
1

Byzantine Fault Tolerance with Non-Determinism,
Revisited

Yue Huang1, Huizhong Li2,3, Yi Sun2, and Sisi Duan1

1Tsinghua University
2ICT/CAS & UCAS

3WeBank Blockchain Team

Abstract—Conventional Byzantine fault tolerance (BFT) re-
quires replicated state machines to execute deterministic oper-
ations only. In practice, numerous applications and scenarios,
especially in the era of blockchains, contain various sources
of non-determinism. Meanwhile, it is even sometimes desirable
to support non-determinism, and replicas still agree on the
execution results. Despite decades of research on BFT, we still
lack an efficient and easy-to-deploy solution for BFT with non-
determinism—BFT-ND, especially in the asynchronous setting.

We revisit the problem of BFT-ND and provide a formal and
asynchronous treatment of BFT-ND. In particular, we design
and implement Block-ND that insightfully separates the task
of agreeing on the order of transactions from the task of
agreement on the state: Block-ND allows reusing existing BFT
implementations; on top of BFT, we reduce the agreement on the
state to multivalued Byzantine agreement (MBA), a somewhat
neglected primitive by practical systems. Block-ND is completely
asynchronous as long as the underlying BFT is asynchronous.

We provide a new MBA construction that is significantly faster
than existing MBA constructions. We instantiate Block-ND in
both the partially synchronous setting (with PBFT, OSDI 1999)
and the purely asynchronous setting (with PACE, CCS 2022). Via
a 91-instance WAN deployment on Amazon EC2, we show that
Block-ND has only marginal performance degradation compared
to conventional BFT.

Keywords—BFT, Non-determinism, MBA

I. INTRODUCTION

THIS paper revisits the classic problem of Byzantine fault
tolerance with non-determinism—BFT-ND. We provide

the first practical solution, which is both modular (without the
need to modify the consensus layer or the system architecture)
and asynchronous (the system being live even during network
asynchrony).
Non-determinism in BFT and blockchains. State machine
replication (SMR) is a generic approach to achieving sys-
tem availability and reliability. Byzantine fault-tolerant state
machine replication (BFT)—handling Byzantine (arbitrary)
failures—is nowadays the de facto model of blockchains [1,
2] and increasingly inspiring the design of permissonless
blockchains such as Ethereum [3]. Namely, BFT models the
consensus on the order of the transactions, and SMR models
the execution of transactions (e.g., smart contracts).

The conventional state machine replication paradigm re-
quires replicated state machines to execute deterministic oper-
ations. If all operations are deterministic and replicas execute

the operations according to the same order, correct replicas
eventually maintain a consistent state. In practice, various
scenarios contain non-determinism—caused by, for instance,
scheduler decisions, multi-threading and parallel execution,
probabilistic algorithms, operating system discrepancy, and
implementation differences. Namely, even if all correct replicas
execute the transactions in the same logical order, they end up
with inconsistent system states.

Take the programming languages in blockchain smart con-
tracts as examples. The Chaincode in Hyperledger Fabric [1]
uses general-purpose languages and naturally contains non-
deterministic operations (due to, e.g., local random num-
bers [4]). While the programming languages of Ethereum
virtual machine (EVM) do not permit non-deterministic opera-
tions [5], Ethereum still suffers from various inconsistencies of
execution results because of, for example, the discrepancy of
the virtual machine versions and programming languages [6].
While some engineering efforts can minimize state diverging
(e.g., by disabling non-deterministic operations or making
contract execution publicly auditable), it is still difficult to
detect and quarantine all possible sources of non-determinism.

In fact, non-deterministic operations might sometimes be
desirable in blockchains. For example, one issue for Ethereum
and its successors (due to the use of EVM) is that they “do not
support non-deterministic operations and cannot securely op-
erate on private data.” [7] Many prior systems also pointed out
that building a system that handles non-determinism by design
is useful in some applications [8]–[13]. For example, multi-
threaded execution of the transactions, typically designed for
enhanced performance, is also one source of non-determinism.
In this case, replicas still need to agree on the result, and
the underlying BFT-SMR should be designed to support non-
determinism [10].

(a) (b)

Figure 1. Models of dealing with non-determinism in BFT. (a) Order-then-
execute. (b) Execute-then-order

Cachin, Schubert, and Vukolić (CSV) [8] provide a compre-
hensive survey on protocols dealing with non-determinism in
BFT and distinguish three models:

2

• Order-then-execute (Figure 1a). The transactions are first
ordered using BFT and then executed at replicas; the
executed results, one from each replica, are communicated
to all other replicas using (up to) n BFT instances (where
n is the number of replicas). Then, a decision can be made
based on the atomically delivered outputs.

• Execute-then-order (Figure 1b). All replicas execute the
transactions speculatively upon receiving requests from a
designated replica (i.e., the leader). Then, the leader collects
signed approvals from replicas. After receiving f + 1
approvals for the same speculative result, the leader initiates
a BFT protocol communicating the decision and the signed
approvals to all other replicas.

• Primary-backup. A specific replica is assigned as the pri-
mary, making all non-deterministic choices, while other
replicas act as backups and follow the choices. In the
Byzantine failure scenario, the primary must provide the
state and the correctness proof of the execution to justify
the choices and the results.

In particular, the order-then-execute and the execute-then-
order approaches do not require modifying the source code
of the BFT protocol; however, the primary-backup approach
requires that the developers have access to and modify the
protocol. CSV proposed an approach in the execute-then-order
model, a variant of which is used in Hyperledger Fabric [14].
Issues. In spite of decades of research on BFT, we still lack an
efficient and easy-to-deploy solution for BFT-ND. In particular,
existing approaches suffer from the following issues:
• Modularity and compatibility. So far, existing solutions

dealing with non-determinism still lack modularity, in the
sense that they need to 1) modify the underlying BFT
protocol—in which case a special-purpose BFT protocol
handling non-determinism should be designed, validated,
and implemented, and/or 2) modify the system architecture
(e.g., by adopting the execute-then-order model).
First, designing and implementing a new BFT protocol
(especially at the production level) has been acknowledged
as a challenging task; crucially, for BFT infrastructures
in operation, transitioning to new ecosystems would be
prohibitively expensive. Second, it is not always possible to
change the system architecture as it may take tremendous
engineering efforts.

• Efficiency. Existing BFT-ND protocols are much less ef-
ficient than conventional BFT protocols. First, the order-
then-execute approach allows replicas to reach an agree-
ment on the order of transactions and then execute the
transactions. If non-deterministic operations are detected,
replicas roll back to the previous state until an agreement on
the state is reached. When unwanted rollback is triggered
frequently, the entire system may suffer from significant
performance degradation. Second, the execute-then-order
and primary-backup approaches require replicas to execute
the transactions first and then reach an agreement on the
execution results. As the execution of the transactions
and the agreement are highly coupled, the slower process
becomes the bottleneck of the system.

• Asynchrony. Existing BFT protocols with non-determinism

agreement
on order

agreement
on state

execution

Block-ND

transactions nd-deliver()

Block agreement layer State agreement layer

BFT-SMR

(a) (b)

Figure 2. Overview of Block-ND. (a) Block-ND architecture. (b) Block-ND
workflow

do not have effective solutions dealing with network asyn-
chrony [8]–[13]. First, the order-then-execute paradigm
would require n-fold increase in message and communi-
cation to cope with asynchrony. The other two approaches
inherently rely on a leader to prevent the replica state from
diverging; it is unclear how to extend them to deal with
network asynchrony.

Our approach. The root cause for all the challenges above is
that traditional BFT-ND protocols handle the agreement on the
order of transactions and the agreement on the replica state at
the same time. In this paper, we challenge this conventional
wisdom and separate it into two tasks: agreement on the order
of the transactions (block agreement layer) and agreement
on the state (state agreement layer). In particular, we design
Block-ND, the architecture of which is shown in Figure 2a.
The block agreement layer is fully de-coupled from the state
agreement layer; the agreement on the state additionally allows
the replica state to converge. The block agreement layer em-
ploys a conventional BFT protocol, allowing one to reuse the
existing BFT system that has been implemented and deployed.

We reduce the problem of agreement on the state to multi-
valued Byzantine agreement (MBA), a primitive that allows
correct replicas to reach an agreement on some arbitrary
values. MBA guarantees that replicas eventually agree on the
state by some correct replica(s). To further capture the need
for state transfer and make the agreement on the state more
self-contained, we slightly extend the MBA notion to a new
primitive called double-output multivalued Byzantine agree-
ment (DO-MBA). DO-MBA produces two outputs: the primary
output follows that of a conventional MBA; the secondary
output denotes whether a replica needs to synchronize its
state with other replicas. In this way, DO-MBA fully captures
our needs for agreement on the state and ensures replicas
eventually converge on their states.

As shown in Figure 2b, Block-ND follows the order-then-
execute paradigm. Replicas first reach an agreement on the
order of blocks of transactions (e.g., at time t2, the order of
m1 is committed), execute the transactions in the background,
and then start an MBA instance to reach an agreement on the
execution results. Replicas can continue the block agreement
layer without waiting for the execution and MBA to complete.
Our approach is completely asynchronous: if the underlying
BFT protocol is asynchronous, Block-ND is asynchronous;
if the underlying BFT is partially synchronous [15], the

3

mechanisms ensuring liveness are “hidden” by BFT itself.
Our contributions. We make the following contributions:
• We revisit the problem of BFT-ND. We separate the agree-

ment on the order of transactions and the agreement on the
state. To reach an agreement on the state, we reduce the
problem to multivalued Byzantine agreement (MBA).

• We present a practical and asynchronous MBA construc-
tion ND-MBA based on reproposable asynchronous binary
agreement (RABA) [16]. Our MBA protocol terminates in
only three steps in the optimistic case and is more efficient
than all MBA constructions we are aware of. Accordingly,
the agreement on the state can be very lightweight when
all correct replicas hold the same state, i.e., there are no
non-deterministic operations.

• We transform MBA construction to DO-MBA, an extended
primitive of MBA that has two outputs. In our case, trans-
forming ND-MBA to DO-MBA is easy: we only need to
modify a few lines of code. DO-MBA might be a primitive
of independent interest.

• Based on the MBA protocol, we build Block-ND. Block-
ND can reuse any BFT protocols and is asynchronous as
long as the underlying BFT is asynchronous.

• We evaluate the throughput and latency of our DO-MBA
protocol and Block-ND using up to 91 Amazon EC2
instances. We provide a partially synchronous instantiation
and an asynchronous instantiation using PBFT [17] and
PACE [16], respectively. Our results show that Block-ND
is efficient, with 0.89%-21.0% performance degradation
compared to the underlying BFT protocols that do not
handle non-determinism.

II. RELATED WORK

BFT assuming partial synchrony and asynchrony. BFT
protocols can be divided into partially synchronous protocols
(e.g., [17]–[20]) and asynchronous protocols (e.g., [16, 21]–
[24]). Partially synchronous BFT assumes that there exists an
unknown upper bound on the message transmission and pro-
cessing delay [15]. In contrast, asynchronous BFT assumes no
timing assumptions. The celebrated FLP result [25] rules out
the possibility of deterministic consensus in the asynchronous
environment; asynchronous BFT must thus be randomized to
be probabilistically live. Block-ND, by design, assumes no
timing assumptions, applying to both partially synchronous and
asynchronous BFT protocols.
Detection of non-determinism in blockchains. A line of work
aims to detect non-deterministic behavior via code analysis
(see [26] and references therein). For example, Luu et al. used
static code analysis to study non-determinism on transaction
dependencies in EVMs during the ordering and execution
of transactions [27]. Some commercial software tools can
also analyze deployed contracts and detect non-deterministic
operations [28]. These analysis-based approaches, however,
can only detect program-level non-determinism with limited
accuracy.
Separating agreement from execution. Yin et al. [29] and
Duan et al. [13] studied the architecture of separating the BFT

agreement and the execution of transactions. In the architec-
ture, the BFT agreement cluster orders client requests and the
execution cluster then executes client requests according to the
order. Our work is different from their approaches: we first
reach an agreement on the transactions from different clients
and then reach an agreement on states across correct replicas,
even in the presence of non-determinism.
Multivalued Byzantine agreement (MBA). In synchronous
settings, the reduction from MBA to BA was first introduced
by Turpin and Coan [30] and followed up by [31]–[33]. In the
asynchronous environments, the reduction from MBA to asyn-
chronous BA (ABA) was first established by Correia, Neves,
and Verı́ssimo [34]. The MBA protocol, however, has O(n3)
message complexity and expected O(1) time. Mostéfaoui and
Raynal [35] presented the first MBA with optimal O(n2)
message complexity and optimal expected constant time. In
this work, we build a new MBA protocol that significantly
reduces the number of communication steps of prior protocols
while maintaining the optimal message and time complexity.
RABA. Reproposable ABA (RABA) was originally proposed
by Zhang and Duan [16]. Unlike prior RABA-based distributed
computing primitives [16,24,36,37], the usage of RABA in our
ND-MBA protocol is radically different. Indeed, all previous
RABA-based approaches are used to build asynchronous com-
mon subset (ACS) [16, 24, 36] and distributed key generation
(DKG) [37]. In contrast, our work uses RABA to build MBA.

III. SYSTEM MODEL

We consider a system with n replicas, where f of them
may be Byzantine (fail arbitrarily). The protocols we consider
assume f ≤ ⌊n−1

3 ⌋, which is optimal. According to the
timing assumptions, BFT protocols can be divided into par-
tially synchronous protocols (where messages are guaranteed
to be delivered within an unknown time-bound [15]) and
asynchronous protocols (with no timing assumption). Partially
synchronous BFT attains liveness only when the network
becomes synchronous. Asynchronous BFT can (always) use
randomization to achieve probabilistic liveness.

In our description, we tag a protocol instance with a unique
identifier id. We may omit the identifiers.

Throughout the paper, we explicitly distinguish between
BFT (atomic broadcast), BFT-SMR (secure with deterministic
operations only), and BFT-ND (dealing with non-determinism,
to be defined in Sec. V).
BFT (atomic broadcast). This paper uses BFT and atomic
broadcast interchangeably, as these two primitives are only
syntactically different. In atomic broadcast, a replica a-
broadcasts messages and all replicas a-deliver messages. The
correctness of atomic broadcast is specified as follows:
• Safety: If a correct replica a-delivers a message m before a-

delivering m′, then no correct replica a-delivers a message
m′ without first a-delivering m.
• Liveness: If a correct replica a-broadcasts a message m,

then all correct replicas eventually a-deliver m.
The atomic broadcast abstraction implicitly assigns an order

to each delivered transaction. Slightly restricting its syntax, we

4

may write a-deliver(sn,m) to denote that m is the sn-th a-
delivered transaction.
SMR and BFT-SMR. In the state machine replication
paradigm [38], a state machine consists of a set of states S,
a set of operations O, and an execution function execute().
The execution function execute() takes a state s (initially s0)
and an operation o as input and outputs an updated state s′:
execute(s, o)→ s′. A state machine can (optionally) compute
a response r based on its state. Alternatively, one could also
include a response in the output of the execution function:
execute(s, o)→ (s′, r).

In the BFT-SMR protocol, each replica maintains a repli-
cated state machine, and all correct replicas maintain the same
initial state. If they use atomic broadcast (BFT) to disseminate
and order client operations, then once the operations are
deterministic, their states will never diverge. Namely, atomic
broadcast directly implies a secure BFT-SMR for deterministic
operations.

IV. PRELIMINARIES

Asynchronous binary agreement (ABA). An ABA protocol
can be viewed as a binary version of MBA with the input
domain being {0, 1}. An ABA protocol is specified by two
events: a-propose() and a-decide(). Every replicas a-proposes
a bit v ∈ {0, 1}, and each correct replica a-decides a value
v ∈ {0, 1}. ABA should satisfy the following properties:
• Validity: If all correct replicas a-propose v, then any correct

replica that terminates a-decide v.
• Agreement: If a correct replica a-decides v, then any

correct replica that terminates a-decides v.
• Termination: Every correct replica eventually a-decides

some value.
• Integrity: No correct replica a-decides twice.

Reproposable asynchronous binary agreement (RABA).
RABA is a distributed computing primitive recently introduced
by Zhang and Duan [16]. In contrast to conventional ABA
protocols, where replicas can vote once only, RABA allows
replicas to change their votes. A RABA protocol is specified
by r-propose(), r-repropose(), and r-decide(), with the input
domain being {0, 1}. For our purpose, RABA is “biased
towards 1.” Each replica r-proposes a value b at the beginning
of the protocol. A correct replica that r-proposed 0 is allowed
to change its mind and r-repropose 1, but not vice versa. If a
replica r-reproposes 1, it does so at most once. RABA (biased
towards 1) satisfies the following properties:
• Validity: If all correct replicas r-propose v and never

r-repropose v̄, then any correct replica that terminates
r-decide v.

• Unanimous termination: If all correct replicas r-propose v
and never r-repropose v̄, then all correct replicas eventually
terminate.

• Agreement: If a correct replica r-decides v, then any
correct replica that terminates r-decides v.

• Biased validity: If f +1 correct replicas r-propose 1, then
any correct replica that terminates r-decides 1.

• Biased termination: Let Q be the set of correct replicas.
Let Q1 be the set of correct replicas that r-propose 1
and never r-repropose 0. Let Q2 be correct replicas that
r-propose 0 and later r-repropose 1. If Q2 ̸= ∅ and Q =
Q1 ∪Q2, then each correct replica eventually terminates.

• Integrity: No correct replica r-decides twice.

Multivalued Byzantine agreement (MBA). An MBA
protocol is specified by two events: mba-propose() and
mba-decide(). Every replica mba-proposes an input value
vi ∈ {0, 1}L, and each correct replica mba-decides an out-
put v ∈ {0, 1}L, where L is a finite integer. Let ⊥ be a
distinguished symbol. An MBA protocol should satisfy the
following properties.
• Validity: If all correct replicas mba-propose v, then any

correct replica that terminates mba-decides v.
• Agreement: If a correct replica mba-decides v, then any

correct replica that terminates mba-decides v.
• Termination: If all correct replicas mba-propose some

value, every correct replica eventually mba-decides.
• Integrity: No correct replica mba-decides twice.

Note that the following non-intrusion is an optional property
that can be met in some MBA constructions only [35]:
• Non-intrusion: If a correct replica mba-decides v such that

v ̸= ⊥, then at least one correct replica mba-proposes v.

Crusader agreement (CA). CA [39] relaxes the notion of
Byzantine agreement (MBA and binary agreement). In CA, it
is allowed that some correct replicas decide a ⊥ value, while
other correct replicas decide the same non-⊥ value. A CA
protocol is specified by c-propose() and c-decide() and satisfies
the following properties.
• Weak agreement: If a correct replica c-decides value v and

another correct replica c-decides v′, then v = v′ or one of
v and v′ is ⊥.

• Validity: If all correct replica c-propose v, then any correct
replica that terminates c-decides v.

• Termination: If all correct replicas c-propose some value,
every correct replica eventually c-decides.

Hash; threshold signatures. We use a collision-resistant hash
function hash(). We also use threshold signatures in our
DO-MBA protocol. A (ℓ, n) threshold signature scheme [40,
41] consists of the five algorithms (tgen, tsign, shareverify,
tcombine, tverfiy). tgen outputs a public key and a vector of
n verification keys vk known to anyone and a vector of n
private keys. A partial signature signing algorithm tsign takes
as input a message m and a private key ski, and outputs a
partial signature πi. A share verification algorithm shareverify
takes input pk, verification key vki, a message m, and a
partial signature πi, and outputs a bit. A combining algorithm
tcombine takes as input pk, the verification keys vk, a message
m, and a set of ℓ valid partial signatures, and outputs a
signature π. A signature verification algorithm tverify takes
as input pk, a message m, and a signature π, and outputs a
bit. We require the conventional robustness and unforgeability
properties for threshold signatures.
Convention and notation. In the paper, we use best-effort

5

broadcast, or simply broadcast, where a sender multicasts
a message to all replicas. To measure the latency of asyn-
chronous protocols, we use the standard notion of asyn-
chronous steps [42], where a protocol runs in x asynchronous
steps if its running time is at most x times the maximum
message delay between correct replicas during the execution.
The notion of rounds is restricted to ABA protocols: an ABA
protocol proceeds in rounds, where an ABA round consists of
a fixed number of steps.

V. PATHWAY TO BLOCK-ND
A. Formalizing BFT-SMR with non-determinism (BFT-ND)

If allowing sources of non-determinism, we need to carefully
revisit the properties of BFT-SMR. In this case, atomic broad-
cast (interchangeable with BFT) does not imply a “secure”
BFT-SMR; indeed, the states of replicas may diverge due to
non-determinism.

We, therefore, define BFT-SMR with non-determinism, or
BFT-ND. Still, in BFT-ND, we use the same syntax as
SMR. A client still submits a transaction containing some
operation o and may expect a response r from the replicas.
However, we dissociate the events in BFT-ND from those in
the atomic broadcast protocol. Namely, we do not consider
the a-broadcast and a-deliver events. Instead, we define nd-
deliver(o) as the event that a replica terminates the BFT-ND
protocol and updates its state via an update function based
on input o. (Each replica may internally run a-broadcast, a-
deliver, execute(), and possibly other operations, but these
functions need not be exposed as the API of BFT-ND.)
Specifically, we consider the following properties for BFT-ND:
• Total order: If a correct replica nd-delivers o before nd-

delivering o′, then no correct replica nd-delivers o′ without
first nd-delivering o.

• Correctness: If a correct replica maintains state s before it
nd-delivers o and maintains s′ after it nd-delivers o, another
correct replica maintains state s before it nd-delivers o and
maintains s′′ after it nd-delivers o, then s′ = s′′.

• Liveness: If an operation o is submitted to all correct
replicas, then each correct replica eventually nd-delivers o
or ⊥; if o is deterministic, each correct replica nd-delivers
o and updates its state via update.

The liveness property is concerned with deterministic opera-
tions only. There is a chance some non-deterministic operations
may be nd-delivered; however, due to the total order and
correctness guarantees, those non-deterministic operations will
not cause any inconsistencies—which is exactly our goal.

Note that the notion of BFT-ND also captures conventional
BFT-SMR (that supports deterministic operations only).

B. The Strawman Approaches
We present the challenges of transforming a conventional

BFT to BFT-ND in an asynchronous model. Our goal in this
transformation is to preserve the communication and time
complexity of BFT, ensuring that the system performance is
not significantly degraded. As mentioned in the introduction,
it is unclear how to build BFT-ND for the primary-backup

and execute-then-order approaches in the asynchronous model.
Thus, we focus on the order-then-execute model.

(a) (b)

Figure 3. The challenges of building BFT-ND. (a) The dilemma of the 1st
attempt in the order-then-execute model. (b) The challenge of using checkpoint
for agreement on the state.

A naive approach. A straightforward approach is shown in
Figure 3a. Replicas first use a conventional BFT protocol to
agree on the order of a block, execute the transactions, and then
include the execution results in the order of another block, i.e.,
the proposed content in the consensus is in the form of (m, s),
where m is a block and s is the system state (or the hash of the
state). As illustrated in the figure, replicas reach an agreement
on the order of a block m1 (duration [t1, t2]), execute m1 in the
background, and continue to reach an agreement on the order
of other blocks. After m1 is executed at time t3, the state s1 is
included in the proposal of another block m3, i.e., the proposal
for m3 is (m3, s1). Here, there is a dilemma on the agreement
of s1 when m1 consists of non-deterministic operations. In
particular, some correct replicas may not maintain s1 after the
execution of m1. If these correct replicas do not vote for m3,
none of the correct replicas are able to collect more than 2f+1
matching votes. As 2f + 1 matching votes are necessary for
the agreement on m3, the protocol suffers from the liveness
issue. Alternatively, if correct replicas passively accept s1, a
malicious block proposer can directly manipulate the state of
the system, i.e., this design cannot handle the case where m1

consists of deterministic operations, but the block proposer
proposes a wrong state.

Note that we can use techniques such as zero-knowledge
proof for the replicas to prove the correctness of execution
results. However, some operations might be expensive to
prove [43]. Additionally, such a design modifies the underlying
BFT and is thus not modular.
An improved approach via checkpoint protocol. One can
optimize the naive approach via the checkpoint protocol that is
needed for any practical BFT systems. Namely, a checkpoint
protocol is designed for garbage collection (i.e., releasing
the intermediate consensus parameters stored in memory).
A typical workflow is that after a certain number (e.g., b)
of blocks are delivered, each replica sends a checkpoint()
message to all replicas. The checkpoint() message consists
of the hash of the highest block and a digital signature for the
hash. After collecting n− f matching checkpoint() messages,
the intermediate consensus parameters can be removed from
the memory, and the checkpoint becomes stable.

If we use the checkpoint protocol for replicas to reach
an agreement on the state, we can naturally separate the
agreement on the order and the agreement on the state. Namely,

6

the replicas can still reach an agreement on the order in the
normal-case operation of the protocol and decide not to agree
on the state during the checkpoint protocol.

However, using checkpoint for addressing non-determinism
is extremely challenging. Consider an example shown in Fig-
ure 3b, let p1, p2, p4 be correct replicas and p3 be a Byzantine
replica. Let b = 1, i.e., replicas execute the checkpoint protocol
for every transaction. Here, we can assume p1, p2, and p4
receive the checkpoint() messages from each other, so each
replica now holds two votes (checkpoint() messages) for
h1 = hash(s1) and one vote for h′

1 = hash(s′1). The faulty
replica p3 may send s1 to p1 and p2 so p1 and p2 each has
a valid checkpoint (2f + 1 matching checkpoint() messages).
However, as p4 does not receive 2f+1 matching checkpoint()
messages, it cannot complete the checkpoint protocol.

C. Overview of Our Approach
The idea in Block-ND is de-coupling the agreement on the

order of the transactions (the block agreement layer) from the
agreement on the state (the state agreement layer), as shown in
Figure 2. Namely, replicas first run BFT to order the transac-
tions, execute the transactions, and then reach an agreement on
the executed results (states). Obviously, the block agreement
layer allows us to reuse existing BFT implementations. For the
state agreement layer, our idea is to use Multivalued Byzantine
agreement (MBA) [35] that reaches agreement on values from
an arbitrary domain; in this way, replicas can decide if they
are in consistent states. Recall that MBA guarantees that if
all correct replicas provide the same input value to MBA (in
which case they have the same state), the value will be output
by every correct replica. Additionally, if a non-⊥ value is
decided, at least one correct replica has proposed the value
(the non-intrusion property), showing that the corresponding
transactions have indeed been executed by at least one correct
replica. Accordingly, any correct replica can always obtain the
correct state and complete the state transfer.

To make the state agreement layer more self-contained,
we slightly extend the notion of MBA to a new primitive
called double-output MBA (DO-MBA). DO-MBA produces
two outputs. The primary output denotes (the hash of) the state
replicas reach an agreement on, and the security properties
follow those of conventional MBA. The secondary output
represents whether a replica needs state transfer. Replicas
reach a crusader agreement on the secondary output, i.e., some
correct replicas may decide ⊥ while other correct replicas
decide a non-⊥ value [39]. If a correct replica decides a non-
⊥ value for the secondary output, it does not need to perform
state transfer—and vice versa.
A practical MBA (and DO-MBA) construction. We pro-
vide a novel MBA construction ND-MBA that is faster than
existing MBA constructions, as shown in Table I. The main
contribution of our construction is using reproposable asyn-
chronous binary agreement (RABA) [16] in a novel manner.
Implementing Pisa, the best-known RABA protocol featuring
a one-step coin-free fast path [16], our MBA is more efficient
than other MBA designs. We further modify a few lines of
code to transform our MBA to DO-MBA. To the best of our

knowledge, our construction is the first practical MBA protocol
ever implemented and evaluated.
Block-ND in a nutshell. Based on DO-MBA, we build Block-
ND, an asynchronous and modular system for BFT-ND. Block-
ND employs a conventional BFT to order transactions first.
After the ordering is finalized, each replica can execute the
transactions and provide the hash of its state as input to DO-
MBA. We distinguish three different scenarios:
• If the transactions only contain deterministic operations,

our approach guarantees that DO-MBA outputs the hash of
correct replicas’ states (for both the primary output and
the secondary output), and the transactions will be nd-
delivered. (No state transfer is needed.)

• The transactions contain non-deterministic operations, and
replicas may still agree on some non-⊥ value as the primary
output in DO-MBA. In this case, replicas still nd-deliver
the transactions. Depending on the secondary output in
DO-MBA, some correct replicas may start state transfer.
Our approach guarantees that correct replicas eventually
complete state transfer and converge to the same state.

• The transactions contain non-deterministic operations, and
replicas agree on ⊥ for the primary output in DO-MBA. In
this case, all correct replicas roll back to the state before
the execution of transactions and then nd-deliver ⊥.

We emphasize that the way that we use rollback and state
transfer [44] to handle inconsistent states follows that of
CSV [8, pp. 9] (in fact, no solutions can prevent rollback from
happening): if a rollback operation is used for execution, a
process with a diverging state can obtain the state from other
processes via state transfer. Our work does not focus on how
to complete state transfer efficiently but studies how to provide
an asynchronous and modular treatment to BFT-ND.

To summarize, our paradigm enjoys the following benefits.
First, our work is the first practical BFT-ND protocol in the
order-then-execute model, as it preserves the complexity of
the conventional BFT (for the block agreement layer). As the
two layers are executed in parallel, the system performance, as
we later show in our evaluation, is only marginally degraded.
Second, our work is the first asynchronous treatment of BFT-
ND. An interesting fact is that one can even use the state
agreement layer (i.e., MBA) to replace the checkpoint protocol,
so this layer can also be used for garbage collection!
Most suitable scenario of Block-ND. Block-ND is a perfect
fit for blockchain systems in which: 1) non-determinism is
unexpected and unwanted; 2) non-deterministic operations
occur not that frequently. Our solution is modular and can be
used on top of most BFT-based blockchain systems. However,
if non-determinism occur frequently, frequent rollback may be
triggered, which is undesirable in any systems.

VI. ND-MBA: PRACTICAL MBA AND DO-MBA

In this section, we provide our DO-MBA construction. We
begin with an efficient MBA construction that terminates in
only three steps in the optimistic case, as shown in Table I.
In contrast, the most efficient MBA protocol known so far is
due to Mostéfaoui and Raynal (MR) [35], which terminates

7

Table I. COMPARISON OF KNOWN ASYNCHRONOUS MBA AND
DO-MBA PROTOCOLS. ⋆MR REDUCES MBA TO ABA. HERE, WE

CONSIDER QUADRATIC-ABA [36], THE MOST EFFICIENT ABA WITH A
FAST PATH KNOWN SO FAR. QUADRATIC-ABA TERMINATES IN 4 STEPS IN

THE BEST CASE AND THE EXPECTED NUMBER OF STEPS IS 10.

protocols non-intrusion? msg best steps expected steps

CNV MBA [34] no O(n3) 14 23
MR [35]⋆ yes O(n2) 8 16
ND-MBA yes O(n2) 3 12

in eight steps in the optimistic case. We then show how to
transform ND-MBA to DO-MBA.

A. Our MBA Construction

01 initialization
02 pv, rv, ρ← ⊥ //proposed value and received value
03 rd← [⊥]∗ //set of received values
04 upon mba-propose(v)
05 pv ← v
06 broadcast disperse(v) //disperse() step
07 upon receiving disperse(v) from pj for the first time
08 rd[v]← rd[v] + 1
09 upon receiving n−2f disperse(v) s.t. v ̸= pv and echo(v)
has not been sent //optional echo() step
10 broadcast echo(v)
12 upon receiving echo(v) from pj for the first time and
disperse(v) is not received from pj
13 rd[v]← rd[v] + 1
14 loop in the background
15 if ∀x ̸= pv, Σxrd[x] ≥ f + 1
16 r-propose(0) to RABAid

17 if rd[v] ≥ n− f and forward() has not been sent
18 σi ← tsign(v) // forward() step
19 broadcast forward(v, σi)
20 let w be the value s.t. ∀x received by pi, rd[w] ≥ rd[x]
21 if Σxrd[x]− rd[w] ≥ f + 1
22 r-propose(0) to RABAid

23 upon receiving n− f matching forward(v, σj)
24 σ ← tcombine(σj · · ·)
25 if RABAid is not started, r-propose(1) to RABAid

26 else r-repropose(1) to RABAid

27 rv ← v, ρ← σ
28 if distribute() has not been sent //distribute() step
29 broadcast distribute(rv, σ)
30 upon receiving distribute(v, σ) such that tverify(v, σ) and
n− f forward() messages have been received
31 rv ← v, ρ← σ
32 if RABAid is not started, r-propose(1)
33 else r-repropose(1) to RABAid

34 upon r-decide(1)
35 wait until rv ̸= ⊥ and mba-decide(rv)
36 upon r-decide(0)
37 mba-decide(⊥)

Figure 4. ND-MBA construction. The code is for pi.

Overview. We propose a new protocol based on threshold
signatures. The core idea is to reduce the MBA problem to
RABA, and we use the Pisa protocol by Zhang and Duan [16].
RABA is a variant of asynchronous binary agreement (ABA)

p1

p2

p3

p4
disperse

step

RABA

m1
echo
step

RABA
phase

forward
step step

distribute

op�onal op�onal

Figure 5. ND-MBA.

protocol that has a coin-free fast path: the protocol can
terminate as fast as only one step and does not require coin-
tossing.

ND-MBA only involves several steps of all-to-all commu-
nication for replicas to exchange their proposed values. Then
a RABA instance is started for replicas to agree on whether a
sufficiently large fraction of correct replicas have proposed the
same value. In the optimistic case where all correct replicas
mba-propose the same value, ND-MBA involves two steps
of communication and a RABA instance. Hence, ND-MBA
terminates in three steps in the fast path and 12 expected steps,
much lower than existing ones, as shown in Table I.
Description of the ND-MBA protocol. As shown in Figure 5,
our MBA protocol consists of 2-4 communication steps and
a RABA instance: disperse(), echo(), forward(), distribute(),
and RABAid, where RABAid denotes the RABA instance
tagged by an identifier id. Briefly speaking, each replica first
sends a disperse(v) message to all replicas where v is its
proposed value. If a replica receives n−2f disperse(v) where
v is different from its proposed value, it sends an echo(v)
message to all replicas. These two steps together ensure that
every correct replica will receive n−f disperse(v) and echo(v)
messages with the same v. Whenever such v exists, the replica
sends a forward(v) message to all replicas and can start to
propose to RABAid upon receiving a sufficiently large fraction
of matching forward() messages. Finally, the distribute() step
allows replicas to further exchange their received values from
the forward() messages and is used to ensure the special biased
termination property of RABA.

We show the pseudocode in Figure 4. Every replica pi
maintains four system parameters: pv, rv, ρ, and rd. The
pv parameter denotes the proposed value of pi. The value rv
stores the received value. The ρ parameter stores a proof for
the value rv, if any. Finally, the rd is a map that tracks the
number of received votes for each value.

The protocol proceeds as follows.
� Disperse (lines 04-08). Upon the mba-propose(v) event, pi
first sets pv as v, and then broadcasts a disperse(v) message.
Meanwhile, every replica uses the rd parameter to track the
number of received votes. In particular, upon receiving a
disperse(v) message from some replica pj for the first time
(line 07), pi sets rd[v] as rd[v] + 1 (line 08).
� Echo (optional, lines 09-13). If pi receives n−2f matching
disperse(v) messages such that v is different from its proposed

8

value pv, pi broadcasts an echo(v) message. Every replica still
uses the rd parameter to track the number of received votes
in the echo() messages. If pi receives an echo(v) message
from pj for the first time and it has not previously received
disperse(v) from pj , it sets rd[v] as rd[v] + 1 (lines 12-13).

� Forward (lines 17-20). Every replica pi loops in the back-
ground and tracks the rd parameter (line 14). If pi receives
n−f matching disperse(v) and echo(v) messages, i.e., rd[v] ≥
n − f (line 17), pi creates a partial signature σi for value v
(line 18) and then broadcasts a forward(v, σi) message (line
19). Every correct replica only sends one forward() message.

� Conditions for providing 1 as input to RABAid (lines 23-26,
lines 30-33). There are two conditions.

• Lines 23-26: pi receives n − f matching forward(v, σj)
messages. In this case, pi combines the partial signatures
included in the forward() messages into a signature σ. Then,
pi sets rv as v and ρ as σ (line 27). If pi has not sent
a distribute() message, it broadcasts a distribute(rv, σ)
message (lines 28-29).

• Lines 30-33: pi receives a valid distribute(v, σ) message
such that σ is a valid signature for v. In this case, pi also
sets rv as v and ρ as σ.

� Conditions for providing 0 as input to RABAid (lines 15-16,
lines 20-22). There are two conditions.

• Lines 15-16: pi tracks whether it receives f+1 inconsistent
disperse(v) and echo(v) for any value v different from pv.
Once the condition ”∀x ̸= pv, Σxrd[x] ≥ f+1” is satisfied,
at least one correct replica must have proposed a value
different from pv. In this case, pi r-proposes 0 to RABAid.

• Lines 20-22: pi tracks value w for which it receives the
highest number of votes, i.e., rd[w] ≥ rd[x]. Then, if the
number of votes for all other values is at least f +1 higher
than rd[w] (i.e., Σxrd[x] − rd[w] ≥ f + 1), pi r-proposes
0 to RABAid.

� Output conditions (lines 34-37). Every replica waits for
RABAid to terminate. There are two cases. If pi r-decides
1, it waits for rv to become non-⊥. After that, it mba-decides
rv. Otherwise, if pi r-decides 0, it mba-decides ⊥.

Complexity analysis. ND-MBA only involves all-to-all com-
munication and the message complexity of known RABA
protocols (e.g., Pisa [16]) is O(n2). Hence, the message
complexity of ND-MBA is O(n2). The time complexity is
O(1) as every phase completes in constant time. We now
analyze the communication complexity. Consider that the input
of each replica is L. Replicas exchange their proposed values
in the disperse() and echo() steps, so the communication
complexity is O(Ln2). In the forward() and disperse() steps,
each replica sends one value and a signature to all replicas, so
these two steps have O(Ln2 + κn2) communication, where
κ is the length of the security parameter (e.g., the length
of the signature). In the RABA phase, the communication is
O(κn2), considering that the common coin is instantiated by
threshold PRF [45]. Therefore, ND-MBA has O(Ln2 + κn2)
communication.

B. Formalizing DO-MBA

We now formally define DO-MBA that extends MBA. As
mentioned in Sec. V-C, MBA with the non-intrusion property
already ensures that replicas will eventually agree on the
same state. We slightly extend the notion to DO-MBA mainly
because DO-MBA is a self-contained notion for the agreement
on the state. Namely, the needs for state transfer is directly
exposed to users as part of the output.

In DO-MBA, every correct replica mba-proposes one value
v ∈ {0, 1}L and mba-decides two values (v1, v2), where L is a
finite integer. Here v1 and v2 are called the primary output and
the secondary output, respectively. Both the primary output and
the secondary output can be ⊥ (a distinguished symbol). We
require the conventional agreement property for the primary
output and weak agreement (as in the crusader agreement)
for the secondary output. In particular, DO-MBA satisfies the
following properties:
• Validity. If all correct replicas mba-propose v1, all correct

replicas eventually mba-decide (v1, v2) for any v2.
• Primary agreement. If a correct replica mba-decides

(v1, v2) and a correct replica mba-decides (v′1, v
′
2) such that

v1 ̸= ⊥ and v′1 ̸= ⊥, then v1 = v′1.
• Weak secondary agreement. If a correct replica mba-

decides (v1, v2) and a correct replica mba-decides (v′1, v
′
2),

then v2 = v′2 or one of v2 and v′2 is ⊥.
• Termination. If all correct replicas mba-propose, every

correct replica eventually mba-decides some value.
• Integrity. Every correct replica mba-decides once.
• Non-intrusion. If a correct replica mba-decides (v1, v2), at

least one correct replica mba-proposes v1.
The DO-MBA primitive has features for the agreement on

the state, considering the input of each replica is the hash of its
state. First, if all correct replicas mba-propose the same value
v1, the validity property of DO-MBA guarantees that all correct
replicas will mba-decide (v1, v2) (in our construction, v1 =
v2). Hence, if all correct replicas execute non-deterministic
operations in the same order, they will mba-propose the same
value v1, mba-decide (v1, v2), and do not need state transfer.
Second, the secondary output of DO-MBA captures the feature
for state transfer. In particular, any replica that mba-decides
(v1,⊥) will start state transfer. The non-intrusion property of
DO-MBA guarantees that at least one correct replica mba-
proposes v1 and the hash of its state is v1. Hence, all correct
replicas will eventually complete the state transfer.

We intentionally choose to not define any validity property
for the secondary output. Jumping ahead, our construction
achieves a validity property for the secondary output as fol-
lows: If all correct replicas mba-propose v1, all correct replicas
eventually mba-decide (v1, v2) where v2 = v1. However, our
abstraction does not need such a validity property by design.
We believe such an abstraction provides some flexibility for
deployment of our protocols.

C. Our DO-MBA Construction

We transform ND-MBA to a DO-MBA protocol by replac-
ing lines 34-37 with ones shown in Figure 6. In particular,

9

replace lines 34-37 in Figure 4 using the following lines
34 upon r-decide(1)
35 wait until rv ̸= ⊥
36 if rv = pv
37 mba-decide(rv, rv)
38 else
39 mba-decide(rv,⊥)
40 upon r-decide(0)
41 mba-decide(⊥,⊥)

Figure 6. Transforming ND-MBA to DO-MBA.

each replica pi waits for RABAid to terminate. There are two
cases. First, pi r-decides 1. Here, replicas have already reached
an agreement on some value for the primary output. Replica
pi then waits for its rv to become non-⊥ (line 35). This rv
value is updated in the forward() and distribute() steps. After
that, pi verifies whether rv is the same as its proposed value
pv. If so, pi mba-decide(rv, rv) (lines 36-37). Otherwise, pi
mba-decide(rv,⊥) (lines 38-39). Second, if pi r-decides 0, pi
mba-decide(⊥,⊥) (lines 40-41).
Complexity analysis. Our transformation from the MBA
protocol to the DO-MBA protocol only involves additional
local computation. Therefore, our DO-MBA protocol preserves
the complexity of ND-MBA, achieving O(1) time, O(n2)
messages, and O(Ln2 + κn2) communication. When we use
our DO-MBA protocol in Block-ND, the input of each replica
is always a hash, so the communication complexity is O(κn2).
We show the proof of our protocol in our full paper [46].

VII. BLOCK-ND

This section describes Block-ND consisting of a block
agreement layer ordering transactions and a state agreement
layer reaching an agreement on the state. We present in
Figure 7 the workflow of Block-ND. For the block agreement
layer, we use the a-deliver(sn,m) event, i.e., replicas a-deliver
m and explicitly assign a sequence number sn to m. For DO-
MBA, we use the mba-propose() and mba-decide() events.

Every replica pi maintains a state s. We use ssn−1 to denote
the state before querying the execute(ssn−1,m) function and
ssn to denote the state after the execution of m.

The protocol works as follows. After the a-deliver(sn,m)
event (line 03), each replica pi executes the transactions in
block m by querying the function execute(ssn−1,m), and
obtains the state ssn (line 05). Then at line 06, pi starts a DO-
MBA instance MBAsn and provides hash(ssn) as the input.

There are three cases after MBAsn outputs (v, h) (line 07).
• Lines 08-09: v ̸= ⊥ and h ̸= ⊥. In this case, replicas reach

an agreement on hash(ssn) and the state of pi matches
one that replicas reach an agreement on. Replica pi then
nd-delivers m.

• Lines 10-12: v ̸= ⊥ and h = ⊥. In this case, replicas
reach an agreement on the state, such that the hash of the
state is v. Additionally, pi maintains an inconsistent state
with other correct replicas. In this case, pi performs state
transfer with all the replicas until it updates it state, the
hash of which is h. Then pi nd-delivers m.

01 initialization
02 s,msg //s denotes state and msg is a delivered block
03 upon a-deliver(sn,m) //block agreement
04 msgsn ← m
05 ssn ← execute(ssn−1,m) //execution
06 mba-propose(hash(ssn)) for MBAsn //state agreement
07 upon mba-decide(v, h) for MBAsn

08 if v ̸= ⊥ and h ̸= ⊥
09 nd-deliver(msgsn) such that hash(ssn) = v
10 if v ̸= ⊥ and h = ⊥ //state transfer
11 perform state transfer until hash(ssn) = v
12 nd-deliver(msgsn) such that hash(ssn) = v
13 if v = ⊥ //m contains non-deterministic operations
14 ssn ← ssn−1 //rollback
15 nd-deliver(⊥)

Figure 7. The workflow of Block-ND. The code for pi.

m1 m2 m4m3

execute(s0,m1)

h = hash(s1)

MBA1

(h,h)

h' = hash(s1')

h = hash(s1)
(h,h)

(h,)

execute(s0,m1)

execute(s0,m1)

execute(s0,m1)
state transfer

p1

p2

p3

p4

s0

s0

s0

s0

Block agreement layer

State agreement layer
s1

s1'

s1

s1 h = hash(s1)
(h,h)

Figure 8. A running example of Block-ND.

• Lines 13-14: v = ⊥. In this case, replicas fail to reach an
agreement on the same state. Alternatively, we can also say
that replicas reach an agreement on the fact that the block m
consists of at least one transaction with non-deterministic
operations. Replica pi then rolls back to the state of the
prior block, i.e., by setting ssn as ssn−1. It then nd-delivers
a special symbol ⊥.

A running example. We illustrate a running example of
Block-ND in Figure 8. All correct replicas initially maintain
state s0. After the order of block m1 is finalized (i.e., an
agreement on the order is reached), replicas use the hash of
the state as input to MBA1, a DO-MBA instance. There are
three possible scenarios:
(1) Block m1 does not include any transactions with non-

deterministic operations. Accordingly, all correct replicas
maintain the same state s1 after execute(s0,m1). According
to the validity property of DO-MBA, all correct replicas
will mba-decide (h, h) where h = hash(s1). No replicas
need to perform state transfer. All correct replicas then nd-
deliver m1 and their state is s1.

(2) Block m1 contains transactions with non-deterministic
operations, but correct replicas still reach an agreement on
some state. An example is shown in Figure 8 with four
replicas. Replicas p1, p3, and p4 obtain the same execution
result, and their state is s1. Replicas p1, p3, and p4 provide
h as input to DO-MBA but replica p2 obtains s′1 and
provides h′ as input. After DO-MBA terminates, p1, p3,
and p4 mba-decide (h, h) and p2 mba-decides (h,⊥). Then

10

p2 performs state transfer with other replicas. According
to the non-intrusion property of DO-MBA, the protocol
guarantees that at least one correct replica maintains the
state s1 such that h = hash(s1) so p3 can successfully
complete the state transfer. After that, correct replicas then
nd-deliver m1 and their state is s1.

(3) The block m1 contains transactions with non-deterministic
operations and correct replicas reach an agreement on
(⊥,⊥). All correct replicas then roll back to the state s0
and nd-deliver ⊥.

We prove the correctness of Block-ND in our full paper [46].
Why order-then-execute? Applicability to other models. In
Block-ND, as the agreement on the order and the agreement
on the state are de-coupled, the agreement on the state can
be triggered in the background. We show in our experiments
that by doing so, this paradigm creates little overhead to the
system performance.

The DO-MBA primitive itself can be used for other models
as well. For instance, in the execute-then-order model, replicas
can execute the transactions and use DO-MBA to agree on the
execution result. If DO-MBA outputs a non-⊥ value for the
primary output, replicas then reach a consensus on the order
of the corresponding transactions.
Handling transactions with non-deterministic operations.
To build a fully-fledged BFT-ND protocol, we still need to
consider how to handle scenario (3) mentioned above: correct
replicas nd-deliver ⊥ for block m (where m is a-delivered).
As mentioned above, replicas have already agreed on the fact
that m contains at least one transaction with non-deterministic
operations. According to the protocol, m should directly be
discarded by the replicas.

However, discarding the entire block creates a subtle live-
ness issue. In particular, m consists of multiple transactions.
Consider that only one transaction o in m consists of non-
deterministic operations, while other transactions only contain
deterministic operations. If correct replicas directly nd-deliver
⊥ and discard m, all deterministic transactions in m will be
discarded, violating the liveness property of BFT-ND.

To address this issue, we further make the following change
to Block-ND. After each correct replica nd-delivers ⊥ for
any block m, replicas do not immediately discard all the
transactions in m. Instead, replicas execute the transactions
in m sequentially (in a deterministic order) and start an MBA
instance for each transaction. After the MBA instance termi-
nates, replicas handle the transaction in exactly the same way
as described above. In this way, transactions with deterministic
operations can then be nd-delivered, and the liveness property
is satisfied. Such an approach, while being expensive, seems
unavoidable. We consider the optimization a future work.

VIII. IMPLEMENTATION AND EVALUATION

We implement a prototype of Block-ND in Golang. Our
implementation of the protocols involves more than 11,000
LOC. For the block agreement layer, we implement both
PACE [16] (an asynchronous BFT protocol) and PBFT [17]
(a partially synchronous BFT protocol). We use gRPC as
the communication library. We use HMAC to realize the

authenticated channel, SHA256 as the hash function, and
ECDSA as the digital signature scheme. For the threshold
signature scheme (used in our DO-MBA protocol), we use a set
of ECDSA signatures instead, following that of a large number
of prior systems [18, 19]. For the execute() function, we use
the open-source EVM implementation from the Hyperledger
Burrow project1. We evaluate the performance on Amazon
EC2 using up to 91 virtual machines (VMs). We use m5.xlarge
instances. The m5.xlarge instance has four virtual CPUs and
16GB memory. We deploy our protocols in the WAN setting,
where replicas are evenly distributed across the following
regions: us-west-2 (Oregon, US), us-east-2 (Ohio, US), ap-
southeast-1 (Singapore), and eu-west-1 (Ireland).

We conduct the experiments under different network sizes
and batch sizes. We use f to denote the network size and we
use n = 3f+1 replicas in each experiment. We use b to denote
the batch size, where each replica proposes b transactions at
a time. The default transaction size is 250 bytes. For each
experiment, we repeat the experiment 5 times and report the
average performance result.

In terms of performance comparison, we also use FISCO-
BCOS [47]2 and Hyperledger Fabric3 (Fabric for short). We
also implement a simple CSV framework to understand its
performance. Our evaluation aims to answer the following
questions:
• How efficient is our DO-MBA protocol?
• How does our DO-MBA protocol perform under differ-

ent input conditions (i.e., correct replicas provide the
same input and inconsistent inputs)?

• What is the latency breakdown for our DO-MBA pro-
tocol?

• How does Block-ND perform compared to conventional
BFT protocols? What is the performance overhead intro-
duced by running an additional DO-MBA protocol?
• What is the performance of Block-ND under failures?

Performance of our ND-MBA protocol. In our constructions,
the input to the DO-MBA is a fixed-length hash. Therefore,
we assess the latency of our DO-MBA protocol for different
f . To better analyze the performance overhead, we assess four
different modes of DO-MBA protocol for each f .
• Mode 0: All correct replicas provide the same input.
• Mode 1: 2f correct replicas provide the same input, and

one correct replica provides an inconsistent input.
• Mode 2: f+1 correct replicas provide the same input while
f correct replicas provide some inconsistent inputs.
• Mode 3: Every correct replica generates a local random

value and provides the value as the input.
We show the latency of our DO-MBA protocol for f =

1, 10, 20, 30 under the four modes in Figure 9a. All the
experiments are completed within 1.14 seconds, where the
experiment with the highest latency is for f = 30 (91 replicas)
and mode 3. Among the four modes, the latency of mode 3

1Burrow: https://github.com/hyperledger-archives/burrow
2FISCO-BCOS: https://github.com/FISCO-BCOS/FISCO-BCOS/blob/

master/docs/README EN.md
3Fabric: https://github.com/hyperledger/fabric

https://github.com/hyperledger-archives/burrow
https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/docs/README_EN.md
https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/docs/README_EN.md
https://github.com/hyperledger/fabric

11

f = 1 f = 10 f = 20 f = 30
0

0.5

1

1.5

0.69

0.79 0.79

0.85

0.74

0.86

0.8
0.85

0.73

0.87

0.8
0.86

0.95 0.93

1.06

1.14

L
at

en
cy

(S
ec

)

Mode0 Mode1
Mode2 Mode3

(a) Latency of our DO-MBA un-
der different input scenarios.

0 0.2 0.4 0.6 0.8 1.0

Mode0

Mode1

Mode2

Mode3

Latency breakdown (Sec)

Exchange RABA

(b) Latency breakdown
of our DO-MBA for f =
1.

0 0.2 0.4 0.6 0.8 1.0

Mode0

Mode1

Mode2

Mode3

Latency breakdown (Sec)

Exchange RABA

(c) Latency breakdown
of our DO-MBA for f =
10.

0 0.2 0.4 0.6 0.8 1.0

Mode0

Mode1

Mode2

Mode3

Latency breakdown (Sec)

Exchange RABA

(d) Latency
breakdown of our
DO-MBA for f = 20.

0 0.2 0.4 0.6 0.8 1.0 1.2

Mode0

Mode1

Mode2

Mode3

Latency breakdown (Sec)

Exchange RABA

(e) Latency breakdown
of our DO-MBA for f =
30.

0.1 1 3 5

·104

0

20

40

60

80

100

120

140

160

180

batch size

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

Block-ND-f = 1 PACE-f = 1
Block-ND-f = 10 PACE-f = 10
Block-ND-f = 30 PACE-f = 30

(f) Throughput of Block-ND
(PACE) and PACE.

00.1 1 3 5

·104

0

5

10

15

20

25

30

batch size

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)
Block-ND-f = 1 PBFT-f = 1

Block-ND-f = 10 PBFT-f = 10
Block-ND-f = 30 PBFT-f = 30

(g) Throughput of Block-ND
(PBFT) and PBFT.

20 40 60 80 100 120 140 160

10

20

30

40

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Block-ND-f = 1 PACE-f = 1
Block-ND-f = 10 PACE-f = 10
Block-ND-f = 30 PACE-f = 30

(h) Latency v.s. Throughput for
Block-ND (PACE) and PACE.

0 5 10 15 20
0

2

4

6

8

10

12

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Block-ND-f = 1 PBFT-f = 1
Block-ND-f = 10 PBFT-f = 10
Block-ND-f = 30 PBFT-f = 30

(i) Latency v.s. Throughput for
Block-ND (PBFT) and PBFT.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Fisco-bcos-0%

Fisco-bcos-50%

Fabric-0%

Fabric-50%

Block-ND-0%

Block-ND-50%

Latency breakdown (Sec)

Endorse Order Execute State

(j) Latency breakdown of FISCO-
BCOS, Hyperledger Fabric and
Block-ND for each transaction.

f = 1 f = 10 f = 20 f = 30
0

0.5

1

1.5

2

2.5

0.48 0.48
0.52

0.77

0.49 0.51
0.56

0.73

0.49
0.56 0.53

0.74

0.49 0.52
0.57

0.74

1.19

1

1.1

1.8

1.17

0.9

1.1

2.1

0.98

1.18 1.18

2.05

1.18

0.9

1.16

2

L
at

en
cy

(S
ec

)

S0, Mode0 S1, Mode0
S2, Mode0 S3, Mode0
S0, Mode3 S1, Mode3
S2, Mode3 S3, Mode3

(k) Latency of our DO-MBA in Block-ND (PACE)
under different failure scenarios.

f PACE Block-ND \Degradation (PACE) CSV (PACE)

1 30.00 29.51 \ 1.65% 3.01
10 87.30 79.4 \ 9.94% 3.39
f PBFT Block-ND \Degradation (PBFT) CSV (PBFT)

1 11.77 10.88 \ 8.23% 2.85
10 13.91 12.74 \ 7.24% 3.11

(l) Throughput (ktx/sec) Block-ND and CSV,
and the performance degradation of Block-
ND.

Figure 9. Evaluation results of our DO-MBA protocol, Block-ND and other benchmarks.

is consistently higher than the other three modes. To further
assess the result, we also present the latency breakdown in
Figure 9b-9e. We use “exchange” to denote the disperse(),
echo(), forward(), and distribute() steps, and “RABA” to
denote the RABA phase. As shown in the figures, the RABA
phase has a higher latency in mode 3 than in the other three
modes. For instance, when f = 30, the RABA phase occupies
87.3% of the total runtime in mode 3, in contrast to 32.5%
in mode 1. The results are expected, as in mode 3, it is more
likely that replicas will provide 0 as input to RABA in the
early stage of the exchange phase. In such a case, RABA will
terminate in more rounds.

Performance of Block-ND. We assess Block-ND using PACE
and PBFT as the block agreement layer, denoted as Block-
ND (PACE) and Block-ND (PBFT), respectively. We compare
the performance under two scenarios: running a PACE (resp.
PBFT) instance and running Block-ND (PACE) (resp. Block-
ND (PBFT)). In this way, we can evaluate the overhead created
by our DO-MBA protocol. We assess three different scenarios.

• Non-deterministic benchmark. We construct a benchmark
with both deterministic and non-deterministic contracts and
compare the performance of FISCO-BCOS, Hyperledger
Fabric, and Block-ND. For this scenario, we aim to under-
stand the performance of different platforms in terms of
handling non-deterministic transactions.

• No execution benchmark. We neglect the cost of execution.
For this scenario, we aim to understand the performance of
Block-ND itself.

• Smart contract benchmark. We assess the throughput using
only deterministic contracts. For this scenario, we also as-
sess the performance of CSV to understand the performance
under the execute-then-order and order-then-execute model.

Non-deterministic benchmark. We construct two bench-
marks: 0% non-deterministic contracts; 50% non-deterministic
transactions. FISCO-BCOS uses an implementation of EVM
called evmone4, Fabric uses Chaincode, and our implementa-

4evmone: https://github.com/ethereum/evmone

https://github.com/ethereum/evmone

12

tion uses EVM. As identifying non-deterministic transaction
is orthogonal to the problem our study, we construct the
non-deterministic transactions and make execution results by
correct replicas inconsistent. The benchmark consists of 1,000
transactions, and we summarize the average latency breakdown
of each transaction for three systems in Figure 9j. Our results
show that Block-ND outperforms both FISCO-BCOS and
Fabric under the 50% non-deterministic benchmark.
No execution benchmark. We demonstrate the throughput
for f = 1, 10, 30, varying the batch size for BFT in the
block agreement layer. We report batch size vs. throughput
in Figure 9f-9g and throughput vs. latency in Figure 9h-9i.
In our experiments, the performance of Block-ND degrades
marginally compared to that of running a single BFT instance.
In particular, the throughput of Block-ND (PBFT) degrades
0.89%-10.02% compared to that of PBFT and the throughput
of Block-ND (PACE) degrades 1.47%-11.79% compared to
that of PACE. The difference between Block-ND and a single
BFT instance is more visible when f is large. As for the
throughput vs. latency, given the same throughput, the latency
of PACE (resp. PBFT) is consistently and slightly lower than
that of Block-ND (PACE) (resp. Block-ND (PBFT)).
Smart contract benchmark. We use EVM as the execution
layer and PACE/PBFT as the consensus to implement CSV.
For example, in the EVM+PBFT combination of CSV, after
the leader collects f+1 matching execution results, it proposes
the transaction. We report the throughput of both the block
agreement layer and the state agreement layer for f = 1 and
10 using only deterministic transactions. We fix the batch size
to 30,000. We study three different scenarios and assess the
throughput: PACE/PBFT with EVM, Block-ND with EVM,
and CSV. We summarize our results in Figure 9l.

Our evaluation results show that the throughput of the state
agreement layer is 3.5 ktx/sec (on average for almost all
experiments), and the throughput of CSV is from 2.85-3.39
ktx/sec. Compared with the throughput of the block agreement
layer (e.g., 33.0 ktx/sec for PACE), the throughput of the state
agreement layer and CSV are significantly lower.

In Block-ND, the block agreement layer does not need to
wait for the state agreement layer or the execution of the smart
contract to complete before starting a new epoch. Therefore,
the performance of the block agreement layer with EVM
execution degrades only marginally. As shown in Figure 9l,
for f = 1 and f = 10, the throughput degradation of Block-
ND (PACE) are 1.6% and 9.94%; the throughput degradation
of Block-ND (PBFT) is 8.23% and 7.24%. In all cases with
EVM executions, the performance bottleneck of Block-ND is
due to the executions in the state agreement layer.
Performance under failures. We assess the performance of
Block-ND (PACE) for f = 1, 10, 20, 30 under four different
scenarios, following the practice in prior work [16, 36].
• S0: All replicas are correct.
• S1: Let f replicas crash by not processing any message.
• S2: Let f faulty replicas keep voting 0 in RABA in both

PACE and DO-MBA.
• S3: Let f replicas fail by always voting for the flipped value

in RABA in both PACE and DO-MBA.

We report the latency of our DO-MBA protocol in Figure 9k.
For mode 0, the latency of DO-MBA in the four scenarios is
almost identical. This is because correct replicas all vote for 1
in RABA, so faulty replicas cannot render RABA to terminate
in a larger number of rounds. For mode 3, the latency of the
DO-MBA protocol varies slightly for different scenarios. For
larger f , the latency under failure scenarios is slightly higher
compared to the failure-free scenario. We conclude that the
performance of our DO-MBA protocol is dominated by the
inputs of the replicas.

IX. CONCLUSION

We revisit the notion of Byzantine fault-tolerant state ma-
chine replication with non-determinism (BFT-ND) and build
an efficient, modular, and asynchronous system called Block-
ND. At the core of Block-ND is a novel idea of separating
agreement on transaction ordering from agreement on replica
state. As a key building block for Block-ND, we formalize a
new distributed computing primitive—DO-MBA and provide
an efficient construction. Our evaluation results show that
Block-ND incurs marginal overhead to the conventional BFT
systems dealing with deterministic operations only.

REFERENCES

[1] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessan-
dro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed
Cocco, and Jason Yellick. Hyperledger fabric: A distributed operating
system for permissioned blockchains. In EuroSys, 2018.

[2] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of
blockchains, 2017.

[3] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[4] Marko Vukolić. Rethinking permissioned blockchains. In BCC, pages
3–7, 2017.

[5] Solidity documentation. https://docs.soliditylang.org/en/latest/, 2022.
[6] Ying Fu, Meng Ren, Fuchen Ma, Heyuan Shi, Xin Yang, Yu Jiang,

Huizhong Li, and Xiang Shi. Evmfuzzer: detect evm vulnerabilities via
fuzz testing. In ESEC/FSE, pages 1110–1114, 2019.

[7] Enis Ceyhun Alp, Eleftherios Kokoris-Kogias, Georgia Fragkouli, and
Bryan Ford. Rethinking general-purpose decentralized computing. In
HotOS, pages 105–112, 2019.

[8] Christian Cachin, Simon Schubert, and Marko Vukolić. Non-
determinism in byzantine fault-tolerant replication. OPODIS, 2016.

[9] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. BASE: Using
abstraction to improve fault tolerance. In SOSP, volume 35, pages 15–
28. ACM, 2001.

[10] Rüdiger Kapitza, Matthias Schunter, Christian Cachin, Klaus Stengel,
and Tobias Distler. Storyboard: Optimistic deterministic multithreading.
In HotDep, 2010.

[11] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-
Philippe Martin, and Carl Porth. Bar fault tolerance for cooperative
services. In SOSP, pages 45–58, 2005.

[12] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo
Alvisi, and Mike Dahlin. All about eve: Execute-verify replication for
multi-core servers. In OSDI, pages 237–250, 2012.

[13] Sisi Duan and Haibin Zhang. Practical state machine replication with
confidentiality. In SRDS, pages 187–196. IEEE, 2016.

https://docs.soliditylang.org/en/latest/

13

[14] Hyperledger Fabric documentation. https://hyperledger-fabric.
readthedocs.io/ /downloads/vi/latest/pdf/, 2023.

[15] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in
the presence of partial synchrony. JACM, 35(2):288–323, 1988.

[16] Haibin Zhang and Sisi Duan. Pace: Fully parallelizable bft from
reproposable byzantine agreement. In CCS, 2022.

[17] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance
and proactive recovery. TOCS, 20(4):398–461, 2002.

[18] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and
Ittai Abraham. Hotstuff: Bft consensus with linearity and responsive-
ness. In PODC, 2019.

[19] Xiao Sui, Sisi Duan, and Haibin Zhang. Marlin: Two-phase bft with
linearity. In DSN, pages 54–66, 2022.

[20] Sisi Duan and Haibin Zhang. Foundations of dynamic bft. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 1317–1334, 2022.

[21] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The
honey badger of bft protocols. In CCS, pages 31–42. ACM, 2016.

[22] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng
Zhang. Dumbo: Faster asynchronous bft protocols. In CCS, 2020.

[23] Sisi Duan, Michael K Reiter, and Haibin Zhang. BEAT: Asynchronous
bft made practical. In CCS, pages 2028–2041. ACM, 2018.

[24] Sisi Duan, Xin Wang, and Haibin Zhang. Practical signature-free
asynchronous common subset in constant time. ACM CCS, 2023.

[25] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibil-
ity of distributed consensus with one faulty process. JACM, 32(2):374–
382, 1985.

[26] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu.
A survey on ethereum systems security: Vulnerabilities, attacks, and
defenses. ACM Computing Surveys (CSUR), 53(3):1–43, 2020.

[27] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In CCS, pages 254–269, 2016.

[28] Chaincode scanner tool. https://chainsecurity.com/, 2022.

[29] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi,
and Mike Dahlin. Separating agreement from execution for byzantine
fault tolerant services. SOSP, 37(5):253–267, 2003.

[30] Russell Turpin and Brian A. Coan. Extending binary byzantine
agreement to multivalued byzantine agreement. Inf. Process. Lett.,
18(2):73–76, 1984.

[31] Valerie King and Jared Saia. Breaking the o(n2) bit barrier: scalable
Byzantine agreement with an adaptive adversary. JACM, 58(4):18, 2011.

[32] G. Liang and N. Vaidya. Error-free multi-valued consensus with
byzantine failures. In PODC, 2011.

[33] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued
byzantine agreement. In PODC, pages 163–168, 2006.

[34] Miguel Correia, Nuno Ferreira Neves, and Paulo Verı́ssimo. From
consensus to atomic broadcast: Time-free byzantine-resistant protocols
without signatures. Comput. J., 49(1):82–96, 2006.

[35] Achour Mostéfaoui and Michel Raynal. Signature-free asynchronous
byzantine systems: from multivalued to binary consensus with t< n/3,
o(n2) messages, and constant time. Acta Informatica, 54(5):501–520,
2017.

[36] Haibin Zhang, Sisi Duan, Boxin Zhao, and Liehuang Zhu. Waterbear:
Practical asynchronous bft matching security guarantees of partially
synchronous bft. 2023.

[37] Haibin Zhang, Sisi Duan, Chao Liu, Boxin Zhao, Xuanji Meng,
Shengli Liu, Yong Yu, Fangguo Zhang, and Liehuang Zhu. Practical
asynchronous distributed key generation: Improved efficiency, weaker
assumption, and standard model. IEEE DSN, 2023.

[38] Fred B Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. CSUR, 22(4):299–319, 1990.

[39] Danny Dolev. The byzantine generals strike again. Journal of
Algorithms, 3(1):14–30, 1982.

[40] Alexandra Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-diffie-hellman-group signature scheme. In
PKC, 2003.

[41] Victor Shoup. Practical threshold signatures. In EUROCRYPT, 2000.
[42] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement

with optimal resilience. In STOC, volume 93, pages 42–51. Citeseer,
1993.

[43] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic state-
ments efficiently. In CCS, pages 955–966. ACM, 2013.

[44] Alysson Bessani, Eduardo Alchieri, João Sousa, André Oliveira, and
Fernando Pedone. From byzantine replication to blockchain: Consensus
is only the beginning. In DSN, pages 424–436. IEEE, 2020.

[45] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles
in constantinople: Practical asynchronous Byzantine agreement using
cryptography. Journal of Cryptology, 18(3):219–246, 2005.

[46] Yue Huang, Huizhong Li, Yi Sun, and Sisi Duan. Byzantine fault
tolerance with non-determinism, revisited. Cryptology ePrint Archive,
Paper 2024/134, 2024. https://eprint.iacr.org/2024/134.

[47] Huizhong Li, Yujie Chen, Xiang Shi, Xingqiang Bai, Nan Mo, Wenlin
Li, Rui Guo, Zhang Wang, and Yi Sun. Fisco-bcos: An enterprise-grade
permissioned blockchain system with high-performance. In SC, pages
1–17, 2023.

APPENDIX

We prove the correctness of our DO-MBA. As our DO-
MBA already implies an MBA protocol, correctness of our
MBA follows.

Theorem 1 (Non-intrusion). If a correct replica mba-decides
(v1, v2), at least one correct replica mba-proposes v1.

Proof: If a correct replica mba-decides (v1, v2), at least
one correct replica sets rv as v1 and ρ as σ, where σ is a
valid signature for v1. Hence, at least n− 2f correct replicas
have sent forward(v1,−). For any correct replica that sends
a forward(v1,−) message, it has received n − f echo(v1)
and disperse(v1) messages. According to the protocol, if one
correct replica receives an echo(v1) message, it has received
f +1 disperse(v1) messages. Thus, at least one correct replica
sends a disperse(v1) message and mba-proposes v1.

Lemma 2. If a correct replica r-proposes 1 or r-reproposes
1, it sets rv as v and ρ as σ where σ is a valid signature for
v. If another correct replica r-proposes 1 or r-reproposes 1, it
sets rv as v and ρ as σ.

Proof: If a correct replica r-proposes 1 or r-reproposes 1,
it has received n − f matching forward(v,−) messages or a
distribute(v,−) message. Replica pi sets ρ as σ where σ is a
valid signature for v. We assume that another correct replica
pj sets rv as v′ and prove the correctness by contradiction. In
particular, if pj r-proposes 1 or r-reproposes 1, it has received
n − f matching forward(v′,−) or a valid distribute(v′, σ′)
message where σ′ is a valid signature for v′. Therefore, at
least one correct replica must have sent both forward(v,−)
and forward(v′,−), contradicting the fact that every correct
replica only sends a forward() message once.

Lemma 3. If correct replicas r-decide 1, at least one correct
replica sends a distribute(v, σ) message, where σ is a valid
signature for v. If any replica receives distribute(v′, σ′), v =
v′.

https://hyperledger-fabric.readthedocs.io/_/downloads/vi/latest/pdf/
https://hyperledger-fabric.readthedocs.io/_/downloads/vi/latest/pdf/
https://chainsecurity.com/
https://eprint.iacr.org/2024/134

14

Proof: If correct replicas r-decide 1, at least one correct
replica r-proposes 1 or r-reproposes 1, as otherwise the validity
property of RABA is violated. According to Lemma 2, at least
one correct replica sets rv as v and ρ as σ such that σ is a
valid signature for v. If another replica sends distribute(v′, σ′)
such that σ′ is a valid signature for v′, at least one correct
replica must have sent both forward(v,−) and forward(v′,−).
As every correct replica only sends a forward() message once,
v = v′.

Theorem 4 (Validity). If all correct replicas mba-propose v1,
all correct replicas eventually mba-decide (v1, v2) for any v2.

Proof: If all correct replicas mba-propose v1, no correct
replicas will receive more than f + 1 disperse(v′1) messages
s.t. v1 ̸= v′1. Therefore, no correct replica will r-propose 0.
Every correct replica eventually receives n−f disperse(v1) and
then broadcasts forward(v1,−). Similarly, no correct replica
will receive forward(v′1,−) as a valid σ requires n− f partial
signatures for v′1. Furthermore, no correct replica will send an
echo(v′1) message. The condition Σxrd[x] − rd[v] ≥ f + 1
will not be triggered so no correct replica will r-propose 0.
Similarly, the condition ∀x ̸= pv, Σxrd[x] ≥ f+1 will not be
triggered as no replica is able to receive f + 1 disperse(v′1).

As every correct replica will send a forward(v1, σi) mes-
sage, every correct replica will eventually receive n − f
forward(v1, σj) and r-proposes 1. According to the biased
validity property of RABA, every correct replica eventually
r-decides 1. According to the protocol, any correct replica that
mba-proposes v sets pv as v1. Additionally, every replica sets
rv as v1 and pv as v1, it will then mba-decide (v1, v1). The
theorem thus holds.

Theorem 5 (Primary agreement). If a correct replica mba-
decides (v1, v2) and a correct replica mba-decides (v′1, v

′
2)

such that v1 ̸= ⊥ and v′1 ̸= ⊥, then v1 = v′1.

Proof: We assume v1 ̸= v′1 and prove the theorem by
contradiction. According to the protocol, any correct replica
that mba-decides must have r-decided 1. If a correct replica
pi mba-decides (v1, v2), there are two cases: 1) pi receives
n − f forward(v1,−) messages, it sets rv as v1 and ρ as
σ where σ is a valid signature for v1; 2) pi receives a
distribute(v1, σ) message from another replica such that σ is
a valid signature for v1. If another correct replica pj mba-
decides (v′1, v

′
2), pj also receives a valid signature for v′1 after

receiving n−f forward(v′1,−) messages or a distribute(v′1,−)
message. Hence, at least one correct replica must have sent
both forward(v1,−) and forward(v′1,−), contradicting the fact
that every correct replica only sends a forward() message once.

Theorem 6 (Weak secondary agreement). If a correct replica
mba-decides (v1, v2) and a correct replica mba-decides
(v′1, v

′
2), then v2 = v′2 or one of v2 and v′2 is ⊥.

Proof. If a correct replica mba-decides (v1, v2), there are
three cases: 1) v1 = ⊥. In this case v2 = ⊥ according to the
protocol; 2) v1 ̸= ⊥ and v2 ̸= ⊥. According to the protocol,
v1 = v2; 3) v1 ̸= ⊥ and v2 = ⊥. Similarly, if another correct
replica mba-decides (v′1, v

′
2), there are three cases: 1) v′1 = ⊥

and v′2 = ⊥; 2) v′1 ̸= ⊥, v′2 ̸= ⊥, and v′1 = v′2; 3) v′1 ̸= ⊥ and
v′2 = ⊥. We show that for every combination of v1, v′1, v

′
2, and

v′2, either v2 = v′2 or at least v2 or v′2 is ⊥.
• v1 = ⊥. For all the three cases for v′1 and v′2, the theorem

holds as v1 = v2 = ⊥.
• v1 ̸= ⊥ and v2 ̸= ⊥; v′1 = ⊥. The theorem holds as
v′1 = ⊥.
• v1 ̸= ⊥ and v2 ̸= ⊥; v′1 ̸= ⊥ and v′2 ̸= ⊥. According to the

protocol, v1 = v2 and v′1 = v′2. According to the primary
agreement property, we know that v1 = v′1. Therefore, v2 =
v′2.
• v1 ̸= ⊥ and v2 ̸= ⊥; v′1 ̸= ⊥ and v′2 = ⊥. The theorem

holds as v′2 = ⊥.
• v1 ̸= ⊥ and v2 = ⊥. For all three cases for v′1 and v′2, the

theorem holds as v2 = ⊥. ■

Lemma 7. If a correct replica r-proposes 1 or r-reproposes 1,
any correct replica either r-proposes 1 or will later r-repropose
1.

Proof: If a correct replica r-proposes 1, it has received
n − f matching forward(v,−) messages and set ρ as σ
where σ is a valid signature for v. The replica will broadcast
a distribute(v, σ) message. According to the protocol, any
correct replica that receives a distribute(v, σ) message either
has r-proposed 1 or will r-repropose 1.

Theorem 8 (Termination). If all correct replicas mba-propose,
every correct replica eventually mba-decides some value.

Proof: There are two cases considering the values correct
replicas mba-propose: 1) at least f + 1 correct replicas mba-
propose the same value v; 2) fewer than f +1 correct replicas
mba-propose the same value. In the following, we first prove
that for the two cases, RABAid eventually terminates, and then
show that every replica eventually mba-decides.
Case 1) According to the protocol, all correct replicas that do
not mba-propose v will eventually receive f + 1 disperse(v)
and then broadcast echo(v). Every correct replicas will receive
n − f disperse(v) and echo(v), such that rd[v] ≥ n − f .
Then every correct replica broadcasts a forward(v,−) message.
Similarly, every correct replica will eventually receive n − f
forward() messages and then r-propose some value to RABAid.
There are two sub-cases: A) At least one correct replica
r-proposes 1 to RABAid; B) None of the correct replicas
r-propose 1 to RABAid.
• A) From Lemma 7, every correct replica eventually

r-proposes or r-reproposes 1. Hence, the biased termination
property of RABA guarantees that RABAid eventually
terminates.
• B) If none of the correct replicas r-reproposes to RABAid,

the unanimous termination property of RABA guarantees
RABAid eventually terminates. If at least one correct
replica r-reproposes 1, then according to Lemma 7, any
correct replica will eventually r-repropose 1. The biased
termination property of RABA guarantees that RABAid

eventually terminates.

Case 2) Fewer than f + 1 correct replicas mba-propose the
same value. In this case, one of the following conditions is

15

satisfied for any correct replica: 1) Σxrd[x]−rd[v] ≥ f+1; 2)
∀x ̸= pv, Σxrd[x] ≥ f +1, i.e., every correct replica receives
f +1 disperse(v) or echo(v) messages such that v is different
from pv. The first condition holds if the correct replica receives
messages from all replicas in the system, as given any value
v, rd[v] ≤ f , Σxrd[x] ≥ n−f . The second condition holds as
follows: considering the inputs of all correct replicas, for the
value v for any correct replica, fewer than f+1 correct replicas
mba-propose so more than f + 1 correct replicas must mba-
propose values different from v. Thus, every correct replica
eventually receives f + 1 disperse() messages such that the
carried value is different from the replica’s pv. After that,
every correct replica that has not started RABAid eventually
r-proposes some value. If all correct replicas r-propose 0,
RABAid terminates according to the unanimous termination
property of RABA. If at least one correct replica r-proposes 1,
according to Lemma 7, every correct replica either r-proposes
1 or r-reproposes 1. RABAid terminates according to the
biased termination property.

In both cases, after RABAid outputs, there are two cases: ev-
ery correct replica r-decides 1; every correct replica r-decides
0. In the first case, according to Lemma 3, every correct
replica either has already set rv as v or will eventually
receive distribute(v,−). Then correct replica eventually mba-
decides. In the second case, every correct replica mba-decides
according to the protocol.

Theorem 9 (Integrity). Every correct replica mba-decides
once.

Proof: Every correct replica mba-decides after it
r-decides. According to the integrity of RABA, every correct
replica r-decides once so every correct replica mba-decides
once.

Lemma 10. Let nb be the maximal number of distinct values
a correct replica may send in an echo() message. We have
nb ≤ 2.

Proof: Every correct replica broadcasts an echo(v) mes-
sage only if v ̸= pv and it has received n − 2f disperse(v).
As there are n replicas in total, every correct replica sends a
echo() message at most twice, i.e., nb ≥ 2.

Theorem 11. The time complexity of DO-MBA is expected
O(1).

Proof: According to Lemma 10, disperse() and echo()
runs in O(1) time. Also, as each correct replica sends one
forward() message and one distribute() message and RABA
runs in O(1) expected time. Thus, DO-MBA terminates in
O(1) expected time.

Theorem 12 (Total order). If a correct replica nd-delivers o
before nd-delivering o′, then no correct replica nd-delivers o′

without first nd-delivering o.

Proof: We assume that a correct replica pi nd-delivers o
with sequence number sn and nd-delivers o′ with sn′, where
sn < sn′. We assume another correct replica pj nd-delivers o
with sn1 and nd-delivers o′ with sn′

1, where sn1 > sn′
1. We

then prove the theorem by contradiction.

If pi nd-delivers o with sequence number sn and pj nd-
delivers o with sn1 such that sn ̸= sn1, pj has nd-delivered
a value o′′ ̸= o with sequence number sn, as a correct replica
never nd-delivers the same value twice. There are two cases:
pi a-delivers sn, o and pj a-delivers sn, o′′, a violation of the
safety property of atomic broadcast; pi and pj both a-deliver
sn, o, pi mba-decides (v, v) and pj mba-decides (v′, v′) such
that v′ ̸= v, a violation of the primary agreement property of
DO-MBA. Therefore, sn1 = sn.

Similarly, if pi nd-delivers o′ with sn′ and pj nd-delivers
o′ with sn′

1, sn′
1 = sn′. We already know that sn = sn1.

Additionally, according to the assumption, sn′ > sn and
sn1 > sn′

1. Therefore, it holds that sn′ > sn′
1, a contradiction

with sn′
1 = sn′.

Theorem 13 (Correctness). If a correct replica maintains state
s before it nd-delivers o and maintains s′ after it nd-delivers o,
another correct replica maintains state s before it nd-delivers
o and maintains s′′ after it nd-delivers o, then s′ = s′′.

Proof: We consider that a correct replica pi maintains s′

at the end of the epoch (after DO-MBA outputs) and another
correct replica pj maintains s′′ at the end of the epoch.

Let s1 ← execute(s, o) be the execution result at pi. There
are three cases for s′ at pi: 1) DO-MBA outputs (v, h), where
v ̸= ⊥ and h ̸= ⊥; 2) DO-MBA outputs (v, h), where v ̸=
⊥ and h = ⊥; 3) DO-MBA outputs (v, h), where v = ⊥.
Similarly, the same three cases apply for pj , considering s2 ←
execute(s, o). We prove that s′ = s′′ for each of the three cases
for pi.
• Case 1) In this case, according to the protocol, s′ =
hash(s1) = v. According to the primary agreement and
weak secondary agreement properties of DO-MBA, the
output of pj can only be v, h or v,⊥. If pj mba-decides
(v, h), we have s′′ = hash(s2) = v. Therefore, s′ = s′′.
If pj mba-decides (v,⊥), we know that hash(s2) ̸= v.
According to the protocol, pj performs state transfer until
hash(s′′) = v. The non-intrusion property of DO-MBA
ensures that at least one correct replicas holds s′′, so pj
will complete the state transfer. Therefore, s′ = s′′.
• Case 2) In this case, we know that hash(s1) ̸= v for
pi. According to the protocol, pi performs state transfer
until hash(s′) = v. Furthermore, according to the primary
agreement and weak secondary agreement properties of
DO-MBA, the output of pj can only be v, h or v,⊥. If
pj mba-decides (v, h), we know that s′′ = hash(s2) = v.
Therefore, s′ = s′′. If pj mba-decides (v,⊥), we know that
hash(s2) ̸= v. According to the protocol, pj performs state
transfer until hash(s′′) = v. Therefore, s′ = s′′.
• Case 3) In this case, as pi rolls back to the prior state,
s′ = s. According to the primary agreement property of
DO-MBA, pj must have mba-decided (⊥,⊥) and rolled
back to s. Thus, it holds s′ = s′′.

Theorem 14 (Liveness). If an operation o is submitted to
all correct replicas, then each correct replica eventually nd-
delivers o or ⊥; if o is deterministic, each correct replica
nd-delivers o and updates its state via update.

16

Proof: According to the liveness property of
atomic broadcast, every correct replica will eventually
a-deliver(sn, o). After a-deliver(sn, o), every correct replica
queries ssn ← execute(ssn−1, o) and starts a DO-MBA
instance. According to the termination property of DO-MBA,
every correct replica eventually mba-decides some value and
then nd-delivers o or ⊥.

We now prove that if o deterministic, every correct replica
eventually nd-delivers o and updates it state via update. As
s0 is the same for all correct replicas, we prove that o will
eventually be executed by an induction on sequence number.
Without loss of generality, we consider each block consists
of one transaction o. The case where each block consists of
multiple transactions can be proved similarly.

For the base case, sn = 1. As s0 is the same for all correct
replicas and o consists of only deterministic operations, s1
must be the same for all correct replicas. Therefore, all correct
replicas mba-propose v = hash(s1). The validity property of
DO-MBA guarantees that all correct replicas will mba-decide
(v, v) and then nd-deliver o. The s1 state includes update on
o.

For the induction case, consider sn > 1 and all correct
replicas maintain the same ssn−1, we prove that all correct
replicas will execute o and a-deliver o. In particular, as ssn−1

is the same for all correct replicas, all correct replicas will
execute o and obtain the same state ssn. All correct replicas
will then mba-propose v = hash(ssn) and mba-decide (v, v).
Every correct replica then nd-delivers o and the state ssn
includes the update on o.

	Introduction
	Related Work
	System Model
	Preliminaries
	Pathway to Block-ND
	Formalizing BFT-SMR with non-determinism (BFT-ND)
	The Strawman Approaches
	Overview of Our Approach

	ND-MBA: Practical MBA and DO-MBA
	Our MBA Construction
	Formalizing DO-MBA
	Our DO-MBA Construction

	Block-ND
	Implementation and Evaluation
	Conclusion
	References
	Appendix

