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Abstract—The SPDZ protocol family is a popular choice for
secure multi-party computation (MPC) in a dishonest major-
ity setting with active adversaries. Over the past decade, a
series of studies have focused on improving its offline phase,
where special additive shares, called authenticated triples,
are generated. However, to accommodate recent demands for
matrix operations in secure machine learning and big integer
arithmetic in distributed RSA key generation, updates to the
offline phase are required.

In this work, we propose a new protocol for the SPDZ
offline phase, TopGear 2.0, which improves upon the previous
state-of-the-art construction, TopGear (Baum et al., SAC’19),
and its variant for matrix triples (Chen et al., Asiacrypt’20).
Our protocol aims to achieve a speedup in matrix triple
generation and support for larger prime fields, up to 4096
bits in size. To achieve this, we employ a variant of the BFV
scheme and a homomorphic matrix multiplication algorithm
optimized for our purpose.

As a result, our protocol achieves about 3.6x speedup for
generating scalar triples in a 1024-bit prime field and about
34x speedup for generating 128x128 matrix triples. In addition,
we reduce the size of evaluation keys from 27.4 GB to 0.22
GB and the communication cost for MAC key generation from
816 MB to 16.6 MB.

1. Introduction

Secure Multi-Party Computation (MPC) enables a set of
parties to jointly compute a function over their private inputs
without revealing any information other than the result.
Constructing MPC protocols has been a major research topic
in the field of cryptography, and there has been a number of
solutions optimized for various settings, such as assuming an
honest or dishonest majority among the parties, and whether
the corrupted parties behave passively or actively.

In a dishonest majority setting with an active adversary,
the SPDZ protocol family [DPSZ12, KPR18, CKR+20,
BCS19] has been a popular choice, as it provides active
security against up to n − 1 corrupted parties. The SPDZ
protocol is divided into two phases: an online phase and an
offline phase. In the online phase, parties jointly compute

a target function based on additive shares of their private
inputs, which are elements of some prime field Zp. Since the
protocol assumes the active security, the private inputs are
distributed in a special form called authenticated shares to
prevent deviation from the protocol. At the end of the online
phase, the parties jointly verify the output by checking the
validity of the authenticated shares to ensure the protocol
was correctly executed.

In the offline phase, authenticated shares are generated
in addition to authenticated triples, which are required for
performing multiplication in the online phase. Multipli-
cations in the online phase are processed using Beaver’s
trick [Bea92], which requires additive shares of a, b, and
c such that ab = c (mod p). The authenticated shares of
such triples (a, b, c) are called authenticated triples. The core
idea of the initial SPDZ protocol [DPSZ12] is to generate
authenticated triples using homomorphic encryption (HE).
The parties first jointly generate HE ciphertexts cta and ctb
for a and b, respectively. They then compute the encryption
ctc of c through the homomorphic multiplication of cta
and ctb. Finally, they collectively decrypt ctc to obtain the
additive share of c.

To achieve active security in the offline phase, it is
necessary to validate the HE ciphertexts cta and ctb to
prevent the use of ill-formed ciphertexts that could be
generated by malicious adversaries. This is done using a
proof of plaintext knowledge (PoPK) protocol, which is a
Schnorr-like zero-knowledge protocol that verifies the well-
formedness of the HE ciphertexts. Since the PoPK protocol
has been a main performance bottleneck in the offline phase,
subsequent studies [KPR18, BCS19] on the SPDZ protocol
have focused on improving the efficiency of the PoPK
protocol.

Recently, MPC protocols have been used in a wide
range of applications. One important application is privacy-
preserving machine learning [MZ17, MR18, DEK20,
WGC19], which enables distrustful parties to perform ma-
chine learning tasks on their private data. Since machine
learning tasks heavily utilize matrix operations, recent im-
provements [CKR+20, MG23, RRKK23] to the SPDZ pro-
tocol have introduced the concept of authenticated matrix
triples, which significantly reduce the overhead of matrix

1



operations in both the online and offline phases. On the other
hand, MPC protocols can also be utilized in distributed key
generation for threshold cryptography, which has recently
gained attention due to NIST’s preparation for the stan-
dardization of threshold cryptography [BP23]. For example,
there have been several studies on distributed RSA key
generation [BDF+23, FLOP18, CDK+22], which requires
arithmetic MPC with large moduli for the multiplication of
two large prime numbers.

1.1. Our Contribution

In this paper, we propose a new offline phase for SPDZ,
which we denote as TopGear 2.0, improving upon the
previous state-of-the-art construction [BCS19], TopGear. In
our protocol, we address the recent demands for matrix
multiplication and large modulus fields.

Generalized BFV. To instantiate large modulus arithmetic in
SPDZ, authenticated triples must be generated within large
fields, which requires HE schemes designed for such large
fields. To achieve this, we devise a new variant of the BFV
homomorphic encryption scheme, which we denote as gen-
eralized BFV. Our generalized BFV scheme can efficiently
handle messages from large prime fields by employing a
novel packing method for large prime fields, following the
idea of [BCIV20].

Let p be the modulus of the message space and q be
the modulus of the ciphertext space. In the ordinary BFV
scheme [Bra12, FV12], q must be set much larger than
p, as the available depth for homomorphic multiplication
is roughly determined by the factor log q/ log p. However,
both the computational complexity of homomorphic multi-
plication and the space complexity of the evaluation key
scale approximately with O(log2 q). Due to this nature,
performance significantly degrades when handling messages
from large moduli because of the huge increase in the
ciphertext modulus q.

Our packing method effectively addresses this issue by
reducing the overhead of homomorphic multiplication from
log p to log b, when p = bM + 1. Then, the available multi-
plicative depth is now determined by the factor log q/ log b,
which allows for a much smaller q for the same field size
p. As a result, we can use a ciphertext modulus with a
bit length ten times smaller than the ordinary BFV scheme
when p is a 1024-bit prime. This results in approximately a
threefold speedup in generating authenticated triples, and a
reduction in the evaluation key size by about 125 times.

Faster Homomorphic Matrix Multiplication. To accom-
modate the demand for efficient matrix operations, previ-
ous work [CKR+20] proposed a protocol for authenticated
matrix triple generation, which utilized the homomorphic
matrix multiplication algorithm from [JKLS18]. To further
accelerate performance, we devise a new homomorphic ma-
trix multiplication algorithm that asymptotically improves
computational complexity.

For d× d matrix multiplication, the previous algorithm
in [JKLS18] required Õ(d3 · log2 q) complexity and 3d− 2

evaluation keys. In this work, we reduce the computational
complexity to Õ(d3 · log q) and the number of evaluation
keys to d by introducing a new matrix encoding map called
shifted diagonal encoding. This improvement particularly
synergizes with our generalized BFV scheme, which effec-
tively reduces the size of log q. As a result, we achieve
approximately a 30-fold speedup in computing 128 × 128
matrix multiplication for a field size p ≈ 2128.

PoPK for Generalized BFV. To employ the generalized
BFV scheme for authenticated triple generation, an efficient
PoPK protocol optimized for the generalized BFV scheme is
required. In the PoPK protocol, there exists a gap between
the honest statement and the proven statement, known as
soundness slack. Since the soundness slack influences pa-
rameter settings, particularly the ciphertext modulus q, it is
crucial to minimize this slack. Otherwise, it can degrade the
performance of HE operations and increase communication
costs. In a previous study [KLSS23], a method for achieving
constant-sized soundness slack was proposed for a special
case of the BFV scheme. However, this method does not
directly apply to our case, as we have modified the structure
of ciphertexts in our generalized BFV scheme. To achieve
constant-sized soundness slack in generalized BFV, we adapt
a recently proposed technique by [HSS24] that randomizes
the packing procedure during encryption. As a result, we
achieve constant-sized soundness slack for our generalized
BFV, similar to the previous work [KLSS23].

1.2. Related Works

TopGear. The most relevant works to ours are
TopGear [BCS19] and its variant for matrix
triples [CKR+20]. TopGear is designed to support a
large number of parties, so its performance scales well as
the number of participants grows. The core idea of TopGear
is to run a PoPK protocol in which all parties participate,
producing a single joint proof that validates all parties’ HE
ciphertexts. Additionally, the generation of authenticated
triples in TopGear is done in a similar manner, utilizing
homomorphic multiplication. This contrasts with other
SPDZ offline phases [DPSZ12, KPR18], where proofs and
authenticated triples are generated pairwise between parties.

LowGear. There is another line of work for the SPDZ offline
phase, called LowGear [KPR18, RRKK23]. In the LowGear
protocol, each party pairwise generates PoPK proofs and
authenticated triples. This approach has advantages with a
small number of parties, as it can replace costly homo-
morphic multiplications with cheaper linear homomorphic
operations. However, its performance degrades rapidly as the
number of parties increases. We expect that our generalized
BFV scheme could also be applied to the LowGear protocol
and its variants.

Pseudorandom Correlation Generator. Aside from homo-
morphic encryption, authenticated triples can be generated
using the pseudorandom correlation generator [BCG+19],
which enables the generation of correlated randomness with
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sublinear communication costs. Abram and Scholl [AS22]
proposed a protocol for authenticated triple generation based
on the pseudorandom correlation generator. Their protocol
requires a total communication cost of O(n4

√
T ) to generate

T triples, compared to O(n2T ) in the TopGear and LowGear
protocols, where n is the number of parties. However, the
generation of authenticated matrix triples is not addressed
in the literature.

Matrix Multiplication. There has been numerous research
on secure matrix multiplication using HE. [HS14, HS18]
introduced an algorithm for linear transformation of an
encrypted vector, which can be trivially extended to matrix
multiplication with the number of ciphertexts equal to the
dimension. On the other hand, [JKLS18, JLK+22] studied
the case where the entire matrix can be packed in a single
ciphertext. For more detailed explanation and comparison,
we refer to Section 4.1. Alternatively, Zheng et al. [ZLW23]
showed that trace maps can be used to accelerate the ma-
trix multiplication if the matrix dimension is even smaller.
However, their method requires arithmetic over non-power-
of-two cyclotomic rings, which is inefficient in practice.

2. Background

2.1. Notation

Let N be a power of two and q be an integer. We
denote by K = Q[X]/(XN + 1) the (2N)-th cyclotomic
field, R = Z[X]/(XN + 1) the ring of integers of K,
and Rq = R/qR the quotient ring of R. We identify an
element a =

∑
0≤i<N ai · Xi ∈ Rq with the vector of its

coefficients (a0, . . . , aN−1) ∈ ZNq . We use Z ∩ (−q/2, q/2]
as a representative of Zq for an integer q, and denote by
[a]q the reduction of an integer a modulo q. For a ∈ R,
we define ∥a∥∞ as the ℓ∞-norm of its coefficient vector.
For a real number r, ⌊r⌉ denotes the nearest integer to r,
rounding upwards in case of a tie. For a finite set S, we
use x ← U(S) to denote the sampling x according to the
uniform distribution over S.

2.2. Authenticated Shares in SPDZ

We review the definitions of authenticated share and au-
thenticated triple used in the online phase of the SPDZ pro-
tocol [DPSZ12]. Let n be the number of parties involved in
the multi-party computation protocol, and let α be the global
MAC key such that the i-th party holds an additive share
αi, where

∑n−1
i=0 αi = α (mod p). For an input x ∈ Zp, an

authenticated share JxK is defined as (xi,mi)0≤i<n, where∑n−1
i=0 xi = x (mod p) and

∑n−1
i=0 mi = α · x (mod p).

A triple (JaK, JbK, JcK) is called an authenticated triple if
ab = c (mod p) holds. For a matrix X ∈ Zd×dp , an
authenticated share JXK is defined as (Xi,Mi)0≤i<n, where∑n−1

i=0 Xi = X (mod p) and
∑n−1

i=0 Mi = α ·M (mod p).
A triple (JAK, JBK, JCK) is called an authenticated matrix
triple if AB = C (mod p) holds. We note that the security

of the MAC is determined by the size of p, so large prime
numbers, such as 128-bit primes, are utilized in the SPDZ
protocol.

2.3. Discrete Gaussian Distribution

We define the n-dimensional spherical Gaussian function
ρ : Rn → (0, 1] as ρ(x) := exp(−π · x⊤x). In gen-
eral, for a positive definite matrix Σ ∈ Rn×n, we define
the elliptical Gaussian function ρ√Σ : Rn → (0, 1] as
ρ√Σ(x) := exp(−π · x⊤Σ−1x). Let Λ ⊆ Rn be a lattice
and c ∈ Rn. The discrete Gaussian distribution Dc+Λ,

√
Σ is

defined as a distribution over the coset c+Λ, whose proba-
bility mass function is Dc+Λ,

√
Σ(x) = ρ√Σ(x)/ρ

√
Σ(c+Λ)

for x ∈ c+Λ where ρ√Σ(c+Λ) :=
∑

v∈c+Λ ρ
√
Σ(v) <∞.

When Σ = σ2 · In for σ > 0 where In is the n-dimensional
identity matrix, then we substitute

√
Σ by σ in the subscript

and refer to σ as the width parameter. For a polynomial
a ∈ R, we denote by a ← Dc+Λ,

√
Σ if we sample its

coefficient vector from Dc+Λ,
√
Σ. Below, we provide useful

lemmas for tail bounds of discrete Gaussian distributions.

Definition 1 (Definition 3.1 [MR07]). For an n-dimensional
lattice Λ and positive real ε > 0, the smoothing parameter
ηε(Λ) is the smallest s such that ρ1/s(Λ∗\{0}) ≤ ε.
Lemma 1 (Lemma 3.3 [MR07]). For any n-dimensional
lattice Λ and ε > 0,

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λn(Λ)

where λn(Λ) is the smallest real number r > 0 such that
dim(span(Λ ∩ B(r))) = n and B(r) is the n-dimensional
ball with radius r centered at the origin.

Lemma 2 (Lemmma 2.4 [Ban95]). Let Λ ⊆ Rn be any n-
dimensional lattice. For any 0 < ε < 1/3, σ ≥ ηε(Λ), and
any c ∈ Rn,

Pr [∥x∥∞ > 6σ | x← Dc+Λ,σ] ≤ n · 2−161

2.4. Ring Learning With Errors

Let χ and ψ be distributions over R. The ring learning
with errors (RLWE) problem, denoted as RLWER,q,χ,ψ, is
to distinguish between the following two distributions.

{(a, b)|a← U(Rq), b← U(Rq)}
{(a, b)|a← U(Rq), s← χ, e← ψ, b = −a · s+ e (mod q)}

We refer to a pair (c0, c1) ∈ R2
q as an RLWE encryption of

µ under s if c0 = −c1s+ µ+ e (mod q) holds for a small
error term e ∈ R. Then, it is decryptable by computing
c0 + c1s ≈ µ (mod q).

2.5. Gadget Decomposition

Below, we provide the definition of gadget decomposi-
tion and external product, which are key building blocks for
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implementing nonlinear operations in RLWE-based homo-
morphic encryption schemes

Definition 2 (Gadget Decomposition). For a modulus q, a
function h : Rq → RL is called a gadget decomposition if
there exists a fixed vector g = (g0, g1, . . . , gL−1) ∈ Rdq and
a real B > 0 such that the followings hold for any a ∈ Rq
and its decomposition h(a) = (b0, b1, . . . , bL−1).

⟨h(a),g⟩ =
L−1∑
i=0

bi · gi = a (mod q) and ∥b∥∞ ≤ B

We call g a gadget vector and B > 0 a bound of h.

Definition 3 (External Product). For a ∈ Rq and u =
(u0, . . . , ud−1) ∈ RLq , a binary operation external product
� : Rq ×RLq → Rq is defined as follows.

a� u := ⟨h(a),u⟩ (mod q)

By an abuse of notation, we write a�U = (a�u0, a�u1) ∈
R2
q for any a ∈ Rq and U = [u0|u1] ∈ RL×2

q .

The key-switching procedure is a major use case of the
external product, which is used for implementing nonlinear
HE operations. Given an RLWE ciphertext (c0, c1) ∈ R2,
which is an encryption of µ under the secret key s, we can
generate another RLWE ciphertext (c′0, c

′
1) with a different

secret key s′ such that c0+c1s ≈ c′0+c′1s′ (mod q). This is
achieved by computing (c′0, c

′
1) = (c0, 0)+c1�U (mod q),

where u0 = −s · u1 + s′ · g + e (mod q) for some small
error term e. Then, (c′0, c

′
1) can be interpreted as the RLWE

encryption of µ under the new secret key s′, switching the
secret key from s to s′.

In a real-world implementation, a popular choice for a
gadget decomposition is the RNS (Residue Number Sys-
tem) gadget decomposition [HPS19]. Suppose that q =∏

0≤i<L qi for some word-sized primes qi’s, where 0 ≤ i <
L. Then, a gadget decomposition and a gadget vector are de-
fined as h(a) = ([a]q0 , . . . , [a]qL−1

) and g = (q̃0, . . . , q̃L−1),
where q̃i = q/qi · [(q/qi)−1]qi. It follows that ⟨h(a),g⟩ = a
(mod q) and ∥h(a)∥∞ < max{q0, . . . , qL−1}, so h be-
comes a gadget decomposition over Rq. The computation of
the external product involves two steps: decomposition and
inner product. The decomposition step computes h(a), and
the inner product step computes ⟨h(a),u⟩. The complexity
of the decomposition step is Õ(LN) or Õ(L2N) depending
on the algorithm used, while the inner product computation
requires Õ(L2N). Thus, the overall complexity is Õ(L2N).
For a detailed analysis, we refer to [KLSS23].

3. Generalized BFV for Large Primes

In this section, we present a variant of the BFV
scheme [Bra12, FV12] that can efficiently handle large
prime plaintext moduli. For the ordinary BFV scheme, the
plaintext space is defined as Rp, so the plaintext modulus p
is usually set to be much smaller than the ciphertext modulus
q, as the available multiplicative depth is roughly determined
by the ratio log(q)/ log(p). Conversely, using large primes

for plaintext moduli results in an increase in the ciphertext
modulus q, but as noted in Section 2.5, this leads to quadratic
performance overhead because the gadget level L roughly
follows O(log q).

To overcome this problem, we present a variant of
the BFV scheme that can accommodate messages from a
large prime field, following the idea of the previous work
by Bootland et al. [BCIV20]. The core idea is to design
a variant of the BFV scheme with a plaintext space of
RXD−b = Z[X]/(XN + 1, XD − b) for some D | N
and an integer b, instead of Rp = Z[X]/(XN + 1, p).
Since Z[X]/(XN +1, XD − b) = Z[X]/(bM +1, XD − b),
where M = N/D, if we set p = bM + 1, it follows that
RXD−b = Zp[X]/(XD−b). This allows us to perform mod-
ular arithmetic over p using the plaintext space RXD−b. The
advantage of this plaintext space is that the multiplicative
depth is roughly determined by the ratio log q/ log b, rather
than log q/ log p. Thus, by choosing a suitable b, we can
construct an efficient HE scheme that can handle large prime
plaintext moduli. For example, in our experiments, we set
b ≈ 216 for a prime p ≈ 24096 with M = 256, which allows
us to use a much smaller q compared to the ordinary BFV
scheme.

We note that our variant of the BFV scheme can be
viewed as a generalization of the ordinary BFV scheme, as
the latter corresponds to the case when M = 1. Hence, we
refer to it as the generalized BFV scheme. In the rest of this
section, we provide more details about our generalized BFV
scheme, including how we instantiate a SIMD-like packing
method and investigate the automorphism group on RXD−b
for implementing homomorphic rotation operations.

3.1. Packing Method

Although the previous work [BCIV20] utilized the plain-
text space RXD−b, its packing method was designed for
handling complex-valued messages. Thus, our first goal is
to instantiate a HElib-like packing method [HS15] over
RXD−b = Zp[X]/(XD−b) to support messages from large
prime fields rather than complex numbers. More precisely,
we aim to pack a vector m ∈ ZDp into a single polynomial
µ ∈ RXD−b using the Chinese Remainder Theorem (CRT),
so that we can perform homomorphic operations over Zp in
a SIMD manner. To achieve this, the polynomial XD − b
must fully split modulo p, so we investigate the conditions
on p, D, and b required for XD−b to split modulo p below.
We note that all proofs in this subsection are deferred to
Appendix B.

Lemma 3. Let b, D, and M be positive integers such that
N = M · D, and p = bM + 1 is a prime. If 2N divides
(p−1), then XD− b splits in Zp[X]. Moreover, there exists
an element ξ ∈ Zp such that ξ, ξ2M+1, . . . , ξ2(D−1)M+1 are
distinct roots for XD − b = 0 (mod p) for 0 ≤ i < D.

From the above lemma, we obtain the following isomor-

4



phism relations due to the CRT.

Zp[X]/(XD − b) ∼=
D−1∏
i=0

Zp[X]/(X − ξ2iM+1) ∼= ZDp

Now, a packing strategy for a vector in ZDp into an element
in RXD−b can be devised from the above relations. Briefly
speaking, given a vector m ∈ ZDp , a degree D − 1 poly-
nomial µ ∈ RXD−b is computed, such that each evaluation
value of µ at the roots {ξ2iM+1}0≤i<D is each entry of the
vector. Then, the homomorphic operations such as addition
and multiplication over RXD−b directly translates into the
component-wise arithmetic in ZDp , so we refer to D as the
number of slots. Finding such a polynomial µ can be effi-
ciently done by adapting the Number Theoretic Transform
(NTT) algorithm.

For the purpose of homomorphic matrix multiplication,
we need to introduce an additional homomorphic operation
over RXD−b called rotation. The rotation operation ρ on
a vector m = (m0, . . . ,mD−1) is defined as ρ(m) :=
(m1, . . . ,mD−1,m0), which cyclically shifts the entries of
the input vector. In the following, we demonstrate how to
instantiate the rotation operation using an automorphism
evaluation over the plaintext space RXD−b, following the
strategy outlined in [HS15]. First, we investigate when
a map θi : X 7→ Xi becomes an automorphism over
RXD−b. For θi to be an automorphism, it should map
the roots {ξ2jM+1}0≤j<D of XD − b modulo p to them-
selves. Applying θi to this set yields {ξi(2jM+1)}0≤j<D.
To ensure that {ξi(2jM+1)}0≤j<D = {ξ2jM+1}0≤j<D, each
i(2jM + 1) must be of the form 2jM + 1, which implies
i = 1 (mod 2M). Furthermore, if i = 1 (mod 2M), the
elements ξi(2jM+1) will not overlap, making θi an auto-
morphism. Below, we show that the set of automorphisms
{X 7→ X2iM+1 | 0 ≤ i < D} indeed forms a cyclic group.

Lemma 4. Let D,M ≥ 2 be power-of-2 integers such that
N/M = D. Then, G = {2iM + 1 | 0 ≤ i < d} is a cyclic
multiplicative subgroup of Z×

2N and 5M/2 is its generator.

From the above lemma, the set {X 7→ X2iM+1 | 0 ≤ i <
D} forms a cyclic group generated by the automorphism
φ : X 7→ X5M/2

. We can now describe our packing method
with cyclic rotation as follows.

Theorem 1. Let b, D, and M be positive integers such that
N =MD and p = bM +1 is a prime. If 2N divides p− 1,
then XD−b splits modulo p, and RXD−b = Zp[X]/(XD−
b) ≃ ZDp . Moreover, there exists ξ ∈ Zp such that the

mapping τ : f 7→
(
f(ξ), f(ξ5

M/2

), · · · , f(ξ5(D−1)M/2

)
)

,
which maps f ∈ Zp[X]/(XD − b) to an element in ZDp ,
is an isomorphism.

This theorem implies that if we pack a vector in ZDp
using the map τ−1, we can perform rotation ρ by the
automorphism φ : X 7→ X5M/2

. To be precise, if a mes-
sage m = (m0,m1, . . . ,mD−1) is packed into a plaintext
τ−1(m) = µ(X), then φ(µ) = µ(X5M/2

) corresponds

(m0,m1, · · ·mD−1) = m µ

(m1, · · · ,mD−1,m0) = ρ(m) φ(µ)

⟳

τ−1

ρ φ

τ

Figure 1. Rotation operation in RXD−b

to the rotated message ρ(m) = (m1, · · · ,mD−1,m0), as
illustrated in Fig. 1.

We define the packing and unpacking algorithms for our
scheme as follows. We note that τ and τ−1 can be computed
with a time complexity of O(D logD) by modifying the
NTT algorithm.

• Pack(m) → µ: Given a message m =
(m0,m1, . . . ,mD−1) ∈ ZDp , return a plaintext
µ = τ−1(m) ∈ RXD−b.

• Unpack(µ) → m: Given a plaintext µ ∈ RXD−b,
return a message m = τ(µ) ∈ ZDp .

3.2. Scheme Description

We present our generalized BFV scheme that supports
efficient arithmetic over large primes, built upon our new
packing method. Our construction basically follows the
construction of [BCIV20].

Setup. The algorithms for setup are given as follows:
• Setup(1λ) → pp: Given a security parame-

ter λ, choose the ring dimension N , the cipher-
text modulus q, the secret key distribution χ,
and the error distribution ψ. Choose a plaintext
space RXD−b, and define ∆ =

⌊
q

XD−b

⌉
=⌊

− q
bM+1

(XN−D + bXN−2D + · · ·+ bM−1)
⌉
∈ R.

Choose a gadget vector g ∈ RLq and a gadget decom-
position h : Rq → RL, with bound B. Return public
parameters pp = (N, q, χ, ψ,RXD−b, h,g, B).

• KeyGen(pp)→ (sk, pk): Sample s ← χ, a ← U(Rq)
and e ← ψ, and set sk = (1, s), and pk = (−as +
e, a) ∈ R2

q . Return a key pair (sk, pk).
• RelinKeyGen(sk) → rlk: Given a secret key sk =

(1, s), sample a ← U(RLq ), and e ← ψL. Return a
relinearization key rlk = (−s · a+ s2 · g + e,a).

• RotKeyGen(sk, r) → rtkr: Given a secret key sk =

(1, s) and a rotation index r, sample a← U(RLq ), and
e← ψL. Return a rotation key rtkr = (−s ·a+φr(s) ·
g + e,a).

While there is no need to generate the rotation key when
the rotation index r is zero, rtk0 will be used in the algorithm
description for an easier notation. We remark that rotation
with rtk0 is essentially outputting the input ciphertext.

Encryption. To encrypt a plaintext µ ∈ RXD−b, it needs
to be represented as an element in R. There are multiple
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possible representations, but we want it to have a small norm
to minimize noise growth during encryption. We observe
that every µ ∈ RXD−b can have a representation [µ]R ∈ R
such that ∥[µ]R∥∞ ≤ b, leveraging the fact that XD = b
(mod XD − b), and we use this representation for the
encryption algorithm. The algorithms for encryption and
decryption are given as follows:

• Enc(µ, r) → ct: Given a public key pk, a plaintext
µ ∈ R, and a randomness triple r = (r0, r1, r2) ∈ R3,
return ct = r0 · pk+ (∆ · µ+ r1, r2) ∈ R2

q .
• Dec(ct) → µ: Given a ciphertext ct = (c0, c1) and

a secret key sk = (1, s), return a plaintext µ =⌊
XD−b
q (c0 + c1 · s)

⌉
(mod XD − b).

We analyze the correctness of the encryption and de-
cryption algorithms in Appendix B.4.

Homomorphic Operations. Below, we present algo-
rithms for homomorphic operations. We incorporate a key-
switching procedure for nonlinear homomorphic operations,
such as multiplication and rotations.

• Add(ct, ct′) → ct′′: Given ciphertexts ct, ct′ ∈ R2
q ,

return ct′′ = ct+ ct′ (mod q).
• PMul(µ, ct) → ct′: Given a plaintext µ ∈ RXD−b and

a ciphertext ct ∈ R2
q , return ct′ = [µ]R · ct (mod q).

• Mul(ct, ct′) → ct′′: Given ciphertexts ct = (c0, c1),
ct′ = (c′0, c

′
1) and a relinearization key rlk, let d0 =⌊

XD−b
q c0c

′
0

⌉
(mod q), d1 =

⌊
XD−b
q (c0c

′
1 + c1c

′
0)
⌉

(mod q) and d2 =
⌊
XD−b
q c1c

′
1

⌉
(mod q). Return

ct′′ = (d0, d1) + d2 � rlk (mod q).
• Rot(ct, r) → ct′: Given a ciphertext ct = (c0, c1),

a rotation index r and the corresponding rotation
key rtkr, let d0 = φr(c0), and d1 = φr(c1). Return
ct′ = (d0, 0) + d1 � rtkr (mod q).

Noise Analysis. For the noise analysis, we use the notion
of invariant noise introduced in [BCIV20].

Definition 4 (Invariant Noise). Let ct = (c0, c1) be a
ciphertext with a secret key sk = (1, s). For µ ∈ R, we define
the invariant noise Err(ct, µ) as an element v ∈ K with the
smallest canonical norm, which satisfies the following for
some I ∈ R:

XD − b

q
(c0 + c1s) = µ+ v + (XD − b)I

The following lemma shows that the decryption works cor-
rectly if the canonical norm of the invariant noise is less
than 1/2.

Lemma 5 (Decryption Bound [BCIV20]). Let ct be a ci-
phertext and µ ∈ R be a plaintext. If ∥Err(ct, µ)∥can∞ < 1/2,
then Dec(sk, ct) = µ (mod XD − b).

We show the correctness of each homomorphic oper-
ation, along with the noise growth in Appendix B.4. We
remark that the noise growth of homomorphic multiplication
now depends on the size of b rather than p, as analyzed in
Lemma 8.

4. Improved Matrix Multiplication

In this section, we present a new homomorphic square
matrix multiplication algorithm, which can be utilized for
authenticated matrix triple generation. Our algorithm im-
proves upon the previous approach [HS18, JKLS18] by
introducing a new matrix encoding method optimized for
square matrix multiplication. As a result, we reduce the total
time complexity by a factor of L, efficiently reducing the
overhead of inner products performed during the external
product.

Throughout this section, we use d to denote the matrix
dimension, and the complexity of the algorithm is ana-
lyzed in terms of d. We first briefly review the previous
approach [HS18, JKLS18] to homomorphic square matrix
multiplication, and then demonstrate how our method im-
proves performance, along with a detailed analysis.

4.1. Previous Approach

In this subsection, we review two previous approaches
[HS18, JKLS18] on matrix-matrix multiplication.

Halevi-Shoup Method. Halevi and Shoup [HS18] intro-
duced a method to homomorphically compute a linear
transformation on an encrypted vector. For a matrix A =
(ai,j) ∈ Zd×dp , it first defines a diagonal encoding map
ι : Zd×dp → (Zdp)d as

ι : A = (ai,j) 7→ ((aj,j+i)0≤j<d)0≤i<d

where each index is computed modulo d. For simplicity, we
denote ι(A) = (ι(A)0, . . . , ι(A)d−1) where each ι(A)i is
a vector in Zdp. Then, for a vector v ∈ Zdp, we have

Av =

d−1∑
k=0

ι(A)k ⊙ ρk(v) (1)

where ρk denotes the left rotation of the elements of a vector
by k, and ⊙ denotes the component-wise multiplication be-
tween vectors. To translate Eq. (1) into homomorphic opera-
tions, we need ciphertexts that encrypt ι(A)0, . . . , ι(A)d−1,
v, and perform homomorphic rotations Rot(·, k) on the en-
cryption of v to obtain an encryption of ρk(v). Additionally,
the number of slots D should be set to d. We also note that
this method can be trivially extended to encrypted matrix-
matrix multiplication by applying Eq. (1) d times, once for
each column of the matrix.

Jiang et al. Method. Jiang et al. [JKLS18] proposed an
optimized matrix-matrix multiplication algorithm for cases
where the number of slots is a multiple of d2, focusing on
small-dimensional matrix multiplication. For a matrix A =
(ai,j) ∈ Zd×dp , consider its flattening map σ : Zd×dp → Zd2p
as follows.

σ : A = (ai,j) 7→ (ad·i+j)0≤i,j<d

6



Figure 2. Comparison between diagonal encoding map ι and shifted diag-
onal encoding map ι̃.

In addition, it defines four d2 × d2 permutation matrices
M,N,V(k),W(k) with entries defined as follows.

Md·i+j,ℓ =

{
1 if ℓ = d · i+ j + [i+ j]d
0 otherwise

Nd·i+j,ℓ =

{
1 if ℓ = d · [i+ j]d + j

0 otherwise

V
(k)
d·i+j,ℓ =

{
1 if ℓ = d · i+ j + [j + k]d
0 otherwise

W
(k)
d·i+j,ℓ =

{
1 if ℓ = d · [i+ k]d + j

0 otherwise

Then, for any d× d matrices A,B, the following holds.

σ(AB) =

d−1∑
k=0

(V(k)Mσ(A))⊙ (W(k)Nσ(B)) (2)

For computing V(k)Mσ(A),W(k)Nσ(B), it uses the
method by Halevi and Shoup discussed earlier.

4.2. Our Method

In the previous approaches, the main performance bot-
tlenecks are key-switching procedures in homomorphic ro-
tations. Hence, we focus on reducing the overhead of key-
switching by developing a new algorithm for homomorphic
matrix multiplication. For this, we start by defining a new
encoding map, called the shifted diagonal encoding map.
Our algorithm assumes that the number of slots is equal to
the matrix dimension d, as in the Halevi-Shoup method. The
shifted diagonal encoding map ι̃ : Zd×dp → (Zdp)d is defined
as follows

ι̃ : A = (ai,j) 7→ ((aj−i,j)0≤j<d)0≤i<d

or equivalently, ι̃i(A) = ρ−i(ιi(A)). We denote ι̃(A) =
(ι̃(A)0, · · · , ι̃(A)d−1). Then, the multiplication between

A = (ai,j) and B = (bi,j) can be written as

ι(A ·B)i =

d−1∑
k=0

ι(A)k ⊙ ρi(ι̃(B)i−k) (3)

since(
d−1∑
k=0

ι(A)k ⊙ ρi(ι̃(B)i−k)

)
j

=

d−1∑
k=0

ι(A)k,j · ι̃(B)i−k,j+i

=

d−1∑
k=0

aj,j+k · bj+k,j+i

= (A ·B)j,j+i = ι(A ·B)i,j .

The translation of Eq. (3) in terms of homomrphic oper-
ation is as follows. We need encryptions of Pack(ι(A)i),
denoted as CTι(A) = (ctι(A)0 , · · · ctι(A)d−1

), and simi-
larly encryptions of Pack(ι̃(B)i), denoted as CTι̃(B) =
(ctι̃(B)0 , · · · , ctι̃(B)d−1

). A naive way of computing Eq. (3)
is to first compute rotations of ctι̃(B)i−k

for all k as

(b
(i)
i−k,0, b

(i)
i−k,1) = Rot(ctι̃(B),i−k, i)

= (φi(bi−k,0), 0) + φi(bi−k,1) � rtki (mod q)

where ctι̃(B)i−k
= (bi−k,0, bi−k,1). Then, we compute the

sum of the product between ctι(A)k and Rot(ctι̃(B)i−k
, i) as

ctι(AB)i =

d−1∑
k=0

(⌊
XD − b

q
(ak,0b

(i)
i−k,0, ak,0b

(i)
i−k,1 + b

(i)
i−k,0ak,1)

⌉
+

⌊
XD − b

q
ak,1b

(i)
i−k,1

⌉
� rlk

)
(mod q)

where ctι(A)k = (ak,0, ak,1). This approach requires d2 Mul
operations and d2 Rot operations for each, resulting in a
total of 2d2 key-switching operations.

Optimization via Lazy Key-switching. We then observe
that the overhead of key-switching can be significantly re-
duced by employing the well-known optimization technique
called lazy key-switching. Let us explain this in detail. If
we defer all the key-switching procedures for lazy key-
switching, it can be rewritten as

(d′0, d
′
1, d

′
2, d

′
3) =

⌊
XD − b

q

(
d−1∑
k=0

(
ak,0φ

i(bi−k,0), ak,1φ
i(bi−k,0),

ak,0φ
i(bi−k,1), ak,0φ

i(bi−k,1)
))⌉

(mod q)

so that the following holds.

d′0+d
′
1s+d

′
2φ

i(s)+d′3sφ
i(s) ≈ ∆·Pack(ι̃(AB)i) (mod q).

Then, we apply key-switching to the ciphertext
(d′0, d

′
1, d

′
2, d

′
3), changing the secret key from

(1, s, φi(s), sφi(s)) to the original secret key (1, s).
More specifically, we compute

(d′0, d
′
1 + v0) + v1 � rlk+ d′2 � rtki (mod q)
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for (v0, v1) = d′3 � rtki. We briefly show the correctness
below.

⟨(1, s), (d′0, d′1 + v0) + v1 � rlk+ d′2 � rtki⟩
≈ d′0 + d′1 · s+ s · v0 + s2 · v1 + d′2 · φi(s)
= d′0 + d′1 · s+ s · (v0 + s · v1) + d′2 · φi(s)
≈ d′0 + d′1 · s+ d′2 · φi(s) + d′3 · sφi(s) (mod q)

Consequently, we require 3 key-switching operations to
homomorphically compute Eq. (3) for each 0 ≤ i < d.
Therefore, a total of 3d key-switching operations are needed
for the entire matrix multiplication, which is a reduction
from the 2d2 key-switching operations required for naive
computation. The full algorithm for our encrypted matrix
multiplication is provided in Algorithm 1, which defines the
following homomorphic operation.

• MatMul(CTι(A),CTι̃(B))→ CTι(C): Given ciphertexts
CTι(A) and CTι̃(B), run Algorithm 1, and return the
result CTι(C).

Algorithm 1 New Matrix Multiplication MatMul

Input: CTι(A), CTι̃(B), and evk = {rlk, rtk0, . . . , rtkd−1}.
Output: CTι(C) where C = AB.

1: for 0 ≤ i < d do
2: (d0, d1, d2, d3)← (0, 0, 0, 0) ∈ R4

q

3: for 0 ≤ k < d do
4: (a0, a1)← ctι(A)k
5: (b0, b1)← ctι̃(B)i−k

6: (d0, d1, d2, d3)← (d0, d1, d2, d3)
+
(
a0φ

i(b0), a0φ
i(b1), a1φ

i(b0), a1φ
i(b1)

)
7: end for
8: (d′0, d

′
1, d

′
2, d

′
3)←

⌊
XD−b

q
(d0, d1, d2, d3)

⌉
(mod q)

// key-switching from φi(s) to s

9: (u0, u1)← d′2 � rtki (mod q)
// key-switching from s · φi(s) to s2

10: (v0, v1)← d′3 � rtki (mod q)
// key-switching from s2 to s

11: (w0, w1)← v1 � rlk (mod q)
12: ctι(C),i ← (d′0 + u0 + w0, d

′
1 + u1 + v0 + w1) (mod q)

13: end for

Noise Analysis. We analyze the noise growth of MatMul in
Appendix B.5.

Complexity Analysis. Now, we provide a detailed complex-
ity analysis of our method, together with a comparison to
the previous method. For a fair comparison, we first ex-
plain the various optimization that can be made to previous
approaches explained in Section 4.1. We first recall that a
key-switching operation involves two steps: decomposition
and inner product, as explained in Section 2.5.

In the method by Halevi and Shoup, we require d2 Rot
operations and d2 Mul operations for each. Similar to our
matrix multiplication method, we can also apply the lazy
key-switching technique. However, since the rotation index
of the summation term is different, we can only compute the
relinearization in a lazy manner. Instead, [HS18] proposed
a techinque called hoisting, which precomputes the decom-
position of a ciphertext before applying several rotations.

Using these optimizations, the number of decomposition be-
comes 2d. However, the number of innner product operation
still remains d2+ d. Finally, we require d− 1 rotation keys,
since we need to compute every rotation from 1 to d− 1. 1

In the method by Jiang et al., we require d Mul op-
erations and 2d linear transformations using Halevi-Shoup
method, since Mσ(A) and Nσ(B) can be precomputed. A
crucial observation made in [JKLS18] is that V(k) and W(k)

has extremely sparse diagonal entries. Concretely, ι(V(k))
has only two nonzero vectors ι(V(k))k and ι(V(k))k−d, and
ι(W(k)) has only one nonzero vector ι(W(k))k·d. There-
fore, using Halevi-Shoup method, we can compute the linear
transform V(k)Mσ(A) and W(k)Nσ(B) for all 0 ≤ k < d
with 2d and d key-switchings repsectively. Moreover, we can
further apply hoisting and lazy key-switching. This brings
the total number of decomposition down to 3, and inner
product to 3d+1. Finally, since we need to compute rotation
indices of the form k, k − d, k · d for every 0 ≤ k < d, the
total number of rotation keys required is 3d − 3. We note
that the method by Jiang et al. requires two multiplicative
depths, unlike other methods that only require one.

In contrast, our method performs only three key-
switchings at the end of the summation. Therefore, we
require just 3d decompositions and inner products, achieving
a quadratic speedup compared to the Halevi-Shoup method.
Similar to the Halevi-Shoup method, we require d − 1
rotation keys and one multiplication depth, which is lower
than the method by Jiang et al.

We summarize the complexity analysis in Table 1. For
a fair comparison, we also analyze the complexity of inner
products and decompositions in terms of d. For both the
Halevi-Shoup method and our method, the number of slots
D is set to d and D = O(N), so both decomposition and
inner products have a complexity of Õ(dL2), as analyzed in
Section 2.5, where L is the level of gadget decomposition.
Meanwhile, for the method by Jiang et al., the number of
slots is set to d2, so both decomposition and inner products
have a complexity of Õ(d2L2). We compute the complexity
of decompositions and inner products based on this analysis
in Table 1. Note that the complexity of basic ring arithmetic
over Rq is Õ(d3L) for all methods.

We note that in the previous method, the inner product
is the most dominant factor, with a total complexity of
Õ(d3L2). However, our method reduces this complexity to
Õ(d2L2), making it quadratic in d. As a result, ring arith-
metic now becomes the dominant factor in our method with
complexity Õ(d3L), which improves the total complexity
by a factor of L from Õ(d3L2).

4.3. Batched Matrix Multiplication

As previously mentioned, our algorithm focused on the
case where the matrix dimension d equals the number of

1. There are some methods to reduce the rotation keys, such as
BSGS(Baby-Step, Giant-Step) algorithms. Since these algorithms degrade
performance as a trade-off, we omit them from the comparison here.
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Jiang et al.
[JKLS18]

Halevi-Shoup
[HS18]

Ours

Decomp. Õ(d2L2) Õ(d2L2) Õ(d2L2)

Inner Product Õ(d3L2) Õ(d3L2) Õ(d2L2)

Ring Arithmetic Õ(d3L) Õ(d3L) Õ(d3L)

Depth 1 PMul + 1 Mul 1 Mul 1 Mul

# Rotation Key 3d− 3 d− 1 d− 1

TABLE 1. COMPARISON OF NUMBER OF BASIC OPERATIONS REQUIRED
FOR MULTIPLYING TWO d× d MATRICES.

slots D. However, in practice, the number of slots can ex-
ceed the matrix dimension. A naive approach to address this
issue would be to use sparse packing by encrypting a zero-
padded version of the encoded matrix. The problem with
this approach is that it incurs a blow-up in ciphertext size,
because it essentially wastes the available slots. Instead, we
propose batching multiple matrices into a single ciphertext,
inspired by the batched multiplication strategy presented
in [JKLS18]. With this technique, we can perform multiple
matrix multiplication at once in batched form.

Let us elaborate our method in detail. Suppose that we
are given ℓ matrices A(0), . . . ,A(ℓ−1) of size d× d, where
ℓ = D/d. Then, the diagonal encoding map ι and shifted
diagonal encoding map ι̃ in Algorithm 1 can be naturally
extended to the batched versions ι(ℓ) : (Zd×dp )ℓ → (ZDp )d
and ι̃(ℓ) : (Zd×dp )ℓ → (ZDp )d as follows.

ι(ℓ) : (A(0), · · · ,A(ℓ−1)) 7→
(
(a

(0)
i,j+i, · · · , a

(ℓ−1)
i,j+i

)
0≤j<d

)0≤i<d

ι̃(ℓ) : (A(0), · · · ,A(ℓ−1)) 7→
(
(a

(0)
j−i,j , · · · , a

(ℓ−1)
j−i,j )0≤j<d

)
0≤i<d

Now, using the analogous logic we used in the proof of
Eq. (3), we obtain the following equality.

ι(A(0)B(0), · · · ,A(ℓ−1)B(ℓ−1))i

=

d−1∑
k=0

ι(A(0), · · · ,A(ℓ−1))k ⊙ ρiℓ(ι̃(B(0), · · · ,B(ℓ−1))i−k)

Then, we can compute ℓ matrix multiplications at once
by calling a single instance of Algorithm 1 utilizing the
equation above. This way, only 3d decomposition and inner
product operations with d rotation keys are sufficient to
perform ℓ matrix multiplications.

5. Protocol Specification

In this section, we present protocols for generating
authenticated scalar and matrix triples. Our protocol is
based on the TopGear [BCS19] framework and its vari-
ant [CKR+20] for matrix triples. We begin by explaining
how we modify the existing PoPK protocol to support the
generalized BFV scheme. Then, we introduce a protocol
for authenticated triple generation, incorporating all the
optimization techniques discussed in Section 3 and 4.

ΠPoPK

This protocol is run between n parties, where each of them acts as both
a prover and a verifier simultaneously. The protocol is parameterized by
integers U , V , and Flag ∈ {Diag,⊥}. A public parameter pp and an
encryption key pk are pre-distributed to each party.
Sampling phase

1) If Flag = ⊥, party Pℓ samples a message x
(ℓ)
i ← U(ZD

p ) for 0 ≤
i < U . If Flag = Diag, party Pℓ samples a message x

(ℓ)
i ← U(Zp)

and sets x
(ℓ)
i = (x

(ℓ)
i , . . . , x

(ℓ)
i ) ∈ ZD

p for 0 ≤ i < U .
2) Party Pℓ samples a randomness r

(ℓ)
i ← D3

ZN ,σ1
and a plaintext

µ
(ℓ)
xi
← RandPack(x

(ℓ)
i , s1) for 0 ≤ i < U .

3) Party Pℓ computes a ciphertext ct(ℓ)i = Enc(µ
(ℓ)
xi

, r
(ℓ)
i ), broadcasts

it, and sets cti =
∑n−1

ℓ=0 ct
(ℓ)
i for 0 ≤ i < U .

Commitment phase
1) If Flag = ⊥, party Pℓ samples a pseudo-message y

(ℓ)
j ← U(ZD

p )
for 0 ≤ j < V . If Flag = Diag, party Pℓ samples a pseudo-
message y

(ℓ)
j ← U(Zp) and sets y

(ℓ)
j = (y

(ℓ)
j , . . . , y

(ℓ)
j ) ∈ ZD

p for
0 ≤ j < V .

2) Party Pℓ samples a pseudo-randomness s
(ℓ)
j ← D3

ZN ,
√
U+1·σ2

and

a pseudo-plaintext µ(ℓ)
yj
← RandPack(y

(ℓ)
j ,
√
U + 1 · s2) for 0 ≤

j < V .
3) Party Pℓ computes a commitment comm

(ℓ)
j = Enc(µ

(ℓ)
yj

, s
(ℓ)
j ), and

broadcasts it for 0 ≤ j < V .
Challenge phase

1) Parties call FRand to obtain a challenge wi,j for 0 ≤ i < U and
0 ≤ j < V .

2) If Flag = ⊥, each challenge is sampled from
{1, X,X2, . . . , X2N−1}. If Flag = Diag, each challenge
is sampled from {1, XD, X2D, . . . , X2N−D}.

Response phase
1) Party Pℓ computes µ

(ℓ)
zj = µ

(ℓ)
yj

+
∑U−1

i=0 wi,j ·µ
(ℓ)
xi

, t(ℓ)j = s
(ℓ)
j +∑U−1

i=0 wi,j ·r
(ℓ)
i , and broadcasts a response resp

(ℓ)
j = (µ

(ℓ)
zj , t

(ℓ)
j )

for 0 ≤ j < V .
Verification phase

1) The parties compute commj =
∑n−1

ℓ=0 comm
(ℓ)
j , tj =

∑n−1
ℓ=0 t

(ℓ)
j ,

and µzj =
∑n−1

ℓ=0 µ
(ℓ)
zj for 0 ≤ j < V .

2) The parties check whether Enc(µzj , tj) = commj +
∑U−1

i=0 wi,j ·
cti, and the following inequalities hold for 0 ≤ j < V .∥∥µzj

∥∥
∞ < Bz = 6(b+ 1)n(U · s1 +

√
U + 1 · s2)

∥tj∥∞ < Bt = 6n(U · σ1 +
√
U + 1 · σ2)

3) If Flag = Diag then additionally check that µzj is a diagonal
plaintext for 0 ≤ j < V .

4) If all checks pass, the parties accept otherwise they reject.

Figure 3. Protocol for proof of plaintext knowledge

5.1. Proof of Plaintext Knowledge

A proof of plaintext knowledge (PoPK) protocol is
essential for achieving adaptive security in the generation
of authenticated triples, as it proves the well-formedness of
the input ciphertexts. Its basic structure is a 3-move sigma
protocol consisting of five phases: sampling, commitment,
challenge, response, and verification. We provide a simpli-
fied overview of the PoPK protocol. In the sampling phase, a
prover generates a ciphertext ct = Enc(µx, r) with the input
message x by sampling a plaintext µx and encryption ran-
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domness r. In the commitment phase, the prover generates
random masks µy and s for the plaintext µx and encryption
randomness r, and sends a commitment comm = Enc(µy, s)
to the verifier. After that, in the challenge phase, the verifier
replies with a random challenge w. Subsequently, the prover
responds with µz = µy + w · µx and t = s + w · r to the
verifier. Finally, the verifier runs verification algorithms to
determine the validity of the ciphertext ct.

In the actual protocol, several modifications are added.
First, since there are a total of n parties involved, the proto-
col is adapted to an n-prover version. Secondly, due to the
limited size of the challenge sets, the sigma protocol must
be repeated several times to achieve a reasonable security
level, and this repetition count is denoted as V . Finally,
to utlize the amortization technique in [BCS19], there are
usually multiple ciphertexts as input, with the number of
input ciphertexts denoted by U . A detailed description of
our PoPK protocol ΠPoPK is presented in Fig. 3.

Simulatability. We first demonstrate how we achieve sim-
ulatability with our generalized BFV scheme. In the PoPK
protocol, the response resp = (µz, t) may contain partial
information about the plaintext µx and the encryption ran-
domness r, which should be kept secret to hide the input
message x. Therefore, it must be simulatable without knowl-
edge of the input message x to ensure that no information
about the input messages is leaked. Achieving simulatability
incurs paramter overhead, because the proven upper bounds
for encryption noise are determined by µz and t. This results
in an increase in the ciphertext modulus q, which increases
the overall communication cost compared to the semi-honest
setting. This overhead can be measured by the size ratio
between (µz, t) and (µx, r), referred to as the soundness
slack. Thus, achieving a small soundness slack is crucial
for overall performance.

In [BCS19], the noise flooding method is used to achieve
simulatability, which incurs exponential soundness slack for
both r and µx. The exponential soundness slack for r is
reduced to a constant factor in [KLSS23] by introducing
the Hint-MLWE problem, which proves that if both r and
s are sampled from a discrete Gaussian distribution, t is
computationally indistinguishable from a simulated one. For
µx, the exponential soundness slack is partially addressed in
[CKR+20] for BFV ciphertexts when p | q, i.e., ∆ = q/p.

However, in our generalized BFV scheme, the scaling
factor ∆ is of the form q

Xd−b , making the approach in
[CKR+20] inapplicable. To achieve simulatability for the
plaintext part with constant overhead, we adapt the recently
proposed technique by Hwang et al. [HSS24], called ran-
domized packing. In [HSS24], it is used to achieve simu-
latability in the proof of opening knowledge protocol for
the Ajtai commitment scheme. However, we observe that
the same technique can be utilized in the PoPK protocol for
our generalized BFV scheme. The randomized packing is
defined as follows.

• RandPack(m, s) → µ: Given a message m ∈ ZDp
and a positive real s > 0, return µ ∈ R, which is
sampled from D[Pack(m)]R+PZN ,sP , where P ∈ ZN×N

is the negacyclic matrix corresponding to XD− b, and
[Pack(m)]R ∈ ZNp is interpreted as a coefficient vector.

We first note that Unpack(RandPack(x, s)) = x is pre-
served for any message x ∈ ZDp , allowing RandPack to
be used in place of Pack when packing messages into
plaintexts. The core idea of RandPack is to randomize the
output plaintext so that it follows a discrete Gaussian dis-
tribution. By generating both µx and µy using randomized
packing, the convolution lemma from [Pei10] can be applied
to simulate µz = µy + w · µx, similar to the Hint-MLWE-
based analysis for t = s + w · r in [KLSS23]. We also
note that the size of the randomized plaintext is determined
by the width parameter s in RandPack. Since we can set
similarly sized width parameters for µx and µy, this allows
to decrase the soundness slack for µx from an exponential
scale to a constant scale.

Handling Diagonal Plaintexts. In the PoPK protocol for
authenticated triples, an additional step is required to prove a
special structure of plaintexts known as diagonal plaintexts,
where each slot component contains the same element. This
case is marked in Fig. 3 by setting Flag = Diag. For
an ordinary BFV scheme, diagonal plaintexts are simply
constant polynomials, but in our generalized BFV scheme,
the structure of diagonal plaintexts changes. Specifically,
they must be polynomials in XD to ensure invariance under
the automorphism φ, which implies that all slots consist
of the same value. Our PoPK protocol must preserve this
structure when proving knowledge of diagonal plaintexts.
To achieve this, we sample the mask µy from diagonal
plaintexts and set the challenge w to be a power of XD.
This modification is illustrated in Fig. 3. We note that this
modification effectively reduces communication costs com-
pared to the previous PoPK protocol, because we can set the
repetition count V much lower due to the increased size of
the challenge set. In the previous PoPK, the challenge set for
diagonal plaintexts was limited to {0, 1}, with a size of 2. In
contrast, our PoPK expands this to {1, XD, . . . , X2N−D},
with a size of 2M . This larger challenge set allows for
a reduced repetition count V while maintaining the same
security level.

Security. We prove the security of our PoPK protocol ΠPoPK

in Appendix B.6, following the definition of security for n-
party PoPK described in [BCS19].

5.2. Generation of Authenticated Triples

We present our authenticated triple generation protocol
ΠTriple in Fig. 4, which incorporates the generalized BFV
scheme discussed in Section 3, the optimized homomorphic
matrix multiplication algorithm in Section 4, and our PoPK
protocol ΠPoPK tailored for the generalized BFV scheme.
Compared to prior work [CKR+20], which utilizes the or-
dinary BFV scheme and the matrix multiplication algorithm
by Jiang et al. [JKLS18], we have modified the protocol to
accommodate these changes. For matrix triples, we assume
that the matrix dimension d = D, but it can be easily
generalized to support smaller dimensions such that d | D
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using the batching technique described in Section 4.3. In this
case, the parameter U is adjusted to 2dT , where T | D/d,
and the number of rotation keys is reduced to d−1. We omit
the security proof for ΠTriple as it is identical to the proofs
in [BCS19, CKR+20], except for the noise bound analysis.
Key Generation. For an authenticated triple generation
protocol, previous work [BCS19, CKR+20] assumes the
existence of an ideal key generation functionality, deferring
detailed instantiation as an independent research topic, such
as in [RST+22]. Similarly, we also assume the existence of
such functionality FKeyGen for our triple generation protocol,
as described in Fig. 5. In the functionality FKeyGen, it not
only generates the shared public key pk but also the shared
evaluation key evk, which includes the relinearization key
rlk for homomorphic multiplication and the rotation key rtkr
for homomorphic rotation. As analyzed in Section 4, our
functionality generates d − 1 rotation keys, whereas prior
work [CKR+20] generates 3d − 3 rotation keys for matrix
multiplications, as it utilizes the algorithm in [JKLS18].
Thus, our new matrix multiplication algorithm reduces the
number of rotation keys by one-third.
Elimination of Reshare. In our protocol, we eliminate
all occurrences of the reshare functionality by adopting
the approach from [CKR+20]. In [DPSZ12, BCS19], the
reshare functionality is utilized, which converts a ciphertext
into secret shares of its message and a fresh encryption of
it. This optimization allows for more compact parameter
settings where the ciphertext modulus supports just one
multiplicative depth, resulting in reduced communication
costs for scalar triple generation. However, in [CKR+20],
this functionality is not used for matrix triple generation,
because it rather degrades performance, given that the ma-
trix multiplication algorithm [JKLS18] used in [CKR+20]
consumes multiple depths.

Although our matrix multiplication algorithm consumes
only one multiplicative depth, we choose not to use the
reshare functionality because the overhead for additional
multiplicative depth is particularly low in our generalized
BFV scheme. As analyzed in Section 3, noise growth in our
generalized BFV scheme is proportional to b, rather than p
as in the ordinary BFV scheme. This difference significantly
reduces the increase in ciphertext modulus q due to the
additional depth. Based on this observation, we completely
eliminate all occurrences of the reshare functionality in
our protocol by setting the ciphertext modulus to support
the additional multiplicative depth, which provides better
performance.

Noise Bound. In the protocol ΠTriple, authenticated scalar
and matrix triples are generated through homomorphic op-
erations and then distributed to each party via the distributed
decryption protocol described in Fig. 6. To ensure the cor-
rectness of the protocol, we need to analyze an upper bound
for ciphertext noise to guarantee that distributed decryption
correctly outputs the results. Among all the ciphertexts,
the noise of CTα·ι(Ci) is the most dominant. Therefore,
we focus on analyzing the noise upper bound for these
ciphertexts.

We provide a detailed analysis in Appendix B.7. The
noise for CTα·ι(Ci) is bounded as follows, which becomes
the upper bound BDec for ciphertext noise in ΠTriple.

∥Err(ctα·ι(Ci)j , ι(Ci)j)∥can∞ ≲
d(b+ 1)3

q
· 8N4

√
3N ·Bz = BDec

To ensure correct decryption in ΠDDec, the condition BDec ·
2λDDec < 1/2 must hold, as stated in Lemma 5. This implies
that the ciphertext modulus q should satisfy the following
inequality: q ≳ d(b+ 1)3 · 16N4

√
3N ·Bz · 2λDDec .

6. Experimental Results

We present the concrete parameters and experimental
results of our new matrix triplet generation protocol. We
implemented our generalized BFV scheme and improved
homomorphic matrix multiplication algorithm on top of the
Lattigo library [MBTPH20] Our source code is available
at https://github.com/SNUCP/matrix-triplet. All experiments
were conducted on a machine with an Intel(R) Xeon(R)
Platinum 8268 CPU at 2.90 GHz and 378 GB RAM, using
a single thread. We first provide the concrete parameter
settings used in our experiments and then analyze the costs
for setup, communication, and computation.

6.1. Paramseter Setting

For the parameters of ΠTriple, we first set the security
parameters λSnd and λSim to 128, and λDDec to 80, as in
the previous work [CKR+20]. Next, we assume the matrix
dimension is given as d = 128 for the comparison with
the previous work [CKR+20]. When the number of slots D
exceeds d = 128, we use the batched matrix multiplication
algorithm described in Section 4.3. For the parameter T , we
set T = D/d for matrix triples, which is the smallest values
for T , then U is set to 2dT = 2D.

For the parameters of ΠPoPK, we set the values of s1,
s2, σ1, and σ2 as follows so that they satisfy the conditions
for simulatability.

s1 =
√
2 · b+ 1

b− 1
·Bη, s2 =

√
2V · b+ 1

b− 1
·Bη

σ1 = 2
√
2 ·Bη, σ2 = 2

√
2V ·Bη

The upper bound Bη for the smoothing parameter is set to√
ln(2N(1+2λSim ))

π , following Lemma 1.
For the generalized BFV parameters, we prepare three

sets: Params I, II, and III, as shown in Table 2. Params
I is optimized for performance, Params II is optimzed for
setup cost, and Params III corresponds to ordinary BFV for
comparison with our generalized BFV. For Params I and
II, we choose parameters such that b ≈ 264 for Params I
and b ≈ 216 for Params II, for each field size log p, so that
p = bM + 1 is a prime number satisfying the condition in
Lemma 3. Then, we set q ≥ d(b+ 1)3·16N4

√
3N ·Bz·2λDDec

following the analysis in Section 5.2. For the key-switching
procedure, we use the RNS gadget decomposition described
in Section 2.5. Specifically, we set q =

∏
0≤i<L qi, where
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log p
Params I Params II Params III

log q N L D b log q N L D b log q N = D L

128

426 214 7

213 264 − 3072

230 213 4

210 216 − 196 686 215 12

256 212 264 − 64 29 216 − 22 1202 216 20

512 211 264 − 428 28 216 − 72 2231 217 37

1024 210 264 − 8 27 216 − 28 4279 218 71

2048 29 264 − 22 26 216 − 190
-

4096 28 264 − 56 25 216 − 288

TABLE 2. PARAMETER SETS FOR BENCHMARKS

qi’s are prime numbers, each sized between 50 and 60 bits.
Finally, the ring degree N is chosen to ensure the hardness
of RLWE when the key distribution χ = U(R3). According
to the estimation from [APS15], Params I provides 118-bit
security, and Params II, III provide 128-bit security.

6.2. Setup Cost

Params I Params II Prev [CKR+20]

1.45 GB 0.22 GB 27.4 GB

TABLE 3. SETUP COSTS FOR EACH PARAMETER.

We first analyze the setup cost for authenticated triple
generation, which corresponds to the initialization phase of
ΠTriple. In this phase, each party receives a shared public
key pk and an evaluation key evk = rlk, rtk1, · · · , rtkd−1

from the key generation functionality FKeyGen. Thus, the
total setup cost is measured by the combined size of pk
and evk.

The public key pk consists of a pair of Rq elements,
so its size is calculated as 2N/8 · log q bytes. For rlk and
each rtki, which are pairs of RLq elements, their size is
computed as 2LN/8·log q bytes each. In Table 3, we present
the total setup cost for each parameter set, together with
the setup cost of the previous work [CKR+20]. For the
previous work [CKR+20], we estimate the cost based on
generating 3d − 3 rotation keys, as it employs the matrix
multiplication algorithm from [JKLS18]. Params I provides
about 19 times smaller setup cost, and Params II offers
125 times smaller setup cost compared to the previous
work [CKR+20]. We attribute these reductions in setup
costs to both our generalized BFV scheme and the new
matrix multiplication algorithm. As analyzed in Section 3,
the generalized BFV scheme allows for a much smaller
ciphertext modulus q relative to a large plaintext modulus
p. This not only reduces log q, but also decreases L and
N . Additionally, the new matrix multiplication algorithm
requires only d − 1 rotation keys, compared to 3d − 3 in
the previous work. These improvements collectively result
in a significant reduction in setup costs. In particular, for
Params II, we minimized the size of log q by choosing a
smaller b compared to Params I. This results in about 6.6

times smaller key sizes compared to Params I, which may
be useufl for less powerful machines, such as IoT devices.

6.3. Communication Cost

Params I Params II Prev [CKR+20]

Init 121 MB 16.6 MB 816 MB

Matrix triple 13.6 MB 29.4 MB 12.5 MB

TABLE 4. COMMUNICATION COSTS FOR EACH PARAMETER

Next, we analyze the communication cost of ΠTriple

when generating 128 × 128 dimensioned matrix triples,
which is measured by the size of data sent by each party.
First, we examine the communication cost of the PoPK
protocol ΠPoPK, which is frequently used as a sub-protocol
in ΠTriple. In the sampling phase, each party broadcasts U
elements in R2

q , resulting in a size of 2UN
8 · log q bytes.

For the commitment phase, each party broadcasts V el-
ements in R2

q , leading to a size of 2V N
8 · log q bytes.

Finally, in the response phase, each party broadcasts V
pairs in R, bounded by Bz and Bt respectively, resulting
in a size of V N

8 · (logBt + logBz) bytes. To summarize,
each invocation of ΠPoPK requires a communication cost of
2(U+V )N

8 · log q + V N
8 · (logBt + logBz) bytes.

Now, we analyze the communication cost in ΠTriple

based on the analysis for ΠPoPK. In the initialization phase
of ΠTriple, where it collectively generates the encryption ctα
of the MAC key α, ΠPoPK is invoked with parameters U = 1
and V = ⌈(λSnd+)/2M⌉, where M = N/D. For the matrix
triple phase of ΠTriple, ΠPoPK is invoked with parameters
U = 2dT and V = ⌈(λSnd+)/2N⌉, and it ends with the
distributed decryption protocol ΠDDec for 2U ciphertexts,
adding a communication cost of 4UN

8 · log q bytes.
In Table 4, we summarize the communication costs for

the initialization and matrix triple phases. For the matrix
triple phase, we report the amortized cost, which is obtained
by dividing the total cost by the number T of batched
matrices, as done in previous work [CKR+20]. For the
costs of previous work [CKR+20], we measure the cost of
initialization based on our analysis as they did not analyze
the initialization phase. The cost for the matrix triple phase
is directly taken from the analysis in [CKR+20].
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log p
Params I Params II Params III

Unit Amortized Unit Amortized Unit Amortized

128 56.62ms 6.91µs 12.72ms 12.22µs 0.25s 7.85µs

256 56.58ms 13.81µs 12.76ms 24.91µs 1.34s 20.52µs

512 56.53ms 27.60µs 12.75ms 49.79µs 7.62s 58.15µs

1024 56.49ms 55.17µs 12.74ms 99.57µs 53.22s 203.03µs

2048 56.46ms 110.27µs 12.74ms 199.03µs - -

4096 56.33ms 220.05µs 12.75ms 398.49µs - -

TABLE 5. BENCHMARK RESULTS FOR Mul. THE AMORTIZED COSTS ARE OBTAINED FROM DIVIDING THE UNIT COSTS BY THE NUMBER OF SLOTS D.

For the initialization phase, Params I achieves about
6.7 times smaller costs, and Params II achieves about 49
times smaller costs compared to the previous work. This
saving is particularly meaningful for the initialization phase,
where communication overhead dominates over computa-
tional overhead since it does not perform any nonlinear
homomorphic operations. We attribute these savings to our
optimization for diagonal plaintexts in Appendix B.6, which
reduces the size of V by a factor of logM . Since the
parameter U is fixed at 1 during the initialization phase,
V becomes the most crucial factor in determining the com-
munication cost. Consequently, our optimization leads to a
significant reduction in communication cost during the setup
phase.

For matrix triples, our approach incurs higher costs
compared to the previous work because, in the matrix triple
phase, U is usually set to be much larger than V . In this
case, the generalized BFV scheme rather increases the cost
since the overhead for distributed decryption is multiplied
by M . However, we note that this does not lead to signif-
icant performance degradation in the matrix triple phase,
as computational overhead is the most dominant factor due
to homomorphic matrix multiplications. For example, in
the benchmarks of [CKR+20], the communication overhead
typically accounts for about one percent of the total elapsed
time in a single-thread setting.

6.4. Computation Cost

log p
Params I Params II

Unit Amortized Unit Amortized

128 47.77s 0.75s 12.21s 1.53s

256 47.64s 1.49s 12.31s 3.08s

512 48.34s 3.02s 12.31s 6.16s

1024 48.45s 6.06s 12.30s 12.30s

2048 47.83s 11.06s - -

4096 48.23s 24.12s - -

TABLE 6. BENCHMARK RESULTS FOR MatMul WHEN d = 128. THE
AMORTIZED COSTS ARE OBTAINED FROM DIVIDING THE UNIT COSTS

BY THE NUMBER T OF BATCHED MATRICES.

d Params I Prev [CKR+20] Speedup

128 0.99s 34.25s 34.5×
256 6.84s 207.14s 30.28×
512 48.62s 1459.63s 30.02×

TABLE 7. BENCHMARK RESULTS FOR AUTHENTICATED MATRIX
TRIPLE GENERATIONS WHEN log p = 128.

At last, we analyze the computation cost for ΠTriple,
especially the cost of homomorphic operations in generating
scalar and matrix triples.

Scalar Triples. For scalar triples, we present the effect of
the generalized BFV scheme when generating authenticated
triples for large prime fields, extending the limits of field size
to 4096 bits. Since authenticated triple generation requires
only two Mul operations, we measure the performance of
Mul for each parameter set in Table 5. For the unit cost of
Mul, which generates D scalar triples, Params I and II dom-
inate Params III, which corresponds to the ordinary BFV
scheme. This is because the asymptotic complexity follows
Õ(L2N), as analyzed in Section 2.5, and the generalized
BFV scheme offers much smaller values for N and L.

When it comes to the amortized cost, which is the cost
per single triple, Params I achieves about a 1.14 times
speedup for log p = 128, and this gap gradually increases
to a 3.6 times speedup for log p = 1024 as log p grows.
This is because the complexity of the amortized cost follows
Õ(L2M), where M = N/D. For the ordinary BFV scheme,
doubling the size of log p results in doubling L, while M is
fixed at 1, which quadruples the amortized cost due to the
L2 factor. In contrast, for the generalized BFV scheme, we
can double the size of log p by doubling M while keeping
L fixed, which only doubles the amortized cost since the
complexity is linear in M . This effect is well demonstrated
in Table 5, where the gap between the generalized BFV and
ordinary BFV schemes widens as log p increases. Although
we could not report benchmark results for Params III when
log p = 2048 and 4096 due to parameter blow-up, we
expect Params I to achieve about a 7 times speedup for
log p = 2048 and a 14 times speedup for log p = 4096
compared to Params III, following the complexity analysis.

Matrix Triples. For matrix triples, we measure the perfor-
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mance of MatMul and the generation of authenticated matrix
triples, which is accomplished by additionally multiplying
the encryption ctα of the MAC key. Thanks to the gen-
eralized BFV scheme, the performance of MatMul scales
linearly with the field size log p as demonstrated in Table 6.

To demonstrate the effect of the new matrix multi-
plication algorithm, we compare the performance of au-
thenticated matrix triple generation with the previous work
[CKR+20] for the same matrix dimensions and field size
in Table 7. The benchmark results for the previous work
are taken from Table 3 in [CKR+20], and all costs are
measured in an amortized sense, dividing the total cost by
the number of batched matrices. As shown in Table 7, our
method achieves an approximately 30 to 34 times improve-
ment in each dimension compared to previous work. We
attribute this speedup to the complexity improvements in our
algorithm, which reduce the total complexity from Õ(d3L2)
to Õ(d3L). This improvement synergizes particularly well
with our generalized BFV scheme, which effectively reduces
the value of L for the same field size log p. As a result,
our approach achieves a significant performance boost over
the previous work by leveraging both the generalized BFV
scheme and the new matrix multiplication algorithm.
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Appendix

1. Deferred Protocols

2. Deferred Proofs

2.1. Proof of Lemma 3.

Proof. From the relation p = bM+1, it follows that the order
of b modulo p is 2M . Therefore, there exists a primitive root
g modulo p such that g

p−1
2M = b. Then, ξ := g

p−1
2N is a root

of the equation XD−b = 0 modulo p. Moreover, ξ2iM+1 is
also a root since ξ(2iM+1)D = ξ2iN+D = ξD for any i ∈ Z.
Since the order of ξ is N , {ξ2iM+1}0≤i<D are distinct and
they are essentially the roots of the given equation.

2.2. Proof of Lemma 4.

Proof. For any two elements 2iM + 1, 2jM + 1 ∈ G,
(2iM +1)(2jM +1) = 2(2ijM + i+ j)M +1 ∈ G holds,
so G is closed under multiplication. Also, G contains the
identity 1 ∈ G. For an element 2iM + 1 ∈ G, it has a
multiplicative inverse x ∈ Z×

2N such that (2iM + 1)x = 1

ΠTriple

Initialize: All parties invoke FKeyGen to obtain a shared public key pk,
and evaluation key evk = {rlk, rtk1, . . . , rtkD−1}. Then, each party Pℓ

does the followings for 0 ≤ ℓ < n:
1) Party Pℓ invokes the sampling phase of ΠPoPK with parameter U =

1, V = ⌈(λSnd + 2)/ log2(2M)⌉, and Flag = Diag to obtain a
ciphertext ct(ℓ)α , and an additive share α(ℓ) ∈ Zp.

2) All parties compute ctα = 2 ·
∑n−1

ℓ=0 ct
(ℓ)
α , and run the remaining

phases of ΠPoPK.
Scalar Triples: Parties run this protocol to generate T random authenti-
cated scalar triples in Zp in one invocation, where D | T .

1) Party Pℓ invokes the sampling phase of ΠPoPK with parameter U =
2T/D, V = ⌈(λSnd + 2)/ log2(2N)⌉, and Flag = ⊥ to obtain
ciphertexts ct

(ℓ)
ai

, ct
(ℓ)
bi

, and additive shares a
(ℓ)
i ,b

(ℓ)
i ∈ ZD

p for
0 ≤ i < T/D, and run the remaining phases of ΠPoPK.

2) All parties compute ctai = 2 ·
∑n−1

ℓ=0 ct
(ℓ)
ai

, ctbi
= 2 ·

∑n−1
ℓ=0 ct

(ℓ)
bi

for 0 ≤ i < T/D.
3) All parties compute ctci ← Mul(ctai , ctbi

), ctαai ←
Mul(ctα, ctai ), ctαbi

← Mul(ctα, ctbi
), and ctαci ←

Mul(ctα, ctci ) for 0 ≤ i < T/D.
4) Parties run ΠDDec with ciphertexts ctci , ctαai , ctαbi

, ctαci so that
each Pℓ obtains additive shares c

(ℓ)
i , (αai)

(ℓ), (αbi)
(ℓ), (αci)

(ℓ)

for 0 ≤ i < T/D.
Matrix Triples: Parties run this protocol to generate T random authenti-
cated matrix triples in ZD×D

p in one invocation.
1) Party Pℓ invokes the sampling phase of ΠPoPK with parameters

U = 2DT , V = ⌈(λSnd + 2)/ log2(2N)⌉, and Flag = ⊥ to
obtain ciphertexts CT

(ℓ)
ι(Ai)

, CT(ℓ)
ι̃(Bi)

, and additive shares ι(Ai)
(ℓ),

ι̃(Bi)
(ℓ) for 0 ≤ i < T , and runs the remaining phases of ΠPoPK.

2) All parties compute CTι(Ai)
= 2 ·

∑n−1
ℓ=0 CT

(ℓ)
ι(Ai)

, CTι̃(Bi)
=

2 ·
∑n−1

ℓ=0 CT
(ℓ)
ι̃(Bi)

for 0 ≤ i < T .
3) All parties compute CTι(Ci)

← MatMul(CTι(Ai)
,CTι̃(Bi)

) for
0 ≤ i < T .

4) All parties compute the followings for 0 ≤ i < T and 0 ≤ j < D,

ctα·ι(Ai)j
← Mul(ctα, ctι(Ai)j

)

ctα·ι̃(Bi)j
← Mul(ctα, ctι̃(Bi)j

)

ctα·ι(Ci)j
← Mul(ctα, ctι(Ci)j

)

and set CTα·ι(Ai)
= (ctα·ι(Ai)j

)0≤j<D , CTα·ι̃(Bi)
=

(ctα·ι̃(Bi)j
)0≤j<D , and CTα·ι(Ci)

= (ctα·ι(Ci)j
)0≤j<D .

5) Parties run ΠDDec with ciphertexts CTι(Ci)
, CTα·ι(Ai)

,
CTα·ι̃(Bi)

, CTα·ι(Ci)
so that each Pℓ obtains additive shares

ι(Ci)
(ℓ), (α · ι(Ai))

(ℓ), (α · ι̃(Bi))
(ℓ), (α · ι(Ci))

(ℓ) for
0 ≤ i < T .

Figure 4. Protocol for authenticated triples generation

FKeyGen

1) Upon receiving start from all honest parties, sample (sk, pk) ←
KeyGen(pp), rlk ← RelinKeyGen(sk), rtkr ← RotKeyGen(sk, r)
for 1 ≤ r < D, send pk, evk = {rlk, rtk1, . . . , rtkD−1} to the
adversary, and store sk = (1, s).

2) Receive the shares of secret key s(ℓ) from the adversary.
3) Construct a complete set of shares (s(0), . . . , s(ℓ−1)) consistent with

the adversary’s choice and s.
4) Send pk, evk and s(ℓ) to each honest party Pℓ.

Figure 5. The ideal functionality for key generation

15



ΠDDec

This protocol is run between n parties, where each Pℓ holds a shared
ciphertext ct = (c0, c1) and a secret key share s(ℓ) for 0 ≤ ℓ < n. At the
end of the protocol, each party obtains an additive share of the message
m of ct.

1) Party Pℓ samples e(ℓ) ← U(R
BDec·2λDDec ), x

(ℓ) ← U(ZD
p ), and

sets µ
(ℓ)
x ← Pack(x(ℓ)).

2) Party Pℓ computes d(ℓ) = c1s(ℓ) + e(ℓ) + ∆µ
(ℓ)
x (mod q), and

distributes it.
3) Party Pℓ computes µ =

⌊
XD−b

q
(c0 +

∑n−1
ℓ=0 d(ℓ))

⌉
(mod XD − b). If ℓ = 0, P0 sets m(0) = Unpack(µ) − x(0)

(mod p). Otherwise, Pℓ sets m(ℓ) = −x(ℓ) (mod p).

Figure 6. Protocol for distributed decryption

(mod 2N), then (2iM + 1)x = x = 1 (mod 2M) as 2M
divides 2N , so x ∈ G. Then each element in G has an
inverse in G. Therefore, G is a subgroup of Z×

2N = ⟨5,−1⟩.
Since −1 /∈ G as M ≥ 2, G is a (cyclic) subgroup of ⟨5⟩.
As |G| = D, it follows that G is generated by 5M/2.

2.3. Proof of Theorem 1.

Proof. By Lemma 3 and Lemma 4, ξ ∈ Zp such that
ξ, ξ5

M/2

, . . . , ξ5
(D−1)M/2

are distinct roots of XD − b mod-
ulo p. Then, (XD − b) = (X − ξ) . . . (X − ξ5

(D−1)M/2

)
(mod p) and each linear factors are mutually coprime in
Zp[X]. By the Chinese remainder theorem, Zp[X]/(XD −
b) ≃ Zp[X]/(X − ξ) × · · · × Zp[X]/(X − ξ5

(D−1)M/2

).
Note that Zp[X]/(X − ξ5iM/2

) is isomorphic to Zp by the
isomorphism f 7→ f(ξ5

iM/2

), it follows that RXD−b =
Zp[X]/(XD − b) ≃ Zdp with an isomorphism τ : f 7→
(f(ξ), f(ξ5

M/2

), · · · , f(ξ5(D−1)M/2

)).

2.4. Noise bound of Generalized BFV Scheme. We ana-
lyze the noise growth of each algorithm under the secret key
distribution χ = U(R3) and the error distribution ψ = Dσ.
The noise growth during the encryption algorithm is as
follows.
Lemma 6 (Encryption Noise). Let µ ∈ R, r ∈ R3 and
ct← Enc(pk, µ, r), then the following holds with very high
probability

∥Err(ct, µ)∥can∞

<
b+ 1

q

(
∥µ∥∞

√
3N3 + ∥r∥∞

((√
18

π
σ + 2

)
√
N3 +N

))

Proof. Let r = (r0, r1, r2) and ct = (c0, c1), then the
following holds for some I ∈ R and erd = q/(XD−b)−∆.

XD − b

q
(c0+c1s) = µ+

XD − b

q
(erd·µ+r0·e+r1+r2·s)+(XD−b)I

Following the analysis in [BCIV20], we get ∥e∥can∞ <√
18/πσ

√
N , ∥s∥can∞ < 2

√
6N , and ∥erd∥can∞ <

√
3N with

very high probability. Also, it holds that ∥r∥can∞ ≤ N∥r∥∞
and ∥µ∥can∞ ≤ N∥µ∥∞. Thus, the given inequality holds
with very high probability.

The noise growth of homomorphic operations are as
follows.

Lemma 7 (Addition Noise [BCIV20]). Let ct and ct′ be
ciphertexts with plaintexts µ and µ′, respectively. For ct′′ ←
Add(ct, ct′), it holds that

∥Err(ct′′, µ+ µ′)∥can∞ ≤ ∥Err(ct, µ)∥can∞ + ∥Err(ct′, µ′)∥can∞

Lemma 8 (Multiplication Noise [BCIV20]). Let ct and ct′

be ciphertexts with plaintexts µ and µ′, respectively. Let
rlk be a relinearization key. For ct′′ ← Mul(rlk, ct, ct′), the
following holds with very high probability.

∥Err(ct′′, µµ′
)∥can

∞ ≤(b+ 1)
√

2N2 + 3N
(
∥Err(ct, µ)∥can

∞ + ∥Err(ct′, µ′
)∥can

∞
)

+
b+ 1

q

√
4N3/3 + 2N2 + 3N +

b+ 1

q
σBN

√
3L

2π

+ 3∥Err(ct, µ)∥can
∞ · ∥Err(ct′, µ′

)∥can
∞

Lemma 9 (Rotation Noise). Let ct be a ciphertext with a
plaintext µ. Let rtkr be a rotation key with a rotation index
r. For ct′ ← Rot(rtkr, ct), the following holds with very
high probability

∥Err(ct′, φr(µ)∥can∞ ≤ ∥Err(ct, µ)∥can∞ +
b+ 1

q
σBN

√
3L

2π

Proof. Let ct = (c0, c1), ct′ = (c′0, c
′
1), and rtkr =

(−s · a + φr(s) · g + e,a). Then, it holds that c′0 + c′1s =
φr(c0)+φ

r(c1)·φr(s)+⟨h(c′1), e⟩ (mod q). Following the
analysis of noise growth during key switching as detailed in
[BCIV20], the given inequality holds.

2.5. Noise bound of MatMul.
Lemma 10 (Noise Growth of Algorithm 1). For the input
encrypted matrix CTι(A) and CTι̃(B), and the output en-
crypted matrix CTι(C) of the algorithm 1, let eA and eB be
reals such that

∥Err(ctι(A)i , ι(A)i)∥can∞ ≤ eA and ∥Err(ctι̃(B)i , ι̃(B)i)∥can∞ ≤ eB

for all 0 ≤ i < d. Then, it follows that

∥ctι(C)i
∥can∞ ≤ d(b+ 1)

√
2N2 + 3N(eA + eB) + 3deAeB

+
b+ 1

q

√
4N3

3
+ 4N2 + 3N +

b+ 1

q
σBN

√
3(N + 2)L

2π

for all 0 ≤ i < d.

Proof. Note that the computation algorithm remains the
same for every ctι(C)i , we estimate the noise for a single
ciphertext ctι(C)i without loss of generality. First, the noise
growth from a single ciphertext tensoring of ctι(A)j and
ctι̃(B)i−j

is

(b+ 1)
√

2N2 + 3N(∥ctι(A)j∥
can
∞ + ∥ctι̃(B)i−j

∥can∞ )

+ 3∥ctι(A)j∥
can
∞ · ∥ctι̃(B)i−j

∥can∞

Therefore, after the for loop (lines 3-6), the noise is
bounded by

d
(
(b+ 1)

√
2N2 + 3N(eA + eB) + 3eAeB

)
.

Now, note that the tensoring ciphertext after the for loop
is encrypted under the key (1, s, φi(s), sφi(s)) as specified,
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the modulus changing performed in line 7 introduces the
rounding noise bounded as follows.

b+ 1

q

√
4N3/3 + 4N2 + 3N

Finally, we analyze the noise from the key-switching.
Let e1, e2 and e3 denote that error from key-switching
operations in lines 8-10, respectively, i.e., u0 + u1 · s =
d′2 ·φi(s)+e1 (mod q), v0+v1 ·s = d′3 ·φi(s)+e2 (mod q)
and w0+w1 ·s = v1 ·s2+e3 (mod q). Then, the error from
key-switching is e1 + e2 · s+ e3 since the following holds.

d′0 + u0 + w0 + s · (d′1 + u1 + v0 + w1)

= d′0 + d′1 · s+ d′2 · φi(s) + d′′3 · sφi(s) + e1 + e2 · s+ e3

Since the variance of e1 + e2 · s+ e3 is equal to (N + 2) ·
L(σBN)2/24π, the canonical norm of the key-switching is
bounded by (b+1)/qσBN

√
3(N + 2)L/2π. Therefore, the

final noise bound can be computed as follows.

d(b+ 1)
√

2N2 + 3N(eA + eB) + 3deAeB

+
b+ 1

q

√
4N3/3 + 4N2 + 3N +

b+ 1

q
σBN

√
3(N + 2)L

2π

We refer to Appendix A of [BCIV20] for a detailed analysis
of the rounding noise.

2.6. Security Proof of ΠPoPK.

Theorem 2. The n-party PoPK-protocol ΠPoPK defined in
Fig. 3 satisfies the following three properties:

• Correctness: If all parties Pℓ, with inputs sampled
from the sampling phase in ΠPoPK, follow the protocol
honestly, then the protocol ends with acceptance with
high probability, which is at least 1− 2−128.

• Knowledge Soundness: Let A = (A1,A2,A3) be a
tuple of PPT algorithms and let ε ∈ [0, 1). Consider
the following game:
1) A1 takes no input and outputs C ⊂ [n], {(ct(ℓ)i )0≤i<U}ℓ∈C ,

and statA1
.

2) Sample (ct
(ℓ)
i , µ

(ℓ)
xi

, r
(ℓ)
i )0≤i<U from the sampling phase for

each ℓ ̸∈ C.
3) Compute ((comm

(ℓ)
j )0≤j<V , stat(ℓ)) from the commitment

phase for each ℓ ̸∈ C.
4) A2 on input statA1

,(ct(ℓ)i )0≤i<U , (comm
(ℓ)
j )0≤j<V for i ̸∈

C, outputs statA2
and (comm

(ℓ)
j )0≤j<V for ℓ ∈ C.

5) Choose a uniformly random (wi,j)0≤i<U,0≤j<V and compute
(resp

(ℓ)
j )0≤j<V from the response phase for ℓ ̸∈ C.

6) A3 on input statA2
, (wi,j), (resp

(ℓ)
j ) for 0 ≤ i < U , 0 ≤ j <

V , and ℓ ̸∈ C, outputs (resp
(ℓ)
j ) for 0 ≤ j < V and ℓ ∈ C.

7) A wins the game if the verification phase ends with acceptance.
Suppose A wins the game with probability δ > ε.
Then, there exists a PPT algorithm E which for any
fixed output of A1, honestly generated inputs given by
{(ct(ℓ)i , µ

(ℓ)
xi , r

(ℓ)
i )0≤i<U , (comm

(ℓ)
j )0≤j<V , stat

(ℓ)}ℓ ̸∈C ,
and black-box access to A2,A3, outputs
{(µ(ℓ)

xi , r
(ℓ)
i )0≤i<U}ℓ∈C such that

ct
(ℓ)
i = Enc(µ

(ℓ)
xi

, r
(ℓ)
i ),

∥∥∥2µ(ℓ)
xi

∥∥∥
∞

< 2NBz,
∥∥∥2r(ℓ)i

∥∥∥
∞

< 2NBt

holds for 0 ≤ i < U and ℓ ∈ C in at most f(λSnd)/(δ−
ε) steps, where f(·) is a positive polynomial and ε =
2−λSnd .

SPoPK
The inputs are a challenge (wi,j)0≤i<U,0≤j<V and a set C ⊂ [n].

1) Sample µ
(ℓ)
xi
← RandPack(0, s1), r

(ℓ)
i ← DZN ,σ1

for 0 ≤ i < U ,
ℓ ̸∈ C.

2) Sample ct
(ℓ)
i ← U(R2

q) for 0 ≤ i < U , ℓ ̸∈ C.
3) Sample y

(ℓ)
j ← U(ZD

p ), µ
(ℓ)
yj
← RandPack(y

(ℓ)
j ,
√
U + 1 · s2),

s
(ℓ)
j ← DZN ,

√
U+1·σ2

for 0 ≤ j < V , ℓ ̸∈ C.

4) Set µ(ℓ)
zj = µ

(ℓ)
yj

+
∑U−1

i=0 wi,j ·µ
(ℓ)
xi

, t(ℓ)j = s
(ℓ)
j +

∑U−1
i=0 wi,j ·r

(ℓ)
i

for 0 ≤ j < V , ℓ ̸∈ C.
5) Set comm

(ℓ)
j = Enc(µ

(ℓ)
zj , t

(ℓ)
j )−

∑U−1
i=0 wi,j ·ct

(ℓ)
i (mod q) and

resp
(ℓ)
j = (µ

(ℓ)
zj , s

(ℓ)
j ) for 0 ≤ j < V , ℓ ̸∈ C.

6) Output (ct(ℓ)i )0≤i<U , (comm
(ℓ)
j )0≤j<V , and (resp

(ℓ)
j )0≤j<V for

ℓ ̸∈ C.

Figure 7. Simulator for ΠPoPK

• Simulatability: Let ε = 2−λSim be negligible, and let
σ1, σ2, s1, and s2 satisfy the following conditions.
– s2√

2
, s ≥ 1

b−1 · ηε(PZ
N ), where s = (s−2

1 + V s−2
2 )−1/2

– σ2√
2
, σ√

2
≥ ηε(ZN ), where σ = 1√

2
·
(
σ−2
1 + V σ−2

2

)−1/2

Then, there exists a PPT algorithm S, which
takes as input a challenge (wi,j)0≤i<U,0≤j<V and
a set C ⊂ [n], and outputs (ct

(ℓ)
i )0≤i<U ,

(comm
(ℓ)
j , resp

(ℓ)
j )0≤j<V for ℓ ̸∈ C, which is computa-

tionally indistinguishable from a valid execution of the
protocol assuming the hardness of RLWER,q,σ,σ .

Proof. We prove the correctness, knowledge soundness, and
simulatability of ΠPoPK as follows.

• Correctness: By Lemma 2, the followings hold∥∥∥µ(ℓ)
xi

∥∥∥
∞

< 6(b+ 1)s1,
∥∥∥µ(ℓ)

yj

∥∥∥
∞

< 6(b+ 1)
√
U + 1 · s2∥∥∥r(ℓ)i

∥∥∥
∞

< 6σ1,
∥∥∥s(ℓ)j

∥∥∥
∞

< 6
√
U + 1 · σ2

with high probability. Thus, it holds that
∥∥µzj

∥∥
∞ <

Bz and ∥tj∥∞ < Bt with high probability.
• Knowledge Soundness: We refer to the proof of The-

orem 4 in [CKR+20].
• Simulatability: We can show that SPoPK in Fig. 7

is a simulator for ΠPoPK in a similar manner to
Theorem 4 in [HSS24]. Below, we provide a brief
sketch of the proof. We prove the simulatability of
the protocol using the hybrid arguments H0,H1,H2 in
Fig. 8. First, we show that the real transcript is statisti-
cally indistinguishable from H0 using the convolution
lemma [Pei10] for discrete Gaussian distributions. Sec-
ond, we show that H0 is computationally indistinguish-
able from H1 due to the hardness of the Hint-RLWE
problem. Next, H1 and H2 are statistically indistin-
guishable thanks to the randomized packing method.
Finally,H2 and SPoPK are statistically indistinguishable
due to the convolution lemma again. Therefore, the real
transcript is computationally indistinguishable from the
simulated one. For a more detailed analysis of each
hybrid argument, we refer to [HSS24].
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2.7. Noise bound of CTα·ι(Ci). We begin by analyzing the
encryption noise. As analyzed in Lemma 6, the initial en-
cryption noise is dominated by the term b+1

q ·N
√
3N ·∥µ∥∞.

Thus, we bound the noise for CTι(Ai) = (ctι(Ai)j )0≤j<D
and CTι̃(Bi) = (ctι̃(Bi)j )0≤j<D as follows.

∥Err(ctι(Ai)j
, ι(Ai)j)∥can

∞ , ∥Err(ctι̃(Bi)j
, ι̃(Bi)j)∥can

∞ ≲
b+ 1

q
·2N2

√
3N ·Bz

This holds because ΠPoPK provides an upper bound for
plaintexts as 2NBz. Next, we consider the noise growth
from MatMul. As analyzed in Lemma 10, the dominant term
is d(b+1) ·

√
2N2 + 3N(eA + eB), so we bound noise for

CTι(Ci) = (ctι(Ci)j )0≤j<D as follows since CTι(Ci) ←
MatMul(CTι(Ai),CTι̃(Bi)).

∥Err(ctι(Ci)j
, ι(Ci)j)∥can∞ ≲

d(b+ 1)2

q
· 4N3

√
6N ·Bz

Lastly, we consider the noise growth from Mul when
multiplying ctα to CTι(Ci). As analyzed in Lemma 8,
the dominant term is (b + 1)

√
2N2 + 3N ( ∥Err(ct, µ)∥can∞

+ ∥Err(ct′, µ′)∥can∞ ), so the noise for CTα·ι(Ci) =
(ctα·ι(Ci)j )0≤j<D is bounded as follows, which becomes
the upper bound BDec for ciphertext noise in ΠTriple.

∥Err(ctα·ι(Ci)j
, ι(Ci)j)∥can∞ ≲

d(b+ 1)3

q
· 8N4

√
3N ·Bz = BDec

H0

The inputs are a challenge (wi,j)0≤i<U,0≤j<V , a set C ⊂ [n], and
messages (x

(ℓ)
i )0≤i<U for ℓ ̸∈ C.

1) Sample µ
(ℓ)
xi
← RandPack(x

(ℓ)
i , s1), r

(ℓ)
i ← DZN ,σ1

for 0 ≤ i <
U , ℓ ̸∈ C.

2) Set ct(ℓ)i = Enc(µ
(ℓ)
xi

, r
(ℓ)
i ) for 0 ≤ i < U , ℓ ̸∈ C.

3) Sample y
(ℓ)
j ← U(ZD

p ), µ
(ℓ)
yj,i

← RandPack(−Wi,jx
(ℓ)
i , s2),

µ
(ℓ)
yj,U

← RandPack(y
(ℓ)
j +

∑U−1
i=0 Wi,jx

(ℓ)
i , s2), s

(ℓ)
j,i ←

DZN ,σ2
, and s

(ℓ)
j,U ← DZN ,σ2

for 0 ≤ i < U , 0 ≤ j < V ,
ℓ ̸∈ C, where Wi,j is the negacyclic matrix of wi,j .

4) Set µ(ℓ)
zj = µ

(ℓ)
yj,U

+
∑U−1

i=0 (µ
(ℓ)
yj,i

+ wi,j · µ
(ℓ)
xi

), t(ℓ)j = s
(ℓ)
j,U +∑U−1

i=0 (sj,i + wi,j · r
(ℓ)
i ) for 0 ≤ j < V , ℓ ̸∈ C.

5) Set comm
(ℓ)
j = Enc(µ

(ℓ)
zj , t

(ℓ)
j )−

∑U−1
i=0 wi,j ·ct

(ℓ)
i (mod q) and

resp
(ℓ)
j = (µ

(ℓ)
zj , s

(ℓ)
j ) for 0 ≤ j < V , ℓ ̸∈ C.

6) Output (ct(ℓ)i )0≤i<U , (comm
(ℓ)
j )0≤j<V , and (resp

(ℓ)
j )0≤j<V for

ℓ ̸∈ C.

H1

The inputs are a challenge (wi,j)0≤i<U,0≤j<V , a set C ⊂ [n], and
messages (x

(ℓ)
i )0≤i<U for ℓ ̸∈ C.

1) Sample µ
(ℓ)
xi
← RandPack(x

(ℓ)
i , s1), r

(ℓ)
i ← DZN ,σ1

for 0 ≤ i <
U , ℓ ̸∈ C.

2) Sample ct
(ℓ)
i ← U(R2

q) for 0 ≤ i < U , ℓ ̸∈ C.
3) Sample y

(ℓ)
j ← U(ZD

p ), µ
(ℓ)
yj,i

← RandPack(−Wi,jx
(ℓ)
i , s2),

µ
(ℓ)
yj,U

← RandPack(y
(ℓ)
j +

∑U−1
i=0 Wi,jx

(ℓ)
i , s2), s

(ℓ)
j,i ←

DZN ,σ2
, and s

(ℓ)
j,U ← DZN ,σ2

for 0 ≤ i < U , 0 ≤ j < V ,
ℓ ̸∈ C, where Wi,j is the negacyclic matrix of wi,j .

4) Set µ(ℓ)
zj = µ

(ℓ)
yj,U

+
∑U−1

i=0 (µ
(ℓ)
yj,i

+ wi,j · µ
(ℓ)
xi

), t(ℓ)j = s
(ℓ)
j,U +∑U−1

i=0 (sj,i + wi,j · r
(ℓ)
i ) for 0 ≤ j < V , ℓ ̸∈ C.

5) Set comm
(ℓ)
j = Enc(µ

(ℓ)
zj , t

(ℓ)
j )−

∑U−1
i=0 wi,j ·ct

(ℓ)
i (mod q) and

resp
(ℓ)
j = (µ

(ℓ)
zj , s

(ℓ)
j ) for 0 ≤ j < V , ℓ ̸∈ C.

6) Output (ct(ℓ)i )0≤i<U , (comm
(ℓ)
j )0≤j<V , and (resp

(ℓ)
j )0≤j<V for

ℓ ̸∈ C.

H2

The inputs are a challenge (wi,j)0≤i<U,0≤j<V , and a set C ⊂ [n] for
ℓ ̸∈ C.

1) Sample µ
(ℓ)
xi
← RandPack(0, s1), r

(ℓ)
i ← DZN ,σ1

for 0 ≤ i < U ,
ℓ ̸∈ C.

2) Set ct(ℓ)i ← U(R2
q) for 0 ≤ i < U , ℓ ̸∈ C.

3) Sample y
(ℓ)
j ← U(ZD

p ), µ
(ℓ)
yj,i

← RandPack(0, s2), µ
(ℓ)
yj,U

←
RandPack(y

(ℓ)
j , s2), s

(ℓ)
j,i ← DZN ,σ2

, and s
(ℓ)
j,U ← DZN ,σ2

for
0 ≤ i < U , 0 ≤ j < V , ℓ ̸∈ C.

4) Set µ(ℓ)
zj = µ

(ℓ)
yj,U

+
∑U−1

i=0 (µ
(ℓ)
yj,i

+ wi,j · µ
(ℓ)
xi

), t(ℓ)j = s
(ℓ)
j,U +∑U−1

i=0 (sj,i + wi,j · r
(ℓ)
i ) for 0 ≤ j < V , ℓ ̸∈ C.

5) Set comm
(ℓ)
j = Enc(µ

(ℓ)
zj , t

(ℓ)
j )−

∑U−1
i=0 wi,j ·ct

(ℓ)
i (mod q) and

resp
(ℓ)
j = (µ

(ℓ)
zj , s

(ℓ)
j ) for 0 ≤ j < V , ℓ ̸∈ C.

6) Output (ct(ℓ)i )0≤i<U , (comm
(ℓ)
j )0≤j<V , and (resp

(ℓ)
j )0≤j<V for

ℓ ̸∈ C.

Figure 8. Hybrid arguments for the simulatability of ΠPoPK
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