
Cryptographic Characterization of Quantum Advantage

Tomoyuki Morimae1, Yuki Shirakawa1, and Takashi Yamakawa2,3,1

1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan
tomoyuki.morimae@yukawa.kyoto-u.ac.jp

yuki.shirakawa@yukawa.kyoto-u.ac.jp
2NTT Social Informatics Laboratories, Tokyo, Japan

takashi.yamakawa@ntt.com
3NTT Research Center for Theoretical Quantum Information, Atsugi, Japan

Abstract

Quantum computational advantage refers to an existence of computational tasks that are easy for
quantum computing but hard for classical one. Unconditionally showing quantum advantage is beyond
our current understanding of complexity theory, and therefore some computational assumptions are
needed. Which complexity assumption is necessary and sufficient for quantum advantage? In this paper,
we show that inefficient-verifier proofs of quantumness (IV-PoQ) exist if and only if classically-secure
one-way puzzles (OWPuzzs) exist. As far as we know, this is the first time that a complete cryptographic
characterization of quantum advantage is obtained. IV-PoQ [Morimae and Yamakawa 2024] are a
variant of proofs of quantumness (PoQ) [Brakerski et al. 2021] where the verifier is efficient during the
interaction but may use unbounded time afterward. IV-PoQ capture various types of quantum advantage
previously studied, such as sampling advantage and searching advantage. Previous work [Morimae and
Yamakawa 2024] showed that IV-PoQ can be constructed from OWFs, but a construction of IV-PoQ
from weaker assumptions was left open. Our result solves the open problem, because OWPuzzs are
believed to be weaker than OWFs. OWPuzzs [Khurana and Tomer 2024] are one of the most fundamental
quantum cryptographic primitives implied by many quantum cryptographic primitives weaker than
one-way functions (OWFs), such as pseudorandom unitaries (PRUs), pseudorandom state generators
(PRSGs), and one-way state generators (OWSGs). The equivalence between IV-PoQ and classically-secure
OWPuzzs therefore highlights that if there is no quantum advantage, then these fundamental primitives
do not exist. The equivalence also means that quantum advantage is an example of the applications
of OWPuzzs. Except for commitments, no application of OWPuzzs was known before. Our result
shows that quantum advantage is another application of OWPuzzs. Moreover, it is the first quantum
computation classical communication (QCCC) application of OWPuzzs. To show the main result, we
introduce several new concepts and show some results that will be of independent interest. In particular,
we introduce an interactive (and average-case) version of sampling problems where the task is to sample
the transcript obtained by a classical interaction between two quantum polynomial-time algorithms. We
show that quantum advantage in interactive sampling problems is equivalent to the existence of IV-PoQ,
which is considered as an interactive (and average-case) version of Aaronson’s result [Aaronson 2014],
SampBQP ̸= SampBPP⇔ FBQP ̸= FBPP. Finally, we also introduce zero-knowledge IV-PoQ
and study sufficient and necessary conditions for their existence.

1

Contents

1 Introduction 3
1.1 Additional Results . 6
1.2 Related Work . 9
1.3 Technical Overview . 9

2 Preliminaries 13
2.1 Basic Notations . 13
2.2 One-Way Functions and Distributional One-Way Functions 13
2.3 One-Way Puzzles . 15
2.4 Inefficient-Verifier Proofs of Quantumness . 16
2.5 Sampling Complexity . 17
2.6 Kolmogorov Complexity . 18

3 QASs and Int-QASs 22
3.1 Definitions of QASs and Int-QASs . 22
3.2 Relation Between QASs and Sampling Complexity Classes 23
3.3 Non-Interactive IV-PoQ Imply QASs . 23
3.4 QASs Imply Non-Interactive IV-PoQ . 24

4 The QAS/OWF Condition 30

5 Equivalence of IV-PoQ and Classically-Secure OWPuzzs 33
5.1 Proof of Theorem 5.1 . 34
5.2 Proof of Theorem 5.2 . 34
5.3 Proof of Theorem 5.3 . 37
5.4 Proof of Theorem 5.4 . 39
5.5 Proof of Theorem 5.5 . 42

6 Variants of IV-PoQ 43
6.1 Equivalence Among Variants of IV-PoQ . 44
6.2 Zero-Knowledge IV-PoQ . 44

A On Uniformity of Adversaries 49

B Proof of Lemma 2.5 49

C Proof of Lemma 2.10 50

D Proof of Lemma 2.17 52

2

1 Introduction

Quantum computational advantage refers to the existence of computational tasks that are easy for quantum
computing but hard for classical one. Unconditionally showing quantum advantage is extremely hard, and is
beyond our current understanding of complexity theory.1 Some computational assumptions are therefore
required. Which complexity assumption is necessary and sufficient for quantum advantage? As far as we
know, no complete characterization of quantum advantage was obtained before.

In this paper, we identify a cryptographic assumption that is necessary and sufficient for quantum
advantage. Our main result is the following one:2 3

Theorem 1.1. Inefficient-verifier proofs of quantumness (IV-PoQ) exist if and only if classically-secure
one-way puzzles (OWPuzzs) exist.

As far as we know, this is the first time that a complete cryptographic characterization of quantum
advantage is obtained.

What are IV-PoQ? IV-PoQ are a generalization of proofs of quantumness (PoQ) [BCM+21]. A PoQ is
an interactive protocol between a prover and a classical probabilistic polynomial-time (PPT) verifier over a
classical channel. There exists a quantum polynomial-time (QPT) prover such that the verifier accepts with high
probability (completeness), but for any PPT prover the verifier rejects with high probability (soundness). PoQ
can be constructed from several cryptographic assumptions, such as (noisy) trapdoor claw-free functions with
the adaptive-hardcore-bit property [BCM+21], trapdoor 2-to-1 collision-resistant hash functions [KMCVY22],
(full-domain) trapdoor permutations [MY23], quantum homomorphic encryptions [KLVY23], or knowledge
assumptions [AGGM24]. Non-interactive PoQ are possible based on the hardness of factoring [Sho94] or
random oracles [YZ24].

IV-PoQ [MY24] are the same as PoQ except that the verifier’s final computation to make the decision can
be unbounded. IV-PoQ are a generalization of PoQ, and as we will explain later, IV-PoQ capture various
types of quantum advantage studied so far, such as sampling advantage and searching advantage.

Completely identifying a necessary and sufficient assumption for the existence of (IV-)PoQ remained
open. In particular, in [MY24], IV-PoQ were constructed from classically-secure OWFs, but the problem of
constructing IV-PoQ from weaker assumptions was left open in that paper. Our main result Theorem 1.1
solves the open problem, because as we will explain later, OWPuzzs are believed to be weaker than
OWFs [Kre21, MY22, KT24a]. Moreover, a known necessary condition for the existence of IV-PoQ was
only the almost trivial one: BPP ̸= PP4 [MY24]. Our main result Theorem 1.1 improves this to a highly
non-trivial necessary condition, namely, the existence of classically-secure OWPuzzs.5

What are OWPuzzs? In classical cryptography, the existence of OWFs is the minimum assumption [IL89],
because many primitives exist if and only if OWFs exist, such as pseudorandom generators (PRGs),

1There are several interesting results (such as [BGK18]) that show unconditional quantum advantage by restricting classical
computing. In this paper, we consider any polynomial-time classical computing.

2In this paper, all classically-secure OWPuzzs are ones with (1− negl(λ))-correctness and (1− 1/poly(λ))-security. Unlike
quantumly-secure OWPuzzs, we do not know how to amplify the gap for classically-secure OWPuzzs.

3In this paper, we consider the uniform adversarial model (i.e., adversaries are modeled as Turing machines), and some steps of
the proofs of Theorem 1.1 crucially rely on the uniformity of the adversary. (See Appendix A for the detail.) We leave it open to
prove (or disprove) the non-uniform variant of Theorem 1.1.

4The output probability distribution of any QPT algorithm can be computed by a classical polynomial-time deterministic algorithm
that queries the PP oracle [FR99]. Therefore, if BPP = PP, a PPT prover can cheat the verifier.

5This is an improvement, because if classically-secure OWPuzzs exist then BPP ̸= PP.

3

pseudorandom functions (PRFs), zero-knowledge, commitments, digital signatures, and secret-key encryptions
(SKE), and almost all primitives imply OWFs. On the other hand, recent active studies have revealed that in
quantum cryptography OWFs are not necessarily the minimum assumption. Many fundamental primitives
have been introduced, such as pseudorandom unitaries (PRUs) [JLS18], pseudorandom function-like state
generators (PRFSGs) [AQY22], unpredictable state generators (UPSGs) [MYY24], pseudorandom state
generators (PRSGs) [JLS18], one-way state generators (OWSGs) [MY22], EFI pairs [BCQ23], and one-way
puzzles (OWPuzzs) [KT24a]. They could exist even if OWFs do not exist [Kre21, KQST23, LMW24], but
still imply several useful applications such as message authentication codes [AQY22], commitments [MY22,
AQY22], multi-party computations [MY22, AQY22], secret-key encryptions [AQY22], private-key quantum
money [JLS18], digital signatures [MY22], etc.

In particular, one-way puzzles (OWPuzzs) are one of the most fundamental primitives in this “cryptographic
world below OWFs”. A OWPuzz is a pair (Samp, Ver) of two algorithms. Samp is a QPT algorithm that
takes 1λ as input and outputs two classical bit strings puzz and ans. Ver is an unbounded algorithm that takes
puzz and ans′ as input, and outputs ⊤ or ⊥. We require two properties, correctness and security. Correctness
requires that Ver accepts (puzz, ans) sampled by Samp with large probability. Security requires that for
any QPT algorithm A that takes puzz as input and outputs ans′, Ver accepts (puzz, ans′) with only small
probability. In particular, when the security is required only for all PPT adversaries, we say that a OWPuzz is
classically-secure. (Note that the Samp algorithm of classically-secure OWPuzzs is QPT, not PPT, even when
we consider classical security.)

As is shown in Figure 1, OWPuzzs (and therefore classically-secure OWPuzzs) are implied by many
primitives such as

• PRUs, PRFSGs, UPSGs, PRSGs, (pure) OWSGs,

• (pure) private-key quantum money, secret-key encryption schemes, digital signatures,

• several quantum computation classical communication (QCCC) primitives [CGG24a, KT24a],

• quantum EFID pairs.6

Our Theorem 1.1 therefore highlights that if there is no quantum advantage, then all of these quantum
cryptographic primitives do not exist.

On the other hand, although many primitives imply OWPuzzs, no application of OWPuzzs is known
except for commitments [KT24a]. Finding more applications of OWPuzzs is one of the most important goals
in this field. Our result Theorem 1.1 shows that OWPuzzs imply quantum advantage, which demonstrates
that quantum advantage is another application of OWPuzzs. Moreover, we emphasize that this is the first
application of OWPuzzs in the QCCC setting: IV-PoQ are a QCCC primitive because the communication
between the verifier and the prover is classical, while commitments [KT24a] constructed from OWPuzzs are
those over quantum channels.

Why IV-PoQ? In addition to (IV-)PoQ, there are mainly two other approaches to demonstrate quantum
advantage, namely searching and sampling. Here we argue that IV-PoQ capture both of them, and therefore
identifying a necessary and sufficient assumption for the existence of IV-PoQ is significant.

6It is a pair (G0, G1) of two QPT algorithms that output classical bit strings such that the output distributions are statistically far
but computationally indistinguishable. EFID pairs imply OWPuzzs by defining (Samp, Ver) as follows. Samp : On input 1λ, choose
(b1, ..., bℓ(λ))← {0, 1}ℓ(λ) and set ans := (b1, ..., bℓ(λ)), where ℓ is a certain polynomial. Run xbi ← Gbi (1λ) for each i ∈ [ℓ(λ)].
Set puzz := (xb1 , ..., xbℓ). Ver : Given puzz = (xb1 , ..., xbℓ) and ans′ = (b′1, ..., b′ℓ), output ⊤ if and only if xbi is in the set of all
outputs of Gb′

i
(1λ) for each i ∈ [ℓ(λ)].

4

A sampling problem is a task of sampling from some distributions. There are several distributions
that are easy to sample with QPT algorithms but hard with PPT algorithms, such as output ditributions
of random quantum circuits [BFNV19], Boson Sampling circuits [AA11], constant-depth circuits [TD04],
IQP circuits [BJS11, BMS16], and one-clean-qubit circuits [FKM+18]. Several assumptions are known
to be sufficient for quantum advantage in sampling problems, but these assumptions are newly-introduced
assumptions that were not studied before such as an average-case #P-hardness of approximating some
functions. Moreover, quantum advantage in sampling problems is in general not known to be verifiable
(even inefficiently). On the other hand, one advantage of sampling problems (and other problems relying on
newly-introduced assumptions) is that experimental realizations with NISQ machines seem to be easier.7 As
we will explain later, we introduce an average-case version of SampBQP ̸= SampBPP, and show that
such an average-case version of sampling advantage is equivalent to the existence of non-interactive IV-PoQ.
IV-PoQ therefore capture sampling advantage.

A search problem is a task of finding an element z that satisfies a relation R(z) = 1. Several search
problems have been shown to be easy for QPT algorithms but hard for PPT algorithms. Their classical hardness,
however, relies on newly-introduced assumptions that were not studied before, such as QUATH [AC17]
and XQUATH [AG19], or relies on random oracles [Aar10, ACC+23]. One advantage of these search
problems over sampling problems is that quantum advantage can be verified at least inefficiently when R is
computable. (We can check R(z) = 1 or not by computing R(z).) Because such inefficiently-verifiable search
advantage is equivalent to the existence of non-interactive IV-PoQ, IV-PoQ capture inefficiently-verifiable
search problems. There are some search problems that are efficiently verifiable such as Factoring [Sho94]
and Yamakawa-Zhandry problem [YZ24] but the former is based on the hardness of a specific problem, and
the latter relies on the random oracle model. Quantum advantage in efficiently-verifiable search problems is
captured by non-interactive PoQ, and therefore by IV-PoQ.

Summary. In summary, we have shown that IV-PoQ exist if and only if classically-secure OWPuzzs exist.
We believe that this result is significant mainly because of the following five reasons.

1. As far as we know, this is the first time to give a complete cryptographic characterization of quantum
advantage.

2. IV-PoQ capture various types of quantum advantage studied so far including sampling advantage and
searching advantage.

3. The previous result [MY24] constructed IV-PoQ from classically-secure OWFs, but the problem of
constructing IV-PoQ from weaker assumptions was left open. We solve the open problem.

4. OWPuzzs are implied by many important primitives, such as PRUs, PRSGs, and OWSGs. Therefore, our
main result shows that if there is no quantum advantage, then these quantum cryptographic primitives
do not exist.

5. No application of OWPuzzs was known before except for commitments (and therefore multiparty
computations). We show that quantum advantage is another application of OWPuzzs. Moreover, it is
the first QCCC application of OWPuzzs.

7Although NISQ experimental realizations of quantum advantage are very important goals, in this paper, we focus on theoretical
upper and lower bounds by assuming that any polynomial-time quantum computing is possible.

5

QAS/OWFcs-OWPuzzs

qs-OWPuzzs

OWSGs
EFID

EFI

PRSGs
1-PRSGs

PRFSGs

PRUs

qs-OWFs

cs-OWFs

IV-PoQ

public-coin
IV-PoQ

quantum-verifier
IV-PoQ

non-interactive
IV-PoQ

honest-verifier
statistical zero-knowledge

IV-PoQ

computational zero-knowledge
IV-PoQ

Int-QASs

QASs

qs-OWFs or SampBPP ̸= SampBQP

Figure 1: Summary of results. Black arrows are known or trivial implications. Red arrows are our results.
“qs” stands for quantumly-secure and “cs” stands for classically-secure. 1-PRSGs are single-copy-secure
PRSGs [MY22].

1.1 Additional Results

In addition to the main result, Theorem 1.1, we obtain several important results. In the following, we explain
them. All our results are also summarized in Figure 1.

Relations to the sampling complexity. We show the following result.8

Theorem 1.2. If IV-PoQ exist, then quantumly-secure OWFs exist or SampBPP ̸= SampBQP.

Because the existence of quantumly-secure OWFs implies NP ⊈ BQP, Theorem 1.2 also means that
if IV-PoQ exist, then NP ⊈ BQP or SampBPP ̸= SampBQP. This characterizes a lower bound of
IV-PoQ in terms of worst-case complexity class assumptions. Note that this lower bound improves the
previous known bound, BPP ̸= PP, of [MY24].9

8Note that “quantumly-secure” in the theorem is not a typo. The reason why we can get quantumly-secure OWFs from
classically-secure OWPuzzs is, roughly speaking, that if SampBPP = SampBQP, then classically-secure OWFs means
quantumly-secure OWFs. For details, see Section 4.

9First, NP ̸⊆ BQP implies BPP ̸= PP, because if BPP = PP, then NP ⊆ PP = BPP ⊆ BQP. Second,
SampBPP ̸= SampBQP implies BPP ̸= PP, because a classical deterministic polynomia-time algorithm that queries the
PP oracle can compute the output distribution of any QPT algorithm [FR99].

6

Quantum advantage samplers (QASs). To show the main result, we introduce a new concept, which
we call quantum advantage samplers (QASs). The existence of QASs is an average-case version of
SampBQP ̸= SampBPP.

Let A be a QPT algorithm that takes 1λ as input and outputs classical bit strings. A is a quantum
advantage sampler (QAS) if there exists a polynomial p such that for any PPT algorithm B,

SD(A(1λ),B(1λ)) >
1

p(λ) (1)

holds for all sufficiently large λ ∈ N, where SD is the statistical distance, and A(1λ) (resp. B(1λ)) is the
output probability distribution of A (resp. B) on input 1λ.

Intuitively, Equation (1) means that the output distribution of the QPT algorithm A cannot be classically
efficiently sampled. How is this different from the more studied notion, SampBPP ̸= SampBQP? The
existence of QASs can be considered as an average-case version of SampBPP ̸= SampBQP.10 In fact,
the existence of QASs implies SampBPP ̸= SampBQP (Lemma 3.4), but the inverse does not seem to
hold. In order to show our main result, the worst-case notion of SampBPP ̸= SampBQP is not enough
for our cryptographic (and therefore average-case) argument, and therefore we introduce QASs. We believe
that the new concept, QASs, will be useful for other future studies of quantum sampling advantage in the
context of quantum cryptography.

We show the following result.

Theorem 1.3. QASs exist if and only if non-interactive IV-PoQ exist.

Because the existence of QASs is an average-case version of SampBQP ̸= SampBPP while the
existence of non-interactive IV-PoQ is an average-case version of FBQP ̸= FBPP, Theorem 1.3 can
be considered as an average-case version of [Aar14]’s result SampBPP ̸= SampBQP ⇔ FBPP ̸=
FBQP.

Interactive quantum advantage samplers (Int-QASs). We also introduce an interactive version of QASs,
which we call interactive QASs (Int-QASs). Int-QASs are a generalization of QASs to interactive settings.
An Int-QAS is a pair (A, C) of two interactive QPT algorithms A and C that communicate over a classical
channel. Its security roughly says that no PPT algorithm B that interacts with C can sample the transcript of
(A, C). (Here, the transcript is the sequence of all classical messages exchanged between A and C.) More
precisely, (A, C) is an Int-QAS if there exists a polynomial p such that for any PPT algorithm B that interacts
with C,

SD(⟨A, C⟩(1λ), ⟨B, C⟩(1λ)) >
1

p(λ) (2)

holds for all sufficiently large λ ∈ N, where SD is the statistical distance, and ⟨A, C⟩(1λ) (resp. ⟨B, C⟩(1λ))
is the probability distribution over the transcript of the interaction between A (resp. B) and C on input 1λ.

It is easy to see that IV-PoQ imply Int-QASs: for any IV-PoQ (P,V1,V2), where P is the prover, V1 is
the efficient verifier, and V2 is the inefficient verifier, we have only to take (A, C) = (P,V1). However, the
opposite direction is not immediately clear. We show that the opposite direction can be also shown. We hence
have the following result.

10SampBPP and SampBQP are worst-case complexity classes, and therefore {A(1λ)}λ ̸∈ SampBPP means that there
is at least one λ ∈ N such that A(1λ) cannot be classically efficiently sampled, while the definition of QASs requires that
{A(1λ)}λ cannot be classically efficiently sampled for all sufficiently large λ ∈ N. In addition, there is a subtle technical difference:
{Aλ}λ ̸∈ SampBPP means that A(1λ) cannot be classically efficiently sampled for a precision ϵ, but this ϵ could be negl(λ),
while QASs requires that the precision is 1/poly(λ). For more details, see Section 3.

7

Theorem 1.4. Int-QASs exist if and only if IV-PoQ exist.

This theorem is considered as an interactive (and average-case) version of SampBPP ̸= SampBQP⇔
FBPP ̸= FBQP, because the existence of Int-QASs is an interactive (and average-case) version of
SampBQP ̸= SampBPP while the existence of IV-PoQ is an interactive (and average-case) version of
FBQP ̸= FBPP.

QAS/OWF condition. In addition to QASs and Int-QASs, we also introduce another new concept, the
QAS/OWF condition, which is inspired by the SZK/OWF condition [Vad06]. As we will explain later, the
QAS/OWF condition plays a pivotal role to show our main result. Roughly speaking, the QAS/OWF condition
is satisfied if there is a pair of candidates of a QAS and a classically-secure OWF such that for all sufficiently
large security parameters, either of them is secure.11 If a QAS exists or a classically-secure OWF exists, then
the QAS/OWF is satisfied, but the converse is unlikely. For example, if there are (candidates of) a QAS that is
secure for all odd security parameters and a OWF that is secure for all even security parameters, then the
QAS/OWF is satisfied, but it does not necessarily imply either of a QAS or a OWF.

We show that the QAS/OWF condition is equivalent to both the existence of IV-PoQ and the existence of
classically-secure OWPuzzs:

Theorem 1.5. IV-PoQ exist if and only if the QAS/OWF condition holds.

Theorem 1.6. Classically-secure OWPuzzs exist if and only if the QAS/OWF condition holds.

By combining these two results, we obtain our main result, Theorem 1.1.

Variants of IV-PoQ. Recall that the verifier of IV-PoQ must be PPT during the interaction. We consider the
following two variants of IV-PoQ, public-coin IV-PoQ, where all the verifier’s messages must be uniformly
random strings, and quantum-verifier IV-PoQ, where the verifier is allowed to be QPT instead of PPT during
the interaction. Clearly, public-coin IV-PoQ is a special case of IV-PoQ (since uniformy random strings
can be sampled in PPT), and IV-PoQ is a special case of quantum-verifier IV-PoQ (since PPT computations
can be simulated in QPT). We show implications in the other direction, making them equivalent in terms of
existence.

Theorem 1.7. The existence of public-coin IV-PoQ, IV-PoQ, and quantum-verifier IV-PoQ are equivalent.

This theorem suggests that the power of IV-PoQ is robust to the choice of the computational power of the
verifier during the interaction.

Zero-knowledge IV-PoQ. We define the zero-knowledge property for IV-PoQ, which roughly requires
that the verifier’s view can be simulated by a PPT simulator. Intuitively, this ensures that the verifier learns
nothing from the prover beyond what could have been computed in PPT. We say that an IV-PoQ satisfies
statistical (resp. computational) zero-knowledge if for any PPT malicious verifier, there is a PPT simulator
that statistically (resp. computationally) simulates the verifier’s view. We say that an IV-PoQ satisfies
honest-verifier statistical zero-knowledge if there is a PPT simulator that statistically simulates the honest
verifier’s view. We prove the following results.

Theorem 1.8. If honest-verifier statistical zero-knowledge IV-PoQ exist, then classically-secure OWFs exist.
11See Definition 4.1 for the precise definition.

8

Theorem 1.9. If classically-secure OWFs exist, then computational zero-knowledge IV-PoQ exist.

The above theorems establish a loose equivalence between zero-knowledge IV-PoQ and classically-secure
OWFs. However, there is still a gap between them, and filling it is left as an open problem.

1.2 Related Work

Khurana and Tomer [KT24b] have recently shown that quantumly-secure OWPuzzs can be constructed
from some assumptions that imply sampling-based quantum advantage (if a mild complexity assumption,
P♯P ̸⊆ (io)BQP/qpoly, is additionally introduced). There is no technical overlap between their paper and
the present paper. However, we here clarify relations and differences, because in a broad perspective, their
paper and the present paper share several important motivations, including the goal of connecting quantum
advantage and “Microcrypt” primitives.

Firstly, what they actually show is not that quantum advantage implies OWPuzzs, but that some assumptions
that imply quantum advantage also imply OWPuzzs if the additional assumption, P♯P ̸⊆ (io)BQP/qpoly,
is introduced. On the other hand, we show that quantum advantage (in the sense of the existence of
IV-PoQ) implies OWPuzzs. Secondly, they construct quantumly-secure OWPuzzs, while we construct only
classically-secure ones.

These differences comes from the difference of main goals. Their goal is to construct quantum
cryptographic primitives from some well-founded assumptions that will not imply OWFs. Therefore, the
constructed primitives should be quantumly-secure. However, in that case, as they also mention in their paper,
some additional assumptions that limit quantum power should be introduced, because quantum advantage
limits only classical power. On the other hand, the goal of the present paper is to characterize quantum
advantage from cryptographic assumptions, and therefore we have to consider quantum advantage itself,
not assumptions that imply quantum advantage. Moreover, we want to avoid introducing any additional
assumptions that are not related to quantum advantage. In that case, it is likely that we have to be satisfied
with classically-secure OWPuzzs.

It is an interesting open problem whether several notions of quantum advantage studied in this paper imply
quantumly-secure OWPuzzs (possibly introducing some additional assumptions that limit quantum power).

1.3 Technical Overview

Our main result is Theorem 1.1, which shows that IV-PoQ exist if and only if classically-secure OWPuzzs
exist. In this technical overview, we provide intuitive explanations for the result. To show it, the QAS/OWF
condition plays a pivotal role. For ease of presentation, we think of the QAS/OWF condition as just the
condition that “a QAS exists or a classically-secure OWF exists” in this overview. Though this is stronger
than the actual definition, this rough description is enough for understanding our ideas.

We first show IV-PoQ⇔ QAS/OWF condition. We next show classically-secure OWPuzzs⇔ QAS/OWF
condition. By combining them, we finally obtain the main result. In the following, we explain each step.

Step 1: IV-PoQ⇒ QAS/OWF condition. Its proof is inspired by [Ost91]. However, we emphasize that
our proof is not a trivial application of [Ost91]. As we will explain later, the same proof of [Ost91] does not
work in our setting, and therefore we had to overcome several technical challenges to show the result.

Let (P,V1,V2) be an ℓ-round IV-PoQ, where P is the prover, V1 is the efficient verifier, and V2 is the
inefficient verifier. (We count two messages as a single round.) Without loss of generality, we can assume that
V1 first sends a message. Let (c1, a1, ..., cℓ, aℓ) be the transcript (i.e., the sequence of all messages exchanged)

9

of the interaction between P and V1, where ci is V1’s i-th message and ai is P’s i-th message. Our goal is, by
assuming that the QAS/OWF condition is not satisfied, to construct a classical PPT adversary P∗ that breaks
the soundness of the IV-PoQ.

If the QAS/OWF condition is not satisfied, then, roughly speaking, both of the following two conditions
are satisfied:

(a) QASs do not exist. In other words, the output probability distribution of any QPT algorithm can be
approximately sampled with a PPT algorithm.

(b) Classically-secure OWFs do not exist.

From (a), the distribution of the transcript generated by the interaction betweenP and V1 can be approximately
sampled with a PPT algorithm S . One might think that if a malicious PPT prover of the IV-PoQ just runs S ,
the soundness of the IV-PoQ is broken. However, it is not correct: The ability to classically efficiently sample
from the distribution ⟨P,V1⟩(1λ) is not enough to break the soundness of the IV-PoQ, because what the PPT
adversary P∗ has to do is not to sample (c1, a1, ..., cℓ, aℓ) but to sample “correct” ak given the transcript
(c1, a1, ..., ck−1, ak−1, ck) obtained so far for every k ∈ [ℓ].

We use (b) to solve it. From S, we define a function f as follows.

1. Get an input (k, r).

2. Run (c1, a1, ..., cℓ, aℓ) = S(1λ; r).12

3. Output (k, c1, a1, ..., ck−1, ak−1, ck).

From (b), OWFs do not exist. Then, distributional OWFs do not exist as well [IL89].13 This means that there
exists a PPT algorithmR such that the statistical distance between (x, f(x)) and (R(f(x)), f(x)) is small
for random x. Therefore, for each k ∈ [ℓ], the following PPT adversary P∗ can return “correct” ak given
(c1, a1, ..., ck−1, ak−1, ck).

1. Take (c1, a1, ..., ck−1, ak−1, ck) as input.

2. Run (k′, r′)← R(k, c1, a1, ..., ck−1, ak−1, ck).

3. Run (c′1, a′1, ..., c′ℓ, a′ℓ) = S(1λ; r′).

4. Output a′k′ .

In this way, we can break the soundness of the IV-PoQ. Hence we have shown that IV-PoQ⇒ the QAS/OWF
condition.

The idea underlying this proof is similar to that of [Ost91]. In [Ost91], it was shown that if SZK is average
hard then OWFs exist. To show it, [Ost91] used the zero-knowledge property to guarantee the existence of a
PPT simulator that can sample the transcript between the verifier and the prover. From that simulator, [Ost91]
constructed a OWF. Very roughly speaking, our S that comes from (a) corresponds to the zero-knowledge
simulator of [Ost91]: the transcript of [Ost91] can be PPT sampled because of the zero-knowledge property
while our transcript can be PPT sampled because QASs do not exist. However, there are several crucial
differences between our setting and [Ost91]’s. In particular, in the setting of [Ost91] the constructed OWF

12For a PPT algorithm A, y = A(x; r) means that A’s output is y when the input is x and the random seed is r.
13An efficiently-computable function f : {0, 1}∗ → {0, 1}∗ is called a classically-secure (resp. quantumly-secure) distributional

OWF if for any PPT (resp. QPT) adversary A, the statistical distance between (x, f(x)) and (A(f(x)), f(x)) is large for random x.

10

can depend on the simulator. On the other hand, in our setting, we finally want to construct a OWF that is
independent of S .14 In order to solve the issue, we use the universal construction of OWFs [Lev85, HKN+05].
We first construct a OWF fS from each S as we have explained above, and next construct a OWF g that is
independent of S by using the universal construction. In addition to this issue, there are several other points
where the direct application of [Ost91] does not work, but for details, see the main body of the paper.

Note that in the actual proof, we do not directly show IV-PoQ⇒ the QAS/OWF condition. We first show
IV-PoQ⇒ Int-QAS, and then show Int-QAS⇒ the QAS/OWF condition in order to obtain stronger results
and to avoid repeating similar proofs twice. However, the proof of Int-QAS⇒ the QAS/OWF condition is
essentially the same as that explained above.

Step 2: Classically-secure OWPuzzs⇒ QAS/OWF condition. Its proof is similar to that of step 1. Let
(Samp, Ver) be a classically-secure OWPuzz. Assume that the QAS/OWF condition is not satisfied. This
roughly means that both of the following two conditions are satisfied.

(a) QASs do not exist.

(b) Classically-secure OWFs do not exist.

From (a), there exists a PPT algorithm S such that the output probability distribution of S(1λ) is close to that
of Samp(1λ) in the statistical distance. From such S , we construct a function f as follows.

1. Get a bit string r as input.

2. Compute (puzz, ans) = S(1λ; r).

3. Output puzz.

From (b), OWFs do not exist. This means that distributional OWFs do not exist as well. Therefore, there
exists a PPT algorithmR such that the statistical distance between (x, f(x)) and (R(f(x)), f(x)) is small
for random x. From S andR, we can construct a PPT adversary A that breaks the security of the OWPuzz as
follows:

1. Take puzz as input.

2. Run r ← R(puzz).

3. Run (puzz′, ans′)← S(1λ; r).

4. Output ans′.

As in step 1, we actually need a OWF that is independent of S, and therefore we have to use the universal
construction [Lev85, HKN+05].

14In the precise definition of QAS/OWF condition, the OWFs should be independent of S. Otherwise, we do not know how to
show the other direction, namely, the QAS/OWF condition⇒ IV-PoQ.

11

Step 3: QAS/OWF condition⇒ IV-PoQ. Assume that the QAS/OWF condition is satisfied. Then, roughly
speaking, a QAS Q exists or a classically-secure OWF f exists. From f , we can construct an IV-PoQ by
using the result of [MY24]. The non-trivial part is to construct an IV-PoQ from Q. For that goal, we use the
idea of [Aar14]. However, as we will explain later, a direct application of [Aar14] does not work for our goal,
and some new technical contributions were needed.

We construct a non-interactive IV-PoQ from Q as follows:

1. The QPT prover runsQ(1λ) N times, where N is a certain polynomial, and sends the result (y1, ..., yN)
to the verifier, where yi is the output of the i-th run of Q(1λ).

2. The unbounded verifier computes the Kolmogorov complexity K(y1, ..., yN)15, and accepts if it is
larger than a certain value.

We can show that thus constructed non-interactive IV-PoQ satisfies completeness and soundness. For
completeness, we use Markov’s inequality to show that K(y1, ..., yN), where yi ← Q(1λ) for each i ∈ [N], is
large with high probability and therefore the verifier accepts. To evaluate the bound of Markov’s inequality, we
use Kraft’s inequality for the prefix Kolmogorov complexity, which says that

∑
x 2−K(x) ≤ 1. For soundness,

assume that there exists a PPT adversary P∗ that outputs (y′1, ..., y′N) that is accepted by the verifier with high
probability, which means that log 1

Pr[(y′1,...,y′N)←Q(1λ)⊗N] ≲ K(y′1, ..., y′N). Because of the property of K, we

have K(y′1, ..., y′N) ≲ log 1
Pr[(y′1,...,y′N)←P∗(1λ)] . By combining them, we have log Pr[(y′1..,y′N)←P∗(1λ)]

Pr[(y′1,...,y′N)←Q(1λ)⊗N] ≈ 0,
which roughly means that the output probability distribution of Q(1λ)⊗N is close to that of P∗(1λ).

From such P∗, we can construct a PPT algorithm whose output probability distribution is close to that of
Q(1λ) in the statistical distance as follows:

1. Run (y′1, ..., y′N)← P∗(1λ).

2. Choose a random i ∈ [N], and output y′i.

However, this means that Q is not a QAS, which contradicts the assumption. In this way, we can show the
QAS/OWF condition⇒ IV-PoQ.

The idea underlying this proof is similar to that of [Aar14]. In fact, the completeness part is exactly
the same. However, for the soundness part, the direct application of [Aar14] does not work, because of
several reasons. Here we explain main two issues. First, the search problem constructed in [Aar14] was not
necessarily verifiable even in unbounded time since Kolmogorov complexity is uncomputable in general.
This is problematic for our goal, because what we want to construct is a non-interactive IV-PoQ where the
prover’s message should be verified at least inefficiently. [Aar14] slightly mentioned an extension of the result
to the time-bounded case, but there was no proof. Second, [Aar14] constructed a search advantange from
SampBQP ̸= SampBPP, which is a worst-case notion. However, what we need is a search advantage
from the existence of QASs, namely, the average-case version of sampling advantage. Hence the proof of
[Aar14] cannot be directly used in our setting.

Step 4: QAS/OWF condition⇒ classically-secure OWPuzzs. The proof uses a similar technique as that
of step 3. If the QAS/OWF condition is satisfied, then, roughly speaking, a classically-secure OWF f exists
or a QAS Q exists. From the OWF f , we can construct a classically-secure OWPuzz easily as follows:

15More precisely, this is time-bounded prefix Kolmogorov complexity KT
U (y1, ..., yN) with time bound T (n) = 22n

and the
universal self-delimiting machine U .

12

• Samp(1λ)→ (puzz, ans) : Choose x← {0, 1}λ, and output puzz := f(x) and ans := x.

• Ver(puzz, ans′)→ ⊤/⊥ : Accept if and only if f(ans′) = puzz.

FromQ, we can construct a non-interactive IV-PoQ as in step 3. From such a non-interactive IV-PoQ, we
can easily construct a classically-secure OWPuzz as follows.

• Samp(1λ)→ (puzz, ans) : Run τ ← P(1λ), and output puzz := 1λ and ans := τ .

• Ver(puzz, ans′)→ ⊤/⊥ : Accept if and only if ⊤ ← V2(1λ, ans′).

2 Preliminaries

2.1 Basic Notations

log x means log2 x and ln x means loge x. We use standard notations of quantum computing and cryptography.
For a bit string x, |x| is its length. N is the set of natural numbers. We use λ as the security parameter.
[n] means the set {1, 2, ..., n}. For a finite set S, x← S means that an element x is sampled uniformly at
random from the set S. negl is a negligible function, and poly is a polynomial. All polynomials appear in this
paper are positive, but for simplicity we do not explicitly mention it. PPT stands for (classical) probabilistic
polynomial-time and QPT stands for quantum polynomial-time. For an algorithm A, y ← A(x) means that
the algorithm A outputs y on input x. If A is a classical probabilistic or quantum algorithm that takes x as
input and outputs bit strings, we often mean A(x) by the output probability distribution of A on input x.
When A is a classical probabilistic algorithm, y = A(x; r) means that the output of A is y if it runs on input
x and with the random seed r. For two interactive algorithms A and B that interact over a classical channel,
τ ← ⟨A(x),B(y)⟩ means that the transcript τ (i.e., the sequence of all messages exchanged) is generated by
the interactive protocol betweenA and B whereA takes x as input and B takes y as input. If bothA and B take
the same input x, we also write it as τ ← ⟨A,B⟩(x). For two quantum states ρ and σ, TD(ρ, σ) := 1

2∥ρ−σ∥1
means their trace distance, where ∥X∥1 := Tr

√
X†X is the trace norm. For two probability distributions

P := {pi}i and Q := {qi}i, SD(Q, P) := 1
2

∑
i |pi− qi| is their statistical distance. If ρ =

∑
i pi|ϕi⟩⟨ϕi| and

σ =
∑

i qi|ϕi⟩⟨ϕi| for some orthonormal basis {|ϕi⟩}i, we have TD(ρ, σ) = SD({pi}i, {qi}i).

2.2 One-Way Functions and Distributional One-Way Functions

We first review the definition of one-way functions (OWFs).

Definition 2.1 (One-Way Functions (OWFs)). A function f : {0, 1}∗ → {0, 1}∗ that is computable in
classical deterministic polynomial-time is a classically-secure (resp. quantumly-secure) one-way function
(OWF) if for any PPT (resp. QPT) adversary A and any polynomial p,

Pr[f(x′) = f(x) : x← {0, 1}λ, x′ ← A(1λ, f(x))] ≤ 1
p(λ) (3)

holds for all sufficiently large λ ∈ N.

We define a variant of OWFs, which we call OWFs on a subset Σ ⊆ N. The difference from the standard
OWFs is that security holds only when the security parameter belongs to the subset Σ of N.

13

Definition 2.2 (OWFs on Σ). Let Σ ⊆ N be a set. A function f : {0, 1}∗ → {0, 1}∗ that is computable
in classical deterministic polynomial-time is a classically-secure (resp. quantumly-secure) OWF on Σ if
there exists an efficiently-computable polynomial n such that for any PPT (resp. QPT) adversary A and any
polynomial p there exists λ∗ ∈ N such that

Pr[f(x′) = f(x) : x← {0, 1}n(λ), x′ ← A(1n(λ), f(x))] ≤ 1
p(λ) (4)

holds for all λ ≥ λ∗ in Σ.

Remark 2.3. In the definition of OWFs (Definition 2.1) the input length is treated as the security parameter,
but in OWFs on Σ (Definition 2.2), we allow the input length to be an arbitrary polynomial in the security
parameter.

Remark 2.4. For any finite Σ, OWFs on Σ always exist because the definition is trivially satisfied. (We have
only to take λ∗ = λmax + 1, where λmax is the largest element of Σ.) However, we include the case when Σ
is finite in the definition for convenience.

The existence of OWFs on N \ Σ for a finite subset Σ is actually equivalent to that of the standard OWFs.
Its proof is given in Appendix B.

Lemma 2.5. Let Σ ⊆ N be a finite set. Classically-secure (resp. quantumly-secure) OWFs exist if and only if
classically-secure (resp. quantumly-secure) OWFs on N \ Σ exist.

We also review the definition of distributional one-way functions (DistOWFs).

Definition 2.6 (Distributional One-Way Functions (DistOWFs) [IL89]). A function f : {0, 1}∗ → {0, 1}∗
that is computable in classical deterministic polynomial-time is a classically-secure (resp. quantumly-secure)
distributional one-way function (DistOWF) if there exists a polynomial p such that

SD({(x, f(x))}x←{0,1}λ , {(A(1λ, f(x)), f(x))}x←{0,1}λ) ≥ 1
p(λ) (5)

holds for any PPT (resp. QPT) adversary A and for all sufficiently large λ ∈ N.

Similarly to OWFs on Σ, we define DistOWFs on Σ for a subset Σ ⊆ N.

Definition 2.7 (DistOWFs on Σ). Let Σ ⊆ N be a set. A function f : {0, 1}∗ → {0, 1}∗ that is computable
in classical deterministic polynomial-time is a classically-secure (resp. quantumly-secure) DistOWF on Σ if
there exist an efficiently-computable polynomial n and a polynomial p such that for any PPT (resp. QPT)
adversary A there exists λ∗ ∈ N such that

SD({(x, f(x))}x←{0,1}n(λ) , {(A(1n(λ), f(x)), f(x))}x←{0,1}n(λ)) ≥
1

p(λ) (6)

holds for all λ ≥ λ∗ in Σ.

Remark 2.8. Again, for any finite Σ, DistOWFs on Σ always exist because the definition is trivially satisfied.
However, we include the case when Σ is finite in the definition for convenience.

14

It is well-known that OWFs exist if and only if DistOWFs exist [IL89, Lemma 1].16 By inspecting its
proof, one can see that the proof gives a “security-parameter-wise” reduction, i.e., if the base DistOWF is
secure on inputs of length λ, then the resulting OWF is secure on inputs of length n(λ) for some efficiently
computable polynomial n.17 This implies equivalence between OWFs on Σ and DistOWFs on Σ on any
subset Σ ⊆ N.

Lemma 2.9 (Based on [IL89, Lemma 1]). For any subset Σ ⊆ N, classically-secure DistOWFs on Σ exist if
and only if classically-secure OWFs on Σ exist.

It is known that there exists a universal construction for OWFs [Lev85], a concrete function that is a OWF
if and only if OWFs exist. We observe that a similar technique yields a universal construction for OWFs on Σ
as well. Its proof is given in Appendix C.

Lemma 2.10. There exists a function g : {0, 1}∗ → {0, 1}∗ that is computable in classical deterministic
polynomial-time such that for any subset Σ ⊆ N, if there exist classically-secure OWFs on Σ, then g is a
classically-secure OWF on Σ.

By combining Lemmata 2.9 and 2.10, we obtain the following corollary, which will be used later.

Corollary 2.11. There exists a function g : {0, 1}∗ → {0, 1}∗ that is computable in classical deterministic
polynomial-time such that for any subset Σ ⊆ N, if there exist classically-secure DistOWFs on Σ, then g is a
classically-secure OWF on Σ.

2.3 One-Way Puzzles

We also define one-way puzzles (OWPuzzs) on a subset Σ ⊆ N, which are a generalization of OWPuzzs
defined in [KT24a]. If Σ = N, the definition becomes the standard one [KT24a], and in that case we call
them just OWPuzzs.

Definition 2.12 (One-Way Puzzles (OWPuzzs) on Σ). Let Σ ⊆ N be a set. A one-way puzzle (OWPuzz) on
Σ is a pair (Samp, Ver) of algorithms such that

• Samp(1λ) → (puzz, ans) : It is a QPT algorithm that, on input the security parameter λ, outputs a
pair (puzz, ans) of classical strings.

• Ver(puzz, ans′) → ⊤/⊥ : It is an unbounded algorithm that, on input (puzz, ans′), outputs either
⊤/⊥.

They satisfy the following properties for some functions c and s such that c(λ)− s(λ) ≥ 1
poly(λ) .

16[IL89] only provides a proof sketch. Its full proof can be found in [Imp92, Theorem 4.2.2]
17More precisely, for any efficiently computable function f : {0, 1}∗ → {0, 1}∗ and polynomial p, there are an efficiently

computable function g : {0, 1}∗ → {0, 1}∗ and efficiently computable polynomial n that satisfy the following: For any PPT
adversary A and a polynomial q, there is a PPT adversary B such that for any λ ∈ N, if

Pr[g(x′) = g(x) : x← {0, 1}n(λ), x′ ← A(1n(λ), g(x))] >
1

q(λ) , (7)

then

SD({(x, f(x))}x←{0,1}λ , {(B(1λ, f(x)), f(x))}x←{0,1}λ) <
1

p(λ) . (8)

15

• c-correctness: There exists λ∗ ∈ N such that

Pr[⊤ ← Ver(puzz, ans) : (puzz, ans)← Samp(1λ)] ≥ c(λ) (9)

holds for all λ ≥ λ∗.

• s-security on Σ: For any QPT adversary A there exists λ∗∗ ∈ N such that

Pr[⊤ ← Ver(puzz,A(1λ, puzz)) : (puzz, ans)← Samp(1λ)] ≤ s(λ) (10)

holds for all λ ≥ λ∗∗ in Σ.

Definition 2.13 (Classically-Secure OWPuzzs on Σ). A OWPuzz on Σ is called a classically-secure OWPuzz
on Σ if the security is required against PPT adversaries.

Remark 2.14. Again, if Σ is a finite set, OWPuzzs on Σ trivially exist, but we include such a case in the
definition for the convenience.

Remark 2.15. All classically-secure OWPuzzs appearing in this paper are ones with (1− negl(λ))-correctness
and (1− 1/poly(λ))-security.

Remark 2.16. It is known that c-correct and s-secure OWPuzzs with c(λ) − s(λ) ≥ 1/poly(λ) can be
amplified to (1− negl(λ))-correct and negl(λ)-secure OWPuzzs [CGG24b]. On the other hand, we do not
know how to amplify the gap of classically-secure OWPuzzs.

OWPuzzs can be constructed from OWFs. We can show that this is also the case for the variants on Σ. Its
proof is given in Appendix D.

Lemma 2.17. Let Σ ⊆ N be a subset. If classically-secure OWFs on Σ exist, then classically-secure OWPuzzs
on Σ with 1-correctness and negl-security exist.

2.4 Inefficient-Verifier Proofs of Quantumness

In this subsection, we define inefficient-verifier proofs of quantumness (IV-PoQ) on a subset Σ ⊆ N. IV-PoQ
defined in [MY24] are special cases when Σ = N.

Definition 2.18 (Inefficient-Verifier Proofs of Quantumness (IV-PoQ) on Σ). Let Σ ⊆ N be a set. An
IV-PoQ on Σ is a tuple (P,V1,V2) of interactive algorithms. P (prover) is QPT, V1 (first verifier) is PPT,
and V2 (second verifier) is unbounded. The protocol is divided into two phases. In the first phase, P and V1
take the security parameter 1λ as input and interact with each other over a classical channel. Let τ be the
transcript, i.e., the sequence of all classical messages exchanged between P and V1. In the second phase, V2
takes 1λ and τ as input and outputs ⊤ (accept) or ⊥ (reject). We require the following two properties for
some functions c and s such that c(λ)− s(λ) ≥ 1/poly(λ).

• c-completeness: There exists λ∗ ∈ N such that

Pr[⊤ ← V2(1λ, τ) : τ ← ⟨P,V1⟩(1λ)] ≥ c(λ) (11)

holds for all λ ≥ λ∗.

16

• s-soundness on Σ: For any PPT prover P∗ there exists λ∗∗ ∈ N such that

Pr[⊤ ← V2(1λ, τ) : τ ← ⟨P∗,V1⟩(1λ)] ≤ s(λ) (12)

holds for all λ ≥ λ∗∗ in Σ.

Moreover, if all the messages sent from V1 are uniformly random strings, we say that the IV-PoQ is public-coin.

Remark 2.19. IV-PoQ on Σ always exist for any finite set Σ, but we include the case in the definition for the
convenience.

Remark 2.20. In the previous definition of IV-PoQ [MY24], V2 does not take 1λ as input. However, this does
not change the definition for interactive IV-PoQ, because 1λ can be added to the first V1’s message. We
explicitly include 1λ in the input of V2 since we also consider non-interactive IV-PoQ in this paper.

[MY24] showed that classically-secure OWFs imply IV-PoQ by constructing IV-PoQ from statistically-
hiding and computationally-binding commitment schemes that are implied by OWFs [HNO+09]. By
inspecting its proof, one can see that the proof gives a “security-parameter-wise” reduction, i.e., for any
efficiently computable polynomial n, we can construct IV-PoQ from classically-secure OWFs such that that if
the base OWF is secure on inputs of length n(λ), then the resulting IV-PoQ is sound on the security parameter
λ.18 Thus, we have the following lemma.

Lemma 2.21 (Based on [HNO+09, MY24]). Let Σ ⊆ N be a set. If classically-secure OWFs on Σ exist, then
IV-PoQ on Σ exist. Moreover, the constructed IV-PoQ is public-coin and satisfies (1− negl)-completeness
and negl-soundness on Σ.

Remark 2.22. In [MY24], they do not explicitly state that the protocol is public-coin. To see that it is indeed
public-coin, observe that the verifier’s messages of the IV-PoQ of [MY24] consist of the receiver’s messages of
a statistically hiding commitment scheme of [HNO+09], descriptions of pairwise independent hash functions,
and uniformly random strings from the verifier of [KMCVY22]. As mentioned in [HNO+09, Section 8], their
commitment scheme is public-coin. Moreover, we can assume that a description of a pairwise independent
hash function is public-coin without loss of generality since we can treat the randomness for choosing the
function as its description. Thus, the IV-PoQ of [MY24] is public-coin.

2.5 Sampling Complexity

Definition 2.23 (Sampling Problems [Aar14, ABK24]). A (polynomially-bounded) sampling problem S is
a collection of probability distributions {Dx}x∈{0,1}∗ , where Dx is a distribution over {0, 1}p(|x|), for some
fixed polynomial p.

18More precisely, for any efficiently computable function f : {0, 1}∗ → {0, 1}∗ and efficiently computable polynomial n, there is
an IV-PoQ (P,V1,V2) such that for any PPT algorithm P∗ and any polynomial p, there are a PPT algorithm A and a polynomial q
such that for any λ ∈ N, if

Pr[⊤ ← V2(1λ, τ) : τ ← ⟨P∗,V1⟩(1λ)] >
1

p(λ) , (13)

then

Pr[f(x′) = f(x) : x← {0, 1}n(λ), x′ ← A(1n(λ), f(x))] >
1

q(λ) . (14)

17

Definition 2.24 (SampBPP and SampBQP [Aar14, ABK24]). SampBPP is the class of (polynomially-
bounded) sampling problems S = {Dx}x∈{0,1}∗ for which there exists a PPT algorithm B such that for all x

and all ϵ > 0, SD(B(x, 1⌊1/ϵ⌋), Dx) ≤ ϵ, where B(x, 1⌊1/ϵ⌋) is the output probability distribution of B on
input (x, 1⌊1/ϵ⌋). SampBQP is defined the same way, except that B is a QPT algorithm rather than a PPT
one.

2.6 Kolmogorov Complexity

In this subsection, we introduce the definition of time-bounded prefix Kolmogorov complexity and prove
lemmas we use in the proof of Lemma 3.8.

Time-bounded prefix Kolmogorov complexity is defined using a special type of Turing machines called
self-delimiting machines.19 Let M be a self-delimiting machine, p be a program, and x be a bit string. We
denote M(p) = x (resp. in at most t steps) if M takes as input a program p in the input tape, M halts
(resp. in at most t steps), and the output tape contains x.20 For a self-delimiting machine M , we say that
p ∈ {0, 1}∗ is a valid program for M if there exists x ∈ {0, 1}∗ such that M(p) = x. For any self-delimiting
machine M , the set of all valid programs p ∈ {0, 1}∗ for M is prefix-free. Here, a set S ⊆ {0, 1}∗ of strings
is called prefix-free, if any x ∈ S is not a prefix of any other y ∈ S.21 A function t : N → N is called
time-constructible if t(n) ≥ n for all n ∈ N and there exists a Turing machine that, on input 1n, halts and
outputs the binary representation of t(n) in time O(t(n)) for all n ∈ N.

Definition 2.25 (Time-Bounded Prefix Kolmogorov Complexity [JL00, LV19]). Let M be a self-delimiting
machine. Let t : N→ N be a time-constructible function and x ∈ {0, 1}∗ be a bit string. Let

Gt
M (x) := {p ∈ {0, 1}∗ : M(p) = x in at most t(|x|) steps}. (15)

The t-time bounded prefix Kolmogorov complexity Kt
M (x) is defined as

Kt
M (x) :=

{
min{|p| : p ∈ Gt

M (x)} If Gt
M (x) is not empty.

∞ If Gt
M (x) is empty.

(16)

Remark 2.26. There is another variant called time-bounded plain Kolmogorov complexity where M is a
normal Turing machine rather than a self-delimiting one. Though the definition of the plain version is simpler
than that of the above prefix version, we choose to use the prefix version since it is unclear if Lemmata 2.28
and 2.29 hold for the plain version (though we believe that we can prove variants of Lemmata 2.28 and 2.29
for the plain version with some additional error terms, which would be also sufficient for the purpose of this
paper).

The following lemma guarantees the existence of a special self-delimiting machine U . We call it the
universal self-delimiting machine.

Lemma 2.27 (Example 7.1.1 of [LV19]). There exists a self-delimiting machine U such that for any
self-delimiting machine M , there exists a constant c > 0 such that

Kct log t
U (x) ≤ Kt

M (x) + c (17)

for all x ∈ {0, 1}∗ and any time-constructible function t : N→ N.

19For the purpose of this paper, their detailed definition is not necessary (for which we refer to [LV19, Chapter 3]). The important
point is, as we will explain, that the set of their valid programs is prefex-free.

20Actually, another additional criteria is required: when it halts, the head of the input tape is on the rightmost bit of p. This in
particular means that M never scans the next bit after p, because the input tape of a self-delimiting machine is one-way.

21x is a prefix of y if there exists a bit string z such that y = x∥z. For example, if x = 101 and y = 101111, then x is a prefix of y.

18

We will use the following lemma to show Lemma 3.8.22

Lemma 2.28. Let m : N → N be a function such that m(λ) ≥ λ for all λ ∈ N. For each λ ∈ N, let Dλ

be a distribution over m(λ) bits. For any k > 0, any time-constructible function t : N → N such that
t(n) = Ω(n2), and for all sufficiently large λ ∈ N,

Pr
x←Dλ

[
Kt

U (x) ≥ log 1
Pr[x← Dλ] − k

]
≥ 1− 1

2k
, (18)

where U is the universal self-delimiting machine.

Proof of Lemma 2.28. Let m : N→ N be a function such that m(λ) ≥ λ for all λ ∈ N. For each λ ∈ N, let
Dλ be a distribution over m(λ) bits. Let t : N→ N be a time-constructible function such that t(n) = Ω(n2).
We will show later that for all sufficiently large λ ∈ N and for all x ∈ {0, 1}m(λ), there exists a program Px

such that |Px| = Kt
U (x) and U(Px) = x in at most t(|x|) steps, where U is the universal self-delimiting

machine. The set {Px}x∈{0,1}m(λ) is prefix-free because U is a self-delimiting machine and Px is valid for all
x ∈ {0, 1}m(λ). It is known that

∑
x∈{0,1}m(λ) 2−|Px| ≤ 1 holds for prefix-free {Px}x∈{0,1}m(λ) . (It is called

Kraft’s inequality (Section 1.11 of [LV19]).) By Markov’s inequality, for any k > 0,

Pr
x←Dλ

[
2−Kt

U (x)

Pr[x← Dλ] ≥ 2k

]
≤ 1

2k

∑
x∈{0,1}m(λ)

Pr[x← Dλ] 2−Kt
U (x)

Pr[x← Dλ] (19)

= 1
2k

∑
x∈{0,1}m(λ)

2−Kt
U (x) = 1

2k

∑
x∈{0,1}m(λ)

2−|Px| ≤ 1
2k

. (20)

Therefore, we obtain

Pr
x←Dλ

[
Kt

U (x) ≥ log 1
Pr[x← Dλ] − k

]
≥ 1− 1

2k
(21)

for any k > 0 and for all sufficiently large λ ∈ N.
In the remaining part, we show that for all sufficiently large λ ∈ N and for all x ∈ {0, 1}m(λ), there exists

a program Px such that |Px| = Kt
U (x) and U(Px) = x in at most t(|x|) steps. To show it, it is sufficient to

show Kt
U (x) <∞ for all sufficiently large λ ∈ N and for all x ∈ {0, 1}m(λ), because in that case we have

only to take Px as the program p that achieves the minimum in Equation (16). In fact, in the following we
show that for all sufficiently large λ ∈ N and all x ∈ {0, 1}m(λ), Kt

U (x) = O(m(λ)).
Later we will show that there exist a self-delimiting machine M and a time-constructible function

T : N → N that satisfy the following: T (n) = O(n) and for any x ∈ {0, 1}∗, KT
M (x) ≤ O(|x|). Then by

Lemma 2.27, there exists a constant c > 0 such that

KcT log T
U (x) ≤ KT

M (x) + c ≤ O(|x|) (22)

for all x ∈ {0, 1}∗. Because t(n) = Ω(n2), t(n) ≥ cT (n) log T (n) for all sufficiently large n. Thus, for all
sufficiently large ℓ ∈ N and for all x ∈ {0, 1}ℓ,

Kt
U (x) ≤ KcT log T

U (x) ≤ O(ℓ). (23)

22The lemma was shown in [LV19] for the prefix Kolmogorov complexity. Here we modify its proof for time-bounded prefix
Kolmogorov complexity.

19

Here, in the first inequality, we have used the fact that Kα
U (x) ≤ Kβ

U (x) for any time-constructible functions α
and β such that α(|x|) ≥ β(|x|). Because m(λ) ≥ λ, this means that Kt

U (x) ≤ O(m(λ)) for all sufficiently
large λ ∈ N and for all x ∈ {0, 1}m(λ).

Finally, we show that there exist a self-delimiting machine M and a time-constructible function T : N→ N
such that T (n) = O(n) and for all x ∈ {0, 1}∗, KT

M (x) ≤ O(|x|). We construct M as follows:

1. M reads the input tape cell one by one. If the input is in the form of 1ℓ∥0∥x∥y, where ℓ ≥ 1, x ∈ {0, 1}∗,
|x| ≥ 1, and y is the string of all blanks, then go to the next step.23 Otherwise, M continues reading
the input tape, which means that M never halts.

2. Copy the first ℓ bits of x∥y into the output tape.

Consider the case where the bit string 1|x|∥0∥x with some x ∈ {0, 1}∗ is written from the leftmost cell of
the input tape and all cells to the right of 1|x|∥0∥x are blanks. Then, for all x ∈ {0, 1}∗, M(1|x|∥0∥x) = x
in at most O(|x|) steps. This means that there exists a time-constructible function T : N → N such that
T (n) = O(n) and

KT
M (x) ≤ |1|x|∥0∥x| = O(|x|) (24)

for all x ∈ {0, 1}∗. Therefore, we complete the proof.

We will also use the following lemma which will be used to show Lemma 3.8.24

Lemma 2.29. Let A be a PPT algorithm that, on input 1λ, outputs an m(λ)-bit string for all λ ∈ N. Here
m : N→ N is a polynomial such that m(λ) ≥ λ for all λ ∈ N. Let pλ,x := Pr[x← A(1λ)] for all λ ∈ N
and for all x ∈ {0, 1}m(λ). Then, for any time-constructible function t : N→ N such that t(n) = 2ω(poly(n)),

Kt
U (x) ≤ log 1

pλ,x
+ O(log λ) (25)

for all sufficiently large λ ∈ N and for all x ∈ Supp(A(1λ)). Here, Supp(A(1λ)) is the support of the
distribution A(1λ) over the outputs of A(1λ), and U is the universal self-delimiting machine.

Proof of Lemma 2.29. For all λ ∈ N and for all x ∈ Supp(A(1λ)), let c(x) be the code word of x obtained
by Shannon-Fano coding (Section 1.11 of [LV19]). By the property of Shannon-Fano coding, the set
{c(x)}x∈Supp(A(1λ)) is prefix-free for all λ ∈ N, and

log 1
pλ,x

< |c(x)| ≤ log 1
pλ,x

+ 1 (26)

is satisfied for all λ ∈ N and for all x ∈ Supp(A(1λ)).
Later we will show that there exist a self-delimiting machine M and a time-constructible function T that

satisfy the following: T (n) = 2O(na) for some constant a ≥ 1 and for all λ ∈ N and for all x ∈ Supp(A(1λ)),

KT
M (x) ≤ |c(x)|+ O(log λ). (27)

23It is possible to check whether the input is in this form by scanning the input tape in the one-way.
24This is essentially shown in [LV19]. However in its proof, the O(log λ) factor in Equation (25) is not explicitly given. Here we

reconstruct the proof to obtain the O(log λ) factor, because we need it for our purpose.

20

By Equation (26), we have

KT
M (x) ≤ log 1

pλ,x
+ O(log λ). (28)

By Lemma 2.27, there exists a constant c > 0 such that

KcT log T
U (x) ≤ KT

M (x) + c ≤ log 1
pλ,x

+ O(log λ), (29)

where U is the self-delimiting machine.
Let t : N → N be a time-constructible function such that t(n) = 2ω(poly(n)). Then we have t(n) ≥

cT (n) log T (n) for all sufficiently large n ∈ N. Because m(λ) ≥ λ for all λ ∈ N, this means t(m(λ)) ≥
cT (m(λ)) log T (m(λ)) for all sufficiently large λ ∈ N. Thus, for all sufficiently large λ ∈ N and for all
x ∈ Supp(A(1λ)),

Kt
U (x) ≤ KcT log T

U (x) ≤ log 1
pλ,x

+ O(log λ). (30)

Here, in the first inequality, we have used the fact that Kα
U (x) ≤ Kβ

U (x) for any time-constructible functions
α and β such that α(|x|) ≥ β(|x|).

In the remaining part, we show that there exist a self-delimiting machine M and a time-constructible
function T : N→ N such that T (n) = 2O(na) for some constant a ≥ 1 and KT

M (x) ≤ |c(x)|+ O(log λ) for
all λ ∈ N and for all x ∈ Supp(A(1λ)). We construct the self-delimiting machine M as follows:

1. M reads the input tape cell one by one. If the input is in the form of 1ℓ∥0∥λ̂∥y∥z, where ℓ ≥ 1,
λ̂ ∈ {0, 1}ℓ, y ∈ {0, 1}∗, |y| ≥ 1, and z is the string of all blanks, then go to the next step.25 Otherwise,
M continues reading the input tape, which means that M never halts.

2. Let λ ∈ N be the integer whose binary representation is λ̂ ∈ {0, 1}ℓ.

3. By the brute-force computation, M computes the binary representation of pλ,x = Pr[x← A(1λ)] for
all x ∈ {0, 1}m(λ) and stores them in the work tape.

4. For all x ∈ Supp(A(1λ)), M computes c(x) by using Shannon-Fano coding and stores the list
{c(x)}x∈Supp(A(1λ)) in the work tape.

5. M reads the input tape from the (2ℓ + 2)-th cell one by one. If there exists x′ ∈ Supp(A(1λ)) such
that y = c(x′)∥z′, where z′ = {0, 1,□}, then go to the next step. Otherwise, M continues reading the
input tape, which means that M never halts.

6. M halts and outputs x′.

We evaluate the running time of M . Let r : N → N be the running time of A. Because A is a PPT
algorithm, r is a polynomial and therefore there exists a constant a ≥ 1 such that r(n) = O(na). For all
λ ∈ N and for all x ∈ {0, 1}m(λ), the binary expansion of px is computed in time 2O(r(λ)) = 2O(λa) by the
brute-force computation because the running time of A(1λ) is r(λ) and the number of random bits used is at
most O(r(λ)). Thus for all λ ∈ N, M can obtain {px}x∈{0,1}m(λ) in time 2O(λa+m(λ)). Moreover in step 4,
M obtains {c(x)}x∈Supp(A(1λ)) as follows:

25It is possible to check whether the input is in this form by scanning the input tape by the (2ℓ + 2)-th cell in the one-way.

21

i. Sort {pλ,x}x∈Supp(A(1λ)) in the descending order from left to right. For each x ∈ Supp(A(1λ)), let
Nx be the integer such that pλ,x appears in the Nx-th position of the sorted list.

ii. Let P1 := 0. For all 2 ≤ i ≤ |Supp(A(1λ))|, let

Pi :=
∑

x′∈Supp(A(1λ)):Nx′<i

pλ,x′ . (31)

iii. For all x ∈ Supp(A(1λ)), the code word c(x) of x is obtained by truncating the binary expansion of
PNx such that its length |c(x)| satisfies

log 1
px

< |c(x)| ≤ log 1
px

+ 1. (32)

Then, M can obtain the list {c(x)}x∈Supp(A(1λ)) in time 2O(m(λ)). Totally in step 3 and 4, M runs in time
2O(λa+m(λ)). Because m(λ) ≥ λ and a ≥ 1, λa + m(λ) = O(m(λ)a + m(λ)) = O(m(λ)a). This means
M runs in time 2O(m(λ)a) in step 3 and 4.

Consider the case where the bit string 1|λ̂|∥0∥λ̂∥c(x) with some λ ∈ N and some x ∈ Supp(A(1λ)) is
written from the leftmost cell of the input tape. Let all cells to the right of 1|λ̂|∥0∥λ̂∥c(x) be blanks. Then, for
all λ ∈ N and for all x ∈ Supp(A(1λ)), M(1|λ̂|∥0∥λ̂∥c(x)) = x in at most 2O(|x|a) steps. This means that
there exists a time-constructible function T : N→ N such that T (n) = 2O(na) for some constant a ≥ 1 and
for all λ ∈ N and for all x ∈ Supp(A(1λ)),

KT
M (x) ≤ |1|λ̂|∥0∥λ̂∥c(x)| ≤ |c(x)|+ 2⌈log λ⌉+ 1 = |c(x)|+ O(log λ). (33)

We complete the proof.

3 QASs and Int-QASs

In this section, we introduce two new concepts, quantum advantage samplers (QASs) and interactive quantum
advantage samplers (Int-QASs). We also show some results on them.

3.1 Definitions of QASs and Int-QASs

We first define QASs on a set Σ ⊆ N. If Σ = N, we call them just QASs.

Definition 3.1 (Quantum Advantage Samplers (QASs) on Σ). Let Σ ⊆ N be a set. Let A be a QPT
algorithm that takes 1λ as input and outputs a classical string. A is a quantum advantage sampler (QAS) on
Σ if the following is satisfied: There exists a polynomial p such that for any PPT algorithm B (that takes 1λ

as input and outputs a classical string) there exists λ∗ ∈ N such that

SD(A(1λ),B(1λ)) >
1

p(λ) (34)

holds for all λ ≥ λ∗ in Σ.

22

Remark 3.2. For any finite set Σ, QASs on Σ always exist, but we include the case in the definition for the
convenience.

We also define interactive versions of QASs, which we call Int-QASs, as follows.

Definition 3.3 (Interactive Quantum Advantage Samplers (Int-QASs)). Let (A, C) be a tuple of two
interactive QPT algorithms A and C that communicate over a classical channel. (A, C) is an interactive
quantum advantage sampler (Int-QAS) if the following is satisfied: There exists a polynomial p such that for
any PPT algorithm B that interacts with C,

SD(⟨A, C⟩(1λ), ⟨B, C⟩(1λ)) >
1

p(λ) (35)

holds for all sufficiently large λ ∈ N. Here, ⟨A, C⟩(1λ) (resp. ⟨B, C⟩(1λ)) is the probability distribution over
the transcript of the interaction between A (resp. B) and C.

3.2 Relation Between QASs and Sampling Complexity Classes

We can show that the existence of QASs implies SampBPP ̸= SampBQP.

Lemma 3.4. Let Σ ⊆ N be an infinite subset. If QASs on Σ exist, then SampBPP ̸= SampBQP.

Proof of Lemma 3.4. LetA be a QAS on an infinite subset Σ ⊆ N and letA(1λ) be the output distribution ofA
on input 1λ. Consider the collection {A(1λ)}λ∈Σ of distributions. Then clearly {A(1λ)}λ∈Σ ∈ SampBQP.
What we need to show is that {A(1λ)}λ∈Σ /∈ SampBPP. Because A is a QAS on Σ, there exists a
polynomial p such that for any PPT algorithm B, there exists λ∗ ∈ N such that SD(A(1λ),B(1λ)) > 1

p(λ)
for all λ ≥ λ∗ in Σ. Because Σ is an infinite set, there exists x ∈ Σ such that x ≥ λ∗. Then for
any PPT algorithm B, there exists x and 1/p(x) such that SD(A(1x),B(1x)) > 1

p(x) , which means that
{A(1λ)}λ∈Σ ̸∈ SampBPP.

Remark 3.5. Note that the other direction, namely, SampBPP ̸= SampBQP implies the existence of
QASs, does not seem to hold, because of the following reason: Assume that SampBPP ̸= SampBQP.
Then there exists a sampling problem {Dx}x that is in SampBQP but not in SampBPP. The fact that
{Dx}x ̸∈ SampBPP means that for any PPT algorithm B, there exist x and ϵ > 0 such that

SD(Dx,B(x, 1⌊1/ϵ⌋)) > ϵ. (36)

This does not necessarily mean that a QPT algorithm A that samples {Dx}x is a QAS. For example, ϵ in
Equation (36) could be 2−|x|.

3.3 Non-Interactive IV-PoQ Imply QASs

In this subsection, we show the following.

Lemma 3.6. Let Σ ⊆ N be an infinite subset. If non-interactive IV-PoQ on Σ exist, then QASs on Σ exist.

Proof of Lemma 3.6. Let (P,V1,V2) be a non-interactive IV-PoQ on Σ with c-completeness and s-soundness
such that c(λ)− s(λ) ≥ 1

q(λ) for some polynomial q. P takes 1λ as input and outputs τ . V1 does nothing.
V2 takes 1λ and τ as input and outputs ⊤/⊥. Then, we can show that P is a QAS on Σ. For the sake of

23

contradiction, assume that P is not a QAS on Σ. Then, for any polynomial p, there exists a PPT algorithm P∗p
such that

SD(P(1λ),P∗p (1λ)) ≤ 1
p(λ) (37)

holds for infinitely many λ ∈ Σ. P∗p can break the s-soundness of the non-interactive IV-PoQ. In fact, if we
take p = 2q,

Pr[⊤ ← V2(1λ, τ) : τ ← P∗2q(1λ)] ≥ Pr[⊤ ← V2(1λ, τ) : τ ← P(1λ)]− SD(P(1λ),P∗2q(1λ)) (38)

≥ c(λ)− 1
2q(λ) (39)

> s(λ) (40)

holds for infinitely many λ ∈ Σ, which breaks s-soundness.

3.4 QASs Imply Non-Interactive IV-PoQ

The goal of this subsection is to show the following.

Lemma 3.7. Let Σ ⊆ N be an infinite subset. If QASs on Σ exist, then non-interactive IV-PoQ on Σ exist.

We can directly show Lemma 3.7. However, we first show the following lemma, Lemma 3.8, because
it is more convenient for our later proofs. We then show that if A in Lemma 3.8 is a QAS, then (P,V) in
Lemma 3.8 is actually a non-interactive IV-PoQ, which shows Lemma 3.7.

Lemma 3.8. Let A be a QPT algorithm that takes 1λ as input and outputs a classical string. For any
polynomial q, there exists the following non-interactive protocol (P,V):

• P is a QPT algorithm that, on input 1λ, outputs a bit string τ . V is an unbounded algorithm that, on
input 1λ and a bit string τ , outputs ⊤/⊥.

• For all sufficiently large λ ∈ N,

Pr[⊤ ← V(1λ, τ) : τ ← P(1λ)] ≥ 1− 1
λlog λ

. (41)

• If there exist a PPT algorithm P∗ and an infinite subset Λ ⊆ N such that

Pr[⊤ ← V(1λ, τ) : τ ← P∗(1λ)] ≥ 1− 1
λlog λ

− 1
q(λ)2 (42)

holds for all λ ∈ Λ, then there exists a PPT algorithm B such that

SD(A(1λ),B(1λ)) ≤ 1
q(λ) (43)

holds for all sufficiently large λ ∈ Λ.

Proof of Lemma 3.8. We use the technique [Aar14] of constructing a search problem from a sampling
problem. Let A(1λ) → {0, 1}m(λ) be a QPT algorithm and py := Pr[y ← A(1λ)] be the probability that
A(1λ) outputs y ∈ {0, 1}m(λ), where m is a polynomial.

For any polynomial q, we construct a non-interactive protocol (P,V) as follows.

24

1. If q(λ)4 ≥ λ, set N(λ) := q(λ)4. Otherwise, set N(λ) := λ. P runs yi ← A(1λ) for each i ∈ [N],
and sends (y1, ..., yN) to V .

2. V outputs ⊤ if

KT
U (y1, ..., yN) ≥ log 1

py1 · · · pyN

− log2 λ, (44)

where KT
U denotes time-bounded prefix Kolmogorov complexity with time-bound T (mN) := 22mN

and the universal self-delimiting machine U . Otherwise V outputs ⊥. Note that given (y1, ..., yN),
whether (y1, ..., yN) satisfies Equation (44) or not can be checked in an unbounded time, because KT

U

is computable.

We first show the second item of the lemma. From Lemma 2.28,

Pr
(y1,...,yN)←A(1λ)⊗N

[
KT

U (y1, ..., yN) ≥ log 1
py1 · · · pyN

− log2 λ

]
≥ 1− 1

λlog λ
(45)

for all sufficiently large λ ∈ N, where A(1λ)⊗N means that A(1λ) is executed N times. Here we have used
the facts that m(λ)N(λ) ≥ λ for all λ ∈ N and T (n) = 22n = Ω(n2) to apply Lemma 2.28. Thus,

Pr[⊤ ← V(1λ, y1, ..., yN) : (y1, ..., yN)← P(1λ)] (46)

= Pr
(y1,...,yN)←A(1λ)⊗N

[
KT

U (y1, ..., yN) ≥ log 1
py1 · · · pyN

− log2 λ

]
(47)

≥ 1− 1
λlog λ

(48)

for all sufficiently large λ ∈ N.
We next show the third item of the lemma. We assume that there exists a PPT algorithm P∗ and an infinite

subset Λ ⊆ N such that

Pr[⊤ ← V(1λ, y1, ..., yN) : (y1, ..., yN)← P∗(1λ)] ≥ 1− 1
λlog λ

− 1
q(λ)2 (49)

holds for all λ ∈ Λ. From this P∗, we construct the following PPT algorithm B.

• B(1λ)→ y:

1. Take 1λ as input.
2. Run (y1, ..., yN)← P∗(1λ).
3. Sample i← [N].
4. Output y := yi.

Our goal is to show

SD(A(1λ),B(1λ)) ≤ 1
N1/4(λ)

≤ 1
q(λ) (50)

25

for all sufficiently large λ ∈ Λ. We introduce the following projection

Π :=
∑

(y1,...,yN):⊤←V(1λ,y1,...,yN)
|y1, ..., yN ⟩⟨y1, ..., yN | (51)

and we define the following quantum states:

C :=
∑

y1,...,yN

Pr[(y1, ..., yN)← P∗(1λ)]|y1, ..., yN ⟩⟨y1, ..., yN | (52)

C ′ := ΠC

Tr(ΠC) (53)

Ci := Tr¬i(C) =
∑

y1,...,yi,...,yN

Pr[(y1, ..., yi, ..., yN)← P∗(1λ)]|yi⟩⟨yi| (54)

C ′i := Tr¬i(C ′) (55)
B := Ei←[N]Ci (56)
B′ := Ei←[N]C

′
i (57)

A :=
∑

y

Pr[y ← A(1λ)]|y⟩⟨y|. (58)

Here, Tr¬i refers to the operation of tracing out all coordinates except for the i-th coordinate. Then, by the
triangle inequality,

SD(A(1λ),B(1λ)) = TD(A, B) ≤ TD(B, B′) + TD(A, B′). (59)

In the following, we bound TD(B, B′) and TD(A, B′), respectively.

26

First, we can bound TD(B, B′) as follows:

TD(B, B′) = TD(EiCi,EiC
′
i) (60)

≤ EiTD(Ci, C ′i) (By the strong convexity of TD.) (61)
= EiTD(Tr¬i(C), Tr¬i(C ′)) (62)
≤ EiTD(C, C ′) (63)
= TD(C, C ′) (64)

= 1
2

∥∥∥∥C − ΠC

Tr(ΠC)

∥∥∥∥
1

(65)

≤ 1
2∥(I −Π)C∥1 + 1

2

∥∥∥∥ΠC − ΠC

Tr(ΠC)

∥∥∥∥
1

(By the triangle inequality.) (66)

= 1
2Tr|(I −Π)C|+ 1

2

∥∥∥∥(Tr(ΠC)− 1) ΠC

Tr(ΠC)

∥∥∥∥
1

(67)

= 1
2Tr|(I −Π)C|+ 1

2 |Tr(ΠC)− 1|
∥∥∥∥ ΠC

Tr(ΠC)

∥∥∥∥
1

(68)

= 1
2Tr((I −Π)C) + 1

2(1− Tr(ΠC))
∥∥∥∥ ΠC

Tr(ΠC)

∥∥∥∥
1

(69)

= 1− Tr(ΠC) (70)

= 1−
∑

(y1,...,yN):⊤←V(1λ,y1,...,yN)
Pr[(y1, ..., yN)← P∗(1λ)] (71)

≤ 1
λlog λ

+ 1√
N(λ)

(By Equation (49).) (72)

holds for all λ ∈ Λ. To derive Equation (69), we have used the fact that (I −Π)C is positive semidefinite.
Next, we evaluate the upper bound of TD(A, B′). Let c′i,yi

be the eigenvalue of C ′i with respect to the
eigenstate |yi⟩. Then,

TD(A, B′) ≤ 1
N

N∑
i=1

TD(C ′i, A) (73)

= 1
N

N∑
i=1

SD({c′i,yi
}yi , {py}y) (74)

≤

√√√√ 1
N

N∑
i=1

SD({c′i,yi
}yi , {py}y)2 (By Jensen’s inequality.) (75)

≤

√√√√ ln 2
2N

N∑
i=1

DKL({c′i,yi
}yi∥{py}y). (By Pinsker’s inequality.) (76)

Here, DKL denotes the KL-divergence defined as

DKL({px}x∥{qx}x) :=
{ ∑

x px log px

qx
Supp({px}x) ⊆ Supp({qx}x)

∞ otherwise,
(77)

27

where Supp is the support, and Pinsker’s inequality is the following one (Chapter 3 of [CK11]):

SD({px}x, {qx}x) ≤

√
ln 2
2 DKL({px}x∥{qx}x). (78)

Let Y := (y1, ..., yN). Let pY :=
∏N

i=1 pyi . Let qY (resp. q′Y) be the eigenvalue of C (resp. C ′) with re-
spect to the eigenstate |Y ⟩. Define G :=

{
Y

∣∣∣⊤ ← V(1λ, Y) ∧ log q′Y
pY

> 0
}

and G′ :=
{

Y
∣∣∣⊤ ← V(1λ, Y)

}
.

Since {c′i,yi
}yi is a marginal distribution of {q′Y }Y ,

N∑
i=1

DKL({c′i,yi
}yi∥{py}y) ≤ DKL({q′Y }Y ∥{pY }Y) (See below.) (79)

=
∑
Y

q′Y log q′Y
pY

(80)

=
∑

Y :⊤←V(1λ,Y)
q′Y log q′Y

pY
(81)

≤
∑

Y ∈G

q′Y log q′Y
pY

(82)

≤ 1
1− δ

∑
Y ∈G

qY

(
log qY

pY
+ log 1

1− δ

)
(See below.) (83)

≤ 1
1− δ

∑
Y ∈G

qY

(
log qY

pY
+ 1

) (
If δ ≤ 1

2 , then log 1
1− δ

≤ 1.
)

(84)

≤ 1
1− δ

(
max
Y ∈G′

log qY

pY
+ 1

) ∑
Y ∈G

qY (85)

≤ 1
1− δ

(
max
Y ∈G′

log qY

pY
+ 1

)
(86)

holds for all sufficiently large λ ∈ Λ, where δ := 1
λlog λ + 1√

N(λ)
, which is less than 1/2 for sufficiently large

λ. In Equation (79), we have used the following lemma.

Lemma 3.9 ([Rao08]). Let R be a distribution over [M]N , with the marginal distribution Ri on the i-th
coordinate. Let D be a distribution over [M]. Then

N∑
i=1

DKL(Ri∥D) ≤ DKL(R∥DN). (87)

In Equation (83), we have used the fact that q′Y ≤
qY

1−δ , which can be shown as follows. First, when

28

Y ̸∈ G′, q′Y = 0 and the inequality trivially holds. Second, when Y ∈ G′,

qY = ⟨Y |C|Y ⟩ (88)
= ⟨Y |ΠC|Y ⟩ (Because Y ∈ G′.) (89)
= Tr(ΠC)⟨Y |C ′|Y ⟩ (By the definition of C ′.) (90)

= q′Y
∑

Y :⊤←V(1λ,Y)
Pr[Y ← P∗(1λ)] (91)

= q′Y Pr[⊤ ← V(1λ, Y) : (1λ, Y)← P∗(1λ)] (92)
≥ q′Y (1− δ). (93)

Here the last inequality is from Equation (49).
By Lemma 2.29, for all sufficiently large λ and all Y ∈ Supp(P∗(1λ)),

KT
U (Y) ≤ log 1

qY
+ O(log λ). (94)

Here we have used the facts that m(λ)N(λ) ≥ λ for all λ ∈ N and T (n) = 22n = 2ω(poly(n)) to apply
Lemma 2.29.

By combining Equations (44) and (94), we obtain

log 1
py1 · · · pyN

≤ log 1
qY

+ O(log λ) + log2 λ (95)

for any Y ∈ G′ ∩ Supp(P∗(1λ)). Thus,

max
Y ∈G′

log qY

pY
= max

Y ∈G′∩Supp(P∗(1λ))
log qY

pY
≤ O(log λ) + log2 λ. (96)

From Equations (76), (86) and (96),

TD(A, B′) ≤

√
ln 2(log2 λ + O(log λ))

2(1− δ)N (97)

≤

√
log2 λ + O(log λ)

N

(
If δ ≤ 1− ln 2

2 , then
1

1− δ
≤ 2

ln 2 .
)

(98)

≤

√
2 log2 λ

N
(99)

holds for all sufficiently large λ ∈ Λ. Therefore, from Equations (72) and (99)

SD(A(1λ),B(1λ)) ≤ 1
λlog λ

+ 1√
N

+

√
2 log2 λ

N
≤ N

1
4

√
N

= 1
N

1
4

(100)

holds for all sufficiently large λ ∈ Λ.

Now we show Lemma 3.7 by arguing that if A in Lemma 3.8 is a QAS, then the (P,V) in Lemma 3.8 is
actually a non-interactive IV-PoQ.

29

Proof of Lemma 3.7. Let Σ ⊆ N be an infinite subset. Let A be a QAS on Σ. Then, from the definition of
QASs on Σ, there exists a polynomial q such that for any PPT algorithm B there exists λ∗ ∈ N such that

SD(A(1λ),B(1λ)) >
1

q(λ) (101)

holds for all λ ≥ λ∗ in Σ. From Lemma 3.8, we can construct a non-interactive protocol (P,V) from the
aboveA and q. We show that (P,V) is actually a non-interactive IV-PoQ on Σ with (1− 1

λlog λ)-completeness
and (1− 1

λlog λ − 1
q(λ)2)-soundness.

First, the completeness is obtained from the second item of Lemma 3.8. Next, we show the soundness.
For the sake of contradiction, we assume that the soundness is not satisfied, which means that there exist a
PPT algorithm P∗ and an infinite subset Λ ⊆ Σ such that

Pr[⊤ ← V(1λ, τ) : τ ← P∗(1λ)] > 1− 1
λlog λ

− 1
q(λ)2 (102)

holds for all λ ∈ Λ. Then, from the third item of Lemma 3.8, there exists a PPT algorithm B∗ such that

SD(A(1λ),B∗(1λ)) ≤ 1
q(λ) (103)

holds for all sufficiently large λ ∈ Λ. This contradicts Equation (101) because Λ is an infinite subset of Σ.
Therefore, the soundness is satisfied.

4 The QAS/OWF Condition

We also introduce another new concept, which we call the QAS/OWF condition.

Definition 4.1 (The QAS/OWF Condition). The QAS/OWF condition holds if there exist a polynomial p, a
QPT algorithm Q that takes 1λ as input and outputs a classical string, and a function f : {0, 1}∗ → {0, 1}∗
that is computable in classical deterministic polynomial-time such that for any PPT algorithm S , the following
holds: if we define

ΣS :=
{

λ ∈ N
∣∣∣∣ SD(Q(1λ),S(1λ)) ≤ 1

p(λ)

}
, (104)

then f is a classically-secure OWF on ΣS .

We can show the following result:

Theorem 4.2. If the QAS/OWF condition is satisfied, then quantumly-secure OWFs exist or SampBPP ̸=
SampBQP.

Theorem 1.2 is obtained by combining this theorem and the equivalence of IV-PoQ and the QAS/OWF
condition, which will be shown in Section 5.

Proof of Theorem 4.2. We first show that the QAS/OWF condition implies the existence of classically-secure
OWFs or SampBPP ̸= SampBQP. Let us assume that the QAS/OWF condition is satisfied. Then, by
the definition of the QAS/OWF condition, there exist a polynomial p, a QPT algorithm Q, and a function f
that is computable in classical deterministic polynomial-time such that for any PPT algorithm S , if we define

ΣS :=
{

λ ∈ N
∣∣∣∣ SD(Q(1λ),S(1λ)) ≤ 1

p(λ)

}
, (105)

then f is a classically-secure OWF on ΣS . We divide the proof into the following two cases:

30

There exist a PPT algorithm S and a finite subset Λ ⊆ N such that ΣS = N \ Λ. In this case, from
Lemma 2.5, classically-secure OWFs exist.

For any PPT algorithm S and for any finite subset Λ ⊆ N, ΣS ̸= N \ Λ. In this case, if we define the
sampling problem {Q(1λ)}λ∈N, for any PPT algorithm S, there exists an x ∈ N \ ΣS such that

SD(Q(1x),S(1x)) >
1

p(x) , (106)

which means that {Q(1λ)}λ∈N /∈ SampBPP. On the other hand, it is clear that {Q(1λ)}λ∈N ∈ SampBQP
and therefore SampBPP ̸= SampBQP.

We next show that if classically-secure OWFs exist, then quantumly-secure OWFs exist or SampBPP ̸=
SampBQP. Let f : {0, 1}∗ → {0, 1}∗ be a classically-secure OWF. For the sake of contradiction, we
assume that quantumly-secure OWFs do not exist and SampBPP = SampBQP. Then, there exists a
QPT adversary A and a polynomial p such that

Pr[f(z) = f(x) : x← {0, 1}λ, z ← A(1λ, f(x))] ≥ 1
p(λ) (107)

holds for infinitely many λ ∈ N. Let A(1λ, f(x)) be the output distribution of A on input (1λ, f(x)). Then,
{A(1λ, f(x))}λ,f(x) ∈ SampBQP and therefore {A(1λ, f(x))}λ,f(x) ∈ SampBPP. (Remember that
we have assumed SampBQP = SampBPP.) Thus, by the definition of SampBPP, there exists a PPT
algorithm B such that SD(A(1λ, f(x)),B(1λ, f(x))) ≤ 1

2p(λ) for all λ and all f(x). Then, for infinitely many
λ ∈ N,

Pr[f(z) = f(x) : x← {0, 1}λ, z ← B(1λ, f(x))] (108)
≥ Pr[f(z) = f(x) : x← {0, 1}λ, z ← A(1λ, f(x))]− SD(A(1λ, f(x)),B(1λ, f(x))) (109)

>
1

p(λ) −
1

2p(λ) = 1
2p(λ) . (110)

This means that f is not classically-secure, which is the contradiction.

We show a lemma that gives a rephrasing of the negation of the QAS/OWF condition. Before presenting
the lemma, we explain its intuition and motivation. A straightforward negation of the QAS/OWF condition
gives the following: For any polynomial p, QPT algorithm Q, and a polynomial-time computable function
f , there is a PPT algorithm S such that f is not a classically-secure OWF on ΣS where ΣS is as defined
in Definition 4.1. In this statement, f is not allowed to depend on S. On the other hand, in the proofs of
Theorems 5.2 and 5.5, we need to allow f to depend on S due to a technical reason. The following lemma
roughly shows that we can change the order of quantifiers of f and S in the above statement so that f can
depend on S . Moreover, we require that f ’s distributional one-wayness (rather than one-wayness) is broken
on ΣS . The formal statement is given below.

Lemma 4.3. If the QAS/OWF condition is not satisfied, then the following statement is satisfied: for
any QPT algorthm Q that takes 1λ as input and outputs a classical string and for any polynomial p,
there exists a PPT algorithm S such that for any efficiently-computable polynomial n and any family
{fλ : {0, 1}n(λ) → {0, 1}∗}λ∈N of functions that are computable in classical deterministic polynomial-time,
there exists a PPT algorithmR such that

SD(Q(1λ),S(1λ)) ≤ 1
p(λ) (111)

31

and

SD({x, fλ(x)}x←{0,1}n(λ) , {R(1n(λ), fλ(x)), fλ(x)}x←{0,1}n(λ)) ≤
1

p(λ) (112)

hold for infinitely many λ ∈ N.

Proof of Lemma 4.3. For the sake of contradiction, we assume the following:� �
Assumption 1. There exist a QPT algorithm Q and a polynomial p such that for any PPT algorithm
S, there exist an efficiently-computable polynomial n and a family {fSλ : {0, 1}n(λ) → {0, 1}∗}λ∈N of
functions that are computable in classical deterministic polynomial-time such that for any PPT algorithm
R,

SD(Q(1λ),S(1λ)) >
1

p(λ) (113)

or

SD({x, fSλ (x)}x←{0,1}n(λ) , {R(1n(λ), fSλ (x)), fSλ (x)}x←{0,1}n(λ)) >
1

p(λ) (114)

holds for all sufficiently large λ ∈ N.� �
It suffices to show that Assumption 1 implies the QAS/OWF condition. By using the above {fSλ }λ∈N, we
define a function fS : {0, 1}∗ → {0, 1}∗ that is computable in classical deterministic polynomial-time as
follows:

• fS : {0, 1}∗ → {0, 1}∗:

1. Take x ∈ {0, 1}ℓ as input.
2. Let λ∗ be the maximum λ such that n(λ) ≤ ℓ. Let x′ be the n(λ∗)-bit prefix of x.
3. Output fSλ∗(x′).

Then, for any λ that satisfies Equation (114),

SD({x, fS(x)}x←{0,1}n(λ) , {R(1n(λ), fS(x)), fS(x)}x←{0,1}n(λ)) (115)

= SD({x, fSλ (x)}x←{0,1}n(λ) , {R(1n(λ), fSλ (x)), fSλ (x)}x←{0,1}n(λ)) >
1

p(λ) . (116)

From Assumption 1 and Equation (116), we obtain the following.

32

� �
Assumption 1’. There exist a QPT algorithm Q and a polynomial p such that for any PPT algorithm S ,
there exist a function fS : {0, 1}∗ → {0, 1}∗ that is computable in classical deterministic polynomial-time
and an efficiently-computable polynomial n such that for any PPT algorithmR,

SD(Q(1λ),S(1λ)) >
1

p(λ) (117)

or

SD({x, fS(x)}x←{0,1}n(λ) , {R(1n(λ), fS(x)), fS(x)}x←{0,1}n(λ)) >
1

p(λ) (118)

holds for all sufficiently large λ ∈ N.� �
Assumption 1’ implies the following:� �

Assumption 1”. There exist a QPT algorithmQ and a polynomial p such that for any PPT algorithm S ,
there exists a function fS : {0, 1}∗ → {0, 1}∗ that is computable in classical deterministic polynomial-
time such that the following holds: if we let

ΣS :=
{

λ ∈ N
∣∣∣∣ SD(Q(1λ),S(1λ)) ≤ 1

p(λ)

}
, (119)

then fS is a classically-secure DistOWF on ΣS .� �
By Corollary 2.11, Assumption 1” implies the QAS/OWF condition.

5 Equivalence of IV-PoQ and Classically-Secure OWPuzzs

Our main result, Theorem 1.1, that IV-PoQ exist if and only if classically-secure OWPuzzs exist is obtained
by combining the following theorems. (For relations among these theorems, see Figure 2.)

Theorem 5.1. If IV-PoQ exist, then Int-QASs exist.

Theorem 5.2. If Int-QASs exist, then the QAS/OWF condition is satisfied.

Theorem 5.3. If the QAS/OWF condition is satisfied, then IV-PoQ exist.

Theorem 5.4. If the QAS/OWF condition is satisfied, then classically-secure OWPuzzs exist.

Theorem 5.5. If classically-secure OWPuzzs exist, then the QAS/OWF condition is satisfied.

Proofs of these theorems are given in the following subsections.

33

IV-PoQ
(Definition 2.18)

Int-QASs
(Definition 3.3)

The QAS/OWF condition
(Definition 4.1)

Classically-secure
OWPuzzs

(Definition 2.13)
Theorem 5.1

Theorem 5.2

Theorem 5.3 Theorem 5.4

Theorem 5.5

Figure 2: Relations among theorems.

5.1 Proof of Theorem 5.1

In this subsection, we show Theorem 5.1, namely, IV-PoQ⇒ Int-QASs.

Proof of Theorem 5.1. A proof is similar to that of Lemma 3.6. Let (P,V1,V2) be an IV-PoQ with c-
completeness and s-soundness such that c(λ)−s(λ) ≥ 1

q(λ) for a polynomial q. Let us consider the interactive
protocol (P,V1) (i.e., the first phase of the IV-PoQ) which takes 1λ as input and outputs a transcript τ . We
claim that (P,V1) is an Int-QAS. For the sake of contradiction, assume that it is not. Then for any polynomial
p, there exists a PPT algorithm P∗p such that

SD
(
⟨P∗p ,V1⟩(1λ), ⟨P,V1⟩(1λ)

)
≤ 1

p(λ) (120)

holds for infinitely many λ ∈ N. We can prove that P∗2q breaks the s-soundness of the IV-PoQ as follows.

Pr[⊤ ← V2(1λ, τ) : τ ← ⟨P∗2q,V1⟩(1λ)] (121)

≥ Pr[⊤ ← V2(1λ, τ) : τ ← ⟨P,V1⟩(1λ)]− SD
(
⟨P∗2q,V1⟩(1λ), ⟨P,V1⟩(1λ)

)
(122)

≥ c(λ)− 1
2q(λ) (123)

> s(λ) (124)

holds for infinitely many λ ∈ N, which breaks the s-soundness of the IV-PoQ.

5.2 Proof of Theorem 5.2

In this subsection, we show Theorem 5.2, namely, Int-QASs⇒ the QAS/OWF condition.

Proof of Theorem 5.2. Let (A, C) be an ℓ-round Int-QAS, where ℓ is a polynomial. Without loss of generality,
we can assume that in each round, C first sends a message to A, and A returns a message to C. This is always
possible by adding some dummy messages. Let ci be the i-th message from C toA, and ai be the i-th message
from A to C. We denote (c1, a1, ..., cℓ, aℓ) ← ⟨A, C⟩(1λ) to mean that the transcript (c1, a1, ..., cℓ, aℓ) is
obtained by executing the interactive protocol (A, C) on input 1λ. For the notational simplicity, we denote
τk := (c1, a1, ..., ck, ak) for k ∈ [ℓ].

For the sake of contradiction, assume that the QAS/OWF condition is not satisfied. Then, by Lemma 4.3
where we setQ = ⟨A, C⟩, we obtain the following statement: for any polynomial p, there exists a PPT algorithm

34

Sp such that for any efficiently-computable polynomial n and any family {fλ : {0, 1}n(λ) → {0, 1}∗}λ∈N of
functions that are computable in classical deterministic polynomial-time, there exists a PPT algorithmRp

such that

SD(⟨A, C⟩(1λ),Sp(1λ)) ≤ 1
p(λ) (125)

and

SD({x, fλ(x)}x←{0,1}n(λ) , {Rp(1n(λ), fλ(x)), fλ(x)}x←{0,1}n(λ)) ≤
1

p(λ) (126)

hold for infinitely many λ ∈ N. Let u(λ) be the length of the randomness used by Sp(1λ). By using Sp,
we define a family {fλ}λ∈N of functions that are computable in classical deterministic polynomial-time as
follows:

• fλ : {0, 1}⌈log ℓ(λ)⌉+u(λ) → {0, 1}∗:

1. Take (k, r) as input, where k ∈ {0, 1}⌈log ℓ(λ)⌉ and r ∈ {0, 1}u(λ).
2. Regard k as an encoding of an integer in [2⌈log ℓ(λ)⌉].26 We use the same notation k to mean the

corresponding integer. If k /∈ [ℓ(λ)], output an arbitrary fixed value, say, 0.
3. Run Sp(1λ; r) = (c1, a1, ..., cℓ, aℓ).
4. Output (k, τk−1, ck).

For this specific {fλ}λ∈N, there exists a PPT algorithm Rp such that Equations (125) and (126) hold for
infinitely many λ ∈ N. We write Λ ⊆ N to mean the set of such λ. Rewriting Equation (126), we have

SD({(k, r), fλ(k, r)}(k,r)←{0,1}⌈log ℓ(λ)⌉+u(λ) , {Rp(1n(λ), fλ(k, r)), fλ(k, r)}(k,r)←{0,1}⌈log ℓ(λ)⌉+u(λ)) ≤
1

p(λ)
(127)

for all λ ∈ Λ. For any fixed k∗ ∈ [ℓ(λ)], we have

SD({(k, r), fλ(k, r)}k,r, {Rp(1n(λ), fλ(k, r)), fλ(k, r)}k,r) (128)

= 1
2

∑
k′,r′,τk′−1,ck′

∣∣∣∣∣ Prk,r[((k, r), fλ(k, r)) = ((k′, r′), (k′, τk′−1, ck′))]
−Prk,r[(Rp(1n(λ), fλ(k, r)), fλ(k, r)) = ((k′, r′), (k′, τk′−1, ck′))]

∣∣∣∣∣ (129)

≥ 1
2

∑
r′,τk∗−1,ck∗

∣∣∣∣∣ Prk,r[((k, r), fλ(k, r)) = ((k∗, r′), (k∗, τk∗−1, ck∗))]
−Prk,r[(Rp(1n(λ), fλ(k, r)), fλ(k, r)) = ((k∗, r′), (k∗, τk∗−1, ck∗))]

∣∣∣∣∣ (130)

= 1
2 Pr

k
[k = k∗]

∑
r′,τk∗−1,ck∗

∣∣∣∣∣ Prr[((k∗, r), fλ(k∗, r)) = ((k∗, r′), (k∗, τk∗−1, ck∗))]
−Prr[(Rp(1n(λ), fλ(k∗, r)), fλ(k∗, r)) = ((k∗, r′), (k∗, τk∗−1, ck∗))]

∣∣∣∣∣
(131)

= 1
2⌈log ℓ(λ)⌉SD({(k∗, r), fλ(k∗, r)}r←{0,1}u(λ) , {Rp(1n(λ), fλ(k∗, r)), fλ(k∗, r)}r←{0,1}u(λ)) (132)

≥ 1
2ℓ(λ)SD({(k∗, r), fλ(k∗, r)}r←{0,1}u(λ) , {Rp(1n(λ), fλ(k∗, r)), fλ(k∗, r)}r←{0,1}u(λ)), (133)

26For example, regard k as a binary encoding of an integer and then add 1.

35

where (k, r)← {0, 1}⌈log ℓ(λ)⌉+u(λ). Combining the above and Equation (127), we have

SD({(k, r), fλ(k, r)}r←{0,1}u(λ) , {Rp(1n(λ), fλ(k, r)), fλ(k, r)}r←{0,1}u(λ)) ≤
2ℓ(λ)
p(λ) (134)

for all λ ∈ Λ and all k ∈ [ℓ(λ)]. Equivalently, we have

SD({(k, r), (k, τk−1, ck)}, {(k′, r′), (k, τk−1, ck)}) ≤ 2ℓ(λ)
p(λ) (135)

for all λ ∈ Λ where r ← {0, 1}u(λ), Sp(1λ; r) = (c1, a1, ..., cℓ, aℓ), and (k′, r′)← Rp(1n(λ), (k, τk−1, ck)).
By the monotonicity of the statistical distance,27 the above implies

SD({ak, (k, τk−1, ck)}, {a′k′ , (k, τk−1, ck)}) ≤ 2ℓ(λ)
p(λ) (136)

for all λ ∈ Λ where r ← {0, 1}u(λ), Sp(1λ; r) = (c1, a1, ..., cℓ, aℓ), (k′, r′) ← Rp(1n(λ), (k, τk−1, ck)),
and Sp(1λ; r′) = (c′1, a′1, ..., c′ℓ, a′ℓ). By Equation (125), the distributions of {ak, (k, τk−1, ck)} and
{a′k′ , (k, τk−1, ck)} in Equation (136) change only by at most 1

p(λ) in terms of statistical distance if we
generate (c1, a1, ..., cℓ, aℓ) ← ⟨A, C⟩(1λ) instead of r ← {0, 1}u(λ) and Sp(1λ; r) = (c1, a1, ..., cℓ, aℓ).
Thus, we have

SD({ak, (k, τk−1, ck)}, {a′k′ , (k, τk−1, ck)}) ≤ 2ℓ(λ) + 2
p(λ) (137)

for all λ ∈ Λ where (c1, a1, ..., cℓ, aℓ)← ⟨A, C⟩(1λ), (k′, r′)← Rp(1n(λ), (k, τk−1, ck)), and Sp(1λ; r′) =
(c′1, a′1, ..., c′ℓ, a′ℓ).

For any polynomial q, we construct a PPT algorithm Bq that satisfies

SD(⟨A, C⟩(1λ), ⟨Bq, C⟩(1λ)) ≤ 1
q(λ) (138)

for all λ ∈ Λ. Since Λ is an infinite set, this means that Bq breaks the Int-QAS, whih constradicts the
assumption. Thus, it suffices to prove that Equation (138) holds for all λ ∈ Λ.

Below, we give the construction of Bq. Let p(λ) := (2ℓ(λ) + 2)ℓ(λ)q(λ). In the k-th round Bq interacts
with C as follows:

1. Receive ck from C.

2. Run (k′, r′)← Rp(1n(λ), (k, τk−1, ck)).

3. Compute Sp(1λ; r′) = (c′1, a′1, ..., c′ℓ, a′ℓ).

4. Return ak := a′k′ to C.

For k ∈ [ℓ(λ) + 1], let Dk be the distribution sampled by the following procedure:

1. Run ⟨A, C⟩(1λ) until the (k − 1)-th round where we write τk−1 = (c1, a1, . . . , ck−1, ak−1) to mean
the partial transcript until the (k − 1)-th round.

27For any random variables X and Y and any algorithm A, SD(A(X),A(Y)) ≤ SD(X, Y).

36

2. Use Bq instead of A to complete the protocol. That is, for i = k, k + 1, . . . , ℓ, do the following:

(a) Receive ci from C.
(b) Run (i′, r′)← Rp(1n(λ), (i, τi−1, ci)).
(c) Compute Sp(1λ; r′) = (c′1, a′1, ..., c′ℓ, a′ℓ).
(d) Return ai := a′i′ to C.

3. Output the full transcript τℓ = (c1, a1, . . . , cℓ, aℓ).

Clearly, we have D1 = ⟨Bq, C⟩(1λ) and Dℓ+1 = ⟨A, C⟩(1λ) where the equality means equivalence as
distributions. Thus, it suffices to prove

SD(D1, Dℓ+1) ≤ 1
q(λ) (139)

for all λ ∈ Λ. By the triangle inequality, it suffices to prove

SD(Dk, Dk+1) ≤ 1
ℓ(λ)q(λ) (140)

for all λ ∈ Λ and k ∈ [ℓ(λ)]. Note that the only difference between Dk and Dk+1 is how ak is generated.
In Dk, ak is generated by the interaction between A and C. On the other hand, in Dk+1, ak is generated
by running (k′, r′)← Rp(k, τk−1, ck) and Sp(1λ; r′) = (c′1, a′1, ..., c′ℓ, a′ℓ) and then setting ak := a′k′ where
(τk−1, ck) is the partial transcript generated by the interaction between A and C. Thus, by a straightforward
reduction to Equation (137), the distributions of τk in Dk and Dk+1 differ by at most 2ℓ(λ)+2

p(λ) = 1
ℓ(λ)q(λ) in

terms of statistical distance. Moreover, both in Dk and Dk+1, the partial transcript τk is extended to the full
transcript τℓ in the same manner using the interaction between Bq and C. Thus, by the monotonicity of the
statistical distance, Equation (140) holds for all λ ∈ Λ. This completes the proof of Theorem 5.2.

5.3 Proof of Theorem 5.3

In this subsection, we show Theorem 5.3, namely, the QAS/OWF condition⇒ IV-PoQ.

Proof of Theorem 5.3. Assume that the QAS/OWF condition is satisfied. Then, from the definition of the
QAS/OWF condition, there exist a polynomial p, a QPT algorithm Q that takes 1λ as input and outputs a
classical string, a function f : {0, 1}∗ → {0, 1}∗ that is computable in classical deterministic polynomial-time
such that for any PPT algorithm S, the following holds: Let

ΣS :=
{

λ ∈ N : SD(Q(1λ),S(1λ)) ≤ 1
p(λ)

}
, (141)

then f is a classically-secure OWF on ΣS .
By using such p and Q, from Lemma 3.8, we obtain a non-interactive protocol (P,V) that satisfies the

properties of Lemma 3.8. Moreover by using f , from Lemma 2.21, we obtain an IV-PoQ (P ′,V ′1,V ′2) on
ΣS with (1 − negl(λ))-completeness and negl(λ)-soundness. By combining (P,V) and (P ′,V ′1,V ′2), we
construct an IV-PoQ (P ′′,V ′′1 ,V ′′2) with (1− negl(λ))-completeness and (1− 1

λlog λ − 1
p(λ)2)-soundness as

follows:

• 1st phase. (P ′′,V ′′1)(1λ)→ τ ′′:

37

1. Take 1λ as input.
2. Run τ ← P(1λ). τ is sent to V ′′1 .
3. Run τ ′ ← ⟨P ′,V ′1⟩(1λ).
4. Output τ ′′ := (τ, τ ′).

• 2nd phase. V ′′2 (1λ, τ ′′)→ ⊤/⊥:

1. Take 1λ and τ ′′ = (τ, τ ′) as input.
2. Run V(1λ, τ) and V ′2(1λ, τ ′).
3. If both V and V ′2 output ⊤, then output ⊤. Otherwise, output ⊥.

First, we prove (1− negl)-completeness of (P ′′,V ′′1 ,V ′′2). We have

Pr[⊤ ← V ′′2 (1λ, τ ′′) : τ ′′ ← ⟨P ′′,V ′′1 ⟩(1λ)] = Pr
[
⊤ ← V(1λ, τ) ∧ ⊤ ← V ′2(1λ, τ ′) :

τ ← P(1λ)
τ ′ ← ⟨P ′,V ′1⟩(1λ)

]
(142)

= Pr[⊤ ← V(1λ, τ) : τ ← P(1λ)] (143)
× Pr[⊤ ← V ′2(1λ, τ ′) : τ ′ ← ⟨P ′,V ′1⟩(1λ)] (144)
≥ 1− 2negl(λ) (145)

for all sufficiently large λ ∈ N. Here, we have used the fact that (P ′,V ′1,V ′2) is (1− negl(λ))-complete, and
the second item of Lemma 3.8.

Next, we prove the soundness. For the sake of contradiction, we assume that (P ′′,V ′′1 ,V ′′2) does not satisfy
(1− 1

λlog λ − 1
p(λ)2)-soundness on N. Then, there exist a PPT algorithm P∗ = (P∗1 ,P∗2) and an infinite subset

Λ ⊆ N such that

1− 1
λlog λ

− 1
p(λ)2 < Pr[⊤ ← V ′′2 (1λ, τ ′′) : τ ′′ ← ⟨P∗,V ′′1 ⟩(1λ)] (146)

= Pr
[
⊤ ← V(1λ, τ) ∧ ⊤ ← V ′2(1λ, τ ′) :

(τ, st)← P∗1 (1λ)
τ ′ ← ⟨P∗2 (st),V ′1(1λ)⟩

]
(147)

holds for all λ ∈ Λ. Define a PPT adversary P∗3 against (P ′,V ′1,V ′2) as follows.

1. Before interacting with V ′1, run (τ, st)← P∗1 (1λ).

2. Run τ ′ ← ⟨P∗2 (st),V ′1(1λ)⟩.

Then, we have that both of

Pr[⊤ ← V(1λ, τ) : τ ← P∗1 (1λ)] = Pr
[
⊤ ← V(1λ, τ) :

(τ, st)← P∗1 (1λ)
τ ′ ← ⟨P∗2 (st),V ′1(1λ)⟩

]
(148)

≥ Pr
[
⊤ ← V(1λ, τ) ∧ ⊤ ← V ′2(1λ, τ ′) :

(τ, st)← P∗1 (1λ)
τ ′ ← ⟨P∗2 (st),V ′1(1λ)⟩

]
(149)

> 1− 1
λlog λ

− 1
p(λ)2 (150)

38

and

Pr[⊤ ← V ′2(1λ, τ ′) : τ ′ ← ⟨P∗3 ,V ′1⟩(1λ)] = Pr
[
⊤ ← V ′2(1λ, τ ′) :

(τ, st)← P∗1 (1λ)
τ ′ ← ⟨P∗2 (st),V ′1(1λ)⟩

]
(151)

≥ Pr
[
⊤ ← V(1λ, τ) ∧ ⊤ ← V ′2(1λ, τ ′) :

(τ, st)← P∗1 (1λ)
τ ′ ← ⟨P∗2 (st),V ′1(1λ)⟩

]
(152)

> 1− 1
λlog λ

− 1
p(λ)2 (153)

hold for all λ ∈ Λ.
By Lemma 3.8 and Equation (150), there exists a PPT algorithm S∗ such that

SD(Q(1λ),S∗(1λ)) ≤ 1
p(λ) (154)

holds for all sufficiently large λ ∈ Λ. Let ΘS∗ be the set of such λ. Define

ΣS∗ :=
{

λ ∈ N : SD(Q(1λ),S∗(1λ)) ≤ 1
p(λ)

}
. (155)

By the QAS/OWF condition, f is a classically-secure OWF on ΣS∗ . Because ΘS∗ ⊆ ΣS∗ , this means that f is
a classically-secure OWF on ΘS∗ . Then f is a classically-secure OWF on Λ. From Lemma 2.21, (P ′,V ′1,V ′2)
is an IV-PoQ with (1 − negl(λ))-completeness and (1 − 1

λlog λ − 1
p(λ)2)-soundness on Λ, but it contradict

Equation (153).

5.4 Proof of Theorem 5.4

In this subsection, we show Theorem 5.4, namely, the QAS/OWF condition⇒ classically-secure OWPuzzs.

Proof of Theorem 5.4. Assume that the QAS/OWF condition is satisfied. Then, from the definition of the
QAS/OWF condition, there exist a polynomial p, a QPT algorithm Q that takes 1λ as input and outputs a
classical string, a function f : {0, 1}∗ → {0, 1}∗ that is computable in classical deterministic polynomial-time
such that for any PPT algorithm S, the following holds: Let

ΣS :=
{

λ ∈ N : SD(Q(1λ),S(1λ)) ≤ 1
p(λ)

}
, (156)

then f is a classically-secure OWF on ΣS .
By using such p and Q, we obtain a non-interactive protocol (P,V) from Lemma 3.8. By using (P,V),

we construct a pair (Samp, Ver) of algorithms as follows:

• Samp(1λ)→ (ans, puzz):

1. Run τ ← P(1λ).
2. Output puzz := 1λ and ans := τ .

• Ver(ans∗, puzz)→ ⊤/⊥:

39

1. Parse puzz = 1λ and ans∗ = τ∗.
2. Run V(1λ, τ∗).
3. Output ⊤ if V outputs ⊤. Output ⊥ otherwise.

Moreover by using the classically-secure OWF f on ΣS , from Lemma 2.17, we obtain a classically-secure
OWPuzz (Samp′, Ver′) on ΣS with 1-correctness and negl(λ)-security. By combining (Samp, Ver) and
(Samp′, Ver′), we construct a classically-secure OWPuzz (Samp′′, Ver′′) on N with (1− 1

λlog λ)-correctness
and (1− 1

λlog λ − 1
p(λ)2)-security as follows:

• Samp′′(1λ)→ (ans′′, puzz′′):

1. Take 1λ as input.
2. Run (ans, puzz)← Samp(1λ) and (ans′, puzz′)← Samp′(1λ).
3. Set ans′′ := (ans, ans′) and puzz′′ := (puzz, puzz′).
4. Output (ans′′, puzz′′).

• Ver′′(ans′′∗, puzz′′)→ ⊤/⊥:

1. Take ans′′∗ = (ans∗, ans′∗) and puzz′′ = (puzz, puzz′) as input.
2. Run Ver(ans∗, puzz) and Ver′(ans′∗, puzz′).
3. If both Ver and Ver′ output ⊤, then output ⊤. Otherwise, output ⊥.

First, we prove (1− 1
λlog λ)-correctness of (Samp′′, Ver′′). By the second item of Lemma 3.8,

Pr[⊤ ← Ver(ans, puzz) : (ans, puzz)← Samp(1λ)] = Pr[⊤ ← V(1λ, τ) : τ ← P(1λ)] (157)

≥ 1− 1
λlog λ

(158)

holds for all sufficiently large λ ∈ N. Thus, by using the fact that (Samp′, Ver′) is 1-correct, we obtain

Pr[⊤ ← Ver′′(ans′′, puzz′′) : (ans′′, puzz′′)← Samp′′(1λ)] (159)

= Pr
[
⊤ ← Ver(ans, puzz) ∧ ⊤ ← Ver′(ans′, puzz′) :

(ans, puzz)← Samp(1λ)
(ans′, puzz′)← Samp′(1λ)

]
(160)

= Pr[⊤ ← Ver(ans, puzz) : (ans, puzz)← Samp(1λ)] (161)
× Pr[⊤ ← Ver′(ans′, puzz′) : (ans′, puzz′)← Samp′(1λ)] (162)

≥ 1− 1
λlog λ

(163)

for all sufficiently large λ ∈ N.
Next, we prove the security. For the sake of contradiction, we assume that (Samp′′, Ver′′) does not satisfy

(1− 1
λlog λ − 1

p(λ)2)-security on N. Then, there exist a PPT adversaryA and an infinite subset Λ ⊆ N such that

1− 1
λlog λ

− 1
p(λ)2 < Pr[⊤ ← Ver′′(A(1λ, puzz′′), puzz′′) : (ans′′, puzz′′)← Samp′′(1λ)] (164)

= Pr

 ⊤ ← Ver(ans∗, puzz)
∧

⊤ ← Ver′(ans′∗, puzz′)
:

(ans, puzz)← Samp(1λ)
(ans′, puzz′)← Samp′(1λ)
(ans∗, ans′∗)← A(1λ, puzz, puzz′)

 (165)

40

holds for all λ ∈ Λ. We define the following two PPT adversaries A1 and A2 against (Samp, Ver) and
(Samp′, Ver′), respectively:

• A1(1λ, puzz)→ ans∗:

1. Take 1λ and puzz as input.
2. Run (ans′, puzz′)← Samp′(1λ).
3. Run (ans∗, ans′∗)← A(1λ, puzz, puzz′).
4. Output ans∗.

• A2(1λ, puzz′)→ ans′∗:

1. Take 1λ and puzz′ as input.
2. Run (ans, puzz)← Samp(1λ).
3. Run (ans∗, ans′∗)← A(1λ, puzz, puzz′).
4. Output ans′∗.

Then, both of

Pr[⊤ ← Ver(A1(1λ, puzz), puzz) : (ans, puzz)← Samp(1λ)] (166)

= Pr

⊤ ← Ver(ans∗, puzz) :
(ans, puzz)← Samp(1λ)
(ans′, puzz′)← Samp′(1λ)
(ans∗, ans′∗)← A(1λ, puzz, puzz′)

 (167)

≥ Pr

 ⊤ ← Ver(ans∗, puzz)
∧

⊤ ← Ver′(ans′∗, puzz′)
:

(ans, puzz)← Samp(1λ)
(ans′, puzz′)← Samp′(1λ)
(ans∗, ans′∗)← A(1λ, puzz, puzz′)

 > 1− 1
λlog λ

− 1
p(λ)2 (168)

and

Pr[⊤ ← Ver′(A2(1λ, puzz′), puzz′) : (ans′, puzz′)← Samp′(1λ)] (169)

= Pr

⊤ ← Ver′(ans′∗, puzz′) :
(ans′, puzz′)← Samp′(1λ)
(ans, puzz)← Samp(1λ)
(ans∗, ans′∗)← A(1λ, puzz, puzz′)

 (170)

≥ Pr

 ⊤ ← Ver(ans∗, puzz)
∧

⊤ ← Ver′(ans′∗, puzz′)
:

(ans, puzz)← Samp(1λ)
(ans′, puzz′)← Samp′(1λ)
(ans∗, ans′∗)← A(puzz, puzz′)

 > 1− 1
λlog λ

− 1
p(λ)2 (171)

hold for all λ ∈ Λ. From Equation (168), we obtain

1− 1
λlog λ

− 1
p(λ)2 < Pr[⊤ ← Ver(A1(1λ, puzz), puzz) : (ans, puzz)← Samp(1λ)] (172)

= Pr[⊤ ← Ver(A1(1λ, 1λ), 1λ) : (ans, 1λ)← Samp(1λ)] (173)
= Pr[⊤ ← Ver(ans∗, 1λ) : ans∗ ← A1(1λ)] (174)
= Pr[⊤ ← V(1λ, ans∗) : ans∗ ← A1(1λ)] (175)
= Pr[⊤ ← V(1λ, τ) : τ ← A1(1λ)] (176)

41

for all λ ∈ Λ. Thus, by the third item of Lemma 3.8, there exists a PPT algorithm S∗ such that

SD(Q(1λ),S∗(1λ)) ≤ 1
p(λ) (177)

holds for all sufficiently large λ ∈ Λ. Let ΘS∗ be the set of such λ. Define

ΣS∗ :=
{

λ ∈ N : SD(Q(1λ),S∗(1λ)) ≤ 1
p(λ)

}
. (178)

By the QAS/OWF condition, f is a classically-secure OWF on ΣS∗ . Because ΘS∗ ⊆ ΣS∗ , this means
that f is a classically-secure OWF on ΘS∗ . Then f is a classically-secure OWF on Λ. From Lemma 2.17,
(Samp′, Ver′) is a classically-secure OWPuzz with 1-correctness and (1− 1

λlog λ − 1
p(λ)2)-security on Λ, but

it contradict Equation (171).

5.5 Proof of Theorem 5.5

In this subsection, we show Theorem 5.5, namely, classically-secure OWPuzzs⇒ the QAS/OWF condition.

Proof of Theorem 5.5. Let (Samp, Ver) be a classically-secure OWPuzz with c-correctness and s-security
such that c(λ)− s(λ) ≥ 1/q(λ) for a polynomial q. For the sake of contradiction, assume that the QAS/OWF
condition is not satisfied. Then, from Lemma 4.3 by takingQ of the lemma as Samp, we obtain the following
statement: For any polynomial p, there exists a PPT algorithm Sp such that for any efficiently-computable
polynomial n and any family {fλ : {0, 1}n(λ) → {0, 1}∗}λ∈N of functions that are computable in classical
deterministic polynomial-time, there exists a PPT algorithmRp such that

SD(Samp(1λ),Sp(1λ)) ≤ 1
p(λ) (179)

and

SD({x, fλ(x)}x←{0,1}n(λ) , {Rp(1n(λ), fλ(x)), fλ(x)}x←{0,1}n(λ)) ≤
1

p(λ) (180)

hold for infinitely many λ ∈ N.28
Let n(λ) be the length of the random seed for Sp(1λ). By using Sp, we define a function family {fp,λ}λ∈N

as follows:

• fp,λ : {0, 1}n(λ) → {0, 1}∗:

1. Take r ∈ {0, 1}n(λ) as input.
2. Run Sp(1λ; r) = (puzz, ans).
3. Output puzz.

28We mean that both Equation (179) and Equation (180) are satisfied for the same λ, and there are infinitely many such λ.

42

As we have stated above, for this specific {fp,λ}λ∈N, there exists a PPT algorithm Rfp,λ
p such that Equa-

tions (179) and (180) hold for infinitely many λ ∈ N. From Sp andRfp,λ
p , we construct a PPT algorithm A

such that

Pr[⊤ ← Ver(puzz,A(1λ, puzz)) : (puzz, ans)← Samp(1λ)] ≥ c(λ)− 1
2q(λ) (181)

holds for infinitely many λ ∈ N. This means that A breaks s-security of the classically-secure OWPuzz
(Samp, Ver). We define such A as follows:

• A(1λ, puzz)→ ans′:

1. Take 1λ and puzz as input.

2. Run r ← Rf6q,λ

6q (1n(λ), puzz).

3. Run S6q(1λ; r) = (ans′, puzz′).
4. Output ans′.

Then,

Pr[⊤ ← Ver(puzz,A(1λ, puzz)) : (ans, puzz)← Samp(1λ)] (182)
≥ Pr[⊤ ← Ver(puzz,A(1λ, puzz)) : (ans, puzz)← S6q(1λ)]− SD(Samp(1λ),S6q(1λ)) (183)

= Pr

⊤ ← Ver(puzz, ans′) :

r ← {0, 1}n(λ),
puzz = f6q,λ(r),

r′ ← Rf6q,λ

6q (1n(λ), puzz),
(puzz′, ans′) = S6q(1λ; r′)

− 1
6q(λ) (184)

≥ Pr

⊤ ← Ver(puzz, ans′) :
r ← {0, 1}n(λ),

puzz = f6q,λ(r),
(puzz′, ans′) = S6q(1λ; r)

− 2
6q(λ) (185)

= Pr[⊤ ← Ver(puzz, ans) : (puzz, ans)← S6q(1λ)]− 2
6q(λ) (186)

≥ Pr[⊤ ← Ver(puzz, ans) : (puzz, ans)← Samp(1λ)]− 3
6q(λ) (187)

≥ c(λ)− 1
2q(λ) (188)

holds for infinitely many λ ∈ N. Here, we have used Equation (179) to obtain Equations (184) and (187),
and used Equation (180) to obtain Equation (185). Therefore, A breaks the soundness of classically-secure
OWPuzz (Samp, Ver).

6 Variants of IV-PoQ

In Section 6.1 we show equivalence among variants of IV-PoQ. In Section 6.2, we introduce zero-knowledge
IV-PoQ and show their relationship with OWFs.

43

6.1 Equivalence Among Variants of IV-PoQ

We consider the following variant of IV-PoQ.

Definition 6.1 (Quantum-Verifier IV-PoQ). A quantum-verifier IV-PoQ (P,V1,V2) is defined similarly to
IV-PoQ (Definition 2.18) except that V1 is QPT instead of PPT but still only sends classical messages.

We show that the following equivalence theorem.

Theorem 6.2. The following are equivalent:

1. Public-coin IV-PoQ exist.

2. IV-PoQ exist.

3. Quantum-verifier IV-PoQ exist.

Proof of Theorem 6.2. It is clear that Item 1 implies Item 2 and Item 2 implies Item 3. Below, we show that
Item 3 implies Item 1. To show this, we first observe that quantum-verifier IV-PoQ imply Int-QAS since the
proof of Theorem 5.1 works even if V1 is QPT. Thus, combined with Theorem 5.2, quantum-verifier IV-PoQ
imply the QAS/OWF condition. Next, we observe that the IV-PoQ constructed from the QAS/OWF condition
in the proof of Theorem 5.3 is public-coin. To see this, recall that the IV-PoQ is obtained by combining
the non-interactive protocol obtained by Lemma 3.8 and the IV-PoQ based on OWFs by Lemma 2.21.
The former is non-interactive and in particular there is no message sent from the verifier, and thus it is
public-coin. Moreover, the latter is also public-coin by Lemma 2.21. Thus, their combination (as in the proof
of Theorem 5.3) also results in public-coin IV-PoQ. Thus, the IV-PoQ constructed in the proof of Theorem 5.3
is public-coin. Combining the above observations, we complete the proof that quantum-verifier IV-PoQ imply
public-coin IV-PoQ.

6.2 Zero-Knowledge IV-PoQ

We give a definition of zero-knowledge IV-PoQ below.

Definition 6.3 (Zero-Knowledge IV-PoQ). An IV-PoQ (P,V1,V2) satisfies computational (resp. statistical)
zero-knowledge if for any PPT malicious verifier V∗1 , there exists a PPT simulator S such that for any PPT
(resp. unbounded-time) distinguisher D,∣∣∣Pr[D(view⟨P,V∗1 ⟩(1λ)) = 1]− Pr[D(S(1λ)) = 1]

∣∣∣ ≤ negl(λ) (189)

where view⟨P,V∗1 ⟩(1λ) means the view of V∗1 which consists of the transcript and the random coin of V∗1 .
We say that an IV-PoQ (P,V1,V2) satisfies honest-verifier computational (resp. statistical) zero-knowledge

if the above holds for the case of V∗1 = V1.

Remark 6.4. Standard definitions of the zero-knowledge property in the literature usually consider non-uniform
malicious verifiers and distinguishers. On the other hand, since we treat the uniform model as a default notion
in this paper, we define the zero-knowledge property in the uniform-style as above. However, we remark that
this choice of model of computation is not essential for the results of this subsection, and all the results of this
subsection readily extend to the non-uniform setting with essentially the same proofs.

We show relationships between zero-knowledge IV-PoQ and OWFs. First, we show that honest-verifier
statistical zero-knowledge IV-PoQ imply classically-secure OWFs.

44

Theorem 6.5. If honest-verifier statistical zero-knowledge IV-PoQ exist, then classically-secure OWFs exist.

Proof of Theorem 6.5. Let (P,V1,V2) be an honest-verifier statistical zero-knowledge IV-PoQ. By the proof
of Theorem 5.1, (P,V1) is an Int-QAS, and thus by the proof of Theorem 5.2, the QAS/OWF condition
holds where Q = ⟨P,V1⟩. That is, there exist a polynomial p, and a function f : {0, 1}∗ → {0, 1}∗ that is
computable in classical deterministic polynomial-time such that for any PPT algorithm S , the following holds:
if we define

ΣS :=
{

λ ∈ N
∣∣∣∣ SD(⟨P,V1⟩(1λ),S(1λ)) ≤ 1

p(λ)

}
, (190)

then f is a classically-secure OWF on ΣS . By the honest-verifier statistical zero-knowledge property of
(P,V1,V2), there is a PPT simulator S such that SD(⟨P,V1⟩(1λ),S(1λ)) ≤ negl(λ).29 For this S, ΣS
consists of all but finite elements of N by the definition of negligible functions. Since f is a classically-secure
OWF on ΣS , this implies the existence of classically secure OWFs by Lemma 2.5.

Next, we show that OWFs imply computational zero-knowledge IV-PoQ.

Theorem 6.6. If classically-secure OWFs exist, then computational zero-knowledge IV-PoQ exist.

To prove Theorem 6.6 we rely on (classically-secure) extractable commitments. The following definition
is based on the one in [PW09].

Definition 6.7 (Classically-Secure Extractable Commitments). A classically-secure extractable commitment
scheme consists of interactive PPT algorithms S (sender) and R (receiver). An execution of the scheme
is divided into two phases, the commit phase and open phase. In the commit phase, S takes the security
parameter 1λ and message m as input,R takes the security parameter 1λ as input, and S andR interact with
each other whereR may declare rejection and abort at any point of the commit phase. We call a transcript of
the commit phase a commitment and denote it by com. In the open phase, S sends m and a classical string d
(decommitment) toR andR outputs ⊤ (accept) or ⊥ (reject). We assume thatR is stateless, i.e., there is no
state information ofR kept from the commit phase.30 We require the following four properties.

• Correctness. For any λ and m, if S(1λ, m) andR(1λ) run the commit and open phases honestly, then
R always accepts.

• Computational hiding. For any (stateful) PPT malicious receiverR∗, we have∣∣∣∣∣Pr
[
OutR∗⟨S(mb),R∗⟩(1λ) = b : (m0, m1)← R∗(1λ)

b← {0, 1}

]
− 1

2

∣∣∣∣∣ ≤ negl(λ) (191)

where OutR∗⟨S(mb),R∗⟩(1λ) means the output ofR∗ after interacting with S with the common input
1λ and private input mb in the commit phase.

• Statistical binding.31 For any unbounded-time cheating sender S∗, let com be a commitment generated
by S∗ and the honest receiver R. Then there is at most one m such that there exists d such that R
accepts (m, d) as an opening of com except for a negligible probability.

29Recall that we write ⟨P,V1⟩(1λ) to mean the machine that outputs a transcript of interaction between P and V1. Since the
honest-verifier statistical zero-knowledge requires the simulator to simulate both the transcript and the verifier’s randomness, it is
trivial to simulate only the transcript.

30We can also define a commitment scheme with a stateful receiver, but we focus on the stateless receiver case for simplicity.
31This follows from extractability, but we state it separately for convenience.

45

• Extractability. There is an expected PPT oracle machine (the extractor) E that takes the security
parameter 1λ as input, given oracle access to any deterministic unbounded-time cheating sender S∗,
and outputs a pair (com, m∗) such that:

– Simulation: com is identically distributed to a commitment generated by S∗ andR.
– Extraction: the probability that com is accepting (i.e., the transcript indicates that R never

aborts in the commit phase) and m∗ = ⊥ is negligible.
– Binding: If m∗ ̸= ⊥, then there is no m ̸= m∗ and d such thatR accepts (m, d) as an opening

of com.

Theorem 6.8 ([PW09]). If classically-secure OWFs exist, then classically-secure extractable commitments
exist.

We introduce a notation on extractable commitments. For a commitment com, if there is a unique m such
that there is d such that R accepts (m, d) as an opening of com, then we define val(com) = m. If such m
does not exist or not unique, we define val(com) = ⊥. The following lemmas are easy to prove.

Lemma 6.9. If com is generated by S(1λ, m) and R(1λ), then val(com) = m except for a negligible
probability.

Proof. This immediately follows from correctness and statistical binding.

Lemma 6.10. For any deterministic unbounded-time cheating sender S∗, if ES∗(1λ) outputs (com, m∗), then
val(com) = m∗ or val(com) = ⊥ except for a negligible probability.

Proof. This immediately follows from the second and third items of the extractability.

Then we prove Theorem 6.6.

Proof of Theorem 6.6. By Lemma 2.21, public-coin IV-PoQ exist if classically-secure OWFs exist. By
Theorem 6.8, classically-secure extractable commitments exist if classically-secure OWFs exist. Thus, it
suffices to construct computational zero-knowledge IV-PoQ from public-coin IV-PoQ and classially-secure
extractable commitments. We show how to do it below.

Let Π = (P,V1,V2) be a public-coin IV-PoQ that satisfies c-completeness and s-soundness and let
ExtCom be a classically-secure extractable commitment scheme. Without loss of generality, we assume that
Π is an ℓ-round protocol where the first message is sent from the verifier and verifier’s messages in each
round are n-bit strings for some polynomials ℓ = ℓ(λ) and n = n(λ). Then we construct a computational
zero-knowledge IV-PoQ Π̃ = (P̃, Ṽ1, Ṽ2) that works as follows.

(The first phase)

• Upon receiving the security parameter 1λ, P̃ sets st0 := |1λ⟩.

• For i = 1, 2, . . . , ℓ, do the following:

– Ṽ1 chooses vi ← {0, 1}n and sends vi to P̃ .
– P̃ runs P on the state sti−1 and i-th verifier’s message vi to generate i-th prover’s message pi.

Let sti be the internal state of P at this point.
– P̃ commits to pi using ExtCom where P̃ and Ṽ1 play the roles of the sender and receiver,

respectively. Let comi be the commitment generated in this step.

46

(The second phase)

• Upon receiving 1λ and a transcript τ̃ = (v1, com1, v2, com2, . . . , vℓ, comℓ) of the first phase, Ṽ2
computes p′i = val(comi) by brute-force for all i ∈ [ℓ]. If p′i = ⊥ for some i ∈ [ℓ], then Ṽ2 outputs ⊥.
Otherwise Ṽ2 runs V2 on transcript τ = (v1, p′1, v2, p′2, . . . , vℓ, p′ℓ) and outputs whatever V2 outputs.

By Lemma 6.9, we have p′i = pi except for a negligible probability when we run the protocol honestly.
Thus, Π̃ satisfies (c − negl)-completeness by c-completeness of Π. The computational zero-knowledge
property of Π̃ immediately follows from the computational hiding property of ExtCom since a simulator can
simply commit to 0...0 instead of to pi.

Below, we reduce (s + negl)-soundness of Π̃ to s-soundness of Π using the extractability of ExtCom as
follows. Toward contradiction, suppose that there is a PPT cheating prover P̃∗ such that

Pr[⊤ ← Ṽ2(1λ, τ) : τ ← ⟨P̃∗, Ṽ1⟩(1λ)] ≥ s(λ) + 1/q(λ) (192)

for some polynomial q and infinitely many λ. For each j ∈ {0, 1, , ℓ}, we consider a (not necessarily
PPT) cheating provers P∗j against Π that works as follows:

• P∗j takes randomness r, which has the same length as randomness of P̃∗.

• For i = 1, 2, . . . , j, do the following:

– Receive vi from Ṽ1.
– Let P̃∗[r, τi] be the part of P̃∗ that runs the i-th execution of ExtCom where we hardwire the

randomness r and the partial transcript τi = (v1, com1, . . . , vi−1, comi−1, vi).

– Run (comi, pi)← E P̃
∗[r,τi](1λ) and send pi to Ṽ1.

• For i = j + 1, j + 2, . . . , ℓ, do the following:

– Receive vi from Ṽ1.
– Run P̃∗ on the fixed randomness r and the partial transcript τi = (v1, com1, . . . , vi−1, comi−1, vi)

to complete the i-th execution of ExtCom. Let comi be the commitment generated in this step.
– Compute pi = val(comi) by brute-force.
– If pi = ⊥, abort. Otherwise send pi to V1.

By the definition, it is easy to see that

Pr[⊤ ← V2(1λ, τ) : τ ← ⟨P∗0 ,V1⟩(1λ)] = Pr[⊤ ← Ṽ2(1λ, τ) : τ ← ⟨P̃∗, Ṽ1⟩(1λ)]. (193)

For j ∈ [ℓ], the only difference between P∗j−1 and P∗j is how to generate (comj , pj): P∗j−1 runs P̃∗ to generate
comj and then sets pj = val(comj) by brute-force whereas P∗j generates them by running the extractor. By
the first item of extractability, the distributions of comj are identical for both cases. Moreover, by Lemma 6.10,
pj takes the same value in both cases unless val(comj) = ⊥ except for a negligible probability. Note that if
val(comj) = ⊥, then P∗j−1 aborts and thus never passes the verification of V2. Thus, we have

Pr[⊤ ← V2(1λ, τ) : τ ← ⟨P∗j ,V1⟩(1λ)] ≥ Pr[⊤ ← V2(1λ, τ) : τ ← ⟨P∗j−1,V1⟩(1λ)]− negl(λ). (194)

47

By combining Equations (192) to (194),

Pr[⊤ ← V2(1λ, τ) : τ ← ⟨P∗ℓ ,V1⟩(1λ)] ≥ s(λ) + 1/q(λ)− negl(λ) (195)

for infinitely many λ.
We remark that P∗ℓ no longer runs brute-force, but it is still not PPT since it runs the extractor E that

runs in expected PPT. This can be converted into a PPT machine by a standard truncation technique. That
is, let P∗ℓ+1 be a cheating prover that runs similarly to P∗ℓ except that whenever it runs E , if its running
time is 2ℓ(λ)q(λ) times larger than its expectation, then it aborts. Clearly, P∗ℓ+1 runs in PPT. Moreover, by
Markov’s inequality, for each invocation of E , the probability that P∗ℓ+1 aborts is at most 1/(2ℓ(λ)q(λ)).
Since P∗ℓ+1 runs E ℓ(λ) times, by the union bound, the probability that this occurs is at most 1/(2q(λ)). Thus,
Equation (195), we have

Pr[⊤ ← V2(1λ, τ) : τ ← ⟨P∗ℓ+1,V1⟩(1λ)] ≥ s + 1/(2q(λ))− negl(λ) (196)

for infinitely many λ. This contradicts s-soundness of Π. Thus, Π̃ satisfies (s + negl(λ))-soundness.

Zero-knowledge PoQ. Though our main focus is on IV-PoQ, we briefly discuss zero-knowledge (efficiently-
verifiable) PoQ. First, we observe that the conversion in the proof of Theorem 6.6 works in the efficiently-
verifiable setting as well if we introduce an additional layer of zero-knowledge proofs where the prover proves
that the committed transcript passes the verification. However, the conversion requires the base PoQ to be
public-coin while most existing PoQ are not public-coin. Fortunately, we observe that we can relax the public-
coin property to the “transcript-independent” property which means that the distribution of verifier’s messages
does not depend on the transcript and only depends on the verifier’s randomness. At first glance, one may think
that it is problematic if the verifier uses its private randomness to make a decision in which case the statement
that “the committed transcript passes the verification” is not an NP statement. However, this issue can be
resolved by letting the verifier reveal its randomness after receiving all the commitments from the prover.32
Since the randomness is revealed after the commitments are sent, a cheating prover can no longer change the
committed transcript by the binding property of the extractable commitment, and thus this does not affect the
soundness. In summary, we can generically upgrade any PoQ with transcript-independent verifiers into a
(computational) zero-knowledge PoQ by additionally assuming the existence of OWFs. To our knowledge,
all existing PoQ [BCM+21, KMCVY22, YZ24, MY23, KLVY23, AGGM24] have transcript-independent
verifiers.

Toward equivalence between OWFs and zero-knowledge IV-PoQ. Theorems 6.5 and 6.6 can be regarded
as a loose equivalence between OWFs and zero-knowledge IV-PoQ. However, there is a gap between them as
Theorem 6.5 assumes honest-verifier statistical zero-knowledge while Theorem 6.6 only gives computational
zero-knowledge. It is an interesting open question if we can fill the gap.

There are two approaches toward solving that. One is to show that computational zero-knowledge IV-PoQ
imply OWFs and the other is to show that OWFs imply honest-verifier statistical zero-knowledge IV-PoQ.
For the former approach, the technique of [OW93, Vad06], which shows that computational zero-knowledge
arguments for average-case-hard languages imply OWFs, might be useful, but it is unclear how to adapt their
technique to the setting of IV-PoQ.

We also do not have solution for the latter approach either, but we have the following observation.
We observe that we can construct statistical zero-knowledge IV-PoQ (or even efficiently-verifiable PoQ) if

32A similar idea is used in [BKL+22].

48

we additionally assume the existence of an NP search problem that is easy for QPT algorithms but hard
for PPT algorithms (or equivalently publicly-verifiable one-round PoQ). To see this, we can consider a
protocol where the honest quantum prover solves the NP search problem and then proves the knowledge
of the solution by using statistical zero-knowledge arguments of knowledge for NP, which exists if OWFs
exist [HNO+09]. Examples of classically-hard and quantumly-easy NP search problems are the factoring
and discrete-logarithm problems (assuming classical hardness of them) [Sho94]. Another example based on a
random oracle was recently found in [YZ24]. Thus, based on the random oracle heuristic [BR93], we have a
candidate construction of statistical zero-knowledge PoQ from hash functions.33 Though this is far from a
construction solely based on OWFs, this can be seen as an evidence that “structured” assumptions are not
necessary for statistical zero-knowledge PoQ, let alone for statistical zero-knowledge IV-PoQ.34

Acknowledgements. TM is supported by JST CREST JPMJCR23I3, JST Moonshot R&D JPMJMS2061-
5-1-1, JST FOREST, MEXT QLEAP, the Grant-in Aid for Transformative Research Areas (A) 21H05183,
and the Grant-in-Aid for Scientific Research (A) No.22H00522. YS is supported by JST SPRING, Grant
Number JPMJSP2110.

A On Uniformity of Adversaries

As mentioned in Footnote 3, we consider the uniform adversarial model in this paper. The only place
where the uniformity of the adversary plays a crucial role is in the proof of Lemma 3.8 where we relate the
hardness of non-interactive search and sampling problems. In the proof, we make heavy use of Kolmogorov
complexity, which is defined with respect to uniform Turing machines, and thus the same proof does not
work when we consider non-uniform adversaries. Thus, all the results that rely on Lemma 3.8 do not
extend to the non-uniform setting. They include Lemma 3.7 and Theorems 5.3, 5.4 and 6.2. On the other
hand, Theorems 4.2, 5.1, 5.2, 5.5, 6.5 and 6.6 seem to extend to the non-uniform setting with appropriate
adaptations.

B Proof of Lemma 2.5

Proof of Lemma 2.5. The only if part is trivial. We show the if part. Let f : {0, 1}∗ → {0, 1}∗ be a OWF on
N\Σ for a finite subset Σ ⊆ N. Then by the definition of OWFs onN\Σ, there exists an efficiently-computable
polynomial n such that for any PPT adversary A and any polynomial p there exists λ∗ ∈ N such that

Pr[f(x′) = f(x) : x← {0, 1}n(λ), x′ ← A(1n(λ), f(x))] ≤ 1
p(λ) (197)

for all λ ≥ λ∗ in N \ Σ. Since Σ is a finite set, we can assume that λ∗ is larger than the largest element of Σ
without loss of generality. Then, Equation (197) holds for all λ ≥ λ∗ in N.

From such f , we construct a OWF g : {0, 1}∗ → {0, 1}∗ as follows.

1. On input x ∈ {0, 1}ℓ, find the maximum λ such that n(λ) ≤ ℓ. Set λℓ to be such maximum λ.

33This is not a construction in the quantum random oracle model since we use the hash function in a non-black-box manner.
Instead, we rely on the assumption that the problem considered in [YZ24] is classically hard when the random oracle is instantiated
with a concrete hash function.

34“Structure” is a commonly used informal term that refers to problems behind constructions of existing public key encryption
such as the hardness of factoring, discrete-logarithm, learning with errors, etc. On the other hand, hash functions are often regarded
as “unstructured”. See [Bar17] for more context.

49

2. Output g(x) := f(x1,...,n(λℓ)), where x1,...,n(λℓ) is the first n(λℓ) bits of x.

Then for any PPT A and any polynomial p, if we define a polynomial q(λ) := p(n(λ + 1)), there exists
λ∗A,q ∈ N such that

Pr[g(x′) = g(x) : x← {0, 1}ℓ, x′ ← A(1ℓ, g(x))] (198)
= Pr[f(x′1,...,n(λℓ)) = f(x1,...,n(λℓ)) : x← {0, 1}ℓ, x′ ← A(1ℓ, f(x1,...,n(λℓ))] (199)

= Pr[f(x′1,...,n(λℓ)) = f(x) : x← {0, 1}n(λℓ), x′ ← A(1ℓ, f(x))] (200)

= Pr[f(w) = f(x) : x← {0, 1}n(λℓ), w ← A(1n(λℓ), f(x))] (201)

≤ 1
q(λℓ)

(202)

= 1
p(n(λℓ + 1)) (203)

≤ 1
p(ℓ) (204)

if λℓ ≥ λ∗A,q. For all sufficiently large ℓ ∈ N, λℓ ≥ λ∗A,q, and therefore the above inequality is satisfied for all
sufficiently large ℓ ∈ N. This means that g is a OWF.

C Proof of Lemma 2.10

Proof of Lemma 2.10. The proof is similar to the universal construction technique [Lev85, HKN+05] of
OWFs. Let M1, M2, ... be an enumeration of all Turing machines. We construct a function g as follows:

• g : {0, 1}∗ → {0, 1}∗:

1. Take y ∈ {0, 1}ℓ as input.
2. Let N ∈ N be the maximum value such that N2 ≤ ℓ.
3. Let y1∥y2∥...∥yN be the N2-bit prefix of y, where yi ∈ {0, 1}N for all i ∈ [N].
4. For all i ∈ [N], run Mi(yi) for N3 steps. If Mi(yi) halts, then set vi := Mi(yi). Otherwise, set

vi := ⊥.
5. Output v1∥v2∥...∥vN .

The time to compute g(y) is O(|y|2) for all y ∈ {0, 1}∗ and therefore g is computable in classical deterministic
polynomial-time.

Fix a subset Σ ⊆ N. Let f : {0, 1}∗ → {0, 1}∗ be a classically-secure OWF on Σ. From Lemma C.1
below, we can assume that the time to compute f(x) is O(|x|2) for any x ∈ {0, 1}∗. Then, by the definition
of OWFs on Σ, there exists an efficiently-computable polynomial n such that for any PPT algorithmR and
for any polynomial p, there exists λ∗ ∈ N such that

Pr[f(z) = f(x) : x← {0, 1}n(λ), z ← R(1n(λ), f(x))] ≤ 1
p(λ) (205)

holds for all λ ≥ λ∗ in Σ. Our goal is to show that g is a classically-secure OWF on Σ.
For the sake of contradiction, we assume that g is not a classically-secure OWF on Σ. Then, Σ is an

infinite subset of N, because if Σ is finite, g is trivially a OWF on Σ. Moreover, by the definition of OWFs

50

on Σ, for any efficiently-computable polynomial m, there exist a PPT algorithm A, a polynomial q and an
infinite subset Λ ⊆ Σ such that

Pr[g(w) = g(y) : y ← {0, 1}m(λ), w ← A(1m(λ), g(y))] >
1

q(λ) (206)

holds for all λ ∈ Λ. Because f is computable in classical deterministic polynomial-time, there exists a
deterministic Turing machine F such that F (x) = f(x) for all x ∈ {0, 1}∗. Moreover, because as we have
said the time to compute f(x) is O(|x|2), the running time of F is O(|x|2). The description size of F is a
constant of |x|, and therefore there exists α∗ ∈ N such that Mα∗ = F . We define the PPT algorithmR∗ as
follows:

• R∗(1n(λ), f(x))→ z:

1. Take 1n(λ) and f(x) as input, where x← {0, 1}n(λ).
2. If n(λ) ≥ α∗, set j = α∗. Otherwise, set j = 1. Set vj := f(x).
3. Set N := n(λ).
4. For all i ∈ [N] except for j, sample yi ← {0, 1}N and run Mi(yi) for N3 steps. If Mi(yi) halts,

set vi := Mi(yi). Otherwise, set vi := ⊥.
5. Run A(1N2

, v1∥...∥vN) to obtain w ∈ {0, 1}m.35
6. Parse w := w1∥...∥wN∥w′, where wi ∈ {0, 1}N for all i ∈ [N] and w′ ∈ {0, 1}m−N2 .
7. Output z := wj .

We can show that for any efficiently computable polynomial n, there exists a PPT algorithm R∗ and a
polynomial q and an infinite subset Λ′ := {λ ∈ Λ : n(λ) ≥ α∗} of Σ such that

Pr[f(z) = f(x) : x← {0, 1}n(λ), z ← R∗(1n(λ), f(x))] (207)

≥ Pr[g(w) = g(y) : y ← {0, 1}n(λ)2
, w ← A(1n(λ)2

, g(y))] (208)

>
1

q(λ) (209)

holds for all λ ∈ Λ′. Here, in Equation (208) we have used the fact that the time to compute f(x) is O(|x|2),
and in Equation (209), we have used Equation (206). This contradicts Equation (205), and therefore g is a
classically-secure OWF on Σ.

Lemma C.1. Let Σ ⊆ N be a set. If there exists a OWF f on Σ, there exists a OWF f ′ on Σ such that the
time to compute f ′(x) is O(|x|2) for any x ∈ {0, 1}∗.

Proof of Lemma C.1. The proof is based on the padding argument of [Gol04]. Let Σ ⊆ N be a set. Let f be
a OWF on Σ. If the time to compute f is O(|x|c) for c > 2, we define a function f ′ as follows.

1. On input a bit string, z ∈ {0, 1}r, find the maximum i ∈ [r] such that |z| ≥ |z1,...,i|c, where z1,...,i is
the first i bits of z.

2. Output f ′(z) := f(z1,...,i)∥zi+1,...,r, where zi+1,...,r is the last r − i bits of z.

35Note that the length m of the output w of A is not necessarily equal to the input length N2, because g(w) = g(y) could happen
in Equation (206) for some w whose length is longer than N2.

51

The time to compute f ′(z) is O(|z|2) because finding the maximum i spends O(|z|2) time36 and computing
f(z1,...,i) spends O(|z1,...,i|c) ≤ O(|z|) time.

Moreover, we can show that f ′ is a OWF on Σ. For the sake of contradiction, assume that f ′ is not a
OWF on Σ. Then by the definition of OWFs on Σ, for any efficiently computable polynomial n, there exist a
PPT adversary A, a polynomial p, and an infinite subset Λ ⊆ Σ such that

Pr[f ′(z) = f ′(w) : z ← {0, 1}n(λ), w ← A(1n(λ), f ′(z))] >
1

p(λ) (210)

holds for all λ ∈ Λ. From suchA, we can construct a PPT adversary B that breaks the security of f as follows:

1. Let s be a polynomial. Take 1s(λ) and f(x) with x← {0, 1}s(λ) as input.

2. Let n(λ) := s(λ)c and sample u← {0, 1}n(λ)−s(λ).

3. Run w ← A(1n(λ), f(x)∥u).

4. Output w1,...,s(λ).

Then, for any polynomial s, there exist a PPT adversary B, a polynomial p, and an infinite subset Λ ⊆ Σ such
that

Pr[f(x) = f(y) : x← {0, 1}s(λ), y ← B(1s(λ), f(x))] (211)

= Pr[f(x) = f(w1,...,s(λ)) : x← {0, 1}s(λ), u← {0, 1}n(λ)−s(λ), w ← A(1n(λ), f(x)∥u)] (212)

= Pr[f ′(x∥u) = f ′(w1,...,s(λ)∥u) : x← {0, 1}s(λ), u← {0, 1}n(λ)−s(λ), w ← A(1n(λ), f ′(x∥u))] (213)

= Pr[f ′(z) = f ′(ξ) : z ← {0, 1}n(λ), ξ ← A(1n(λ), f ′(z))] (214)

>
1

p(λ) (215)

holds for all λ ∈ Λ. This contradicts the assumption that f is a OWF on Σ. Therefore, f ′ is a OWF on Σ.

D Proof of Lemma 2.17

Proof of Lemma 2.17. Let Σ ⊆ N be a subset. Let f : {0, 1}∗ → {0, 1}∗ be a classically-secure OWF on Σ.
Then by the definition of OWFs on Σ, there exists an efficiently computable polynomial n such that for any
PPT algorithm A and a polynomial p, there exists λ∗ ∈ N such that

Pr[f(x) = f(x′) : x← {0, 1}n(λ), x′ ← A(1n(λ), f(x))] ≤ 1
p(λ) (216)

holds for all λ ≥ λ∗ in Σ. From f , we construct a classically-secure OWPuzz (Samp, Ver) on Σ with
1-correctness and negl-security as follows:

• Samp(1λ)→ (ans, puzz):

1. Take 1λ as input.
2. Sample x← {0, 1}n(λ) and set ans := x.

36A single-tape Turing machine spends O(|z|2) time to find the maximum i.

52

3. Compute f(x) = y and set puzz := (1n(λ), y).
4. Output (ans, puzz).

• Ver(ans′, puzz)→ ⊤/⊥:

1. Parse ans′ = x′ and puzz = (1n(λ), y).
2. If f(x′) = y, output ⊤. Otherwise, output ⊥.

First we show that (Samp, Ver) satisfies 1-correctness. In fact, for all λ ∈ N,

Pr[⊤ ← Ver(ans, puzz) : (ans, puzz)← Samp(1λ)] = Pr[f(x) = y : x← {0, 1}n(λ), y := f(x)] (217)
= 1. (218)

Next, we prove that (Samp, Ver) satisfies negl-security on Σ. From the one-wayness of f , for any PPT
adversary A, polynomial p, there exists λ∗ ∈ N such that

Pr[⊤ ← Ver(A(1λ, puzz), puzz) : (ans, puzz)← Samp(1λ)] (219)

= Pr[f(x′) = f(x) : x← {0, 1}n(λ), x′ ← A(1n(λ), f(x))] (220)

≤ 1
p(λ) . (221)

holds for for all λ ≥ λ∗ in Σ. This means that (Samp, Ver) satisfies negl-security on Σ.

References

[AA11] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In Lance
Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 333–342. ACM Press, June
2011. (Cited on page 5.)

[Aar10] Scott Aaronson. BQP and the polynomial hierarchy. In Leonard J. Schulman, editor, 42nd
ACM STOC, pages 141–150. ACM Press, June 2010. (Cited on page 5.)

[Aar14] Scott Aaronson. The equivalence of sampling and searching. Theory of Computing Systems,
55:281–298, 2014. (Cited on page 7, 12, 17, 18, 24.)

[ABK24] Scott Aaronson, Harry Buhrman, and William Kretschmer. A qubit, a coin, and an advice
string walk into a relational problem. ITCS, 2024. (Cited on page 17, 18.)

[AC17] Scott Aaronson and Lĳie Chen. Complexity-theoretic foundations of quantum supremacy
experiments. CCC’17: Proceedings of the 32nd Computational Complexity Conference, 2017.
(Cited on page 5.)

[ACC+23] Atul Singh Arora, Andrea Coladangelo, Matthew Coudron, Alexandru Gheorghiu, Uttam
Singh, and Hendrik Waldner. Quantum depth in the random oracle model. In Barna Saha
and Rocco A. Servedio, editors, 55th ACM STOC, pages 1111–1124. ACM Press, June 2023.
(Cited on page 5.)

[AG19] Scott Aaronson and Sam Gunn. On the classical hardness of spoofing linear cross-entropy
benchmarking. arXiv:1910.12085, 2019. (Cited on page 5.)

53

[AGGM24] Petia Arabadjieva, Alexandru Gheorghiu, Victor Gitton1, and Tony Metger. Single-round
proofs of quantumness from knowledge assumptions. arXiv:2405.15736, 2024. (Cited on
page 3, 48.)

[AQY22] Prabhanjan Ananth, Luowen Qian, and Henry Yuen. Cryptography from pseudorandom
quantum states. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I,
volume 13507 of LNCS, pages 208–236. Springer, Cham, August 2022. (Cited on page 4.)

[Bar17] Boaz Barak. The complexity of public-key cryptography. Cryptology ePrint Archive, Paper
2017/365, 2017. (Cited on page 49.)

[BCM+21] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and Thomas Vidick. A
cryptographic test of quantumness and certifiable randomness from a single quantum device.
Journal of the ACM, 68(5):31:1–31:47, 2021. (Cited on page 3, 48.)

[BCQ23] Zvika Brakerski, Ran Canetti, and Luowen Qian. On the computational hardness needed for
quantum cryptography. ITCS 2023, 2023. (Cited on page 4.)

[BFNV19] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani. On the complexity and
verification of quantum random circuit sampling. Nature Physics, 15:159–163, 2019. (Cited
on page 5.)

[BGK18] Sergey Bravyi, David Gosset, and Robert König. Quantum advantage with shallow circuits.
Science, 2018. (Cited on page 3.)

[BJS11] Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd. Classical simulation of commuting
quantum computations implies collapse of the polynomial hierarchy. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 467:459–472, 2011. (Cited on
page 5.)

[BKL+22] James Bartusek, Yael Tauman Kalai, Alex Lombardi, Fermi Ma, Giulio Malavolta, Vinod
Vaikuntanathan, Thomas Vidick, and Lisa Yang. Succinct classical verification of quantum
computation. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II,
volume 13508 of LNCS, pages 195–211. Springer, Cham, August 2022. (Cited on page 48.)

[BMS16] Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Average-case complexity
versus approximate simulation of commuting quantum computations. Physical Review Letters,
117:080501, 2016. (Cited on page 5.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993. (Cited
on page 49.)

[CGG24a] Kai-Min Chung, Eli Goldin, and Matthew Gray. On central primitives for quantum cryptography
with classical communication. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024,
Part VII, volume 14926 of LNCS, pages 215–248. Springer, Cham, August 2024. (Cited on
page 4.)

54

[CGG24b] Kai-Min Chung, Eli Goldin, and Matthew Gray. On central primitives for quantum cryptography
with classical communication. Cryptology ePrint Archive, Paper 2024/356, 2024. https:
//eprint.iacr.org/2024/356. (Cited on page 16.)

[CK11] Imre Csiszár and János Körner. Information Theory: Coding Theorems for Discrete Memoryless
Systems. Cambridge University Press, 2 edition, 2011. (Cited on page 28.)

[FKM+18] Keisuke Fujii, Hirotada Kobayashi, Tomoyuki Morimae, Harumichi Nishimura, Seiichiro
Tani, and Shuhei Tamate. Impossibility of classically simulating one-clean-qubit model with
multiplicative error. Physical Review Letters, 120:200502, 2018. (Cited on page 5.)

[FR99] Lance Fortnow and John Rogers. Complexity limitations on quantum computation. Journal of
Computer and System Sciences, 59:240–252, 1999. (Cited on page 3, 6.)

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, Cambridge, UK, 2004. (Cited on page 51.)

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust combiners
for oblivious transfer and other primitives. In Ronald Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 96–113. Springer, Berlin, Heidelberg, May 2005. (Cited on
page 11, 50.)

[HNO+09] Iftach Haitner, Minh-Huyen Nguyen, Shien Jin Ong, Omer Reingold, and Salil P. Vadhan.
Statistically hiding commitments and statistical zero-knowledge arguments from any one-way
function. SIAM J. Comput., 39(3):1153–1218, 2009. (Cited on page 17, 49.)

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In 30th FOCS, pages 230–235. IEEE Computer Society
Press, October / November 1989. (Cited on page 3, 10, 14, 15.)

[Imp92] Russell Impagliazzo. Pseudo-random generators for cryptography and for randomized algo-
rithms, 1992. Ph.D. thesis, University of California, Berkeley. (Cited on page 15.)

[JL00] D. W. Juedes and J. H. Lutz. Modeling Time-Bounded Prefix Kolmogorov Complexity. Theory
of Computing Systems, 33(2):111–123, April 2000. https://doi.org/10.1007/s002249910008.
(Cited on page 18.)

[JLS18] Zhengfeng Ji, Yi-Kai Liu, and Fang Song. Pseudorandom quantum states. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
126–152. Springer, Cham, August 2018. (Cited on page 4.)

[KLVY23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Lisa Yang. Quantum advantage from
any non-local game. In Barna Saha and Rocco A. Servedio, editors, 55th ACM STOC, pages
1617–1628. ACM Press, June 2023. (Cited on page 3, 48.)

[KMCVY22] Gregory D. Kahanamoku-Meyer, Soonwon Choi, Umesh V. Vazirani, and Norman Y. Yao.
Classically verifiable quantum advantage from a computational bell test. Nature Physics, 2022.
(Cited on page 3, 17, 48.)

55

https://eprint.iacr.org/2024/356
https://eprint.iacr.org/2024/356

[KQST23] William Kretschmer, Luowen Qian, Makrand Sinha, and Avishay Tal. Quantum cryptography
in algorithmica. In Barna Saha and Rocco A. Servedio, editors, 55th ACM STOC, pages
1589–1602. ACM Press, June 2023. (Cited on page 4.)

[Kre21] W. Kretschmer. Quantum pseudorandomness and classical complexity. TQC 2021, 2021.
(Cited on page 3, 4.)

[KT24a] Dakshita Khurana and Kabir Tomer. Commitments from quantum one-wayness. In Bojan
Mohar, Igor Shinkar, and Ryan O’Donnell, editors, 56th ACM STOC, pages 968–978. ACM
Press, June 2024. (Cited on page 3, 4, 15.)

[KT24b] Dakshita Khurana and Kabir Tomer. Founding quantum cryptography on quantum advantage,
or, towards cryptography from #P-hardness. Cryptology ePrint Archive, Paper 2024/1490,
2024. (Cited on page 9.)

[Lev85] Leonid A. Levin. One-way functions and pseudorandom generators. In 17th ACM STOC,
pages 363–365. ACM Press, May 1985. (Cited on page 11, 15, 50.)

[LMW24] Alex Lombardi, Fermi Ma, and John Wright. A one-query lower bound for unitary synthesis
and breaking quantum cryptography. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell,
editors, 56th ACM STOC, pages 979–990. ACM Press, June 2024. (Cited on page 4.)

[LV19] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its Applications.
Texts in Computer Science. Springer Cham, 4th edition, 2019. (Cited on page 18, 19, 20.)

[MY22] Tomoyuki Morimae and Takashi Yamakawa. Quantum commitments and signatures without
one-way functions. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I,
volume 13507 of LNCS, pages 269–295. Springer, Cham, August 2022. (Cited on page 3, 4, 6.)

[MY23] Tomoyuki Morimae and Takashi Yamakawa. Proofs of quantumness from trapdoor permutations.
In Yael Tauman Kalai, editor, ITCS 2023, volume 251, pages 87:1–87:14. LIPIcs, January
2023. (Cited on page 3, 48.)

[MY24] Tomoyuki Morimae and Takashi Yamakawa. Quantum advantage from one-way functions. In
Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part V, volume 14924 of LNCS,
pages 359–392. Springer, Cham, August 2024. (Cited on page 3, 5, 6, 12, 16, 17.)

[MYY24] Tomoyuki Morimae, Shogo Yamada, and Takashi Yamakawa. Quantum unpredictability.
Cryptology ePrint Archive, Paper 2024/701, 2024. (Cited on page 4.)

[Ost91] Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-knowledge
proofs. Computational Complexity Conference, 1991. (Cited on page 9, 10, 11.)

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way fuctions are essential for non-trivial zero-
knowledge. In Second Israel Symposium on Theory of Computing Systems, ISTCS 1993,
Natanya, Israel, June 7-9, 1993, Proceedings, pages 3–17. IEEE Computer Society, 1993.
(Cited on page 48.)

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from one-way
functions. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 403–418.
Springer, Berlin, Heidelberg, March 2009. (Cited on page 45, 46.)

56

[Rao08] Anup Rao. Parallel repetition in projection games and a concentration bound. In Richard E.
Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 1–10. ACM Press, May 2008.
(Cited on page 28.)

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
35th FOCS, pages 124–134. IEEE Computer Society Press, November 1994. (Cited on page 3,
5, 49.)

[TD04] B. M. Terhal and D. P. DiVincenzo. Adaptive quantum computation, constant-depth circuits
and arthur-merlin games. Quant. Inf. Comput., 4(2):134–145, 2004. (Cited on page 5.)

[Vad06] Salil P. Vadhan. An unconditional study of computational zero knowledge. SIAM Journal on
Computing, 2006. (Cited on page 8, 48.)

[YZ24] Takashi Yamakawa and Mark Zhandry. Verifiable quantum advantage without structure. J.
ACM, 71(3), jun 2024. (Cited on page 3, 5, 48, 49.)

57

	Introduction
	Additional Results
	Related Work
	Technical Overview

	Preliminaries
	Basic Notations
	One-Way Functions and Distributional One-Way Functions
	One-Way Puzzles
	Inefficient-Verifier Proofs of Quantumness
	Sampling Complexity
	Kolmogorov Complexity

	QASs and Int-QASs
	Definitions of QASs and Int-QASs
	Relation Between QASs and Sampling Complexity Classes
	Non-Interactive IV-PoQ Imply QASs
	QASs Imply Non-Interactive IV-PoQ

	The QAS/OWF Condition
	Equivalence of IV-PoQ and Classically-Secure OWPuzzs
	Proof of lem:IV-PoQtoInt-SampQA
	Proof of thm:Int-QAStoQAS/OWF
	Proof of thm:QAS/OWFtoIV-PoQ
	Proof of thm:QAS/OWFtoOWPuzz
	Proof of thm:OWPuzztoQAS/OWF

	Variants of IV-PoQ
	Equivalence Among Variants of IV-PoQ
	Zero-Knowledge IV-PoQ

	On Uniformity of Adversaries
	Proof of lem:OWFonN
	Proof of lem:univOWF
	Proof of lem:OWFOWPuzz

