
PIGEON: A Framework for Private Inference of Neural Networks
Christopher Harth-Kitzerow

Technical University of Munich, BMW Group
christopher.harth-kitzerow@tum.de

Yongqin Wang
University of Southern California

yongqin@usc.edu

Rachit Rajat
University of Southern California

rrajat@usc.edu

Georg Carle
Technical University of Munich

carle@net.in.tum.de

Murali Annavaram
University of Southern California

annavara@usc.edu
Abstract

Privacy-Preserving Machine Learning is one of the most rel-
evant use cases for Secure Multiparty Computation (MPC).
While private training of large neural networks such as VGG-
16 or ResNet-50 on state-of-the-art datasets such as Imagenet
is still out of reach, given the performance overhead of MPC,
private inference is starting to achieve practical runtimes.
However, we show that in contrast to plaintext machine learn-
ing, the usage of GPU acceleration for both linear and non-
linear neural network layers is actually counterproductive in
PPML and leads to performance and scaling penalties. This
can be observed by slow ReLU performance, high GPU mem-
ory requirements, and inefficient batch processing in state-of-
the-art PPML frameworks, which hinders them from scaling
to multiple images per second inference throughput and more
than eight images per batch on ImageNet.

To overcome these limitations, we propose PIGEON, an
open-source 1 framework for Private Inference of Neural Net-
works. PIGEON utilizes a novel ABG programming model
that switches between Arithmetic vectorization, Bitslicing,
and GPU offloading depending on the MPC-specific compu-
tation required by each layer.

Compared to the state-of-the-art PPML framework Piranha,
PIGEON achieves two orders of magnitude improvements
in ReLU throughput, reduces peak GPU memory utilization
by one order of magnitude, and scales better with large batch
sizes. This translates to one to two orders of magnitude im-
provements in throughput for large ImageNet batch sizes (e.g.
192) and more than 70% saturation of a 25 Gbit/s network.

1 Introduction

Machine learning models have shown prediction capabil-
ities that match human performance in various domains
[3, 12, 20, 46]. Deep neural networks (DNNs) [26], a class of
machine learning models that uses neural networks with mul-
tiple layers, has shown to be particularly successful in image

1Code Repository: https://github.com/chart21/hpmpc/

and speech recognition [18, 25], natural language process-
ing [48], autonomous driving [14], medical diagnosis [45],
and financial trading [38]. These models are trained on large
datasets using powerful GPUs, which require significant com-
putational resources. As a result, companies such as OpenAI
or Anthropic train general models on large datasets and offer
services to clients who want to use these models for inference
on their data. This introduces a dilemma: Either companies
need to reveal their proprietary model parameters to clients,
or clients need to reveal their private data to the company. In
practice, clients are often on the short end of the stick, as they
have to send their data to company-owned servers where the
model is stored securely. The sensitive nature of data used
in popular deep learning applications such as images, voice
recordings, and medical records makes this a serious privacy
concern. The sensitive nature of data used in popular deep
learning applications such as images, voice recordings, and
medical records makes this a serious privacy concern.

Privacy-Preserving Machine Learning (PPML) [36] aims
to overcome this problem by enabling training and inference
of machine learning models while keeping model parameters
and input data secret. One prominent approach for PPML is
Secure Multiparty Computation (MPC). Recent MPC frame-
works such as CryptGPU [49] and Piranha [52] demonstrated
that private inference of large convolutional neural networks
is feasible. While training models on large datasets such as
ImageNet with state-of-the-art PPML frameworks would take
multiple years, private inference is starting to achieve practi-
cal runtimes and throughput: Piranha and CryptGPU reduced
the MPC-based inference throughput of large convolutional
neural networks from a few inferences per hour to a few in-
ferences per minute. Despite these advancements, we show
in §7 that state-of-the-art frameworks are currently limited in
performance and scalability as they do not consider several
unique challenges in PPML.

1

mailto:christopher.harth-kitzerow@tum.de
mailto:yongqin@usc.edu
mailto:rrajat@usc.edu
mailto:carle@net.in.tum.de
mailto:annavara@usc.edu
https://github.com/chart21/hpmpc/

1.1 Unique Challenges in PPML
Plaintext ML generally benefits from the high parallel pro-
cessing power and memory bandwidth of GPUs. Layers that
require a large number of dot products, such as convolutional
layers, contribute the most to the inference and training run-
time. Non-linear layers consume an insignificant amount of
GPU resources in plaintext. Thus accelerating all layers in
plaintext inference using GPUs is a logical choice. However,
PPML faces quite different limitations. Non-linear functions
such as ReLU require evaluating large boolean circuits over
multiple communication rounds and are typically the key
bottleneck for inference latency and throughput [51]. Note
that parties in MPC are geographically distributed in real-
world deployments. Hence, we consider an implementation
that achieves 25 Gbit/s of network throughput capable to fully
saturate the network of any realistic MPC setting.

Challenges in Non-linear Layers: Network Saturation
While keeping all computations on the GPU minimizes
CPU/GPU data movement in plaintext ML, the opposite is
true in PPML. Non-linear layers such as ReLU and Max-
Pooling require multiple rounds of communication in MPC.
In each communication round, GPU-accelerated frameworks
need to move this data to the CPU to send it to other parties.
Also, data that has been received from other parties needs to
be moved from the CPU to the GPU once received. While
GPU to GPU networking exists [44], these solutions require
servers to be co-located in the same data center which is not
a realistic deployment scenario for MPC. In addition to the
communication overhead, the large boolean circuits that need
to be evaluated during non-linear layers consist of operations
on individual bits which does not leverage the GPU optimally.
In §7, we show that the state-of-the-art PPML framework
Piranha saturates less than 5% of a 25 Gbit/s network for
non-linear layers.

Challenges in Non-linear Layers: GPU Memory In plain-
text machine learning, linear layers such as convolutions and
fully connected layers require more GPU memory than non-
linear layers and therefore determine the peak GPU memory
utilization. In PPML, the opposite is the case. Computing
non-linear functions such as Softmax, ReLU, or MaxPool re-
quires share conversion. Share conversion consists of a bit
decomposition followed by evaluating a large boolean circuit,
which inflates required memory. This overhead is so severe
that one key contribution of Piranha [52], the state-of-the-art
PPML framework, was to evaluate the boolean circuit in place
and reduce GPU memory compared to CryptGPU [49]. Nev-
ertheless, we show in §7 that compared to evaluating only
linear layers on the GPU, Piranha still requires one order
of magnitude higher peak GPU memory which restricts it
to small batch sizes. Note that supporting high batch sizes
is especially important in MPC to amortize the overhead of

network latency over multiple parallel computations.

Challenges in Linear Layers Convolutions and Fully Con-
nected layers are computationally demanding both in plain-
text ML and PPML. Evaluating a dot product, for instance,
requires only communicating a single message between par-
ties in many MPC protocols [33]. When scaling to large batch
sizes these layers are constrained by computation rather than
communication [16]. Thus linear layers are suited for GPU ac-
celeration even in PPML, provided a framework can achieve
a sufficiently large batch size where the performance gap of
CPU and GPU computation is significant.

Given the above challenges, it is imperative to design an ef-
ficient implementation that overcomes the slow performance
of non-linear layers observed in state-of-the-art PPML frame-
works. Ideally, such an implementation of non-linear layers is
CPU-based in order to 1) minimize CPU/GPU data movement
when evaluating multi-round circuits, 2) enable high batch
sizes to amortize network latency, 3) enable the GPU to excel
by letting it support larger batch sizes when computing linear
layers.

1.2 Our Contribution
While state-of-the-art frameworks [49,52] accelerate all layers
on the GPU we find that the unique challenges and bottlenecks
in PPML require a more targeted approach. Our approach ac-
celerates non-linear layers on the CPU using Arithmetic Vec-
torization an Bitslicing. We then provide novel PPML-specific
enhancements for linear layer implementations to maximize
GPU resources. In particular, we propose the ABG program-
ming model that utilizes Arithmetic Vectorization, Bitslicing,
and GPU acceleration depending on the PPML layer type. To
switch between these techniques efficiently, we implement
efficient CUDA transformations and Bitslicing conversions.
We demonstrate that by using the ABG programming model
we can get the best of both worlds: High throughput and large
batch sizes. Our PPML framework, PIGEON, implements
the ABG programming model and provides the following
contributions.

1. PIGEON fully saturates a 25 Gbit/s bandwidth for layers
such as Average Pooling and Batch Normalization by
utilizing arithmetic vectorization on the CPU (c.f §4.1).

2. PIGEON fully saturates a 25 Gbit/s bandwidth for
boolean circuits required by non-linear layers such as
MaxPool, Relu, and Argmax by utilizing Bitslicing on
the CPU (c.f §4.1). In §7 we show, that this design choice
leads to two orders of magnitude higher ReLU through-
put than Piranha [52].

3. PIGEON proposes several MPC-specific optimizations
to reduce redundancy and interleave communication
and computation when evaluating matrix multiplications.

2

This enables PIGEON to saturate up to 5 Gbit/s of band-
width for computationally intensive layers such as con-
volutions on the CPU (c.f. §4.3) and more than 10 Gbit/s
on the GPU (c.f. §4.4).

4. By only outsourcing convolutions to the GPU, PIGEON
reduces peak GPU memory utilization by one order of
magnitude and supports 24-96 times higher ImageNet
batch sizes than Piranha on the same hardware (c.f §7).

5. PIGEON orchestrates these different acceleration tech-
niques by offering efficient conversion between differ-
ent computation domains (c.f §4.5). Along with MPC-
specific pipelining techniques (c.f. §5), PIGEON satu-
rates more than 70% of 25 Gbit/s over the entire end-
to-end inference, thus leaving little room for further
implementation-related optimizations (c.f §7).

6. PIGEON is modular and protocol-agnostic. Existing
models and datasets can be imported from PyTorch di-
rectly into PIGEON and we provide implementations
of semi-honest three-party computation (3PC) and mali-
cious 4PC protocols [16] out of the box (c.f §6).

7. These improvements enable us to support large Ima-
geNet batch sizes (e.g. 192) for the first time in MPC-
based PPML and consistently improve Piranhas through-
put for ImageNet and CIFAR-10 inferences by one to
two orders of magnitude.

8. To increase the accessibility of PPML frameworks, we
also provide a CPU-only version that achieves runtimes
comparable to Piranha for ImageNet inferences while
utilizing only a single CPU core, thereby significantly
reducing the expensive GPU usage. When utilizing mul-
tiple cores, the CPU-only version even improves on Pi-
ranhas throughput by one to two orders of magnitude.
Our results are consistent for different MPC settings
and ring sizes, hence enabling us to achieve Imagenet
throughput beyond one image per second in all these
scenarios.

2 Related Work

Several MPC frameworks have been developed that support
private inference of machine learning models. Most of these
frameworks are based on additive secret sharing [11] and
are typically deployed in the multi-party (2PC,3PC, or 4PC)
settings. The semi-honest 3PC and malicous 4PC settings
tolerating up to one corruption are of particular relevance as
they are characterized by an input-independent preprocessing
phase followed by input-dependent online phase. By utilizing
the outsourced computation model [10], any number of input
parties can secretly share their inputs to a set of non-colluding
computation nodes that carry out the 3PC or 4PC and transfer
the final output shares to the parties supposed to learn the
result of the computation. This model is suitable for private

inference-as-a-service solutions, that similar to their plain-
text equivalents handle multiple independent client inference
requests in parallel.

Recently, frameworks based on Function Secret Sharing
(FSS) [4] have also shown impressive results, surpassing the
performance of frameworks based on additive secret shar-
ing [15, 19]. However, these evaluations do not consider the
end-to-end performance due to the expensive preprocessing
phase of FSS. FSS-based frameworks typically fall back on
assuming that all preprocessing material is provided by a
trusted dealer and is already stored in the local filesystem or
even RAM of each party. While the time of the preprocessing
phase can be ignored for low arrival rates of private inference
requests, Garimella et al. [13] show that under realistic as-
sumptions, PPML frameworks with high preprocessing costs
may have to wait for the entire preprocessing phase to finish
before starting the online phase thus limiting the scalability
of these approaches in practice. Given these limitations, we
focus on honest-majority protocols based on additive secret
sharing in this work and consider the full end-to-end perfor-
mance of PPML frameworks including both the preprocessing
phase and the online phase. Note that we provide an overview
of models and dataset commonly used in PPML in §A.

MPC-based PPML frameworks Early work on PPML
goes back as far as 2006 [2] but the first training of a deep
learning model on MNIST was only achieved in 2017 by Se-
cureML [34]. SecureML set a standard for PPML frameworks
by utilizing additive secret sharing for linear layers and Yao’s
garbled circuit protocol [53] for non-linear layers along with
efficient transformation between these sharing types. Over
the years, other PPML frameworks picked up on this idea
and improved PPML based on secret sharing mainly from the
protocol side. ABY3 [33] focused on an honest-majority 3PC
setting and proposed efficient conversion from arithmetic to
boolean secret sharing and Yao’s garbled circuits. The high
performance and efficient share conversion in the honest-
majority setting sparked the interest of several other PPML
frameworks in the 3PC and 4PC settings [5, 7–9, 22, 23, 42].

CryptGPU [49] first broke the trend of optimizing PPML
mainly from a protocol perspective but instead proposed soft-
ware and hardware optimizations to improve PPML perfor-
mance using GPU acceleration. This design choice led to
2-8 times performance improvements over CPU-based frame-
works for private inference of large neural networks. Crypt-
GPU implemented a wrapper for the popular ML framework
PyTorch [40] that allowed for easy integration of existing
models and datasets but introduced some trade-offs by using
floating point CUDA [1] kernels for fixed point computation.
Piranha [52] improved on CryptGPU’s performance by utiliz-
ing NVIDIA’s CUTLASS [37] library in C++ which provides
native integer kernels for fixed point computations. This led
to a four times performance improvement over CryptGPU for
private inference of VGG16.

3

In 2023 an SOK on PPML [36] was published that studied
53 PPML frameworks and identified Piranha as the fastest
PPML framework to date. Interestingly, with its focus on
software and hardware optimization but rather simple proto-
col design, Piranha is able to outperform PPML frameworks
that utilize more efficient underlying MPC protocols than
Piranha [7, 8, 23]. Also, in the SOK, Piranhas 3PC implemen-
tation of Falcon [50] achieved higher throughput on CIFAR-
10 than any other cryptographic PPML framework including
works that utilize Homomorphic Encryption. These prior re-
sults motivate further research into software and hardware
optimizations for MPC-based PPML frameworks.

3 Background: Privacy Preserving Machine
Learning based on MPC

Privacy-preserving training and inference can be implemented
using MPC with a small set of primitives. Similar to other
PPML frameworks [49,52], we focus on MPC protocols based
on linear secret sharing over a ring Z2ℓ . In line with existing
work, we assume real numbers are approximated using Fixed-
Point Arithmetic (FPA) [6, 35] and mixed circuits [8, 33, 41]
are used to evaluate comparisons.

3.1 MPC Primitives
We provide an overview of secret-sharing-based MPC and the
minimal set of primitives required to support PPML.

MPC Notations: We use P to denote the set of parties and
Pi to denote the ith party carrying out the computation. We
use PI to denote a party submitting inputs to P and PO to
denote a party receiving output from P . Note that thanks to
the outsourced computation model [10], PI and PO are not
required to participate in the computation. We denote a linear
secret share of a secret value x by JxK where xi is the secret
share held by Pi ∈ P. A linear secret sharing has the property
that an individual secret reveals nothing about x but there
exists a threshold t such that holding t individual shares of JxK
allows to compute x using a linear combination of the shares.

Secret Sharing (ΠSh) and Reconstruction (ΠRec) Let x be a
secret held by PI . For each party Pi ∈ P , PI computes xi and
sends it to Pi. P then holds JxK. To reconstruct x, each party
Pi ∈ P , sends xi to PO. PO now holds all shares to compute x.

Addition (ΠAdd) and Multiplication by constants (ΠCMult)
Given public constants α,β,γ and secret-shares JxK,JyK, par-
ties can locally compute the shares of Jαx+βy+ γK.

Multiplication (ΠMult) and Matrix Multiplication
(ΠMatMul) Given two secret-shares JxK,JyK, parties can inter-
actively compute shares of JzK = JxK · JyK. ΠMult typically
requires parties to send O(1) ring elements between each
other in one communication round. Naively evaluating a
matrix multiplication with ΠMultwould require O(mnk) local

operations and exchange of O(mnk) ring elements between
the parties given the input dimensions m× k and k×n of two
input matrices. However, optimizations [33] allow evaluating
a matrix multiplication with O(mnk) local operations but
only O(mn) ring elements.

Sign Bit Extraction (ΠBitExt) Given the arithmetic sharing
of x ∈ Z2ℓ , ΠBitExt generates a boolean sharing of the sign
bit b ∈ Z21 of x. The most common approach to evaluate this
conversion includes computing a parallel prefix adder in the
boolean domain, requiring P to exchange O(ℓ · log2ℓ) boolean
values in O(log2ℓ) communication rounds. Note that exchang-
ing O(ℓ · log2ℓ) boolean values is equivalent to exchanging
O(log2ℓ) ring elements in Z2ℓ .

Bit to Arithmetic Conversion (ΠBit2A) Given the boolean
sharing of a shared bit JbK ∈ Z21 , the protocol generates the
arithmetic equivalent shares JbK ∈ Z2ℓ . The most common
approach to evaluate this conversion requires computing an
arithmetic XOR, requiring P to exchange O(1) ring elements
in O(1) communication rounds.

Truncation (ΠTrunc) Protocols using Fixed-Point Arithmetic
require truncation to prevent overflows during computation
and maintain precision [6]. For a share JxK, ΠTrunc outputs its
truncated version (JxK)t = ⌊ JxK

2t ⌋. Here, t denotes the number
of fractional bits in the FPA representation.

3.1.1 Evaluating Neural Networks using MPC

The previously described MPC primitives are sufficient to
evaluate common neural network layers. We denote by X i, Y i,
and W i the input, output, and weight matrices of the i-th Layer
respectively. We distinguish between multiplication-based
layers, conversion-based layers, and matrix-multiplication-
based layers. The layer type indicates which MPC primitive is
predominantly used to evaluate a layer and will prove helpful
for accelerating its evaluation.

Obtaining model parameters and data The parties holding
the model weights and the parties holding data in plaintext
locally convert their respective inputs X0 and W to fixed point
values and use ΠSH to secretly share them among P .

3.1.2 Matrix-Multiplication-based Layers

Layers such as Convolutional and Fully Connected layers
require parties to evaluate a large set of scalar multiplications
and additions. These layers are characterized by their high
computational complexity.

Convolutions and Fully Connected Layers Fully Connected
layers can be evaluated with ΠMatMul with the input matrix
X i having a row size of 1. To evaluate convolutions, parties
locally perform an im2col transformation on their shares to
obtain JX̂ iK,JŴ iK, followed by ΠMatMul to obtain output ma-
trix Y i.

4

3.2 Conversion-based Layers

Conversion-based layers require parties to convert between
arithmetic and boolean shares to extract the sign bit of a value
during computation. These layers are characterized by their
high communication and memory overhead caused by the
large boolean circuit evaluated as part of ΠBitExt.

DReLU and ReLU DReLU outputs 0 for all negative values
and 1 for all positive values in X i. To compute a DReLU layer,
P use ΠBitExt to extract the sign bit Jb jK∈Z2 of all individual
shares Jx jK ∈ JX iK They, then use ΠBit2A to obtain Jb jK ∈ Z2ℓ .
Finally, for each y j ∈ Y i, they set Jy jK = J(1− b j)K. ReLU
outputs max(0,x j) for each x j ∈ X i. To evaluate a ReLU layer,
P compute Y i = DReLU(X i) ·X i.

MaxPool and Softmax MaxPool requires parties to obtain
the maximum of adjacent values in X i. The maximum of k
elements can be computed using k pair-wise max operations
along a tree of height log(k). The pair-wise maximum of
two elements JxaK,JxbK can be computed as DReLU(JxaK−
JxbK) · (JxaK− JxbK)+ JxbK. During inference, Softmax can
be replaced by ArgMax, since parties are only interested in
the index of the maximum value to obtain the final inference
prediction. To compute ArgMax, parties use a similar tree-
based procedure as utilized in MaxPool. In some cases, it
might even be favorable to skip the Argmax layer to reveal
the probabilities of each class.

3.2.1 Multiplication-based Layers

Multiplication-based layers require parties to evaluate
element-wise multiplications and additions. These layers are
characterized by neither high computational nor high commu-
nication complexity.

Average Pooling: Average Pooling computes the average of
adjacent values in JX iK using a public denominator d. To avoid
division, each party locally computes d̂ = 1

d and converts
the result to FPA. The average of a vector J⃗xK can then be
computed as (∑d

j=0Jx jK) · Jd̂K followed by truncation.

Batch Normalization Batch Normalization computes Y i =
X i−µ√

σ2+ε
· γ+β. Note that the parameters µ,σ,γ,β are model

parameters obtained during training, and ε is a small public
constant to avoid division by zero. Thus, during inference,
the party holding the model parameters locally computes
σ̂ = γ · 1√

σ2+ε
and shares it along with µ and β among the

parties. Using these shares, the parties can compute output
JY iK = (JX iK− JµK) · Jσ̂K+ JβK.

4 The ABG Programming Model

PIGEON uses a novel ABG programming model to overcome
system challenges in PPML. The ABG programming model

utilizes Arithmetic vectorization to accelerate multiplication-
based layers, Bitslicing to accelerate conversion-based layers,
and GPU offloading to accelerate matrix-multiplication-based
layers. We show in this section that each of these techniques
suffices to saturate most of the network even in ideal network
settings with 25 Gbit/s network bandwidth. In the following
sections, all evaluations are based on 3 to 4 nodes equipped
with a 32-core AMD EPYC CPU and a 24GB NVIDIA L4
GPU.

4.1 Accelerating Multiplication-based Layers
using Arithmetic Vectorization

Multiplication-based layers, such as Average Pooling and
Batch Normalization, consist of large batches of element-wise
arithmetic operations on secret shares. While these layers ben-
efit from GPU acceleration in plaintext inference we observe
that by utilizing the CPU effectively in PPML, we can saturate
any realistic network bandwidth for these layers.

Current generation CPUs provide SIMD (single instruc-
tion, multiple data) instructions to allow a CPU to simulta-
neously perform the same arithmetic operations on a vector
of multiple elements. For example, x86’s AVX-512 instruc-
tions can process 16 64-bit integers in parallel in one cycle,
thus significantly improving the throughput of large batches
of element-wise operations. PIGEON utilizes SIMD instruc-
tions like SSE, AVX-2, and AVX-512 to achieve arithmetic
vectorization. In addition, since element-wise operations are
highly parallel they can be further accelerated on multiple
cores. In §C, Figure 7 illustrates this vectorization process.

As thousands or even millions of independent element-
wise operations are performed when evaluating multiplication-
based layers, these layers are ideal candidates for arithmetic
vectorization. Figure 1a shows how vectorization improves
the throughput of Batch Normalization by up to five times
on a single core, and Figure 1b shows how this approach
scales with the number of cores. The results demonstrate that
PIGEON can saturate nearly 100% of the available 25 Gbit/s
network bandwidth for multiplication-based layers using just
CPU-based parallelism.

4.2 Accelerating Conversion-based Layers us-
ing Bitslicing

Share conversion is necessary for executing non-linear layers
such as ReLU. Conversion-based layers are bottlenecked by
the addition circuit evaluated in the boolean domain during
ΠBitExt which consists of hundreds of boolean gates per input.
These boolean gates operate on 1-bit variables. Thus evalu-
ating boolean gates bit by bit is substantially wasteful even
with the smallest registers available on a CPU or GPU. To
overcome this limitation we propose Bitslicing based share
conversion primitives. Bitslicing allows us to process a batch
of multiple boolean inputs packed in a large register using

5

32 128 256
Bits per Register

1

2

3

4

5

T
hr

ou
gh

pu
t(

G
bi

t/s
)

3PC
4PC

(a) Batchnorm2D Throughput using A: Single Core

0 10 20 30 40
Threads

5

10

15

20

25

T
hr

ou
gh

pu
t(

G
bi

t/s
)

3PC
4PC
Theoretical Limit

(b) Batchnorm2D Throughput using A: Multi-Core

32 128 256
Bits per Register

0

1

2

3

4

T
hr

ou
gh

pu
t(

G
bi

t/s
)

3PC
4PC

(c) Parallel Prefix Adder Throughput using B: Single Core

0 10 20 30 40
Threads

5

10

15

20

25

T
hr

ou
gh

pu
t(

G
bi

t/s
)

3PC
4PC
Theoretical Limit

(d) Parallel Prefix Adder Throughput using B: Multi-Core

Figure 1: Accelerating PPML layers using Arithmetic Vectorization and Bitslicing.

only a single bit-wise instruction. The key idea of Bitslicing
is that computing a bit-wise logical operation on an m-bit reg-
ister effectively works like m parallel boolean conjunctions,
each processing a single bit [31]. For example, instead of
performing a single 1-bit XOR operation across two bits, one
could perform a single 32-bit bitwise XOR operation on a 32-
bit register that stores a batch of individual bits. Furthermore,
one can exploit hardware instruction sets such as AVX-2 to
pack 256 bits and compute 256 XOR operations in parallel.
In §C, Figure 7 shows how Bitslicing can replace multiple
independent CPU instructions with a single one.

PIGEON supports Bitslicing using a wide range of register
sizes from 64 bits to much wider register sizes provided by
the SSE, AVX-2, and AVX-512 instruction sets. Figure 1c
shows how Bitslicing improves the throughput of the Paral-
lel Prefix Adder required by ΠBitExt by up to one order of
magnitude on a single core, and Figure 1d shows how this
throughput scales with the number of cores. Yet again by ex-
ploiting Bitslicing and then parallelizing across multiple cores,
PIGEON can saturate nearly 100% of the network bandwidth
for conversion-based layers. Recall that once the network
bandwidth is saturated no further throughput improvements
are theoretically feasible.

4.3 Accelerating Matrix-Multiplication based
Layers using the CPU

Matrix-multiplication-based layers require parties to evalu-
ate a large number of scalar multiplications and additions.
Thanks to efficient Matrix Multiplication primitives provided
by most MPC protocols, the communication complexity of
these layers grows only quadratically with the input size. How-
ever, the computational complexity of matrix multiplication
primitives grows cubically with the input size. To efficiently
implement matrix multiplication on the CPU we combine our
vectorization efforts with cache tiling approaches to avoid
inefficient memory access patterns [39]. Nevertheless, it is
not feasible in PPML to saturate high network bandwidths
for matrix-multiplication-based layers using only known con-
cepts from high-performance computing. For this reason, we
propose MPC-friendly matrix multiplication approaches that
optimize both the MPC-induced computation and communi-
cation overhead. We first describe PIGEON’s optimizations
for the CPU-only variant before moving to GPU-accelerated
approaches.

Reducing Redundancy Existing frameworks typically eval-
uate a matrix multiplication on secret shares by replacing
the local multiplication and addition operators of a secure
multiplication protocol ΠMult with their matrix multiplica-

6

T1 T1T2 T3a)

b)

T2 T3

T1 T1

T2

T3

T2

T3

Runtime

Figure 2: Interleaving Communication and Computation
(b) in Tiled Matrix Multiplication

1 2 4 8 16 32
Threads

5

10

15

20

25

T
hr

ou
gh

pu
t(

G
bi

t/s
)

CPU: MPC-Friendly
CPU: Tiled

GPU: MPC-Friendly
Theoretical Limit

Figure 3: Conv2D Throughput of MPC-friendly Matrix
Multiplication. Dotted lines indicate 4PC, solid lines 3PC.

tion and addition counterparts. Following this approach, each
party needs to iterate over the same memory locations mul-
tiple times and thus introduces redundancy. To reduce this
redundancy, PIGEON instead evaluates a secure matrix mul-
tiplication by a series of local dot products where the local
multiplication operator is replaced with a fused multiplica-
tion that computes the individual local operations required by
ΠMult before communicating in a single pass.

To illustrate the different approaches, consider a party that
holds secret shares A1,A2 of matrix JAK and B1,B2 of matrix
JBK. Suppose the party’s matrix multiplication protocol re-
quires it to compute T 1 =A1B2+A2B1 and T 2 =A1B1, where
T 1 and T 2 are temporary matrices used later to compute mes-
sages and the final result. Instead of computing three individ-
ual matrix multiplications, the party can compute a single ma-
trix multiplication but calculate T 1[i][j] += A[i][k] ·B[k][j]+
B[i][k] ·A[k][j] and T 2[i][j] += A[i][k] ·B[k][j] whenever the
plaintext matrix multiplication would calculate C[i][j] +=
A[i][k] ·B[k][j] as part of local dot product computation.

Interleaving Communication with Computation Dissect-
ing matrix multiplications into individual dot products also
allows PIGEON to interleave communication with computa-
tion. In the traditional approach, matrices are first multiplied,
then masked, and exchanged with each other to compute the
final result. Thus, the communication channels are idle until
all local matrix multiplications have been computed. In con-
trast, PIGEON can compute local dot products of the matrices
and immediately mask and exchange the result element-wise
with the other parties. Line 16 of our MPC-friendly matrix
multiplication algorithm (c.f. algorithm 1 shows that commu-
nication for an individual matrix element C[i][j] is handled
immediately after an individual dot product has been com-
puted in contrast to waiting for the entire matrix multiplication
to finish. Figure 2 visually shows our optimization (Figure 2b)
is different from the traditional approach (Figure 2a).

Interleaving communication and computation for MPC
workloads is crucial to ensure that the communication chan-

nels are not idle while the parties are performing local com-
putations. Another way PIGEON interleaves communication
and computation is by sending and receiving data continu-
ously in parallel to local computation. This way, all incoming
and outgoing communication in PIGEON is non-blocking.
Additionally, when evaluating multiple images in parallel,
PIGEON utilizes independent CPU processes which allow
a set of processes to evaluate communication-intensive lay-
ers while another set of processes evaluates computation-
intensive layers. This ensures that both communication chan-
nels and hardware resources are fully utilized throughout the
inference.

Figure 3 compares the throughput of our MPC-friendly ma-
trix multiplication with a highly optimized tiled matrix mul-
tiplication algorithm but without any MPC-specific tweaks
when evaluating a 2D convolution. The results demonstrate
that reducing redundancy and interleaving communication
with computation lead to approx. 85% higher throughput than
the baseline and enable even our CPU-based implementation
to achieve a throughput of more than 5 Gbit/s per second with
PIGEON. For the parameters of the convolutional layer, we
use the largest Convolutional layer of VGG-16 on ImageNet
with an input size of 224×224×64.

4.4 Accelerating Matrix-Multiplication based
Layers using the GPU

As seen from our results of matrix multiplication even with
tiled CPU implementations and our various MPC-specific
tweaks there is still a gap in the achieved throughput and
the available network bandwidth for linear layers. This re-
sult suggests that linear layers in high-bandwidth settings
are best accelerated by using GPUs that are optimized for
matrix operations. Similar to Piranha [52], PIGEON uses
NVIDIA’s CUTLASS library [37] which provides highly op-
timized templated CUDA kernels for matrix multiplications
and convolutions. PIGEON also supports multi-GPU setups
where each individual GPU is assigned to a separate batch of

7

Algorithm 1 MPC-friendly MatMul
Require: Matrices A of size M×K and B of size K×N
Ensure: Matrix C of size M×N, initialized with zeros

1: ˆ⃗b← transpose(B)
2: for i← 0; i < M; i += TILE_SIZE do
3: for j← 0; j < N; j += TILE_SIZE do
4: for k← 0; k < K; k += TILE_SIZE do
5: for ii← i; ii < min(i+TILE_SIZE,M); ii += 1 do
6: for j j← j; j j < min(j+TILE_SIZE,N); j j += 1 do
7: temp← 0
8: for kk← k; kk < min(k+TILE_SIZE,K); kk += 1 do
9: temp += A[ii][kk]× ˆ⃗b[j j][kk] ▷ Fused multiplication to eliminate redundancy

10: end for
11: C[ii][j j]←C[ii][j j]+ temp
12: end for
13: end for
14: for ii← i; ii < min(i+TILE_SIZE,M); ii += 1 do
15: for j j← j; j j < min(j+TILE_SIZE,N); j j += 1 do
16: Communicate C[ii][j j] ▷ Exchange individual dot products as soon as possible for Interleaving
Note: Operator ×̂ denotes fused multiplication on the entire secret share as described in the text.

inputs during a forward pass.
Even though we cannot utilize our individual dot product

optimization on the GPU, since CUDA does not support cus-
tom operators and datatypes, we can still interleave communi-
cation with computation but in a less fine-grained fashion. To
do so, we split up a batch of k matrices into n mini-batches
of size k/n and interleave the computation of a mini-batch
with the communication of the previous mini-batches. This
overlap is similar to the one shown in Figure 2 except that we
now interleave over mini-batches and not over tiles. Figure 3
shows that by using GPU acceleration, PIGEON can saturate
more than half of our 25 Gbit/s network bandwidth for large
convolutions.

4.5 Switching between Acceleration Tech-
niques

While we have shown that each of the acceleration techniques
achieves high throughput, these advantages only translate
into practice if converting between techniques is efficient.
PIGEON requires parties to switch between arithmetic Vec-
torization and Bitslicing during share conversion and between
arithmetic vectorization and GPU acceleration during matrix
multiplications.

Switching between Arithmetic Vectorization and Bitslic-
ing Efficiently converting k ℓ-bit integers stored in a single
register of size r = k · ℓ from a vectorized to a bitsliced rep-
resentation requires accumulating at least ℓ of these r-bit
variables first. This way, we can obtain a new set of ℓ r-bit
registers where register i contains the i-th bit of all k inte-
gers. Naively, this transposition would be performed bit by
bit in four cycles per bit [30]. However, Usuba observed that

this transposition can be optimized using a recursive matrix
transposition approach proposed by Knuth [21]. Using this
insight, Usuba reduced the number of cycles to transpose 512
AVX-512 variables to 0.09 cycles per bit [32] and provides
an open-source version of these transpositions for various
hardware architectures and block sizes.

Figure 4 shows an exemplary share conversion protocol
including a transformation from arithmetic vectorization to
Bitslicing. Share conversion of a value a from the arithmetic
to the boolean domain as proposed by ABY3 [33] requires the
parties to hold an arithmetic sharing of JaKA = a1 +a2 where
a subset of parties Pφ holds a1 and the remaining parties P φ

hold a2. To perform the conversion, the parties create boolean
sharings JaB

1 K and JaB
2 K followed by a boolean adder to obtain

the final boolean sharing JaKB. The figure shows that each
party can locally accumulate and transpose a vector of shares
before communicating with the other parties to ensure that all
parties obtain a bitsliced representation of a⃗. Protocol ΠBitExt

follows the same procedure as ΠA2B but uses a carry adder in
step 3 to only compute the sign bit of the addition.

1. Bitslicing Transformation:
Pφ: Transpose contiguous blocks of ℓ values in a⃗1 into Bit-
sliced representation.
Pφ: Transpose contiguous blocks of ℓ values in a⃗2 into Bit-
sliced representation.

2. Secret Sharing:
Pφ: Boolean Secret sharing of bitsliced representation of a⃗1.

Pφ: Boolean Secret sharing of bitsliced representation of a⃗2.

Protocol ΠA2B(J⃗aKA)→ J⃗aKB

8

3. Jointly compute using Boolean Adder:

P : J⃗aKB = Ja⃗1KB + Ja⃗2KB

Figure 4: Vectorized Arithmetic to Binary Conversion with
Bitslicing transformation

Switching between Arithmetic Vectorization and GPU Ac-
celeration To utilize GPU acceleration for convolutions,
PIGEON requires parties to convert their shares from arith-
metic vectorization to a layout supported by the CUDA kernel
provided by CUTLASS. Note that the raw transfer speed from
the CPU to the GPU is not a concern since modern mem-
ory bus standards such as PCI 5.0 and HBM2 can transfer
data at speeds that exceed any realistic network bandwidth
in MPC settings by multiple order of magnitudes. Moreover,
the CUDA kernel already takes care of the im2col transforma-
tion required for convolutions that expand the input matrices.
Therefore, only the raw input, kernel, and output matrices
need to be transferred between the CPU and the GPU.

However, we face a different challenge of converting lay-
outs to a format that is supported by the CUDA kernel. In-
ternally PIGEON uses PyTorch’s NCHW layout where N is
the batch size, C is the number of channels, H is the height,
and W is the width of the input matrix. The CUDA kernel
provided by CUTLASS instead requires an NHWC layout.
Thus, to convert between VCHW and V HWC, we provide
optimized CUDA kernels that closely follow NVIDIA’s refer-
ence implementations for matrix transpositions.

Recall that we also intend to interleave communication and
computation and do not want to wait for the entire batch of
NCHWV matrices to be processed before transferring them
to the CPU and initiating communication. For this reason,
PIGEON splits up the input matrix into N batches of CHWV
matrices. As soon as the first batch has been computed, PI-
GEON converts it back to a CHWV layout and transfers it
back to the CPU to initiate communication. Fully Connected
layers already support different layouts and are usually small
enough to be processed on the CPU. Therefore, we do not
require any additional conversion for these layers.

Table 1 shows that for batch sizes of 16, all transforma-
tions required by PIGEON achieve more than 250 Gbit/s of
throughput which is significantly higher than the 25 Gbit/s
network bandwidth that we assume in ideal network condi-
tions.

Table 1: Throughput of Transformations in Gbit/s

Batch Size Vectorization Bitslicing GPUa

1 b 87 25 94
16 617 264 680

a Layout change from VCHW to V HWC
b Utilizes only a single CPU core

4.6 Bringing It All Together
Finally, we show how PIGEON combines all acceleration
techniques to evaluate a neural network. Arithmetic vector-
ization is used to accelerate secret sharing and revealing and
is thus the starting and end point of each inference. When
evaluating a non-linear layer, r bits of ℓ vectorized inputs are
packed together for Bitslicing where r is the largest register
size available on a system. Each individual boolean instruc-
tion then operates on r bits in parallel. The result is then
converted back to arithmetic vectorization. Similarly, to per-
form a convolution or matrix multiplication, weights and in-
puts for a convolution are moved to the GPU in mini-batches
which allows interleaving communication and computation.
The results are then transferred back to the CPU and loaded
into vectorized variables. Table 2 shows the utilized accelera-
tions and transformation techniques for each common neural
network layer.

Table 2: Utilizing the ABG programming model in PIGEON

Layers Acceleration Transform

BatchNorm Arith. Vec -
AvgPool, Adaptive AvgPool Arith. Vec -
ReLU Bitslicing A↔ B
MaxPool Bitslicing A↔ B
Argmax Bitslicing A↔ B
Convolutiona GPU A↔ G
Fully Connected Layer a GPU A↔ G
a Can also be accelerated on the CPU using Arithmetic

Vectorization.

5 PPML Pipelining

In the previous section, we showed how PIGEON utilizes
the ABG programming model to accelerate each individual
layer. In this section, we describe how PIGEON optimizes the
evaluation across layers by utilizing MPC-specific pipelining
techniques.

Load Balancing In MPC frameworks, each node typically
performs all communication and computation of a single party.
However, since batches in neural networks are independent,
nodes can perform multiple MPC computations in parallel
where each computation uses a different party assignment.
This way, a PPML framework can utilize all communica-
tion channels and hardware resources evenly across all nodes.
For instance, if an MPC protocol does not utilize the com-
munication channel between P0 and P1 but utilizes the com-
munication channel between P0 and P2, swapping the party
assignment of P1 and P2 for an independent batch also utilizes
the otherwise idle communication channel. For large batch

9

sizes, PIGEON runs all unique player permutations in parallel
which guarantees that all communication channels are utilized
evenly.

Additionally, different parties in MPC often have differ-
ent computation complexities. For instance, ΠMatMul might
require P1 to perform two local matrix multiplication on its
shares while P2 only needs to perform one. This property
inherently leads to pipelining. A node that performs batch
one as P1 may not be able to fully saturate the whole net-
work bandwidth during the expensive convolutional layers.
If the same node performs a second batch as P2, it can uti-
lize this idle network bandwidth for communication-intensive
activations.

Interleaving MPC Phases Many MPC protocols provide a
preprocessing phase and an online phase while maliciously
secure protocols may additionally provide a postprocessing
phase where parties compute and exchange hashes to verify
the correctness of their computation. While separating these
phases is beneficial in settings where preprocessing and post-
processing costs are irrelevant, it is beneficial to interleave all
phases when optimizing for the total runtime of a protocol.
PIGEON provides an option to separate or interleave these
phases. When performing all phases sequentially, the parties
essentially perform multiple forward passes that operate on
the same blocks of memory. By merging all phases into a
single online phase, the parties perform only a single forward
pass. In this processing model, parties have an additional de-
pendency on data from the preprocessing phase. However,
in practice, the preprocessing in honest-majority protocols is
much faster than the online phase and the additional depen-
dency is unlikely to lead to a bottleneck. When interleaving
all phases, PIGEON achieves 40% faster end-to-end 4PC in-
ference runtime.

6 Software Architecture

PIGEON’s software architecture can be categorized into three
different modular software components: The Core-, MPC-,
and NN-components. In this section, we describe the func-
tionalities of each component. Figure 5 shows PIGEON’s
software architecture and its key features.

Core Components PIGEON’s core components contain
over 20,000 lines of highly optimized C++ code to offer
the hardware acceleration techniques required to support the
ABG programming model for different architectures. As a
result, each function invoked by the higher-level components
automatically utilizes the introduced acceleration techniques.
On top of these, PIGEON also accelerates cryptographic in-
structions such as AES and SHA on various platforms.

Inference Engine

ActivationsPoolingLinear Normalization

CNN & ResNet Architectures

Layers

PyTorch Interface

Model Export Dataset Export

MPC Protocols

Share Reveal Add Mult

3PC Protocols 4PC Protocols

Trunc

Core

Networking
Bitslicing Vectorization

Hardware Acceleration

CUDA Crypto

Datatypes

Additive Share Boolean Share Fixed Point Module

Functions

Comparisons DivisionAverageMatMul

MPC Component
Neural Network Component

Low-Level Component

Figure 5: PIGEON’s software architecture.

MPC Software Components PIGOEN’s MPC software
components allow users to write generic MPC functions based
on high-level MPC primitives and to add new MPC protocols
with a few lines of code. Functions define operations that
can be implemented on top of any MPC protocol as long as
the protocol supports required basic primitives. For instance,
computing an average requires black-box access to the ΠAdd,
ΠCMult, and ΠTrunc primitives. Functions are based on MPC
datatypes such as Additive Shares that provide a common
templated interface for MPC primitives without specifying
the underlying protocol. PIGEON provides implementations
of the Trio semi-honest 3PC and the Quad malicious 4PC
protocols out of the box [16]. Protocols in PIGOEN require
implementing the basic primitives introduced in §3. PIGEON
provides an abstraction layer of its core component to inher-
ently accelerate novel protocols and primitives.

Neural Network Software Components CryptGPU [49]
innovated the user experience of PPML by providing a Py-

10

Torch wrapper that allows users to interact with PPML sim-
ilarly to plaintext PyTorch. However, this design choice in-
troduced performance overheads and workarounds to ensure
compatibility with PyTorch such as representing performing
matrix multiplications on fixed point numbers by using inter-
mediate floating point representations. Piranha [52] improved
the performance overhead of CryptGPU by relying solely
on a C++ library with custom CUDA kernels but gave up
on compatibility with common ML frameworks. PIGEON
combines the advantages of both approaches by providing a
PyTorch interface that allows users to export existing models
and datasets to PIGEON’s C++ inference engine after local
processing in PyTorch.

PIGEON’s C++ inference engine implements common neu-
ral network layers and their data flow during inference. The
inference engine relies on arithmetic operations in a black-
box fashion by using templates. This abstraction layer enables
developers to implement new neural network layers and ar-
chitectures without having to understand the underlying MPC
protocols that instantiate the templates with MPC primitives.

Out of the box, PIGEON supports various neural network
architectures such as VGG16 [47] and ResNet50 [17] and
common linear layers, pooling layers, activation functions,
and batch normalization.

7 Evaluation

Given that we identified Piranha [52] as the state-of-the-art
PPML framework for end-to-end private inference we com-
pare our framework mainly to Piranha. Our test setup is based
on 3-resp. 4 AWS nodes (for 3PC resp. 4PC evaluations)
equipped with 24 GB Nvidia L4 GPUs on a 25 Gbit/s net-
work and 0.3ms round-trip latency between nodes. As MPC
requires distributed nodes in real-world settings, we consider
this setup sufficient to stress-test whether our framework can
saturate all possible real-world network bandwidths. All mea-
surements include the total time spent on preprocessing, on-
line phase, and verification.

7.1 Overcoming PPML Limitations

With its ABG programming model, PIGEON overcomes mul-
tiple limitations of state-of-the-art PPML frameworks such as
Piranha.

GPU Memory Requirements Piranha improved over
CryptGPU’s memory requirements by utilizing native integer
GPU kernels and using efficient in-place memory implemen-
tations However, depending on the MPC setting and ring
size, Piranha still requires 2.4-7GB of GPU memory for a
single-image inference of VGG-16 on Imagenet. Thus, to en-
able batched ImageNet inference Piranha requires High-End
GPUs. In §4 we showed that by using the ABG programming

model, PIGEON can accelerate most layers on the CPU while
achieving nearly 100% network utilization. This insight al-
lows PIGEON to outsource only convolutions to the GPU,
thus achieving peak GPU memory utilization of only 205 MB
for a single inference of VGG-16 on Imagenet.

Supporting Large Batch Sizes Private inference requires
large batch sizes to overcome latency bottlenecks that are
present in most MPC settings. However, despite its memory
optimizations, Piranha still requires many GBs of GPU mem-
ory to evaluate state-of-the-art models. Table 3 shows that
even on our 24 GB Nvidia L4 GPUs per node, we are limited
to batch sizes between 2 and 8 before the framework crashes
when evaluating VGG-16 on Imagenet. By minimizing the
GPU memory footprint, PIGEON supports large batch sizes
such as 192 for VGG-16 on Imagenet while using only 5.5
GB of peak GPU memory. Noticeably even PyTorch requires
twice the GPU memory for a batch size of 192. PIGEON’s
advantage might be explained by the mini-batch optimization
to interleave communication and computation (c.f. §4.4. On
CIFAR-10, PIGEON is able to perform inferences on the en-
tire test dataset with a batch size of 10,000 images without
running out of memory.

Table 3: Highest supporteda inference batch size of Pi-
ranha on 24GB NVIDIA L4 GPUs (VGG16, ImageNet)

Setting
32 bit 64 bit

3PC 4PC 3PC 4PC

Maximum Batch Size 8 4 2 2
Peak GPU Memory (GB) 11.44 9.36 7.23 10.82

a Next power of two throws runtime error.

Scaling While Piranha effectively accelerates inferences
with a batch size of one, its throughput even decreases when
increasing the batch size: Table 4 shows that when gradually
increasing the batch size from 1 to 8 in the 3PC setting with a
32bit ring size, Pirnaha’s throughput drops consistently until
reaching a 25 % performance penalty for higher batch sizes.

Table 4: Piranha inference throughput in images per sec-
ond on VGG16, ImageNet, 3PC, 32-bit

Batch Size 1 2 4 8

Inferences per second 0.29 0.25 0.22 0.21

Table 5 shows that by using its inter-batch concurrency
model and ABG programming model, PIGEON achieves
17.88 Gbit/s throughput in the 3PC setting for a batch size of
192 when evaluating VGG-16 on Imagenet. This constitutes

11

Table 5: Layer-wise Benchmark: Imagenet, Batchsize 192, 3PC, 32bit

Model Layer GBc Runtime (s) Gbps

PIGEON CPU PIGEON GPU PIGEON CPU PIGEON GPU

VGG-16

LINEAR 0.01 0.62 ± 0.02 0.59 ± 0.02 0.09 ± 0.00 0.10 ± 0.00
FLATTEN 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
AVGPOOL2D 0.39 0.15 ± 0.01 0.15 ± 0.02 21.33 ± 1.59 20.36 ± 3.23
ACTIVATION 45.30 12.29 ± 0.56 16.16 ± 0.43 29.50 ± 1.34b 22.42 ± 0.60
CONV2D 10.40 29.80 ± 0.48 9.14 ± 0.57 2.79 ± 0.04 9.10 ± 0.57

Total 56.11 40.32 ± 0.83 25.10 ± 0.33 11.13 ± 0.23 17.88 ± 0.24

ResNet152

LINEAR 0.00a 0.04 ± 0.00 0.13 ± 0.03 0.17 ± 0.02 0.05 ± 0.01
ADAPTIVEAVGPOOL2D 0.00a 0.00 ± 0.00 0.00 ± 0.00 6.08 ± 0.80 4.91 ± 0.77
FLATTEN 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
AVGPOOL2D 0.05 0.04 ± 0.00 0.04 ± 0.00 10.49 ± 0.45 9.52 ± 0.96
ACTIVATION 70.39 17.87 ± 0.38 24.38 ± 2.15 31.51 ± 0.68b 23.10 ± 2.04
BATCHNORM2D 34.64 8.67 ± 0.65 12.22 ± 0.70 31.98 ± 2.38b 22.69 ± 1.30
CONV2D 17.32 23.79 ± 0.40 13.29 ± 0.52 5.83 ± 0.10 10.43 ± 0.40

Total 122.40 48.41 ± 0.66 47.39 ± 0.73 20.23 ± 0.28 20.66 ± 0.32
a Communication is greater 0 but less than 0.01GB
b Layer benefits from previous layer’s idle communication channels due to inter-batch pipelining
c Communication per party in GB

an improvement of over 20 times compared to PIGEON’s
single inference throughput.

ReLU Performance Piranha’s throughput is severely bot-
tlenecked by ReLU. ReLU layers require multiple commu-
nication rounds between the parties thus necessitating fre-
quent data movements from between the CPU and the GPU
to interact with the system’s network socket. Between these
communication rounds, the GPU is only used for small bursts
of computation. While Piranha improved over CryptGPU to
accelerate ReLU on the GPU, we find that it is still far from
saturating our network, even with high batch sizes and large
input sizes. For instance, in the 4PC, 64-bit setting, Piranha
saturates less than 2% of our available network bandwidth.
We conclude that the GPU is not the right hardware to fully
accelerate ReLUs for MPC. PIGEON instead utilizes Bitlsic-
ing and multiple CPU cores to saturate more than 90% of our
network. In §B, Figure 6 shows that this leads to around one
order of magnitude improvement for single inferences and
two orders of magnitude improvement for batched inferences.
Figure 6d shows our largest improvement: Our batch-wise
evaluation of 192 ReLU layers in the 4PC, 64-bit setting
closely matches Piranhas runtime when evaluating a single
ReLU layer.

7.2 Benchmark
We benchmark PIGEON and Piranha’s inference performance
in the 3PC and 4PC settings with different ring sizes. Accord-
ing to common practice, we replace MaxPooling layers with

AveragePooling layers which are more MPC-friendly [29].
Throughput measurements report Piranha’s best-performing
batch size for each model which almost exclusively is a batch
size of one due to Piranha’s earlier mentioned scaling limita-
tions. We limit PIGEON’s batch size to 192. While PIGEON
supports higher batch sizes for most models and datasets on
our hardware, it might be unrealistic to assume that a real-
world setting would require processing more than 192 inputs
in parallel.

Throughput Table 6 shows the throughput the two frame-
works achieve when evaluating different models and datasets
using a ring size of 32 bits. In §B, Table 7 contains similar re-
sults for ring sizes of 64 bits. The results show that PIGEON
consistently outperforms Piranha by one to two orders of
magnitude. These performance improvements can be mainly
attributed to PIGEON’s efficient ReLU implementation which
showed similar performance improvements in Figure 6. When
comparing the PPML throughput to plaintext PyTorch infer-
ence on ImageNet, PIGEON reduces the overhead from more
than three orders of magnitude to two.

Network Saturation Given the large performance improve-
ment of PIGEON over Piranha, we investigate how close PI-
GEON’s throughput comes to the network limit of 25 Gbit/s.
Table 5 contains the layer-wise and total runtimes with re-
sulting network saturation that PIGEON achieves. The total
runtime measures the entire forward pass of the CNN. The in-
dividual runtimes are measured independently by the runtime
of the slowest process multiplied by the number of processes.

12

Table 6: Throughput (Images per second) 32bit

Setting Framework
CIFAR-10 ImageNet

AlexNet ResNet50 VGG16 ResNet50 VGG16

3PC
Piranha 24.57 ± 0.06 3.10 ± 0.01 10.86 ± 0.01 1.03 ± 0.00 0.21 ± 0.00
PIGEON CPU 1409.30 ± 90.70 247.72 ± 10.89 208.70 ± 3.51 8.37 ± 0.15 4.76 ± 0.11
PIGEON GPU 48.81 ± 3.53 36.25 ± 0.80 42.37 ± 1.79 7.88 ± 0.12 7.65 ± 0.12

4PC
Piranha 9.19 ± 0.01 1.02 ± 0.00 4.19 ± 0.00 -a 0.08 ± 0.00
PIGEON CPU 1034.11 ± 55.13 171.03 ± 5.42 122.78 ± 4.74 5.70 ± 0.14 3.24 ± 0.16
PIGEON GPU 45.94 ± 2.53 31.68 ± 0.91 37.38 ± 1.26 6.05 ± 0.18 6.12 ± 0.09

a Runtime error

We find that this way of reporting the throughput of individual
layers closely matches the total runtime of the forward pass.

The results show that fully connected layers only contribute
an insignificant percentage to the runtime of a CNN given
their small size. For pooling and activations, PIGEON is able
to saturate more than 20 Gbit/s of the available network band-
width except for the average pooling layers in ResNet-152
due to their small input size. For convolutional layers, PI-
GEON GPU achieves around 10 Gbit/s of throughput while
PIGEON CPU achieves around 2-3 times lower throughput
than PIGEON GPU. However, this gap is partly closed by
PIGEON’s inter-batch pipelining and load balancing as de-
scribed in §5. The table shows that the activation and batch
nomalization layers which typically appear directly after a
convolutional layer even exceed the network bandwidth of 25
Gbit/s for PIGEON CPU based on our measurements. This of
course does not mean that at a certain point in time, the net-
work is oversaturated but rather that the fraction of processes
computing an activation can exploit that another fraction of
processes is still stuck in the compute-intensive convolutional
layers. As a result, even the slowest of n total processes is still
able to utilize more than 25/n Gbit/s of the network band-
width when evaluating an activation due to the asynchronous
network utilization of processes.

In total, PIGEON GPU is able to saturate more than 70% of
the network bandwidth which implies limited room for further
improvements from an engineering perspective. As expected,
achieving high throughput on VGG-16 is more challenging
than on ResNet-152 due to the higher computation complexity
of VGG-16’s convolutional layers.

7.3 Making PPML more accessible

In order to support ImageNet inference with large batch sizes,
existing GPU frameworks require High-End GPUs. While
CPU-only frameworks such as FALCON [50] exist, they
achieve less than one order of magnitude of throughput for
batched inference of large neural networks than their GPU-
only alternatives [52]. PIGEON addresses these limitations by
providing GPU acceleration with low memory requirements

and a high throughput CPU-only implementation.

PIGEON CPU As GPU hours are expensive, offering fast
CPU-only implementations can make PPML more accessi-
ble. Additionally, CPU-based frameworks have the potential
to support higher batch sizes as system memory is typically
larger than GPU memory. Along with our GPU implementa-
tion, we provide a CPU-only implementation that achieves re-
spectable convolution throughput by utilizing the techniques
described in §4.3. Table 6 shows that even PIGEON CPU
achieves one to two orders of magnitude higher throughput
than Piranha. For models evaluated on small datasets such as
CIFAR-10, PIGEON CPU even outperforms PIGEON GPU.

PIGEON with limited compute resources While we
showed that by using server-grade hardware PIGEON can
outperform Piranha by one to two orders of magnitude, we
also show that PIGEON is able to achieve state-of-the-art
performance while utilizing only a few compute resources. In
§B, Tables 8 and 9 contain the runtime of PIGEON compared
to Piranha while restricting PIGEON to utilize only a single
CPU core for local computation and a batch size of 1. The
table shows that PIGEON CPU and PIGEON GPU provide
comparable runtimes to Piranha under these restrictions. In
this setting, PIGEON GPU only requires 205 MB of GPU
memory. These results imply that PIGEON can enable fast
private ImageNet inference even on low-end hardware.

Modular Design and PyTorch Interface Finally, PIGEON
may also make PPML more accessible by enabling users
to import existing models and datasets from PyTorch with
a single command while PIGEON’s modular design allows
developers of different domains to extend either the neural
network, MPC, or core software components of PIGEON
while being oblivious to our presented optimizations.

References

[1] CUDA libraries documentation. https://docs.
nvidia.com/cuda-libraries/index.html.

13

https://docs.nvidia.com/cuda-libraries/index.html
https://docs.nvidia.com/cuda-libraries/index.html

[2] Mauro Barni, Claudio Orlandi, and Alessandro Piva. A
privacy-preserving protocol for neural-network-based
computation. In Proceedings of the 8th workshop on
Multimedia and security, pages 146–151, 2006.

[3] Christopher Berner, Greg Brockman, Brooke Chan,
Vicki Cheung, Przemysław Dębiak, Christy Dennison,
David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. Dota 2 with large scale deep reinforce-
ment learning. arXiv preprint arXiv:1912.06680, 2019.

[4] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing. In Annual international conference on
the theory and applications of cryptographic techniques,
pages 337–367. Springer, 2015.

[5] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith
Suresh. Flash: Fast and robust framework for privacy-
preserving machine learning. Cryptology ePrint Archive,
2019.

[6] Octavian Catrina and Amitabh Saxena. Secure Compu-
tation with Fixed-Point Numbers. In FC, 2010.

[7] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and
Ajith Suresh. Astra: high throughput 3pc over rings with
application to secure prediction. In Proceedings of the
2019 ACM SIGSAC Conference on Cloud Computing
Security Workshop, pages 81–92, 2019.

[8] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Tri-
dent: Efficient 4pc framework for privacy preserving
machine learning. arXiv preprint arXiv:1912.02631,
2019.

[9] Anders PK Dalskov, Daniel Escudero, and Marcel Keller.
Fantastic four: Honest-majority four-party secure com-
putation with malicious security. In USENIX Security
Symposium, pages 2183–2200, 2021.

[10] Ivan Damgård, Kasper Damgård, Kurt Nielsen, Peter Se-
bastian Nordholt, and Tomas Toft. Confidential bench-
marking based on multiparty computation. In Interna-
tional Conference on Financial Cryptography and Data
Security, pages 169–187. Springer, 2016.

[11] Daniel Escudero. An introduction to secret-sharing-
based secure multiparty computation. Cryptology ePrint
Archive, 2022.

[12] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin
Ko, Susan M Swetter, Helen M Blau, and Sebastian
Thrun. Dermatologist-level classification of skin cancer
with deep neural networks. nature, 542(7639):115–118,
2017.

[13] Karthik Garimella, Zahra Ghodsi, Nandan Kumar Jha,
Siddharth Garg, and Brandon Reagen. Characterizing

and optimizing end-to-end systems for private inference.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 3, pages 89–104,
2023.

[14] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and
Gigel Macesanu. A survey of deep learning tech-
niques for autonomous driving. Journal of field robotics,
37(3):362–386, 2020.

[15] Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nis-
hanth Chandran, Divya Gupta, Ashish Panwar, and
Rahul Sharma. Sigma: Secure gpt inference with func-
tion secret sharing. Cryptology ePrint Archive, 2023.

[16] Christopher Harth-Kitzerow, Ajith Suresh, Yongqin
Wang, Hossein Yalame, Georg Carle, and Murali An-
navaram. High-throughput secure multiparty computa-
tion with an honest majority in various network settings.
Cryptology ePrint Archive, Paper 2024/386, 2024.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016.

[18] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four
research groups. IEEE Signal processing magazine,
29(6):82–97, 2012.

[19] Neha Jawalkar, Kanav Gupta, Arkaprava Basu, Nishanth
Chandran, Divya Gupta, and Rahul Sharma. Orca: Fss-
based secure training and inference with gpus. In 2024
IEEE Symposium on Security and Privacy (SP), pages
63–63. IEEE Computer Society, 2023.

[20] John Jumper, Richard Evans, Alexander Pritzel, Tim
Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, et al. Highly accurate protein structure pre-
diction with alphafold. nature, 596(7873):583–589,
2021.

[21] Donald Ervin Knuth. The art of computer programming,
volume 3. Pearson Education, 1997.

[22] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith
Suresh. SWIFT: Super-fast and Robust Privacy-
Preserving Machine Learning. In USENIX Security
Symposium, pages 2651–2668, 2021.

[23] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith
Suresh. Tetrad: Actively secure 4pc for secure train-
ing and inference. arXiv preprint arXiv:2106.02850,
2021.

14

[24] Alex Krizhevsky. Learning multiple layers of fea-
tures from tiny images. Technical report, University
of Toronto, Toronto, Ontario, 2009.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural
networks. In NeurIPS, pages 1106–1114, 2012.

[26] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. nature, 521(7553):436–444, 2015.

[27] Yann LeCun, Bernhard E. Boser, John S. Denker, Don-
nie Henderson, Richard E. Howard, Wayne E. Hubbard,
and Lawrence D. Jackel. Backpropagation applied to
handwritten zip code recognition. Neural Comput.,
1(4):541–551, 1989.

[28] Yann LeCun, Corinna Cortes, and Christopher J. Burges.
The MNIST database of handwritten digits. http://
yann.lecun.com/exdb/mnist, 2010. Accessed: July
19, 2024.

[29] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and
Avishay Yanai. Efficient constant round multi-party
computation combining BMR and SPDZ. In CRYPTO,
2015.

[30] Darius Mercadier. Usuba, Optimizing Bitslicing Com-
piler. PhD thesis, Sorbonne université, 2020.

[31] Darius Mercadier and Pierre-Évariste Dagand. Usuba:
high-throughput and constant-time ciphers, by construc-
tion. In Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, pages 157–173, 2019.

[32] Darius Mercadier, Pierre-Évariste Dagand, Lionel La-
cassagne, and Gilles Muller. Usuba: optimizing & trust-
worthy bitslicing compiler. In Proceedings of the 2018
4th Workshop on Programming Models for SIMD/Vector
Processing, pages 1–8, 2018.

[33] Payman Mohassel and Peter Rindal. Aby3: A mixed
protocol framework for machine learning. In Proceed-
ings of the 2018 ACM SIGSAC conference on computer
and communications security, pages 35–52, 2018.

[34] Payman Mohassel and Yupeng Zhang. SecureML: A
system for scalable privacy-preserving machine learning.
In IEEE Symposium on Security and Privacy, pages 19–
38, 2017.

[35] Payman Mohassel and Yupeng Zhang. SecureML: A
System for Scalable Privacy-Preserving Machine Learn-
ing. In IEEE S&P, 2017.

[36] Lucien KL Ng and Sherman SM Chow. Sok: Cryp-
tographic neural-network computation. In 2023 IEEE

Symposium on Security and Privacy (SP), pages 497–
514. IEEE, 2023.

[37] NVIDIA Corporation. Cutlass: Cuda templates for
linear algebra subroutines. https://github.com/
NVIDIA/cutlass. Accessed: July 19, 2024.

[38] Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and
Omer Berat Sezer. Deep learning for financial appli-
cations: A survey. Applied soft computing, 93:106384,
2020.

[39] Neungsoo Park, Bo Hong, and Viktor K Prasanna.
Tiling, block data layout, and memory hierarchy perfor-
mance. IEEE Transactions on Parallel and Distributed
Systems, 14(7):640–654, 2003.

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Köpf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An imperative style, high-
performance deep learning library. In NeurIPS, pages
8024–8035, 2019.

[41] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hos-
sein Yalame. {ABY2. 0}: Improved {Mixed-Protocol}
secure {Two-Party} computation. In 30th USENIX Se-
curity Symposium (USENIX Security 21), pages 2165–
2182, 2021.

[42] Arpita Patra and Ajith Suresh. Blaze: blazing fast
privacy-preserving machine learning. arXiv preprint
arXiv:2005.09042, 2020.

[43] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Ima-
genet large scale visual recognition challenge. Interna-
tional journal of computer vision, 115:211–252, 2015.

[44] Gilad Shainer, Ali Ayoub, Pak Lui, Tong Liu, Michael
Kagan, Christian R Trott, Greg Scantlen, and Paul S
Crozier. The development of mellanox/nvidia gpudirect
over infiniband. a new model for gpu to gpu communi-
cations. Computer Science-Research and Development,
26:267–273, 2011.

[45] Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep
learning in medical image analysis. Annual review of
biomedical engineering, 19(1):221–248, 2017.

[46] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. Mastering the game of

15

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass

go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[47] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In ICLR, 2015.

[48] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence
to sequence learning with neural networks. Advances in
neural information processing systems, 27, 2014.

[49] Sijun Tan, Brian Knott, Yuan Tian, and David J Wu.
Cryptgpu: Fast privacy-preserving machine learning on
the gpu. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1021–1038. IEEE, 2021.

[50] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal
Kushilevitz, Prateek Mittal, and Tal Rabin. FALCON:
honest-majority maliciously secure framework for pri-
vate deep learning. Proc. Priv. Enhancing Technol.,
2021, 2021.

[51] Yongqin Wang, G. Edward Suh, Wenjie Xiong, Ben-
jamin Lefaudeux, Brian Knott, Murali Annavaram, and
Hsien-Hsin S. Lee. Characterization of mpc-based pri-
vate inference for transformer-based models. In 2022
IEEE International Symposium on Performance Analy-
sis of Systems and Software (ISPASS), pages 187–197,
2022.

[52] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa.
Piranha: A {GPU} platform for secure computation. In
31st USENIX Security Symposium (USENIX Security
22), pages 827–844, 2022.

[53] Andrew Chi-Chih Yao. How to generate and exchange
secrets. In 27th annual symposium on foundations of
computer science (Sfcs 1986), pages 162–167. IEEE,
1986.

A Benchmark models and datasets in PPML

Most PPML frameworks evaluate their performance using
convolutional neural networks (CNNs) on image datasets.
The following datasets are commonly used for this purpose:

• MNIST [28]: A small-scale dataset consisting of 60,000
grayscale images and 28×28×1 pixels per image.

• CIFAR-10 [24]: A dataset consisting of 60,000 color
images and 32×32×3 pixels per image.

• Imagenet [43]: A large-scale dataset with over one mil-
lion color images and 224×224×3 pixels per image.

The following neural network architectures are commonly
used for benchmarking PPML frameworks:

• LeNet [27] and AlexNet [25]: Historically important,
small CNNs with two and five convolutional layers re-
spectively.

• VGG-16 [47]: A CNN with 16 convolutional layers and
a large number of operations per layer.

• ResNet-18/50/101/152 [17]: Deep CNNs with 18 to 152
layers but fewer operations per layer than VGG-16.

Out of these different models and datasets, only VGG-16 and
the different ResNet architectures can be considered state-of-
the-art machine learning models based on their large number
of trainable parameters, while only ImageNet can be consid-
ered a state-of-the-art dataset based on its number of pixels
per image. In 2021, CryptGPU [49] was the first MPC-based
PPML framework to achieve private inference of VGG-16
and ResNet architectures on the full-size Imagenet dataset.

16

B Additional Benchmark Results

Piranha, Batch Size 1 Piranha, Batch Size 192 PIGEON, Batch Size 1 PIGEON, Batch Size 192

104 105 106 107

Input Size

10−2

10−1

100

101

102

103

In
fe

re
nc

e
Ti

m
e

(m
s)

(a) 3PC, 32-bit

104 105 106 107

Input Size

10−2

10−1

100

101

102

103

In
fe

re
nc

e
Ti

m
e

(m
s)

(b) 3PC, 64-bit

104 105 106 107

Input Size

10−2

10−1

100

101

102

103

In
fe

re
nc

e
Ti

m
e

(m
s)

(c) 4PC, 32-bit

104 105 106 107

Input Size

10−2

10−1

100

101

102

103

In
fe

re
nc

e
Ti

m
e

(m
s)

(d) 4PC, 64-bit

Figure 6: ReLU Inference Time with different Bitlengths

Minor ticks represent a 2 times increase, major ticks represent a 10 times increase.

Table 7: Throughput (Images per second) 64bit

Setting Framework
CIFAR-10 ImageNet

AlexNet ResNet50 VGG16 ResNet18 VGG16

3PC
Piranha 17.99 ± 0.07 1.50 ± 0.00 5.08 ± 0.01 0.79 ± 0.01 0.11 ± 0.00
PIGEON CPU 941.51 ± 14.69 81.97 ± 1.72 76.85 ± 1.23 3.51 ± 0.06 1.77 ± 0.02

4PC
Piranha 4.19 ± 0.00 0.52 ± 0.00 1.86 ± 0.00 -a 0.04 ± 0.00
PIGEON CPU 681.68 ± 17.11 80.81 ± 0.89 75.92 ± 1.41 2.75 ± 0.03 1.40 ± 0.04

a Runtime error

17

Table 8: Single-Core Runtime (Seconds) 32bit

Setting Framework
CIFAR-10 ImageNet

AlexNet ResNet18 ResNet50 VGG16 ResNet18 VGG16

3PC
Piranhab 0.07 ± 0.00 0.22 ± 0.00 0.94 ± 0.00 0.16 ± 0.00 0.97 ± 0.00 3.50 ± 0.02
PIGEON CPU 0.05 ± 0.11 1.50 ± 0.20 2.86 ± 0.28 0.28 ± 0.00 1.50 ± 0.10 6.34 ± 0.04
PIGEON GPU 0.48 ± 0.13 1.55 ± 0.03 3.29 ± 0.12 0.60 ± 0.01 1.28 ± 0.05 1.58 ± 0.10

4PC
Piranhab 0.18 ± 0.00 0.52 ± 0.01 2.09 ± 0.01 0.44 ± 0.00 -a 9.91 ± 0.01
PIGEON CPU 0.08 ± 0.11 1.22 ± 0.00 2.84 ± 0.02 0.51 ± 0.02 3.45 ± 0.09 16.24 ± 0.17
PIGEON GPU 0.52 ± 0.13 1.60 ± 0.02 3.25 ± 0.00 0.66 ± 0.02 2.02 ± 0.14 2.97 ± 0.20

a Runtime error
b The single-core restriction only applies to PIGEON. We do not restrict Piranha’s CPU or GPU usage.

Table 9: Single-Core Runtime (Seconds) 64bit

Setting Framework
CIFAR-10 ImageNet

AlexNet ResNet18 ResNet50 VGG16 ResNet18 VGG16

3PC
Piranhab 0.11 ± 0.00 0.26 ± 0.00 1.50 ± 0.00 0.27 ± 0.00 1.61 ± 0.00 8.37 ± 0.04
PIGEON CPU 0.21 ± 0.13 0.66 ± 0.01 1.37 ± 0.02 0.45 ± 0.00 3.19 ± 0.16 15.66 ± 0.04
PIGEON GPU 0.67 ± 0.06 1.10 ± 0.01 1.88 ± 0.03 0.74 ± 0.00 1.72 ± 0.15 2.61 ± 0.19

4PC
Piranhab a 0.64 ± 0.00 -a 0.74 ± 0.00 -a 23.01 ± 0.02
PIGEON CPU 0.16 ± 0.09 0.77 ± 0.00 1.55 ± 0.00 0.96 ± 0.02 7.39 ± 0.10 40.22 ± 0.06
PIGEON GPU 0.64 ± 0.13 1.20 ± 0.00 2.07 ± 0.01 0.85 ± 0.02 2.62 ± 0.10 4.54 ± 0.16

a Runtime error
b The single-core restriction only applies to PIGEON. We do not restrict Piranha’s CPU or GPU usage.

C Bitslicing and Vectorization illustrated

0 1 1

1 0 1

0 1 1

0 1 0

1 0 0

0 1 0

0 1 1 0 1 1 1 0 0

1 0 1 0 1 0 0 1 0

V

0 1 1

1 0 1

0 1 1

0 1 0

1 0 0

0 1 0

0 0 1

1 0 0

1 1 0

0 1 1

1 1 0

1 0 0

Figure 7: Bitslicing (left) and Vectorization (right) of independent integers replace multiple independent CPU instructions with a
single one

18

	Introduction
	Unique Challenges in PPML
	Our Contribution

	Related Work
	Background: Privacy Preserving Machine Learning based on MPC
	MPC Primitives
	Evaluating Neural Networks using MPC
	Matrix-Multiplication-based Layers

	Conversion-based Layers
	Multiplication-based Layers

	The ABG Programming Model
	Accelerating Multiplication-based Layers using Arithmetic Vectorization
	Accelerating Conversion-based Layers using Bitslicing
	Accelerating Matrix-Multiplication based Layers using the CPU
	Accelerating Matrix-Multiplication based Layers using the GPU
	Switching between Acceleration Techniques
	Bringing It All Together

	PPML Pipelining
	Software Architecture
	Evaluation
	Overcoming PPML Limitations
	Benchmark
	Making PPML more accessible

	Benchmark models and datasets in PPML
	Additional Benchmark Results
	Bitslicing and Vectorization illustrated

