
Mario: Multi-round Multiple-Aggregator Secure Aggregation with Robustness
against Malicious Actors

Truong Son Nguyen
Arizona State University

Tancrède Lepoint
Amazon Web Services Inc

Ni Trieu
Arizona State University

Abstract—Federated Learning (FL) enables multiple clients
to collaboratively train a machine learning model while keep-
ing their data private, eliminating the need for data sharing.
Two common approaches to secure aggregation (SA) in FL
are the single-aggregator and multiple-aggregator models.
This work focuses on improving the multiple-aggregator
model.

Existing multiple-aggregator protocols such as Prio
(NSDI 2017), Prio+ (SCN 2022), Elsa (S&P 2023) either
offer robustness only in the presence of semi-honest servers
or provide security without robustness and are limited to
two aggregators. We introduce Mario, the first multiple-
aggregator Secure Aggregation protocol that is both secure
and robust in a malicious setting. Similar to prior work of
Prio and Prio+, Mario provides secure aggregation in a setup
of n servers and m clients. Unlike previous work, Mario
removes the assumption of semi-honest servers, and provides
a complete protocol with robustness under malicious clients
and malicious servers. Our implementation shows that Mario
is 3.40× and 283.4× faster than Elsa and Prio+, respecitively.

1. Introduction

Federated learning (FL) allows multiple clients to col-
laboratively train a machine learning model while keeping
their data private on-device. A crucial component is se-
cure aggregation (SA), which computes aggregated model
without revealing individual client models. While many
SA protocols have been proposed in the past decade [64,
12, 67, 45, 11, 53, 68, 36, 44, 43], they have limitations.
First, many use the blueprint from SecAgg [64], which
requires pairwise keys between client for each aggregation
rounds and increases the total number of rounds of com-
munication. Recently, Flamingo [53] introduced a “multi-
round single-server” solution. Flamingo only requires a
one-time setup phase and can perform multiple secure
aggregation rounds with a single server. However, it has a
limitation: a predefined set of parties must participate in
the key generation process. This constraint is problematic
for large-scale FL scenarios where the participating parties
can dynamically change over time. Secondly, there is a
lack of emphasis on asynchronous (AsyncFL) updates,
allowing late model updates to contribute to the training
process. Existing works [66, 57] on AsyncFL have scaling
issues, in particular for lightweight devices, which limits
their applicability.

In this paper, we consider a multiple-server setup,
where multiple servers share the same model that they
want to train collaboratively with a set of multiple clients.
Existing approaches on this setting include Prio [26],

FL Malicious Malicious Robust w. Async. Multi
Protocol Server Client Mal. Server support server

SecAgg+ [12] ✓ ✗ ✗ ✗
ACORN [11] ✓ ✓ ✗ ✗

BASecAgg [66] ✗ ✗ ✗ ✓
Flamingo [53] ✓ ✗ ✗ ✗

Prio+ [5] ✗ ✓ ✗ ✗
ELSA [63] ✓ ✓ ✗ ✗ 2

Mario (Ours) ✓ ✓ ✓ ✓

TABLE 1: Qualitative Comparison of FL Protocols.
Only representative works are shown. Malicious Client in-
dicates scheme support input validation; For multi-server
column, indicates multi-server support, indicates
single-server decryptor-committee setting, ‘2’ indicates
two-server only setting, indicates single server.

Prio+ [5, 39, 40], Elsa [63] and many others [16, 50, 31].
Recent work such as Willow [13] can also be extended to
multiple servers. Such existing works have focused mainly
on the semi-honest settings (like Prio [26], Prio+ [5, 39,
40]) or two-party malicious settings (like Poplar [16],
Popstar [50], Elsa [63]). In addition, there has been a lack
of protocol that can provide robustness, i.e. “guarantee-
output-delivery”, under the face of malicous servers. As
pointed out in Elsa [63]’s limitation section: Efficiently
achieving privacy with correctness seems quite challeng-
ing given that standard techniques are not compelling
for the large number of parties in their system. Thus,
the goal of this paper is to extend the previous work
on the threat model assumption and the functionality:
We aim to provide a protocol that is safe under mali-
cious adversary, and that is robust under the face of both
malicious clients and malicious servers. In addition, this
study tackles designing an SA protocol that solves three
main challenges of any SA protocol: one-time key setup
with dynamic client inclusion, asynchronous updates, and
multiple malicious aggregators.

In contrast to existing approaches in multiple-
aggregator schemes, which use secret sharing or multi-
party computation, we leverage an additive threshold ho-
momorphic encryption (ThHE) scheme based on the ring-
learning-with-errors (RLWE) problem. We introduce a
new variant, referred to as dynamic ThHE, which sup-
ports dynamic party participation in a malicious setting,
thereby enhancing existing multi-aggregator schemes that
are currently limited to two parties [16, 50, 63]. This
approach is also advantageous when compared to the
single-aggregator model. Concretely, it eliminates the need
to re-run key setup when new clients join which is a
limitation of Flamingo [53]. It achieves constant amor-
tized communication and computation costs per client,
unlike SecAgg++ [12], Flamingo [53] and ACORN [11]

PARAMETERS: m clients {U1, . . . , Um}, n servers
{P1, . . . , Pn}, a threshold t < n and asynchronous
buffer set size k ∈ [1,m].

FUNCTIONALITY:
• Waiting for input vi from the Ui∈I , where I = [m]

in the SyncFL settings and I ⊂ [m] is the dynamic
set of size k in the AsyncFL settings.

• Waiting for no input from the servers Pi∈[n].
• Give each client v =

∑m
i=1 vi

Figure 1: Multi-server Secure Aggregation (SA) Ideal
Functionality

with logarithmic client communication costs. It also sup-
ports both synchronous and asynchronous FL settings and
prevents malicious servers from distributing inconsistent
models [60] or customized convolutional kernels [70] to
clients.

In the past few years, although there has been a
surge in research about lattice-based ThHE [17, 9, 55,
27, 24, 18], state-of-the-art schemes face practical limita-
tions when used in federated learning. These limitations
include: (1) the requirement for a trusted key setup or
malicious DKG to protect against malicious servers in
multi-server FL; (2) the inability to add new servers during
computation, a crucial feature for ensuring robustness in
multi-server FL. Thus, the direct use of such methods
lacks both secure and dynamic performance. This work
follows the ThHE framework of [55] and proposes a
simple scheme that simultaneously satisfies a compactness
property (i.e., the ciphertext size is independent of the
number of participants), a dynamic property, and has a
decentralized key generation.

Problem Statement. The ideal functionality of multiple-
aggregator secure aggregation in the synchronous FL
(SyncFL) and asynchronous FL (AsyncFL) is described
as follows. Let {U1, . . . , Um} be a set of clients, each
holding a secret input vi (often a vector or tensor in the
FL setting). The protocol Π is a secure SA if it securely
computes v =

∑
i∈I vi, where I = [m] in the SyncFL

setting, and I ⊂ [m] is a dynamic set of size k in
the AsyncFL setting. The secure aggregation computation
makes use of n servers Pi∈[n]. Figure 1 presents the ideal
functionality for multi-aggregator SA.

Threat Model and Setting. Following the model in
SecAgg+ [12], Elsa [63], ACORN [11], we consider a
scenario where at least two clients remain honest, while
the other n− 2 clients may be malicious or controlled by
malicious servers. This scenario sets the lower bound for
the number of honest clients in secure aggregation (SA).
This is because if n−1 parties are malicious, the adversary
can learn the honest party’s input from the SA output.

For the server setting, we assume that an adversary
can control a static set of up to t − 1 malicious servers
throughout the entire protocol execution. While this static
set assumption is strong, it is worth noting that this
is the first work to address the challenge of malicious
multi-party servers, and removing this assumption can
be explored in future work. Nevertheless, we introduce
a mechanism to reset the shares of the secret keys using

Parameter Description
n number of servers
m number of clients
k buffer size (async. setting)
L model size
t threshold for servers
τ threshold for clients
nb # neighbors for each client
N Degree of plaintext & ciphertext polynomial
q ciphertext modulo
p plaintext modulo
κ computational security parameter
λ statistical security parameter
[a]q unique integer in Zq with [a]q = a mod q
[x] a set {1, . . . , x}
(x; y) concatenation of two vector x and y

TABLE 2: Definition of Parameters Used in This Paper

the new function of ThHE (i.e., ThHE.ShareRefresh),
which mitigates the impact of this assumption by allowing
the static set of malicious servers to be reset when the
share refresh is called after a few iterations.

Our Mario is robust to up to any number of client
dropouts and up to n − t servers dropouts during exe-
cution. We summarize the properties and parameters of
our scheme based on the threat model in Table 3. The
parameters represent the ideal values that the best possible
protocol can achieve.

• Malicious clients: We consider the threat of malicious
clients that may deviate from the protocol to gain
additional information, such as other clients’ model
updates, or send manipulated encrypted models that
could bias the final aggregated result. In our protocol,
we defend against these threats by implementing
input validation, which allows us to ignore invalid
inputs from malicious clients.

• Malicious servers: We consider malicious servers that
may deviate from the protocol to try to recover the
raw client model updates vi. Our scheme defends
against two recent attacks: model inconsistency at-
tack [60] and attacks using customized convolutional
kernels [70], which can occur even when the model
updates have been securely aggregated before reach-
ing the servers.

• Robustness against malicious adversary: We study
an additional feature named robustness, or in some
paper [42] mentioned as ”guarantee output delivery
(GOD)”. Given a minority of malicious servers (less
than half of the total number of servers), our protocol
allows honest servers to jointly compute the cor-
rect output without interference from the malicious
servers. This extends the security and robustness of
the two-server model (e.g., Elsa [63]), and the multi-
server model (e.g., Prio [26],Prio+ [5]).
To ensure robustness in the multiparty computation
(MPC), it is generally assumed that less than half
of servers can be malicious [41, 42, 49]. Indeed, if
more than half of the servers are malicious, they can
collude and override the semi-honest servers, com-
promising the correctness of the output and making
robustness unattainable.

Our Contributions. They are twofold:

Privacy t # mal. servers # mal. clients
Client’s Input ≥ 1 ≤ n− 1 m− 2
w. Robustness > n/2 < n/2 m− 2

TABLE 3: Threat Model Condition and Privacy Guar-
antee of Our Mario. mal. shorts for malicious. We assure
privacy of input in dishonest majorty malicious servers,
and assure privacy with robustness in honest majority set
of servers, and under up to 2 honest uncorrupted clients.
m: number of clients, n: number of servers.

• We propose Mario, the first multi-server secure ag-
gregation protocol that provides “privacy” against
dishonest majority of servers and clients, provides
“privacy with robustness” against honest majority set
of servers and any set of corrupted clients, provide
input validation against malicious clients. Our proto-
col achieves 3− 9× better performance than single-
server SyncFL ACORN [11], 450−600× faster run-
time than the state-of-the-art single-server AsyncFL
BASecAgg [66], while running 3.40× faster than
Elsa [63], and 283.4× faster than Prio+.

• We realize a practical threshold additive homomor-
phic encryption (ThHE) scheme that simultaneously
ensures malicious privacy and compactness in a dy-
namic system where any party can join or drop out
of the computation midway. This work designs an
efficient, compact, and robust ThHE scheme that does
not require any trusted setup.

Theoretical Comparison. Table 1 outlines the security
levels and various features supported by existing protocols
closely related to our work. Note that while ACORN and
Prio+ offer robustness, they do so only in a semi-honest
server setting, which does not meet the requirement for
“robustness with malicious servers.”

The key advantages of our protocol are: (1) Client
complexity independent of number of clients; (2) Security
against malicious adversaries; (3) Defense against invalid
input from malicious clients that poison the aggregated
result (input validation); (4) Support for any number of
clients dropouts without affecting correctness/security; (5)
Support privacy with correctness. These features make
Mario a comprehensive solution for real-world applica-
tions.

Overview of Our Techniques. We make use of n servers
which are relatively stable, and a set of m clients join
the training for every round. Assume we have an efficient
and compact additive threshold homomorphic encryption
(ThHE) scheme. The n servers first jointly compute the
public key and distribute the secret key using the function
ThHE.KeyGen. Then, they send the public key pk to
every client participating in the secure aggregation com-
putation.

We begin with a basic secure aggregation protocol in
the semi-honest setting. The process works as follows:
each client encrypts their local input model v using a
public key, resulting in ThHE.Encrypt(pk, v), and sends
the encrypted model to the leader server. The server then
leverages the homomorphic properties of the encryption
scheme to compute the encrypted sum. Afterward, a subset
of t servers collaboratively decrypts the sum and forwards
the final result to the clients, who then use it to update

their local models.
To provide robustness against malicious clients, we

leverage existing zero knowledge proof technique in
ACORN [11] that provides efficient range proof for
client’s input. We adapt the protocol into our system with
the optimization using the structure of our protocol: as the
clients use public key encryption to encrypt their model,
they do not need to communicate with any other clients
for proving the range of their input, thus neglecting the
additional O(log2(m)) communication and computation
cost for each client of ACORN-robust.

For malicious servers, we ensure the privacy of an
honest client’s input even in the presence of up to t − 1
malicious servers. This is achieved through the use of
a threshold additive homomorphic encryption (ThHE)
scheme, where only a group of t or more servers can de-
crypt a given ciphertext, while fewer than t servers cannot,
thereby keeping the client’s input secure under encryption.
However, relying solely on existing ThHE schemes is
insufficient to guarantee complete security in malicious
settings. The challenges are twofold: (1) the adversary
may perform a chosen ciphertext attack—specifically, the
aggregating server could replace the encrypted sum with
any ciphertext, such as a specific client input vi, and
request the t decryption servers into decrypting it; (2) the
distributed key generation is not robust against malicious
adversaries.

To address (1), we implement a check on the correct-
ness of the ciphertext form, ensuring that the decryption
servers only decrypt the correct ciphertexts that are indeed
the summation of clients’ encrypted messages. To address
(2), we rely on a verifiable secret sharing scheme and pro-
pose an optimization where verification can be performed
in batches, given that the secret share of the key is a long
vector. Details of these defenses can be found in Appendix
C.

In our FL scheme, we also ensure that the final result
remains correct (robustness property). We implement a
consistency check based on the assumption of honest
majority set of servers. Specifically, if the majority of
server outputs are consistent and/or proven to be correctly
evaluated, the set of clients will accept the final result as
valid, allowing the training process to continue.

As shown in Table 3, Mario provides input privacy to
honest client against the presence of up to t−1 malicious
servers, and provides correct aggregation to set of honest
servers and clients against up to less than half of the
malicious servers.

The remaining question is how to construct the ef-
ficient ThHE protocol in the dynamic setting. We build
on the underlying framework presented in the work
of [55, 56, 59], where servers utilize Shamir secret shar-
ing to distribute their local secret values among each
other. These shares are then summed to obtain the final
“secret key share”. However, we extend this approach
to support a dynamic setting and improve both commu-
nication and computation costs. At a simple idea, our
approach introduces t pivot parties that communicate with
other parties and secret share their inputs. This allows
us to implement mechanisms for new servers to join the
training process through ThHE.Join functionality. Specif-
ically, new servers can compute their share key using
Lagrange interpolation when t existing servers send a

Synchronous Asynchronous
SecAgg+ [12] ACORN [11] Flamingo [53] Prio+ [5] Elsa [63] Mario BASecAgg [66] Mario

Client Comm L+ logm L logm L logm Ln Ln L+ n Lm/(k − t) L+ n
Comp L logm+ log2 m L(logm+ logL) L logm Ln Ln L logL Lm logm/(k − t) L logL

Server Comm Lm+m logm Lm logm m(L+ logm) Lmn Lmn Lmn Lk Lkn
Comp Lm logm+m log2 m Lm logm Lm logm Lm Lm Lm Lk log k Lk

TABLE 4: Complexity Comparison of FL protocols. Only representative works are shown. The description of the
parameters presented in Table 2. The threshold in Mario is for the ThHE (the number of non-colluding servers).

portion of the computation data. Additionally, we pro-
vide ThHE.ShareRefresh, which enables all servers to
collectively refresh the existing shares into a new set of
shares—these are secret shares of the same secret but
under updated (t′, n) parameters.

Furthermore, we extend the work of [55, 56, 59]
to achieve an efficient, parallelizable, and verifiable key
generation process, which we present in Appendix D.

2. Preliminary and Related Work

2.1. Secure Aggregation in Federated Learning

Federated Learning (FL) enables the training of a
prediction model while keeping all training data on users’
devices. Each client computes a model update based on
its local data and shares it with a central server. The
server then aggregates these local updates to generate
a global model update. However, individual updates can
potentially leak information about a client’s private data.
To mitigate this risk, secure aggregation (SA) is employed.
SA is a crucial component of FL, allowing the server to
aggregate model updates without accessing or learning the
individual updates. Several paradigms for implementing
SA are discussed below.

Federated Learning with Single Aggregator. Masking
with One-Time Pads (SecAgg [64]) is a popular technique
used in SA for SyncFL. It allows clients to mask the
updates before sending to the server. The masks are used
to protect their models and will be cancelled out when
the server computes the final aggregation. Flamingo [53]
and ACORN [11] represent the state-of-the-art in SyncFL.
Nonetheless, they exhibit limitations such as the heavy
communication between clients, discussed in the intro-
duction section.

For AsyncFL, [57] proposes a novel buffered asyn-
chronous aggregation method, which allows the users to
send their updates asynchronously while ensuring privacy
by storing the updates in a trusted execution environment.
The BASecAgg construction [66] removes the need for
hardware support by carefully designing the mask tech-
nique of SecAgg [64] such that the masks cancel out
even if they correspond to different rounds. However,
they only consider the threat model of semi-honest server
and semi-honest clients, and their client’s communication
and computation complexity depends on k, the number of
clients in buffer.

Federated Learning with Multiple Aggregators. Within
this model, existing methodologies encompass tailored
systems for FL [63, 10, 26, 5, 39, 40, 16, 50, 31],
alongside systems designed for privacy-preserving aggre-
gation of statistical data, such as Prio[26] and Prio+ [5].
Although this approach effectively leverages lightweight

federated learning, the existing protocols either ensure
security under semi-honest conditions or are applicable
solely to two-party scenarios (Elsa [63]).

Federated Learning with Aid of Decryption Commit-
tee. Between Single Aggregator and Multiple Aggregators
in Federated Learning (FL), there are protocols that use
committees to assist with decryption. The involvement
of these committees helps reduce the communication
overhead for general clients, which are often resource-
constrained and may have unstable connections. There are
three recent works that follow such settings: Flamingo
[53], Willow [13], and OPA [47]. Although the setup
are promising, they either do not cover case of malicious
committees, or have limitation on fixed set of clients, and
they only provide privacy with abort in case of malicious
adversaries, without considering correctness of final result.

Secure Aggregation from HE. Indeed, ThHE has been
used to compute SA [65, 23, 71], and one of the most rep-
resentative is the threshold Paillier-HE which is expensive
for a large n. Since our ThHE is based on Polynomial-
LWE (PLWE) and its encryption/evaluation has mostly
the same cost as the traditional PLWE single-key HE.
Therefore, our SA (as well as our FL scheme) is more
efficient than previous work.

Recent Attacks on SA. Regardless of implementing
the aggregation securely in the standard security defini-
tion [46], there are many attacks to FL. For example, the
malicious user can perform poisoning/Byzantine attacks
(inject poisoned updates into the learner) to reduce the
global model accuracy or implant backdoors [15, 14];
and/or the malicious server can provide different global
model updates to different users to infer information
on users’ datasets (so-called model inconsistency attack
which was recently discovered by [60, 70]). Also, mali-
cious server can manipulate the training model architec-
ture, injecting a carefully designed kernel to steal client’s
input [70]. This work aims to prevent all of such attacks.

2.2. Polynomial-LWE based HE

For the security of Mario, we rely on the polynomial
learning with error (PLWE) assumption [21] (See Def 1)
which is a simplified version of the Ring-LWE [52]. These
lattice HE schemes are faster compared to other HE (based
on Elgamal or Paillier) [32, 58] and provide quantum
resistance.

For easy understanding of our ThHE, we choose to
present a generic PLWE-based single-key HE scheme in
Figure 2. Note that our ThHE can be straightforwardly
modified to work with other HE schemes such as FV [33],
BGV [20], and CKKS [25].

PARAMETERS: The secret key space χ1, the noise
space χ2, the plaintext space Rp = Zp[X]/(XN +
1), the ciphertext and public key space Rq =
Zq[X]/(XN + 1), and ∆ = ⌊q/p⌋

HE.KeyGen()→ (sk,pk)
• Sample s← χ1

• Sample a, a0 ← Rq and e, e0 ← χ2

• Output (sk,pk) where sk = s and pk = ([−a ·
s+ e]q, a)

HE.Encrypt(pk,m)→ ct
• Sample u← χ1 and e1, e2 ← χ2

• Let p0 = pk[0], p1 = pk[1]
• Compute c0 = [p0 · u+ e1 +∆ ·m]q

and c1 = [p1 · u+ e2]q
• Output (c0, c1)

HE.Decrypt(sk, ct)→ m
• Let c0 = ct[0], c1 = ct[1]
• Compute v = [c0 + c1 · s]q
• Output [1∆ · v]p

HE.Add(ct1, . . . , ctk)→ ct
• Output ct1 + . . .+ ctk

Figure 2: PLWE-based Additive HE Construction.

Definition 1. (Polynomial-LWE [21]) For security pa-
rameter λ and q = q(λ) > 1, set R = Z[X]/(XN + 1)
and Rq = Zq[X]/(XN + 1). For a random element
s ∈ Rq and a distribution χ = χ(λ) over R, denote with
A

(q)
s,χ the distribution obtained by choosing a uniformly

random element a ← Rq and a noise term e ← χ and
outputting (a, [a · s + e]q). The Polynomial-LWE(PLWE)
assumption states that A(q)

s,χ is indistinguishable from the
uniform distribution.

2.3. Threshold Homomorphic Encryption

Homomorphic encryption (HE) is a form of encryp-
tion that allows performing arbitrary computations on
encrypted data without access to the secret key. Threshold
Homomorphic Encryption (ThHE) aims to protect an HE
secret key by distributing it into n shares, each stored by
a different party. Any t parties can use the secret without
reconstructing it whereas any t− 1 parties should not be
able to recover or use the secret.

In the ThHE scheme of [17], there is no key setup
algorithm. Each party can generate its own (pki, ski) key
pair. The key generation is carried out in the encryption
algorithm whenever it needs to encrypt a message. The
resulting ciphertext contains the encryption of each dis-
tributed key and the encryption of the message. Thus, the
evaluated ciphertext size is linear in the number of cipher-
texts used as the input for the homomorphic evaluation
(e.g., the number of parties n). This causes their ThHE
scheme to lack compactness.

Recent works [9, 27, 24, 18, 28] enhance the asymp-
totic complexity of the ciphertext size of [17], yet it
remains linear in the number of parties. Within the FL
framework, this size is directly proportional to the number
of clients, which poses efficiency challenges.

Distributed Key Generation (DKG) [61, 8, 3, 2, 4, 7,
69] allows a group of n parties to jointly compute a shared

pair of secret key. However, these protocols either have to
assume that the dealer are trusted or have to protect against
the malicious dealer with an expensive cost. In the context
of FL, the fact that a dealer knows the secret key would
directly lead to leak in user’s weight when the dealer
collude with our computing servers. Even more crucially,
current DKG protocols lack support for computing the
public key in the unique format required by ThHE.

Overall, the prior works are general implementations
and lack specific optimizations for secure aggregation. To
address this, we extend these functionalities to develop a
ThHE scheme that is more efficient and better suited to our
problem setup. Specifically, we introduce the capability
for new servers to dynamically join the training process
and incorporate verification mechanisms to defend against
malicious servers.Our work builds upon the approach of
[55, 56, 59], where Shamir secret sharing is used to
keep the secret key compact with new functionalities (i.e.,
ThHE.Join, ThHE.ShareRefresh) that fit with FL setup.

3. Protocol Building Blocks

3.1. Our Dynamic Threshold HE

In the context of FL, we consider the ThHE as a
tuple of algorithms (ThHE.SecretKeyGen,
ThHE.PublKeyComp, ThHE.Join, ThHE.Encrypt,
ThHE.PartDec, ThHE.FinalDec, ThHE.Add,
ThHE.ShareRefresh) where their ideal functionalities
are described in Definition 2.

Definition 2. A dynamic threshold addi-
tive homomorphic encryption ThHE scheme
is a tuple of PPT algorithms ThHE
=(ThHE.SecretKeyGen,ThHE.PublKeyComp,ThHE.Join,
ThHE.Encrypt,ThHE.PartDec, ThHE.FinalDec,
ThHE.Add, ThHE.ShareRefresh) with the following
properties:

• ThHE.SecretKeyGen(λ, n) → (sk1, . . . , skn):
Given the security parameters λ and the number of
parties n, output to each party Pi the secret share
ski, such that ski is the Shamir share at ID i of a
common secret key sk.

• ThHE.PublKeyComp(pk1, . . . ,pkn) → pk: Given
the local public keys pki from n parties, output
the global public key pk such that (sk,pk) forms
a valid pair of secret key and public key, achieving
the security parameter λ.

• ThHE.Join(ν) → skν: When a new party with ID
ν requests to join, output the corresponding secret
share of sk to party Pν , i.e., output skν .

• ThHE.ShareRefresh(P = {P1, . . . , Pn}, t′) →
(sk1, . . . ,
skn): Given the input new threshold t′ and a set
of n parties P , output the new threshold shares of
the secret key and distribute these shares to each
corresponding party.

• ThHE.Encrypt(µ)→ C: Given the message m and
public key pk, output the corresponding ciphertext
C = (C[1], C[0]) that encrypts µ.

• ThHE.PartDec(C, ski): Given input C and ski, the
party Pi performs local partial decryption to com-
pute C ′ = C[1] + C[0] · ski.

• ThHE.FinalDec(p1, . . . ,pt) → m: On t partial de-
cryptions, output the decrypted message m

• ThHE.Add(C1, . . . , Ck) → Cadd: Given k cipher-
texts as input, output the ciphertext that encrypts the
sum of the plaintexts of Ci∈[1,k].

Protocol Overview. We build on the approach of [55, 56,
59], but introduce t pivot parties, P1, . . . , Pt. Each pivot
samples a small secret key si and uses t-out-of-n Shamir
secret sharing to distribute si to all other servers. After
receiving all the Shamir shares, each server sums them to
obtain a “local secret key” ski.

In our ThHE, there is a single public key pk, under
which all messages can be encrypted by different parties.
Hence, encryption and additive homomorphic computa-
tion are efficient and independent of the number of de-
cryptors/parties as they are performed in a similar fashion
to single-key HE.

The encryption and decryption functionality at a high
level are similar to BFV protocol, where a plaintext
polynomial µ is encrypted by C = (pk[0] · u + e1 +
⌈q/p⌋ ∗ µ,pk[1] · u + e2) where pk = (pk[0],pk[1]) is
the public key, u is a random polynomial sampled uni-
formly from Rq, p, q are plaintext and ciphertext modulus,
e1, e2 are two polynomial with “small” coefficients. To
decrypt the ciphertext, we need two steps: (1) computing
C[0] + C[1] · sk and (2) multiplying the result by p/q,
rounding the obtained number to integer, and mapping the
output to modulo p. The primary task occurs in the first
step, computed by a set of t servers in ThHE.PartDec,
while the second step is performed by the server request-
ing the decryption using ThHE.FinalDec. The formula
for step (1) mirrors that of the public key computation,
and we provide a formal presentation in Appendix D.2.3.

In this section, we explain the key generation algo-
rithm in our dynamic ThHE, which employs the Shamir
secret sharing (S3) scheme. While it shares similarities
with existing methods in its use of Shamir shares, our
approach adapts the setting by incorporating pivot par-
ties and ensuring compatibility with these parties. We
provide the detail construction of ThHE in Figure 11 in
Appendix D. In addition, we provide detailed discussion
on the correctness and security of our ThHE construction
in Appendix E.

3.1.1. Semi-Honest Key Generation in ThHE. Key gen-
eration involves two steps: secret key generation, where n
servers collaboratively create a t-out-of-n Shamir shares
for the secret key, and public key computation, where
servers use their secret shares to jointly compute the global
public key. In this section, we discuss in detail how we
generate the keys under semi-honest setup, and refer the
audience to Appendix D.3 for defense against malicious
servers.

Secret Key Generation. We assume that there is a set
of t pivot parties {P1, . . . , Pt}. Adapting Shamir secret
sharing (S3) protocols [30, 37], we first present how the
pivots generate secret shares for other parties. Our proto-
col starts with each pivot choosing a random polynomial
fi(X) =

∑(t−1)
k=0 ci,kX

k of degree (t−1) where ci,0 ← χ1

(the B1-bounded distribution) and ci,k>0 ← Rq. The pivot
then sends a share [fi(j)]q to each party Pj∈[n]. The Pj∈[n]

can add up its obtained shares to get a final share (i.e.,

the shared secret key) as skj = [
∑t

i=1 fi(j)]q. Due to
linearity, the result is also a valid Shamir secret share
where the final secret value sk = [

∑t
i=1 ci,0]q is additively

shared by t pivots. For the pivot Pi∈[t], their final share
also consists of the coefficient ci,0 so that the t pivots can
generate a new share for a new user in the same manner as
described above. Additionally, keeping the ci,0 allows the t
pivots to easily compute the public key and the decryption
as we will discuss later.

The sum
∑t

i=1 ci,0 is bounded by tB1 as each term
ci,0 is sampled from the B1-bounded distribution χ1.
Consequently, this aggregated secret key is considerably
smaller than the q value of the HE setting. For example,
we evaluate our ThHE application (Federated Learning)
with t ≤ 16, and utilize the single-key HE parameters
from SEAL [1] library where ⌈log q⌉ = 54 and B1 is
relatively small (such as B1 = 1 in the ternary distribution
or B1 = 26 in the Gaussian distribution with standard
deviation σ = 3.2). Thus, we can omit the module q in
the secret key sk and represent sk as

∑t
i=1 ci,0. When

the secret B1-bounded distribution χ1 (e.g., Gaussian
distribution) has an additive property, we can infer that
sk is sampled from the tB1-bounded distribution χ′

1.

Public Key Computation. Computing pk can be naturally
completed using generic techniques from MPC, with each
party holding a shared key ski as a local input, and a
common vector a. However, this solution might be ineffi-
cient. In the following, we present an efficient protocol to
compute ThHE.PublKeyComp. For ease of composition,
we omit the second part of the pk (a vector a).

In the case that all pivots are alive, the pk can be
computed easily as follows. Each pivot broadcasts a partial
public key pki = [−a · ci,0 + ei]q for a small sample
noise ei from the B2-bounded distribution χ2. A combiner
computes pk =

[∑t
i=1 pki

]
q
= [a · s + e]q, where e =∑

k∈A ek is in the tB2-bounded distribution χ′
2. However,

when one of the pivots is not available, it becomes more
challenging to compute pk from the S3 shares.

Using a similar approach proposed in generating secret
keys, one can apply Lagrange linear combination. Con-
cretely, given t online parties Pk∈A, each can compute
the inner product pkk = −a · skk using its secret share
skk ∈ Rq. Then, pkk is sent to the combiner which can
compute pk as

[∑
k∈A pkkLA(0, k)+ e

]
q

for an additive
noise e. Unfortunately, this construction is insecure as
the secret skk can be easily recovered from pkk by the
combiner.

Relying on the PLWE assumption, a possible approach
to resolve this issue is for a party Pk∈A to add small
additive noise ek to the inner product, and reduce the result
to module q, i.e., pkk = [−a · skk + ek]q. The combiner
computes pk as

[∑
k∈A pkkLA(0, k)

]
q
. However, this

solution might not preserve the correct computation of the
public key for two reasons: (1) the reduction of each term
a · skk before multiplying with a “rational” Lagrange co-
efficient LA(0, k) might cause an incorrect reconstruction
of the secret key; and (2) the noise increases significantly
because of a large Lagrange coefficient when the combiner
computes pk which has a noise

[∑
k∈A ekLA(0, k)]q.

The second issue has been pointed out in [17] for a
different but related problem. To address this, the authors
proposed to scale Lagrange coefficients to be integers

by multiplying with a term (n!)2, and also to increase
the modulus q of the scheme by log(n!) to support its
additional noise growth. However, the modulus q depends
on the value n, which leads to a non-compact ciphertext
size.

Hence, we propose a different approach to ensure
compactness property while allowing decryption success.
Specifically, we assume that the set of A is publicly
known by any party in A, and each party Pk∈A computes
pkk = [−a · skkLA(0, k) + ek]q where ek ← χ2. One
can consider that the pkk value is an additive share
of the joint public key pk. This allows the combiner
to compute pk as pk = [

∑
k∈A pkk]q without making

the noise blowup significantly. Note that pkk reveals
no information about skk since the PLWE assumption
says that

(
[−aLA(0, k)]q, [−a ·skkLA(0, k)+ ek]q

)
hides

skk. However, this solution raises another problem: the
coefficients of −a · skkLA(0, k) might not be integers.
In Appendix D.2.4, we show how to convert the term
[−a · skkLA(0, k)]q to Rq using our simple algorithm
ConvMultq(). The key idea is to find another value that
makes the term −a · skk divisible by the denominator of
LA(0, k). In summary, the partial public key has a formula
pkk = [ConvMultq(−a · skk, LA(0, k)) + ek]q. The joint
public key is pk = [

∑
k∈A pkk]q = [a · s+ e]q where the

noise e =
∑

k∈A ek is in the space χ′
2.

3.1.2. ThHE Extension. We further customize the HE
framework above threshold by introducing three new
functionalities:(1) dynamic joining for new servers during
protocol execution, (2) parallelizable key generation, and
(3) verifiable key generation.

Dynamic Property. We introduce two new functions:
ThHE.Join and ThHE.ShareRefresh, to facilitate the
inclusion of new servers during the training process.
When a new party Pν requests to join (ThHE.Join), a
random committee A of t servers is selected to com-
pute the Shamir share of sk for Pν using Lagrange
interpolation. Specifically, each party Pk∈A computes
uk = skk · LA(ν, k), where LA(ν, k) =

∏
j∈A\k

ν−k
j−k

is the Lagrange coefficient and skk is the secret-shared
key of Pk. The secret-shared key skν is then computed as
[
∑

i∈A vi]q. However, directly sending uk to Pν could leak
skk to them. To prevent this leakage, we use zero-sharing.
Specifically, the servers in A perform zero-sharing [64] to
obtain a zero share, which they then add to uk before
sending it to Pν . The zero share is cancelled at the
end. This method is similar to secure aggregation on
LA(ν, k) · skk, but without dropout handling, assuming
a stable connection among the servers.

While ThHE.Join allows new servers to join the sys-
tem, it introduces potential security concerns for Mario,
as the number of malicious servers might exceed the pre-
defined threshold t. To mitigate this, we introduce the
ThHE.ShareRefresh feature, which allows the same se-
cret key to be reshared (keeping the public key unchanged)
while updating the threshold t to a new threshold t′. At a
high level, the idea involves adding the existing t-out-of-n
Shamir share ski of the secret key sk with a new t′-out-of-
n Shamir share sk0i of zero. This approach works because
(1) ski can be treated as a t′-out-of-n Shamir share where
the highest t′−t coefficients of the Shamir polynomial are

all zeros, and (2) Shamir shares have an additive property.
The remaining question is how to generate sk0i . This can
be done by using our ThHE.SecretKeyGen protocol,
where the secret key is set to zero.

Parallelizable Key Generation. We implement par-
allelizable key generation. Since each Shamir share is a
function evaluation of a local polynomial at the server ID,
we can optimize the process by evaluating the polynomial
in batch. Specifically, we preprocess a Vandermonde ma-
trix of server indices and then create another matrix from
the Shamir polynomial coefficients. The Shamir shares
for all parties are obtained through matrix multiplication.
By leveraging this approach, we can efficiently perform
key generation using GPUs for matrix multiplication. The
algorithm is illustrated in Figure 13, with further details
of this optimization provided in Appendix D.4.

Verifiable Key Generation. To address the presence
of malicious actors, we need a method to verify the cor-
rectness of key generation. We achieve this by introducing
the function BatchSumVerify, as defined in Figure 9.
BatchSumVerify is a simplified version of aggregation
verification protocol introduced in ACORN, which we re-
move the identity verification steps at each communication
round. This function is utilized for both key verification
and ciphertext verification in the subsequent sections.

3.2. Zero-knowledge Argument of Knowledge

Informally, a zero-knowledge argument of knowledge
is a set of PPT algorithms (P,V) that enables two parties,
the prover P and the verifier V , to exchange information
such that after the evaluation, V can verify whether P
possesses certain knowledge without revealing that knowl-
edge. To prevent malicious adversaries, we rely heavily
on techniques from Bulletproofs [22] for the correctness
of dot product evaluations, the input validation technique
from ACORN [11], and the correctness of ring operation
from Pino et al. [29].

At a high level in Bulletproofs, to prove the knowledge
of vectors x, y ∈ ZL

q that satisfy ⟨x, y⟩ = a for some
public value a, the prover recursively compresses x and y
into smaller vectors x′, y′ of half the size, which satisfy
⟨x′, y′⟩ = a′ for a public value a′. The communication
overhead for this process is 2⌈log(L)⌉ group elements and
two Zq elements.

In Pino et al. [29], the goal is to verify the correctness
of ring operations, specifically proving that [

∑k
i=1 UiTi+

V]q = Z in the ring Rq = Z[X]/(XN + 1). Here, k is a
constant, and Ui∈[k], Ti∈[k], V , and Z are polynomials in
Rq. Both the verifier and prover know Ui∈[k] and Z.

The prover begins by extending the original equation
to

∑
Ui∈[k]Ti∈[k] + V + D1q + D2(X

N + 1) = Z,
where D1 is a polynomial of degree at most 2(N − 1),
and D2 is a polynomial of degree at most N − 1.
Upon receiving a challenge α ∈ Zq from the ver-
ifier, the prover must show that

∑k
i=1 Ui(α)Ti(α) +

V (α) + D1(α)q + D2(α)(α
N + 1) = Z(α). This

can be rewritten as
(
U1(α), . . . , Uk(α); 1; q;α

N + 1
)
·(

T1, . . . , Tk(α);V ;D1;D2

)
·
(
1, α, . . . , αN−1

)
= Z(α).

The prover can then use Bulletproofs to prove
the correctness of this dot product. Since the vec-
tors (U1(α), . . . , Uk(α); 1; q;α

N + 1), (1, α, . . . , αN−1),

and Z(α) are known to the verifier, while only
(T1(α), . . . , Tk(α);V (α);D1(α);D2(α)) remain secret,
Pino et al. can leverage the techniques from Gentry et
al. [38] to efficiently complete the proof of knowledge.

Bulletproofs also provide a zero-knowledge proof of
knowledge for range proofs, where the prover proves
knowledge of a variable x within a specific range [a, b].
However, this method is less efficient when x is a long
vector rather than a single value. For this reason, we
employ the technique from ACORN [11] for such cases.
We review the technique used in ACORN in Section 5.2.

4. Semi-Honest Secure Aggregation

Given our building blocks, we design our secure ag-
gregation protocol (Mario) for a multi-server setting. This
basic version operates under the semi-honest threat model.
In subsequent sections, we introduce various defenses to
adapt the protocol for use in a malicious threat model.

We outline the blueprint of our construction in Figure
3. In Step 1, the leader server P1 collects encrypted
models from the clients and forwards them to all other
servers in P . Each server then performs homomorphic
addition on the ciphertexts individually (Steps 3-4) to
obtain the ciphertext of the sum. Subsequently, each server
requests any t servers to jointly decrypt the ciphertext
(Step 4). Once the sum is decrypted, the server Pi ∈ P
sends the result to every client, allowing them to update
their local models.
Remark. In our semi-honest secure aggregation protocol,
the leader P1 is responsible for performing all tasks in
Steps 3 to 6, making Step 2 redundant. All other servers
in P , with the exception of those involved in decrypting
the message for P1, remain inactive and do not perform
any additional tasks.

5. Achieving Malicious Secure Aggregation

If the servers and/or clients are malicious, the protocol
depicted in Figure 3 is vulnerable to various attacks.
Below, we present all possible ways in which a group of
malicious servers and clients can either disrupt the final
result or extract information from semi-honest clients.
(A) At one-time setup, malicious servers can disrupt the

protocol by sending incorrect shares or computing a
wrong public key during the key generation phase,
potentially causing the entire protocol to fail.

(B) At model initialization, a malicious server can assign
specific weights, as proposed in Loki [70], to attempt
to infer the clients’ inputs.

(C) At Step 1, malicious clients can send an encryption
of an incorrect message (Encryption Verification) as
well as send the message with wrong form (Input
Validation), interfering the training procedure.

(D) At Step 2, a malicious leader server may forward
incorrect encryptions received from clients to the
other servers.

(E) At Step 2, similar to (D), the malicious leader server
has additional capability of corrupting client Uj ,
sending inconsistent ctj to different servers in P ,
disable the check between Uj and Pi ∈ P .

(F) At Step 5, a malicious server involved in decryption
might send an incorrect result during partial decryp-
tion.

(G) At Step 6, a malicious server can send incorrect
updates to the clients in U .

Section 5.1 addresses (B), (D), and (E) to ensure input
privacy against up to t−1 malicious servers and any set of
m−2 corrupted clients. Subsequently, Section 5.2 tackles
(A), (C), (F), and (G) to achieve robustness against fewer
than n/2 malicious servers and m − 2 corrupted clients.
Figure 4 presents our Mario construction in the malicious
and robustness setting.

5.1. Input Privacy

Defense in Model Initialization. To defend against (B),
we propose additional steps for the servers to jointly ini-
tialize the model architecture and model weight. A naive
approach is to have all the servers in P send the initialized
model to the clients. However, it incurs communication
overhead, both for the clients and the servers. Therefore,
a simple trick is to have the leader server send the model
to the clients, and have each server send the hash of
the initialized model. The client would then check for
inconsistency between the model he received and the hash.

To ensure input privacy as well as defend against
model modification attacks like Loki [70], each client in
U verifies that the model M matches at least t − 1 of
the received hashes. If this condition is not met, the client
must abort (Step 5, Initialization, Figure 4). For robust-
ness, each client in U identifies the hash that matches
more than n/2 of the received hashes and requests the
corresponding model M from one of the servers. If no
matching hash is found, the client must abort (Step 6).
Verification of Forwarded Ciphertext from Leader.
To address the issue of verifying the ciphertext ctj =
ThHE.Encrypt(pk, vj) being sent from the leader server
to other servers—issue (D)—a naive approach would in-
volve having the client Uj send the encrypted model ctj
to all Pi ∈ P . However, this would cause a significant
communication on the client’s side. Instead, we use a
simple trick as before – using a hashing technique to
mitigate this cost. The client additionally sends the hash
of the encrypted model as h′

j = H(ctj) to each server
other than the leader, which incurs only a small additional
computational and communication cost compared to the
naive approach. This process is described in Step 1, Secure
Aggregation, as shown in Figure 4.
Defense Against Corrupting Clients. Our defense
against (D) in previous paragraph only works when client
Uj honestly sends the same h′

j to all servers. However,
this does not hold if Uj is corrupted by P1—issue (E). To
address (E), the servers broadcast the hash they receive
from the client and drop the client if any inconsistencies
are detected. Since at least t servers are honest and will
broadcast the hash they receive, they will notice inconsis-
tencies in the broadcasted hashes if the client is corrupted.

5.2. Achieving Privacy with Robustness

Verifiable Key Generation for Threshold HE. In the
context of issue (A), where malicious servers might dis-

PARAMETERS:
• a set of m clients U = {U1, . . . , Um}
• a set of n servers P = {P1, . . . , Pn}
• A dynamic THE scheme ThHE with malicious key generation.
• A hash function H : {0, 1}⋆ → {0, 1}⋆

INPUT: The client Uj ∈ U has input vj . The server Pi has no input

ONE-TIME SETUP: The n servers together run ThHE.KeyGen which consist of
(ThHE.SecretKeyGen,ThHE.PublKeyComp) to agree on a public key pk and secretly shared a common
secret key sk.

INITIALIZATION: The first server, P1, initializes a model M that the servers aim to train and sends this model to
all clients in U .

EVERY SA ROUND:
1) Client Uj in U sends ctj = ThHE.Encrypt(pk, vj) to the leader server P1

2) Leader server P1 forwards the ciphertext ctj to all other servers in P
3) For SyncFL, the server Pi ∈ P performs an additive evaluation on all encrypted ct(i)j as ct(i) =

ThHE.Add(ct(i)1 , . . . , ct(i)m).
4) For AsyncFL, server Pi ∈ P stores the received ct(i)j in the buffer B. When B is full, Pi computes ct(i) =

ThHE.Add({ct ∈ B}).
5) Pi ∈ P chooses a set Ai of t− 1 online servers, and sends LAi

(0, τ) Pτ ∈ Ai.
• Each server Pτ∈Ai executes a partial decryption as pτ = ThHE.PartDec(ct(τ), skτ) and sends it to Pi

• Server Pi performs a final decryption as v = ThHE.FinalDec(pi, {pτ}τ∈Ai), where pi =
ThHE.PartDec(ct(τ), ski)

6) Server Pi ∈ P sends v to all clients in U .

Figure 3: Our Blueprint Multi-server Secure Aggregation. Note: For the semi-honest protocol, a single leader server
P1 can perform all the tasks assigned to servers Pi ∈ P in Steps 3-6, and Step 2 is redundant.

tribute incorrect threshold shares during Key Generation,
we can mitigate this risk by employing a technique from
Feldman’s scheme for verifiable secret sharing [35]. Feld-
man’s scheme provides a method to verify the correctness
of the shares distributed among servers. By incorporating
this technique, we ensure that each server receives and
validates threshold shares accurately. We provide details
on our construction of the verifiable secret key sharing in
Appendix D.3.

In addition, during the computation of the public key,
there is a risk that malicious servers involved in summing
the local public keys might produce an incorrect result.
To address this issue, we employ a building block –
zero-knowledge distributed verification of the sum, Batch-
SumVerify, which was proposed in ACORN [11] and
illustrated briefly in Figure 9 in Appendix.

Client Input Validation and Encryption Verification
(πvalid, πencverif). To address issue (C), we implement
two defense mechanisms: input validation and encryption
verification.
Input validation. Our protocol is compatible with existing
techniques proposed in ACORN [11]. Additionally, the
multi-server model in our protocol allows for further
optimization of the ZKP approach used in ACORN.

To prove that each entry xj in a long vector x lies
within the range [0, b], ACORN [11] shows that it is equiv-
alent for the prover (i.e., the client) to show knowledge
of three vectors u, v,w such that:

(x′;u; v;w) · (x′;u; v;w) = a (1)

where a = −1− (b+ 1)2 and x′ = 2x− (b− 1) · 1. The

proof of Equation (1) can be achieved using Bulletproofs,
which incurs a computational cost of O(L logL) and a
communication cost of O(logL) on the client. Similar to
ACORN, we convert the range proof into a dot product
proof. However, our model improves upon ACORN-robust
(ACORN with robustness against semi-honest servers) by
eliminating the need for additional O(log2(m)) computa-
tion and communication with other clients for the proof
of correct secret sharing.
Encryption Verification. This requires the client to prove
that the ciphertext sent is indeed the encryption of the
message used in input validation, we first present the
encryption formula in BFV encryption used to realize
our ThHE (a more detailed explanation can be found in
Figure 2). The encryption of a message m is given by:

ThHE.Encrypt(pk,m) = ([pk[0]u+e1+∆m]q, [pk[1]u+e2]q)
(2)

where u ← Rq is a random polynomial, and e1, e2 ← χ
are small noise polynomials.

To prove the correctness of encryption, we require two
proofs: (i) a proof to demonstrate the correct evaluation of
the ring operation, and (ii) a proof to show the smallness
of the noise polynomials e1 and e2.

For (i), we apply the technique from Pino et al. [29],
as discussed in Section 3.2 . By doing so, we can convert
the proof into a dot product proof and use Bulletproofs to
verify the correctness of the operation.

For (ii), it is equivalent to range proofs specifically
tailored for small vectors since the coefficients of ei
should be within the range [−1, 1]. We then leverage the
ACORN technique to handle this efficiently. Specifically,

PARAMETERS:
• a set of m clients U = {U1, . . . , Um}, a set of n servers P = {P1, . . . , Pn}
• A dynamic THE scheme ThHE with malicious key generation defined in Definition 2.
• Proofs πvalid, πencverif , and πτ,partial described in Section 5.2.
• A hash function H : {0, 1}⋆ → {0, 1}⋆

INPUT: The client Uj ∈ U has input vj . The server Pi has no input

ONE-TIME SETUP: The n servers together run ThHE.KeyGen which consists of
(ThHE.SecretKeyGen,ThHE.PublKeyComp) to agree on a public key pk and secretly shared a common
secret key sk.

INITIALIZATION:
1) The servers in P agree on a random seed for initialization.
2) Each server in P initializes the model M using the agreed seed.
3) Server P1 sends the initialized model M to all clients in U .
4) The other servers Pi ̸=1 in P send the hash hi = H(M) of the model to the clients in U .
5) For input privacy, each client in U verifies that the model M matches at least t− 1 of the received hashes. If

not, abort.
6) For robustness, each client in U identifies the hash that matches more than n/2 of the received hashes and

requests the corresponding model M from one of the servers. If no matching hash is found, abort.

SECURE AGGREGATION:
1) The client Uj∈[m] distributes ctj = ThHE.Encrypt(pk, vj) to servers in P as follows:

• Uj sends ctj to the leader P1, and sends the hash hj = H(ctj) to servers Pi ∈ P \ {P1}.
• The leader P1 forwards ctj to the Pi ∈ P \ {P1}.
• Each server Pi ∈ P verifies that H(ctj) = hj . If the hashes do not match, the server aborts.
• Each server Pi ∈ P broadcasts hj . If the hashes are inconsistent, the server skips client Uj .
Clients also distribute πvalid, πencverif to the servers for input validation. The server Pi ∈ P then do the
following:
• Verifies the proofs πvalid, πencverif

• For SyncFL, stores the “honest” client ID in set V if he accepts the proof. Then he computes ct(i) =
ThHE.Add(cti∈V))

• For AsyncFL, stores the “honest” client ID in the buffer B and set V if he accepts the proof. If B is full, he
computes ct(i) = ThHE.Add(cti∈B))

2) Pi ∈ P chooses a set Ai of t servers, sends the corresponding Lagrange coefficients to each server in Ai. Pi

and the servers in Ai perform the following
a) Each server Pτ∈Ai

executes a partial decryption as pτ = ThHE.PartDec(ct(i), skτ) and a short proof
πτ,partial and sends (pτ , πτ,partial) to Pi

b) The server Pi verify πτ,partial for every τ ∈ Ai, record all servers M ⊂ Ai that failed verification, rerun
this step for a new set A′

i = (Ai \M) ∪ S′ where S′ is a new set of servers, |S′| = |M |
c) Pi performs a final decryption as v(i) = ThHE.FinalDec(pi, {pτ}τ∈A), where pτ =

ThHE.PartDec(ct(τ), skτ)
3) Client Uj ∈ U do the following step:

a) request hi = H(v(i)) from Pi ∈ P , find the hash value h that is most frequent in the list {h1, . . . , hn}
b) record the set PH = {Pi∥hi = h}
c) in sequence, ask for v(i) from Pi ∈ PH . Check if H(v(i)) = h, stop if true, else request for the next server

in PH

Figure 4: Mario – Privacy with Correctness Multiserver Malicious Secure Aggregation

we need a proof showing the correctness of Equation 1,
but with a = −1− (2 + 1)2 = 10 and x = e1 + 1, e2 + 1.
This adjustment is because the bound for ei is [-1, 1],
making the bound for ei + 1 [0, 2].

To sum up, to defend against (C), we ask from client
the proof πvalid showing the correct evaluation of Equa-
tion 1, the proof πencverif verifying the correctness of the
encryption.

Even though it might seem complicated for the client,
our Mario is more efficient than ACORN-robust. In Mario,
the client can directly send all the proofs to the servers,

whereas in ACORN-robust, the client incurs additional
log2(m) computation and communication costs to prove
and verify the correctness of secret sharing and aggrega-
tion.

Verifiable Partial Decryption (πτ,partial). In our proto-
col’s decryption phase, the server responsible for partial
decryption, Pτ , performs the following evaluation to com-
pute the partial decryption:

pτ = ThHE.PartDec(ct(i), skτ) = [ct(i)[1]LA(0, τ)skτ+eτ]q
(3)

where ct(i) is the ciphertext to decrypt, LA(0, τ) =∏
j∈A\τ

−τ
j−τ is the Lagrange coefficient, and eτ is a small

noise.
To verify the correctness of the evaluation, the server

Pτ must prove two things: the ring operations in Equation
(3) are correct; and the noise eτ is within the allowable
bounds. For the former, we use Pino et al.’s technique
to prove the correct evaluation of ring operations. For
the latter, we use a zero-knowledge range proof from
ACORN [11] to ensure that the noise eτ is within the
allowable bounds. Both techniques are discussed in Sec-
tion 3.2.

Thus, to address issue (F)—ensuring the correctness
of partial decryption—we apply the proof techniques (so-
called πτ,partial) discussed above. With these proofs, the
server holding the encrypted sum can verify the correct-
ness of all received partial decryptions. Additionally, the
server can identify any malicious parties that submitted
incorrect partial decryptions. If needed, the servers can
redo the partial decryption round and replace the malicious
servers with new ones.

Verifiable Final Result. To address (G), we employ a
hashing technique for consistency checks. Specifically,
in step 3, each server in P sends the hash of its result to
the client. In a setting with an honest majority, the hash
of the correct model will be provided by more than half
of the servers.

Upon receiving these hashes, the client identifies the
servers that provided the majority hash and requests the
model from one of them. If a server returns a model that
does not match the hash it provided, the client detects the
discrepancy and requests the model from another server.
On average, the client will need to make two requests to
obtain the correct model from an honest server.

Putting Everything Together. By integrating all the
aforementioned defenses, our Mario ensures both privacy
and correctness within the malicious setting. We formally
state the robustness against malicious adversaries in the
following lemma:

Lemma 1. Given the multi-server secure aggregation
protocol presented in Figure 4, and the threat model of
an honest majority of servers and a dishonest majority of
clients as stated in Table 3, the following two statements
hold:

1) Malicious servers cannot convince the client of an
incorrect aggregated result.

2) Malicious clients’ inputs are ignored in the final
summation and cannot interfere with the training
process.

Sketched Proof. For the first statement, a malicious server
at Step 1 cannot distribute an incorrect encryption of
the client’s model due to the hashing consistency check.
At step 2, the server cannot provide an incorrect partial
decryption due to the check in Step 2-b, which includes
the proof πτ,partial. In Step 3, the client verifies the
decrypted result and accepts the result output by the
majority, ensuring that a minority of malicious servers
cannot interfere with the final result.

The second statement follows from Step 1. The servers
validate the client’s input and ignore any invalid inputs in

the final summation. They record valid clients in a set V
and perform aggregation only on this set.

6. Experiment

We evaluate FL protocols using a series of benchmarks
on a local machine (11th Gen Intel(R) Core(TM) i9-
11900KF Processor with an all-core CPU frequency of
3.50GHz, 16 vCPU, 32GB RAM). Based on the FHE
standard [6], we set N = 2048,q =0x3fffffff000001 (54
bits), p = 216.

6.1. Comparison to Prior Work

We evaluate the performance of both our semi-honest
and malicious protocols and compare them with state-of-
the-art protocols in both synchronous and asynchronous
settings. The results are summarized in Table 5. For
Prio+ and Elsa, we utilized their publicly available im-
plementations on GitHub. For BASecAgg, we obtained
the runtime using the implementation provided by the
paper’s authors. Since the implementation of ACORN is
not publicly available, we estimated its runtime based on
the homomorphic encryption (HE) operations described in
their paper.

For the semi-honest setup, our Mario outperforms
Flamingo and ACORN by factors of 2 − 70× and out-
performs BASecAgg by a factor of 356×. In terms of
malicious multi-server performance, we achieve a total
runtime that is 3.40× faster compared to Elsa and reduce
the communication cost for clients by 3.19×. This is due
to our protocol’s design where only one encrypted model
is sent to the leader and the hash is sent to the remaining
servers.

Regarding communication cost, Mario shows a signif-
icant improvement in client communication for the multi-
aggregator setup. This dues to fact that in Mario, the client
only needs to send the encrypted model to the leader
aggregators and the hash to all other servers, eliminating
the additional communication cost associated with n− 1
servers.

6.2. Our Mario Performance

To understand the performance breakdown of our
protocol, we benchmark each component individually,
including the semi-honest protocol, key generation, input
validation, and decryption verification.

Semi-honest Performance. We present the runtime and
communication cost of our semi-honest protocol in Fig-
ure 5. The figure shows that the communication cost
for the client does not depend on the number of clients
participating in the round and varies linearly with and the
size of the model L. Interestingly, the communication cost
of client is independent from number of servers. This is
because the client only needs to send a hash to servers
except for the leader.

Key Generation. In Table 6, we present the performance
metrics for key generation. The table shows that by gener-
ating local keys in parallel, the cost of the key generation
step is reduced by factors of 8−47×, with higher speedups
observed in setups with more servers. Additionally, we

TABLE 5: Empirical Comparison of Federated Learning Schemes Setting. SH indicates semi-honest performance
with no input validation, MA indicates malicious adversaries performance. IV indicates Input Validation. The
runtime and communication cost are for secure aggregation only, no local training involved. The common setup is
L = 44426,m = 1000. For ACORN, (nb, τ) ∈ {(24, 2), (72, 46), (118, 95)}. For Asyncronous setting, k = 100, τ = 50
for BASecAgg and k = 100, n = t = 2 for Ours. The “/” notation in server communication indicates the cost of leader
server / normal server in our protocol.

Setting Protocol Runtime (s) Client Comm. (MB) Server Comm. (MB) Multiple servers0% 25% 50% 0% 25% 50% 0% 25% 50%

Sync
(SH)

ACORN[11] 0.32 0.69 1.60 0.18 0.19 0.20 228.95 229.56 229.56 ✗
Prio+[5] 51.02 10.93 5423 ✓
Mario 0.18 3.64 5003 / 3.89 ✓

Sync
(MA)

Elsa [63] 38.69 11.61 7118 ✓
Mario (w.o IV) 11.38 3.64 5003 / 5.95 ✓
Mario (incl. IV) 123.08 5.70 5003 / 5.95 ✓

Async BASecAgg [66] 11.09 11.09 15.31 1.15 1.15 23.00 0.79 0.79 11.61 ✗
(SH) Mario 0.043 3.64 504 / 3.67 ✓

2^14 2^16 2^18 2^20
100

101

102

103

104

105

106

client
leader
server

(a) Communication Cost (MB)

2^14 2^16 2^18 2^20
100

101

102

103

104 client
server

(b) Runtime (ms)

Figure 5: Mario’s Performance in the Semi-Honest Setting. Numbers on x-axis represent size of model L. Each line
consists of 4 points representing the measures for each assignment of (t, n): (6,10),(8,15),(11,20),(16,30).

Process Runtime (ms)
(6,10) (8,15) (11,20) (16,30)

KeyShare (vanilla) 1023 4022 6680 21127
KeyShare (parallel) 121 175 271 456
(Speed up) (8×) (23×) (25×) (46×)
Public Key Verif. 1642 1646 1650 1658
Secret Share Verif. 4895 6526 8974 13053
Join 14 14 30 48
ShareRefresh 120 175 271 456

TABLE 6: Runtime of Each Section of Key Generation
in Milliseconds. (·, ·) denotes different (t, n) assignments.
The Join and Share Refresh times exclude the secret share
verification costs.

report the overhead runtime for public key verification,
which incurs an overhead ranging from 1.17 to 2.70
seconds, resulting from N + 2t+ 1 group multiplications
and N+2t+2 group additions. Most of the runtime in key
generation is attributed to the secret key verification step,
which involves N∗t group exponentiations and N∗t group
multiplications, with costs ranging from 5 to 13 seconds.

Table 6 also presents the costs associated with the
join (ThHE.Join) and key refresh (ThHE.ShareRefresh)
operations. We do not include the secret share verification
costs in the join and refresh metrics. The Join function
requires between 14 to 48 milliseconds per new server
joining, while the share refresh operation costs between
120 to 456 milliseconds, depending on the number of
servers.

Input Validation and Encryption Verification. The per-
formance of input validation and encryption verification

Model
size

Client Computation cost (s)
comm. cost client (gen) server (verify)

214 270 KB 22 4.63
216 1.03 MB 94 17.7
218 4.10 MB 381 71.7
220 17 MB 1482 286.8

TABLE 7: Input Validation and Encryption Verifi-
cation Estimate. Total number of clients to verify is
m = 1000. Server is using 4 cores.

involves two key components: range proof generation
by clients and range proof verification by servers. We
benchmark both the runtime and communication cost for
input validation. These are estimated using Figure 5 from
ACORN [11] paper, adding with the Bulletproofs for
linear dot product proof.

Note that our approach incurs roughly 5× more run-
time compared to ACORN-detect (ACORN protocol to
detect malicious client, no robustness), due to the addi-
tional proofs of encryption. However, this provides ro-
bustness and improves upon ACORN-robust, which would
result in approximately log2(m) (≈ 100) times more
runtime and communication cost than our protocol due
to the additional proof required for correct secret sharing.

Number of Re-Selection for Robust. In our privacy-with-
robustness protocol, servers must re-select a set of de-
cryptors until they find a set composed entirely of honest
servers. This experiment evaluates the expected number
of re-selections required given an unknown pre-defined
set of malicious servers. The results, shown in Figure 6,

0 0.1 0.2 0.3 0.4

0

1

2

3

t = 6, n = 10
t = 8, n = 15
t = 11, n = 20
t = 16, n = 30

Figure 6: Average number of re-selection over 10000 runs. x-
axis: ratio of malicious servers over total number of servers,
y-axis: average number of re-selection needed until hitting a set
of all honest servers.

indicate that for a setup of 30 servers with at least 16
honest ones, an honest server typically needs to re-select
decryptors about 3 times before finding a set of all honest
decryptors. The number of re-selections decreases linearly
with the ratio of malicious servers. This relatively small
number of re-selections is due to the protocol’s ability
to identify and exclude malicious decryptors during the
partial decryption phase, thus improving the efficiency of
subsequent re-selections.

Performance of the Robustness Protocol. Based on
the number presented in Section 6.2, we estimate the
runtime and communication cost of the complete pro-
tocol with robustness. The results indicate that client-
side performance remains costly, a common challenge
for input validation schemes reliant on zero-knowledge
range proofs. Future improvements could be achieved with
more advanced range proof techniques. Nevertheless, our
Mario demonstrates better performance compared to the
state-of-the-art robustness scheme ACORN [11]: while
ACORN requires an additional O(log2(m)) computation
for each client, as it requires client to verify the clients’
zero shares obtained across neighbors following traditional
secure aggregation model, our Mario only requires the
client to prove the validity of their input, removing the
need of proving correctness of the masks.

Partial and Final Decryption Verification. The cost of
decryption verification is divided into two main costs:
(1) the proof generation and verification of the linear dot
product, and (2) the proof generation and verification of
the range of error term eτ for a party Pτ . Figure 8 presents
the runtime for both proof generation and verification
across various model sizes.

7. Conclusion

In this work, we present Mario, the first multi-
aggregator protocol designed to achieve robustness against
both malicious servers and malicious clients, addressing
a gap in previous multi-aggregator secure aggregation
research [26, 5, 63]. Mario supports both synchronous and
asynchronous settings and is secure against recent attacks
such as model inconsistency [60] and modifications to
model weights and architecture [70]. Furthermore, while

2^14 2^16 2^18 2^20
100

101

102

103

104

105

106

client
leader
server

(a) Communication Cost (MB)

2^14 2^16 2^18 2^20
100

101

102

103

104 client
server

(b) Runtime (s)

Figure 7: Privacy with robustness performance. Numbers on
x-axis represent size of model L. Each line consists of 4
points representing the measures for each assignment of (t, n):
(6,10),(8,15),(11,20),(16,30).

214 215 216 217 218 219 220

103

104

105
Proof Gen. Time (ms)
Proof Verif. Time (ms)

Figure 8: Proof generation and proof verification time (millisec-
onds) at servers. Blue: generation time, Red: verification time

not explicitly covered, Mario is fully compatible with
Differential Privacy (DP), allowing clients to add DP noise
to their local gradients to enhance protection against future
attacks targeting secure aggregation.

Future Work. Our Mario provides both security and
correctness guarantees for secure aggregation in FL within
a multi-aggregator setup. A natural extension of this work
would be to adapt our protocol for a single-aggregator
setup while safeguarding against recent attacks on the
single-server model.

Additionally, we aim to enhance Mario to support var-
ious operations on aggregated statistics, such as min, max,
and frequency count, similar to Prio [26]. To achieve this,
it is essential to implement a fully homomorphic version
of the threshold HE scheme. Given the complexity of
translating Prio’s functionalities into a fully homomorphic
framework, we will leave this for future exploration.

Another potential direction for future work is optimiz-
ing the input validation process. Inspired by Prio+ [5],
which employs boolean secret sharing for range control,
we propose exploring the use of ThHE on boolean values.

References

[1] https://github.com/Microsoft/SEAL.
[2] Adaptively secure non-interactive threshold cryptosystems. Theo-

retical Computer Science, 2013.
[3] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn,

and Gilad Stern. Bingo: Adaptivity and asynchrony in verifiable
secret sharing and distributed key generation. ePrint, 2022/1759.

[4] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn,
and Gilad Stern. Bingo: Adaptivity and asynchrony in verifiable
secret sharing and distributed key generation. Cryptology ePrint
Archive, Paper 2022/1759, 2022. https://eprint.iacr.org/2022/1759.

[5] Srinivas Addanki, Kristin Garbe, Eliot Jaffe, Rafail Ostrovsky,
and Antigoni Polychroniadou. Prio+: Privacy preserving aggregate
statistics via boolean shares. IACR ePrint Archive, 2021:576, 2021.

[6] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi
Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim
Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin
Moody, Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan.
Homomorphic encryption security standard. Technical report,
HomomorphicEncryption.org, Toronto, Canada, November 2018.

[7] Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss.
Network-agnostic security comes (almost) for free in dkg and mpc.
Cryptology ePrint Archive, Paper 2022/1369, 2022. https://eprint.
iacr.org/2022/1369.

[8] Renas Bacho and Julian Loss. On the adaptive security of the
threshold bls signature scheme. CCS ’22.

[9] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and
Amit Sahai. Secure MPC: Laziness leads to GOD. pages 120–150.

[10] Laasya Bangalore, Mohammad Hossein Faghihi Sereshgi, Carmit
Hazay, and Muthuramakrishnan Venkitasubramaniam. Flag: A
framework for lightweight robust secure aggregation. New York,
NY, USA, 2023. Association for Computing Machinery.

[11] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah
Meiklejohn, Mariana Raykova, and Cathie Yun. Acorn: Input
validation for secure aggregation. ePrint, 2022/1461, 2022.

[12] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède
Lepoint, and Mariana Raykova. Secure single-server aggregation
with (poly)logarithmic overhead.

[13] James Bell-Clark, Adrià Gascón, Baiyu Li, Mariana Raykova, and
Phillipp Schoppmann. Willow: Secure aggregation with one-shot
clients. Cryptology ePrint Archive, Paper 2024/936, 2024. https:
//eprint.iacr.org/2024/936.

[14] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and
Seraphin Calo. Analyzing federated learning through an adversarial
lens. ICML’19.

[15] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning
attacks against support vector machines. ICML’12.

[16] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa,
and Yuval Ishai. Lightweight techniques for private heavy hit-
ters. Cryptology ePrint Archive, Paper 2021/017, 2021. https:
//eprint.iacr.org/2021/017.

[17] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain,
Sam Kim, Peter M. R. Rasmussen, and Amit Sahai. Threshold
cryptosystems from threshold fully homomorphic encryption.

[18] Katharina Boudgoust and Peter Scholl. Simple threshold (fully
homomorphic) encryption from lwe with polynomial modulus.
Cryptology ePrint Archive, Paper 2023/016, 2023. https://eprint.
iacr.org/2023/016.

[19] Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier
transform and its applications. McGraw-Hill New York, 1986.

[20] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (lev-
eled) fully homomorphic encryption without bootstrapping. ITCS
’12.

[21] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic
encryption from ring-LWE and security for key dependent mes-
sages. 2011.

[22] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,
Pieter Wuille, and Greg Maxwell. Bulletproofs: Short proofs for
confidential transactions and more. Cryptology ePrint Archive,
Paper 2017/1066, 2017. https://eprint.iacr.org/2017/1066.

[23] T. H. Hubert Chan, Elaine Shi, and Dawn Song. Privacy-preserving
stream aggregation with fault tolerance. In Angelos D. Keromytis,
editor, Financial Cryptography and Data Security, 2012.

[24] Jung Hee Cheon, Wonhee Cho, and Jiseung Kim. Improved uni-
versal thresholdizer from threshold fully homomorphic encryption.
IACR Cryptol. ePrint Arch., page 545, 2023.

[25] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song.
Homomorphic encryption for arithmetic of approximate numbers.
In ASIACRYPT 2017.

[26] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and
scalable computation of aggregate statistics. In NSDI, 2017.

[27] Morten Dahl, Daniel Demmler, Sarah El Kazdadi, Arthur Meyre,
Jean-Baptiste Orfila, Dragos Rotaru, Nigel P. Smart, Samuel Tap,
and Michael Walter. Noah’s ark: Efficient threshold-fhe using noise
flooding. In Proceedings of the 11th Workshop on Encrypted Com-
puting & Applied Homomorphic Cryptography, WAHC ’23, page
35–46, New York, NY, USA, 2023. Association for Computing
Machinery.

[28] Morten Dahl, Daniel Demmler, Sarah El Kazdadi, Arthur Meyre,
Jean-Baptiste Orfila, Dragos Rotaru, Nigel P. Smart, Samuel Tap,
and Michael Walter. Noah’s ark: Efficient threshold-fhe using noise
flooding. Cryptology ePrint Archive, Paper 2023/815, 2023. https:
//eprint.iacr.org/2023/815.

[29] Rafael del Pino, Vadim Lyubashevsky, and Gregor Seiler. Short
discrete log proofs for FHE and ring-LWE ciphertexts. Cryptology
ePrint Archive, Paper 2019/057, 2019. https://eprint.iacr.org/2019/
057.

[30] Yvo Desmedt. Threshold cryptosystems. In Advances in Cryptol-
ogy — AUSCRYPT ’92.

[31] F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, and
Melissa Chase. Precio: Private aggregate measurement via oblivi-
ous shuffling. Cryptology ePrint Archive, Paper 2021/1490, 2021.

[32] Taher ElGamal. On computing logarithms over finite fields.
[33] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully

homomorphic encryption. ePrint, 2012/144, 2012.
[34] Serge Fehr. Span programs over rings and how to share a secret

from a module. Master’s thesis, ETH Zurich, Institute for Theo-
retical Computer Science, 1998.

[35] Frank A. Feldman. Fast spectral tests for measuring nonrandom-
ness and the DES. pages 243–254, 1988.

[36] Qi Gao, Yi Sun, Xingyuan Chen, Fan Yang, and Youhe Wang. An
efficient multi-party secure aggregation method based on multi-
homomorphic attributes. Electronics, 13(4), 2024.

[37] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal
Rabin. Secure applications of pedersen’s distributed key generation
protocol. In Topics in Cryptology — CT-RSA 2003.

[38] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical
non-interactive publicly verifiable secret sharing with thousands
of parties. Cryptology ePrint Archive, Paper 2021/1397, 2021.
https://eprint.iacr.org/2021/1397.

[39] Ming Hao, Hongyi Li, Guanhong Xu, Hui Chen, and Tianwei
Zhang. Efficient, private and robust federated learning. In ACSAC,
2021.

[40] Li He, Sai Praneeth Karimireddy, and Martin Jaggi. Secure
byzantine-robust machine learning. CoRR, 2020.

[41] Martin Hirt and Jesper Buus Nielsen. Robust multiparty com-
putation with linear communication complexity. In Advances in
Cryptology - CRYPTO 2006, 26th Annual International Cryptology
Conference, volume 4117 of Lecture Notes in Computer Science,
pages 463–482. Springer, 2006.

[42] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank.
On combining privacy with guaranteed output delivery in secure
multiparty computation. In Advances in Cryptology - CRYPTO
2006, 26th Annual International Cryptology Conference, volume
4117 of Lecture Notes in Computer Science, pages 483–500.
Springer, 2006.

[43] Y. Jiang, X. Luo, Y. Wu, X. Xiao, and B. Ooi. Protecting
label distribution in cross-silo federated learning. In 2024 IEEE
Symposium on Security and Privacy (SP), pages 112–112, Los
Alamitos, CA, USA, may 2024. IEEE Computer Society.

[44] E. Kabir, Z. Song, M. Rashid, and S. Mehnaz. Flshield: A
validation based federated learning framework to defend against
poisoning attacks. In 2024 IEEE Symposium on Security and
Privacy (SP), pages 140–140, Los Alamitos, CA, USA, may 2024.
IEEE Computer Society.

[45] Swanand Kadhe, Nived Rajaraman, Onur Ozan Koyluoglu, and
Kannan Ramchandran. Fastsecagg: Scalable secure aggregation
for privacy-preserving federated learning. ArXiv, abs/2009.11248,

https://github.com/Microsoft/SEAL
https://eprint.iacr.org/2022/1759
https://eprint.iacr.org/2022/1369
https://eprint.iacr.org/2022/1369
https://eprint.iacr.org/2024/936
https://eprint.iacr.org/2024/936
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2023/016
https://eprint.iacr.org/2023/016
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2023/815
https://eprint.iacr.org/2023/815
https://eprint.iacr.org/2019/057
https://eprint.iacr.org/2019/057
https://eprint.iacr.org/2021/1397

2020.
[46] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourc-

ing multi-party computation. ePrint, 2011/272, 2011.
[47] Harish Karthikeyan and Antigoni Polychroniadou. OPA: One-shot

private aggregation with single client interaction and its appli-
cations to federated learning. Cryptology ePrint Archive, Paper
2024/723, 2024. https://eprint.iacr.org/2024/723.

[48] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek,
and Ni Trieu. Practical multi-party private set intersection from
symmetric-key techniques. CCS ’17.

[49] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh.
SWIFT: Super-fast and robust privacy-preserving machine learn-
ing. Cryptology ePrint Archive, Paper 2020/592, 2020.

[50] Hanjun Li, Sela Navot, and Stefano Tessaro. Popstar: Lightweight
threshold reporting with reduced leakage. Cryptology ePrint
Archive, Paper 2024/320, 2024. https://eprint.iacr.org/2024/320.

[51] Yehuda Lindell and Ariel Nof. A framework for constructing
fast mpc over arithmetic circuits with malicious adversaries and
an honest-majority. Cryptology ePrint Archive, Paper 2017/816,
2017. https://eprint.iacr.org/2017/816.

[52] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. In Advances in
Cryptology – EUROCRYPT 2010.

[53] Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Polychroni-
adou, and Tal Rabin. Flamingo: Multi-round single-server secure
aggregation with applications to private federated learning. ePrint,
2023/486, 2023.

[54] R. Moenck and A. Borodin. Fast modular transforms via division.
In 13th Annual Symposium on Switching and Automata Theory
(swat 1972), 1972.

[55] Christian Mouchet, Elliott Bertrand, and Jean-Pierre Hubaux. An
efficient threshold access-structure for rlwe-based multiparty ho-
momorphic encryption. J. Cryptol., 36(2):10, 2023.

[56] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe
Bossuat, and Jean-Pierre Hubaux. Multiparty homomorphic
encryption from ring-learning-with-errors. Cryptology ePrint
Archive, Paper 2020/304, 2020.

[57] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour,
Mike Rabbat, Mani Malek, and Dzmitry Huba. Federated learning
with buffered asynchronous aggregation. In AISTATS 2022.

[58] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Jacques Stern, editor, Advances in
Cryptology — EUROCRYPT ’99.

[59] Jeongeun Park. Homomorphic encryption for multiple users with
less communications. ePrint, 2021/1085.

[60] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. Eluding
secure aggregation in federated learning via model inconsistency.
CCS, 2022.

[61] Torben Pryds Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In Joan Feigenbaum, editor,
CRYPTO ’91.

[62] Michael Rabin. Verifiable secret sharing. In Proceedings of the
21st Annual ACM Symposium on Theory of Computing (STOC ’89),
1989.

[63] Mayank Rathee, Conghao Shen, Sameer Wagh, and Raluca Ada
Popa. Elsa: Secure aggregation for federated learning with mali-
cious actors. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 1961–1979, 2023.

[64] Aaron Segal, Antonio Marcedone, Benjamin Kreuter, Daniel Ra-
mage, H. Brendan McMahan, Karn Seth, K. A. Bonawitz, Sar-
var Patel, and Vladimir Ivanov. Practical secure aggregation for
privacy-preserving machine learning. In CCS, 2017.

[65] Elaine Shi, T.-H. Hubert Chan, Eleanor Gilbert Rieffel, Richard
Chow, and Dawn Song. Privacy-preserving aggregation of time-
series data. In NDSS 2011.

[66] Jinhyun So, Ramy E. Ali, Basak Güler, and Amir Salman Aves-
timehr. Secure aggregation for buffered asynchronous federated
learning. CoRR, abs/2110.02177.

[67] Jinhyun So, Basak Guler, and A. Salman Avestimehr. Turbo-
aggregate: Breaking the quadratic aggregation barrier in secure
federated learning. ePrint, 2020/167.

[68] Elina van Kempen, Qifei Li, Giorgia Azzurra Marson, and Claudio
Soriente. Lisa: Lightweight single-server secure aggregation with
a public source of randomness, 2023.

[69] Haibin Zhang, Sisi Duan, Chao Liu, Boxin Zhao, Xuanji Meng,
Shengli Liu, Yong Yu, Fangguo Zhang, and Liehuang Zhu. Practi-
cal asynchronous distributed key generation: Improved efficiency,
weaker assumption, and standard model. Cryptology ePrint

Archive, Paper 2022/1678, 2022. https://eprint.iacr.org/2022/1678.
[70] J. Zhao, A. Sharma, A. Elkordy, Y. H. Ezzeldin, S. Avestimehr,

and S. Bagchi. Loki: Large-scale data reconstruction attack against
federated learning through model manipulation. In 2024 IEEE Sym-
posium on Security and Privacy (SP), pages 30–30, Los Alamitos,
CA, USA, may 2024. IEEE Computer Society.

[71] Wenting Zheng, Raluca Ada Popa, Joseph E. Gonzalez, and Ion
Stoica. Helen: Maliciously secure coopetitive learning for linear
models. In SP 2019.

Appendix A.
Data Availability

We comply to Open Science policy and will release to
Github the corresponding source code upon the acceptance
of the paper. The implementation in the paper makes use
only of synthetic vectors without any real data involved.

Appendix B.
Preliminaries

B.1. Notation

Let N be a power of two and q be an integer. We
denote by R = Z[X]/(XN + 1) the ring of integers of
the (2N)-th cyclotomic field and Rq = Zq[X]/(XN +1)
the residue ring of R modulo q. We represent an element
a =

∑(N−1)
i=0 aiX

i ∈ R by the vector of its coefficients
(a0, . . . , a(N−1)). Given a probability distribution D, we
use x ← D to denote that x is sampled from D. A
distribution χ over the integers is called B-bounded if
it is supported on [−B,B].

Let g be a generator of the field Zq, let a ∈ Rq be
a arbitrary polynomial in Rq, A = (A1, . . . , AN), B =
(B1, . . . , BN) ∈ ZN

q be two arbitrary vectors size N. We
write as a =

∑N
i=0 aix

i, then we define the following
three operators:

• Power of g: ga := (ga0 , . . . , gaN)
• Multiplication: AB = (A1B1, A2B2, . . . , ANBN)
• Power on ZN

q : An = AA . . . A (for n times) for any
n ∈ N

B.2. Threshold Scheme and Secret Sharing

Threshold Scheme & Shamir Secret Sharing. A thresh-
old scheme (TS) with a threshold t over a secret space
K is two probabilistic polynomial-time (PPT) algorithms
(Sharet,Rest) where:

• Sharet(k, n)→ (s1, . . . , sn): On input a secret k ∈
K and n > t, the sharing algorithm returns n shares
{s1, . . . , sn}.

• Rest(si,1 . . . , si,t) → k: On input a set of shares
(si,1 . . . , si,t), the combining algorithm outputs the
secret k ∈ K

The scheme must satisfy the following properties:
• Correctness: Rest(si,1 . . . , si,t) = k
• Security: Any subset S = {si}i∈[n] for |S| < t

reveals nothing about the secret k.
Shamir secret sharing (S3) is a threshold scheme

based on Lagrange interpolation. To share a secret s in
a finite field Zp, the sharing phase of S3 chooses a
polynomial f of degree t− 1 such that [f(0)]p = s, with

https://eprint.iacr.org/2024/723
https://eprint.iacr.org/2024/320
https://eprint.iacr.org/2017/816
https://eprint.iacr.org/2022/1678

all other coefficients chosen uniformly in Zp. Each party
Pi receives a share in the form of the point (i, yi) =
(i, [f(i)]p) on the polynomial. The interpolation theorem
guarantees that any t of the shares can uniquely determine
the polynomial f , and hence recover the secret f(0).
The traditional Shamir secret-sharing scheme is typically
implemented over a field. Therefore, this paper adopts
Lagrange interpolation in Zp for simplicity. For a more
comprehensive understanding of Shamir secret sharing
over a ring, we refer the reader to [34].
Verifiable Secret Sharing. Given a secret s to be shared
to n parties, namely JsKi to party Pi, so that any t par-
ties can together reconstruct s, Verifiable Secret Sharing
(VSS) [62] is the problem that ensure each of the n
parties receive the correct share, even in the present of
a malicious dealer. In terms of Shamir secret sharing, it
is equivalent to the verification that JsKi = s+

∑t−1
j=1 aji

j

where s+a1x+ · · ·+at−1x
t−1 represents the polynomial

that was used in Shamir sharing.
Additive Secret Sharing. Given a set of n parties
{P1, . . . , Pn}, to additively secret share JxK an ℓ-bit value
x of Pi to other parties, he first chooses xi ← Z2ℓ

uniformly at random such that x =
∑n

j=1 x
j mod 2ℓ,

and then sends each xj to the party Pj . For ease of
composition, we omit the mod. To reconstruct an additive
shared value JxK, all parties Pj sends JxK = xj to Pi,
who locally reconstructs the secret value by computing
x←

∑n
i=1 x

j . In this work, we define the additive secret
sharing of a value x as JxK.

Appendix C.
Sum Verification for Public Key computation

Here we adapt the protocol for parties P1, . . . , Pt to
jointly proving to the verifier Pv that the value x⃗ of Pv

is the correct summation of all x⃗i that Pi has, which
was previously proposed by ACORN [11]. Because Pi

can maliciously the vector after Pv gets the sum to make
Pv believe in any value of x⃗ correct sum, we need Pi

to commit its element using Pedersen commitment to
Ci = gri

∏
g
x⃗i[j]
j , and send this commitment to Pv before

the verification starts.
When the protocol starts, Pv comes up with a challenge
value e and sends it to everyone. Pi upon receiving
e, masks ri with rie + ki, and sends rie + ki, gki to
Pv. Finally, Pv checks if g

∑t
i=1(rie+ki)

∏t
j=1 g

e∗x⃗[j]
j =∏

Ce
i

∏
gki . The protocol is shown in Figure 9.

Appendix D.
Dynamic Threshold HE

We realize the dynamic threshold HE in Definition
2 in Figure 11. The verifiable secret share of secret key
is inspired by Feldman’s verifiable secret sharing scheme
[35]. In addition, we use additive verification function in
Section C to verify if the public key are jointly computed
correctly. The encryption/decryption functions are similar
to BFV encryption scheme [33].

Throughout this section, we refer to the servers as
‘parties’ to describe our ThHE scheme employed in our
FL framework. It is less likely for those parties (servers) to

PARAMETERS: The space Rq = Zq[X]/(XN + 1),
g, g1, . . . , gL of G. A party Pv acts as the verifier
INPUT:

• a set of t parties S = {P1, . . . , Pt}
• Party Pi has x⃗i, ri;
• Pv has x⃗, Ci∈[t] = gri

∏
g
x⃗i[j]
j being the Pedersen

commitment of x⃗i;
OUTPUT: Pv does “accept” if the x⃗ =

∑η
i=1 x⃗i, else

“reject”.

1: procedure BATCHSUMVERIFY(x⃗, x⃗1, . . . , x⃗t,S)
2: The party Pv generates a challenge e and sends them

to everyone.
3: Each party Pi locally masks ri to ti = ri ∗ e+ ki
4: Pi sends ti and gki to Pv

5: Pv checks if g
∑t

i=1(rie+ki)
∏L

j=1 g
e∗x⃗[j]
j =∏t

i=1 C
e
i

∏
gki , return “accept”, else return “reject”

6: end procedure

Figure 9: PK Sum’s Verification from ACORN [11]

drop out frequently during the protocol execution compare
to remote clients in FL.

D.1. System Design

In our ThHE, we classify participants into two cate-
gories: pivot and non-pivot. Although any party can act
as a pivot, we recommend selecting a party with powerful
devices and stable connectivity, as pivots perform more
work in ThHE.SecretKeyGen(). We assume that the IP
addresses of participants are publicly available, enabling
each party to determine whether a particular party is
online.

During ThHE.Join(), which generates a secret key for
the new Pv, it requires a set A of at least t online parties. If
the set of t pivot parties is available and online, Pv selects
them as set A. Otherwise, Pv selects a random online set
A and announces the IP addresses of the selected parties.
In the event that a party drops out in the middle of the
process, Pv can re-select another online party.

Our system also includes a combiner that aggregates
information from different parties. Any party can act as a
combiner, including pivot/non-pivot parties, or the leader
server in our FL application.

D.2. Additional Note on Construction in the
Semi-honest Setting

Our dynamic ThHE protocol builds on the founda-
tional framework presented in [55, 56, 59], where servers
use Shamir secret sharing to distribute their local secret
values among themselves. For completeness, we provide a
detailed description of the full construction in this section.
Some aspects of this approach are derived from previous
work.

Figure 11 formally presents our ThHE construction.
We provide a detailed discussion on the correctness and
security for our ThHE construction in Appendix E.

D.2.1. ThHE.Join Computation. The main challenge is
how to generate a new share skν for a new party Pν when
a subset of pivot parties drop out after the initial setup

(ThHE.KeyGen). To address the issue, we propose to use
Lagrange linear combination. Specifically, it is assumed
that there are t alive (either pivot or non-pivot) parties
Pk∈A for some party’s IDs k ∈ A. The new share skν can
be computed as

∑
k∈A skkLA(ν, k) where LA(ν, k) =∏

j∈A\{k}
ν−k
j−k is a Lagrange coefficient. However, it is

insecure if each Pk∈A sends a term skkLA(ν, k) to Pν

since the Pν can factorize the product and learn the skk.
To handle this, we propose to mask each term skkLA(ν, k)
with a zero share zk where

∑
k∈A zk = 0. The masking

prevents the attacker from learning an individual skk and
the zero-shares will be canceled out in the final sum to
maintain the correctness of the skν computation.

We now describe the zero-share generation [64, 48] as
follow. Each party Pk∈A chooses a random zk,j for j ∈
A, j > k, and sends zk,j to the party Pj . After receiving
zj,k from the party Pj∈A,j<k, the Pk computes the zero
share zk =

∑
j∈A,j<k

zj,k −
∑

j∈A,j>k

zk,j . It is easy to see

that
∑

k∈A zk = 0 as desired.

D.2.2. ThHE.ShareRefresh Computation. The proto-
col calls ThHE.ShareRefresh to redistribute the shares
among servers. When many new servers join, the protocol
ensures that a combination of new and existing servers
cannot form a sufficiently large committee (e.g., more
than t servers) capable of reconstructing the secret key.
Therefore, assuming the maximum number of malicious
servers is t − µ (for some µ > 0) before a new server
joins, ThHE.ShareRefresh must be invoked before every
µ new servers join, in order to increase the threshold t to
t+ µ

The way ThHE.ShareRefresh works is straightfor-
ward: a set of t′ servers is selected to act as the new
pivot. Each of these t′ servers generates a t′ out of n
Shamir sharing of zero (by setting the less significant
coefficient c0,k of the polynomial fi(X) to zero) and
sends the share vi∈[t′],j∈[n] to the corresponding server
Pj . Each server Pj∈[n] then updates its current share skj
with [skj +

∑t′

i=1 vi,j]q. Since the original share can be
viewed as a t′ out of n Shamir share of a polynomial
where the highest t′− t coefficients are zero, the updated
share effectively becomes a Shamir share of the secret
key under the new threshold. The security is maintained
because the new shares are derived from a polynomial of
degree t′ − 1.

D.2.3. Encryption and Decryption. Our encryption fol-
lows directly from the encryption algorithm of the con-
ventional single-key HE. The encryption process involves
utilizing the noise space χ′

2. This is for consistency with
the underlying HE construction, as depicted in Figure 2.
Note that the noise added to the public key pk also in this
domain.

In most existing HE schemes, the decryption has the
form [c0 + c1 · s]q where (c0, c1) is a ciphertext. Using
the techniques proposed in Section 3.1.1, the decryption
algorithm can be implemented in a similar way to compute
the public key without revealing the secret key. Con-
cretely, for any set A of t alive parties, each Pk∈A can
locally compute a partial decryption pk = [ConvMultq(c1·
skk, LA(0, k)) + ek]q for a small noise ek ← χ2. The
final decryption algorithm outputs

[
p/q[c0+

∑
k∈A pk]q

]
p

PARAMETERS: The space Rq = Zq[X]/(XN +1) and a set
of indices A
INPUT: x = (x1, . . . , xN) ∈ Rq and LA(0, k) =∏

j∈A\{k}
−k
j−k

is a Lagrange coefficient.
OUTPUT: [xLA(0, k)] ∈ Rq

1: procedure CONVMULTq(x, LA(0, k))
2: Find a, b such that a

b
= LA(0, k) and gcd(a, b) = 1

3: Find qinv such that qinvq = 1 mod b
4: for i = 1, . . . , N do
5: Compute x̄i = −qinvxi mod b
6: Compute x′

i = xi + x̄i ∗ q ▷ x′
i = xi mod q

7: end for
8: return [x′LA(0, k)]q where x′ = (x′

1, . . . , x
′
N)

9: end procedure

Figure 10: Computation in Ring

which is the desired plaintext when the noise is sufficiently
small.

If all t pivot parties are available, the partial decryption
can be simply implemented as follows. Each pivot Pi∈[t]

sends pi = [c1 ·ci,0+ei]q to a combiner, where ei ← χ2 is
a small random noise. The combiner can perform a final
decryption by computing

[
p/q[c0 +

∑t
i=1 pi]q

]
p
.

D.2.4. Computation in Ring. Recall that the pk is equal
to

[∑
k∈A[−a · skkLA(0, k) + ek]q

]
q

where each of the
additive terms can be locally computed by each party
Pk∈A, and the LA(0, k) is not an integer. We present a
method named ConvMult to correctly evaluate the value
as a member of the finite field. The method is presented
in Figure 10 .

To make the public key computation returns a cor-
rect form of pk = [−a · s + e]q, we have to deal
with non-integer Lagrange coefficients LA(0, k). To this
end, we introduce a function ConvMultq which aims to
convert a term xLA(0, k) to a polynomial in Rq, where
x = (x1, . . . , xN) ∈ Rq (in the public key computation,
x is −a · skk). The ConvMultq works as below.

We present LA(0, k) as a fraction a
b where gcd(a, b) =

1. Our goal is to make xi∈[N] to be divisible by b. It can
be done as follow. We first find x̄i satisfying that

xi + qx̄i = 0 mod b (4)

In our ThHE scheme, q is a large prime number. In
addition, b is less than

∏
j∈A\{k}(j − k) for the set of

parties’ indices A of size t. Thus, we have gcd(q, b) = 1.
Consequently, Equation (4) has the unique solution x̄i =
−xiqinv mod b, where qinvq = 1 mod b. Furthermore,
when we define x′

i = xi + x̄iq, we have x′
i = xi

mod q and x′
i = xi + −xiqinvq = 0 mod b. Therefore,

x′
i is dividable by b as desired and [xiLA(0, k)]q =

[x′
iLA(0, k)]q. The function ConvMultq is presented in

Figure 10.

D.3. Verifable Key Generation

When distributing threshold secret shares of the secret
key, it is essential to prevent malicious (pivot) parties from
sending incorrect shares. To address this, we use a method
analogous to Feldman’s verifiable secret sharing scheme
[35].

PARAMETERS:
• A threshold t, parties P1, . . . , Pm for m ≥ t, a number n ∈ [t,m]. The B1-bounded and tB1-bonded secret spaces χ1 and
χ′
1, respectively. The B2-bounded and tB2-bonded noise spaces χ2 and χ′

2, the plaintext space Rp = Zp[X]/(XN +1),
the ciphertext and public key space Rq = Zq[X]/(XN + 1), generator g of Zq , and ∆ = ⌊q/p⌋ for sufficiently large
primes p and q.

• g, g1, . . . , gN ∈ G
• A single-key HE, a FuncEval, SecretKeyVerify, and a ConvMultq algorithm described in Figures 2, 13, 12, and 10,

respectively.

PROTOCOL – ThHE.SecretKeyGen(λ,TS(t),P = {P1, . . . , Pn})
1) For i ∈ [t], the pivot party Pi does the followings:

a) Choose a random value ci,0 ← χ1, and t− 1 random values ci,k ← Rq for k ∈ [1, t− 1]

b) Form a polynomial of the degree (t− 1) as fi(X) =
∑(t−1)

k=0 ci,kX
k, public commitments of ci,k: commi,k = gci,k

c) Compute and send vi,j = FuncEval(1, . . . , t)[j] = [fi(j)]q to each party Pj∈[n]

d) Each pivot Pi∈[t] outputs a shared secret key ski = (ci,0, [
∑t

j=1 vj,i]q)

e) The server outputs the commitment Ck =
∏t

i=1 commi,k = g
∑t

i=1 ci,k for all 0 ≤ k ≤ t− 1

2) For i ∈ [t+ 1, n], Pi outputs a shared secret key ski = [
∑t

j=1 vj,i]q
3) In case of malicious adversary, party P1≤i≤n runs SecretKeyVerify(ski, C0, C1, . . . , Ct−1).

PROTOCOL – ThHE.ShareRefresh(P = {P1, . . . , Pn}, t′)
1) Sample a new set of t′ pivot parties, WLOG {P1, . . . , Pt′}
2) For i ∈ [t′], the new pivot party Pi does the followings:

a) Choose t′ − 1 random values ci,k ← Rq for k ∈ [1, t− 1]

b) Form a polynomial of the degree (t′−1) as fi(X) =
∑(t−1)

k=1 ci,kX
k, public commitments of ci,k: commi,k = gci,k

c) Compute and send vi,j = FuncEval(1, . . . , t′)[j] = [fi(j)]q to each party Pj∈[n]

d) The server computes the commitment C′
k =

∏t
i=1 commi,k = g

∑t′
i=1 ci,k for all 1 ≤ k ≤ t′ − 1

e) The server updates the commitment Ck = Ck ∗ C′
k for all 1 ≤ k ≤ t− 1 and Ck = C′

k for t ≤ k ≤ t′ − 1

3) For i ∈ [1, n], Pi outputs a shared secret key ski = ski + [
∑t

j=1 vj,i]q
4) In case of malicious adversary, party P1≤i≤n runs SecretKeyVerify(ski, C0, C1, . . . , Ct−1).

PROTOCOL – ThHE.Join(λ, {ski}i∈A, Pν∈[n+1,m])

1) If all t pivots {P1, . . . , Pt} are online (e.g. A = {1, . . . , t}), they do the following: each Pi∈[t] computes and sends
vi,ν = [fi(ν)]q to a new party Pν who outputs a shared secret key skν = [

∑t
i=1 vi,ν]q

2) If some subset of {P1, . . . , Pt} dropout, a random t parties P(k∈A) for a set of indices A do the following:
a) The party P(k∈A) computes uk = skkLA(ν, k) where LA(ν, k) =

∏
j∈A\{k}

ν−k
j−k

is a Lagrange coefficient and skk

is the Shamir secret share of Pk

b) Each party Pk chooses a random value zk,j for j ∈ A, j > k and then sends zk,j to Pj

c) The party Pk∈A computes vk = uk +
∑

j∈A,j<k

zj,k −
∑

j∈A,j>k

zk,j and sends it to Pν

d) Pν outputs a shared secret key skν = [
∑

i∈A vi]q
3) In case of malicious adversary, Pν runs SecretKeyVerify(skν , C1, . . . , Ct−1)

Figure 11: Our Additive ThHE Construction from Polynomial-LWE (Text highlighting malicious key generation is colored in blue)

We integrate the batch checking of share correctness
from [51] with Feldman’s verifiable sharing approach.
This combination enables the parties in the protocol to
verify the correctness of the shares they receive. Details
on how we implement share correctness are presented in
Figure 12.

• Completeness: If the share ski is correct ∀i ∈ A, then
SecretKeyVerify always outputs “accept”.

• Soundness: If some of the share ski is incorrect, then
SecretKeyVerify outputs “accept” with probability of
1

q−1 .
• Zero-knowledge: The simulator on parties Pi would

generate their own random α at step 2, sampling com-
mitment C1, . . . , Ct−1 uniformly from Zq, generate a
random value for JrKi at step 4 while uniformly sample
C0 at step 6.

D.4. Parallel Polynomial Evaluation for Key Gen-
eration

The parallel key generation algorithm consists of two
phases:
• The first phase called Preprocessing, where each party

at the beginning just store values of [jk]q for all possible
1 ≤ j ≤ n and all 0 ≤ k ≤ t. This preprocessing step
can be done once and can be updated if total number of
parties changed without having to recompute all existed
values.

• The second phase is the actual evaluation phase where
the party Pi receive request to evaluate fi(·) from
n parties {x1, . . . , xn}. The party retrieves previously
computed values of xk

j for all j ∈ [1, n] and forms a
matrix. It also form a matrix C from its own secret value
ci,0, . . . , ci,t−1. As the matrix multiplication result in a
matrix with column j which has value of [

∑
k ci,kx

k
j]q,

the party i then outputs polynomials from the result of

PROTOCOL – ThHE.PublKeyComp(λ, {ski}i∈A)
1) If all t pivots {P1, . . . , Pt} are online (e.g. A = {1, . . . , t}), each pivot Pi broadcasts a partial public key pki =

[−a · ci,0 + ei]q for ei ← χ2, and a combiner computes the public key pk = (
[∑t

i=1 pki

]
q
, a).

2) If some subset of {P1, . . . , Pt} dropout, a random t parties P(k∈A) for a set of indices A do the following. Each Pk

broadcasts a partial public key pkk = [ConvMultq(−a · skk, LA(0, k)) + ek]q for a random noise ek ← χ2. In case
of malicious adversary, Pk also broadcast the Pedersen commitment grk

∏N
j=1 g

pkk[j]
j . A combiner computes the public

key as pk = ([
∑

k∈A pkk]q, a).
3) In case of malicious adverary, the parties run BatchSumVerify(pk[0], pki∈A[0]) to verify if public key is correctly

computed.

PROTOCOL – ThHE.Encrypt(pk, µ):
1) Sample u← χ′

1 and e1, e2 ← χ′
2

2) Compute c0 = [p0 · u+ e1 +∆ · µ]q and c1 = [p1 · u+ e2]q where p0 = pk[0], p1 = pk[1]
3) Output (c0, c1)

PROTOCOL – ThHE.Add(ct1, . . . , ctn): Output HE.Add(ct1, . . . , ctn)

PROTOCOL – ThHE.PartDec(ct, ski):
1) Let c0 = ct[0] and c1 = ct[1]
2) Output a partial decryption pi = (c0, [ConvMultq(c1 · ski, LA(0, i)) + ei]q) for a small noise ei ← χ2.
3) If Pi is a pivot, Pi outputs an additional partial decryption p′

i = (c0, [c1 · ci,0 + ei]q)

PROTOCOL – ThHE.FinalDec({pi}i∈A): Given any set A of t alive parties,
1) If A is a set of t partial decryptions from pivots, outputs

[
p/q[c0 +

∑t
i=1 p′

i]q
]
p

2) Otherwise, outputs
[
p/q[c0 +

∑
k∈A pk]q

]
p

Figure 11: Our Additive ThHE Construction from Polynomial-LWE (Text highlighting malicious key generation is colored in blue)
(cont.)

PARAMETERS: The space Rq = Zq[X]/(XN +1) and a set
of online parties A
INPUT: Party Pv has a share skv that he wants to verify. Pv

also has C1, . . . , Ct−1 where Ci = gci being the commit-
ment of party Pi Shamir polynomial
OUTPUT: “accept” if the skv is the correct Shamir share of
party Pv , else “reject”.

1: procedure SECRETKEYVERIFY(skv, C0, . . . , Ct−1)
2: Pv check if

gskv [i] = C0[i](C1[i])
v(C2[i])

v2

. . . (Ct−1[i])
vt−1

,∀i ∈ [N]

and abort if they are not equal
3: end procedure

Figure 12: Secret Key Verification.

the matrix multiplication.

We note that there are two main benefits by doing a
parallel evaluation in this manner:

• If the pivot parties are parties with high computational
power, they can use GPU for faster key generation as
all matrix multiplications can be done in parallel.

• We can concurrently evaluate requests from
multiple clients, thus increasing throughput of
ThHE.SecretKeyGen.

To prove the correctness of the algorithm presented in
Figure 13, we just write down the formula of C and X
we formed earlier as follow:

C =

 c
(0)
i,0 c

(0)
i,1 . . . c

(0)
i,t−1

...

c
(t−1)
i,0 c

(t−1)
i,1 . . . c

(t−1)
i,t−1

 (5)

X =

 x0
1 x0

2 . . . x0
n

...
xt−1
1 xt−1

2 . . . xt−1
n

 (6)

Hence,

C ·X =

∑t−1

k=0 c
(0)
i,kx

k
1 . . .

∑t−1
k=0 c

(0)
i,kx

k
n

.∑t−1
k=0 c

(t−1)
i,k xk

1 . . .
∑t−1

k=0 c
(t−1)
i,k xk

n

We also have that for all X ∈ Zq

fi(xj)(X) =

t−1∑
k=0

ci,kx
k
j (X)

=

t−1∑
k=0

(

t−1∑
h=0

c
(h)
i,kX

h)xk
j

=

t−1∑
h=0

(

t−1∑
k=0

c
(h)
i,k x

k
j)X

h

=

t−1∑
h=0

(C ·X)h,jX
h

(7)

Therefore, the representation of fi(xj) is the j-th column
vector of C ·X , verifying the correctness of our output.

Appendix E.
ThHE Properties

E.1. Compactness and Complexity

As the encryption and homomorphic computation of
ThHE are performed in a similar fashion to single-key

PARAMETERS: The space Rq = Zq[X]/(XN + 1),
total number of parties n, threshold t, number of points
to evaluate ρ
INPUT: ci,0, .., ci,t−1 ∈ Rq; x1, . . . , xρ ∈ [n]
OUTPUT: fi(xj) = [

∑t−1
k=0 ci,kx

k
j]q, ∀j ∈ [ρ]

1: procedure PREPROCESSING(ρ)
2: for j = 1, . . . , ρ do
3: Compute zj = jk mod q
4: store a vector Xj = {z0, z1, . . . , xt−1} for

later usage
5: end for
6: end procedure
7: procedure FUNCEVAL(x1, . . . , xρ)
8: for k = 1, . . . , ρ do
9: Get Xxk

= Preprocessing(ρ)[xk]
10: end for
11: Form a matrix X with k-th column equals Xxk

12: for j = 0, . . . , t− 1 do
13: Form a vector Cj = {c(0)i,j , . . . , c

(t−1)
i,j }

where the elements satisfies: ci,j : ci,j =∑t−1
k=0 c

(k)
i,j X

k

14: end for
15: Form a matrix C with k-th column equals Ck

16: Compute the matrix multiplication: Y = [C ·
X]q

17: Form n polynomials from Y : yk(x) =∑t
j=1 Yj,kx

j

18: return y1, . . . , yn
19: end procedure

Figure 13: Parallel Polynomial Evaluation

HE. Thus, the (evaluated) ciphertext size and the size
of the partial decryption result are independent of the
number of decryptors/parties. Assume that the ciphertext
size of the underlying single-key HE only depends on
the security parameter λ, so is the ThHE ciphertext size.
For completeness, we present the complexity of each
algorithm in Table 8.

E.2. Correctness

The ThHE’s correctness follows from the correctness
of the underlying threshold scheme and single-key HE
schemes.

Definition 3. (Correctness) We say that a ThHE scheme
is correct if for all security parameter λ, a threshold
scheme TS with a threshold t, the k messages µi ∈
{0, 1}⋆ for i ∈ [k], sets P = {P1, . . . , Pm} and P ′ =
{P1, . . . , Pn} for m ≥ n ≥ t. For (pk, sk1, . . . , skn) ←
ThHE.KeyGen(λ,TS(t),P ′); for ν ∈ [n+ 1,m], skν ←
ThHE.Join(λ, {ski}i∈A′ , Pν) where A′ is an index set of
t shared secret keys; cti = ThHE.Encrypt(pk, µi),∀i ∈
[k]; and ct = ThHE.Add(ct1, . . . , ctk), we have:

Prob[ThHE.FinalDec(D) = µ1+. . .+µk)] = 1−negl(λ)

where D = {ThHE.PartDec(ct, ski)) | i ∈ A} and A is
an index set of t shared secret keys.

Theorem 2. (Correctness) Suppose TS is a threshold
scheme that satisfy correctness. Then, the ThHE construc-
tion described in Fig. 11 satisfies correctness defined in
Def. 3.

Proof. We prove the following:
• The ThHE.KeyGen and ThHE.Join algorithms gives

the valid share of the secret key sk =
∑t

i=1 ci,0 to each
party in P who joins the computation at the beginning
(the share generated by ThHE.SecretKeyGen) or in
the middle (the share generated by ThHE.Join) of the
process. Additionally, given any t valid shares, the
algorithm correctly computes the public key pk which
has the same formula as the public key of the single-key
HE scheme described in Figure 2.

• If the underlying (conventional) HE scheme satisfies
correctness with the noise bound, the ThHE.PartDec
algorithm returns the correct plaintext p given the same
noise bound, and the encryption ct of the p which is
computed by either ThHE.Encrypt or ThHE.Add.

Fix the security parameter λ, threshold scheme TS
with a threshold t, the k messages µi ∈ {0, 1}⋆ for i ∈ [k],
sets P = {P1, . . . , Pm} and P ′ = {P1, . . . , Pn} for m ≥
n ≥ t, the following holds. For (pk, sk1, . . . , skn) ←
ThHE.KeyGen(λ,TS(t),P ′); for ν ∈ [n+ 1,m], skν ←
ThHE.Join(λ, {ski}i∈A′ , Pν) where A′ is an index set of
t shared secret keys; cti = ThHE.Encrypt(pk, µi),∀i ∈
[k]; and ct = ThHE.Add(ct1, . . . , ctk). We must show
that given D = {ThHE.PartDec(ct, ski)) | i ∈ A}
where A is an index set of t shared secret keys,
Prob[ThHE.FinalDec(pk, ct, D) = µ1 + . . . + µk)] =
1− negl(λ). To this end, we show the followings.

(1) The ThHE.KeyGen generates the valid share of the
secret key sk =

∑t
i=1 ci,0 to each party in P ′.

Let consider the t-degree polynomial f(X) =∑t
i=1 fi(X), where the polynomial fi(X) =∑(t−1)
k=0 ci,kX

k has been chosen by the pivot party
Pi∈[t]. As each ci,0 is sampled from the B1-bounded
distribution χ1, the value of f(0) is bounded by tB1.
We first show that each party Pi∈[n] receives the valid
S3 share [f(i)]q from ThHE.KeyGen. Subsequently,
we prove that any t shares can reconstruct the jointed
secret key sk =

∑t
i=1 ci,0.

Recall that the pivot party’s key comprises of two
components, namely ski = (ci,0, [

∑t
j=1 vj,i]q). For the

sake of simplicity, we shall disregard the first compo-
nent of the key. According to ThHE.SecretKeyGen,
it is easy to see that ski = [f(i)]q holds for all i ∈ [m],
given that ski = [

∑t
j=1 vj,i]q = [

∑t
j=1[fj(i)]q]q.

(2) The ThHE.KeyGen algorithm correctly computes the
public key pk.
Given t partial public keys pki = [−a ·ci,0+ei]q from
t pivots, the first term of the public key is computed
correctly as pk =

[∑t
i=1 pki

]
q
=

[∑t
i=1−a · ci,0 +

ei
]
q
= [−a · s + e]q for the noise e =

∑t
i=1 ei. Note

that the secret key sk =
∑t

i=1 ci,0 and the noise e =∑t
i=1 ei, where all ci,0 and ei are sampled from χ1

and χ2, respectively, thus, the sk and e are sampled
from the distribution χ′

1 and χ′
2, respectively.

In a general case when there is a set A of t alive
parties, each Pk∈A publishes its partial public key
pkk = [ConvMultq(−a · skk, LA(0, k)) + ek]q. This

Computation Communication
Pivot Non-Pivot Combiner Pivot Non-Pivot Combiner

ThHE.SecretKeyGen O(n log(t)) O(log(t)) – O(nN log(q)) O(tN log(q)) –
ThHE.PublKeyComp (1) O(N log(N)) – O(tN) O(N log(q)) – O(tN log(q))
ThHE.PublKeyComp (2) – O(N log(N) + t) O(tN) – O(N log(q)) O(tN log(q))
ThHE.Join (1) O(log(t)) O(log(t)) – O(N log(q)) O(tN log(q)) –
ThHE.Join (2) – O(t2) – – O(tN log(q)) –
ThHE.Encrypt O(N log(N)) O(N log(N)) – – – –
ThHE.Add O(N) O(N) – – – –
ThHE.PartDec O(N log(N)) O(N log(N)) – O(N log(q)) O(N log(q)) –
ThHE.FinalDec – – O(tN) – – O(tN log(q))

TABLE 8: The Complexity of Our ThHE Construction. We have three types of parties: pivot, non-pivot, and combiner. The
combiner can be any party including pivot, non-pivot, or a third party such as a server in our FL application. The ThHE key
generation and decryption algorithms rely on Shamir secret sharing which contains the polynomial operations. Using fast Fourier
transform (FFT) [54, 19], the two t-degree polynomial multiplication has computational complexity of O(t log t), and n-point
evaluation has the complexity O(n log t). (1): t pivots are online. (2): A subset of pivots are offline but at least t parties are online.
n, t represents the number of parties, the threshold for our ThHE. The ciphertext space is Rq = Zq[X]/(XN + 1). Cells with −
denote computation/communication that is not valid by the protocol.

allows a combiner to correctly compute the joint public
key which has the same formula as the public key of
the single-key HE scheme described in Figure 2. It due
to the fact that

pk =
[∑
k∈A

pkk
]
q

=
[∑
k∈A

[ConvMultq(−a · skk, LA(0, k)) + ek]q
]
q

=
[∑
k∈A

[−a · skkLA(0, k) + ek]q
]
q

=
[
− a[

∑
k∈A

skkLA(0, k)]q + [
∑
k∈A

ek]q
]
q

= [−a · s+
∑
k∈A

ek]q

(3) The ThHE.Join give the valid share of the secret key
sk =

∑t
i=1 ci,0 to each new party.

In ThHE.Join, which generates a new secret key
skν for a new user Pν∈[m+1,n], the computation of
skν is identical to that in ThHE.SecretKeyGen, pro-
vided all t pivots are online. Thus, we have skν =
[f(ν)]q. For a general case scenario where a set A
of any t parties is available, the computation1 of
the skν is given by skν = [

∑
k∈A skkLA(ν, k)]q.

Here, LA(ν, k) =
∏

j∈A\{k}
ν−k
j−k is a Lagrange co-

efficient. Using Lagrange linear combination, the skν
is a valid Shamir share of sk since we have skν =
[
∑

k∈A[f(k)]qLA(ν, k)]q = [f(ν)]q.
Given a set A of any t valid Shamir se-
cret shares, one can reconstruct sk by comput-
ing

∑
k∈A skkLA(0, k) =

∑
k∈A[f(k)]qLA(0, k) =

[f(0)]q = sk.
(4) Assuming that the underlying (conventional) homo-

morphic encryption scheme satisfies correctness with
a noise bound of tB2, the ThHE.PartDec algorithm
will return the correct plaintext p when given the
same noise bound tB2 and the encryption ct of p that
was computed by either ThHE.Encrypt or ThHE.Add
algorithm.
Recall that the constant coefficient sk of f(X) is
bounded by tB1, which means that the secret key sk

1. For simplicity, we disregard the zero share, as it finally cancels out

belongs to the distribution χ′
1. Additionally, the noise

term e in the public key pk is equal to [
∑

k∈A ek]q,
where each local noise ek is sampled from the B2-
bounded distribution χ2, and therefore, the e also
belongs to the tB2-bounded distribution χ′

2.
The ThHE.Add calls the additive evaluation al-
gorithm of the single-key HE. Hence, when us-
ing the underlying single-key HE with the noise
space χ′

2 to prove that Prob[ThHE.FinalDec(D) =
C(µ1, . . . , µk)] = 1 − negl(λ) where D =
{ThHE.PartDec(ct, ski)) | i ∈ A}, it is sufficient
to prove that Prob[ThHE.FinalDec(D) = µ] =
1 − negl(λ) where ct is the encryption of µ =
C(µ1, . . . , µk).
In ThHE.Encrypt, the ciphertext ct = (c0, c1) is
computed as follows: c0 = [(−a·s+e)·u+e′1+∆·µ]q;
c1 = [a · u + e′2]q; u ← χ′

1; e
′
1, e

′
2 ← χ′

2; and ∆ =
⌊q/p⌋. When the set A consists of the t pivot parties,
they perform the partial decryption p′

i = [c1 ·ci,0+ei]q
and then compute

[
p/q[c0 +

∑t
i=1 p′

i]q
]
p
. We have:

[c0 +

t∑
i=1

p′
i]q = [c0 +

t∑
i=1

[c1 · ci,0 + ei]q]q

= [c0 + c1 · s+
t∑

i=1

ei]q

=
[
[(−a · s+ e) · u+ e′1 +∆ · µ]q

+ [a · u+ e′2]q · s+
t∑

i=1

ei
]
q

= [∆ · µ+ e · u+ e′1 + e′2 · s+ e′]q

where e′ =
∑t

i=1 ei ∈ χ′
2. Since all the variables

e, u, e′1, e
′
2, e

′, s are from the bounded distribution, the[
p/q[c0 +

∑t
i=1 p′

i]q
]
p

gives the desired plaintext µ.
In a general case when there is a set A of t alive
parties, the final decryption of the ciphertext ct =
(c0, c1) is given by

[
p/q[c0 +

∑
k∈A pk]q

]
p

where

pk = [ConvMultq(c1 · skk, LA(0, k))+ ek]q. We have:

[c0 +
∑
k∈A

pk]q =
[
c0 +

∑
k∈A

[c1 · skkLA(0, k) + ek]q
]
q

=
[
c0 + c1 ·

∑
k∈A

(
skkLA(0, k)

)
+

∑
k∈A

ek]q
]
q

= [c0 + c1 · s+
t∑

i=1

ek]q

Similar to the above case, the final decryption[
p/q[c0 +

∑
k∈A pk]q

]
p

gives the correct plaintext µ.

E.3. Security

The security definition of ThHE is stated in accordance
with the threshold security of [17] which includes the
semantic/simulation security in Definition 4 and Defini-
tion 5. The challenge with these definitions is how to
accurately reflect the dynamics of the setting. For simplic-
ity, we assume that the adversary controls the malicious
parties only after the join or refresh share functions are
called.

We state the semantic security and simulation of our
ThHE in Theorem 3 and Theorem 4, respectively in
Appendix. At the high-level idea, the security of our
ThHE relies on the PLWE assumption, the security of
threshold scheme (e.g., Shamir secret sharing) and the
single-key HE schemes. First, we observe that all the
broadcast messages in the ThHE construction have a form
(a, [a · x + e]q) for a ← Rq and e ← χ2. Based on
the PLWE problem, these messages reveal nothing about
the underlying secret x. Second, we ensure that any set
of t − 1 parties cannot reconstruct the original secret
because of the Shamir secret sharing scheme. Thus, no
one can learn the secret key as well as other parties’
input unless t parties collude. Finally, the encryption and
evaluation algorithms are computed in a similar way to
single-key HE. Therefore, if the underlying single-key
HE is secure, so are these two algorithms of ThHE. For
achieving malicious security, we can refer directly to the
discussion in Section 5 and Appendix D.3.

Definition 4. (Semantic Security) We say that a ThHE
scheme satisfies semantic security if for all security pa-
rameter λ, the following holds. For any PPT adversary
Adv, the following experiment ExptsemAdv,ThHE(1

λ) outputs
1 with negligible probability.

ExptsemAdv,ThHE(1
λ):

• On input the security parameter λ, the adversary Adv
outputs a threshold scheme TS with a threshold t.

• The challenger runs (pk, sk1, . . . , skn) ←
ThHE.KeyGen(λ,TS(t),P ′), skν ←
ThHE.Join(λ, {ski}i∈A′ , Pν), for ν ∈ [n + 1,m],
and {sk1, . . . , skn} ← ThHE.ShareRefresh(P =
{P1, . . . , Pn}, t′), where P ′ = {P1, . . . , Pn} and A′

is an index set of t shared secret keys. The challenger
provides pk to Adv.

• Adv outputs an invalid set V ∈ {P1, . . . , Pm} for such
that |V | < t. Note that this occurs after ThHE.Join
to ensure the security of the dynamic model. For
ThHE.ShareRefresh, we can consider the security

with respect to the new threshold t′ to be similar to
that of the original threshold t.

• The challenger provides {ski | i ∈ V } along with the
ct = ThHE.Encrypt(pk, µ) for µ← {0, 1}⋆ to Adv.

• The challenger provides the ciphertext
ct = ThHE.Encrypt(pk, µ) for µ ← {0, 1}⋆ to
Adv.

• Adv outputs a guess µ′. The experiment outputs 1 if
µ = µ′.

Definition 5. (Simulation Security) We say that a ThHE
scheme satisfies simulation security if for all secu-
rity parameter λ, the following holds. There exists a
stateful PPT algorithm T = (T1, T2, T3, T4) such that
for any PPT adversary Adv, the following experiments
ExptAdv,ThHE,REAL(1

λ) and ExptAdv,ThHE,IDEAL(1
λ) are

indistinguishable:
ExptAdv,ThHE,REAL(1

λ):
• On input the security parameter λ, the adversary Adv

outputs a threshold scheme TS with a threshold t.
• The challenger runs the key gen-

eration (pk, sk1, . . . , skn) ←
ThHE.KeyGen(λ,TS(t),P ′), the join algorithm
skν ← ThHE.Join(λ, {ski}i∈A′ , Pν), for
ν ∈ [n + 1,m], and {sk1, . . . , skn} ←
ThHE.ShareRefresh(P = {P1, . . . , Pn}, t′) where
P ′ = {P1, . . . , Pn} and A′ is an index set of t shared
secret keys. The challenger provides the pk to Adv.

• Adv outputs an invalid set V ∈ {P1, . . . , Pm} such that
|V | < t, and k messages µj∈[k] ← {0, 1}⋆. Note that
this occurs after ThHE.Join to ensure the security of
the dynamic model. For ThHE.ShareRefresh, we can
consider the security with respect to the new threshold
t′ to be similar to that of the original threshold t.

• The challenger provides {ski | i ∈ V } and the cipher-
texts ctj∈[k] = ThHE.Encrypt(pk, µj) to Adv.

• Adv issues a polynomial number of queries for the
form (S ⊂ {P1, . . . , Pm}, C ⊂ {1, . . . ,m}}). For each
query, the challenger computes ĉt = ThHE.Add({cti |
i ∈ C}), and provides the partial decryption pi =
ThHE.PartDec(ĉt, ski),∀i ∈ S to Adv.

• Adv outputs a distinguishing bit b
ExptAdv,ThHE,IDEAL(1

λ):
• On input the security parameter λ, the adversary Adv

outputs a threshold scheme TS with a threshold t.
• The challenger runs (pk, sk1, . . . , skn) ←
T1(λ, d,TS(t),P ′) and skν ← T2(λ, {ski}i∈A′ , Pν),
for ν ∈ [n + 1,m] where P ′ = {P1, . . . , Pn} and A′

is an index set of t shared secret keys. The challenger
provides the pk to Adv.

• Adv outputs an invalid set V ∈ {P1, . . . , Pm} such that
|V | < t, and k messages µj∈[k] ← {0, 1}⋆,

• The challenger provides {ski | i ∈ V } and the cipher-
texts ctj∈[k] = ThHE.Encrypt(pk, µj) to Adv.

• Adv issues a polynomial number of queries for the form
(S ⊂ {P1, . . . , Pm}, C ⊂ {1, . . . ,m}). For each query,
the challenger computes ĉt = T3({cti | i ∈ C}), and
provides the partial decryption pi = T4(ĉt, ski),∀i ∈ S
to Adv.

• Adv outputs a distinguishing bit b

Intuitively, the security definitions say that given an
invalid set V of parties (i.e., |V | < t), (1) the adversary
should not be able to learn anything about µ given the

encryption of a message µ chosen by the challenger; (2)
when the adversary Adv gives the ciphertexts ctj of the
chosen messages µj , requests to perform computations
C on the ciphertexts, and their partial decryptions, the
adversary should not learn any information about the
shared secret key of other honest parties or the secret key
sk from the partial decryptions. The Adv executes the
final decryption, but learns nothing except the

∑
i∈C µi.

Theorem 3. (Semantic Security) Suppose HE is an addi-
tive homomorphic encryption scheme and TS is a thresh-
old scheme that satisfy security. Then, the ThHE construc-
tion described in Figure 11 also satisfies semantic security
defined in Definition 4 under the PLWE assumption.

Proof. The semantic security of our ThHE follows from
the semantic security of the underlying FHE and the
property of threshold scheme in a straightforward way.

The encryption algorithm of our ThHE scheme follows
the same encryption of the single-key HE where the noise
is sample from χ′

2. In the ThHE.PublKeyComp, the noise
term e of the public key pk is obtained by summing up
randomly sampled noise terms ei from a B2−bounded dis-
tribution χ2. As the χ2 (such as the Gaussian distribution)
has an additive property, the resulting e can be considered
to be sampled from a tB1-bounded distribution χ′

1. This
means that both encryption and key generation sample
noises from the same distribution χ′

2, which is identical
with the encryption procedure of the single-key HE.

The adversary Adv obtains access to shared keys from
the invalid set V . Thanks to the security guarantee of
the threshold scheme, Adv gains no knowledge about
the secret key. With no knowledge of the secret key, the
security of the single-key HE encryption (as is the case
with our ThHE) ensures that no information about the
plaintext is disclosed during encryption without knowing
the secret key. Consequently, the adversary’s ability to
correctly guess the value µ′ = µ is negligible.

Theorem 4. (Simulation Security) Suppose HE is an
additive homomorphic encryption scheme and TS is a
threshold scheme that satisfy security. Then, the ThHE
construction described in Figure 11 also satisfies simu-
lation security defined in Definition 5 under the PLWE
assumption.

Proof. To prove the theorem, we simulate that the real-
world and ideal-world executions are indistinguishable. In
our ThHE, the T = (T1, T2, T3, T4) implements the ideal
functionality of (ThHE.KeyGen
,ThHE.Join, ThHE.Add,ThHE.PartDec). Specifically,
• T1(λ,TS(t),P ′): On input the security parameter λ, a

TS with the threshold t, and P ′, the algorithm outputs
(pk, sk1, . . . , skn) where (sk1, . . . , skn) is generated
from a threshold scheme TS(t) in which any t values
ski can construct a secret value sk. The pk has a same
formula as the public key described in Figure 2.

• T2(λ, {ski}i∈A′ , Pν): On input λ, an index set A′ of t
shared secret keys, the algorithm outputs skν which is
a valid share of the TS(t).

• T3(P = {P1, . . . , Pn}, t′): On an parties set P1, . . . , Pn

and new threshold t′, the algorithm outputs ski∈[n]

which is a valid share of the TS(t′).

• T4({cti | i ∈ C}): On input a set {cti | i ∈ C}, the
algorithm outputs the ciphertext ĉt, which is encryption
of the the sum on {µi | i ∈ C}, where µi is the plaintext
of cti.

• T5(ĉt, ski): On input ĉt, and ski, the algorithm outputs
pi such that any t values pi can compute µ̂ which is
the plaintext of ct.

We now prove the theorem using a sequence of hybrid
experiments between a challenger and an adversary Adv.
For the correctness of the algorithm T , we refer the reader
to Theorem 2.

Hybrid 0: This is ExptAdv,ThHE,REAL(1
λ) – the ThHE

real security experiment, where all parties run the ThHE
scheme honestly.

Hybrid 1: The same as the real interaction (Hy-
brid 0), except that the challenger now samples
(pk, sk1, . . . , skn) using T1. Specifically, instead of com-
puting (sk1, . . . , skn)← ThHE.SecretKeyGen
(λ,TS(t),P ′) and pk ← ThHE.KeyGen(λ, {ski}i∈A)
for a subset A ⊂ P ′, |A| = t, the challenger now samples
these values
(pk, sk1, . . . , skn) ← T1(λ,TS(t),P ′). The rest of the
experiment remains unchanged.

In the ThHE.SecretKeyGen, each corrupt party
Pj∈V receives vi,j = [fi(j)]q from the honest party Pi.
Relying on the security property of the threshold scheme,
the adversary Adv which controls the invalid set V of the
size less than the threshold t should have no different view
from the shared keys generated by T1. Moreover, when V
consists of only pivots parties, Adv sees no difference
between the set of ideal shares and the set of real shares
of secret key due to the fact that the remaining shares of
honest pivot parties are unknown values in χ1 domain to
Adv and the sk is additively shared to t pivots, which
of them is honest. Therefore, the adversary view of two
worlds from ThHE.SecretKeyGen is identical.

To simulate the ThHE.PublKeyComp which com-
putes the public key pk, we consider two following cases
based on the method to compute the keys:
• All t pivots are online: In this case, the pivot publishes

pki = [−a · ci,0 + ei]q where ci,0 ← χ1 and ei ← χ2.
According to the PLWE assumption, the pki reveals
nothing about ci,0 to the adversary.

• Some subset of pivots {P1, . . . , Pt} dropout, a random
t parties P(k∈A) for a set of indices A is chosen for
invoking ThHE.PublKeyComp computation: In this
case, the honest Pk broadcasts a partial public key
pkk = [ConvMultq(−a · skk, LA(0, k)) + ek]q for
a random noise ek ← χ2. We can present pkk as
[−(aLA(0, k))·skk+ek]q where both a and LA(0, k) are
the public values; and the values skk ∈ Rq, ek ∈ χ2.
Note that [aLA(0, k)]q are uniformly sampled in Rq

due to the fact that a is uniformly sampled in Rq and
gcd(LA(0, k), q) = 1 for any k ∈ Zq, k ̸= 0. According
to the PLWE assumption, a pair

(
[aLA(0, k)]q,

[−(aLA(0, k)) · skk + ek]q
)

hides skk. Therefore, pkk
reveals nothing to the adversary.

In summary, all the messages that were sent/received
during the ThHE.PublKeyComp procedures are either
under a form of (a, [a · x + e]q), which can be replaced
with random ones. Hence, Hybrid 0 and Hybrid 1 are
indistinguishable.

Hybrid 2: The same as Hybrid 1, except that
the challenger now uses T2 to compute skν for
the new Pν . Specifically, instead of computing
skν ← ThHE.Join(λ, {ski}i∈A, Pν) for a subset
A ⊂ P ′, |A| = t, the challenger now samples the
skν ← T2(λ, {ski}i∈A′ , Pν). The rest of the experiment
remains unchanged.

In the ThHE.Join when the new key skν is computed
by all t pivot parties (Step 1), the simulation is simple
as it is similar to the case of the ThHE.SecretKeyGen.
Consider a scenarios when a random t parties P(k∈A)

computes skν , the adversary receives vk from the honest
party Pk. The vk equals to vk = uk + zk where the
value zk =

∑
j∈A,j<k

zj,k −
∑

j∈A,j>k

zk,j is considered as

the share of zero, which was distributed by t parties (i.e.,
zk looks random to the adversary as |V | < t). Thus,
the corrupt parties cannot unmask the vk = uk + zk
to learn uk as well as the secret key skk. Therefore,
the ThHE.Join computation is secure against up to t
colluding parties. In other words, ThHE.Join implements
the ideal functionality of T1 securely. Thus, Hybrid 1 and
Hybrid 2 are indistinguishable.

Hybrid 3: The same as Hybrid 2, except that the
challenger now uses T3 to compute ski∈[n] for the new
threshold t.

Generating the t′-out-of-n Shamir secret shares of
zero follows the concept of the ThHE.SecretKeyGen
protocol, where the secret key is initialized to zero. This
approach is secure, allowing us to replace the transcript
with random values. Additionally, we leverage the addi-
tive property of Shamir shares, ensuring that the secret
key (sk) is neither reconstructed nor revealed during the
computation. Therefore, Hybrid 1 and Hybrid 2 are indis-
tinguishable.

Hybrid 4: The same as Hybrid 3, except that
the challenger now computes ĉt, {pi}i∈S from T3, T4,
respectively. Specifically, instead of computing the
ĉt = ThHE.Add({cti | i ∈ C}) and pi ←
{ThHE.PartDec(ĉt, ski)}i∈S , the challenger now sam-
ples the ĉt ← T3({cti | i ∈ C}) and pi ← T4(ĉt, ski).
The rest of the experiment remains unchanged.

Note that, the µj were chosen by the adversary. In ad-
dition, the ThHE.Add({cti | i ∈ C}) calls the subroutine
HE.Add({cti | i ∈ C}) of the single-key HE. Thus, the
simulation for ĉt and {ctj}j∈[k] is elementary. The only
information sent to the adversary is the set of values pi.

Recall that the partial decryption pi has a form pi =
[c1 · ci,0 + ei]q or pi = [ConvMultq(c1 · ski, LA(0, i)) +
ei]q = [c1LA(0, i) · ski + ei]q where ei ← χ2 is a
small noise. According to the PLWE assumption, a pair
(c1, [c1 · ci,0 + ei]q) or ([c1LA(0, i)]q, [c1LA(0, i) · ci,0 +
ei]q) protects information about ci,0 or ski from the
adversary Adv. Therefore, the Adv gains no information
about the secret key of the honest party, regardless of
the chosen C or plaintexts µj . The Adv might perform
the final decryption to obtain

∑
i∈C µi). However, this

provides the same information that Adv also receives in
the ideal world. Therefore, the Hybrid 2 and Hybrid 3 are
indistinguishable.

	Introduction
	Preliminary and Related Work
	Secure Aggregation in Federated Learning
	Polynomial-LWE based HE
	Threshold Homomorphic Encryption

	Protocol Building Blocks
	Our Dynamic Threshold HE
	Semi-Honest Key Generation in ThHE
	ThHE Extension

	Zero-knowledge Argument of Knowledge

	Semi-Honest Secure Aggregation
	Achieving Malicious Secure Aggregation
	Input Privacy
	Achieving Privacy with Robustness

	Experiment
	Comparison to Prior Work
	Our Mario Performance

	Conclusion
	Appendix A: Data Availability
	Appendix B: Preliminaries
	Notation
	Threshold Scheme and Secret Sharing

	Appendix C: Sum Verification for Public Key computation
	Appendix D: Dynamic Threshold HE
	System Design
	Additional Note on Construction in the Semi-honest Setting
	ThHE.Join Computation
	ThHE.ShareRefresh Computation
	Encryption and Decryption
	Computation in Ring

	Verifable Key Generation
	Parallel Polynomial Evaluation for Key Generation

	Appendix E: ThHE Properties
	Compactness and Complexity
	Correctness
	Security

