implemented a specialized
structure that allows for seamless data migration from GPU memory to CPU memory when necessary.
This mechanism will ensure that our applications can handle large datasets without running into memory
limitations, by temporarily offloading excess data to CPU RAM and retrieving it as needed.

The custom memory pool we developed plays a crucial role in our workflow, particularly in managing
GPUmemory for data structures such as vectors. To this end, we designed a specialized heongpu::Device-
Vector class that integrates seamlessly with our memory pool. The heongpu::DeviceVector not
only benefits from the efficient memory management provided by the memory pool but also inter-
faces with RMM’s rmm::device uvector, which is an advanced data structure within the RAPIDS
ecosystem that enables efficient and flexible GPU memory handling, ensuring that operations such as
memory allocation, resizing, and deallocation are optimized for high-performance computing tasks. The
heongpu::HostVector is a specialized adaptation of std::vector, targeting with our custom pinned
memory allocator. This design enables efficient utilization of the CPU memory pool allocated as pinned
memory, while also leveraging the extensive features provided by std::vector.

10

4.8 Multi-Stream

In the realm of GPU computing, CUDA streams are integral to the efficient execution of parallel tasks.
A CUDA stream represents a sequence of operations that the GPU executes in the order they are issued.
Each stream operates independently, which allows for multiple streams to execute concurrently, thereby
harnessing the full potential of the GPU’s parallel processing capabilities. One of the most significant
benefits of utilizing CUDA streams is the ability to overlap different operations, such as computation
and data transfer. For example, while one stream is engaged in transferring data between the host and
the GPU, another stream can simultaneously execute a kernel on the GPU. This concurrent execution
ensures better resource utilization and minimizes idle times, leading to enhanced overall performance [40].

CUDA streams also provide developers with fine-grained control over the execution order of opera-
tions. This capability is particularly valuable when orchestrating complex workflows, where managing
data dependencies and reducing unnecessary synchronization can lead to substantial performance gains.
By strategically assigning tasks to different streams, it is possible to optimize the execution flow and
maximize throughput in GPU-accelerated applications. While streams operate independently, CUDA
allows for synchronization across streams when required, achieved through the use of events, which serve
as synchronization points. Events ensure that operations in different streams only proceed after specific
conditions are met, providing a balance between parallelism and the need for accurate, deterministic
results.

Moreover, CUDA streams exhibit even greater performance when they are managed by different CPU
threads, with each thread controlling a distinct stream. This approach takes advantage of the CPU’s
ability to handle multiple threads concurrently, allowing each thread to independently issue commands
to its associated stream on the GPU. By aligning CPU threads with CUDA streams in this manner,
the workload can be distributed more efficiently, reducing contention and ensuring that the GPU is kept
consistently busy. Thanks to this configuration, the HEonGPU library is particularly effective in sce-
narios involving complex multitasking or real-time processing, where minimizing latency and maximizing
parallelism are critical.

4.9 Interface and Parameter Selection

The HEonGPU library is a GPU-based library built using C++ classes. The initial class that needs to be
instantiated is heongpu::Parameters. This class is responsible for creating the encryption parameters
and transferring all necessary data (e.g., the primitive root of unity tables for NTT) to the GPU memory.
The inputs required for heongpu::Parameters are as follows;

• scheme: Either BFV or CKKS for the time being

• poly modulus degree: A power of 2 in the range of [212, 216]

• log Q bases bit sizes: An integer array that stores the bit sizes of the RNS bases that constitutes
the large modulus Q, which is the ciphertext modulus.

• log P bases bit sizes: An integer array that stores the bit sizes of the RNS bases that constitute
the modulus P , which is used in the key generation process.(Remark: Q̃ = QP is the modulus for
keys.)

• plain modulus: It is used for the BFV plaintext modulus (CKKS do not use plaintext modulus).

HEonGPU, similar to SEAL and OpenFHE, cen be used with default parameters as well as custom
parameters, based on the security level and poly modulus degree. The modulus sizes for the generated
default parameters corresponding to 128, 192, and 256-bit security levels are listed in Table 4. All numbers
in this table are approximate and have been derived from lattice-estimator [41]4.

Additionally, while generating heongpu::Parameters, it is necessary to select the key switching
method using Parameters::set keyswitching type5. The bit choice and the size of P (i.e., ⌈logP ⌉)
may differ depending on the chosen switchkey method. For instance, if Method I is used, P consists of
a single prime, which must be larger than each prime in the RNS bases used forQ6.However, if you plan

4Standard deviation of σ = 3.2 and secret key is selected uniformly randomly from the ternary field with elements
{−1,0,1}

5Method I, Method II, and Method III in Section 4.2
6Our implementation allows users to enter the bit sizes of the primes in Q and P and it generates primes of the given

bit sizes. Note that logP ≥max log qi and when logP =max log qi, then P >max qi.

11

Bit-length of Q̃ = QP

logN 128-bit security 192-bit security 256-bit security

12 109 74 57

13 218 149 115

14 438 300 232

15 881 605 465

16 1761 1212 930

Table 4: Bit-length of Q̃ for different ring dimensions (i.e., logn) and security levels.

to use Method II or Method III (see Section 4.2 for switchkey methods), P may have to contain multiple
primes; otherwise, the method will not function correctly or may return an error. Necessary details are
provided in the examples in the library.

The heongpu::HEKeyGenerator class is instantiated with heongpu::Parameters and includes the
functions necessary for generating large keys. Since HEonGPU supports many operations, including key
generation, on the GPU, it also stores all keys in GPU memory. In future versions, these keys will
optionally be stored on the CPU. The main reason for this is that Galois keys occupy significant space
on the GPU, particularly for large polynomial sizes and RNS base numbers. The classes for these key
types are provided in the following

• heongpu::Secretkey: Stores secret key parameters and data.

• heongpu::Publickey: Stores public key parameters and data.

• heongpu::Relinkey: Stores relinearization key parameters and data.

• heongpu::Galoiskey: Stores multiple Galois-key (Permutation of the secret key) parameters and
data.

• heongpu::Switchkey: Stores switch-key parameters and data.

Normally, the heongpu::Galoiskey class contains permutations of the secret key with respect to
powers of 2, as specified by the default values in define.h. This approach allows calculating all necessary
permutations with a logarithmic complexity of logN rather than storing a Galois-keys for each rotation
value (which would result in N , otherwise), albeit with increased error. However, since applications
typically require only a specific and relatively small number of Galois keys, this class can be utilized to
store only the necessary values.

Similar to the aforementioned key classes, there are classes representing messages, plaintexts, and
ciphertexts. Since all operations are performed on the GPU, the data associated with these classes also
resides in GPU memory. For this purpose, heongpu::devicevector described in Section 4.7 is used.
As explained before all data remains in GPU memory unless the user explicitly transfers it back to the
CPU. However, it can be manually brought to CPU memory when needed. Future versions will include
more efficient and hybrid approaches, allowing data to be stored both on CPU and GPU. In the current
version, this process requires manual management by the user. In other words, if the GPU memory
is insufficient for the application, it is the user’s responsibility to manage this. Since the data initially
resides on CPU, it can be transferred from CPU to GPU. The overhead of data transfer is mitigated by
using multi-stream techniques, allowing data transfer to occur simultaneously with ongoing operations.

There are classes that enable encoding, decoding, encryption, decryption, and homomorphic opera-
tions. The heongpu::HEEncoder class provides the necessary features and functions for both encoding
and decoding. The heongpu::HEEncryptor class allows for encryption, but currently, it only supports
asymmetric encryption; symmetric encryption will be added in the future. The heongpu::HEDecryptor

class has the necessary features and functions for decryption and includes invariant noise estimation for
BFV, as explained Section 4.5.

Now, we can discuss the most important class namely, heongpu::HEOperator, which includes func-
tions that allow all homomorphic operations for both BFV and CKKS. These functions and their de-
scriptions are listed as follows

• HEOperator::add: Homomorphic addition of two ciphertexts.

• HEOperator::sub: Homomorphic subtraction of two ciphertexts.

12

• HEOperator::negate: Homomorphic negation of a ciphertext.

• HEOperator::add plain: Homomorphic addition of a ciphertext and a plaintext.

• HEOperator::sub plain: Homomorphic subtraction of a ciphertext and a plaintext. As the order
is important, the first operand must be ciphertext.

• HEOperator::multiply: Homomorphic multiplication of two ciphertexts.

• HEOperator::multiply plain: Homomorphic multiplication of a ciphertext and a plaintext.

• HEOperator::relinearization: Relinearization of the non-linear part of a ciphertext.

• HEOperator::rotate rows: Rotation of a ciphertext by a given shift amount.

• HEOperator::rotate columns: Switching columns of a ciphertext (, which works only for BFV).

• HEOperator::keyswitch: Homomorphic generation of a ciphertext encrypted with another key
given a ciphertext.

• HEOperator::rescale: Dividing of the ciphertext polynomial to the last modulus in the current
RNS basis (, which works only for CKKS).

• HEOperator::mod drop: Reducing the ciphertext or plaintext polynomial modulus by removing
the last modulus in RNS bases (, which works only for CKKS)

• and others

5 Experimental Results and Comparison

In this section, we present the performance of the HEonGPU library for certain set of homomorphic
operations and applications. We begin by describing our experimental setup, followed by a comparison
of the HEonGPU library’s performance against CPU-based libraries such as SEAL [5] and OpenFHE [6],
using different ring dimensions and schemes. Additionally, we use the HEonGPU library in three different
real-world applications to assess their performance: Private Information Retrieval (PIR) [42], Hybrid
Homomorphic Encryption (HHE) [43], and Homomorphic ML inference [44].

5.1 Setup

Our experimental setup is configured with a specific blend of hardware and software components. The
tests were conducted on a Linux system running Ubuntu, equipped with an AMD Ryzen 9 7950X3D CPU
and an NVIDIA GeForce RTX 4090 GPU, supported by 128GB of RAM, running kernel version 5.15.0,
and utilizing CUDA SDK version 12.1. Detailed specifications and key features of the devices are provided
in Table 5. Given the comparison between a GPU-based library and CPU-based libraries, we chose the
best CPU and GPU configurations available to standard users. Additionally, the libraries used for com-
parison, along with their respective versions, include Microsoft SEAL v4.1.2 [5] and OpenFHE v1.2.0 [6].
For each library, i.e., HEonGPU, Microsoft SEAL, and OpenFHE, identical encryption parameters were
used, ensuring consistency in security levels, polynomial degrees, and scaling factors.

Feature CPU GPU

Model Ryzen 9 7950X3D GeForce RTX 4090

of Cores 16(32 Threads) 16384

Frequency 4.20 GHz 2520 MHz

RAM 128 GB (3600 MHz) 24 GB

L1 Cache 64 KB (per core) 128 KB (per SM)

L2 Cache 1 MB (per core) 72 MB

L3 Cache 128 MB -

Bandwidth - 1.01 TB/s

Thermal Power 120 W 450 W

Table 5: System Specifications

13

5.2 Comparative Performance Analysis with Other Libraries

We compare the execution times of HEonGPU with Microsoft SEAL and OpenFHE specifically for
homomorphic encryption primitives. In the performance comparison presented in this section, the timing
results for HEonGPU focus solely on execution times, as the data is already resident in the GPU memory.
However, in the subsequent sections, we also include data transfer timings to reflect real-world application
scenarios. Despite this, the overhead introduced by data transfer remains minimal due to the efficient use
of multi-stream processing, which helps overlap computation and communication. The timing results in
Table 6 clearly indicate that HEonGPU outperforms SEAL across all homomorphic encryption operations.

HEonGPU’s execution times are significantly lower, particularly in more complex tasks such as homo-
morphic multiplication and relinearization operations7. For operations such as encryption, decryption,
addition, and multiplication, HEonGPU achieves even much faster results as the logN and log Q̃ increase.
The inherent parallelism of the GPU architecture enables significantly faster execution times, particu-
larly in operations that involve large data or complex computations, which is the main motivation that
HEonGPU is specifically developed as a GPU-optimized library for FHE.

2ˆ12 2ˆ13 2ˆ14 2ˆ15

0

50

100

150

200

1 1 1 10.38 1.06 1.6 2

48.5

126.4

204.8 207.7

Ring Dimension

R
e
la
ti
v
e
S
p
e
e
d
u
p

Relative Speedup Comparison
for BFV Multiplication (BEHZ) + Relinearization, among HEonGPU, SEAL and OpenFHE

SEAL OpenFHE HEonGPU

Figure 1: Relative Speedup Comparison for BFV Multiplication (BEHZ) + Relinearization, among
HEonGPU, SEAL and OpenFHE

Figure 1 illustrates the relative speedup achieved by HEonGPU compared to SEAL8 and OpenFHE9

for BFV multiplication (BEHZ variant) + relinearization operations10, across varying ring dimensions.
The ring dimensions are represented in the range from 212 up to 215, and the speedup is measured
relative to SEAL, which is normalized to 1 for each ring size. As shown in Figure 1, HEonGPU exhibits a
significant performance advantage over both SEAL and OpenFHE across all ring sizes. For smaller ring
dimensions, such as 212, HEonGPU achieves a speedup factor of 48.5, demonstrating that HEonGPU
is substantially faster for this operation. As the ring dimension increases, the performance gap widens
further, with HEonGPU reaching a speedup factor of 204.8 at 214 and 207.7 at 215.

7Method I used for relinearization operation for both library.
8Single thread on CPU
9Single thread on CPU

10Method II used for relinearization operation for HEonGPU

14

Operation logN log Q̃
HEonGPU SEAL Speedup

BFV CKKS BFV CKKS BFV CKKS

Encryption

12 109 22.77 µs 31.01 µs 780 µs 1204 µs ×34.25 ×38.82
13 218 25.23 µs 35.62 µs 2005 µs 3335 µs ×79.47 ×93.62
14 438 40.36 µs 57.92 µs 7049 µs 10749 µs ×174.65 ×185.58
15 881 88.93 µs 148.82 µs 29382 µs 38738 µs ×330.39 ×260.30
16 1761 382.17 µs 631.09 µs - µs - µs × ×

Decryption

12 109 21.85 µs 3.88 µs 215 µs 46 µs ×9.84 ×11.85
13 218 24.04 µs 4.08 µs 710 µs 147 µs ×29.53 ×36.03
14 438 33.06 µs 5.22 µs 2922 µs 508 µs ×88.38 ×97.31
15 881 64.08 µs 12.12 µs 11336 µs 1914 µs ×176.90 ×157.92
16 1761 202.47 µs 78.34 µs - µs - µs × ×

Addition/Subtraction

12 109 3.66 µs 3.89 µs 9 µs 13 µs ×2.46 ×3.34
13 218 3.81 µs 4.06 µs 29 µs 39 µs ×7.61 ×9.60
14 438 4.83 µs 5.32 µs 112 µs 134 µs ×26.10 ×25.18
15 881 7.99 µs 8.59 µs 426 µs 495 µs ×53.31 ×57.62
16 1761 27.27 µs 38.28 µs - µs - µs × ×

Plain Add/Plain Sub

12 109 3.63 µs 3.89 µs 22 µs 6 µs ×6.06 ×1.56
13 218 3.80 µs 4.09 µs 72 µs 20 µs ×18.94 ×4.89
14 438 4.29 µs 4.13 µs 273 µs 68 µs ×63.63 ×16.46
15 881 6.79 µs 8.48 µs 4010 µs 253 µs ×590.57 ×29.83
16 1761 15.30 µs 46.06 µs - µs - µs × ×

Multiplication

12 109 32.80 µs 3.94 µs 2204 µs 116 µs ×67.19 ×29.44
13 218 57.53 µs 4.64 µs 7450 µs 372 µs ×129.49 ×80.17
14 438 179.61 µs 6.14 µs 33675 µs 1350 µs ×187.49 ×219.87
15 881 746.04 µs 12.57 µs 150110 µs 4630 µs ×201.20 ×368.33
16 1761 5131.93 µs 53.92 µs - µs - µs × ×

Plain Multiplication

12 109 25.05 µs 3.48 µs 360 µs 53 µs ×14.37 ×15.23
13 218 26.33 µs 3.99 µs 1329 µs 169 µs ×50.74 ×42.35
14 438 41.07 µs 5.01 µs 5590 µs 621 µs ×136.10 ×123.95
15 881 97.28 µs 9.11 µs 22537 µs 2087 µs ×231.67 ×229.08
16 1761 361.71 µs 26.62 µs - µs - µs × ×

Relinearization

12 109 22.44 µs 38.90 µs 487 µs 784 µs ×21.70 ×20.15
13 218 28.38 µs 49.77 µs 2280 µs 3391 µs ×80.33 ×68.13
14 438 86.94 µs 124.84 µs 14197 µs 18799 µs ×163.30 ×150.58
15 881 501.08 µs 801.61 µs 85526 µs 105000 µs ×170.68 ×130.98
16 1761 4289.73 µs 5640.22 µs - µs - µs × ×

Rescale

12 109 - µs 21.19 µs - µs 217 µs × ×10.24
13 218 - µs 22.84 µs - µs 752 µs × ×32.94
14 438 - µs 32.27 µs - µs 2911 µs × ×90.20
15 881 - µs 68.19 µs - µs 11191 µs × ×164.11
16 1761 - µs 315.19 µs - µs - µs × ×

Rotate Row

12 109 22.58 µs 45.68 µs 493 µs 803 µs ×21.83 ×17.57
13 218 30.23 µs 59.68 µs 2290 µs 3459 µs ×75.75 ×57.95
14 438 104.48 µs 154.83 µs 14161 µs 18887 µs ×135.53 ×121.98
15 881 554.11 µs 910.84 µs 86749 µs 105731 µs ×156.55 ×116.08
16 1761 4565.97 µs 6130.17 µs - µs - µs × ×

Table 6: Execution times of the HEonGPU and SEAL library operations and speedup values.

Figure 1 highlights the scalability and efficiency of HEonGPU in performing both homomorphic mul-
tiplication and relinearization, particularly as the problem size grows. The parallel processing capabilities
of the GPU allow for increasingly greater speed improvements as the ring dimension increases, showcasing
HEonGPU’s superior performance over CPU-based libraries of SEAL and OpenFHE.

5.3 Performance Improvements for Homomoprhic Applications

In this section, we explore the practical use of HEonGPU in real-world scenarios, demonstrating its
effective use in applications requiring high-performance homomorphic processinf of data. These applica-

15

tions, namely private information retrieval (PIR), hybrid homomorphic encryption (HHE), and privacy-
preserving Iinference on genomic data utilizing XGBoost decision trees, are detailed in the subsequent
sections.

5.3.1 Private Information Retrieval (PIR)

Private Information Retrieval (PIR) is a cryptographic protocol that enables a client to retrieve an item
from a database without revealing which item is being accessed. The goal is to protect the client’s privacy
while still allowing access to large, remote databases. Traditional PIR techniques rely on sending queries
to multiple servers, which complicates deployment. However, modern PIR schemes focus on single-server
solutions using FHE, which allows queries to be encrypted and evaluated without decrypting them.

In an FHE-based PIR scheme, the database query is encrypted and sent to the server, which then
performs operations on the encrypted data to retrieve the desired record. The result is returned to the
client, still in encrypted form, where it is decrypted to reveal the requested information. Throughout
the process, the server remains oblivious to the specific data the client is requesting. This approach is
made practical by compressing FHE ciphertexts, reducing the computational overhead while ensuring
data privacy [45,46].

We used SealPIR [42], which is publicly available on GitHub11, to demonstrate HEonGPU’s perfor-
mance in PIR applications. The methodology remains unchanged; we simply replaced SEAL’s operations
with HEonGPU’s operations to measure performance improvements. No modifications were made to the
underlying PIR methodology itself.

We used the parameters provided in work [42], specifically: number of items = 216, size per item
= 288 bytes, and d = 2. Additionally, we assumed that the entire database resides in the GPU for this
evaluation. In future work, we will implement scenarios with larger databases where the data is stored
on the CPU. However, having the database on the CPU is not expected to introduce significant overhead
due to the use of multi-stream processing, which will efficiently manage data transfers.

Table 7 presents a comparison between the performance of PIR applications running on SEAL (single-
threaded) and HEonGPU (single GPU with the default stream). The results show a relatively low speedup
value at a ring size of 4096, primarily due to insufficient GPU utilization at smaller ring sizes. However,
as the ring size increases, the performance improvement becomes more pronounced. When comparing
the best performance of SEAL with that of HEonGPU, we observe a speedup of 252.0///4.48 = 56.25.
Same initial noise budget is used across all ring sizes, and the primary goal of increasing the ring size is
to improve batching efficiency. However, as increasing the ring size also increases the size of the query, it
causes potential network overhead.

Ring Dimension (N) 4096 8192 16384 32768

SEAL (ms) 252.0 352.0 444.0 633.0

HEonGPU (ms) 17.11 9.15 5.99 4.48

Speedup ×14.72 ×38.46 ×74.12 ×141.29

Table 7: Runtime of a single PIR operation (single thread CPU and single GPU with default stream)
with respect to different ring dimensions.

To better highlight the performance difference between the GPU and CPU, we implemented a sce-
nario, in which all resources in the CPU are utilized. Since the current PIR implementation is not
inherently suitable for parallelization within itself, we ensured that each thread on the CPU was tasked
with executing independent PIR operations. Simultaneously, on the GPU, we maximized resource usage
by employing multi-stream processing. Table 8 compares the results from this experiment, showcasing
the PIR execution times for SEAL (using 16 threads on the CPU) and HEonGPU (using a single GPU
with two streams).

Ring Dimension (N) PIR

SEAL (ms) 349.0

HEonGPU (ms) 56.49

Speedup ×6.18

Table 8: Runtime of 16 PIR operations (multi thread CPU and single GPU with multi stream) with
respect to different ring dimensions.

11https://github.com/microsoft/SealPIR

16

While SEAL completes 16 PIR operations in approximately 349 ms, HEonGPU significantly outper-
forms it, completing the same operations in 56.49 ms, achieving a speedup of 6.1812. However, when
examining the results from a latency perspective, the difference is even more pronounced. On the CPU,
the latency per operation remains around 349 ms, whereas on the GPU, with two streams, the latency
for completing two PIR operations is just 7.06 ms. This results in a latency improvement of more than
×49.43, emphasizing the efficiency gains provided by GPU parallelization and multi-stream processing.

5.3.2 Hybrid Homomorphic Encryption (HHE)

Hybrid homomorphic encryption (HHE) is an approach that seeks to combine the benefits of both sym-
metric encryption and homomorphic encryption to optimize performance, particularly in bandwidth usage
and computational efficiency. The core concept of HHE is to use homomorphic encryption for computa-
tions on encrypted data while employing symmetric encryption methods to reduce ciphertext size. This
strategy minimizes the amount of data that needs to be transferred, significantly reducing network costs,
which is often a major challenge in traditional homomorphic encryption schemes due to large ciphertext
sizes. To further ensure efficient and fast homomorphic decryption, fast symmetric cryptographic schemes
optimized for HHE are proposed.

In a Hybrid Homomorphic Encryption (HHE) setup, data is first encrypted using a symmetric encryp-
tion scheme, and then the symmetric key is encrypted homomorphically. This approach minimizes the
need for homomorphic encryption on the entire dataset, reducing both computational and network costs,
as only the much shorter symmetric key is processed homomorphically. The encrypted data is then sent to
the location where homomorphic operations will occur, and the ciphertext is decrypted homomorphically
with symmetric key (an operation is referred here as HE DEC), allowing the data to be decrypted and
processed securely. This method efficiently balances security with performance by combining symmetric
encryption for data handling and homomorphic encryption for secure key management [43]..

We implemented the PASTA-3 homomorphic decryption operation using the HEonGPU library. For
this, we integrated HEonGPU into the existing work [43] codebase13 without making any modifications
to the underlying methodology. The only change was substituting the original homomorphic operations
with HEonGPU’s optimized operations, leveraging the GPU for improved performance.

In the comparison of the PASTA-3 cipher implemented with both SEAL (single thread CPU) and
HEonGPU (single GPU default stream), we observe significant performance improvements when leverag-
ing GPU acceleration through HEonGPU. Table 9 showcases two different parameter sets, N = 214 and
N = 215. For homomorphic decryption, HEonGPU demonstrates a speedup of ×88.5 and ×171.7 over
SEAL for N = 214 and N = 215, respectively. Since identical parameters were used for both libraries,
the remaining noise budgets are consistent after the homomorphic decryption operation. The primary
advantage of utilizing different ring dimensions lies in managing the required noise budget for homomor-
phic evaluation, allowing users to determine the appropriate size for their secret key encryption based
on noise budget requirements. This flexibility is crucial for optimizing both performance and security in
homomorphic encryption applications.

SEAL HEonGPU
Cipher logN t ENC KEY HE DEC ENC KEY HE DEC Remain Noise B. S1 S2

PASTA-3 14 65537 7.95 ms 4677.28 ms 1.89 ms 52.82 ms 96 bit ×4.2 ×88.5
PASTA-3 15 65537 28.68 ms 20404.89 ms 3.45 ms 118.82 ms 525 bit ×8.3 ×171.7

Table 9: 1 PASTA-3 Runtime (single thread CPU and single GPU with default stream) and noise budget
of the small HHE use case in the SEAL and HEonGPU library (security level = 128 bit).

In order to highlight the performance differences between GPU and CPU, a scenario was designed to
fully utilize the CPU’s resources. Since the current PASTA-3 homomorphic decryption implementation is
not inherently suitable for parallelization within itself as in the case of HHE implementation, we ensured
that each thread on the CPU was tasked with executing independent HHE operations. On the GPU side,
multi-stream processing was employed to maximize resource utilization, allowing simultaneous execution
of multiple tasks and further improving performance.

Table 10 provides a comparison between SEAL (16-thread CPU) and HEonGPU (single GPU with
multi-stream) for PASTA-3 homomorphic decryption. On the SEAL side, 16 threads were used, where

12In the comparison, N = 212, which yielded the best performance in SEAL, and N = 215, which produced the best result
in HEonGPU, and same modulus set were used. This ensures that each library is evaluated based on its optimal parameter
configurations, highlighting the best possible performance for each in the specific PIR use case.

13https://github.com/IAIK/hybrid-HE-framework

17

each CPU core performed an independent HE DEC operation. In contrast, HEonGPU utilized 4 streams,
with each stream sequentially processing 4 HE DEC operations, maximizing the parallel processing ca-
pabilities of the GPU.

SEAL HEonGPU
Cipher logN t HE DEC HE DEC Remain Noise B. S

PASTA-3 14 65537 5704.02 ms 356.99 ms 96 bit ×15.97
PASTA-3 15 65537 30997.23 ms 1570.41 ms 525 bit ×19.74

Table 10: 16 PASTA-3 Homomorphic Decryption Runtime (multi thread CPU and single GPU with
multi stream)

The results demonstrate a substantial performance improvement in favor of HEonGPU. For N =
214, SEAL, utilizing 16 threads, required 5704.02 ms to complete the decryption, whereas HEonGPU
performed the same 16 HE DEC operations in just 356.99 ms, achieving a ×15.97 speedup. Similarly, for
N = 215, SEAL took 30997.23 ms, while HEonGPU completed the task in 1570.41 ms, yielding a ×19.74
speedup. Additionally, the latency for each operation on the CPU remains approximately 5704.02 ms,
whereas on the GPU, using multi-stream processing, the latency for completing two operations drops
to around 89.24 ms. This results in a latency improvement factor of ×63.91, further underscoring the
efficiency gains provided by GPU parallelization and multi-stream processing.

5.3.3 Privacy-Preserving Inference on Genomic Data Utilizing XGBoost Decision Trees

XGBoost, a decision tree based machine learning algorithm, employs ensembles of Extreme Gradient
Boosting. The model comprises classification trees that are constructed based on training data, and each
tree in the ensemble classifies the test data into one of its leaves. The final prediction score is obtained by
summing the numerical values assigned by each tree. Mağara et al. in [44] proposed a privacy-preserving
framework for gradient boosting inference, leveraging homomorphic encryption via the SEAL library to
classify encrypted genomic data from various tumor types. Basically in their model, to minimize the
model’s complexity and reduce the circuit depth for homomorphic evaluation, shallow trees were chosen.
We adapted their CPU-based framework to HEonGPU to evaluate the performance of HEonGPU without
making any modifications to their original implementation.

As detailed in [44], the test data is encrypted, and the homomorphic evaluation of the XGBoost trees
is performed on 258 test samples. This evaluation involves 1290 homomorphic multiplications, 1,806
rotations, 1806 subtractions, 1290 plaintext multiplications, 3354 additions, and 2322 relinearization
operations. These computations are critical in determining the efficiency and feasibility of applying
homomorphic encryption to real-world machine learning tasks.

SEAL HEonGPU
logN logQ Single T. Multi T. GPU S1 S2

13 218 bit 14.05 s 1.11 s 0.107 s ×131.31 ×10.37
14 438 bit 69.27 s 6.85 s 0.522 s ×132.70 ×13.12

Table 11: Machine Learning Model Perfomance and Comparison on SEAL and HEonGPU. S1 :The ratio
of single-thread results over HEonGPU. S2: The ratio of multi-thread results over HEonGPU

To assess the framework’s performance, we executed the inference on both GPU and CPU, utilizing all
possible optimization and parallelization strategies for the CPU implementation. As shown in Table 11,
the HEonGPU library offers considerable acceleration (including data transfer time) compared to the CPU
implementation (based on SEAL). Specifically, the GPU achieved a speedup of ×131.31 and ×132.70 for
ring sizes of 8192 and 16384, respectively, relative to the single-threaded CPU execution. Even with the
multi-threaded CPU version, the GPU still outperformed, achieving speedups of ×10.37 and ×13.12 for
ring sizes of 8192 and 16384, respectively.

These results emphasize the effectiveness of HEonGPU in accelerating computationally intensive op-
erations, such as homomorphic encryption-based XGBoost inference on encrypted genomic data. The
ability to efficiently evaluate such models homomorphically shows that HEonGPU can be alternative to
CPU-based FHE libraries for accelerating privacy-preserving machine learning.

18

6 Future Plan

In the future, several key improvements are planned to further enhance HEonGPU’s functionality and
usability. The library will expand its support for additional homomorphic encryption schemes, introduce
bootstrapping capabilities, and improve user accessibility through high-level interfaces. These develop-
ments aim to make HEonGPU more versatile and suitable for a wider range of applications, including
secure multi-party computations. The planned additions are listed below:

• BGV and TFHE schemes will be added to expand the cryptographic capabilities of the library.

• CKKS bootstrapping will be introduced first, followed by bootstrapping for other schemes.

• A Python wrapper will be developed to increase accessibility and usability for users.

• Threshold encryption will be implemented to support MPC (Multi-Party Computation), allowing
for secure collaborative computations.

Acknowledgement

The authors would like to acknowledge the support of this work by the European Union’s Horizon Europe
research and innovation programme under grant agreement number 101079319.

References

[1] “Concrete: Tfhe compiler that converts python programs into fhe equivalent,” https://github.com/
zama-ai/concrete, 2022, accessed page 3.

[2] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Heaan,” https://github.com/snucrypto/HEAAN, 2016,
accessed page 3.

[3] S. Halevi and V. Shoup, “Helib - an implementation of homomorphic encryption,” https://github.
com/shaih/HElib/, accessed Feb 2014.

[4] EPFL-LDS and T. I. SA, “Lattigo v5,” Online: https://github.com/tuneinsight/lattigo, November
2023, accessed page 3.

[5] “Microsoft seal,” https://github.com/Microsoft/SEAL, 2020, accessed page 3.

[6] A. A. Badawi, A. Alexandru, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli, N. Genise,
S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio, C. Pascoe, Y. Polyakov, I. Quah, S. R.V.,
K. Rohloff, J. Saylor, D. Suponitsky, M. Triplett, V. Vaikuntanathan, and V. Zucca, “Openfhe:
Open-source fully homomorphic encryption library,” Cryptology ePrint Archive, Paper 2022/915,
2022, https://eprint.iacr.org/2022/915. [Online]. Available: https://eprint.iacr.org/2022/915

[7] Y. Polyakov, R. Rohloff, G. W. Ryan, and D. Cousins, “Palisade lattice cryptography library (release
1.11.5),” https://palisade-crypto.org/, pp. 3, 4, 15, September 2021, https://gitlab.com/palisade/
palisade-release/-/blob/master/doc/palisade manual.pdf.

[8] NVIDIA Corporation, “Cuda toolkit documentation,” https://developer.nvidia.com/cuda-toolkit,
2023, accessed May 2023.

[9] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,” IACR
Cryptology ePrint Archive, vol. 2012, p. 144, 2012, accessed pages 4, 6. [Online]. Available:
https://eprint.iacr.org/2012/144

[10] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arithmetic of approximate
numbers,” in International Conference on the Theory and Application of Cryptology and Information
Security. Springer, 2017, pp. 409–437, accessed page 4.

[11] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping for approximate homomorphic
encryption,” Cryptology ePrint Archive, Paper 2018/153, 2018, https://eprint.iacr.org/2018/153.
[Online]. Available: https://eprint.iacr.org/2018/153

19

https://github.com/zama-ai/concrete
https://github.com/zama-ai/concrete
https://github.com/snucrypto/HEAAN
https://github.com/shaih/HElib/
https://github.com/shaih/HElib/
https://github.com/tuneinsight/lattigo
https://github.com/Microsoft/SEAL
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://palisade-crypto.org/
https://gitlab.com/palisade/palisade-release/-/blob/master/doc/palisade_manual.pdf
https://gitlab.com/palisade/palisade-release/-/blob/master/doc/palisade_manual.pdf
https://developer.nvidia.com/cuda-toolkit
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2018/153
https://eprint.iacr.org/2018/153

[12] H. Chen, I. Chillotti, and Y. Song, “Improved bootstrapping for approximate homomorphic
encryption,” Cryptology ePrint Archive, Paper 2018/1043, 2018. [Online]. Available: https:
//eprint.iacr.org/2018/1043

[13] J. H. Cheon, K. Han, and M. Hhan, “Faster homomorphic discrete fourier transforms and improved
FHE bootstrapping,” Cryptology ePrint Archive, Paper 2018/1073, 2018. [Online]. Available:
https://eprint.iacr.org/2018/1073

[14] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux, “Efficient bootstrapping for
approximate homomorphic encryption with non-sparse keys,” Cryptology ePrint Archive, Paper
2020/1203, 2020. [Online]. Available: https://eprint.iacr.org/2020/1203

[15] R. Geelen and F. Vercauteren, “Bootstrapping for bgv and bfv revisited,” Cryptology
ePrint Archive, Paper 2022/1363, 2022, https://eprint.iacr.org/2022/1363. [Online]. Available:
https://eprint.iacr.org/2022/1363

[16] J. Kim, J. Seo, and Y. Song, “Simpler and faster bfv bootstrapping for arbitrary plaintext modulus
from ckks,” Cryptology ePrint Archive, Paper 2024/109, 2024, https://eprint.iacr.org/2024/109.
[Online]. Available: https://eprint.iacr.org/2024/109

[17] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic encryption without
bootstrapping,” ACM Transactions on Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014,
accessed pages 4, 5.

[18] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: Fast fully homomorphic encryption
over the torus,” Cryptology ePrint Archive, Paper 2018/421, 2018, https://eprint.iacr.org/2018/421.
[Online]. Available: https://eprint.iacr.org/2018/421

[19] K. Boudgoust and P. Scholl, “Simple threshold (fully homomorphic) encryption from LWE with
polynomial modulus,” Cryptology ePrint Archive, Paper 2023/016, 2023. [Online]. Available:
https://eprint.iacr.org/2023/016

[20] A. Jain, P. M. R. Rasmussen, and A. Sahai, “Threshold fully homomorphic encryption,” Cryptology
ePrint Archive, Paper 2017/257, 2017. [Online]. Available: https://eprint.iacr.org/2017/257

[21] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Privacy preserving federated learning using ckks
homomorphic encryption,” in International Conference on the Theory and Application of Cryptology
and Information Security (ASIACRYPT). Springer, 2019, pp. 360–384.

[22] J. Ma, S. A. Naas, S. Sigg, and X. Lyu, “Privacy-preserving federated learning based on multi-key
homomorphic encryption,” International Journal of Intelligent Systems, 2022.

[23] P. Trebicki and S. Grabowski, “Modular multiplication and base extensions in residue number sys-
tems,” in 2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and
Tools, 2010, pp. 217–220.

[24] ——, “Fast base extension using a redundant modulus in rns,” IEEE Transactions on Computers,
vol. 42, no. 8, pp. 1011–1014, 1993.

[25] A. Şah Özcan and E. Savaş, “Two algorithms for fast gpu implementation of ntt,” Cryptology
ePrint Archive, Paper 2023/1410, 2023, https://eprint.iacr.org/2023/1410. [Online]. Available:
https://eprint.iacr.org/2023/1410

[26] J.-C. Bajard, J. Eynard, A. Hasan, and V. Zucca, “A full RNS variant of FV like somewhat
homomorphic encryption schemes,” Cryptology ePrint Archive, Paper 2016/510, 2016. [Online].
Available: https://eprint.iacr.org/2016/510

[27] S. Halevi, Y. Polyakov, and V. Shoup, “An improved RNS variant of the BFV homomorphic
encryption scheme,” Cryptology ePrint Archive, Paper 2018/117, 2018. [Online]. Available:
https://eprint.iacr.org/2018/117

[28] A. Kim, Y. Polyakov, and V. Zucca, “Revisiting homomorphic encryption schemes for
finite fields,” Cryptology ePrint Archive, Paper 2021/204, 2021. [Online]. Available: https:
//eprint.iacr.org/2021/204

20

https://eprint.iacr.org/2018/1043
https://eprint.iacr.org/2018/1043
https://eprint.iacr.org/2018/1073
https://eprint.iacr.org/2020/1203
https://eprint.iacr.org/2022/1363
https://eprint.iacr.org/2022/1363
https://eprint.iacr.org/2024/109
https://eprint.iacr.org/2024/109
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2023/016
https://eprint.iacr.org/2017/257
https://eprint.iacr.org/2023/1410
https://eprint.iacr.org/2023/1410
https://eprint.iacr.org/2016/510
https://eprint.iacr.org/2018/117
https://eprint.iacr.org/2021/204
https://eprint.iacr.org/2021/204

[29] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS variant of approximate
homomorphic encryption,” Cryptology ePrint Archive, Paper 2018/931, 2018. [Online]. Available:
https://eprint.iacr.org/2018/931

[30] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux, “Efficient bootstrapping for
approximate homomorphic encryption with non-sparse keys,” Cryptology ePrint Archive, Paper
2020/1203, 2020. [Online]. Available: https://eprint.iacr.org/2020/1203

[31] A. Kim, Y. Polyakov, and V. Zucca, “Revisiting homomorphic encryption schemes for
finite fields,” Cryptology ePrint Archive, Paper 2021/204, 2021. [Online]. Available: https:
//eprint.iacr.org/2021/204

[32] M. Kim, D. Lee, J. Seo, and Y. Song, “Accelerating HE operations from key decomposition
technique,” Cryptology ePrint Archive, Paper 2023/413, 2023, https://eprint.iacr.org/2023/413.
[Online]. Available: https://eprint.iacr.org/2023/413

[33] C. Gentry, “A Fully Homomorphic Encryption Scheme,” Ph.D. dissertation, Stanford University,
2009, https://crypto.stanford.edu/craig.

[34] NVIDIA Corporation, CURAND Library User Guide, 2021, https://docs.nvidia.com/cuda/curand/
index.html.

[35] P. L’Ecuyer, “Good parameters and implementations for combined multiple recursive random num-
ber generators,” Operations Research, vol. 47, no. 1, pp. 159–164, 1999.

[36] I. M. Sobol, “On the distribution of points in a cube and the approximate evaluation of integrals,”
USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 4, pp. 86–112, 1967.

[37] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[38] N. Ferguson, B. Schneier, and T. Kohno, Cryptography Engineering: Design Principles and Practical
Applications. John Wiley & Sons, 2010.

[39] RAPIDS AI, RAPIDS Memory Manager (RMM) Documentation, 2020, https://github.com/
rapidsai/rmm.

[40] NVIDIA Corporation, CUDA C++ Programming Guide, 2021, https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html.

[41] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of learning with
errors,” Cryptology ePrint Archive, Paper 2015/046, 2015. [Online]. Available: https:
//eprint.iacr.org/2015/046

[42] S. Angel, H. Chen, K. Laine, and S. Setty, “PIR with compressed queries and amortized
query processing,” Cryptology ePrint Archive, Paper 2017/1142, 2017. [Online]. Available:
https://eprint.iacr.org/2017/1142

[43] C. Dobraunig, L. Grassi, L. Helminger, C. Rechberger, M. Schofnegger, and R. Walch, “Pasta:
A case for hybrid homomorphic encryption,” Cryptology ePrint Archive, Paper 2021/731, 2021.
[Online]. Available: https://eprint.iacr.org/2021/731

[44] S. S. Magara, C. Yildirim, F. Yaman, B. Dilekoglu, F. R. Tutas, E. Öztürk, K. Kaya, Ö. Tastan,
and E. Savas, “ML with HE: privacy preserving machine learning inferences for genome studies,”
CoRR, vol. abs/2110.11446, 2021. [Online]. Available: https://arxiv.org/abs/2110.11446

[45] C. Gentry and S. Halevi, “Compressible FHE with applications to PIR,” Cryptology ePrint
Archive, Paper 2019/733, 2019. [Online]. Available: https://eprint.iacr.org/2019/733

[46] S. J. Menon and D. J. Wu, “Spiral: Fast, high-rate single-server PIR via FHE
composition,” Cryptology ePrint Archive, Paper 2022/368, 2022. [Online]. Available: https:
//eprint.iacr.org/2022/368

21

https://eprint.iacr.org/2018/931
https://eprint.iacr.org/2020/1203
https://eprint.iacr.org/2021/204
https://eprint.iacr.org/2021/204
https://eprint.iacr.org/2023/413
https://eprint.iacr.org/2023/413
https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://github.com/rapidsai/rmm
https://github.com/rapidsai/rmm
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2017/1142
https://eprint.iacr.org/2021/731
https://arxiv.org/abs/2110.11446
https://eprint.iacr.org/2019/733
https://eprint.iacr.org/2022/368
https://eprint.iacr.org/2022/368

	Introduction
	Roadmap
	Preliminaries
	Notation
	Residue Number System (RNS)
	Number Theoretic Transform (NTT)
	Fast Fourier Transform (FFT)

	Overview of HEonGPU
	FHE Schemes
	Key Switching Operations
	Bootstrapping
	Encoding
	Noise Estimation
	Random Number Generation
	Memory Management
	Multi-Stream
	Interface and Parameter Selection

	Experimental Results and Comparison
	Setup
	Comparative Performance Analysis with Other Libraries
	Performance Improvements for Homomoprhic Applications
	Private Information Retrieval (PIR)
	Hybrid Homomorphic Encryption (HHE)
	Privacy-Preserving Inference on Genomic Data Utilizing XGBoost Decision Trees

	Future Plan

