
DL-SITM: Deep Learning-Based

See-in-the-Middle Attack on AES

Tomáš Gerlich1, Jakub Breier2, Pavel Sikora1, Zdeněk Martinásek1,
Aron Gohr3, Anubhab Baksi4, and Xiaolu Hou5

1Brno University of Technology, Czechia, {Tomas.Gerlich,martinasek}@vut.cz,
Pavel.Sikora@vutbr.cz

2TTControl GmbH, Vienna, Austria. jbreier@jbreier.com
3Independent Researcher

4Nanyang Technological University, Singapore, anubhab.baksi@ntu.edu.sg
5Slovak University of Technology, Slovakia, houxiaolu.email@gmail.com

Abstract

The see-in-the-middle (SITM) attack combines differential cryptanal-
ysis and the ability to observe differential patterns in the side-channel
leakage traces to reveal the secret key of SPN-based ciphers. While SITM
presents a fresh perspective to side-channel analysis and allows attacks on
deeper cipher rounds, there are practical difficulties that come with this
method. First, one must realize a visual inspection of millions of power
traces. Second, there is a strong requirement to reduce noise to a mini-
mum, achieved by averaging over 1000 traces in the original work, to see
the patterns. Third, the presence of a jitter-based countermeasure greatly
affects pattern identification, making the visual inspection infeasible.

In this paper we aim to tackle these difficulties by using a machine
learning approach denoted as DL-SITM (deep learning SITM). The fun-
damental idea of our approach is that, while a collision obscured by noise
is imperceptible in a manual inspection, a powerful deep learning model
can identify it, even when a jitter-based countermeasure is in place. As
we show with a practical experiment, the proposed DL-SITM approach
can distinguish the two valid differentials from over 4M differential traces
with only six false positives. Extrapolating from the parameters of this
experiment, we get a rough estimate of 243 key candidates for the post-
processing step of our attack, which places it easily in the practical range.
At the same time, we show that even with a jitter countermeasure shifting
the execution by ±15 samples, the testing f1-score stays at a relatively
high (0.974).

1

1 Introduction

Over the last couple of decades, side-channel analysis (SCA) has secured a
stable position in cryptographic research in academic and practical applications
in industry. The seminal work by Kocher, Jaffe and Jun is regarded as its
inception where it was shown that the power consumption during the sensitive
computation leaks enough information so that the secret key under operation
can be successfully recovered [KJJ99]. The analysis presented in the paper,
which is termed as the differential power analysis (DPA), starkly contrasts the
classical cryptanalysis, since for a classically secure cipher (like, AES), it can
easily recover the entire key from a small number of cipher calls. Since then, the
research in this direction has been in full swing, as the research community has
kept exploring the field from various angles, finding more powerful and efficient
methods based on SCA. Two main directions emerged – the profiled and non-
profiled attacks. In the profiled attack scenario, the attacker first creates a
leakage profile of a device identical to the target device. This leakage profile is
then used to attack the target device [CRR03], generally reducing the number
of attack traces required to recover the key. In the non-profiled attack scenario,
the assumption is that the attacker does not possess an extra device to allow
profiling and all the collected traces are used for the attack. Common non-
profiled attack methods include correlation power analysis (CPA) [BCO04].

Over time, deep learning has also found its way into device security-related
research in the past few years. Especially, after the introduction of the AS-
CAD dataset [BPS+20], many research works have competed to propose more
accurate models to efficiently extract the side channel information from the
traces (a good overview of the current state-of-the-art is given, for example,
in [MDP20, PPM+23, BCH+22]. The main direction is towards improving pro-
filed SCA [KPH+19, ZBHV20], thus competing with standard profiled attacks
such as template attacks. Several works also focus on the use of deep learn-
ing methods in non-profiled SCA [Tim19, WHJ+21a, WPP23]. These methods
generally use neural networks either in a similar way to how CPA uses simpler
statistical distinguishers, or obtain labels for standard supervised learning from
observable outputs of the cipher that relate in a simple way to internal secrets
once the key is fixed.

Recently, a new side-channel analysis method was proposed, combining the
way differential cryptanalysis utilizes the difference propagation in the cipher,
and the ability to observe differential patterns in the leakage traces similar
to simple power analysis (SPA) [KJJ99]. The method was titled side-channel
assisted differential plaintext attack (SCADPA) [BJB18]. Initially, it was pro-
posed for bit-permutation-based ciphers such as PRESENT [BKL+07], and it
was shown it can be utilized for reverse engineering of secret S-boxes [BJHB20].
Later, it was extended to an attack called see-in-the-middle (SITM) [BBH+20]
that targets inner rounds of SPN-based block ciphers. SITM, like the previous
SCADPA methods, exploits the properties of the underlying diffusion function.
Due to the fact that a certain differential needs to be observed after the propa-
gation, SITM allows deeper round attacks, of up to 5 rounds for AES-128, and

2

for example, up to 12 rounds for SKINNY-64 or SKINNY-128. In a nutshell,
while standard workflows in differential cryptanalysis induce a special differen-
tial state inside a cipher and then look for surviving statistical biases in the
output to recognize that event a few rounds later, SITM uses a side channel for
the same purpose but does not automate the evaluation of the resulting leakage.

The illustration of the SITM attack in [BBH+20] was based on the averaging
of 1,000 power traces for each plaintext to reduce the noise and allow a visual
inspection. In a real-world scenario, the attacker might not have access to traces
with such a low noise. Moreover, distinguishing active columns by the naked eye
depends on the analyst’s skills and is prone to errors, especially since the attack
requires inspection of 222 differential traces on average to find the collision. If
we assume the analyst can process one trace in 5 seconds, this would still result
in 242 worker-days of analysis. In addition, human error rates in such a process
are very hard to reliably quantify.

In this paper, we focus on a more practical realization of the SITM, where
the attacker faces more noise in the measured traces and achieves complete au-
tomation. We also look at the scenario where the power traces are misaligned,
thwarting the visual inspection of the active columns completely. Artificially
induced jitter is a powerful countermeasure to attacks that rely on heavy aver-
aging of traces because averaging of misaligned traces acts as a low-pass filter on
the signal, which can destroy even easily interpretable, linear parts of the signal
of interest if they are tightly localized in the data. On top of that, averaging
of trace data naturally also destroys non-linear parts of the side-channel signal,
irrespective of its low-pass filtering effects under jitter.

To make the attack feasible under these circumstances, we employ a deep-
learning model to analyze the differential side channel traces, thus naming the
approach DL-SITM. In the best-case scenario when we average over 4 traces,
DL-SITM is capable of identifying the correct collisions for AES-128 from 222

traces, with only 6 false positives.
The main contributions presented in this paper can be summarized as fol-

lows:
• We propose DL-SITM, a deep learning-based improvement on top of the
See-in-the-Middle attack that offers a high level of automation and yields
high accuracies for distinguishing correct collisions in side-channel traces.

• Instead of the visual inspection of SITM traces, requiring averaging of
1,000 power traces, DL-SITM achieves a 99.7% accuracy with just the
average of 4 traces and is capable of handling misaligned traces with jitter
of up to ±15 samples without a significant accuracy degradation.

• In the realistic scenario where the attacker has to identify on average one
collision among 222 differential traces for AES-128, the DL-SITM false-
positive rate stays extremely low – at just 6 wrongly identified collisions.
This results in a remaining brute-force complexity of ≈ 243. In principle,
Considering the speed of AES-NI which can reach up to 927 MB/s on
a relatively modest Intel i5 processor [AKH20], the master key can be
recovered within a single day.

• We provide the datasets and DL models used in this paper in a public

3

x
x
x
x

AK SB

SBAES

o
o
o
o

SR

Matrix multiplication

o
o

o
o

MC

Figure 1: AES round function.

repository, to reproduce our results or improve upon them 1.

2 Background

In this section, we first provide an overview of AES-128 in Subsection 2.1 fol-
lowed by the working principle of SITM on AES in Subsection 2.2. Subsec-
tion 2.3 explains the basic concepts of deep learning within the context of side-
channel analysis. Finally, we give an overview of related work in Subsection 2.4.

2.1 AES-128

Advanced Encryption Standard (AES) is a standardized algorithm for symmet-
ric block cipher that works with a block length of n = 128 bits. The num-
ber of rounds can be 10, 12, 14 with the corresponding master key lengths of
128, 192, 256 bits. In this paper, we look at AES-128, meaning the master key
has a length of 128 bits, and the encryption/decryption runs for 10 rounds.

AES-128 encryption starts with the pre-whitening AddRoundKey. Then
each of the following 9 rounds consists of SubBytes, ShiftRows, MixColumns,
and AddRoundKey. The 10th round consists of Subbytes, ShiftRows and Ad-
dRoundKey. The decryption algorithm involves inverses of SubBytes, ShiftRows,
and MixColumns, denoted by InvSubBytes, InvShiftRows and InvMixColumns
respectively.

As depicted in Figure 1, for illustration, we represent each cipher state as 4×4
squares, where each square corresponds to one byte. Following the convention,
we refer to the bytes at positions (0, 0), (1, 1), (2, 2) and (3, 3) as the main
diagonal of the cipher state (marked by “×” in Figure 1).

AddRoundKey is a bitwise XOR computation between the cipher state and
the round key. SubBytes applies AES Sbox, denoted as SBAES, to each byte of
the cipher state, where SBAES : F8

2 → F8
2 is a permutation function on 8−bit

binary strings. InvSubBytes is the inverse of the permutation SBAES.
ShiftRows rotates the bytes in each row of the cipher state. In particular,

the first row is not changed, the second row is rotated to the left by one byte,
the third row is rotated to the left by two bytes and the last row is rotated to

1The data sets are available at https://drive.google.com/drive/folders/

1x1fUmSDCWDBqinRnUfoytc_QSLAmP9Zs?usp=sharing

4

the left by three bytes. InvShfitRows can be deduced from this and not included
here for brevity.

The MixColumns operation multiplies each column of the cipher state by the
matrix (in hexadecimal). The InvMixColumns operation multiplies each column
of the cipher state by another matrix. The multiplication between two bytes is
done by considering each byte as an element in the particular field F2[x]/(f(x)),
where f(x) = x8 + x4 + x3 + x+ 1.

MixColumns matrix:
02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

InvMixColumns matrix:

0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

We refer the readers to the original document [DR99] for more details on the

algorithm design and AES key schedule. It is important to understand that the
very first AddRoundKey operation of AES is computed with the master key, all
round keys are derived from the master key. Each iteration of the SITM attack
reduces the key space of four bytes of the master key, therefore an attacker has
to execute the SITM attack in four steps in order to reveal all 16 bytes of the
master key.

2.2 SITM on AES-128

Before we go into details of SITM attack methodology, we state the attacker
model that was followed from [BBH+20]:

• Implementation is done in software.
• SubBytes operation is implemented column by column.
• The attacker can query encryptions with their chosen plaintext and a fixed
unknown master key.

• The attacker can observe side-channel leakages to conclude if the interme-
diate values have changed between two encryptions with different plain-
texts. This can be done by post-processing the traces.

Model of the Attacker

In this paper, we keep the first three assumptions of the attack, but we explore
how changes in intermediate values can be deduced from side-channel measure-
ments with the help of neural networks. We consider the encryption of two
plaintext blocks, say S0 and S′

0. The corresponding cipher states at the end
of round i are denoted by Si and S′

i respectively (i = 1, 2, . . . , 10). The XOR

difference between Si and S′
i is represented by ∆Si (i = 0, 1, 2 . . . , 10). A byte

(or a column) in ∆Si is called active if it is nonzero. A sequence of ∆Si’s is
called a differential pattern. SITM exploits certain differential patterns.

In this paper, we target differential patterns {∆S0,∆S1,∆S2} such that
1. the active bytes in ∆S0 are along the main diagonal, and
2. there is only one active byte in ∆S1.

5

AK
SB

SR MC
AK

∆S0 ∆S1

Figure 2: An illustration of how the active bytes in ∆S0 can propagate to ∆S1.
Orange-colored boxes correspond to (potentially) active bytes. AK, SB, SR, MC
stand for AddRoundKey, SubBytes, ShiftRows, and MixColumns respectively.

When such a differential pattern is found, the SITM attack can reduce the key
space for the four bytes in the diagonal of the master key to around 28 (as
opposed to 232). We note that similar attacks can be carried out for other
diagonals of the key.

Figure 2 illustrates how the active bytes in ∆S0 can propagate to ∆S1.
AddRoundKey and SubBytes do not change the total number and positions of
the active bytes. ShiftRows will shift the active bytes from the main diagonal
to the first column. Finally, MixColumns keeps the active bytes to stay in the
first column, but can potentially reduce the number of active bytes. We can
see that there are only four possible differential patterns that satisfy conditions
1 and 2 above – the active byte in ∆S1 can be either at position (0, 0), (1, 0),
(2, 0) or (3, 0).

Figure 3 illustrates all four possible differential patterns, where ∆S denotes
the cipher state XOR difference in round 3 before ShiftRows. We can see that:

byte (0, 0) active in ∆S1 ←→ first column active in ∆S

byte (3, 0) active in ∆S1 ←→ second column active in ∆S

byte (2, 0) active in ∆S1 ←→ third column active in ∆S

byte (1, 0) active in ∆S1 ←→ fourth column active in ∆S (1)

The original paper [BBH+20] showed that by observing side-channel leak-
ages, we can conclude which column is active in ∆S. Those leakages are mea-
sured during the third round of AES encryption for S0 and S′

0. Typically a
few traces are collected for each encryption to cancel out the noise. The dif-
ference between those two averaged traces is computed for the time interval
corresponding to the 3rd round SubBytes. Assuming the AES SubBytes op-
eration is implemented column by column, we expect the peaks in the trace
difference corresponding to those four columns to appear in sequential order. In
particular, we expect the peak that corresponds to the first column being active
to appear earlier than that corresponding to the second column being active.

After the active column is identified in ∆S, by Equation (1), we will know
which byte in ∆S1 is active. Let ∆ denote the differential value of the active
byte in S1 and let kij denote the key byte at position (i, j) of the master key K.
We will detail how to reduce key space for k00, k11, k22, and k33, when only the
first column is active in S, i.e., when only the byte in position (0, 0) is active in
∆S1. Similar attack methods hold for other active columns.

6

SB
SR

MC
AK

SB

SB
SR

MC
AK

SB

SB
SR

MC
AK

SB

SB
SR

MC
AK

SB

∆S0 ∆S1 ∆S2 ∆S

Figure 3: An illustration of all four possible differential patterns such that the
active bytes in ∆S0 are along the main diagonal, and there is only one active
byte in ∆S1. Orange-colored boxes correspond to active bytes.

Since AddRoundKey and ShiftRows do not have any influence on the dif-
ferential values, by Equation (2.1), the corresponding differential values for the
four bytes after SubBytes in the first round (the second state in Figure 2) would
be:

0E ·∆, 09 ·∆, 0D ·∆, 0B ·∆.

Let δ1, δ2, δ3, δ4 denote the four differential values in ∆S0. Similarly, let pij
denote the byte at (i, j) position in S0. We have:

SBAES(p00 ⊕ k00 ⊕ δ1)⊕ SBAES(p00 ⊕ k00) = 0E ·∆ (2)

SBAES(p11 ⊕ k11 ⊕ δ2)⊕ SBAES(p11 ⊕ k11) = 09 ·∆ (3)

SBAES(p22 ⊕ k22 ⊕ δ3)⊕ SBAES(p22 ⊕ k22) = 0D ·∆ (4)

SBAES(p33 ⊕ k33 ⊕ δ4)⊕ SBAES(p33 ⊕ k33) = 0B ·∆. (5)

Before we continue with the attack details, we introduce the notion of difference
distribution tables.

Definition 1 For an Sbox SB: Fω1
2 → Fω2

2 , the (extended) difference distribu-
tion table (DDT) of SB is a 2−dimensional table T of size (2ω1 − 1)× 2ω2 such
that for any 0 < δ < 2ω1 and 0 ≤ ∆ < 2ω2 , the entry of T at the ∆th row and
δth column is given by

T [∆, δ] = {a|a ∈ Fω1
2 ,SB(a⊕ δ)⊕ SB(a) = ∆}.

We refer to δ as the input difference, and ∆ as the output difference.

7

Thus, Equations (2), (3), (4) and (5) imply that:

p00 ⊕ k00, p11 ⊕ k11, p22 ⊕ k22, p33 ⊕ k33

are AES Sbox inputs that give output differences

0E ·∆, 09 ·∆, 0D ·∆, 0B ·∆

with input differences δ1, δ2, δ3, δ4 respectively. Then, by using the difference
distribution table for AES Sbox and with the knowledge of the plaintexts, we
can reduce the key hypotheses for k00, k11, k22, k33.

For example, let us take the following pair of plaintexts that results in the
first differential pattern in Figure 3:

4C3C3F54C7AAD34E607110C753C5E990, 033C3F54C725D34E607131C753C5E90F,

with the master key given by

34463146344638383341464542413731.

The values of the main diagonal of the two plaintexts are 4C, AA, 10, 90 and
03, 25, 31, 0F. In particular, p00 = 4C, p11 = AA, p22 = 10, p33 = 90. The
differences between those two diagonals are then

δ1 = 4C⊕ 03 = 4F

δ2 = AA⊕ 25 = 8F

δ3 = 10⊕ 31 = 21

δ4 = 90⊕ 0F = 9F.

Thus, 4C⊕ k00, AA⊕ k11, 10⊕ k22, 90⊕ k33 are the AES Sbox inputs that give
output differences

0E ·∆, 09 ·∆, 0D ·∆, 0B ·∆
with input differences 4F, 8F, 21, 9F respectively. To find the possible values of
k00, k11 k22, and k33, we first find values of ∆ that gives nonempty entries in the
DDT for columns 4F, 8F, 21, 9F and corresponding rows 0E·∆, 09·∆, 0D·∆, 0B·∆.
There are in total 13 of them, as shown in Table 1.

Then with the knowledge of the plaintext, we can find all the possible values
for the four key bytes, as shown in Table 2. The remaining number of key
hypotheses is given by 24 × 12 + 23 × 4 = 224 ≈ 28.

Now if we compute using our plaintext and master key, the cipher states at
the end of round 1 are:

S1 = 1F1DABAE4071BDD502563FBF63841BAE, S′
1 = C81DABAE4071BDD502563FBF63841BAE.

We can see that the active byte in S1 is given by ∆ = D7, which is among the
values we have found in Tables 1 and 2 (in blue). The correct key byte values
are given in the corresponding row in Table 2 (in blue).

8

∆ k00 ⊕ 4C k11 ⊕ AA k22 ⊕ 10 k33 ⊕ 90

1A 16, 59 65, EA CF, EE 62, FD

29 96, D9 3E, B1 85, A4 78, E7

42 28, 67 58, D7 59, 78 16, 89

5D AB, E4 40, CF 81, A0 45, DA

66 03, 4C 2C, A3 D8, F9 1D, 82

71 AF, E0 78, F7 DE, FF 39, A6

74 82, CD 5D, D2 07, 26 4E, D1

95 07, 48 43, CC 87, A6 65, FA

9C 97, D8 00, 3D, 8F, B2 44, 65 7F, E0

CC 1D, 52 37, B8 93, B2 5F, C0

D7 37, 78 63, EC 56, 77 3E, A1

E7 3A, 75 7B, F4 1B, 3A 63, FC

EB BB, F4 34, BB CD, EC 54, CB

Table 1: Possible values of ∆ and the corresponding possible values for k00 ⊕
4C, k11 ⊕ AA, k22 ⊕ 10, k33 ⊕ 90.

2.3 Deep Learning and Side-Channel Analysis

Side-channel analysis (SCA) has emerged as a serious threat to cryptographic
implementation security, exploiting physical emissions from cryptographic de-
vices to extract secret information [HB24]. These emissions, such as power
consumption, electromagnetic radiation, and timing information, help attack-
ers recover cryptographic keys in a fraction of the time compared to crypt-
analysis attacks. Traditional SCA methods, such as differential power analysis
(DPA) [KJJ99] and correlation power analysis (CPA) [BCO04], rely heavily on
statistical techniques and require significant domain expertise in data prepara-
tion for the analysis, especially in the presence of countermeasures.

With the rise of deep learning (DL), SCA has undergone a significant trans-
formation. Deep neural networks have shown remarkable capabilities in learning
complex patterns and features from raw side-channel data [BPS+20]. Convo-
lutional neural networks (CNNs) are especially useful for this purpose as they
can directly process misaligned traces [PSK+18]. It was also shown that tradi-
tional SCA pre-processing techniques can be directly plugged in as a part of the
model to reduce the need for having multiple steps [WHJ+21b]. This shift has
not only enhanced the efficiency and success rates of side-channel attacks but
also reduced the dependency on the analyst’s knowledge and expertise, making
SCA more accessible to a wider population. In the rest of the paper, we refer
to deep learning-based SCA as DL-SCA.

There are two general approaches to DL-SCA, profiled and non-profiled. We
will outline both of these in more detail below:

• Profiled DL-SCA: Profiled attacks are similar to supervised learning [HTF+09]
in the context of machine learning. The approach involves two phases:

1. Profiling phase: The attacker is assumed to have access to a device

9

∆ k00 k11 k22 k33
1A 5A, 15 CF, 40 DF, FE F2, 6D

29 DA, 95 94, 1B 95, B4 E8, 77

42 64, 2B F2, 7D 49, 68 86, 19

5D E7, A8 EA, 65 91, B0 D5, 4A

66 4F, 00 86, 9 C8, E9 8D, 12

71 E3, AC D2, 5D CE, EF A9, 36

74 CE, 81 F7, 78 17, 36 DE, 41

95 4B, 04 E9, 66 97, B6 F5, 6A

9C DB, 94 AA, 97, 25, 18 54, 75 EF, 70

CC 51, 1E 9D, 12 83, A2 CF, 50

D7 7B, 34 C9, 46 46, 67 AE, 31

E7 76, 39 D1, 5E 0B, 2A F3, 6C

EB F7, B8 9E, 11 DD, FC C4, 5B

Table 2: Possible values of ∆ and the corresponding key hypotheses for k00 ⊕
4C, k11 ⊕ AA, k22 ⊕ 10, k33 ⊕ 90. The correct key bytes are marked in blue.

similar to the device under test (DUT) and uses it to collect a large
number of traces, along with the corresponding plaintexts and secret
keys. These together are used as a training dataset for the model
to learn the relationship between the side-channel emissions and the
secret key.

2. Attack phase: The model trained in the previous phase is now used
to analyze the traces from the actual DUT to recover the secret key.

The majority of literature focuses on profiled DL-SCA as these attacks
are highly effective and powerful. The model can be fine-tuned to learn
patterns and features specific to the device and the implementation.

• Non-profiled DL-SCA: Non-profiled attacks are analogous to unsuper-
vised learning [CA16]. The assumption is that the attacker does not have
access to a similar device for assembling a labeled dataset for training.
Instead, the traces from the DUT are directly analyzed without a profil-
ing phase. These attacks are more challenging because they must infer
the key-related information directly from the observed traces. One of
the non-profiled techniques is differential deep learning analysis (DDLA),
analogous to DPA [Tim19].

There are other directions that utilize deep learning for some tasks within
SCA, such as leakage assessment [MWM21] or stream cipher analysis [KDB+22].
For a more comprehensive overview of current advances in DL-SCA, we refer
interested readers to [PPM+23].

10

Differential trace

Analyze the differential pattern

6,600 6,700 6,800 6,900 7,000 7,100
−0.2

−0.1

0

0.1

0.2

Trace 1

Encryption of Plaintext 1

6,600 6,700 6,800 6,900 7,000 7,100
−0.2

−0.1

0

0.1

0.2

Trace 2

Encryption of Plaintext 2

Reduce the key candidates

6,600 6,700 6,800 6,900 7,000 7,100

−1

0

1

·10−2

Figure 4: Illustration of one iteration of SCADPA methodology developed
in [BJB18]. The attacker can repeat this process until the master key is found
or until it can be searched with a reasonable time complexity.

2.4 Related Works

The original SCADPA was proposed in 2018 [BJB18] with a case study on
PRESENT-80 block cipher. In this chosen-plaintext SCA attack, the attacker
first encrypts two plaintexts that differ in exactly one nibble and observes the
side-channel leakage during the first round S-box computation. By doing that,
the attacker obtains two leakage traces that are subtracted from each other to
get a difference trace. Based on the peaks in the difference trace, the attacker
can reduce the search complexity of the key nibble. This process is illustrated
in Figure 4. In an optimal case, the attacker can recover the entire 80-bit
secret key with 17 encryptions and a search complexity of 216. The attack was
demonstrated on an 8-bit AVR microcontroller.

In [BJHB20], SCADPA was extended to GIFT, and multiple implementa-
tions were considered, including bitslice ones that run on 32-bit architectures.
Apart from that, a method to reverse-engineer secret S-boxes based on SCADPA
was proposed. The experiments were done on a 32-bit ARM microcontroller.
Three related attacks have been developed which loosely follow the SCADPA
methodology. A semi-blind combined middle-round attack (SBCMA) [HBB22]
utilizes fault injection and subsequent side-channel measurement in the mid-
dle rounds. A differential no-fault analysis (DNFA) [HBB21] exploits statistical
properties of the ciphertext distribution together with side-channel information.
Both SBCMA and DNFA target GIFT-based AEAD schemes. An attack titled
SCADFA [PDJ+19], side-channel assisted differential fault analysis explored
another application of SCADPA – observation of difference propagation in the
middle rounds after the fault was introduced in the cipher.

The SITM attack was a generalization of SCADPA to SPN-based ciphers [BBH+20].
SITM pushed the side-channel analysis part into the middle rounds (up to 12
for some ciphers) thanks to the more sophisticated utilization of differential
characteristics of ciphers. Provided experiments showed the feasibility of the
attack on 8-bit and 32-bit microcontrollers. Furthermore, a way to defeat shuf-
fling countermeasures was shown in the paper. SITM attack was later extended
to ARIA and DEFAULT [PK22]. An improvement to the attack to extend

11

masking to 4 rounds in the case of AES-128 and 12 rounds for AES-256 was
proposed in [PKK21]. Reverse-engineering part of SCADPA was further im-
proved in [CBB21].

The main drawback of the attack is that it requires a visual inspection of
power traces to recognize whether a plausible difference propagation happened
in the cipher. To be able to recognize collisions, it is often necessary to average
a large number of traces to minimize the noise – for example, SITM [BBH+20]
used an average of 1000 traces. Measurement of power traces and their visual
inspection makes the SITM attack very hard to mount in practice. For example,
in the case of AES-128, the attacker needs to analyze 222 differential traces on
average to find a collision. Another issue with the attack is that a simple
jitter will effectively stop the attacker from being able to visually analyze the
differences.

3 DL-SITM Methodology

In the following, we describe the working principle of the DL-SITM attack.
The initial sequence of the attack steps is the same as in the original SITM
(see Section 2.2). First, the differential trace is calculated as a difference of
power traces obtained by measuring two plaintexts (S0, S

′
0 that differ in the

main diagonal). In the second step, the neural network model determines the
collision from the differential trace – the four possible patterns that help in the
key recovery are stated in Figure 3. Based on the knowledge of plaintexts and
collisions, the possible values of ∆ and the corresponding key hypotheses are
calculated in the last step. While we implemented the DL-SITM for the main
diagonal, it is directly applicable to the remaining three diagonals.

3.1 Generation of Plaintext Pairs

To generate plaintext pairs for side-channel measurement, we take a closer look
at the differential patterns in Figure 3. We can see that instead of generating
random plaintexts S0, S′

0 that differ in the main diagonal and check if they
satisfy any of the patterns, we can generate random states S1 and S′

1 that differ
in only one byte in the first column. After that, we simply decrypt the two
cipher states S1 and S′

1 using the inverse of the first round of AES to find pairs
of plaintexts. If the resulting pair only has differences along the diagonal, we
record them as one pair for our experiment. Furthermore, to generate other
plaintext pairs that do not result in any of our target differential patterns, we
simply generate random states S1 and S′

1 that differ in more than one byte in
the first column.

Since the goal of DL-SITM is to identify if any of the four differential patterns
shown in Figure 3 have occurred, we separate our plaintext pairs into five classes:

• Class 0 consists of plaintext pairs that result in the first differential pattern
in Figure 3. In particular, only the first column is active in round 3 before
ShiftRows;

12

NN
classificator

-
DDT

∆ δ

-

Plaintexts

Reduce the key
candidates

Power traces
 S0

Differential
trace

Active
collumn
Active

collumn

Analyze the
differential pattern

Power traces
S´0

Figure 5: DL-SITM flowchart.

• Class 1 consists of plaintext pairs that result in the second differential
pattern in Figure 3. In particular, only the second column is active in
round 3 before ShiftRows;

• Class 2 consists of plaintext pairs that result in the third differential pat-
tern in Figure 3. In particular, only the third column is active in round 3
before ShiftRows;

• Class 3 consists of plaintext pairs that result in the fourth differential
pattern in Figure 3. In particular, only the fourth column is active in
round 3 before ShiftRows;

• Class 4 consists of all other plaintext pairs.

Each dataset in our experiments was divided into training, validation, and
testing in the 60 : 20 : 20 ratio, respectively. To identify points of interest,
we utilized a differential power analysis attack for SubBytes of the first three
rounds. In other words, we chose the output of the above-mentioned operations
as the intermediate value of the DPA attack based on the correlation coefficient
(in the following text denoted as CPA) [MOP07]. The result of the CPA analysis
in Figure 6 shows that the third round SubBytes operation can be analyzed by
restricting the interval to samples 215, 000−245, 000. The sample points in this
interval were then used for the subsequent steps of the experiment to reduce the
complexity of the data. The direct input of the CNN was the difference between
two such signals (see Figure 5).

3.2 Model Architecture

Our model architecture was based on the current state-of-the-art in DL-SCA.
The conclusion from the current literature is that CNNs are very effective and
accurate when applied to power trace classification, e.g., in [BPS+20, SM23].
The initial CNN model consisted of convolutional blocks, which were composed
of one convolutional layer and one max pooling layer. Then a dropout layer
was added, and immediately after the dense layers were placed. The network
output was formed by the last dense layer which classifies the five classes. Keras
Tuner was used to find the most suitable architecture for our experiments by
utilizing Bayesian optimization with the Gaussian process. For each dataset, we

13

Figure 6: Verification of points of interest.

trained 1, 000 models. The most suitable one was selected based on the f1-score
metric for the validation and testing part of the dataset. Argmax was utilized
for datasets testing throughout the entire process. Argmax selects the predicted
class based on the highest probability.

3.3 Model Metrics

The following metrics were used to evaluate the effectiveness of our models:
(i) True positive (TP): NN predicted the active column = X, and the active

column was X.
(ii) False positive (FP): NN predicted the active column = X, and the active

column was Y .
(iii) True negative (TN): template attack predicted the active column = Y ,

and the active column was Y .
(iv) False negative (FN): NN predicted the active column = Y , and the active

column was X
where X ̸= Y ∧X,Y ∈ J0, 4K represent active column value.
The precision rate is the ratio of correct classifications and all classifications

made for individual differential traces (see each row):

TA precision =
TP

TP + FP
. (6)

The recall rate of TA shows the ratio of correct classifications and all classifica-
tions made for the correct active column (column of matrix):

TA recall =
TP

TP + FN
. (7)

14

Naturally, the accuracy rate indicates the ratio of all correct classifications and
the number of all classifications made:

Accuracy rate =
TP + TN

TP + FP + TN + FN
. (8)

The F1-score is the harmonic mean of precision and recall. It provides a balance
between these two metrics and is especially useful when the datasets are imbal-
anced. We use this metric for comparing the performance of NN classification
models.

F1-score = 2 · precision · recall
precision + recall

(9)

4 Experimental Evaluation

4.1 Experimental Setup

Our experimental testbed used for power analysis measurements was based on
Sasebo Sakura G and Sakura W boards and a software AES implementation
written in C. The device under test was a programmable smart card with an
ATMega8515 microcontroller. For measurements, we used Keysight MSOS104A
digital oscilloscope. The sampling rate was set to 200MS/s.

The workstation used for machine learning was equipped with AMD Ryzen
5 5600X 3,7GHz CPU, Kingston 3200MHz DDR4 32GB RAM, and Nvidia
GeForce RTX 3080 10GB GPU. The NNs were programmed using the Keras
library, which uses the TensorFlow backend. The following software packages
were installed to work with the AI models in our attack: OS Ubuntu, CUDA
11.6, cuDNN 8.2.4, Miniconda 4.12.0, Python 3.10.4 (Tensorflow 2.9.1, Keras
2.9.0).

4.2 Test Scenario: Noise Impact – Fixed Key

To verify the usability and effectiveness of the DL-SITM proposed, we prepared
a total of 4 datasets that differed in the amount of measurement noise. We
used averaging of power traces to reduce the noise, the number of power traces
utilized to calculate the average was set directly on the oscilloscope. In the
first data set the power traces were stored without averaging, in the second,
third, and fourth datasets, the number of averaging was set to 2, 4, and 1024,
respectively2. In the following parts, we label these datasets DS1, DS2, DS3,
and DS4. Each dataset consists of 10000 power traces that cover the first five
rounds of the AES-128 encryption process. We measured 2000 power traces for
each active column. Examples of the differential traces for individual datasets
are depicted in Figure 7.

One can easily observe the relationship between the number of averaging
and the visibility of the differential patterns. The patterns are visible only in
Figure 7d, allowing the SITM attack even without the help of the NN model,

2The averaging can be set on the MSOS104A oscilloscope to 0, 2, 4, 16, 32 and 1024.

15

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

−2

0

2

·104

·104

Time sample

Le
ak

ag
e

(a) Without average (DS1).

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

−2

0

2

·104

·104

Time sample

Le
ak

ag
e

(b) Average 2 (DS2).

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

−2

0

2

·104

·104

Time sample

Le
ak

ag
e

(c) Average 4 (DS3).

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

−5

0

5

·104

·103

Time sample
Le

ak
ag

e

(d) Average 1024 (DS4).

Figure 7: Comparison of differential traces.

as described in [BBH+20]. However, this is not possible for lower averaging
(Figure 7a, 7b, 7c) as one cannot observe the patterns by visual inspection.

We provide the confusion matrices3 to evaluate all the classifications carried
out by matching templates4. The confusion matrices in Figure 8 cross pre-
dictions with true values obtained from the whole test set classification. Each
column of the table corresponds to the predicted active column, and each row
corresponds to the correct active column. For example, in Figure 8c, all zero
active bytes were classified correctly, as was the second active column. The first
active column had one incorrect prediction, where one differential trace was clas-
sified as a zeroth active column. The third active column was also misclassified
into the zero class. Additionally, one instance of the fourth active column was
misclassified as belonging to the first active column.

Table 3 provides a detailed analysis of the best configurations for convolu-
tional neural networks across our four datasets. The number of convolutional
units and groups significantly influenced model performance. While the best
values varied, a higher number of convolutional units (between 12 and 14) gen-
erally yielded better results. For example, DS1 and DS3 achieved optimal per-
formance with 14 convolutional units, whereas DS2 and DS4 performed best
with 12 units. This underscores the importance of fine-tuning these parameters
to balance model complexity and performance.

3The interested reader can consult [SL09] to obtain additional explanations about perfor-
mance measurements for classification, e.g. confusion matrix, precision, recall.

4It is usually more suitable to use guessing entropy as a metric to compare different key
recovery side-channel attack implementations [SMY09], but we focused on classification of
differential traces, not the secret key guessing, therefore we used a confusion matrix, which is
also often used during profiling PA attacks [FLD12].

16

0 1 2 3 4

0

1

2

3

4

196 1 0 2 1

0 200 0 0 0

0 3 194 1 2

0 0 2 198 0

0 1 2 0 197

Predicted label

T
ru
e
la
b
el

0

50

100

150

200

(a) Without average (DS1).

0 1 2 3 4

0

1

2

3

4

198 1 0 0 1

0 196 4 0 0

0 1 198 0 1

0 0 1 199 0

0 0 0 0 200

Predicted label

T
ru
e
la
b
el

0

50

100

150

200

(b) Average 2 (DS2).

0 1 2 3 4

0

1

2

3

4

200 0 0 0 0

1 199 0 0 0

0 0 200 0 0

1 0 0 199 0

0 1 0 0 199

Predicted label

T
ru
e
la
b
el

0

50

100

150

200

(c) Average 4 (DS3).

0 1 2 3 4

0

1

2

3

4

200 0 0 0 0

0 200 0 0 0

0 0 200 0 0

0 0 0 200 0

0 0 0 0 200

Predicted label

T
ru
e
la
b
el

0

50

100

150

200

(d) Average 1,024 (DS4).

Figure 8: Confusion matrices for test scenario: noise impact – fixed key.

Dropout rates and regularization strategies also had a substantial impact
on the models. For DS4, a higher dropout rate of 0.6 was the most favorable,
suggesting a need for stronger regularization to prevent overfitting. In contrast,
DS1 and DS3 required lower dropout rates of 0.2. Convolutional regularization
consistently improved performance across all datasets, while dense regulariza-
tion was particularly beneficial for DS3.

The sizes of the convolutional kernels and pooling layers were also crucial.
Smaller kernel sizes (8− 12) were preferred for DS1, DS2, and DS3, while DS4
required a larger kernel size of 15. Similarly, the optimal pool size ranged from
5 to 6 across the datasets. These findings highlight the importance of adjusting
these parameters based on the specific characteristics of each dataset.

The models achieved remarkably high f1-scores across all datasets, with all
f1-scores consistently near 1.0, with DS4 and DS3 achieving perfect validation
scores and DS2 achieving a test f1-score of 0.99. These metrics reflect the ro-
bustness and accuracy of the optimized models. DS4 achieved a perfect score
of 100%, likely because with such extensive averaging, classification becomes
possible even by the human eye. In contrast, for the other datasets, the aver-
ages are not as easily distinguishable by the naked eye, which contributes to a
reduction in accuracy even for neural networks.

17

Table 3: CNN architectures for different averages for fixed key scenario.

Hyperparameters Tested Values
DS1

0 average
DS2

2 average
DS3

4 average
DS4

1,024 average

Convolutional groups [1, 2, 3, 4, 5] 4 5 3 4
Convolutional units [4, 8, 10, 12, 14, 16] 14 12 14 12

Dense layers [1, 2, 3, 4] 1 1 3 1
Dense units [128, 256, 512, 1,024] 512 512 128 512

Convolutional pool size [1, 2, 3, 4, 5, 6] 6 6 6 5
Convolutional strides [1, 2, 3, 4] 3 2 3 2

Convolutional kernel size [2, 8, 10, 11, 12, 15] 12 8 12 15
Convolutional regularization [Yes, No] Yes Yes Yes Yes

Dense regularization [Yes, No] No No Yes No
Dropout [0.2, 0.4, 0.6, 0.8] 0.2 0.4 0.2 0.6
Optimizer [Adam, RMSprop] RMSprop RMSprop RMSprop Adam

Activation function [ReLU, SELU] ReLU ReLU ReLU SELU

Accuracy
Train f1-score 0.999 0.999 0.999 1.0
Valid f1-score 0.99 0.993 0.999 1.0
Test f1-score 0.985 0.99 0.997 1.0

4.3 Test Scenario: Jitter Impact – Constant Key

In this part, we investigated the impact of jitter on the classification accuracy
of CNN models. The datasets used in this study were derived from dataset
DS4 described in Section 4.2. Four datasets were generated, where their labels
correspond to the maximum shift of samples between the two input traces, which
were then used to create the differential trace. These datasets are defined by a
random mutual shift in power traces by ±5, 10, 15, and 20 samples. Figure 9
illustrates the impact of varying jitter values on differential traces. Each subplot
shows a differential trace subjected to a distinct jitter level. An increment in
the jitter value increases the distortion observed in the differential traces. This
amplification of distortion directly impacts the classification accuracy of the
CNN employed for analysis. The introduction of jitter reduces the signal-to-
noise ratio, thereby complicating the task of the CNN to accurately classify
the data. One can see that, compared to Figure 7(d), showing the original
differential trace for dataset DS4, the differential patterns are not possible to
be determined by the naked eye even for the lowest jitter value.

Table 4 presents the values obtained for the CNN models that achieved the
highest classification accuracy. The number of convolutional units and groups
significantly influenced model performance under different jitter levels.

Notably, 16 convolutional units were optimal for jitter 5, while 12− 14 units
performed better for jitters 10, 15 and 20. Consistently, 5 convolutional groups
yielded the best results across all jitter levels, suggesting a robust structure for
handling various jitter intensities. The configuration of dense layers and units
varied with jitter levels. A single dense layer was sufficient for jitters 5 and
10, whereas 4 dense layers were necessary for jitters 15 and 20. Dense units
also fluctuated, with higher values (1, 024) optimal for jitter 5 and lower values
(128− 256) for higher jitter levels.

Dropout rates and regularization played a crucial role in maintaining model
performance. Higher dropout rates (0.8) were optimal for jitter 5, while lower

18

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

−2

0

2

·104

·104

Time sample

Le
ak

ag
e

(a) Differential trace with jitter of ±5 sam-
ples.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−4

−2

0

2

4

·104

·104

Time sample

Le
ak

ag
e

(b) Differential trace with jitter of ±10
samples.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

−2

0

2

·104

·104

Time sample

Le
ak

ag
e

(c) Differential trace with jitter of ±15
samples.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

−2

0

2

·104

·104

Time sample
Le

ak
ag

e

(d) Differential trace with jitter of ±20
samples.

Figure 9: Comparison of differential traces with artificial random jitter obtained
by shifting the traces from the DS4 dataset (average of 1, 024 traces).

Table 4: CNN architectures for different jitter on DS4 in a fixed key scenario.

Hyperparameters Tested Values Jitter 5 Jitter 10 Jitter 15 Jitter 20

Convolutional groups [1, 2, 3, 4, 5] 5 5 5 5
Convolutional units [4, 8, 10, 12, 14, 16] 16 12 14 14

Dense layers [1, 2, 3, 4] 1 1 4 4
Dense units [128, 256, 512, 1,024] 1,024 256 128 256

Convolutional pool size [1, 2, 3, 4, 5, 6] 6 4 6 5
Convolutional strides [1, 2, 3, 4] 4 2 3 3

Convolutional kernel size [2, 8, 10, 11, 12, 15] 15 11 15 11
Convolutional regularization [Yes, No] No Yes Yes Yes

Dense regularization [Yes, No] No Yes Yes Yes
Dropout [0.2, 0.4, 0.6, 0.8] 0.8 0.2 0.4 0.4
Optimizer [Adam, RMSprop] RMSprop RMSprop RMSprop RMSprop

Activation function [ReLU, SELU] SELU ReLU ReLU ReLU

Accuracy
Train f1-score 0.975 1.0 0.946 0.707
Valid f1-score 0.999 0.998 0.907 0.673
Test f1-score 0.996 0.991 0.974 0.668

rates (0.2 − 0.4) were better for higher jitter levels. Both convolutional and
dense regularizations were beneficial under higher jitter conditions (they were
not needed for jitter 5), emphasizing the need for regularization to combat
overfitting and maintain model robustness.

Optimizer RMSprop was consistently the best optimizer across all jitter lev-
els. Regarding activation functions, SELU was effective for jitter 5, while ReLU
was more suitable for higher jitter levels.

19

0 1 2 3 4

0

1

2

3

4

199 0 0 1 0

2 198 0 0 0

0 0 200 0 0

1 0 0 199 0

0 0 0 0 200

Predicted label

T
ru
e
la
b
el

0

50

100

150

200

(a) Jitter 5.

0 1 2 3 4

0

1

2

3

4

198 0 1 1 0

0 199 1 0 0

0 0 200 0 0

0 0 0 199 1

0 0 0 5 195

Predicted label

T
ru
e
la
b
el

0

50

100

150

200

(b) Jitter 10.

0 1 2 3 4

0

1

2

3

4

200 0 0 0 0

2 198 0 0 0

1 0 199 0 0

11 0 2 185 2

1 0 0 7 192

Predicted label

T
ru
e
la
b
el

0

50

100

150

200

(c) Jitter 15.

0 1 2 3 4

0

1

2

3

4

130 41 26 3 0

25 142 33 0 0

32 65 103 0 0

0 0 0 143 57

0 0 0 50 150

Predicted label

T
ru
e
la
b
el

0

50

100

150

(d) Jitter 20.

Figure 10: Confusion matrices for test scenario: jitter impact – fixed key.

The models exhibited varying performance metrics across different jitter
levels. For jitter 5, the train f1-score was 0.975, validation f1-score was 0.999,
and test f1-score was 0.996, indicating high accuracy. However, as jitter levels
increased, performance metrics generally declined. For jitter 20, the train f1-
score dropped to 0.707, with corresponding decreases in validation (0.673) and
test f1-score (0.668). This trend underscores the challenge of maintaining high
performance under increased jitter conditions.

For example, in Figure 10a, the model shows high accuracy, with only four
misclassifications. In Figure 10b, the misclassifications increase slightly, to nine
misclassifications. In Figure 10c, the model maintains high accuracy, but there
are more errors compared to jitters 5 and 10, resulting in 26 misclassifications
in total. Finally, in Figure 10d, there is a significant drop in accuracy with
332 misclassifications, making this scenario unfit for a successful attack. In
summary, as the jitter value increases, the classification accuracy decreases,
with the most noticeable decline at a jitter value of 20.

In summary, the escalation of jitter-induced perturbations is manifest in the
differential traces, as depicted by the increasing noise and irregularities from
jitter values of 5 to 20. This observation underscores the critical importance of
mitigating jitter to preserve high classification accuracy when deploying CNNs
for such analytical purposes. The results indicate that elevated jitter levels sig-
nificantly impair the model’s performance, emphasizing the necessity for robust
jitter control methodologies.

20

4.4 Test Scenario: Noise Impact – Random Key

In the previous subsections, high prediction accuracies using CNNs were achieved.
In this part we shift to a different scenario – instead of using a fixed key for all
the encryptions, we use a random key for each plaintext pair. The initial dataset
again contained an equal number of power traces for all the classes. Similarly to
the previous case, a high detection accuracy was attained. To further improve
accuracy, the NN model was fine-tuned with an additional dataset to recognize
undesirable collisions, specifically, collisions across multiple columns falling into
class 4. Specifically, we extended the dataset by 250 differential power traces
for each combination of active columns (the extended dataset contains a total
of 3500 differential power traces for class 4). After this fine-tuning, a further
increase in classification accuracy was observed. Table 5 lists the best-tuned
CNN parameter values for different averaging sizes. We again used the same
averaging values (0, 2, 4, and 1024) and titled the resulting datasets DS5, DS6,
DS7 and DS8, respectively.

Table 5: CNN architecture for the training dataset in a random key scenario.

Hyperparameters Tested Values
DS5

0 average
DS6

2 average
DS7

4 average
DS8

1,024 average

Convolutional groups [1, 2, 3, 4, 5] 5 5 4 3
Convolutional units [4, 8, 10, 12, 14, 16] 14 16 12 16

Dense layers [1, 2, 3, 4] 1 1 3 3
Dense units [128, 256, 512, 1,024] 512 1,024 128 256

Convolutional pool size [1, 2, 3, 4, 5, 6] 5 6 3 1
Convolutional strides [1, 2, 3, 4] 2 4 2 4

Convolutional kernel size [2, 8, 10, 11, 12, 15] 12 15 15 8
Convolutional regularization [Yes, No] Yes No No No

Dense regularization [Yes, No] No Yes No No
Dropout [0.2, 0.4, 0.6, 0.8] 0.6 0.2 0.6 0.4
Optimizer [Adam, RMSprop] RMSprop RMSprop RMSprop Adam

Activation function [ReLU, SELU] ReLU SELU SELU SELU

Accuracy
Train f1-score 0.971 1.0 0.947 0.986
Valid f1-score 0.960 0.992 0.998 0.994
Test f1-score 0.979 0.997 1.0 0.999

Table 5 presents the optimal configurations for our proposed models on these
datasets. The number of convolutional units and groups differs between 12−16.
For instance, 16 convolutional units were optimal for both 2 and 1, 024 averages,
while 14 and 12 units were better for 0 and 4 averages, respectively. The number
of 5 convolutional groups was optimal for 0 and 2 averages, 4 groups for 4
averages, and 3 groups for 1024 averages. This suggests that higher averaging
levels might benefit from fewer convolutional groups.

The number of dense layers and units also significantly influenced perfor-
mance. A single dense layer was sufficient for 0 and 2 averages, whereas 3 dense
layers were necessary for 4 and 1024 averages. Dense units showed variability,
with higher values (1024) for 2 averages and lower values (128−512) for others.
This indicates that increasing the number of dense layers and adjusting dense
units are essential for handling higher levels of averaging.

Dropout rates and regularization strategies were critical for maintaining
model accuracy. Higher dropout rates (0.6) were effective for 0 and 4 averages,

21

0 1 2 3 4

0

1

2

3

4

197 3 0 0 0

1 191 7 1 0

0 0 189 7 4

0 0 3 193 4

0 0 0 1 699

Predicted label

T
ru
e
la
b
el

0

200

400

600

(a) Without average (DS5).

0 1 2 3 4

0

1

2

3

4

199 0 1 0 0

0 199 0 0 1

0 0 198 0 2

0 0 0 200 0

0 0 0 0 700

Predicted label

T
ru
e
la
b
el

0

200

400

600

(b) Average 2 (DS6).

0 1 2 3 4

0

1

2

3

4

200 0 0 0 0

0 200 0 0 0

0 0 200 0 0

0 0 0 200 0

0 0 0 0 700

Predicted label

T
ru
e
la
b
el

0

200

400

600

(c) Average 4 (DS7).

0 1 2 3 4

0

1

2

3

4

200 0 0 0 0

0 200 0 0 0

0 0 200 0 0

0 0 0 199 1

0 0 0 0 700

Predicted label

T
ru
e
la
b
el

0

200

400

600

(d) Average 1024 (DS8).

Figure 11: Confusion matrices on test scenario: noise impact – random key.

while lower rates (0.2− 0.4) were better for 2 and 1024 averages. Convolutional
regularization was only beneficial for 0 averages, and dense regularization was
advantageous for 2 averages. This highlights the need for tailored regularization
approaches to optimize model performance based on the averaging level.

The choice of optimizer and activation function was pivotal across different
averaging levels. RMSprop was consistently the best optimizer for 0, 2 and 4
averages, while Adam was better for 1024 averages. Regarding activation func-
tions, ReLU was effective for 0 averages, whereas SELU was more suitable for
higher averaging levels. This underscores the importance of selecting appro-
priate optimization and activation strategies tailored to the specific averaging
level.

The models exhibited high-performance metrics across different averaging
levels. For 2 averages, the train f1-score reached 1.0, with a validation f1-score
of 0.992 and a test f1-score of 0.997. Similarly, 4 and 1024 averages also showed
excellent performance, with test f1-scores of 1.0 and 0.999, respectively. The
metrics for 0 averages were slightly lower but still high, with a train f1-score
of 0.971, validation f1-score of 0.960, and test f1-score of 0.979. These met-
rics demonstrate the models’ robustness and accuracy across varying averaging
levels.

The confusion matrix in Figure 11 indicates highly accurate models with
minimal misclassifications. While the DS5 without averaging still contained 30
false negatives, the averaged datasets exhibited strong performance with only

22

four misclassifications for DS6, one misclassification for DS8, and no misclassi-
fication for DS3.

4.5 Real-World Attack Scenario

In this section, a dataset was created consisting of power traces from known
plaintexts without the knowledge of the secret key. The plaintexts were gener-
ated by random modifications to the main diagonal. According to the original
article [BBH+20], a collision occurs in approximately 211.5 plaintexts. Again,
we created four datasets with different averaging levels (0, 2, 4 and 1024). Each
generated dataset contained 2901 power traces. Utilizing all the combinations of
these traces results in the creation of 4206450 differential traces (slightly more
than 222). Analyzing the dataset, we found out that in total, 2 collisions were
present, in classes 1 and 3. In these generated differential power traces, CNNs
trained with a random key dataset (see Section 4.4) were used to identify these
collisions. To enhance the prediction accuracy for the dataset, we introduced a
threshold mechanism, effectively reducing the number of false negative predic-
tions. Figure 12 shows the confusion matrices for this dataset. In the following,
we will discuss the results.

0 1 2 3 4

0

1

2

3

4

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 1

997 12 106 31 4.2e+6

Predicted label

T
ru
e
la
b
el

0

1

2

3

4
·106

(a) Without average.

0 1 2 3 4

0

1

2

3

4

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

48 135 36 37 4.2e+6

Predicted label

T
ru
e
la
b
el

0

1

2

3

4
·106

(b) Average 2.

0 1 2 3 4

0

1

2

3

4

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 4 2 4.2e+6

Predicted label

T
ru
e
la
b
el

0

1

2

3

4
·106

(c) Average 4.

0 1 2 3 4

0

1

2

3

4

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 3 6 10 4.2e+6

Predicted label

T
ru
e
la
b
el

0

1

2

3

4
·106

(d) Average 1024.

Figure 12: Confusion matrices for real-world attack scenario.

In the case of the dataset without averaging, the CNN exhibits the lowest
accuracy, as expected. While it might seem that the majority of differential

23

traces are classified correctly, the dataset is highly imbalanced with just 2 valid
collisions. Two valid collisions present in the dataset were not identified.

In the dataset for average 2, the model improves on the classification ac-
curacy. Misclassifications are slightly reduced compared to no averaging and
what is important, the valid collisions were correctly classified in this case. In
the dataset for average 4, the model demonstrates the highest accuracy for this
scenario. Only 6 differential traces were misclassified, and the valid collisions
were correctly classified, thus allowing to mount a key recovery attack for the re-
maining key candidates. In the dataset for average 1024, the model also achieves
a very high accuracy, albeit lower than in the previous case. In this case, 19
differential traces were incorrectly classified, and again, the valid collisions were
identified.

Overall, the results indicate that the CNN is highly effective in classifying
differential power traces, with a marked decrease in misclassification rates as the
average increases. This demonstrates the robustness of the CNN in identifying
valid collisions even when varying levels of averaging are applied.

DL-SITM Full Key Recovery

In this part, we attempt to answer the question: How expensive is it to convert
the observed leakage to full key-recovery?

For each AES state diagonal, examining 211.5 plaintexts yields 222 differential
pairs. With a 2−22 probability of a good differential, we expect at least one
suitable pair per diagonal with 1 − 1/e ≈ 63.21% probability. This gives an
overall success rate of ≈ 15.96% for all four diagonals. Each collision reduces
its diagonal’s key space to ≈ 28 candidates. Let N be the total key candidates
(across both true and false positive collisions) and t the number of 4-tuples of
valid collisions satisfying all four state diagonals. The median number of trials
before finding the key is exactly N/2 when t = 1, and decreases as a function of
N when t increases. Overall success probability can be increased to 50 percent
simply by increasing the number of plaintexts to ≈ 211.96 per diagonal.

In our experiments with 4-fold averaged traces, we identified 8 potential
collisions across all columns using 211.5+2 = 213.5 plaintexts, yielding 1538 ≈
210.59 key candidates for the tested diagonal. Assuming all four diagonals behave
similarly (a simplifying assumption that should mildly underestimate attack
costs), this results in approximately 243 remaining candidates for the full 16-
byte key. The median cost of finding the key is at most half the number of
remaining candidates, and will be lower if t > 1. Given AES-NI acceleration,
testing one key should cost ≈ 200 clock cycles including some overhead [Gue12],
so a ≈ 243 workload can be done in less than a day on a 12-core PC.

5 Discussion

Worse Performance in a 1024-fold Averaging Regime Compared to 4-
fold Averaging. It might seem surprising that 4-fold averaging does better

24

in our tests than 1024-fold averaging. However, in the following we list plausible
reasons for this:

• Removal of features by averaging: CNN models rely on fine-grained, and
often non-linear, features. There is no reason to suppose that these would
survive averaging. This is in contrast to classical template models, which
model the expected signal at the points of interest explicitly as some base
signal plus noise.

• Model generalization: Overfitting may be easier on very smooth data
(1024-fold averaging). Related to this, any steps in a training pipeline
that artificially add some form of noise (in our case, maybe dropout) will
arguably take smoothed data farther out of distribution than original data.

Potential Improvements of the Classifiers. Several ways to potentially
improve the attack exist. Misclassifications could be reduced through multi-
stage classifiers or by combining information from multiple related leakage tar-
gets similar to what SASCA-like attacks do [VCGS14]. Jitter resilience might
be enhanced by processing trace pairs directly or alignment of traces by pre-
processing. Directly processing pairs of traces would also allow to combine
predictions optimally instead of averaging trace data. We leave these possible
improvements to future research.

6 Conclusion

In this paper, we improve on the practical realization of the SITM attack [BBH+20].
By utilizing deep learning models, we can automate the attack steps, removing
the need to visually inspect over 4M differential traces. The presented DL-SITM
attack methodology is capable of handling higher levels of noise, reducing the
need to average the traces from 1000 to 4. Apart from that, it can analyze
traces with jitter of up to ±15 samples.

References

[AKH20] Eslam G AbdAllah, Yu Rang Kuang, and Changcheng Huang. Ad-
vanced encryption standard new instructions (aes-ni) analysis: Se-
curity, performance, and power consumption. In Proceedings of the
2020 12th International Conference on Computer and Automation
Engineering, pages 167–172, 2020.

[BBH+20] Shivam Bhasin, Jakub Breier, Xiaolu Hou, Dirmanto Jap, Ro-
main Poussier, and Siang Meng Sim. Sitm: See-in-the-middle
side-channel assisted middle round differential cryptanalysis on spn
block ciphers. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 95–122, 2020.

25

[BCH+22] Lejla Batina, Lukasz Chmielewski, Björn Haase, Niels Samwel, and
Peter Schwabe. Sok. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 557–589, 2022.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation
power analysis with a leakage model. In Cryptographic Hardware
and Embedded Systems-CHES 2004: 6th International Workshop
Cambridge, MA, USA, August 11-13, 2004. Proceedings 6, pages
16–29. Springer, 2004.

[BJB18] Jakub Breier, Dirmanto Jap, and Shivam Bhasin. Scadpa: Side-
channel assisted differential-plaintext attack on bit permutation
based ciphers. In 2018 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pages 1129–1134. IEEE, 2018.

[BJHB20] Jakub Breier, Dirmanto Jap, Xiaolu Hou, and Shivam Bhasin. On
side channel vulnerabilities of bit permutations in cryptographic
algorithms. IEEE Transactions on Information Forensics and Se-
curity, 15:1072–1085, 2020.

[BKL+07] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof
Paar, Axel Poschmann, Matthew JB Robshaw, Yannick Seurin,
and Charlotte Vikkelsoe. Present: An ultra-lightweight block ci-
pher. In Cryptographic Hardware and Embedded Systems-CHES
2007: 9th International Workshop, Vienna, Austria, September
10-13, 2007. Proceedings 9, pages 450–466. Springer, 2007.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli,
and Cécile Dumas. Deep learning for side-channel analysis and
introduction to ascad database. Journal of Cryptographic Engi-
neering, 10(2):163–188, 2020.

[CA16] M Emre Celebi and Kemal Aydin. Unsupervised learning algo-
rithms, volume 9. Springer, 2016.

[CBB21] Andrea Caforio, Fatih Balli, and Subhadeep Banik. Complete prac-
tical side-channel-assisted reverse engineering of aes-like ciphers. In
International Conference on Smart Card Research and Advanced
Applications, pages 97–117. Springer, 2021.

[CRR03] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template at-
tacks. In Cryptographic Hardware and Embedded Systems-CHES
2002: 4th International Workshop Redwood Shores, CA, USA, Au-
gust 13–15, 2002 Revised Papers 4, pages 13–28. Springer, 2003.

[DR99] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.

[FLD12] Yunsi Fei, Qiasi Luo, and A.Adam Ding. A statistical model for
DPA with novel algorithmic confusion analysis. In Emmanuel

26

Prouff and Patrick Schaumont, editors, Cryptographic Hardware
and Embedded Systems – CHES 2012, volume 7428 of Lecture Notes
in Computer Science, pages 233–250. Springer Berlin Heidelberg,
2012.

[Gue12] Shay Gueron. Intel advanced encryption standard (aes) new in-
structions set. Technical Report 323641-001, Intel Corporation,
September 2012. Revision 3.01.

[HB24] Xiaolu Hou and Jakub Breier. Cryptography and Embedded Systems
Security. Springer Nature Switzerland, 2024.

[HBB21] Xiaolu Hou, Jakub Breier, and Shivam Bhasin. Dnfa: Differential
no-fault analysis of bit permutation based ciphers assisted by side-
channel. In 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 182–187. IEEE, 2021.

[HBB22] Xiaolu Hou, Jakub Breier, and Shivam Bhasin. Sbcma: Semi-
blind combined middle-round attack on bit-permutation ciphers
with application to aead schemes. IEEE Transactions on Informa-
tion Forensics and Security, 17:3677–3690, 2022.

[HTF+09] Trevor Hastie, Robert Tibshirani, Jerome Friedman, Trevor Hastie,
Robert Tibshirani, and Jerome Friedman. Overview of supervised
learning. The elements of statistical learning: Data mining, infer-
ence, and prediction, pages 9–41, 2009.

[KDB+22] Satyam Kumar, Vishnu Asutosh Dasu, Anubhab Baksi, San-
tanu Sarkar, Dirmanto Jap, Jakub Breier, and Shivam Bhasin.
Side channel attack on stream ciphers: a three-step approach to
state/key recovery. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2022(2):166–191, 2022.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Advances in Cryptology—CRYPTO’99: 19th Annual
International Cryptology Conference Santa Barbara, California,
USA, August 15–19, 1999 Proceedings 19, pages 388–397. Springer,
1999.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and
Alan Hanjalic. Make some noise. unleashing the power of convo-
lutional neural networks for profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems,
pages 148–179, 2019.

[MDP20] Löıc Masure, Cécile Dumas, and Emmanuel Prouff. A compre-
hensive study of deep learning for side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems,
pages 348–375, 2020.

27

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
Analysis Attacks: Revealing the Secrets of Smart Cards (Advances
in Information Security). Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2007.

[MWM21] Thorben Moos, Felix Wegener, and Amir Moradi. Dl-la: Deep
learning leakage assessment: A modern roadmap for sca evalua-
tions. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, pages 552–598, 2021.

[PDJ+19] Sikhar Patranabis, Nilanjan Datta, Dirmanto Jap, Jakub Breier,
Shivam Bhasin, and Debdeep Mukhopadhyay. Scadfa: Combined
sca+ dfa attacks on block ciphers with practical validations. IEEE
Transactions on Computers, 68(10):1498–1510, 2019.

[PK22] Jonghyun Park and Jongsung Kim. See-in-the-middle attacks on
blockciphers aria and default. In International Conference on In-
formation Security and Cryptology, pages 3–16. Springer, 2022.

[PKK21] Jonghyun Park, Hangi Kim, and Jongsung Kim. Improved see-in-
the-middle attacks on aes. In International Conference on Infor-
mation Security and Cryptology, pages 271–279. Springer, 2021.

[PPM+23] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and
Lejla Batina. Sok: Deep learning-based physical side-channel anal-
ysis. ACM Computing Surveys, 55(11):1–35, 2023.

[PSK+18] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie
Heuser, Shivam Bhasin, and Axel Legay. On the performance of
convolutional neural networks for side-channel analysis. In Secu-
rity, Privacy, and Applied Cryptography Engineering: 8th Interna-
tional Conference, SPACE 2018, Kanpur, India, December 15-19,
2018, Proceedings 8, pages 157–176. Springer, 2018.

[SL09] Marina Sokolova and Guy Lapalme. A systematic analysis of per-
formance measures for classification tasks. Information processing
& management, 45(4):427–437, 2009.

[SM23] Marvin Staib and Amir Moradi. Deep learning side-channel colli-
sion attack. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 422–444, 2023.

[SMY09] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A uni-
fied framework for the analysis of side-channel key recovery at-
tacks. In Advances in Cryptology-EUROCRYPT 2009: 28th An-
nual International Conference on the Theory and Applications of
Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings 28, pages 443–461. Springer, 2009.

28

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel
attacks with sensitivity analysis. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pages 107–131, 2019.

[VCGS14] Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier
Standaert. Soft analytical side-channel attacks. In Advances in
Cryptology–ASIACRYPT 2014: 20th International Conference on
the Theory and Application of Cryptology and Information Secu-
rity, Kaoshiung, Taiwan, ROC, December 7-11, 2014. Proceedings,
Part I 20, pages 282–296. Springer, 2014.

[WHJ+21a] Yoo-Seung Won, Dong-Guk Han, Dirmanto Jap, Shivam Bhasin,
and Jong-Yeon Park. Non-profiled side-channel attack based on
deep learning using picture trace. IEEE Access, 9:22480–22492,
2021.

[WHJ+21b] Yoo-Seung Won, Xiaolu Hou, Dirmanto Jap, Jakub Breier, and
Shivam Bhasin. Back to the basics: Seamless integration of side-
channel pre-processing in deep neural networks. IEEE Transactions
on Information Forensics and Security, 16:3215–3227, 2021.

[WPP23] Lichao Wu, Guilherme Perin, and Stjepan Picek. Hiding in plain
sight: Non-profiling deep learning-based side-channel analysis with
plaintext/ciphertext. Cryptology ePrint Archive, 2023.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre
Venelli. Methodology for efficient cnn architectures in profiling
attacks. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, pages 1–36, 2020.

29

