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Abstract—Cryptocurrencies have gained high popularity in
recent years, with over 9000 of them, including major ones such
as Bitcoin and Ether. Each cryptocurrency is implemented on
one blockchain or over several such networks. Recently, various
technologies known as blockchain interoperability have been
developed to connect these different blockchains and create an
interconnected blockchain ecosystem. This paper aims to provide
insights on the blockchain ecosystem and the connection between
blockchains that we refer to as the interoperability graph. Our
approach is based on the analysis of the correlation between
cryptocurrencies implemented over the different blockchains.
We examine over 4800 cryptocurrencies implemented on 76
blockchains and their daily prices over a year. This experimental
study has potential implications for decentralized finance (DeFi),
including portfolio investment strategies and risk management.

I. Introduction

Cryptocurrencies, with a market capitalization of approx-
imately 2.3 trillion USD as of July 2024 [1], have a high
impact on the global economy and offer new investment oppor-
tunities [2], [3]. The popularity of Bitcoin [4], established in
2008 with the introduction of blockchain technology, led to the
development of this sector. Since then, numerous blockchains
have been introduced, serving various functions and supporting
their unique cryptocurrencies, such as Ethereum, Polygon,
BNB Chain, and Solana. Ethereum [5], recognized as a signif-
icant blockchain innovation, introduced smart contracts. These
programs operate on the blockchain, consistently maintaining
their state during executions.

Smart contracts enable the exchange of cryptocurrencies
across various blockchains and their respective implemen-
tations on these networks. Numerous mechanisms, typically
known as interoperability or cross-chain technologies, have
been developed and examined to facilitate inter-blockchain
communication [6]–[11]. Blockchain interoperability allows
blockchain systems to exchange data, messages, and digital
assets with mitigated security risks. This advancement is
considered critical for the wide adoption of blockchain tech-
nology as it has transformed the blockchain ecosystem from
isolated data islands to an interconnected network, allowing
joint operation and the exchange of cryptocurrencies across
different blockchains.

Our study is motivated by the importance and emergence
of blockchain interoperability. We aim to provide insights into
the interoperability between major blockchains and the implied
blockchain ecosystem as a whole based on such connections.
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Fig. 1. Venn diagram of four major blockchains Ethereum, Polygon, Binance
Smart Chain (BNB-Chain) and Solana with their implemented cryptocurren-
cies. The cryptocurrencies referred to are Wrapped Bitcoin (WBTC), USD
Coin (USDC), Litecoin (LTC), The Graph (GRT), Kin (KIN), Floki Inu
(FLOKI), Bitcoin BEP2 (BTCB), Wrapped Ether (WETH), Golem (GLM),
and Ark (ARK).

We view the blockchain ecosystem as a graph that we refer
to as the Blockchain Interoperability Graph. In the graph,
nodes represent different blockchains, while edges represent
the level of interoperability between a pair of blockchains.
We aim to offer insights into the graph by analyzing the corre-
lations between cryptocurrencies implemented across various
blockchains.

II. Background

We briefly describe several of the most prominent technolo-
gies involved in blockchain interoperability [12]:

Cross-chain bridges are applications that enable the trans-
fer of assets from different blockchains. They can be central-
ized or decentralized based on the protocol implementation.

Sidechains are secondary blockchains compatible with the
main blockchain network. They facilitate communication with
the main blockchain using a two-way peg. A two-way peg is



a mechanism that facilitates the two-directional movement of
assets between the main chain and the sidechain, according to
a set or pre-established exchange rate [13].

Wrapped tokens are typically cryptocurrencies that are
pegged to the value of another original cryptocurrency or asset,
designed for interoperability with different blockchains.

Cross-chain DEXs are decentralized exchanges that enable
the exchange of assets between different blockchains.

Cryptocurrencies can have different implementations on
several blockchains, which provides compatibility with cross-
chain technologies and enables further utilization of cryptocur-
rencies on each distinct blockchain. Fig. 1 displays various
cryptocurrencies implemented across multiple blockchains as
detailed on CoinMarketCap [14]. Along the paper, we catego-
rize the cryptocurrencies by their parent blockchain based on
CoinMarketCap API [15].

III. Methodology

We model the blockchain ecosystem as the blockchain
interoperability graph, an (undirected) graph in which nodes
represent blockchains. In such a graph, an edge exists between
two blockchains upon the existence of an interoperability
mechanism between the pair of blockchains that allows the
efficient exchange of data and digital assets. The graph can
be weighted and in such a case, an edge weight is small if
the interoperability mechanism is time efficient, has low cost
and low-security risks. In such an ecosystem, two blockchains
that are not directly connected can also communicate indirectly
through a third blockchain or a path of them, often with higher
costs in terms of risks, delay, etc.

Towards understanding the blockchain interoperability
graph, we gathered the daily closing prices of 4828 cryp-
tocurrencies from 76 different blockchains for approximately
a year, from January 21, 2023, to January 17, 2024, from
CoinMarketCap [14]. We aim to provide insights on the
blockchain ecosystem by studying the following:
• The correlation between cryptocurrencies implemented

on the same parent blockchain compared to the correla-
tion between cryptocurrencies implemented on different
parent blockchains.

• The correlation between a pair of blockchains by the cor-
relation of cryptocurrencies for which these blockchains
serve as the parent blockchain.

To study the correlation between cryptocurrencies, we use
logarithmic return (log return) and Pearson’s correlation co-
efficient as it is widely used [16], [17]. For cryptocurrency i,
the closing price on day t is defined as pi(t). The daily log
return, at day t for cryptocurrency i is therefore:

Ri(t) = ln
(

pi(t)
pi(t − 1)

)
= ln(pi(t)) − ln(pi(t − 1))

For a specific timeframe T , Ri represents a vector of log
returns. The correlation coefficient (Pearson’s correlation coef-
ficient) that measures the correlation between cryptocurrencies
i and j over timeframe T is calculated by cross-correlation

TABLE I
Evan’s metric for measuring the strength of Pearson’s correlation

Correlation Strength Correlation Anti-correlation
Very weak 0.00 - 0.19 -0.19 - 0.00

Weak 0.20 - 0.39 -0.39 - -0.20
Moderate 0.40 - 0.59 -0.59 - -0.40

Strong 0.60 - 0.79 -0.79 - -0.60
Very strong 0.80 - 1.00 -1.00 - -0.80

function. We denote σi =

√
E(R2

i ) − E(Ri)2 the standard
deviation and E(·) the expected value. We refer to the cross-
correlation function as

Ci, j =
E(RiR j) − E(Ri) · E(R j)

σi · σ j
.

Note that C is symmetric as Ci, j = C j,i and Ci, j ∈ [−1, 1]
where −1 indicates maximum anti-correlation, 0 absence of
correlation and 1 maximum correlation. We use a metric for
Pearson’s correlation value based on Evans [18] to measure
the correlation strength, as summarized in Table I.

To study the correlation between cryptocurrencies, we cre-
ate an undirected graph in which each cryptocurrency is
represented by a node, and the edges indicate the correla-
tion value between the cryptocurrencies. The algorithm for
building the graph is described in Algorithm 1. The algo-
rithm receives start date and end date and returns the graph.
cryptoLogReturnVector is a dictionary where the keys repre-
sent the cryptocurrencies, and the values are the corresponding
vectors of log returns. goneByCryptos are cryptocurrencies
whose correlation to the other cryptocurrencies was calculated.
PricesAllCryptos receives a start date and an end date and re-
turns a dictionary where the keys are the cryptocurrencies, and
the values are dictionaries of prices by date. CalcCorrelation
calculates the Pearson’s correlation coefficient based on the
cryptocurrencies and the log return vector.

Algorithm 1: Build correlation graph of cryptocur-
rencies (startDate, endDate)

Init an empty graph G
Init empty dictionary cryptoLogReturnVector
Init empty goneByCryptos
pricesCryptos = PricesAllCryptos(startDate, endDate)
cryptos = pricesCryptos.keys()
for c ∈ cryptos do

Add c to goneByCryptos
if c < cryptoLogReturnVector then

cryptoLogReturnVector[c]←
CalcReturn(startDate, endDate, pricesCryptos, c)

for c′ < {cryptos \ goneByCryptos} do
if c′ < cryptoLogReturnVector then

cryptoLogReturnVector[c′]←
CalcReturn(startDate, endDate, pricesCryptos, c′)

e← CalcCorrelation(c, c′, cryptoLogReturnVector)
Add e to G

return G

Algorithm 2 receives start date, end date, dictionary of
prices per cryptocurrency, and the cryptocurrency. It returns
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the vector of log return values of the cryptocurrency in the
timeframe.

Algorithm 2: CalcReturn(startDate, endDate, prices, c)
Init empty list returnsList
for from t = startDate + 1 to endDate do

returnValue← ln(prices[c][t]) − ln(prices[c][t − 1])
Add returnValue to returnsList

return returnsList

For each cryptocurrency we divide all other cryptocurren-
cies into two groups:

Group 1: Cryptocurrencies that share the same parent
blockchain as the cryptocurrency.

Group 2: Cryptocurrencies with a different parent
blockchain as of the cryptocurrency.

An edge that connects a cryptocurrency with another cryp-
tocurrency from group 1 is considered an inner edge, as it
connects two cryptocurrencies in the same parent blockchain.
An edge connecting a cryptocurrency with another cryptocur-
rency from group 2 is considered an intersecting edge as it
connects two cryptocurrencies implemented on different parent
blockchains.

We normalize each cryptocurrency’s inner edges correlation
values to those of its intersecting edges correlation values. We
denote i as the cryptocurrency, Bi the parent blockchain of
cryptocurrency i, and τ the threshold. We get the normalized
value for the inner edges as InDominance and the intersecting
edges as OutDominance (as a function of τ) as follows:

In = {(i, j)| j ∈ Bi, j , i}

Out = {(i, j)| j < Bi}

InHeavy(τ) = {(i, j)| j ∈ Bi, j , i, |Ci, j| ≥ τ}

OutHeavy(τ) = {(i, j)| j < Bi, |Ci, j| ≥ τ}

InHeavyRatio(τ) =
|InHeavy(τ)|
|In|

OutHeavyRatio(τ) =
|OutHeavy(τ)|
|Out|

InDominance(τ) =
100 · InHeavyRatio(τ)

InHeavyRatio(τ) + OutHeavyRatio(τ)
OutDominance(τ) =100 − InDominance(τ)

We use these measurements in Section IV to provide insights
into the relationship between cryptocurrencies from group 1
and group 2.

We measure the correlation between each pair of
blockchains based on the correlation of cryptocurrency prices
for which these blockchains serve as the parent blockchain.
We define S τk,m the pairs of cryptocurrencies with a correlation
value greater than or equal to τ between blockchains k and m
as follows:

S τk,m = {(i, j)|i ∈ Bk, j ∈ Bm, |Ci, j| ≥ τ}

We use S τk,m to define the correlation between blockchain k
and blockchain m for threshold τ:

Nτk,m =
1
|S τk,m|

·
∑

(i, j)∈S τk,m

Ci, j

If there are no cryptocurrencies correlated between the
blockchains, meaning S τk,m = ∅, then Nτk,m = 0, as we consider
the blockchains to be uncorrelated.

To study the blockchain behavior, we use the Minimum
Spanning Tree (MST), as it is often the preferred network in
financial market analyses [19]–[21]. To employ the MST using
the blockchain correlation, we first transform the blockchain
correlation matrix N into a distance correlation matrix. We
apply the following transformation to create a distance matrix.
The distance between blockchains k and m is defined as
follows:

Dτk,m = 1 − (Nτk,m)2

where Dτk,m ∈ [0, 1] as chosen in [21]. This transforma-
tion satisfies an intuitive property where strongly correlated
blockchains receive low distance values.

We use the Kruskal algorithm to create the minimum
spanning tree (MST) from D to study the blockchains’
collective behavior and community structure. We use the
Clauset-Newman-Moore community detection algorithm to
detect the distinct communities within the MST as shown
in Section IV. These communities provide insights into the
interoperability graph as they represent groups of correlated
blockchains, which are influenced by communication between
these blockchains.

IV. Data Analysis
In Table II, we present the 76 blockchains by their total

value locked (TVL), number of analyzed cryptocurrencies,
and their layer. TVL is a metric that measures the cumulative
USD value of digital assets locked or staked on a blockchain
via decentralized finance (DeFi) platforms or decentralized
applications (dApps). Blockchains with a higher TVL are
considered more valuable and secure [22]. Layer 0 blockchains
function as infrastructure for other blockchains implemented
on top of them. Therefore, we consider their TVL the sum of
all other blockchains marked by *. The TVL approximation
for each blockchain was taken from [23] in July 2024.

Using correlation data from January 21, 2023, to January
17, 2024, we construct the correlation graph presented in
Section III, which serves as the basis for our analysis. We
divide this section into two subsections: In subsection IV-A,
we demonstrate that cryptocurrencies tend to be more corre-
lated within their parent blockchain. In subsection IV-B, we
study the dynamics between blockchains and the interoper-
ability graph through the correlation of the cryptocurrencies
implemented on them.

A. Cryptocurrencies correlations

In this subsection, we study the correlation between cryp-
tocurrencies in terms of their parent blockchain implementa-
tion. We first demonstrate four different cryptocurrencies and
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TABLE II
Blockchains statistics (A total of 76 blockchains). Total value locked

(TVL) values with refer to aggregated values of blockchains implemented
on top of a layer 0 blockchain.

Name TVL (approximated) # Coins analyzed Layer
Bitcoin $1.053b 1 1

Ethereum $59.51b 2303 1
BNB $4.877b 1430 1

Solana $4.549b 170 1
XRP Ledger - 14 1

Cardano $219.36m 24 1
Avalanche C-Chain - 95 -

Dogechain $3.05m 5 -
Polkadot $145m* 2 0

Tron $7.932b 52 1
Ton $708.69m 4 1

Polygon $857.64m 187 2
Bitcoin Cash $10.95m 2 1

Cosmos $2b* 2 0
ICP $67.74m 2 -
Near $247.64m 9 1

Stellar $9.6m 11 1
Injective $53.79m 1 2
Hedera $71.01m 4 1

Ethereum Classic $419,049 2 1
Aptos $355.29m 11 1

VeChain $608,578 3 1
Cronos $465.99m 30 1

Optimism $680.55m 9 2
Stacks $75.81m 2 -
Elrond $106.71m 19 1

Algorand $75.97m 14 1
Fantom $148.39m 54 1

Theta Network $2.41m 2 1
Neo $30.49m 8 1
EOS $105.01m 8 1
Tezos $57.52m 11 1
Klaytn 6.61m 48 1

Osmosis $121.34m 16 -
XDC Network $7.59m 9 1

Conflux $14.81m 2 1
IoTeX $20.46m 5 1
Astar $26.8m 2 -

Zilliqa $1.76m 8 1
Nem - 2 -
Celo $109.01m 15 1

Waves $10.42m 8 -
Moonbeam $39.98m 9 1
Arbitrum $2.826b 27 2
Harmony $1.9m 14 -

Ont $8.89m 2 -
RSK RBTC - 3 2

Secret $16.81m 2 1
Elastos $3.47m 2 -

Everscale $2.75m 5 1
Viction $300,770 2 1
Heco $283,962 19 -

Moonriver $6.7m 6 1
Fusion network $102.9m 2 1

Wanchain $3.86m 4 1
Telos $38.51m 3 1

Kardiachain $264,052 3 -
Chiliz $607,258 44 1

Bitcichain - 22 -
Arbitrum Nova $1.77m 1 2
Terra Classic $2.36m 4 1

Songbird Network $2.48m 2 1
Althash - 2 -
Canto $28.84m 3 1

OKExChain $2.39m 5 1
Avalanche DFK - 3 -

Aurora $9.97m 2 2
Gnosis Chain $295.57m 5 1

Step $279,831 2 -
Metis Andromeda $54.23m 9 2

Fuse $1.79m 2 1
Oasis Network $2.12m 3 1

KCC $1.76m 4 -
Sora $476,855 3 -

Bitgert $7,762 2 1
zkSync Era - 1 2
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Fig. 2. Log returns of four cryptocurrencies: Ether, HBTC, BATCH, and WE
by their correlation

their log returns. A positive correlation indicates the same log
return behavior, while a negative one indicates anti-correlation
behavior, meaning the log return behavior is opposite to one
another. We demonstrate very strong and very weak correla-
tions (based on Evans measure) of cryptocurrencies, which
we calculate their correlation over the analyzed timeframe
(from January 21, 2023, to January 17, 2024). We show
their log returns values from March 21, 2023, to April 17,
2023, in Fig. 2. In the paper, we focus on cryptocurrencies
with strong and moderate correlations by applying various
correlation thresholds in our figures. This approach helps us
concentrate on the most relevant cryptocurrencies, as numer-
ous uncorrelated ones do not provide valuable insights into the
underlying dynamics of cryptocurrency correlations.

In Fig. 3 and Fig. 4 we show the cumulative distribution
function (CDF) of the correlation values of intersecting edges
and inner edges per threshold. In Fig. 3, we show that most
analyzed cryptocurrencies are not correlated as most have
correlation values between −0.1 and 0.2. In Fig. 4, we show
that inner edges have higher correlation values in all the strong
thresholds, indicating that cryptocurrencies tend to have higher
correlation values with cryptocurrencies implemented on the
same parent blockchain.

In Fig. 5, we present for various values of the threshold
τ, the distribution (over the analyzed cryptocurrencies) of the
values of InDominance(τ) and OutDominance(τ), as defined
in Section III. We aim to provide insights into the correlations
of cryptocurrencies both within their parent blockchain and
outside of it. Intuitively, the relationship between threshold
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Fig. 4. CDF by threshold of inner and intersecting edges correlation values

values and the two dominance values provides insights on
whether belonging to the same parent blockchain impacts the
correlation of cryptocurrency prices. Recall that the sum of
the two dominance values equals 100.

In Fig. 5(a), we show that most cryptocurrencies with a
correlation greater than 0.1 tend to have the same correlation to
cryptocurrencies implemented on their parent blockchain and
cryptocurrencies implemented on other blockchains. This is
reasonable as most cryptocurrencies are not correlated to each
other, as we showed in Fig. 3; therefore, they do not tend to
be correlated to either. For strongly correlated cryptocurrency,
we conclude the following from Fig. 5(c) and Fig. 5(d):
• Cryptocurrencies tend to be more correlated within their

parent blockchain as their InDominance value tends to
be higher.

• Most cryptocurrencies with strong correlation tend to
be either strongly correlated to the cryptocurrencies
implemented on their parent blockchain or cryptocur-
rencies on other blockchains as most cryptocurrencies’
InDominance and OutDominance values are in the bins
91 − 100 or in bins 0 − 10.

Overall, cryptocurrencies tend to be highly correlated with
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(b) Normalized edges correlation values for threshold τ = 0.5
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(c) Normalized edges correlation values for threshold τ = 0.7
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(d) Normalized edges correlation values for threshold τ = 0.9

Fig. 5. Distribution of normalized edges correlation values for various
threshold values
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cryptocurrencies within their parent blockchain and tend to be
either highly correlated to cryptocurrencies implemented on
their parent blockchain or to cryptocurrencies implemented on
other blockchains.

B. Blockchains Dynamics

In this subsection, we study the blockchain ecosystem based
on the correlation between blockchains as formulated in Sec-
tion III, with threshold value of τ = 0.4 (moderate correlation).
We represent the blockchain ecosystem as a graph where a
node is a blockchain and an edge represents the correlation
between the blockchains. We use the Kruskal and Clauset-
Newman-Moore community detection algorithm to study the
blockchain communities. We note that we removed Altash
from Fig. 6 and Fig. 7 as it was not correlated with any
blockchain and therefore did not provide useful information.

We study the structure of communities over several time-
frames: from January 21, 2023, to January 17, 2024 (as shown
in Fig. 6), from January 21, 2023, to July 18, 2023 (in Fig. 7),
and from July 19, 2023, to January 17, 2024 (in Fig. 8). We
observe ten communities in Fig. 6, six of which have a central
blockchain: Bitcoin, BNB, Harmony, Polkadot, VeChain, and
Ethereum. The structure of the communities varies across
different timeframes. However, there are key properties that
we observe throughout these timeframes.

Bitcoin, Ethereum, and Polkadot are at the center of the
communities they induce. This is reasonable because Bitcoin,
as the inaugural cryptocurrency, continues to play a pivotal
role in influencing the pricing trends across the cryptocurrency
market. Ethereum stands out as the most significant blockchain

Fig. 6. Minimum spanning tree of blockchains correlation from January 21,
2023, to January 17, 2024.

Fig. 7. Minimum spanning tree of blockchains correlation from January 21,
2023, to July 18, 2023

Fig. 8. Minimum spanning tree of blockchains correlation from July 19, 2023,
to January 17, 2024

in terms of Total Value Locked (TVL), with the majority of
other blockchains maintaining compatibility with its ecosys-
tem. Polkadot is a blockchain protocol designed to connect a
multitude of blockchains, facilitating their seamless integration
and collective operation on a large scale [24]. We assume that
Polkadot’s ability to integrate different blockchains potentially
enables it to induce its own community. This may signify the
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future of cross-chain blockchain economic dynamics by intro-
ducing cross-chain blockchains that create a more correlated
network ecosystem.

We observe that several of Ethereum sidechains (or layer
2 blockchains) such as Polygon and Optimism are not in
the same community as Ethereum. This suggests that their
properties induce different economic dynamics, causing them
to be correlated with other blockchains. The same observation
applies to Ethereum Classic and Bitcoin Cash forks, which
have diverged with separate economic dynamics from their
origin blockchains.

Implementing new technologies to connect different
blockchains makes the blockchain ecosystem more intercon-
nected, and accordingly, the interoperability graph is becoming
increasingly interconnected. However, the blockchain ecosys-
tem seems to have the form of several communities with an
internal relatively high correlation of cryptocurrency prices.

V. Investment implications

Investors can invest in blockchain projects through vari-
ous means, such as investing capital in application devel-
opment on a blockchain. Additionally, they can invest in a
blockchain by incorporating cryptocurrencies from the same
parent blockchain into their portfolios. Our analysis provides
several potential implications for investment strategies in
blockchains.

Market Forecasting. Investors can leverage the correlation
between blockchains to gain market insights, which can aid in
predicting conditions like a financial crisis or an economic
boom. For instance, the correlation of a number of key
blockchains can indicate an economic boom or blockchains
that become uncorrelated may signal an impending financial
crisis. Analysis of the correlation of blockchains can provide
information for investors’ strategic decisions.

Risk Management and Diversification. Blockchains with
high correlations are likely to react similarly to market fluctua-
tions, potentially resulting in positive or negative performance
based on overall market conditions. In contrast, uncorrelated
ones are likely to react differently. By understanding these
correlations, investors can strategically invest in blockchains
to minimize potential losses or maximize revenues. They can
invest in different blockchains based on their correlation to
diversify their portfolio. This diversification helps stabilize the
portfolio’s overall performance.

Further work should be done to determine how well our
grouping of cryptocurrencies by blockchains and their corre-
lation analysis, impacts portfolios of blockchain investments.

VI. RelatedWork

To the best of our knowledge, we are the first to study the
blockchain ecosystem by the correlation between blockchains.
The literature on cryptocurrencies is extensive, given their
pivotal role in the blockchain ecosystem.

Dynamics of cryptocurrency prices. Cryptocurrency
prices have garnered significant attention in academia
from various perspectives, such as predicting cryptocurrency

prices [25]–[28], analyzing cryptocurrencies’ correlation with
other financial assets like gold and fiat currencies [29]–[32],
and modeling cryptocurrencies’ volatile [33]–[35]. Our study
focuses on the correlation among cryptocurrencies, which is
significant for investment decision-making process, portfolio
management, risk management, and arbitrage [36]–[41].

Correlation of cryptocurrency prices. Several papers have
explored the correlation of cryptocurrencies. Such as, Marcin
Watorek et al. [42] examine the cryptocurrency market’s
growth and complexity, comparing it to traditional financial
markets. They identify unique characteristics and arbitrage
opportunities despite cryptocurrencies’ similarities to estab-
lished markets like the Foreign Exchange Market (Forex).
Jiaqi Liang et al. [16] analyze cryptocurrency market risk and
dynamics, finding it fragile and unstable despite rapid growth.
Correlation matrices and asset trees assess risk, offering invest-
ment and regulatory insights. Yongjing Shi et al. [43] apply
a multivariate factor stochastic volatility model (MFSVM)
to analyze correlations among six major cryptocurrencies,
revealing significant positive correlations. They offer insights
into the systemic risk of the cryptocurrency market, aiding
investment and regulatory decisions.

Vincenzo Candila [44] utilizes the Dynamic Conditional
Correlation model and Google search data to examine inter-
connections among leading cryptocurrencies. He introduces
a novel model, the Double Asymmetric GARCH–MIDAS,
highlighting the influence of online searches on cryptocur-
rency volatility, providing key insights for market analysis.
Boris Radovanov et al. [45] analyze daily prices of Bitcoin,
Ether, Ripple, and Litecoin, revealing their volatility and
return patterns using autocorrelation and dynamic models
like GARCH. Findings indicate persistent volatility with little
asymmetry, offering key insights for cryptocurrency investors
and portfolio management. Yunus Karaömer [46] explores the
impact of policy uncertainty on cryptocurrency returns using
the dynamic conditional correlation (DCC) model, revealing a
consistent negative correlation across major cryptocurrencies.
This relationship varies with significant events, suggesting that
cryptocurrencies might not serve as stable hedges or safe
havens during policy uncertainty periods.

VII. Conclusions

In this paper, we introduce the concept of the blockchain
interoperability graph to measure the connections between
blockchains within the ecosystem. Our analysis is based on
the correlation between cryptocurrency prices, which are influ-
enced by the interoperability of the parent blockchains they are
implemented on. This analysis focuses on a specific timeframe
using a particular methodology, while other potential evalua-
tion methods and timeframes may yield different conclusions.
We highlight several key points from our study:
• Strong correlated cryptocurrencies tend to be more cor-

related to other cryptocurrencies within their parent
blockchains.

• The blockchain ecosystem can be interpreted as a
community-based graph, where key blockchains such as
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Ethereum and Bitcoin are at the center of communities
within the graph.

• Blockchains that are forks of their origin blockchains
or are sidechains (layer 2) to it tend to form their own
economic dynamics.

• Polkadot is an example of a layer 0 blockchain that forms
a community, showing the potential effect of the proto-
col’s connectivity on the correlation between blockchains.

• Understanding how blockchains are correlated to each
other can offer investment strategies.

Overall, we provide insights on the blockchain ecosystem
and the interoperability graph based on the correlation between
cryptocurrencies.
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