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Abstract. Signature-based witness encryption (SWE) is a recently proposed notion that allows
to encrypt a message with respect to a tag T and a set of signature verification keys. The result-
ing ciphertext can only be decrypted by a party who holds at least k different valid signatures
w.r.t. T and k different verification keys out of the n keys specified at encryption time. Natural
applications of this primitive involve distributed settings (e.g., blockchains), where multiple parties
sign predictable messages, such as polling or randomness beacons. However, known SWE schemes
without trusted setup have ciphertexts that scale linearly in the number of verification keys. This
quickly becomes a major bottleneck as the system gets more distributed and the number of parties
increases.
Towards showing the feasibility of SWE with ciphertext size sub-linear in the number of keys, we
give a construction based on indistinguishability obfuscation (iO) for Turing machines and strongly
puncturable signatures (SPS).

1 Introduction

Threshold cryptography focuses on distributing the security of a cryptosystem among multiple
parties, ensuring that a minimum number of these parties, known as the threshold, is required to
operate the system. In recent years, threshold schemes have garnered significant attention from
the community [9,29,7,16,26,5], primarily due to their applications in decentralized systems like
blockchains. A recent example is the notion of threshold signature-based witness encryption
(SWE) that was first introduced by Döttling et al. [9]. It allows to encrypt a plaintext with
respect to a tag and a set of verification keys for a signature scheme. Once a sufficient number
of signatures of this tag under these verification keys are provided, these signatures can be
used to efficiently decrypt the SWE ciphertext. The main application of SWE described in [9]
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is to build a time-release encryption scheme by combining SWE with a proof-of-stake (PoS)
blockchain: The idea is to use the verification keys of the blockchain committee members that
sign every new block created in the chain as the SWE verification keys, and the block number
of a block in the chain as the tag; then, once a block with that number is built the signatures of
the committee members on that number can be used to decrypt the SWE ciphertext. Madathil
et al. [29] construct an almost equivalent primitive called verifiable witness encryption based
on threshold signatures (VweTS), and provide another compelling use-case for such a scheme:
They facilitate blockchain transactions conditioned on “real life” events that happen outside
of the blockchain system, by requiring a threshold number of oracles’ signatures (third-party
services that certify real-world events like weather data, outcomes of bets etc.) to unlock data
to complete the transaction.

Conceptually, the notion of SWE can be seen as an interesting special case of witness en-
cryption [15] which allows one to encrypt a message under any NP statement such that a witness
for that statement allows to decrypt the ciphertext.

Another seemingly related notion is the one of threshold encryption schemes [8,12]. They
are encryption schemes where decryption takes place with the help of a threshold of decryption
servers. A significant difference w.r.t. SWE is that in threshold encryption a setup phase is
assumed. During this setup, a public key for the scheme and correlated secret keys for the
decryption servers are computed via a protocol. Furthermore, it is necessary to communicate
with these servers in order to decrypt the message. A simple approach to threshold encryption
[8] is to create the correlated secret keys as t-of-n linear secret shares ai of an ElGamal secret key
a, the corresponding public key is ga. When a client gets an encryption (gr,mgar) of m under

ga , they send gr to each of the decryption servers and receive back decryption shares gr(a
−1
i ).

The client then recombines the shares to get gr(a
−1) given that at least t servers participate.

A big advantage of SWE over the above approach is that SWE does not require to setup
correlated keys or communication between decryptors and signers. In fact, the servers may even
be unaware that encryptions are being made w.r.t. signatures they may release in the future.
This requirement is in line with the original application of SWE in the blockchain setting, as
no additional load should be put on the blockchain committee other than simply producing a
signature.

A common feature of the applications of SWE is the potentially large set of signers, as
it is desirable that the members of blockchain committees or the number of trusted oracles
can increase as much as possible to tackle centralization. Therefore, a critical drawback of the
SWE/VweTS constructions in [9,29] is that the size of their ciphertexts grows linearly with the
number of verification keys used in the signing procedure. A natural question to ask is whether
it is possible to construct an SWE scheme that does not suffer from this limitation, and neither
relies on a (long) trusted setup nor on strong ideal models (such as the programmable generic
group model [35]). In this work, we answer this question in the affirmative by introducing the
notion of compact signature-based witness encryption (cSWE). In a cSWE scheme, the size of
the ciphertext only grows poly-logarithmically in the number of verification keys. We provide a
formal definition of cSWE and present a construction based on Turing-machine indistinguisha-
bility obfuscation and strongly puncturable signatures. In the next section, we describe our
contributions in more detail.

1.1 Our contributions

Compact SWE. In this work, we construct the first cSWE scheme that allows one to encrypt a
message m with respect to a reference tag T and a set of verification keys V = (vk1, . . . , vkn)
such that the ciphertext size only scales poly-logarithmically in n. Importantly, our construction
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does not rely on a trusted setup. The construction is based on indistinguishability obfuscation
for Turing Machines [27,17] and it achieves ciphertext size in the order of O(poly(λ · log n)).
We prove security of our construction w.r.t. non-adaptive adversaries where the reference tag T
and the indices of the corrupt verification keys are known ahead of time. Our result establishes
principal feasibility of this notion in the non-adaptive setting and may pave the way towards a
more efficient implementation of cSWE in the future.

1.2 Technical Overview

We will now provide an outline of our constructions and techniques.

Compact SWE. We start by reviewing the high-level idea of the SWE construction given in [9].
To encrypt a message m w.r.t. a reference tag T and a set of verification keys V = (vk1, . . . , vkn),
the message m is first encrypted under a symmetric encryption scheme using a freshly sampled
key K. The key K is then secret-shared using a t-of-n linear secret sharing scheme, in the case
of [9] this is the Shamir scheme [34]1 where the shares s1, . . . , sn of K satisfy

∑t
j=1 sij ·Lij = K

for Lagrange coefficients Lij . The ciphertext is structured in a way such that for each individual
share, two elements are added to the ciphertext to ensure that the share si can be retrieved
given a valid signature of T under the verification key vki.

In a bit more detail, the SWE construction of [9] uses BLS [2] as the underlying signa-
ture scheme. In BLS, a valid signature σ on T under vk must satisfy the equation e(σ, g2) =
e(H(T ), vk), where e is a bilinear map from groups G1, G2 into GT , and g2 is a generator of G2.
Then, for each share si, they create an encryption of that share by choosing some randomness
ri ∈ Zp, and outputting (gri2 , e(H(T ), vk)ri · si). Note that, having a signature σi of message
T under key vki, a decryptor can compute e(H(T ), vk)ri = e(σi, g

ri
2 ), and thus easily get si.

However, without such a signature the value e(H(T ), vk)ri is indistinguishable from random
under the bilinear Diffie-Hellman assumption.

We will base our techniques on the above idea of encrypting each share si, such that it can
be individually retrieved if a signature of T under vki is given. However, we will need to depart
from the BLS-based approach [9] to achieve a ciphertext size independent of n.

The (non-compact) SWE construction of [9] achieves adaptive fully malicious security ; the
adversary can corrupt any unqualified set of signers and even choose their verification keys in a
fully malicious manner.

Compact SWE and Adaptive Security. There seems, however, to be a substantial barrier for
achieving adaptive security for compact SWE, and in fact it seems that a heuristic such as
e.g. programmable random oracle model or the programmable generic group model may be
necessary in this setting (see the discussion on [16] in the related works section below). From
an information theoretic perspective, e.g. for a threshold of k = n/2, a ciphertext of size o(n) is
too small to even encode the set of corrupted parties, which requires Ω(n) bits. Hence, it seems
hard to make a ciphertext behave differently for honest and corrupted keys as the ciphertext
cannot “know” which keys are corrupted and which are not.

Hence, somewhat expectedly guessing-based transformations from non-adaptive to adaptive
security fail in this setting. If we guess the set of corrupted parties ahead of time, we need to
compensate for a security loss of order 2Ω(n). But this means that the underlying primitives
need to at least provide Ω(n) bits of security, which in turn results in a ciphertext of size Ω(n),
which is not compact by our definition.

1 This means si = K +
∑t

j=1 rj(ξi)
j mod p for a prime p, random rj and distinct evaluation points ξi ∈ Zp.
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A similar situation occurs in the setting of adaptively secure succinct non-interactive ar-
guments of knowledge (SNARGs): The object in question, in this case a certificate π, is so
small that it cannot encode a sufficient amount of information about an adaptively chosen false
statement x, hence the guessing-based non-adaptive to adaptive security transformation incurs
a security loss incompatible with the succinctness requirement.

Gentry and Wichs [18] provided a formal barrier result which shows that there is no con-
struction of adaptive SNARGs with a black-box security reduction from any falsifiable assump-
tion [30]. While we do not provide a formal argument as this is beyond the scope of our work,
the basic idea of this argument (likely) carries over to the setting of compact SWE. In fact, the
Gentry-Wichs result [18] holds even for designated verifier SNARGs, and any succinct witness
encryption scheme immediately gives rise to a designated verifier SNARG for the same language.

Somewhat surprisingly, a recent work by Wu and Waters [36] showed that this security loss
can be “pushed into a CRS”. That is by making the CRS scale with the logarithm of the security
loss, the size of the certificate π can be kept small. Since we are interested in compact SWE
constructions without setup, this is not an option in our setting.

Non-adaptive Security. Hence, we will focus on a notion of non-adaptive security in this work.
Specifically, in this notion we require that the adversary chooses the reference message T and
the indices of the corrupted keys ahead of time. Only after that does the adversary get t − 1
honestly generated pairs of verification and signing keys (at the corrupted positions) and n−t−1
honestly chosen verification keys for the honest parties. We then give the adversary access to
a signing oracle which will sign for all honest keys and all messages except the challenge tag
T . Under these constraints we ask for indistinguishability security for the signature witness
encryption, i.e. the adversary should not be able to distinguish SWE encryptions with respect
to vk1, . . . , vkn and T of two distinct messages m0 ̸= m1.

Constructions with Structured Common Reference String. Before we discuss our construction
in the plain model, we will briefly discuss how we can construct compact SWE if we are allowed
to shift the burden into a long and structured CRS. The basic idea is similar to the construction
of zero-knowledge SNARGs of Sahai and Waters [33]: We can delegate the task of generating
and decrypting compact SWE ciphertexts to a pair of (large) obfuscated circuits given in the
CRS. The first circuit takes verification keys vk1, . . . , vkn, the tag T , the message m as well as
additional random coins and produces a ciphertext c and a succinct commitment h binding to
the vki and c. The second obfuscated circuit takes as input vk1, . . . , vkn and c, an opening of h
to these values, as well as signatures σi for some I ⊂ [n] of size at least k. The circuit checks if
each σi is a valid signature of T under vki and if so returns the message m. We can establish
security of this construction using a standard puncturing argument and relying on standard
tools such as puncturable PRFs and SSB hashing. This construction uses a long and structured
CRS (consisting of obfuscated programs) in a critical way.

A First Attempt. In order to achieve a compact SWE construction without trusted setup, we
have to depart from the above blueprint. Our basic idea is to adapt the construction of witness
encryption from iO [14] to the setting of compact SWE, but this raises several challenges. Hence,
consider the following attempt to construct a cSWE. The ciphertext consists of a symmetric
key encryption of the message m under key K and an obfuscated circuit C. The circuit C
pseudorandomly generates the secret shares under say the Shamir scheme of key K on demand;
on input an index i and a valid signature σ for T under vki, the circuit produces the i-th share
of the key K. The randomness for generating shares is taken from a puncturable PRF.

There are two evident issues with this approach. (1) A minor issue is that we cannot hardwire
all the verification keys vki into the circuit C, as this would require the circuit size growing

4



linearly with n, contradicting our compactness requirement. (2) Computing individual Shamir
shares inside the circuit C implies evaluating a degree t− 1 polynomial (that takes time Θ(n)),
requiring a circuit of size Ω(n), again contradicting our compactness requirement.

There will be, however a more subtle third issue which surfaces when trying to prove security
of this construction: If we were to rely on standard puncturing techniques to erase the shares
of honest parties in the challenge ciphertext, we would need to puncture the above circuit n−k
times. But this would again require an obfuscated circuit of size Ω(n)!

Our Basic Approach. Starting from the above sketch, we will address issues (1) and (2) above
as follows. To address the issue (1), we will rely on somewhere statistically binding (SSB)
hashing [24]. An SSB hash function is a keyed commitment scheme, which allows to succinctly
produce a committing hash h of a database of size n. The key generation algorithm takes an index
i ∈ [n], and outputs a hashing key guaranteeing that the hash is computationally binding on all
indices and statistically binding on i. The binding index is hidden by the commitment scheme.
We use the SSB scheme to commit to all verification keys (i, vki)i∈[n] and force the decryptor to
input (i, vki, σ) and a valid opening τ for the SSB hash. This ensures, that except with negligible
probability, on input (i, vk, σ, τ), vk actually is the i-th key and σ is a signature for vki, so
outputting si is justified. To address issue (2), we will rely on iO for Turing machines [27,17]
(TM). The size of an obfuscated Turing machine depends polynomially on its description size,
but only poly-logarithmically on its runtime.

Towards Proving Security. The intuition for the security proof is that we want to replace the
obfuscated TM M with an equivalent TM M ′ which has no information about the shares or the
shared key. The basic idea of the hybrid argument is as follows.

Since we are in a setting of non-adaptive security, the security reduction knows which signers
will be corrupted even before their corresponding verification keys are generated. We will use a
standard SSB argument to go through a sequence of hybrids, where in hybrid i we make the SSB
hash statistically binding to the i-th uncorrupted verification key, call this key vki. We would
like to argue that since the adversary never obtains a signature σi of T under vki, he cannot
make the obfuscated TM output a share si of the message mi. However, standard EUF-CMA
security seems far too weak to guarantee this: In order to use indistinguishability security of
iO, we need to move into a situation where it is impossible (rather than computationally hard)
to make the TM accept some signature σi for T under vki and output the corresponding share
si. To address this issue, we use strongly puncturable signatures (Section 3). These allow a
special key generation PKeyGen(T ), which outputs a punctured key pair (vk, sk) at message T .
With overwhelming probability, no valid signature exists for message T , while the verification
key remains indistinguishable from a standard non-punctured key. This type of signatures was
introduced under the name of all-but-one signatures in [21] where various instantiations based
on different number-theoretic assumptions (e.g., RSA, pairing-based assumptions, LWE) were
proposed. Equipped with this tool, the reduction can now replace all honest keys with punctured
keys, punctured at T . Hence, by additionally relying on SSB hashing as explained above we can
rely on iO security to gradually replace the TM M by a TM M ′ which never outputs shares si
for indices i of honest parties.

The Final Scheme. However, this transformation does not quite suffice to establish security.
Recall that the shares si of the message m are generated pseudorandomly, that is an adversary
with access to a plain description of the TM M ′ described above could still easily recover the
PRF key K̃ used to generate the shares and just generate them by himself. Note also that iO
security by itself does not guarantee that K̃ is hidden. The standard tool commonly used to
argue security in this setting is puncturing: If we were to puncture the key K̃ in a suitable
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manner, then we might be able to ensure that this punctured key does not leak information
about the shares of honest parties. While there are some minor issues with this idea, such as the
fact that the shares si are correlated and a contrived puncturing argument would be necessary,
the big issue here is we would need to puncture at n − k = Ω(n) points, which once again
contradicts our compactness requirement! The reason why we need to remove all honest shares
simultaneously is that otherwise Shamir secret sharing offers no security! Removing one share
at a time is useless, as this share could easily be recomputed from the other shares. Hence,
puncturing will not help us, and we need to depart from the puncturing approach. But where
could we store shares of the message m instead? Observe that our ciphertext already includes
an SSB commitment to all the verification keys vki, and we will precisely leverage this feature in
our solution: We will augment the verification keys vki by some additional auxiliary information
which contains a sufficiently large slot to encode a Shamir share. In the real world this auxiliary
information is just a random string. But in the security reduction we can embed an encryption
of the corresponding share si into vki. We then use iO security to switch to a machine M ′ that
reads its shares from the input, limiting its internal computation to checking the validity of
the input SSB opening and the signature. Upon success, it decrypts and outputs the share in
vki; otherwise, it aborts. This switch between computational models is feasible because we bind
the SSB hash to each index i∗ ∈ [n]. This ensures that on input (i∗, vk, σ, τ), if the obfuscated
machine produces an output, then vk = vki∗ must hold. Consequently, the correct share is
obtained by decrypting vk, and the output remains consistent whether the shares are computed
internally or decrypted from the public keys.

While this outlines our main technical ideas, there are some additional subtle technical
challenges which our construction in Section 4 needs to address.

On the Use of iO. Our construction uses iO for Turing Machines in a crucial way. Specifically,
we use iO to delegate the generation of shares to the decrypter, the ciphertexts in our scheme
constitute compressed versions of a pseudorandom share vector. This type of compression is
currently beyond the scope of other compact delegation techniques (e.g. Laconic Function Eval-
uation [32]), and in fact general purpose delegation schemes with even a weak amount of output
compression imply iO [28].

1.3 Related Work

Signature-based Witness Encryption. The only known construction of signature-based witness
encryption [9] grows linearly in the number of verification keys input to the encryption pro-
cedure. The same is true for verifiable witness encryption based on threshold signatures [29].
While the ciphertext’s size of these constructions is asymptotically worse than ours, their main
focus is on concrete efficiency. However, both [9,29] rely on specific assumptions in idealized
models, i.e. the bilinear Diffie-Hellman assumption and the random oracle model, whereas we
focus on a compact-ciphertext construction in the plain model. Furthermore, we point out that
these previous works achieve fully adaptive security notions, as opposed to our non-adaptive
security as discussed in Section 1.2. There exist also concretely efficient schemes (in the ROM)
with constant-size ciphertexts [13], but they can handle only the special case of t = n.

Threshold Encryption. Threshold encryption schemes [8,12] are encryption schemes where de-
cryption can take part only with the cooperation of a threshold number of decryption servers.
These constructions achieve constant ciphertext size. However, they require a correlated set up
of decryptors’ secret keys. Furthermore, decryption requires communicating with t servers to
get partial decryptions that are then aggregated to get the plaintext. Recently, [7] a scheme with
efficient batch-decryption for threshold encryption was proposed. This solution still requires a
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correlated set up of secret keys, but a server can output partial decryptions for many ciphertexts
at once, reducing the communication overhead. In their scheme, the keys are generated by a
trusted dealer.

In [16] the notion of silent setup for threshold encryption is introduced. This means, that the
involved decryption servers are now able to choose their key pairs independently and encryptors
can deterministically aggregate the public keys of their chosen decryption servers into a single
succinct encryption key, which can be used to encrypt a message. Dropping correlated key
creation is achieved by pushing the complexity into a highly structured CRS and “hints”,
which can be seen as extensions of the public keys of each party. Both the CRS and the hints
are linear in the size of maximum decryption servers. For each decryption procedure direct
communication with the decryption servers is still required. Their scheme achieves adaptive
security in the programmable generic group model.

Witness Encryption and Committe-based Witness Encryption. Witness Encryption [15] is de-
fined for an NP language L with poly-time relation R. Encryption of a message m is w.r.t a
statement x and decryption is possible with a witness w s.t. (x,w) ∈ R. Security intuitively
says that a ciphertext does not reveal any information about m if x ̸∈ L. Security is extended
in [20] in the form of extractable witness encryption, which also offers security guarantees even
when x ∈ L. In [22] extractable witness encryption on the blockchain (eWEB) is introduced. In
this scheme, a message encrypted with respect to a statement x is secret-shared among several
committee members and labeled with x. The decryptor must interact with a threshold number
of committee members, proving they have a valid witness to collect the shares and decrypt
the message. However, the storage complexity for each committee member increases with the
number of shares they hold. This limitation is addressed by [10], which proposes creating a
joint public key for encryption while giving each committee member a share of a correlated
secret key. Another work [11] further improves this by hiding the statement w.r.t. encryption
is done. Their ciphertext size is independent of the number of keys. However, they require a
correlated key setup where the committee has a single public key and the secret key is shared
among the members. In another work, [4], blockchain witness encryption is independently in-
troduced, serving a similar function to [22], but it requires deploying a smart contract on the
blockchain for each encryption. The critical difference between SWE and these works is that in
SWE committee keys are independently sampled, and decryption relies solely on the availability
of signatures from the committee.

2 Preliminaries

Notation. We denote by λ ∈ N the security parameter and by x ← A(in; r) the output of the
algorithm A on input in where A is randomized with r ← {0, 1}∗ as its randomness. We omit
this randomness when it is obvious or not explicitly required. By AO we denote, that we run
A with oracle access to O, that is it may query the oracle on inputs of its choice and only
receives the corresponding outputs. We denote by x←$ S an output x being chosen uniformly
at random from a set S. We denote the set {1, . . . , n} by [n] and x[i] denotes the i-th bit of
x. PPT denotes probabilistic polynomial time. Also, poly(x), negl(x) respectively denote any
polynomial or negligible function in parameter x.

In the following, we define the cryptographic building blocks necessary for our protocol.

2.1 Symmetric Encryption Scheme.

A symmetric encryption scheme SKE is a tuple of three efficient algorithms SKE = (SKE.KeyGen,
SKE.Enc,SKE.Dec) such that
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– K←$ SKE.KeyGen(1λ): The probabilistic key generation algorithm on input the security
parameter 1λ outputs a key K ∈ {0, 1}∗.

– ct←$ SKE.Enc(K,m): The probabilistic encryption algorithm takes as input the key K and
a message m ∈ {0, 1}∗ and outputs a ciphertext ct ∈ {0, 1}∗.

– m← SKE.Dec(K, ct): The deterministic decryption algorithm takes as input the key K and
a ciphertext ct and outputs a message m.

We require a symmetric encryption scheme to fulfill correctness, IND-CPA security and
pseudorandom ciphertexts as defined below:

Definition 1 (Correctness). We say that a symmetric encryption scheme is correct, if for
all λ ∈ N and all m ∈ {0, 1}∗, we have

Pr
[
SKE.Dec(K,SKE.Enc(K,m)) = m | K←$ SKE.KeyGen(1λ)

]
= 1.

Definition 2 (Security). We say that a symmetric encryption scheme is IND-CPA secure, if
no adversary A has more than negligible advantage in the following experiment ExpIND-CPA(A, 1λ):

– The experiment samples b←$ {0, 1} and K←$ SKE.KeyGen(1λ).
– A gets access to an encryption oracle O(K, ·), which on input m outputs Enc(K,m), which

it may use during the whole experiment.
– A chooses two challenge messages m0,m1 with |m0| = |m1|.
– The challenger sends ct = SKE.Enc(K,mb) to A.
– A outputs a bit b′.

The advantage of A is defined as

AdvAIND-CPA :=

∣∣∣∣Pr [ExpIND-CPA(A, 1λ)
]
− 1

2

∣∣∣∣ .
2.2 Pseudo-Random Functions.

A keyed family of functions PRFK : {0, 1}µ → {0, 1}ν for keys K ∈ {0, 1}∗ and some µ, ν =
poly(|K|) is a pseudo-random function (PRF) family, if

– given K,m the function PRFK(m) is efficiently computable and
– for every PPT distinguisher D, it holds DPRFK(.) ≈c DF (.), where K←$ {0, 1}λ and F is

chosen randomly from all functions from {0, 1}µ(λ) to {0, 1}ν(λ).

We also write PRF(K,m) for PRFK(m).

2.3 Puncturable Pseudo-Random Functions.

A puncturable family of PRFs PPRF mapping strings of length µ(·) to ν(·) is given by a triple
of algorithms (KeyGen,Punc,Eval), satisfying the following conditions:

Definition 3 (Pseudorandomness). For every PPT distinguisher D, it holds DEval(K,.) ≈c

DF (.), where K←$ KeyGen and F is chosen randomly from all functions from {0, 1}µ(λ) to
{0, 1}ν(λ).

Definition 4 (Functionality preserved under puncturing). For every PPT adversary A
such that A

(
1λ
)
outputs a set S ⊆ {0, 1}µ(λ), then for all x ∈ {0, 1}µ(λ) where x /∈ S, we have

that:
Pr

[
Eval(K,x) = Eval(KS , x) : K ← KeyGen(1λ),KS ← Punc(K,S)

]
= 1
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Definition 5 (Pseudorandom at punctured points). For every PPT adversary (A1, A2)
such that A1(1

λ) outputs a set S ⊆ {0, 1}µ(λ) and state σ, consider an experiment where K ←
KeyGen(1λ) and KS ← Punc(K,S). Then, we have∣∣Pr [A2 (σ,KS , S,Eval(K,S)) = 1]− Pr

[
A2

(
σ,KS , S, Uν(λ)·|S|

)
= 1

]∣∣ = negl(λ)

where Eval(K,S) denotes the concatenation of (Eval(K,x1), . . . ,Eval(K,xk)) where S =
{x1, . . . , xk} is the enumeration of the elements of S in lexicographic order, and Uℓ denotes the
uniform distribution over ℓ bits.

In abuse of notation, we write PPRF(K,m) to denote PPRF.Eval(K,m). The construction
given in [3] fulfills the following efficiency guarantees:

– A key punctured at a single point is of size µ · poly(λ).
– Evaluation of PPRF at a key punctured at most a single point runs in O(µ · poly(λ)).

2.4 Somewhere Statistically Binding Hashing.

Somewhere statistically binding (SSB) hashing was initially introduced by [24] and several
constructions of SSB hashing followed. [31]

Definition 6. A somewhere statistically binding (SSB) scheme SSB is composed of the following
algorithms:

– hk ← KeyGen(1λ, n, i) takes as input the security parameter λ, n ∈ N and an index i ∈ [n].
It outputs a hashing key hk.

– h← Hash(hk, D) takes as input a hashing key hk and a database D = (xi)i∈[n]. It outputs a
digest h.

– τ ← Open(hk, D, i) takes as input a hashing key hk, a database D = (xi)i∈[n] and an index
i. It outputs a proof τ .

– b← Vrfy(hk, h, i, x, τ) takes as input a hashing key hk, a digest h, an index i ∈ [n], a value
x and a proof τ . It outputs a bit b.

We require that an SSB hashing scheme fulfills the following efficiency guarantees:

1. The length ℓhk of the hashing key hk and the length ℓτ of proof τ are both of size O(poly(λ) ·
log n);

2. The Vrfy algorithm can be represented by a Turing machine of description size and runtime
O(poly(λ) · log n).

3. The hash h is of size ℓh(λ) = O(poly(λ)).

Additionally, an SSB hashing scheme fulfills the following properties.

Definition 7 (Correctness). We say that an SSB hashing scheme is correct if for all λ ∈ N,
all n = poly(λ), all databases D of size n, all indices j, i ∈ [n] we have that

Pr

1← Vrfy(hk, h, i, x, τ) :
hk← KeyGen(1λ, n, j)

h← Hash(hk, D)
τ ← Open(hk, D, i)

 = 1.

Definition 8 (Somewhere statistically binding). We say that an SSB hashing scheme is
somewhere statistically binding if for all λ ∈ N, all n = poly(λ), all databases D of size n, all
indices i ∈ [n], all database values x and all proofs τ we have that

Pr

Di = x :
hk← KeyGen(1λ, n, i)

h← Hash(hk, D)
1← Vrfy(hk, h, i, x, τ)

 = 1.
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Definition 9 (Index Hiding). We say that an SSB hashing scheme is index hiding if for all
λ ∈ N and all PPT adversaries A = (A1,A2) we have that∣∣∣∣∣∣Pr

b← A2(hk, aux ) :
(n, i0, i1, aux )← A1(1

λ)
b←$ {0, 1}

hk← KeyGen(1λ, n, ib)

− 1

2

∣∣∣∣∣∣ = negl(λ).

2.5 Secret Sharing.

We will introduce linear secret sharings and the well-known Shamir secret sharing [34].

Definition 10 (Linear Secret Sharing). Let t ≤ n. A (t, n)-linear secret sharing (LSS) LSS
scheme is composed of the following algorithms:

– (s1, . . . , sn)← Share(m) takes as input a message m. It outputs n shares (s1, . . . , sn).
– m← Reconstruct(si1 , . . . , sit) takes as input t shares (si1 , . . . , sit). It outputs a message m.

We expect an (t, n)-LSS to be correct and t-private.

Definition 11 (Correctness). An LSS scheme LSS is said to be correct if for all messages m
and all subsets {i1, . . . , it} ⊆ [n]

Pr [m = Reconstruct(si1 , . . . , sit) : (s1, . . . , sn)← Share(m)] = 1.

Definition 12 (Privacy). We say that a (t, n)-LSS scheme LSS is t-private if for all subsets
{i1, . . . , iz} ⊂ [n] where z < t, all pairs of messages (m0,m1) and all PPT adversaries A we
have that ∣∣∣∣Pr [1← A(s0,i1 , . . . , s0,iz) : (s0,1, . . . , s0,n)← Share(m0)]−

Pr [1← A(s1,i1 , . . . , s1,iz) : (s1,1, . . . , s1,n)← Share(m1)]

∣∣∣∣ = negl(λ).

One such LSS scheme is the popular Shamir secret sharing [34]. Let Zp be the finite field of
prime order p and fix distinct elements ξ = ξ1, . . . , ξn ∈ Zp.

Shamir.Share(m) picks a random degree t−1 polynomial f with f(0) = m and sets si = f(ξi)
for i ∈ [n] as its shares.

To reconstruct, we use Lagrange Interpolation: For a set of supporting points χ1, . . . , χk

from a finite field Zp, where p ∈ N is prime, the Lagrange basis polynomials are given by
L1, . . . , Lk, where

Li(x) =
∏

j∈[k];j ̸=i

x− χj

χi − χj
.

These are chosen such that Li(χj) = 1 iff i = j and 0 otherwise. Consequently, given a set of
k data points (ξi, yi), we can output a polynomial fL(x) = Σi∈[k]Li(x) · yi that will run through
these points and which has degree at most k-1. This process is called Lagrange Interpolation.
Hence, if k > t − 1, we will get back the original polynomial used in sharing and can evaluate
f(0) = m.

2.6 Indistinguishability Obfuscation for Turing Machines.

Indistinguishability Obfuscation (iO) [14] is a primitive to encode functionalities (usually rep-
resented as circuits) in a way such that the encodings of functionally equivalent circuits are
indistinguishable.

In this work we need indistinguishability obfuscation for Turing Machines as constructed in
[27,17]. This is defined in [17] as follows:
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Definition 13 (Succinct Indistinguishability Obfuscator). A succinct indistinguishability
obfuscator for a machine class {Mλ}λ∈N consists of a uniform PPT machine iOM as follows:

– obM ← iOM
(
1λ, 1n, t,M

)
: iOM takes as input the security parameter 1λ, a description M

of the Turing machine to obfuscate, and an input length n and time bound t for M .
– iOM outputs a machine obM , which is an obfuscation of M corresponding to input length

n and time bound t. obM takes as input x ∈ {0, 1}n and t′ ≤ t.

The scheme should satisfy the following three requirements:

– Correctness: For all security parameters λ ∈ N, for all M ∈Mλ, for all inputs x ∈ {0, 1}n,
time bounds t and t′ ≤ t, let y be the output of M on t′ steps, then we have that:

Pr
[
obM

(
x, t′

)
= y : obM ← iOM

(
1λ, 1n, t,M

)]
= 1

– Security: For any (not necessarily uniform) PPT distinguisher D, there exists a negligible
function α such that the following holds: For all security parameters λ ∈ N, time bounds t,
and pairs of machines M0,M1 ∈Mλ of the same size such that for all running times t′ ≤ t
and for all inputs x, M0(x) = M1(x) when M0 and M1 are executed for time t′, we have
that: ∣∣∣Pr [D (

iOM
(
1λ, 1n, t,M0

))
= 1

]
− Pr

[
D

(
iOM

(
1λ, 1n, t,M1

))
= 1

]∣∣∣ ≤ α(λ)

– Efficiency and Succinctness: We require that the running time of iOM and the length
of its output, namely the obfuscated machine obM , is in O(poly(|M |, log t, n, λ)). We also
require that the obfuscated machine on input x and t′ runs in time O(poly (|M |, t′, n, log t, λ)).

3 Strongly Puncturable Signatures

Strongly puncturable signature (SPS) schemes are signature schemes with additional features
and were introduced in [21] under the name of all-but-one signatures. In particular, such a
scheme comes with a punctured key generation algorithm that, on input a message m∗, gen-
erates a pair of punctured keys (vk∗, sk∗) at message m∗. A SPS scheme has to satisfy: (1)
puncturability, meaning that given a punctured key (vk∗, sk∗) w.r.t. a message m∗ there does
not exist, except with negligible probability, a valid signature for m∗ w.r.t. the key vk∗; (2)
punctured-key indistinguishability ensuring that punctured verification keys are indistinguish-
able from regular verification keys, as long as no signature on m∗ is requested. Additionally,
an SPS has to satisfy the usual correctness and EUF-CMA unforgeability properties of digital
signatures.

We call this type of signature strongly puncturable to remark the difference with other
notions of puncturable signatures [6,1,25] where a verifying signature for the punctured message
m∗ might exist, but it is infeasible to compute (given e.g. a punctured signing key).

In [21], various instantiations that can be based on different number-theoretic assumptions
(e.g., RSA, pairing-based assumptions, LWE) were proposed. In Appendix A, we propose an al-
ternative instantiation based on simulation-sound non-interactive zero-knowledge (NIZK) proofs
and pseudorandom generators (PRGs).

Definition 14 (Strongly Puncturable Signature Scheme).

A strongly puncturable signature scheme Sig = (KeyGen,PKeyGen,Sign,Vrfy) consists of the
following algorithms:
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– (vk, sk)←$ KeyGen(1λ): On input the security parameter 1λ, the key generation algorithm
KeyGen returns a verification key vk and a signing key sk.

– (vk, sk)←$ PKeyGen(1λ,m∗): On input the security parameter 1λ, a message m∗ to puncture
at, the punctured key generation algorithm PKeyGen returns a verification key vk and a
signing key sk, that allows to sign any message except m∗.

– σ←$ Sign(sk,m): On input a signing key sk and a message m, it outputs a signature σ.

– d←− Vrfy(vk, σ,m), d ∈ {0, 1}: On input a verification key vk, a signature σ and a message
m, the verification algorithm Vrfy returns a bit d ∈ {0, 1}.

A strongly puncturable signature scheme should have the following properties:

Definition 15 (Correctness). For all λ and all messages m in the underlying message space

Pr
[
Vrfy(vk,Sign(sk,m),m) = 1

∣∣ (vk, sk)←$ KeyGen(1λ)
]
= 1.

Definition 16 (Puncturability). For all λ and for all messages m∗, we require

Pr
[
∃σ s.t. Vrfy(vk∗, σ,m∗) = 1

∣∣∣ (vk∗, sk∗)←$ PKeyGen(1λ,m∗)
]
= negl(λ).

Definition 17 (Punctured-Key Indistinguishability). We say that a strongly puncturable
signature scheme Sig = (KeyGen,PKeyGen, Sign,Vrfy) has key indistinguishability, if no PPT
adversary A has more than negligible advantage in the experiment ExpIND-SPS(A, 1λ). We define
A’s advantage by

AdvAIND-SPS :=

∣∣∣∣Pr[ExpIND-SPS(A, 1λ) = 1]− 1

2

∣∣∣∣ .
Experiment ExpIND-SPS(A, 1λ)

1. Adversary A provides a message m∗ to puncture at.
2. The challenger picks a challenge bit b←$ {0, 1}. If b = 0, then (vk, sk)←$ KeyGen(1λ).

If b = 1, then (vk, sk)←$ PKeyGen(1λ,m∗). The verification key vk is returned to A.
3. A gets oracle-access to Signm∗(sk, ·). The oracle signs any message under the secret key

sk, except m∗.
4. A returns a guess bit b′ and wins iff b′ = b.

Note that we can leverage punctured-key indistinguishability combined with a guessing
argument to achieve standard EUF-CMA security. However, this incurs a security loss in the
order of the message space. We will therefore independently require and prove EUF-CMA
security of our alternative construction in Appendix A.

Definition 18. We say that Sig = (KeyGen,PKeyGen,Sign,Vrfy) is unforgeable, if for all PPT
adversaries A we have AdvAEUF-CMA = negl(λ) in the following experiment.

Experiment ExpEUF-CMA(A, 1λ)

1. The challenger runs KeyGen to get (vk, sk) = KeyGen(1λ). Set S ← ∅. The verification
key vk is returned to A.
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2. A has oracle-access to Sign(sk, ·), to sign any message m of its choice. Upon each query
for m, we set S ← S ∪ {m}. Finally, A returns a message-signature pair (m′, σ′).

3. The experiment outputs 1, if Vrfy(vk,m′, σ′) = 1 and m′ /∈ S. Otherwise, it outputs 0.

We define A’s EUF-CMA advantage by

AdvAEUF-CMA := Pr
[
ExpEUF-CMA(A, 1λ) = 1

]
.

4 Compact Threshold SWE

In this section we introduce a compact t-of-n SWE scheme. This is a special purpose (threshold)
witness encryption where we encrypt with regard to a set of signature verification keys V =
(vk1, . . . , vkn) and a reference message T , such that decryption becomes available upon receiving
t signatures (σij )j∈[t] which verify for the reference message under t of the verification keys i.e.
Sig.Vrfy(vkij , σij , T ) = 1. We say that such a scheme is compact if its ciphertext size grows
polylogarithmically in the number of verification keys n, and we say it is secure if IND-CPA
security holds in the absence of at least t such signatures.

4.1 Definition

Compared to the original proposal of SWE in [9], we have relaxed the definitions here in the
following ways:

– The security is non-adaptive as discussed in Section 1.2.
– The underlying signature in this work needs to be puncturable and we take multiple signa-

tures instead of one aggregated signature2 as arguments.

Definition 19 (Compact Signature-Based Witness Encryption). A t-out-of-n cSWE
for a strongly puncturable signature scheme Sig = (KeyGen,PKeyGen,Sign,Vrfy) is a tuple of
two algorithms (Enc,Dec) where:

– ct ← Enc(1λ, V = (vk1, . . . , vkn), T,m): Encryption takes as input a security parameter λ,
a set V of n verification keys of the underlying scheme Sig, a reference signing message T
and a message m of arbitrary length ℓ ∈ poly(λ). It outputs a ciphertext ct.

– m ← Dec(ct, (σi)i∈I , I, V ): Decryption takes as input a ciphertext ct, a list of signatures
(σi)i∈I , an index set I ⊆ [n] and a set V of verification keys of the underlying scheme Sig.
It outputs a message m.

We require such a scheme to fulfill three properties: correctness, compactness and security.

Definition 20 (Correctness). A t-out-of-n cSWE scheme cSWE = (Enc,Dec) for a strongly
puncturable signature scheme Sig = (KeyGen,PKeyGen, Sign,Vrfy) is correct if ∀λ ∈ N, sets of
keys V = (vk1, . . . , vkn), index sets I ⊆ [n] with |I| ≥ t, messages m,T and signatures (σi)i∈I
with Sig.Vrfy(vki, σi, T ) = 1 for all i ∈ I, it holds Dec(Enc(1λ, V, T,m), (σi)i∈I , I, V ) = m.

Definition 21 (Compactness). Given ct← Enc(1λ, V, T,m), its size |ct| is O(poly(λ, log n)),
where n = |V |.
2 The original paper uses BLS signatures, which allow to compress multiple signatures on different messages
and from different signers into a single aggregated signature, that can be efficiently checked against all mes-
sages/signers in one step.
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Definition 22 (Security). A t-out-of-n cSWE scheme cSWE = (Enc,Dec) for a strongly
puncturable signature scheme Sig = (KeyGen,PKeyGen,Sign,Vrfy) is secure if for all λ ∈ N, all
t, n = poly(λ), t < n, there is no PPT adversary A that has more than negligible advantage in
the experiment ExpSec(A, 1λ).

Experiment ExpSec(A, 1λ)

1. The adversary A specifies signing reference message T ∗ and indices J ⊂ [n] with |J | ≤
t− 1.

2. The experiment generates n key pairs for i ∈ [n] as (vki, ski) ← Sig.KeyGen(1λ) and
provides V = (vk1, . . . , vkn) to A, as well as all ski for i ∈ J .

3. A gets to make signing queries for pairs (i, T ). If i ∈ J or T = T ∗, the experiment
aborts, else it returns Sig.Sign(ski, T ).

4. A announces challenge messages m0,m1 with |m0| = |m1|.
5. The experiment flips a bit b←$ {0, 1}, and sends Enc(1λ, V, T ∗,mb) to A.
6. A gets to make further signing queries for pairs (i, T ). If i ∈ J or T = T ∗, the experi-

ment aborts, else it returns Sig.Sign(ski, T ).
7. Finally, A outputs a guess b′.
8. If b = b′, the experiment outputs 1, else 0.

We define A’s advantage by AdvASec :=
∣∣Pr [ExpSec(A, 1λ) = 1

]
− 1

2

∣∣.
4.2 Construction

Our construction relies on indistinguishability obfuscation for Turing Machines and a Strongly
Puncturable Signature scheme. The following scheme works for n = poly(λ) potential signers
and requires t-of-n signatures to decrypt.

Given a strongly puncturable signature scheme Sig, our protocol will work for a slightly
altered signature scheme Sig′. We define Sig′ to behave exactly as Sig, but additionally the
public keys vk output by (vk, sk)← Sig′.KeyGen(1λ) have a random part Ri←$ Zp appended to
vki, hence its keys are of the form (vki, Ri). Let ℓvk = |(vki, Ri)| be the size of its keys, M its
message space, and ℓσ be the length of its signatures.

Let further

– p > 2λ be a prime number.
– PRF : {0, 1}λ × {0, 1}µ → Zp be a PRF with log n ≤ µ ≤ log p.
– PPRF = (KeyGen,Punc,Eval) with Eval : {0, 1}λ×{0, 1}µ → Zp be a PPRF and ℓpkey be the

size of any key punctured at most one point.
– SKE be a symmetric key encryption scheme
– SSB be an SSB-hashing scheme and ℓhk, ℓτ , ℓh be the length of the hashing keys hk, proofs

τ and hashes h of SSB on input a database D with length n and with a maximum size of
its entries of ℓvk.

– obM be an indistinguishability obfuscator for the class of machines
TMλ = {Mi∗ [K,K1, h, T, hk,K2, U, ind2](ind, (vk, R), τ, σ′)} where each such machine takes:
indices i∗, ind2 ∈ {0, . . . , n+ 1}, values K,K1 ∈ {0, 1}λ, h ∈ {0, 1}ℓh , T ∈ M, hk ∈ {0, 1}ℓhk ,
a PPRF key K2 ∈ {0, 1}ℓpkey and a value U ∈ Zp as hardwired inputs and an index ind ∈ [n],

values vk, R of combined length ℓvk, as well as τ ∈ {0, 1}ℓτ and σ ∈ {0, 1}ℓσ as run-time
inputs.
Mi∗ [K,K1, h, T, hk,K2, U, ind2](ind, (vk, R), τ, σ′) is defined as:

14



• If ind < 1 or ind > n, abort and output ⊥.
• If 0 = SSB.Vrfy(hk, h, ind, (vk, R), τ), abort and output ⊥.
• If 0 = Sig.Vrfy(vk, σ′, T ), abort and output ⊥.
• If ind = ind2: Output R+ U mod p and halt.
• If ind ≤ i∗: Output R+ PPRF(K2, ind) mod p and halt.
• Else if ind > i∗:

∗ Write on the tape variables i = 1, R = 0, X = 1, S = K.
∗ While i < t : Set R = PRF(K1, i), X = X · ind mod p, S = S + X · R mod p,
i = i+ 1.

∗ Output S.

Note that all these machines have the same description size. Let ℓinp be shorthand for its in-
put size and TT M denote the maximum runtime within this machine class. It is syntactically
clear that these machines always halt, so TT M is well-defined.

We will now present the construction of our t-of-n compact SWE scheme.

Protocol Compact cSWE for Sig′ - from iO

cSWE.Enc(1λ, V = (vki, Ri)i∈[n], T,m):

– Generate PRF key K1 ← PRF.KeyGen(1λ)
– Generate symmetric key K ← SKE.KeyGen(1λ)
– Generate PPRF key K2 ← PPRF.KeyGen(1λ)
– Generate a hashing key hk← SSB.KeyGen(1λ, n, 1)
– Set h = SSB.Hash(hk, (vki, Ri)i∈[n])
– Choose U ←$ Zp.
– Let M ′ = M0[K,K1, h, T, hk,K2, U, 0](·, (·, ·), ·, ·).
– Compute obM ← iOM(1λ,M ′, ℓinp, TT M).
– Compute ct′ = SKE.Enc(K,m)
– Output (obM, ct′, hk)

cSWE.Dec(ct, (σ), I, V = (vki, Ri)i∈[n]):
– Parse ct = (obM, ct′, hk)
– If |I| < t, abort.
– Parse σ = (σi)i∈I .
– For i ∈ I:
• Compute τi = Open(hk, V, i)
• Run ci = obM(i, (vki, Ri), τ, σi)
• Notice ci = K + Σt−1

j=1PRF(K1, j) · ij i.e. evaluations Si = f(i) on polynomial

f = K +Σt−1
j=1PRF(K1, j) · xj .

– Compute K ′ =
∑

i∈I ci · Li where Li =
∏

j∈I;j ̸=i
−j
i−j .

– Output m = SKE.Dec(K ′, ct′).

We point out that by encrypting a symmetric encryption key, we can get an encryption
scheme that allows messages m of arbitrary length without impacting the size of obM .

4.3 Proofs

Theorem 1. Our construction cSWE is correct, given that the underlying primitives Sig′, SKE,
SSB and obM are correct.

15



Proof. Let λ ∈ N, a set of keys V = (vk1, . . . , vkn), an index set I ⊆ [n] with |I| ≥ t, messages
m,T and signatures (σi)i∈I be given such that for all i ∈ I, we have Sig.Vrfy(vki, σi, T ) = 1. Let
us show Dec(Enc(1λ, V, T,m), (σi)i∈I , I, V ) = m. Enc(1λ, V, T,m) yields an output (obM, ct′, hk).
In Dec((obM, ct′, hk), (σi)i∈I , I, V ), we do not abort before calling obM , as |I| ≥ t by require-
ment. We compute for i ∈ I: τi = Open(hk, V, i), ci = obM(i, (vki, Ri), τ, σi). By correctness of
obM , this outputs the value generated by M0[K,K1, h, T, hk,K2, U, 0](i, (vki, Ri), τ, σi), which
runs the following code:

– If i < 1 or i > n, abort and output ⊥.
– If 0 = SSB.Vrfy(hk, h, i, (vki, Ri), τ), abort and output ⊥.
– If 0 = Sig.Vrfy(vki, σi, T ), abort and output ⊥.
– If i = 0: Output R+ U mod p and halt.
– If i ≤ 0: Output R+ PPRF(K2, i) mod p and halt.
– Else if i > 0:
• Write on the tape variables j = 1, R = 0, X = 1, S = K
• While j < t :

∗ Set R = PRF(K1, j), X = X · i mod p, S = S +X ·R mod p, j = j + 1.
• Output S

And has hardcoded valuesK1 ← PRF.KeyGen(1λ),K ← SKE.KeyGen(1λ),K2 ← PPRF.KeyGen(1λ),
hk← SSB.KeyGen(1λ, n, 1), h = SSB.Hash(hk, (vki, Ri)i∈[n]).

Clearly 1 ≤ i ≤ n. SSB.Vrfy(hk, h, i, (vki, Ri), τ) = 1 holds by correctness of SSB since hk, V
in Dec are the same as in the call to Enc. Sig.Vrfy(vki, σi, T ) holds by definition.

This means we get for i ∈ I ci = K + Σt−1
j=1PRF(K1, j) · ij i.e. evaluations ci = f(i) of a

polynomial f = K +Σt−1
j=1PRF(K1, j) · xj with f(0) = K.

By computing K ′ =
∑

i∈I ci · Li with Li =
∏

j∈I;j ̸=i
−j
i−j being the Langrange polynomials

for supporting points i ∈ I evaluated at 0, we are guaranteed K ′ = f(0) = K.
So Dec finally outputs SKE.Dec(K, ct′), but since ct′ = SKE.Enc(K,m), by the correctness

of SKE, we output the original message m.

Theorem 2. Our construction cSWE is compact.

Proof. The bottleneck of our ciphertext size is the size of the obfuscated Turing machine, which
depends polynomially on its description size and polylogarithmically on its runtime. We notice,
that we can describe all inputs (runtime as well as hardwired ones) in O(poly(λ) · log n). All
operations (comparisons, modular arithmetic in Zp, SSB verification, signature verification and
(P)PRF evaluations) can be described and evaluated in size/time O(poly(λ) · log n) and we
can describe the whole code including the while-loop in O(poly(log n · λ)), while the maximum
runtime is in O(n · poly(log n · λ)), leading to the desired size.

In more detail, the output of cSWE′.Enc(1λ, V = (vki, Ri)i∈[n], T,m) is (obM, ct′, hk), where
hk = SSB.Hash(hk, (vki, Ri)i∈[n]), |hk| = ℓhk = O(poly(λ) · log n) by the efficiency guarantees on
SSB.

And ct′ = SKE.Enc(K,m), so |ct′| = O(poly(λ) · |m|) = O(poly(λ)). It remains to show that
obM is in O(poly(λ, log n)).

obM ← iOM(1λ,M ′, ℓinp, TT M) with M ′ = Mi∗=0[K,K1, h, T, hk,K2, U, ind2 = 0] By the
efficiency requirements on iOM, |obM | is in O(poly(|M ′|, log TT M, ℓinp, λ)), where |M ′| is the
description size, TT M the maximum runtime and ℓinp the maximum input size of machines in
TMλ. The machines in this class are defined as
Mi∗ [K,K1, h, T, hk,K2, U, ind2](ind, (vk, R), τ, σ′):

– If ind < 1 or ind > n, abort and output ⊥.
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– If 0 = SSB.Vrfy(hk, h, ind, (vk, R), τ), abort and output ⊥.
– If 0 = Sig.Vrfy(vk, σ′, T ), abort and output ⊥.
– If ind = ind2: Output R+ U mod p and halt.
– If ind ≤ i∗: Output R+ PPRF(K2, ind) mod p and halt.
– Else if ind > i∗:
• Write on the tape variables i = 1, R = 0, X = 1, S = K
• While i < t : Set R = PRF(K1, i), X = X · ind mod p, S = S +X ·R mod p, i = i+ 1.
• Output S

By construction, the sizes of hardwired inputs are as follows: |i∗|, |ind2| = log n, |K|, |K1| = λ,
|h| = ℓh = O(poly(λ)) by efficiency of SSB, |T | = O(poly(λ)) as T ∈ M is from the message
space of Sig with security parameter λ, |hk| = ℓhk = O(poly(λ)·log n) by the efficiency guarantees
on SSB, |K2| = ℓpkey = µ · poly(λ) by the efficiency guarantees of PPRF and |U | = log p.

The runtime inputs are bounded in size as follows: ind = log n, |(vk, R)| = ℓvk = λ+ log p,
|τ | = ℓτ = O(poly(λ)) · log n by efficiency of SSB and |σ| = ℓσ = poly(λ).

We can bound µ, log p = O(poly(log n, λ)), as we only required log p > λ, log p ≥ µ ≥ log n.
So, we see directly that the input size is bounded as

ℓinp = O(poly(λ · log n)).

Towards analysing the maximum runtime TT M: Comparisons with ind, i∗ can be executed
in time O(poly(log n)). The Turing machine code for SSB.Vrfy(hk, h, ind, (vk, R), τ) has runtime
O(poly(λ) · log n) by efficiency of SSB. The code for Sig.Vrfy(vk, σ′, T ) has runtime O(poly(λ)).
Modular arithmetic in Zp can be executed in time poly(log p) = O(poly(λ, log n)). PPRF(K2, ind)
can be executed in O(µ · poly(λ)) = O(poly(log n · λ)) by our efficiency requirements on PPRF
and so can PRF(K1, i). Since t ≤ n, the while-loop has runtime in O(n · poly(log n · λ)). So the
maximum runtime is bounded by

TT M = O(n · poly(log n · λ)).

Towards analysing the description size |M ′|: Comparisons with ind, i∗ can be described
in size O(poly(log n)). The Turing machine code for SSB.Vrfy(hk, h, ind, (vk, R), τ) has size
O(poly(λ) · log n) by efficiency of SSB. The code for Sig.Vrfy(vk, σ′, T ) has size O(poly(λ)). Mod-
ular arithmetic in Zp can be described in size poly(log p) = O(poly(λ, log n)). PPRF(K2, ind)
can be described in O(µ · poly(λ)) = O(poly(log n · λ)) by our efficiency requirements on
PPRF and so can PRF(K1, i). Since log t ≤ log n, the while-loop can be described in size
log n+O(poly(log n · λ)). We conclude that the description size is bounded by

|M ′| = O(poly(log n · λ)).

Thus, |obM | = O(poly(|M ′|, log TT M, ℓinp, λ)) = O(poly(poly(log n · λ), log(n · poly(log n ·
λ)), poly(λ · log n), λ)) = O(poly(log n, λ)).

So the whole ciphertext is in size O(poly(log n, λ)).

Theorem 3. Our construction of cSWE is secure, given that Sig is punctured key indistinguish-
able and puncturable, SSB is index hiding and somewhere perfectly binding, obM is secure, SKE
is correct, IND-CPA secure and has pseudorandom ciphertexts, PRF is a pseudorandom function
and PPRF is a puncturable pseudorandom function.

Proof. Let us give a proof sketch first:
We define a series of indistinguishable hybrids and show, that an adversary A with non-

negligible advantage in the last hybrid could break IND-CPA security of SKE.
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Our strategy is to puncture all honest keys at message T ∗, then gradually move each party’s
shares from being computed inside the Turing machine into being embedded in the key part Ri

in encrypted form. The Turing machine should in the end only have to decrypt the shares from
its input and can forget the key K that it was supposed to share. Then, we can observe, that it
never decrypts the honest parties’ shares, as there is no accepting signature due to puncturability
of our signing scheme. We bind the SSB hash to each honest position i∗, puncture the PPRF
at i∗ to forget the decryption key, hardwire the output share si∗ into the machine instead and
replace the share si∗ with an encryption of garbage inside Ri∗ . Then, we observe, that by SSB
binding and puncturability, no input exists anymore for which si∗ is output and we can forget
the hardwired value again. Lastly, we notice that we now need less than t shares of K to run
this experiment and can therefore replace them with shares of an unrelated key K ′ by t-privacy.
What remains is a single encryption of m under K, where K is not known or used in any other
part of the output.

Full proof: Let λ ∈ N, such that t = poly(λ). Let A be an adversary for ExpSec(A, 1λ) with
more than negligible advantage.

H0 = H0
1: This game is identical to ExpSec(A, 1λ).

To recap, we get indices J ⊂ [n], |J | ≤ t − 1 and a reference message T ∗ from A, then the
experiment generates key pairs for i ∈ [n] as (vki, ski)← Sig.KeyGen(1λ), Ri ← Zp and provides
V = ((vk1, R1), . . . , (vkn, Rn)) to A, as well as all ski for i ∈ J . We allow any signing queries
for honest keys vki, i ∈ [n] \ J on any message except T ∗, before and after the adversary
announces challenge messagesm0,m1 and the experiment responds to this challenge by choosing
b←$ {0, 1}, and sending Enc(1λ, V, T ∗,mb) to A.

In the end, A outputs a guess b′ to our choice bit b.

Hi∗
1 for i∗ ∈ {1, . . . , n}:
– If i∗ ∈ J , this is identical to Hi∗−1

1 .
– Else, it is identical to Hi∗−1

1 , except that the key vki∗ is created as a punctured key as
(vki∗ , ski∗)←$ Sig.PKeyGen(1λ, T ∗) for the signing reference messsage T ∗ specified by A
instead of (vki∗ , ski∗)←$ Sig.KeyGen(1λ).

We observe that our experiment never needs to compute signatures of T ∗ for honest keys vki with
i ̸∈ J . So clearly, Hi∗

1 and Hi∗−1
1 are indistinguishable by the punctured-key indistinguishability

of Sig′. In the last hybrid Hn
1 , all honest keys will be chosen punctured at message T ∗.

We define an event

bad = {∃σ, i ∈ [n] \ J such that Sig.Vrfy(vki, σ, T
∗) = 1}.

Note that by puncturability of Sig, it holds

Pr [bad] ≤ Σi∈[n]\J Pr

[
∃σ s.t. Vrfy(vk∗, σ, T ∗) = 1 :
(vk∗, sk∗)←$ PKeyGen(1λ, T ∗)

]
≤ n · negl(λ),

which is negligble. In the following we condition on bad not happening.

H2: This is identical to Hn
1 except for conceptual changes:

– The reduction computes already at the start of the experiment the keys K,K1,K2 it will
use in the call to Enc(1λ, V, T ∗,mb).

– We define the polynomial f ′ = K +Σt−1
j=1PRF(K1, j) · xj and si = f ′(i) for i ∈ [n]. Note

that sind corresponds to the output of M ′ on an accepting input (ind, (vkind, Rind), τ, σ
′),

where 1 = SSB.Vrfy(hk, h, ind, (vkind, Rind), τ) and 1 = Sig.Vrfy(vkind, σ
′, T ) for ind ∈ [n].

The shares si for i ∈ J correspond to the outputs the adversary is guaranteed to get by
just signing T ∗ himself and following the decryption procedure.
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We will now loop through Hi
3,Hi

4, . . . ,Hi
7 to gradually replace all honest verification keys

by punctured ones and switch to a setting where the obfuscated machine pulls all of its outputs
out of the Ri key parts instead of computing them itself. We start with H0

7 = H2 for notational
convenience.

Hi∗
3 for i∗ ∈ {1, . . . , n} : This is identical to Hi∗−1

7 (with H0
7 = H2) except that we generate

hk← SSB.KeyGen(1λ, n, i∗) binding to i∗.

This is clearly indistinguishable from Hi∗−1
7 by SSB being index hiding.

Hi∗
4 for i∗ ∈ {1, . . . , n} : This is identical to Hi∗

3 except in the way we choose Ri∗ in vki∗ .
We sample ui∗ ←$ Zp and set Ri∗ = si∗ − ui∗ mod p with si∗ defined as above instead of
Ri∗ ← Zp.

This is indistinguishable from Hi∗
3 as si∗ − ui∗ is still uniform in Zp.

Hi∗
5 for i∗ ∈ {1, . . . , n} : This is identical toHi∗

4 except we generateK{i∗} ← PPRF.Punc(K2, {i∗})
the machine M ′ we use is replaced by M ′ = Mi∗ [K,K1, h, T

∗, hk,K{i∗}, ui∗ , i
∗] instead of

M ′ = Mi∗−1[K,K1, h, T
∗, hk,K2, U, 0].

This is indistinguishable from Hi∗
4 by security of obM . To show this, let us argue, that M0 :=

Mi∗ [K,K1, h, T
∗, hk,K{i∗}, ui∗ , i

∗] and M1 := Mi∗−1[K,K1, h, T
∗, hk,K2, U, 0] are functionally

equivalent.
We recall that Mi∗ [K,K1, h, T, hk,K2, U, ind2](ind, (vk, R), τ, σ′) is defined as follows:

– If 0 = SSB.Vrfy(hk, h, ind, (vk, R), τ), abort and output ⊥.
– If 0 = Sig.Vrfy(vk, σ′, T ), abort and output ⊥.
– If ind = ind2: Output R+ U mod p and halt.
– If ind ≤ i∗: Output R+ PPRF(K2, ind) mod p and halt.
– Else if ind > i∗:
• Write on the tape variables i = 1, R = 0, X = 1, S = K
• While i < t :

∗ Set R = PRF(K1, i), X = X · ind mod p, S = S +X ·R mod p, i = i+ 1.
• Output S (Note that S = f ′(ind) = sind.)

Assuming that there is an input (ind∗, (vk∗, R∗), τ∗, σ∗) for which M0,M1 produce different
outputs, then 1 = SSB.Vrfy(hk, h, ind∗, (vk∗, R∗), τ∗), 1 = Sig.Vrfy(vk∗, σ∗, T ∗), 0 < ind ≤ n must
hold. Otherwise they both output ⊥.

We distinguish 3 cases:

ind∗ > i∗ In this case both machines output s∗ind.
ind∗ = i∗ In this case M1 outputs s∗ind, but M0 outputs R∗ + ui∗ mod p.

We note that hk ← SSB.KeyGen(1λ, n, i∗) and h = SSB.Hash(hk, (vki, Ri)i∈[n]) are honestly
created by the reduction and so since SSB is somewhere statistically binding, we know that
vk∗ = vki∗ , R

∗ = Ri∗ .
That means that M0 outputs Ri∗ + ui∗ = si∗ , which is the same output as in M1.

ind∗ < i∗ In this caseM0 outputsR
∗+PPRF(K{i∗}, ind

∗) mod p, whileM1 outputsR
∗+PPRF(K2, ind

∗)
mod p.
As ind ̸= i∗ and K{i∗} ← PPRF.Punc(K2, {i∗}), we can conclude that these outputs are
identical by the PPRF preserving functionality under puncturing.

It follows that there does not exist an input that makes M0 and M1 have a different output,
thus Hi∗

5 and Hi∗
4 are indistinguishable.
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Hi∗
6 for i∗ ∈ {1, . . . , n} : This is identical to Hi∗

5 except that we now choose Ri∗ = si∗ −
PPRF(K2, i

∗) mod p instead of Ri∗ = si∗−ui∗ mod p andM ′ = Mi∗ [K,K1, h, T
∗, hk,K{i∗},

PPRF(K2, i
∗), i∗] instead of M ′ = Mi∗ [K,K1, h, T

∗, hk,K{i∗}, ui∗ , i
∗]

Hi∗
6 and Hi∗

5 are indistinguishable as PPRF is pseudorandom at the punctured point i∗.
Given K{i∗}, i

∗ and either a uniform value ū← Zp or PPRF(K2, i
∗), we can obliviously emulate

either Hi∗
5 or Hi∗

6 to build a distinguisher for pseudorandomness at punctured points of PPRF.

Hi∗
7 for i∗ ∈ {1, . . . , n} : This is identical to Hi∗

6 except that we now choose M ′ = Mi∗ [K,K1,
h, T ∗, hk,K2, U, 0] instead of
M ′ = Mi∗ [K,K1, h, T

∗, hk,K{i∗},PPRF(K2, i
∗), i∗]

This is indistinguishable from Hi∗
6 by security of obM .

To show this, let us argue, thatM0 := Mi∗ [K,K1, h, T
∗, hk,K2, U, 0] andM1 := Mi∗ [K,K1, h,

T ∗, hk,K{i∗},PPRF(K2, i
∗), i∗] are functionally equivalent.

Assuming that there is an input (ind∗, (vk∗, R∗), τ∗, σ∗) for which M0,M1 produce different
outputs, then 1 = SSB.Vrfy(hk, h, ind∗, (vk∗, R∗), τ∗), 1 = Sig.Vrfy(vk∗, σ∗, T ∗), 0 < ind ≤ n must
hold.

We distinguish 3 cases:

ind∗ > i∗ In this case both machines output s∗ind.
ind∗ = i∗ In this case both machines output R∗ + PPRF(K2, i

∗) mod p.
ind∗ < i∗ In this caseM0 outputsR

∗+PPRF(K2, ind
∗) mod p , whileM1 outputsR

∗+PPRF(K{i∗}, ind
∗)

mod p.
As ind ̸= i∗ and K{i∗} ← PPRF.Punc(K2, {i∗}), we can conclude that these outputs are
identical by the PPRF preserving functionality under puncturing.

This means such a resulting in different outputs can not exist - Hi∗
6 and Hi∗

7 are indeed
indistinguishable.

H8: This is identical to Hn
7 , except that we use M ′ = Mn[∅, ∅, h, T ∗, hk,K2, U, 0] which is the

same as the previous machine, except of it having dummy inputs instead of K,K1.

As the output of M ′ does no longer depend on K,K1 in Hn
7 , this is indistinguishable from

the previous hybrid by security of obM .

H9 =: This is identical to H8 except that we set the s∗i = (K + Σt−1
j=1rj · (i)j)) in Ri =

s∗i − PPRF(K2, i) mod p for i ∈ [n], where we pick rj ← {0, 1}µ randomly instead of
s∗i = (K +Σt−1

j=1PRF(K1, j) · (i)j)).

This is indistinguishable from H8 by pseudorandomness of PRF.
Now we will almost “revert” the moves in H3 to H7 again to put random values into Ri for

i ̸∈ J , but this time we do not let M ′ keep the information to decrypt them - we rely on the
puncturability of Sig to make sure that the case of decryptions would never have been reached
anyways and invoke security of obM . This deletes all traces of honest shares in the Ri.

Hi∗
10 for i∗ ∈ {1, . . . , n} : This is identical to Hi∗−1

13 (with H0
13 = H9) except that we generate

hk← SSB.KeyGen(1λ, n, i∗) binding to i∗.

This is clearly indistinguishable from Hi∗−1
13 by SSB being index hiding.

Hi∗
11 for i∗ ∈ {1, . . . , n} : If i∗ ∈ J , this is identical to Hi∗

10.
Else, this is identical to Hi∗

10 except that the machine M ′ we use is replaced by M ′ =
Mn[∅, ∅, h, T ∗, hk,K{i∗},PPRF(K2, i

∗), i∗] instead of M ′ = Mn[∅, ∅, h, T ∗, hk,K2, U, 0].
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This is indistinguishable from Hi∗
10 by security of obM and the argument is analogous to Hi∗

7

and Hi∗
6 being indistinguishable.

Hi∗
12 for i∗ ∈ {1, . . . , n} : If i∗ ∈ J , this is identical to Hi∗

11.
Else this is identical to Hi∗

11 except that we now choose Ri∗ = si∗ − ui∗ mod p instead
of Ri∗ = si∗ − PPRF(K2, i

∗) mod p and M ′ = Mn[∅, ∅, h, T ∗, hk,K{i∗}, ui∗ , i
∗] instead of

M ′ = Mn[∅, ∅, h, T ∗, hk,K{i∗},PPRF(K2, i
∗), i∗].

Hi∗
12 and Hi∗

11 are indistinguishable by PPRF being pseudorandom at punctured points and the
argument is analogous to Hi∗

6 and Hi∗
5 being indistinguishable.

Hi∗
13 for i∗ ∈ {1, . . . , n} : If i∗ ∈ J , this is identical to Hi∗

12.
This is identical to Hi∗

12 except that we now choose M ′ = Mn[∅, ∅, h, T ∗, hk,K2, U, 0] instead
of M ′ = Mn[∅, ∅, h, T ∗, hk,K{i∗}, ui∗ , i

∗].

This is indistinguishable from Hi∗
12 by security of obM .

To show this, let us argue, that M0 := Mn[∅, ∅, h, T ∗, hk,K2, U, 0] and M1 := Mn[∅, ∅, h, T ∗,
hk,K{i∗}, ui∗ , i

∗] are functionally equivalent.
Assuming that there is an input (ind∗, (vk∗, R∗), τ∗, σ∗) for which M0,M1 produce different

outputs, then 1 = SSB.Vrfy(hk, h, ind∗, (vk∗, R∗), τ∗), 1 = Sig.Vrfy(vk∗, σ∗, T ∗), 0 < ind ≤ n must
hold.

We distinguish 2 cases:

ind∗ ̸= i∗ In this caseM0 outputsR
∗+PPRF(K2, ind

∗) mod p , whileM1 outputsR
∗+PPRF(K{i∗}, ind

∗)
mod p. We can conclude that these outputs are identical by the PPRF preserving function-
ality under puncturing.

ind∗ = i∗ We claim, that no input (i∗, (vk∗, R∗), τ∗, σ∗) exists where 1 = SSB.Vrfy(hk, h, i∗, (vk∗, R∗), τ∗)
and 1 = Sig.Vrfy(vk∗, σ∗, T ∗) hold, hence the output is always ⊥ in both machines.
Let us assume towards contradiction, that such an input exists. By SSB being somewhere sta-
tistically binding, we know vk∗ = vki∗ , R

∗ = Ri∗ . So, it must hold 1 = Sig.Vrfy(vki∗ , σ
∗, T ∗)

for i∗ ∈ J - As the event bad has not happened, no such σ∗ can exist.

This means such an input with differing output can not exist - Hi∗
12 and Hi∗

13 are indeed
indistinguishable.

H14 This is identical to Hn
13 except that we now compute Ri←$ Zp for all i ∈ [n] \ J instead

of Ri = si − ui mod p for ui←$ Zp being a fresh uniform value for each i ∈ [n] \ J .

As the ui∗ are not re-used anywhere in the experiment, this is indistinguishable from Hn
13 as

both distributions lead to uniform Ri for all honest indices i ∈ [n] \ J .
It is clear now, that we only ever compute |J | ≤ t − 1 shares of the key K, which are of

the from Ri = K +Σt−1
j=1rj · (i)j + PPRF(K2, i) mod p. This clearly corresponds to |J | Shamir

shares corresponding to interpolation points i ∈ J out of a t-of-n sharing for points i ∈ [n]. So
in the next hybrid, we can make the key K disappear.

H15: This is identical to H14, except that we choose a random K ′ ← {0, 1}λ and make Ri =
K ′ +Σt−1

j=1rj · (i)j + PPRF(K2, i) mod p for i ∈ J . Where rj ← Zp randomly.

This is indistinguishable from H14 by the t-privacy of the Shamir secret sharing scheme.
Let us assume now that there is an adversary A which breaks security of cSWE with proba-

bility ε. Conditioned on bad not happening, A has negligible advantage n′(λ) of distinguishing
the real experiment from H15.
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In hybrid H15, there is no information about K contained anywhere except in the ciphertext
ct′ = SKE.Enc(K,mb). So we can make an IND-CPA distinguisher D, that simulates H15 by
asking the IND-CPA security game of SKE for an encryption with challenge messages m0,m1,
receiving a ciphertext ct∗ and then making all the outputs in H15 honestly, except setting
ciphertext part ct′ = ct∗ and outputting whatever A does.

The advantage we get from this distinguisher in the IND-CPA game is guaranteed to be
Adv(D) ≥ ε− n′(λ)−Pr [bad] = ε− negl(λ). This means that ε must be negligible due to SKE
being IND-CPA secure.
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A An Alternative SPS Construction

As our SPS is based on PRGs and simulation-sound NIZK, we define them below before giving
our construction.

A.1 Pseudorandom Generators

Let µ = µ(λ) and ν = ν(λ) be two polynomials. A pseudorandom generator PRG : {0, 1}µ →
{0, 1}ν is a function such that for all PPT adversaries A we have that∣∣∣∣Pr [1← A(ν) : s←$ {0, 1}µ

ν ← PRG(s)

]
− Pr [1← A(ν) : ν ←$ {0, 1}ν ]

∣∣∣∣ = negl(λ).

A.2 Non-Interactive Zero-Knowledge Proofs

Let R : {0, 1}∗×{0, 1}∗ → {0, 1} be an NP relation on pairs (x, y), with corresponding language
L := {x : ∃y s.t. R(x, y) = 1}. A non-interactive proof system for R allows a prover P to
convince a verifier V that a common element x belongs to the language L (where both P and V
are modeled as PPT algorithms); the prover P is facilitated by knowing a witness y for x ∈ L.

Definition 23 (Non-Interactive Proof System). A non-interactive proof system for an
NP relation R is a tuple of efficient algorithms Π = (Setup,P,V) specified as follows.

– crs←$ Setup(1λ): Setup takes as input the security parameter λ ∈ N, and outputs the public
common reference string (CRS) crs.

– π←$ P(crs, x, y): The Prover takes as input the CRS crs and a pair x, y s.t. R(x, y) = 1,
and returns a proof π for membership of x ∈ L.

– d = V(crs, x, π): Verification takes as input the CRS crs and a pair (x, π), and returns a
decision bit d ∈ {0, 1}.

We require the non-interactive proof system to satisfy completeness, perfect soundness,
zero-knowledge, and simulation soundness defined below. We remark that a CRS is necessary
to achieve non-interactive zero-knowledge (see, e.g., [19]).

Definition 24 (Completeness). Let Π = (Setup,P,V) be a non-interactive proof system for
an NP relation R. We say that Π satisfies completeness if for all pairs (x, y) such that R(x, y) =
1, it holds

Pr
[
V(crs, x, π) = 1 : π←$ P(crs, x, y); crs←$ Setup(1λ)

]
= 1.
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Definition 25 (Perfect Soundness). Let Π = (Setup,P,V) be a non-interactive proof system
for an NP relation R. We say that Π is perfectly sound if for all (unbounded) A we have that

Pr
[
V(crs, x, π) = 1 ∧ x /∈ L : (x, π)← A(crs); crs←$ Setup(1λ)

]
= 0.

Definition 26 (Zero-Knowledge). Let Π = (Setup,P,V) be a non-interactive proof system
for an NP relation R. We say that Π is zero-knowledge if there exists a PPT simulator Sim :=
(Sim1,Sim2) such that for all non-uniform PPT adversaries A we have∣∣∣∣ Pr[1←$AP(crs,·,·)(crs) : crs←$ Setup(1λ)]−

Pr[1←$ASim′
2(t,·,·)(crs) : (crs, t)←$ Sim1(1

λ)]

∣∣∣∣ = negl(λ)

where Sim′
2(t, x, y) = Sim2(t, x) for (x, y) ∈ R and both oracles output ⊥ if (x, y) /∈ R.

Simulation Soundness. The simulation soundness property says that a malicious prover cannot
convince a verifier of the validity of a false statement, even after seeing simulated proofs of
arbitrary statements [23].

Definition 27 (Simulation Soundness). Let Π = (Setup,P,V) be an efficient NIZK proof
system for an NP relation R with corresponding language L, with zero-knowledge simulator
Sim = (Sim1,Sim2). We say that Π is simulation-sound, if for all (unbounded) adversaries A,
the following probability is negligible:

Pr

[
((x, π) /∈ Q) ∧ (x /∈ L) ∧ V(crs, x, y) = 1

∣∣∣∣ (crs, t)← Sim1(1
λ);

(x, π)← ASim2(crs,t,·)(crs)

]
where Q is the list of simulation queries and responses (xi, πi).

A.3 Construction

Let M = {0, 1}k be the message space, m ∈ M be a message, and PRG : {0, 1}λ −→ {0, 1}2λ
be a pseudo-random generator. In addition, let Π = (Setup,Prove,Vrfy) be a simulation sound
NIZK proof system for the following relation

R := {((vk,m), (i, s)) : b = m[i] ∧ vkb,i = PRG(s)} ,

where vk is of the form vk =

((
vk0,1 · · · vk0,k
vk1,1 · · · vk1,k

)
,CRS

)
. Next, we describe the algorithms of our

SPS scheme Σ = (KeyGen,PKeyGen,Sign,Vrfy).

KeyGen(1λ):
– Sample CRSp←$ Π.Setup(1λ).
– Pick a random seed si,j ←$ {0, 1}λ for all (i, j) ∈ {0, 1} × [k].

– sk :=

(
s0,1 · · · s0,k
s1,1 · · · s1,k

)
, vk :=

((
PRG(s0,1) · · · PRG(s0,k)
PRG(s1,1) · · · PRG(s1,k)

)
,CRSp

)
.

– Return (vk, sk).

PKeyGen(1λ,m∗):
– Sample CRSp←$ Π.Setup(1λ).

– For all (i, j) ∈ {0, 1} × [k], sample sk :=

{
si,j ← ⊥ if i = m∗[j]

si,j ←$ {0, 1}λ otherwise
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– For all (i, j) ∈ {0, 1} × [k], sample vk′ :=

{
pi,j ←$ {0, 1}2λ if i = m∗[j]

pi,j = PRG(si,j) otherwise

– Set vk := (vk′,CRSp).
– Return (vk, sk).

Sign(sk,m):

– Parse sk :=

(
s0,1 · · · s0,k
s1,1 · · · s1,k

)
– Let ℓ ∈ [k] be the first index such that sm[ℓ],ℓ ̸= ⊥. If such an index does not exist, return
⊥.

– Set b = m[ℓ].
– Compute3 π = Π.Prove(CRSp, (vk,m), (ℓ, sb,ℓ)).
– Return σ = π.

Vrfy(vk, σ,m):

– Return Π.Vrfy(CRSp, (vk,m), σ).

A.4 Correctness, Puncturability and Security of the Construction

Theorem 4. The SPS scheme Σ from Section A.3 is correct (Def. 15).

Proof. Let m ∈M, and let (vk, sk)←$ KeyGen(1λ), for

(vk, sk) =
(((

PRG(s0,1) ··· PRG(s0,k)
PRG(s1,1) ··· PRG(s1,k)

)
,CRSp

)
,
( s0,1 ··· s0,k
s1,1 ··· s1,k

))
.

We set σ as π = Π.Prove(CRSp, (vk,m), (ℓ, sm[ℓ],ℓ)) where ℓ := min{i ∈ [k] : sm[i],i ̸= ⊥} =
1 by construction of sk. Since vkm[ℓ],ℓ = PRG(sm[ℓ],ℓ), it is (vk,m) ∈ LR and (ℓ, sm[ℓ],ℓ) ∈
R(vk,m). The completeness requirement of the underlying NIZK proof system for LR gives
Π.Vrfy(CRSp, (vk,m), π) = 1 and hence Vrfy(vk, σ,m) = 1.

Theorem 5. The SPS scheme Σ of Section A.3 is puncturable (Def 16), given that Π is a
NIZK and PRG is a pseudorandom generator.

Proof. Notice that all the k indices in the punctured verification key vk∗ that correspond to
the bits of the message m∗ are sampled as random elements instead of PRG values. Thus any
potential signature for vk∗ and message m∗ would have to contain a NIZK proof for a statement
that is false with overwhelming probability. This is the case because the probability of even one
PRG pre-image existing for the punctured vk∗ is less than k·2−λ. To conclude the proof it suffices
to observe that since Π is perfectly sound, there exists no valid proofs for false statements. Thus,
there does not exist a valid signature for the key vk∗ and the message m∗, except with negligible
probability.

Theorem 6. The SPS scheme Σ of Section A.3 is punctured-key indistinguishable (Def. 17),
if Π is NIZK and PRG is a pseudorandom generator.

Proof. To show this, we define a series of indistinguishable hybrids starting from ExpIND-SPS(A, 1λ)
with b = 0 and ending up with ExpIND-SPS(A, 1λ) with b = 1.

H0 : ExpIND-SPS(A, 1λ) with b = 0, that is (vk, sk) are generated running KeyGen(1λ).

3 Notice that CRSp can be part of sk as well, and thus the algorithm Sign can be seen as having CRSp as an
implicit input.
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H1 : This hybrid is identical to the previous one, except that CRSp is generated running Π.Sim1

instead of Π.Setup and, when replying to signature generation queries, the proof π is com-
puted running Π.Sim2 instead of Π.Prove. Computational indistinguishability from the pre-
vious hybrid follows from the zero-knowledge of Π.

H2,1 → H2,k : H2,j is identical to H2,j−1 (where H2,0 := H1), except that (vk, sk) are generated
as follows. Let m∗ be the message given in output by A, then for i ∈ {0, 1} the element vki,j
is generated as vki,j ←$ {0, 1}2λ if i = m∗[j]. Observe, that we compute all our proofs from
the simulator, so swapping the PRF values in vk does not impact our ability to generate
signatures. Computational indistinguishability from the previous hybrid follows from the fact
that PRG is a pseudorandom generator. Note that in H2,k the verification key generation is
identical to PKeyGen(1λ,m∗) and the signing key is not used.

H3 This hybrid is identical to H2,k, except that (vk, sk)← PKeyGen(1λ,m∗), CRSp is generated
running Π.Setup instead of Π.Sim1 and, when replying to signature generation queries, the
proof π is computed running Π.Prove instead of Π.Sim2. Indistinguishability from the previ-
ous hybrid follows from the zero-knowledge ofΠ and the fact, that the public verification key
distribution is identical to the one in H2,k. Notice that H3 is identical to ExpIND-SPS(A, 1λ)
with b = 1.

Theorem 7. The SPS scheme Σ of Section A.3 is unforgeable (Def. 18), if Π is a simulation
sound NIZK and PRG is a pseudorandom generator.

Proof. To show this, we define a series of indistinguishable hybrids and we show that if A has
a non-negligible advantage in the last hybrid, we can use A to break the simulation soundness
of the NIZK Π.

H0 : This game is identical to ExpEUF-CMA(A, 1λ).
H1 : This hybrid is identical to the previous one, except that CRSp is generated running Π.Sim1

instead of Π.Setup and, when replying to signature generation queries, the proof π is com-
puted running Π.Sim2 instead of Π.Prove. Computational indistinguishability from the pre-
vious hybrid follows from the zero-knowledge of Π.

H2 : This hybrid is identical to the previous one, except that the vk is generated as a uniformly
random matrix, instead of being derived using the PRG. Computational indistinguishability
from the previous hybrid follows from the pseudorandomness property of PRG. This can be
easily argued via another series of indistinguishable hybrids where one element at a time of
vk is replaced with a uniformly random one.

Given an A that wins in H2 with non-negligible probability, we can construct an adversary
B winning the simulation soundness game w.r.t. Π with the same probability. B plays the
simulation soundness game with oracle access to Π.Sim2, while running A internally. B replies
to all the queries of A by perfectly simulating H2 by querying its oracle to get the simulated
proof π to complete the signature. However, since all the 2k elements in vk are random, the
probability of even one pre-image existing for vk is less than 2k · 2−λ. Thus, any valid signature
forgery output by A will contain, with overwhelming probability, a proof w.r.t. a false statement.
Since the message is part of our NIZK proof statement and a valid forge must be on a message
that was not previously queried, this is guaranteed to be a fresh proof. Then, B simply takes
this statement and proof pair and outputs it in the simulation soundness game.
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