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Abstract. Clarifying the robustness of authenticated encryption (AE)
schemes, such as security under nonce misuse or Release of Unverified
Plaintext (RUP), is critically important due to the extensive use of AEs
in real-world applications. We present a comprehensive analysis of the
robustness of well-known standards, namely GCM, CCM, and OCB3.
Despite many existing studies, we uncovered several robustness properties
for them that were not known in the literature. In particular, we show
that both GCM and CCM maintain authenticity under RUP. Moreover,
CCM keeps this feature even if a nonce is misused. Together with existing
analysis, our work gives a complete picture of the robustness of these
standards for the first time. Our results also imply several new robust
AE schemes based on GCM and CCM.
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1 Introduction

Authenticated encryption (AE) [BN00,Rog02]4 is a type of symmetric-key encryp-
tion that simultaneously ensures the confidentiality and authenticity of messages.
AE is widely acknowledged as a fundamental tool in practical cryptography and
is widely deployed in practice, such as TLS for the Internet and WPA for Wifi
access. A wide class of AE is nonce-based; that is, it takes a nonce as input, a
value that never repeats, in encryption. The most popular and widely accepted
prerequisite for nonce-based AE is nonce-respecting; the assumption that a nonce
is non-repeating is crucial as a repeat of the nonce implies an immediate break of
IND-CPA, the standard cryptographic notion for privacy/confidentiality. Another
common prerequisite for AE is that the decryption routine must return a single
error message when verification fails so that any information on the “unverified
plaintext” does not leak.

However, in practice, these two prerequisites are sometimes violated, i.e., AE
can be misused. Misuse can happen due to various reasons, say poor randomness
for nonce generation, misconfiguration of protocol, or side-channel/fault attacks,
4 AE with associated data (AEAD) is also a common name of our object of study.



and has a devastating impact on real-world applications, such as [BZD+16,VP18,
PDM+18]. Studying the impact of violation of these prerequisites, i.e., robust-
ness, is thus quite essential and practically relevant. A well-known example is
Joux’s “forbidden” attacks against GCM [Jou06], which shows that even a single
nonce repeat allows a universal forgery attack. Padding oracle attack [Vau02]
is another famous example regarding the second prerequisite. After these ex-
amples, AE’s robustness has been a central topic in the literature. Violation
of the first prerequisite is called Nonce Misuse (NM), and that of the second
is called Release of Unverified Plaintext (RUP) [ABL+14] (as a special case
of [BDPS14]), and studying the robustness of a given scheme means studying
security under NM or RUP or both. A number of formal security notions cap-
turing robustness have been proposed and studied [RS06,ABL+14,ADL17]. The
robustness of GCM and other popular schemes is a frequent question raised by
implementors/users [cse21, cse18, cse19] and received attention in IETF (see e.g.,
Bozhko [Boz24]). Robustness of modern AE schemes, such as the candidates to
CAESAR competition [cae] and NIST Lightweight Cryptography (LWC) [nisb],
has been extensively studied [ABL+14,VV18,STA+15,MDV15, IMGM15,nisa].
In particular, NIST IR 8454 [nisa] mentioned that the robustness of the LWC
finalists was considered for the final selection, together with a very detailed
literature survey on the finalists, including their robustness analysis. The LWC
winner Ascon also has been deeply studied on its robustness [asc,BCP22].

Given this situation, it would be interesting to ask: do we fully understand
the robustness of well-known standards, namely GCM [nis07a], CCM [nis07b],
and OCB3 [KR11]? At first glance, it seems so since there are many existing
studies (see Table 1 and Related Work), including the aforementioned forbidden
attack by Joux. However, we reveal several robustness properties for them that
are unknown (nor mentioned) in the literature. The purpose of this work is to
report them in a comprehensive manner5. For the first time, we present the full
picture of these standards’ robustness together with existing analysis.

GCM and CCM are the two NIST AE standards (NIST SP800-38D [nis07a] and
SP800-38C [nis07b]). They have been extensively used for TLS, IPSec, SSH, etc.
CCM is the first specified AE mode for Wifi since WPA2 and is still mandated in
the latest WPA3. It is also used for many resource-constrained networks, including
LoRaWan, Bluetooth, and Zigbee, to name a few. See Rogaway’s CRYPTREC
report [Rog11] for more information on their real-world applications. OCB3 is the
third (and the final) version of the seminal OCB mode family and is an Internet
standard (RFC 7253) [RFC14].

For GCM, we show that it maintains authenticity even if it releases unverified
plaintext, also known as INTegrity under RUP (INT-RUP) [ABL+14], irrespective
of nonce length. Except for Ashur et al.’s result [ADL17] (ADL17) on nonce
misuse resilience privacy (see Table 1), GCM is considered to lack the robustness

5 We do not consider leakage-resistance [BGP+19, BBC+20, PSV15] as they require
additional security assumptions on side-channel attacks for implementations of
(specific) components.
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of any known kind. Our result shows that this is not the case, and hence, we
think this is something unexpected.

For CCM, we show an even stronger result: it maintains INT-RUP even when
nonce may repeat in encryption, which we refer to as Nonce-Misuse-Resistant
(NMR) INT-RUP. This notion gives the strongest authenticity property that we
consider in this paper. In addition, we show that CCM maintains privacy in the
sense of Nonce Misuse resiLience (NML), a relaxed notion from nonce misuse
resistance introduced by ADL17. These robustness properties are realized by
CCM’s prefix-free encoding applied to the internal CBC-MAC. It was also the
key of the existing nonce-respecting proofs [Jon03, VV18, FMVZ08], however,
never used for proving robustness. These results indicate that CCM is much more
robust than GCM (and OCB3, see Table 1). Despite its wide real-world adoption,
CCM has received surprisingly less attention than GCM or OCB3 from a provable
security perspective after Jonsson’s initial proof [Jon03]. Our results could benefit
protocols/applications adopting CCM to provide an in-depth defense.

For OCB3, the previous analysis covers most of the existing robustness notions.
We present a study on nonce misuse resilience. Specifically, we show OCB3’s
privacy in the sense of nonce misuse resilience. Authenticity is broken in a
general case, however, we point out that under a restriction on associated data,
authenticity is also maintained. These results compensate for the original analysis
of ADL17, which mainly focuses on the first version of OCB.

Table 1 shows the summary of our results together with existing results. For
comparison, we also list the results for ChaCha20-Poly1305 [NL15], where all the
robustness properties we consider are already known in the literature.

Benefits of Our Results. Our results have several implications on AE construc-
tions. First, given that GCM and CCM are INT-RUP secure, we can convert them
into a RUP-secure AE [ABL+14], a secure AE for both privacy and authenticity
under RUP, in an efficient (near) black-box way, thanks to a method by Andreeva
et al. [ABL+14]. An earlier RUP-secure AE based on GCM (GCM-RUP [ADL17])
needs to modify the algorithm. No CCM-based scheme is known. RUP-secure AE
is relevant as a countermeasure against real-world attacks such as Efail [PDM+18].
Second, our security proofs reveal that one block cipher call in CCM can be omit-
ted, maintaining all the security properties, including those we prove in this
paper. Surprisingly, we found such an optimization after more than 15 years of
being standardized by NIST. This improvement is particularly effective when
messages are short, as shown by Adomnicăi et al. [AMS23]. This optimization
could be practically relevant because of the wide adoption of CCM to Internet
protocols and wireless low-power communication protocols.

Related Work. Provable security of GCM under the nonce-respecting scenario
has been extensively studied [MV04,IOM12,NOMI15,BT16,LMP17,LP18,Nan18,
HTT18]. Design issues such as security degradation for short tag or weak keys
have been discussed [Fer05,HP08,PC14,ABBT15,MW16]. Dodis et al. studied
key committing security of GCM [DGRW18].
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Table 1: Summary of results. GCM is NML-Priv secure only if nonce is 96 bits
and broken otherwise. OCB3 is NML-Auth secure only if AD is fixed. CCM2 is
our optimized version of CCM (Sect. 8.2).

RUP NMR NML RUP+NMR
Priv (PA1) INT-RUP Priv Auth Priv Auth Auth

GCM ✗

[ABL+14]
✓

Sect. 4
✗

[Classical]
✗

[Jou06]
✓/ ✗

[ADL17]
✗

[ADL17]
✗

[Jou06]

CCM/CCM2 ✗

[ABL+14]
✓

Sect. 5
✗

[Classical]
✓

Sect. 5
✓

Sect. 6
✓

Sect. 5
✓

Sect. 5

OCB3 ✗

[ABL+14]
✗

[ABL+14]
✗

[Classical]
✗

[VV18]
✓

Sect. 7
✓/ ✗

Sect. 7, [VV18]
✗

[VV18]

ChaChaPoly ✗

[ABL+14]
✓

[IMI16, IMI18]
✗

[Classical]
✗

[KDD17]
✓

[ADL17]
✓

[ADL17]
✗

[KDD17]

Provable security of CCM under the nonce-respecting scenario was proved by
Jonsson [Jon03]. Rogaway and Wagner [RW03] reviewed the design and pointed
out several deficiencies. Fouque et al. [FMVZ08] presented a security bound for a
variant of CCM and forgery attacks on (a general form of) CCM based on nonce
repeat. Their attack against the original CCM has birthday complexity and hence
does not contradict our result. Gjiriti et al. [GRV21] showed provable security of
a variant of CCM with variable tag stretch. Menda et al. [MLGR23] showed key
committing attack against CCM.

Provable security of OCB3 under the nonce-respecting scenario has been
proved by Krovetz and Rogaway [KR11]. The bound was improved by Bhaumik
and Nandi [BN17]. An authenticity attack under RUP was shown by [ABL+14].
Liénardy and Lafitte [LL24] pointed out an issue of the current specification on
the valid nonce length.

Vaudenay and Vizár [VV18] showed a nonce-misuse analysis on CAESAR
candidates and GCM, CCM and OCB3. Rogaway and Shrimpton [RS06] introduced
the notion of nonce-misuse resistance and proposed SIV, an offline AE with nonce-
misuse resistance. Robust AE (RAE) [HKR15] is a class of (offline) AEs having
full protection against nonce misuse and RUP. Online AE [FFL12] is a class of
nonce-based AE that has partial privacy protection against nonce misuse while
online processing. Hoang et al.. [HRRV15] discussed its practical relevance and
limitation.

2 Preliminaries

2.1 Basic notations

For non-negative integers i and j with i < j, let [i..j] := {i, i + 1, i + 2, . . . , j}.
For any list X = (X[1], . . . , X[x]) and i, j ∈ [1..x], i < j, we write X[i..j] to
mean (X[i], . . . , X[j]). Let {0, 1}∗ be the set of all bit strings, including the
empty string ε, the single element in {0, 1}0. For X ∈ {0, 1}∗, |X| denotes its
bit length and |X|n denotes ⌈|X|/n⌉. We define the parsing of a string into
n-bit blocks for a positive integer n by (X[1], X[2], . . . , X[m]) n←− X, where
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X[1] ∥X[2] ∥ . . . ∥X[m] = X, |X[i]| = n for 1 ≤ i < m and 0 < |X[m]| ≤ n

when |X| > 0. When |X| = 0 (i.e., X = ε), we let X[1] n←− X with X[1] = ε.
A concatenation of bit strings X and Y is denoted as X ∥ Y , or XY , in case
no confusion is possible. Let 0i be the string of i zero bits. Hence, we write
10i for 1 ∥ 0i. For X ∈ {0, 1}∗ with |X| ≥ i, msbi(X) is the first (left) i bits of
X, and lsbi(X) is the last (right) i bits of X. Let ⟨X⟩c be the c-bit standard
representation of X ∈ [0..2c − 1]. If X is uniformly chosen from the set X , we
write X

$← X . For any X ∈ {0, 1}∗ and a positive integer n, let padn(X) be
X ∥ 00 . . . 0 so that |padn(X)| be the minimum number of multiple of n. If |X| is
a positive multiple of n, padn(X) = X, and padn(ε) = ε. Note that padn is not
injective.

Oracles and Advantage. Suppose A is an adversary in a game. A can query
to s oracles, O1, . . . ,Os, in any order. In the case of a distinguishing game, A
outputs a bit after the queries, which is a random variable whose probability
space is defined under A and {Oi}i∈[1..s]. Let [AO1,...,Os = 1] denote the event
that this bit is 1. We call Oi the i-th oracle in the game. By writing Advxxx

Π (A),
we mean advantage of the adversary A in the game xxx involving Π. We say Π
is xxx-secure if the corresponding advantage is negligible for all computationally
bounded adversaries.

(Tweakable) Block cipher and random primitives. Any keyed function
F : K×X → Y with key space K, we may write FK(x) to denote F (K, x). Unless
otherwise specified, we assume K

$← K in evaluation of FK(x). A block cipher
E : K ×M → M is a keyed function such that for any K ∈ K, E(K, ·) is a
permutation over the message spaceM. We write E−1

K (·) to denote the decryption
function. A tweakable block cipher (TBC) [LRW02] Ẽ : K × T W ×M → M
is a keyed function such that for any K ∈ K and tweak W ∈ T W, Ẽ(K, W, ·)
is a permutation over M. Tweak is typically used as a public/chosen value in
contrast to the secret key. Let Perm(n) be the set of all permutations of n bits,
and Func(n, m) be the set of all functions: {0, 1}n → {0, 1}m. A uniform random
permutation (URP) P : {0, 1}n → {0, 1}n is a random permutation uniformly
chosen over Perm(n). A uniform random function (URF) R : {0, 1}n → {0, 1}m

is a random function uniformly chosen over Func(n, m). A tweakable uniform
random permutation (TURP) P̃ : T W ×M→M consists of |T W| independent
instances of P overM and the first argument (tweak) specifies the URP used.The
security of TBC Ẽ is defined as the following distinguishing probability.

AdvTPRP
Ẽ

(A) := |Pr[AẼK = 1]− Pr[AP̃ = 1]|,

where P̃ has the same domain and range as ẼK . When T W is a singleton,
the security of block cipher EK is obtained by the above security, denoted by
AdvPRP

E (A).

H-Coefficient. All our proofs use the standard H-Coefficient technique [Pat09,
CS14]. See App. A for its basics.
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2.2 Authenticated Encryption

A nonce-based AE scheme Π = (Π.E , Π.D) is defined over a key space K, a nonce
space N , an associated data (AD) space AD, a message spaceM, and a tag space
T = {0, 1}τ for some fixed tag length τ . We use ν throughout the paper to denote
the nonce length in bits, hence N = {0, 1}ν . An AD is information that is not
to be kept confidential, but its integrity must be ensured. For example, network
encryption will treat the protocol header as an AD. Formally, AE is a tuple of
an encryption function Π.E : K × N × AD ×M → M× T , and a decryption
function Π.D : K×N ×AD ×M×T →M∪ {⊥}, where symbol ⊥ indicates a
verification failure. We require Π.DK(N, A, C, T ) = M if Π.EK(N, A, M) = (C, T )
for soundness. Moreover, we assume |C| = |M |; all our target schemes meet this
condition. Basically, each nonce in encryption must be unique, which we call
nonce-respecting (NR) model. Note that a nonce in decryption has no restrictions;
it may repeat and it may collide with one used in encryption. A nonce-respecting
adversary (NR adversary) may choose nonce arbitrarily in encryption, except
that this condition must be respected [Rog04b]. Let Π = (Π.E , Π.D) be an AE
scheme. Let $ be the random-bit oracle that takes (N, A, M) and returns random
|M |+ τ bits. The standard security notions of Π against NR adversaries are Priv
(confidentiality/privacy) and Auth (authenticity/integrity), defined below.

Definition 1 (Priv and Auth). Let A be a Priv adversary against Π and let
B be an Auth adversary against Π.

AdvPriv
Π (A) := |Pr[AΠ.EK = 1]− Pr[A$ = 1]|,

AdvAuth
Π (B) := Pr[BΠ.EK ,Π.DK forges],

where A and B are nonce-respecting. The event [BΠ.EK ,Π.DK forges] means that
B receives some M ′ ≠ ⊥ from Π.DK . B does not forward queries from Π.EK to
Π.DK , namely, B does not query (N, A, C, T ) to Π.DK after obtaining (N, A, M ,
C, T ) as a result of query-response to Π.EK .

It is also possible to consider a combined notion that captures Priv and Auth.
While this is convenient, since our purpose is a fine-grained analysis, we always
treat privacy and authenticity notions separately. This applies to the various
robustness notions described in the next section.

3 Robustness Notions of Authenticated Encryption

3.1 Security notions under nonce misuse

Rogaway and Shrimpton [RS06] (RS06) introduced the concept of Nonce-Misuse
Resistance (NMR), best-possible security notions under possibly repeating nonces
in encryptions. NMR security notions are as follows.
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Definition 2 (NMR-Priv and NMR-Auth [RS06]). Let A be an NMR-Priv
adversary against Π and let B be an NMR-Auth adversary against Π.

AdvNMR-Priv
Π (A) := |Pr[AΠ.EK = 1]− Pr[A$ = 1]|,

AdvNMR-Auth
Π (B) := Pr[BΠ.EK ,Π.DK forges],

where A and B may query to the first oracle with repeating nonces, but does not
query a repeated tuple of (N, A, M). B does not forward queries from the first
oracle to the second oracle.

We remark that NMR-Priv requires Π.E to be offline, i.e., any ciphertext bit
must reflect the whole encryption input. This limits applicability in particular
for long messages. GCM and OCB3 are online schemes; it is inherently impossible
to meet this notion. CCM is not online, but the encryption part is nevertheless a
counter mode and fails to meet NMR-Priv [VV18].

Nonce-misuse resilience. Ashur, Dunkelman, and Luykx [ADL17] proposed
the concept of Nonce-Misuse resiLience (NML), which is a relaxed form of NMR.
Intuitively, NML security notions require that the attacker must win the game by
making a query with a nonce that is not misused (repeated). Conversely, an AE
scheme is NML-secure if a repeat of nonce N does not threaten the security of
encryption/decryption with a different nonce from N . While weaker than NMR,
NML notions can be fulfilled by online schemes. If nonce is determined by (e.g.)
recipient ID or timestamp, NML is practically relevant.

Definition 3 (NML-Priv and NML-Auth [ADL17]). Let A be an NML-Priv
adversary against Π and let B be an NML-Auth adversary against Π.

AdvNML-Priv
Π (A) := |Pr[AΠ.EK ,Π.EK = 1]− Pr[A$,Π.EK = 1]|,

AdvNML-Auth
Π (B) := Pr[BΠ.EK ,Π.DK forges],

where A is nonce-respecting with respect to the first oracle, i.e., let N1 and N2
be the multisets of nonces used by the queries to the first (nonce-respecting)
and the second (nonce-misusing) oracles; N1 ∩N2 = ∅ and each N ∈ N1 has a
multiplicity one. N2 may contain nonces with multiplicity ≥ 2. Similarly for B,
we define N1 and N2. Both may contain nonces with multiplicity ≥ 2. However,
any N ∈ N1 ∩ N2 must have multiplicity one in N1. In addition, as with the
standard Auth notion, a trivial forgery is prohibited.

3.2 Security notions under release of unverified plaintext

Release of Unverified Plaintext (RUP) was formalized by Andreeva et al. [ABL+14].
RUP is the game environment that leaks the unverified plaintext to the adver-
sary at decryption independent of the verification result. To formalize RUP
security games, we require that Π.D is decomposed into the unverified de-
cryption function, Π.uD : K × N × AD ×M × T → M and the verification
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function, Π.V : K × N × AD × M × T → {⊤,⊥}. The normal decryption
combines them as Π.DK(N, A, C, T ) = M if Π.uDK(N, A, C, T ) = M and
Π.VK(N, A, C, T ) = ⊤, and Π.DK(N, A, C, T ) = ⊥ if Π.DK(N, A, C, T ) = ⊥.
That is, when Π.uDK(N, A, C, T ) = M , M denotes the correct decrypted plain-
text if the input tuple is authentic, and otherwise M is something that would
be discarded by the decryption oracle in the classical authenticity notions. Most
existing AE schemes, including our targets, fulfill the aforementioned assumption.
We will write Π = (Π.E , Π.uD, Π.V) when we discuss about RUP security of Π.
As described, Π.D is uniquely determined from Π.uD and Π.V.

Privacy notion under RUP is Plaintext Awareness (PA), and PA is classified
into a basic notion (PA1) and a stronger notion (PA2). As they are irrelevant to
our analysis, we omit the definitions here. The authenticity notion under RUP is
called INT-RUP (for INTegrity under RUP) [ABL+14].

Definition 4 (INT-RUP). Let A be the INT-RUP adversary against Π =
(Π.E , Π.uD, Π.V).

AdvINT-RUP
Π (A) := Pr[AΠ.EK ,Π.uDK ,Π.VK forges],

where A is nonce-respecting, i.e., never repeats nonce in queries to Π.E. More-
over, A does not forward queries from Π.E to Π.V. Queries to Π.uD have no
restrictions.

We can combine INT-RUP with the nonce-misuse scenario, yielding a more
robust authenticity notion.

Definition 5 (NMR-INT-RUP). The nonce-misuse resistance INT-RUP (NMR-
INT-RUP) advantage, AdvNMR-INT-RUP

Π (A), is defined in the same manner as
INT-RUP, except that A is allowed to repeat nonces in queries to the first oracle.

By definition, we have the following implications: (1) NMR-Priv→ NML-Priv
→ Priv, and (2) NMR-Auth → NML-Auth → Auth, and (3) NMR-INT-RUP →
INT-RUP, and (4) NMR-INT-RUP → NMR-Auth.

4 Authenticity of GCM under RUP

We show that GCM is INT-RUP secure. As described in the introduction, we
think this result is kind of unexpected since GCM is considered to lack robustness
other than NML-Priv with a restriction to 96-bit nonce [ADL17].

4.1 Specification of GCM

We briefly present the specification of GCM. Let n = 128 and E be an n-bit block
cipher. For X ∈ {0, 1}ℓ such that ⟨X⟩ℓ = xℓ−1 · · ·x1x0, let int(X) be an integer∑ℓ−1

i=0 xi2i. Let inc(X) = msbn−32(X) ∥ ⟨int(lsb32(X))+1 mod 232⟩32. For i ≥ 0,
inci(X) means that applying inc on X for i times. When i = 0, inci(X) = X.
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Algorithm GCM.E [EK ](N, A, M)

1. C ← GCTR[EK ](N, C)
2. T ← GMAC.T [EK ](N, A, C)
3. return (C, T )

Algorithm GCM.uD[EK ](N, A, C, T )

1. M ← GCTR[EK ](N, C)
2. return M

Algorithm GCM.D[EK ](N, A, C, T )

1. b = GCM.V[EK ](N, A, C, T )
2. if b = ⊥ then return ⊥
3. else M ← GCM.uD[EK ](N, A, C, T )
4. return M

Algorithm GCM.V[EK ](N, A, C, T )

1. T̂ ← GMAC.T [EK ](N, A, C)
2. if T = T̂ then return ⊤
3. else return ⊥

Algorithm GCTR[EK ](N, M)

1. L← EK(0n)
2. if ν = 96 then Ctr0← N ∥ 0311
3. else then Ctr0← GHASHL(ε, N)
4. (M [1], . . . , M [m]) n←−M
5. for i = 1 to m do
6. C[i]←M [i]⊕ msb|M [i]|(EK(inci(Ctr0)))
7. C ← C[1] ∥ · · · ∥C[m− 1] ∥C[m]
8. return C

Algorithm GMAC.T [EK ](N, A, C)

1. L← EK(0n)
2. if ν = 96 then Ctr0← N ∥ 0311
3. else then Ctr0← GHASHL(ε, N)
4. Mask← msbτ (EK(Ctr0))
5. T ← Mask⊕ msbτ (GHASHL(A, C))
6. return T

Algorithm GMAC.V[EK ](N, A, C, T )

1. T̂ ← GMAC.T [EK ](N, A, C)
2. if T = T̂ return ⊤
3. else return ⊥

Algorithm GHASHL(A, C)

1. X ← padn(A) ∥ padn(C) ∥ ⟨|A|⟩n/2 ∥ ⟨|C|⟩n/2

2. (X[1], . . . , X[x]) n←− X, Y ← 0n

3. for i = 1 to x do Y ← L · (Y ⊕X[i])
4. return Y

Fig. 1: Algorithms of GCM[EK ]. Note that ν := |N | and τ := |T | are fixed in
advance. The operation “·” in line 3 of GHASH denotes a multiplication over
GF(2n).

GCM is basically a composition of counter mode and a nonce-based MAC
using a polynomial hashing over GF(2n). Figure 1 shows the algorithms of
GCM using EK , denoted as GCM[EK ]. In addition to the normal decryption,
Fig. 1 shows the unverified decryption and verification routines together with
GMAC MAC function inside GCM. They will be needed for our analysis. Here,
N, A, C ∈ {0, 1}∗ and τ := |T | ∈ [1..n] (NIST recommends τ ≥ 64). We also
require ν := |N | ∈ [1..2n/2 − 1], |A| ∈ [0..2n/2 − 1], and |M | ∈ [0..n(232 − 2)].
The parameters ν and τ must be fixed in advance. The derivation of the first
counter block input depends on whether ν = 96 or not. Note that |C| = |M |
holds. Figure 2 depicts the encryption.

4.2 INT-RUP bounds of GCM

Let GCM[E] = (GCM.E [E], GCM.uD[E], GCM.V[E]) employing a block cipher
E : K×{0, 1}n → {0, 1}n. Let A be an INT-RUP adversary who makes qe queries
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GHASHL

ε N

if ν 6= 96

if ν = 96

Ctr0 = N ‖ 0311 Ctr0

EK

M [1]

C[1]

EK EK

M [m− 1]

C[m− 1] C[m]

M [m]

inc inc

msb|M [m]|

inc inc

GHASHL

A C

EK

TMaskCtr0

msbτ

Maskmsbτ

Fig. 2: Encryption of GCM.

to GCM.E [EK ], qd queries to GCM.uD[EK ], and qv queries to GCM.V[EK ], with
time complexity t (where K

$← K). After all the queries, A obtains a transcript
written as

– {(Ne
i , Ae

i , Me
i , Ce

i , T e
i )}i=1,...,qe

from GCM.E [EK ],
– {(Nd

i , Ad
i , Md

i , Cd
i , T d

i )}i=1,...,qd
from GCM.uD[EK ],

– {(Nv
i , Av

i , Cv
i , T v

i , bi)}i=1,...,qv from GCM.V[EK ], where bi ∈ {⊤,⊥}.

Let σe, σd, and σv be the total number of plaintext/ciphertext blocks queried
to GCM.E [E], GCM.uD[E], and GCM.V[E] oracles, i.e., σe =

∑qe

i=1 |Me
i |n, σd =∑qd

i=1 |Cd
i |n, and σv =

∑qv

i=1 |Cv
i |n. Let σall := σe +σd +σv +qe +qv +1 to denote

the maximum of the total number of E calls in the game, which we call the
effective total queried blocks. Let ℓN := ⌈ν/n⌉ and ℓA be the maximum number
of blocks of the input to GHASH in encryption and verification queries; thus,
|A#

i |n + |C#
i |n ≤ ℓA for # ∈ {e, v}, i ∈ [1..q#].

The following theorem shows that GCM is INT-RUP secure up to the birthday
bound irrespective of nonce length.

Theorem 1. For the adversary A defined as above with time complexity t,

AdvINT-RUP
GCM[E](A) ≤ AdvPRP

E (Â) + σ2
all

2n+1

+ (q2
e + 2qeqv + 2qe + 2qv + 2σe + 2σd)(ℓN + 1)

2n

+ 64(2qe + qd + qv − 1)(σe + σd + qe + qd)(ℓN + 1)
2n

+ 2qv(ℓA + 2)
2τ

holds for a PRP adversary Â with σall queries and time complexity t + O(σall).
In particular, when ν = 96, we have

AdvINT-RUP
GCM[E](A) ≤AdvPRP

E (Â) + σ2
all

2n+1 + 2qv(ℓA + 2)
2τ

for a PRP adversary Â with σall queries and time complexity t + O(σall).
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4.3 Proof of Theorem 1

Overview. We take three steps to prove INT-RUP bound for GCM[E]. First,
we apply PRP/PRF switching lemma [BR06] and replace P with a URF R :
{0, 1}n → {0, 1}n. Second, we define a variant of UF-CMA (unforgeability under
chosen message attack) security of GMAC[R], dubbed UF-CMA+, and show that
INT-RUP security of GCM[R] reduces to UF-CMA+ security of GMAC[R]. Third,
we prove UF-CMA+ security of GMAC[R] using the H-coefficient technique.

Step 1. An application of the standard PRP/PRF switching lemma shows

AdvINT-RUP
GCM[E](A) ≤ AdvPRP

E (Â) + σ2
all

2n+1 + AdvINT-RUP
GCM[R](A′) (1)

for a PRP adversary Â with σall queries and time complexity t + O(σall) and an
INT-RUP adversary A′ having the same computational cost as A.

Step 2. We analyse AdvINT-RUP
GCM[R](A′). Let GMAC[R] = (GMAC.T [R], GMAC.V [R]),

where the algorithms of GMAC.T and GMAC.V are shown in Fig. 2. For sim-
plicity, we write GMAC.T and GMAC.V to mean GMAC.T [R] and GMAC.V[R].
Throughout this step, the same applies to other oracles, e.g., GCM.uD means
GCM.uD[R]. We also define a function to simulate GCM.uD and the encryption
part of GCM.E in the INT-RUP game. Let KSG : {0, 1}ν × [1..232 − 2]→ {0, 1}n

be a function that outputs a block of key stream KS ∈ {0, 1}n for the tuple
of N ∈ {0, 1}ν and block index idx ∈ [1..232 − 2] using R. Concretely, we define
KSG(N, idx) := R(incidx(Ctr0)), where

Ctr0 :=
{

N ∥ 0311 when ν = 96
GHASHL(ε, N) when ν ̸= 96,

and L = R(0n). We define UF-CMA+ game involving GMAC.T , KSG, and
GMAC.V . Its definition is UF-CMA game for GMAC[R] with an additional oracle
KSG.

Definition 6 (UF-CMA+ game). Let B be an adversary querying to the three
oracles, GMAC.T , KSG, and GMAC.V. The adversary B does not forward queries
from GMAC.T to GMAC.V; B does not query (N, A, C, T ) to GMAC.V when B
has already queried (N, A, C) to GMAC.T and received T before. The UF-CMA+

advantage of B is defined as

AdvUF-CMA+
GMAC[R](B) := Pr[BGMAC.T ,KSG,GMAC.V forges],

where the probability is defined over R and the random coins of A. Here, “forges”
means the event that GMAC.V returns ⊤.

In this section, we assume the adversary of UF-CMA+ game B follows a nonce-
respecting setting; thus, B does not repeat the same nonce in the queries to
GMAC.T . We obtain the following lemma.
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Lemma 1. Let A′ be an INT-RUP adversary against GCM[R] using qe encryp-
tion queries, qd decryption queries, and qv verification queries. Let σe and σd be
as defined earlier. We have

AdvINT-RUP
GCM[R](A′) ≤ AdvUF-CMA+

GMAC[R](B)

for a UF-CMA+ adversary B against GMAC[R] that makes qe queries to GMAC.T ,
(σe + σd) queries to KSG, and qv queries to GMAC.V.

The proof of Lemma 1 is in App. B.

Step 3. We evaluate AdvUF-CMA+
GMAC[R](B). We define the following indistinguishability

notion to apply the H-coefficient technique.

AdvInd+
GMAC[R](B) := |Pr[BGMAC.T ,KSG,GMAC.V = 1]− Pr[B$,Rks,⊥ = 1]|,

where $ (resp. Rks) is a random oracle (resp. URF) whose input/output interface
and lengths are the same as GMAC.T (resp. KSG). Note that Rks is independent
of R used by GMAC.T , KSG, and GMAC.V. The ⊥ oracle has the same input
interface as GMAC.V and returns ⊥ for any input. We obtain the following
inequality.

AdvUF-CMA+
GMAC[R](B) = |Pr[BGMAC.T ,KSG,GMAC.V = 1]− Pr[BGMAC.T ,KSG,⊥ = 1]

+ Pr[B$,Rks,⊥ = 1]− Pr[B$,Rks,⊥ = 1]|
≤ 2AdvInd+

GMAC[R](B). (2)

To bound the right-hand side of Eq. (2), we relax the game so that B obtains
the GHASH key after all queries but before it determines an output bit. In the
real world, B obtains a real key L = R(0n), and in the ideal world, it obtains a
dummy key L

$← {0, 1}n. Then, B can compute GHASHL outputs for all queries.
We define a transcript θ = (θt, θks, θv, L) of B such that

– θt = {(N t
i , At

i, Ct
i , T t

i , Ctr0t
i, Maski)}i∈[1..qt],

– θks = {(Nks
i , idxi, KSi, Ctr0ks

i )}i∈[1..qks],
– θv = {(Nv

i , Av
i , Cv

i , T v
i , Ctr0v

i )}i∈[1..qv ],

where Maski = T t
i ⊕ msbτ (GHASHL(At

i, Ct
i )). Note that θv does not contain

bi ∈ {⊤,⊥} as any attainable transcript has bi = ⊥ for all i ∈ [1..qv] by definition.
Let ℓN = ⌈ν/n⌉ and ℓA be the maximum number of blocks of the input to
GHASH in the game; thus, |A#

i |n + |C#
i |n ≤ ℓA for # ∈ {t, v}, i ∈ [1..q#]. For a

transcript θ, we define the following bad events.

Bad1 Collision of Ctr0t in θt: there exists distinct i, j ∈ [1..qt] s.t. Ctr0t
i =

Ctr0t
j .

Bad2 Collision of Ctr0t in θt and incidx(Ctr0ks) in θks: there exists i ∈ [1..qt],
j ∈ [1..qks] s.t. Ctr0t

i = incidxj (Ctr0ks
j ).

12



Bad3 Non-trivial collision of Ctr0t in θt and Ctr0v in θv: there exists i ∈ [1..qt],
j ∈ [1..qv] s.t. N t

i ̸= Nv
j and Ctr0t

i = Ctr0v
j .

Bad4 Non-trivial collision of incidx(Ctr0ks) in θks: there exists i, j ∈ [1..qks]
s.t. (Nks

i , idxi) ̸= (Nks
j , idxj) and incidxi(Ctr0ks

i ) = incidxj (Ctr0ks
j ).

Bad5 Collision of incidx(Ctr0ks) in θks and Ctr0v in θv: there exists i ∈ [1..qv],
j ∈ [1..qks] s.t. Ctr0v

i = incidxj (Ctr0ks
j ).

Bad6 Collision of 0n and any of Ctr0t, incidx(Ctr0ks), or Ctr0v in θ: there exists
i ∈ [1..qt], j ∈ [1..qks], k ∈ [1..qv] s.t. 0n = Ctr0t

i or 0n = incidxj (Ctr0ks
j )

or 0n = Ctr0v
k.

Bad7 Successful forgery: for i ∈ [1..qv], there exists j ∈ [1..qt] s.t. Nv
i = N t

j

and T v
i = Maskj ⊕ msbτ (GHASHL(Av

i , Cv
i )).

We say (an attainable) θ is bad if any of the above bad events occur and define
Θbad as the set of all bad transcripts. We define the good transcript set Θgood
following App. A. Let Bad := Bad1∪ · · · ∪Bad7. We evaluate the upper bound
of Pr[Tid ∈ Θbad] =: Pr[Bad], where Tid is a random variable of the transcript in
the ideal world.

Let us first focus on the general case of ν. We define q′
ks as the number

of distinct queries of θks. From the union bound for collisions among random
elements and the fact that a polynomial of degree s has at most s solutions,
we observe that Bad1, Bad3, Bad6, and Bad7 are bounded as Pr[Bad1] ≤(

qt

2
)
(ℓN + 1)/2n, Pr[Bad3] ≤ qtqv(ℓN + 1)/2n, Pr[Bad6] ≤ (qt + q′

ks + qv)(ℓN +
1)/2n, and Pr[Bad7] ≤ qv(ℓA + 1)/2τ . Note that the equations derived from
these bad events are non-trivial equations of (random) L of degree at most ℓN + 1
or ℓA + 1 over GF(2n). For the evaluation of Bad2, let CollL([a..b], N1, N2) be
the event GHASHL(ε, N1) = incr(GHASHL(ε, N2)) for some r ∈ [a..b], where
0 ≤ a ≤ b ≤ 232 − 1 and N1 and N2 are distinct nonces which are not 96 bits.
The following lemma gives the upper bound of the event.

Lemma 2 (Lemmas 2 and 3 in [NOMI15]). For 0 ≤ m ≤ 232 − 1 and
two distinct nonces N1 and N2 which are not 96 bits, Pr[CollL([0..m], N1, N2)]
≤ 32(m + 1)(ℓN + 1)/2n, where |N1|n, |N2|n ≤ ℓN holds.

To use Lemma 2, we define d as the number of distinct nonces in queries of θks.
For i ∈ [1..d], let idxM

i be the maximum value of idx among queries for the i-th
nonce Nks∗

i , using the arbitrary ordering of the nonces. Let ρ =
∑d

i=1 idxM
i , and

note that q′
ks ≤ ρ. We then obtain the following evaluation.

Pr[Bad2] ≤
qt∑

i=1

d∑
j=1

Pr[CollL([0..idxM
j ], N t

i , Nks∗
j )]

≤
qt∑

i=1

d∑
j=1

32(idxM
j + 1)(ℓN + 1)

2n
≤ 32qt(ρ + d)(ℓN + 1)

2n
.
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Note that Pr[Ctr0t
i = inck(Ctr0ks

j )] = 0 when N t
i = Nks

j since k ≥ 1. We can
evaluate Pr[Bad4] and Pr[Bad5] in the same manner as Pr[Bad2].

Pr[Bad5] ≤ 32qv(ρ + d)(ℓN + 1)
2n

,

Pr[Bad4] ≤
d∑

i=1

d∑
j ̸=i
j=1

32(idxM
j + 1)(ℓN + 1)

2n
≤

d∑
i=1

32(ρ− idxM
i + d− 1)(ℓN + 1)

2n

≤ 32(dρ− ρ + d2 − d)(ℓN + 1)
2n

≤ 32(d− 1)(ρ + d)(ℓN + 1)
2n

.

Summing up all the bad event probabilities, we obtain the following upper bound.

Pr[Bad] ≤ (0.5q2
t + qtqv + qt + q′

ks + qv)(ℓN + 1)
2n

+ 32(qt + qv + d− 1)(ρ + d)(ℓN + 1)
2n

+ qv(ℓA + 1)
2τ

. (3)

Eq. (3) holds for any ν. On the other hand, when we fix ν = 96, we obtain
Pr[Bad1] = Pr[Bad2] = · · · = Pr[Bad6] = 0, and

Pr[Bad] = Pr[Bad7] ≤ qv(ℓA + 1)
2τ

. (4)

Next, we evaluate the lower bound of Pr[Tre = θ]/ Pr[Tid = θ] for θ ∈ Θgood,
where Tre is a random variable of the transcript in the real world. Let # ∈ {re, id}.
Let Tt

#, Tks
# , Tv

#, TL
# denote the random variables of θt, θks, θv, L in each world,

respectively. For a good transcript θ ∈ Θgood, we have

Pr[T# = θ] = Pr[TL
# = L] · Pr[Tks

# = θks | TL
# = L]

· Pr[Tt
# = θt | (TL

#, Tks
# ) = (L, θks)]

· Pr[Tv
# = θv | (Tt

#, TL
#, Tks

# ) = (θt, L, θks)].

In the ideal world, we obtain

Pr[Tid = θ] =
(

1
2n

)
·
(

1
2n

)q′
ks

·
(

1
2τ

)qt

. (5)

Note that Pr[Tv
id = θv | (Tt

id, TL
id, Tks

id ) = (θt, L, θks)] = 1 holds since the adversary
always obtains ⊥ in the ideal world. In the real world, we also obtain

Pr[TL
re = L] = 1

2n
, (6)

Pr[Tks
re = θks | TL

re = L] =
(

1
2n

)q′
ks

, (7)

Pr[Tt
re = θt | (TL

re, Tks
re ) = (L, θks)] =

(
1
2τ

)qt

, (8)
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since θ is good. To be more precise, Eq. (7) holds since Bad4 and Bad6 do
not happen, and Eq. (8) holds since Bad1, Bad2, and Bad6 do not happen.
All that remains is evaluating Pr[Tv

re = θv | (Tt
re, TL

re, Tks
re ) = (θt, L, θks)]. For

i ∈ [1..qv], let T̂i be a valid tag for the i-th verification query (Nv
i , Av

i , Cv
i ); thus,

T̂i = msbτ (R(Ctr0v
i )⊕ GHASHL(Av

i , Cv
i )). We then obtain

Pr[Tv
re = θv | (Tt

re, TL
re, Tks

re ) = (θt, L, θks)]

= Pr[{T v
i ̸= T̂i}i∈[1..qv ] | (Tt

re, TL
re, Tks

re ) = (θt, L, θks)]

≥ 1−
qv∑

i=1
Pr[T v

i = T̂i | (Tt
re, TL

re, Tks
re ) = (θt, L, θks)] ≥ 1− qv

2τ
. (9)

Here, Eq. (9) holds because Pr[T v
i = T̂i | (Tt

re, TL
re, Tks

re ) = (θt, L, θks)] ≤ 1/2τ

holds; when there exists j ∈ [1..qt] s.t. Nv
i = N t

j , we obtain Pr[T v
i = T̂i |

(Tt
re, TL

re, Tks
re ) = (θt, L, θks)] = 0 since Bad7 does not happen. Otherwise, we

obtain Pr[T v
i = T̂i | (Tt

re, TL
re, Tks

re ) = (θt, L, θks)] ≤ 1/2τ holds since Bad3, Bad5,
and Bad6 do not happen and R(Ctr0v

i ) is uniformly random. From Eqs. (6), (7),
(8), and (9), we obtain

Pr[Tre = θ] ≥
(

1
2n

)
·
(

1
2n

)q′
ks

·
(

1
2τ

)qt

·
(

1− qv

2τ

)
. (10)

Eqs. (5) and (10) show

Pr[Tre = θ]
Pr[Tid = θ] ≥ 1− qv

2τ
. (11)

From Eqs. (3), (4), (11), and Lemma 7, we obtain the following lemma.

Lemma 3. For any ν, we have

AdvInd+
GMAC[R](B) ≤ (0.5q2

t + qtqv + qt + q′
ks + qv)(ℓN + 1)

2n

+ 32(qt + qv + d− 1)(ρ + d)(ℓN + 1)
2n

+ qv(ℓA + 2)
2τ

.

In particular, when ν = 96,

AdvInd+
GMAC[R](B) ≤ qv(ℓA + 2)

2τ
.

Applying Lemma 3 to Eq. (2) derives the upper bound of AdvUF-CMA+
GMAC[R](B).

From the simulation of the INT-RUP game by the UF-CMA+ adversary B,
we can assume d ≤ qe + qd and ρ ≤ σe + σd hold. Thus, we have

AdvINT-RUP
GCM[R](A) ≤ (q2

e + 2qeqv + 2qe + 2qv + 2σe + 2σd)(ℓN + 1)
2n

+ 64(2qe + qd + qv − 1)(σe + σd + qe + qd)(ℓN + 1)
2n

+ 2qv(ℓA + 2)
2τ

,
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and when ν = 96,

AdvINT-RUP
GCM[R](A) ≤ 2qv(ℓA + 2)

2τ
.

Combining Eq. (1) and the above bounds concludes the proof.

Remark: alternative bound. In addition to Lemma 2, [NOMI15] shows
an alternative bound of Pr[CollL([0..m], N1, N2)]. It has a larger constant than
Lemma 2 but can be a smaller overall bound depending on the balance of the
parameters. We discuss the use of another bound in App. C.

5 Authenticity of CCM under RUP and Nonce Misuse

We show that CCM is NMR-INT-RUP secure. This also means CCM’s INT-RUP
and NMR-Auth security from the implications shown in Sect. 3.

5.1 Specification of CCM

We describe CCM, partially adopting the notations of Gjiriti et al. [GRV21].
As in the case of GCM, we use ν := |N | and τ := |T | and assume they are
fixed in advance. CCM fixes n = 128 and ν ∈ {56, 64, 72, 80, 88, 96, 104} and
τ ∈ {32, 48, 64, 80, 96, 112, 128}. All input and output variables of CCM are
assumed to be byte strings. A valid AD A and a valid plaintext M must satisfy
0 ≤ |A| < (264) · 8 and 0 ≤ |M | < (2120−ν) · 8. CCM composes a counter
mode (which we write as CCTR) and CBC-MAC in a way similar to MAC-then-
Encryption, toghther with a certain input encoding applied to CBC-MAC.

Let flags(A) be a byte determined by AD A and ν and τ . As ν and τ are fixed,
we do not write them as arguments. It is defined as flags(A) = (0 ∥ sign(A =
ε) ∥ ⟨τ/16− 1⟩3 ∥ ⟨14− ν/8⟩3), where sign(S) = 0 if event S is true, = 1 otherwise.
Let flags′ be a byte (05 ∥ ⟨14−ν/8⟩3). Due to the range of τ , flags′ ≠ flags(A) holds
for any A ∈ {0, 1}∗. Let ecN(N, i) = (flags′ ∥N ∥ ⟨i⟩120−ν) denote the i-th counter
block. CBC-MAC takes an encoded sequence, B = (B[0], B[1], . . . , B[ℓ]), generated
from (N, A, M). In particular, let ecB0(N, A, M) := (flags(A) ∥N ∥ ⟨|M |8⟩120−ν)
which is used as B[0]. To determine the blocks after B[0] in B, ecA encodes A as
ecA(A) = padn(lenA(A) ∥A). Here, lenA(A) denotes the length of A. Definitions
of ecA and lenA are a bit complex and we omit the full details. See [Dwo07,RW03].
Our proof will only use the following facts: (1) |ecA(A)| is a multiple of n bits for
any valid A, (2) ecA(A) ̸= ecA(A′) for any valid and distinct A and A′, and (3)
|ecA(A)|n ≤ |A|n + 1 for any A. Finally, the rest of B blocks are determined by
the message encoding function ecM(M) := padn(M). CBC-MAC takes a full-block
sequence of

ec(N, A, M) := ecB0(N, A, M) ∥ ecA(A) ∥ ecM(M).

The τ -bit output of CBC-MAC taking ec(N, A, M) is masked by the most sig-
nificant τ -bit of the first CCTR output with a counter block ecN(N, 0), which
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Algorithm CCM.E [EK ](N, A, M)

1. V ← CBC-MAC.T [EK ](N, A, M)
2. C ← CCTR[EK ](N, M)
3. U ← EK(ecN(N, 0))
4. T ← V ⊕ msbτ (U)
5. return (C, T )

Algorithm CCM.uD[EK ](N, A, C, T )

1. M ← CCTR[EK ](N, C)
2. return M

Algorithm CCM.D[EK ](N, A, C, T )

1. b = CCM.V[EK ](N, A, C, T )
2. if b = ⊥ then return ⊥
3. else M ← CCM.uD[EK ](N, A, C, T )
4. return M

Algorithm CCM.V[EK ](N, A, C, T )

1. M ← CCM.uD[EK ](N, A, C, T )
2. V ← CBC-MAC.T [EK ](N, A, M)
3. U ← EK(ecN(N, 0))
4. T̂ ← V ⊕ msbτ (U)
5. if T = T̂ then return ⊤
6. else return ⊥

Algorithm CBC-MAC.T [EK ](N, A, M)
(assumes N , A and M are of valid length)

1. V ← 0n

2. B[0]← ecB0(N, A, M)
3. (B[1], . . . , B[ℓ]) n←− ecA(A) ∥ ecM(M)
4. for i = 0 to ℓ
5. V ← EK(V ⊕B[i])
6. V ← msbτ (V )
7. return V

Algorithm CBC-MAC.V[EK ](N, A, M, V )
(assumes N , A and M are of valid length and
|V | = τ)

1. V̂ ← CBC-MAC.T [EK ](N, A, M)
2. if V = V̂ return ⊤
3. else return ⊥

Algorithm CCTR[EK ](N, M)

1. (M [1], . . . , M [m]) n←−M
2. for i = 1 to m− 1
3. C[i]← EK(ecN(N, i))⊕M [i]
4. C[m]← msb|M [m]|(EK(ecN(N, m)))⊕M [m]
5. C ← C[1] ∥ . . . ∥C[m]
6. return C

Fig. 3: Algorithms of CCM. ν := |N | and τ := |T | are fixed parameters.

becomes a tag. The plaintext M is encrypted by CCTR taking counter blocks
ecN(N, i) for i = 1, . . . , |M |n. See Fig. 3 for the pseudocode and Fig. 4 for the
illustration. As with Sect. 4, Fig. 3 contains the unverified and the verification
routines for our analysis.

Definition 7 (Prefix-free encoding). The encoding function ec(·, ·, ·) is said
to be prefix-free if, for any input (N, A, M), there is no input (N ′, A′, M ′) s.t.
(N ′, A′, M ′) ̸= (N, A, M) and ec(N ′, A′, M ′) = msbj(ec(N, A, M)), where j =
|ec(N ′, A′, M ′)| and j ≤ |ec(N, A, M)|. We also say {B = ec(N, A, M)} is prefix-
free for any input (N, A, M) if ec(·, ·, ·) is prefix-free.

An important observation is that ec in CCM is indeed prefix-free [Jon03]. This
was used by several studies for both attack and proof sides [Jon03,FMVZ08]. It
is known that CBC-MAC with a prefix-free input encoding realizes a PRF [PR00],
however, CCTR and CBC-MAC in CCM share the key, and this shared-key struc-
ture does not allow to reuse this known result in a black-box way.

5.2 NMR-INT-RUP bound of CCM
Let CCM[EK ] = (CCM.E [EK ], CCM.uD[EK ], CCM.V[EK ]) for the underlying
block cipher E : K × {0, 1}n → {0, 1}n. We suppose the adversary A makes
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flags′∥N∥0
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M [m]

B[0]

U

msb|M [m]|

flags′∥N∥1 flags′∥N∥m− 1 flags′∥N∥m flags(A)∥N∥len(M) padn(lenA(A)∥A)∥padn(M)

msbτ

V
msbτ

T

U

Fig. 4: Encryption of CCM. Our optimization (CCM2, Sect. 8.2) omits the boxes
with dashed lines.

qe queries to CCM.E , qd queries to CCM.uD, and qv queries to CCM.V. The
adversary A obtains a transcript such that

– {(Ne
i , Ae

i , Me
i , Ce

i , T e
i )}i=1,...,qe from CCM.E ,

– {(Nd
i , Ad

i , Md
i , Cd

i , T d
i )}i=1,...,qd

from CCM.uD,
– {(Nv

i , Av
i , Cv

i , T v
i , bi)}i=1,...,qv

from CCM.V, where bi ∈ {⊤,⊥}.

Let σe, σd, and σv denote the total number of plaintext/ciphertext blocks
queried in CCM.E , CCMuD, and CCM.V, respectively; thus, σe =

∑qe

i=1 |Me
i |n,

σd =
∑qd

i=1 |Cd
i |n, and σv =

∑qv

i=1 |Cv
i |n. Let σ′

e and σ′
v be the total num-

ber of input blocks to CBC-MAC.T in CCM.E and CCM.V, respectively; thus,
σ′

e =
∑qe

i=1 |ec(Ne
i , Ae

i , Me
i )|n and σ′

v =
∑qv

i=1 |ec(Nv
i , Av

i , Mv
i )|n, where Mv

i =
CCTR(Nv

i , Cv
i ). We define σall := σe + σd + σv + σ′

e + σ′
v + qe + qv to denote the

total number of block cipher calls in the game.
We present a NMR-INT-RUP bound of CCM. The bound shows up-to-

birthday-bound security, hence quantitatively equivalent to the normal Auth
bound [Jon03].

Theorem 2. Let A be the NMR-INT-RUP adversary against CCM[E] defined
as above with time complexity t. We have

AdvNMR-INT-RUP
CCM[E] (A) ≤ AdvPRP

E (Â) + σ2
all

2n+1

+ (σ′
e + σ′

v)(σ′
e + σ′

v + 2(qe + qv + σe + σd + σv))
2n

+ 4qv

2τ

for a PRP adversary Â with σall queries and time complexity t + O(σall).

5.3 Proof of Theorem 2

Overview. We evaluate AdvNMR-INT-RUP
CCM[E] (A) in the same manner as INT-RUP

security proof of GCM. We first apply PRP/PRF switching lemma, show the
reduction from NMR-INT-RUP game of CCM to UF-CMA+ of CBC-MAC, and
then prove AdvUF-CMA+

CBC-MAC[R](B), where R is an n-bit URF. Note that the tag of
CBC-MAC is the unmasked value, V , not the tag of CCM, T .
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Step 1. We start with PRP/PRF switching applied to n-bit URP P and URF
R. We have

AdvNMR-INT-RUP
CCM[P] (A) ≤ AdvPRP

E (Â) + σ2
all

2n+1 + AdvNMR-INT-RUP
CCM[R] (A′) (12)

for a PRP adversary Â with σall queries and time complexity t + O(σall), and an
NMR-INT-RUP adversary A′ having the same computational cost as A.

Step 2. We evaluate AdvNMR-INT-RUP
CCM[R] (A′). Let CBC-MAC[R] = (CBC-MAC.T [R],

CBC-MAC.V[R]). See Fig. 3 for the algorithms; note that CBC-MAC[R] is not a
plain CBC-MAC but includes ec encoding function as a pre-processing of input
tuple (N, A, M). The output of CBC-MAC.T [R] is τ -bit string V . As in the proof
in Sect. 4.3, we hereafter may omit “[R]” for denoting the oracles/functions
that invoke R, say we write CBC-MAC.T to mean CBC-MAC.T [R]. We define
a function to simulate CCM.uD, the encryption part of CCM.E (including the
derivation of U), and the decryption part of CCM.V in the NMR-INT-RUP game.
Let KSC be a function invoking R which takes (an encoded form of) a nonce
N ∈ {0, 1}ν and an index idx ∈ [0..2120−ν − 1] and outputs a block of key stream
KS ∈ {0, 1}n. Specifically,

KSC(N, idx) := R(ecN(N, idx)) = R(flags′ ∥N ∥ ⟨idx⟩120−ν).

We show that the NMR-INT-RUP game against CCM is simulatable with the
UF-CMA+ game against CBC-MAC defined in Sect. 4.3.

Lemma 4. Let A be an NMR-INT-RUP adversary making qe, qd, and qv queries
to CCM.E, CCM.uD, and CCM.V respectively, and let σe, σd, σv, σ′

e, σ′
v be as

defined earlier. We have

AdvNMR-INT-RUP
CCM[R] (A) ≤ AdvUF-CMA+

CBC-MAC[R](B)

for a UF-CMA+ adversary B against CCM[R] making qe, qe + qv + σe + σd + σv,
and qv queries to CBC-MAC.T , KSC, CBC-MAC.V, respectively. Here, B may
repeat nonces for the first oracle.

The proof of Lemma 4 is in App. D.

Step 3. To evaluate AdvUF-CMA+
CBC-MAC[R](B), we define the following indistinguisha-

bility notion as in Sect. 4.3.

AdvInd+
CBC-MAC[R](B) := |Pr[BCBC-MAC.T ,KSC,CBC-MAC.V = 1]− Pr[B$,Rks,⊥ = 1]|,

where $ (resp. Rks) is a random oracle (resp. URF) whose input/output interface
and lengths are the same as CBC-MAC.T (resp. KSC). Note that Rks is indepen-
dent of the underlying random function R. Also, ⊥ oracle has the same input
interface as CBC-MAC.V and always returns ⊥. As in Eq. (2), we obtain

AdvUF-CMA+
CBC-MAC[R](B) ≤ 2AdvInd+

CBC-MAC[R](B). (13)
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We evaluate AdvInd+
CBC-MAC[R](B) using the H-coefficient technique. We suppose

that B makes qt tagging queries, qks key stream queries, and qv verification
queries. Let (N t

i , At
i, M t

i , V t
i ), (Nks

j , idxj , KSj), and (Nv
k , Av

k, Mv
k , V v

k ) be tran-
scripts obtained from i-th tagging query for i ∈ [1..qt], j-th key stream query
for j ∈ [1..qks], and k-th verification query for k ∈ [1..qv], respectively. For
# ∈ {t, v} and i ∈ [1..q#], let ec(N#

i , A#
i , M#

i ) = B#
i = (B#

i [0], . . . , B#
i [ℓ#

i ]),
and |B#

i |n = ℓ#
i + 1. Let σ′

t and σ′
v be the total number of input blocks to

CBC-MAC.T and CBC-MAC.V; thus, for # ∈ {t, v}, σ′
# :=

∑q#
i=1(ℓ#

i + 1).

Simplification of the analysis. To simplify the analysis of AdvInd+
CBC-MAC[R](B),

we give B all the inputs to R in tagging and verification queries after all queries
are made but before it determines an output bit. In the real world, this is
straightforward. In the ideal world, we give dummy values, which are basically
sampled from {0, 1}n uniformly at random. One important point is that samplings
must be consistent with queries. This part shows how to do that.

For i ∈ [1..qt] and j ∈ [0..ℓt
i], let Xt

i [j] be j + 1-th URF input of CBC-MAC in
i-th tagging query, and for i ∈ [1..qv] and j ∈ [0..ℓv

i ], let Xv
i [j] be j + 1-th URF

input of CBC-MAC in i-th verification query. In the real world, for # ∈ {t, v},
i ∈ [1..q#], and j ∈ [1..ℓ#

i ], we have

X#
i [0] = B#

i [0],

X#
i [j] = R(X#

i [j − 1])⊕B#
i [j].

Here, we list tagging and verification queries as (N t
1, At

1, M t
1, V t

1 ), . . ., (N t
qt

, At
qt

,
M t

qt
, V t

qt
), (Nv

1 , Av
1, Mv

1 , V v
1 ), . . ., (Nv

qv
, Av

qv
, Mv

qv
, V v

qv
). Thus, a previous query of i-

th tagging query (N t
i , At

i, M t
i , V t

i ) refers to j-th tagging query (N t
j , At

j , M t
j , V t

j ) for
j < i. Also, a previous query of i-th verification query (Nv

i , Av
i , Mv

i , V v
i ) refers to

j-th verification query (Nv
j , Av

j , Mv
j , V v

j ) or k-th tagging query (N t
k, At

k, M t
k, V t

k )
for j < i and k ∈ [1..qt].

For # ∈ {t, v}, i ∈ [1..q#], and j ∈ [0..ℓ#
i ], we classify X#

i [j] into the following
three cases according to the value of B#

i [0..j].

Case1 X#
i [j] fulfills either of the following conditions:

(a) For j = 0, there are no previous queries s.t. B#
i [0] = B#′

i′ [0] for
#′ ∈ {t, v}, i′ ∈ [1..q#].

(b) For j ̸= 0, there are no previous queries s.t. B#
i [0..j−1] = B#′

i′ [0..j−
1] for #′ ∈ {t, v}, i′ ∈ [1..q#].

Case2 There is a previous query s.t. B#
i [0..j] = B#′

i′ [0..j], and X#′

i′ [j] is classified
as Case1 for #′ ∈ {t, v}, i′ ∈ [1..q#].

Case3 For j ̸= 0, X#
i [j] fulfills both of the following conditions:

(a) X#
i [j] is not classified as Case2.

(b) There is a previous query s.t. |B#′

i′ |n ≥ j+1, B#
i [0..j−1] = B#′

i′ [0..j−
1], B#

i [j] ̸= B#′

i′ [j], and X#′

i′ [j] is classified as Case1 for #′ ∈ {t, v},
i′ ∈ [1..q#].
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Let X$, X=, X⊕ be a set of X#
i [j] classified as Case1, Case2, and Case3,

respectively. Technically, as each X#
i [j] is a variable, each set is interpreted as a

set of (i, j, #). Intuitively, X$ denotes the set of (the indexes of) X#
i [j] values

that are to be sampled uniformly in the ideal world when j ̸= 0, X= denotes
those are equal to a variable X ∈ X$, and X⊕ denotes those are determined by a
sum of an element X ∈ X$ and blocks in B. We obtain the following lemma.

Lemma 5. Assume that {B#
i }#∈{t,v},i∈[1..q#] is prefix-free. Let Xall denote the

set {X#
i [j]}#∈{t,v},i∈[1..q#],j∈[0..ℓ#

i
]. Then the set of three sets, X$, X=, and X⊕,

is a partition of Xall. That is, X$ ∩ X= = X= ∩ X⊕ = X$ ∩ X⊕ = ∅ holds and
every X#

i [j] is in any one of X$, X=, X⊕.

The proof is a direct consequence of prefix-free encoding, hence we omit it. We
note that, in order for Lemma 5 to hold, the prefix-freeness is necessary. For
example, suppose that Bt

1 is a prefix of Bt
2; say, suppose that |Bt

2|n = 3 and
there is a previous query s.t. |Bt

1|n = 2 and Bt
2[0..1] = Bt

1[0..1] = Bt
1. In this case,

Xt
2[2] cannot be classified as any of the above three cases.

In this paper, we say X#
i [j] is a representative node, when X#

i [j] ∈ X$ ⊔ X⊕.
In the ideal world, when j = 0, the adversary can compute X#

i [0] by itself. For
j ∈ [1..ℓ#

i ], the dummy value of X#
i [j] is determined as follows.

1. When X#
i [j] ∈ X$, X#

i [j] is chosen from {0, 1}n uniformly at random.
2. When X#

i [j] ∈ X=, X#
i [j] is determined as X#

i [j] = X#′

i′ [j] using X#′

i′ [j] in a
previous query, where B#

i [0..j] = B#′

i′ [0..j], and X#′

i′ [j] ∈ X$ for #′ ∈ {t, v},
i′ ∈ [1..q#].

3. When X#
i [j] ∈ X⊕, X#

i [j] is determined as X#
i [j] = X#′

i′ [j]⊕B#′

i′ [j]⊕B#
i [j]

using X#′

i′ [j] in a previous query, where |B#′

i′ |n ≥ j + 1, B#
i [0..j − 1] =

B#′

i′ [0..j − 1], B#
i [j] ̸= B#′

i′ [j], and X#′

i′ [j] ∈ X$ for #′ ∈ {t, v}, i′ ∈ [1..q#].

Definitions of a transcript and bad events. Including all the determined
X#

i [j], we define a transcript θ = (θt, θks, θv, θx) of the adversary B such that

– θt = {(N t
i , At

i, M t
i , V t

i )}i∈[1..qt],
– θks = {(Nks

i , idxi, KSi)}i∈[1..qks],
– θv = {(Nv

i , Av
i , Mv

i , V v
i )}i∈[1..qv ],

– θx = {X#
i [j]}#∈{t,v},i∈[1..q#],j∈[0..ℓ#

i
].

Note that we exclude bi ∈ {⊤,⊥} in the verification queries from the above
definition because an attainable transcript always has bi = ⊥.

A transcript θ is bad if any of the following bad events occur, and let Θbad
be the set of bad transcripts. Let Θgood denote the good transcript set following
Appendix A.

Bad1 Collision of X[·] corresponding to representative nodes in θx: there exists
#1, #2 ∈ {t, v}, i1 ∈ [1..q#1 ], i2 ∈ [1..q#2 ], j1 ∈ [0..ℓ#1

i1
], j2 ∈ [0..ℓ#2

i2
]

s.t. X#1
i1

[j1], X#2
i2

[j2] ∈ X$ ⊔ X⊕ and X#1
i1

[j1] = X#2
i2

[j2].
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Bad2 Collision of X[·] corresponding to a representative node in θx and
ecN(Nks, idx) for some (Nks, idx, KS) ∈ θks: there exists # ∈ {t, v},
i ∈ [1..q#], j ∈ [0..ℓ#

i ], k ∈ [1..qks] s.t. X#
i [j] ∈ X$ ⊔ X⊕ and X#

i [j] =
ecN(Nks

k , idxk).
Bad3 Successful forgery: there exists i ∈ [1..qv] s.t. (Nv

i , Av
i , Mv

i ) = (N t
j , At

j , M t
j )

and V v
i = V t

j for j ∈ [1..qt].

Let Bad denote Bad1∪Bad2∪Bad3. We evaluate Pr[Tid ∈ Θbad] =: Pr[Bad].

Bad1 evaluation. We fix #1, #2 ∈ {t, v}, i1 ∈ [1..q#1 ], i2 ∈ [1..q#2 ], j1 ∈
[0..ℓ#1

i1
], j2 ∈ [0..ℓ#2

i2
], (#1, i1, j1) ̸= (#2, i2, j2), s.t. both X#1

i1
[j1] and X#2

i2
[j2]

are representative nodes.
First, we consider the case when j1 = 0 or j2 = 0. Without loss of generality,

we can assume j1 = 0. When j2 = 0, we obtain Pr[X#1
i1

[j1] = X#2
i2

[j2]] = 0
since they are representative nodes. When j2 ̸= 0 and X#2

i2
[j2] ∈ X$, we obtain

Pr[X#1
i1

[j1] = X#2
i2

[j2]] = 1/2n since X#2
i2

[j2] is randomly chosen. When j2 ̸= 0
and X#2

i2
[j2] ∈ X⊕, we have X#2

i2
[j2] = X#′

k [j2]⊕B#′

k [j2]⊕B#2
i2

[j2] for #′ ∈ {t, v},
k ∈ [q#′ ], where X#′

k [j2] ∈ X$ from the definition of X⊕. Thus, we obtain
Pr[X#1

i1
[j1] = X#2

i2
[j2]] = Pr[X#1

i1
[j1] = X#′

k [j2] ⊕ B#′

k [j2] ⊕ B#2
i2

[j2]] = 1/2n

since X#′

k [j2] is randomly chosen.
Second, we assume j1 ̸= 0 and j2 ̸= 0. We then consider the case when

X#1
i1

[j1] ∈ X⊕ or X#2
i2

[j2] ∈ X⊕. We can assume X#1
i1

[j1] ∈ X⊕ w.l.o.g. and let
X#1

i1
[j1] = X#′

k [j1]⊕B#′

k [j1]⊕B#1
i1

[j1] for #′ ∈ {t, v}, k ∈ [q#′ ], where X#′

k [j1] ∈
X$. Since X#′

k [j1] is randomly chosen, we obtain Pr[X#1
i1

[j1] = X#2
i2

[j2]] =
Pr[X#′

k [j1] ⊕ B#′

k [j1] ⊕ B#1
i1

[j1] = X#2
i2

[j2]] ≤ 1/2n. Note that Pr[X#1
i1

[j1] =
X#2

i2
[j2]] = 0 holds when #′ = #2, k = i2, j1 = j2 since B#2

i2
[j1]⊕B#1

i1
[j1] ̸= 0

holds from the definition of X⊕.
Third, we assume j1 ̸= 0 and j2 ̸= 0. When both X#1

i1
[j1], X#2

i2
[j2] ∈ X$,

Pr[X#1
i1

[j1] = X#2
i2

[j2]] = 1/2n holds since they are randomly chosen.
Summing up all the cases of (#1, i1, j1), (#2, i2, j2), we obtain Pr[Bad1] ≤

(σ′
t + σ′

v)2/2n+1.

Other bad events. We can evaluate Bad2 in the same way as Bad1; Pr[Bad2] ≤
(σ′

t + σ′
v)qks/2n. Note that Pr[X#

i [0] = ecN(Nks
k , idxk)] = 0 always holds due to

the domain separation in the definition; i.e., flags(A#
i ) ̸= flags′. Regarding Bad3,

we obtain Pr[Bad3] ≤ qv/2τ since V t
j is randomly chosen from {0, 1}τ .

Summing up all the bad event probabilities, we obtain

Pr[Bad] ≤ (σ′
t + σ′

v)(0.5σ′
t + 0.5σ′

v + qks)
2n

+ qv

2τ
. (14)

Good transcript ratio. We derive a lower bound of Pr[Tre = θ]/ Pr[Tid = θ] for
θ ∈ Θgood. Let # ∈ {re, id}. Let Tt

#, Tks
# , Tv

#, Tx
# denote the random variables
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of θt, θks, θv, θx in each world, respectively. For a good transcript θ ∈ Θgood,

Pr[T# = θ] = Pr[Tks
# = θks] · Pr[Tx

# = θx | Tks
# = θks]

· Pr[Tt
# = θt | (Tks

# , Tx
#) = (θks, θx)]

· Pr[Tv
# = θv | (Tt

#, Tks
# , Tx

#) = (θt, θks, θx)],

holds. In the ideal world, we obtain

Pr[Tid = θ] =
(

1
2n

)q′
ks

·
(

1
2n

)qx

·
(

1
2τ

)qt

, (15)

where q′
ks is the number of distinct queries of θks, and qx is the number of

X#
i [j] ∈ X$ for j ≠ 0. Note that Pr[Tv

# = θv | (Tt
#, Tks

# , Tx
#) = (θt, θks, θx)] = 1

holds since the adversary always obtains ⊥ in the ideal world.
In the real world, we first obtain

Pr[Tks
re = θks] =

(
1
2n

)q′
ks

(16)

since there are q′
ks distinct queries in θks. Second,

Pr[Tx
re = θx | Tks

re = θks] =
(

1
2n

)qx

(17)

holds. The reasons are as follows. When j ̸= 0 and X#
i [j] ∈ X$, we necessarily

obtain X#
i [j] = R(X#

i [j − 1])⊕B#
i [j], where X#

i [j − 1] is a representative node.
Due to Bad1, there are no collisions between representative nodes in θx. Also,
due to Bad2, there are no collisions between representative nodes in θx and
inputs of R in θks. Thus, each X#

i [j] ∈ X$ is fixed with probability 1/2n. Once
all X#

i [j] ∈ X$ for j ̸= 0 are fixed, all other X#′

i′ [j′] in θx are determined with
probability 1 because when X#′

i′ [j′] ∈ X= ⊔ X⊕, X#′

i′ [j′] can be determined as
X#

i [j′] or X#
i [j′] ⊕ B#

i [j′] ⊕ B#′

i′ [j′], where X#
i [j′] ∈ X$. Therefore, Eq. (17)

holds. Third, we obtain

Pr[Tt
re = θt | (Tks

re , Tx
re) = (θks, θx)] =

(
1
2τ

)qt

. (18)

The reasons are as follows. Since all tagging queries (N t
i , At

i, M t
i ) for i ∈ [1..qt] are

distinct and {Bt
i}i∈[1..qt] is prefix-free, all inputs of R deriving V t

i , i.e. Xt
i [ℓt

i], are
all representative nodes. Under the condition (Tks

re , Tx
re) = (θks, θx), all R(Xt

i [ℓt
i])

are not fixed because Bad1 and Bad2 do not happen, and the prefix-freeness
of {B#

i }#∈{t,v},i∈[1..q#] ensures that R(Xt
i [ℓt

i]) is not fixed by the element of θx.
Also, Bad1 ensures that all Xt

i [ℓt
i] are distinct. Thus, we obtain Eq. (18).
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Last, we evaluate Pr[Tv
re = θv | (Tt

re, Tks
re , Tx

re) = (θt, θks, θx)]. Let V̂i be the
valid tag for the i-th verification query (Nv

i , Av
i , Mv

i ). We then obtain

Pr[Tv
re = θv | (Tt

re, Tks
re , Tx

re) = (θt, θks, θx)]

= Pr[{V v
i ̸= V̂i}i∈[1..qv] | (Tt

re, Tks
re , Tx

re) = (θt, θks, θx)]

≥ 1−
qv∑

i=1
Pr[V v

i = V̂i | (Tt
re, Tks

re , Tx
re) = (θt, θks, θx)] ≥ 1− qv

2τ
. (19)

Here, Eq. (19) holds because Pr[V v
i = V̂i | (Tt

re, Tks
re , Tx

re) = (θt, θks, θx)] ≤ 1/2τ

holds; when there exists j ∈ [1..qt] s.t. (Nv
i , Av

i , Mv
i ) = (N t

j , At
j , M t

j ), we obtain
Pr[V v

i = V̂i | (Tt
re, Tks

re , Tx
re) = (θt, θks, θx)] = 0 since V̂i = V t

j holds and Bad3
does not happen. Suppose that there are no tagging queries s.t. (Nv

i , Av
i , Mv

i ) =
(N t

j , At
j , M t

j ) for j ∈ [1..qt], and we focus on Xv
i [ℓv

i ], which is the input of
R deriving V̂i. When Xv

i [ℓv
i ] is a representative node, similar to the analysis

of Eq. (18), R(Xv
i [ℓv

i ]) is not fixed even under the condition (Tt
re, Tks

re , Tx
re) =

(θt, θks, θx) since Bad1 and Bad2 do not happen, and {B#
i }#∈{t,v},i∈[1..q#]

is prefix-free. Thus, we obtain Pr[V v
i = V̂i | (Tt

re, Tks
re , Tx

re) = (θt, θks, θx)] ≤
1/2τ . When Xv

i [ℓv
i ] is not a representative node, there exists a unique i′ ∈

[1..qv] s.t. (Nv
i , Av

i , Mv
i ) = (Nv

i′ , Av
i′ , Mv

i′) and thus Xv
i [ℓv

i ] = Xv
i′ [ℓv

i′ ], where
Xv

i′ [ℓv
i′ ] ∈ X$ because the prefix-freeness ensures that there is previous query

s.t. (Nv
i , Av

i , Mv
i ) = (N#

j , A#
j , M#

j ) for # ∈ {t, v} and j ∈ [1..q#], and we here
assume that there are no tagging queries s.t. (Nv

i , Av
i , Mv

i ) = (N t
j , At

j , M t
j ) for

j ∈ [1..qt]. Similar to the above case, we obtain Pr[V v
i = V̂i | (Tt

re, Tks
re , Tx

re) =
(θt, θks, θx)] ≤ 1/2τ by using the randomness of R(Xv

i′ [ℓv
i′ ]).

From Eqs. (16), (17), (18), (19), we obtain

Pr[Tre = θ] ≥
(

1
2n

)q′
ks

·
(

1
2n

)qx

·
(

1
2τ

)qt

·
(

1− qv

2τ

)
. (20)

From Eqs. (15), (20), we obtain

Pr[Tre = θ]
Pr[Tid = θ] ≥ 1− qv

2τ
. (21)

From Eqs. (14), (21), and Lemma 7, we obtain the following lemma.
Lemma 6.

AdvInd+
CBC-MAC[R](B) ≤ (σ′

t + σ′
v)(0.5σ′

t + 0.5σ′
v + qks)

2n
+ 2qv

2τ

Lemma 6 and Eq. (13) give the bound of AdvUF-CMA+
CBC-MAC[R](B).

From the simulation of the NMR-INT-RUP game by the UF-CMA+ adversary
B, we obtain the following bound.

AdvNMR-INT-RUP
CCM[R] (A) ≤ (σ′

e + σ′
v)(σ′

e + σ′
v + 2(qe + qv + σe + σd + σv))

2n
+ 4qv

2τ
.

By combining Eq. (12) and the above, we conclude the proof of Theorem 2.
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6 Privacy of CCM under Nonce Misuse

As Table 1 shows, CCM does not fulfill NMR-Priv. However, CCM still fulfills
the weaker NML-Priv. The following theorem shows our bound for CCM.

Theorem 3. Let qr and qm be the number of nonce-respecting and nonce-
misusing queries of an adversary A, and σer and σem be the total number of
plaintext blocks queried to the nonce-respecting and nonce-misusing oracles. Let
σ′

r and σ′
m be the total number of input blocks to underlying CBC-MAC in nonce-

respecting and nonce-misusing queries. Let σall := σ′
r + σ′

m + σer + σem + qr + qm

and t be the time complexity of A. We obtain

AdvNML-Priv
CCM[E] (A) ≤ AdvPRP

E (Â) + σ2
all

2n+1

+ (σ′
r + σ′

m)(σ′
r + σ′

m + 2(σer + σem + qr + qm))
2n

for a PRP adversary Â with σall queries and time complexity t + O(σall).

The proof is similar to the NMR-INT-RUP proof of CCM described in Sect. 5.3.
Specifically, by replacing CBC-MAC of the nonce-misusing oracle in the ideal
world with a random oracle, we conduct almost the same evaluations of the bad
events and the good transcript ratio as in the NMR-INT-RUP proof. See App. E
for the full proof.

7 Nonce Misuse Resilience of OCB3

As shown by Table 1, OCB3 has no security with respect to RUP and NMR
for both privacy and authenticity. What about NML security? ADL17 provided
NML security analysis of OCB. Concretely, they showed NML-Priv and NML-
Auth attacks against the first version of OCB, also known as OCB1 [RBBK01].
These attacks exploit the incomplete domain separation of OCB1 between the
encryption of plaintext blocks and the encryption of checksum and recover EK(0n)
via repeating nonces. ADL17 stated, “We focus on OCB version 1 [65], however,
our results extend to all versions of OCB” [ADL17, Appendix A.1]. While there is
no concrete interpretation of this claim, we do show that OCB3 is not completely
broken regarding NML security.

Theorem 4. OCB3 has NML-Priv security.

Theorem 5. OCB3 does not have NML-Auth security, however, if AD is fixed
to any value throughout the game, it maintains NML-Auth security.

The proofs of Theorems 4 and 5 are straightforward. To prove NML-Priv, we
observe that OCB3 can be interpreted as a mode of TBC built on a block cipher,
called ΘCB3 shown in Fig. 5 (App. F). It uses a TBC Ẽ based on XEX and XE
modes by Rogaway [Rog04a] but with a more complex tweak space and mask
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derivation than the original (refer to [KR11] for the specification of Ẽ). Thanks
to the explicit domain separation via tweaks in ΘCB3, any output block in an
encryption query with nonce N is of the form Ẽ

(N,x)
K (α)⊕ β for some x (a tuple

of size one or two) and some α, β ∈ {0, 1}n that do not involve computation of
Ẽ

(N,y)
K for any possible y. Suppose ẼK is ideal (i.e., a TURP P̃) and consider

the real world in the NML-Priv game. The above observation implies that the
responses from the first (nonce-respecting) oracle are completely random and
independent of the responses from the second (nonce-misusing) oracles since the
sets of used nonce values do not intersect. Therefore, ΘCB3 using P̃ is perfectly
secure regarding NML-Priv. Thus, we obtain

AdvNML-Priv
OCB3[P] (A) = AdvNML-Priv

ΘCB3[Ẽ[P]](A) ≤ AdvTPRP
Ẽ[P](Â) + AdvNML-Priv

ΘCB3[̃P]
(A) ≤ 6σ2

2n

for any NML-Priv adversary A with σ total queried blocks, for a TPRP adversary
Â with σ queries. Here, Ẽ[P] is a TBC built on n-bit URP P, and the last
inequality follows from [KR11, Lemma 3]6.

For NML-Auth, if no restriction on AD is imposed, Vaudenay and Vizár [VV18]
showed an attack, which exploits the fact that AD processing of ΘCB3/OCB3 does
not involve nonce. In contrast, the attack generally does not work if A is fixed
to any value. In ΘCB3, AD processing function, Hash, (see Fig. 5) uses distinct
tweak values for the internal P̃ that are never used in the “core” encryption
routine, G, because those used for Hash do not contain nonce while those for G
always contain nonce. This fact implies that, if A is fixed to any value throughout
the game, the encryption queries with repeating nonces do not contribute, hence
can be ignored. Eventually, we can reuse the existing (nonce-respecting) Auth
proof of ΘCB3 [KR11] including the bound. The final bound for OCB3 will be
obtained by adding the TBC’s security bound [KR11, Lemma 3]. A proof is
straightforward and hence omitted.

Some ways to achieve NML-Auth security exist. A simple option is to change
Hash of ΘCB3 so that it takes nonce as a part of the tweak for each AD block
process. This also allows the reuse of existing Auth proof even if AD is not fixed,
making the modified OCB3 NML secure for both privacy and authenticity. This
comes at the cost of losing the property of efficient processing for static AD (i.e.,
caching Hash(A)). Another option is to add Hash(A) to the checksum instead
of the tag, i.e., the tag is an encryption of the sum of checksum and Hash(A).
This enables caching static AD, although the proof needs some revisions (future
work).

6 The TBC Ẽ reduces to (variants of) XEX and XE depending on the tweak used, and
Ẽ is designed so that it is indistinguishable from TURP as long as the adversary
performs CCA against XEX and performs only CPA against XE. This security property
is needed for authenticity. We remark that OCB2 [Rog04a] used a similar, but wrong,
combination, which leads to an attack [IIMP19]. However, the case of OCB3 is
different and safe.
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Table 2: Comparison of RUP-secure AEs based on GCM. F and G are PRFs;
F : K′ × {0, 1}∗ → {0, 1}ν and G : K′ × {0, 1}ν → {0, 1}ν for some key space K′.

Scheme Black-box Additional cost Online (Dec) Output expansion∗

PRF-to-IV + GCM ✓ FK(N ∥A ∥M) ✓ ν

GCM-RUP [ADL17] ✗ 1 EK + 1 GF(2n) Mul † ✗ n− ν

Nonce decoy + GCM ✓ GK(N) ✓ ν

∗ Additional output expansion in bits from the original GCM
† This can be none when the length of the last message block is in [1..n− τ ].

8 Implications of Our Results

Proving robustness property is generally relevant as it gives defense in depth.
Still, it is also natural to ask if there are real benefits. We show that this is indeed
the case: our results enable 1) an efficient GCM-based RUP-secure AE and 2) an
optimized version of CCM without losing security.

8.1 RUP-secure AE

An AE scheme equipped with PA1/2 and INT-RUP security properties is often
called RUP-secure AE. It has been studied extensively [ABL+14,AFL+16,ADL17,
CDD+19]. ABL+14 shows nonce decoy, a generic method to turn an AE scheme
Π = (Π.E , Π.D) into a PA1-secure one if Π is PA1 secure under a random nonce
setting. It takes an independently-keyed PRF, G : K′ × {0, 1}ν → {0, 1}ν , to
encrypt the nonce N , and GK′(N) is given to Π.E as an input nonce. Nonce decoy
preserves INT-RUP security of the baseline scheme if it has [ABL+14, Proposition
10]. ABL+14 also introduces another conversion scheme, called PRF-to-IV, from
an AE scheme Π into a PA1 and INT-RUP secure one if Π is PA1 secure under
a random nonce setting. While Π does not need to be INT-RUP secure, it also
needs a variable-input-length PRF to take the whole input tuple of (N, A, M),
imposing a significant computational overhead. ABL+14 shows that CTR is PA1
secure under a random nonce setting and that PA1 security of GCM and CCM can
be reduced to that of CTR. Combining this result of ABL+14 and our INT-RUP
results of GCM and CCM, nonce decoy with GCM or CCM implements RUP-secure
AE without modifying the algorithms of GCM/CCM and at a small computation
overhead. ADL17 introduces a RUP-secure variant of GCM, GCM-RUP, but this
modifies the original algorithm, although the change is not extensive. Compared
with GCM-RUP, nonce decoy works as a black-box conversion, enabling an easier
adoption from the implementation point of view. Moreover, while the decryption
of GCM-RUP cannot be online because of its MAC-then-Decrypt construction,
the combination of nonce decoy and GCM preserves its online property. On the
downside, as a nature of nonce decoy, the output must be expanded by ν bits
from GCM. See the comparison in Table 2.
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Table 3: Number of block cipher calls for encryption of a 128-bit block of message
without AD. (2 + 1) means the first two calls are in parallel followed by one call.

Scheme GCM CCM OCB3 COFB CCM2
Calls 3∗ (3) 4 (2+2) 4 (2+2) 3 (1+1+1) 3 (2+1)

* GCM needs additional GF(2128) multiplications (2 when ν = 96 and 4 when ν ∈ [1..128] \ {96})

8.2 Optimizing CCM

Our NMR-INT-RUP and NML-Priv proofs imply that the first CCTR output
block used to mask CBC-MAC output does not contribute to any security. That is,
if that block is omitted, we maintain all the security properties of CCM shown in
Table 1. We call such optimized version CCM2. See Fig. 4. The proofs are mainly
verbatim to those of NMR-INT-RUP and NML-Priv for CCM. CCM2 reduces the
number of block cipher calls by one for any input. The gain seems minor. However,
we do not know any example among the popular standards that allow such
optimization after their standardization. Adomnicăi et al. [AMS23] showed that
CCM needs at least four block cipher calls (overhead) for any non-empty message.
As far as known in the literature, three is the minimum number of overhead
achievable by a general-purpose (i.e., taking variable-length inputs) AE mode,
namely COFB [CIMN17,BCI+22]. See Table 3. Overhead is a critical measure
to determine the performance for (very) short inputs. Consequently, CCM2 is
yet another mode that achieves the overhead of three calls, implying excellent
performance for (very) short inputs, notably on microcontrollers [AMS23].

9 Concluding Remarks

We have presented multiple new robustness properties for GCM, CCM, and OCB3.
Our results provide a complete answer to the robustness of these standards and
serve as a reference point for future research. Notably, CCM’s strong robustness
is somewhat surprising. This feature was probably not intended by the designers.
We understand the design issues around CCM as pointed out by [RW03,Rog11].
Still, our results will give some positive views on this classical mode.

Studying the tightness of our bounds would be an interesting future topic.
Extending the targets to the modern schemes, including Sponge AE schemes,
would also be interesting. Finally, designing a strongly robust AE mode with
minimal overhead (an early attempt is CLOC [IMGM15]), not limited to be based
on CCM, is also worth investigating.
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Supplementary Material

A H-coefficient technique

We assume that an adversary A queries the two worlds, real and ideal, denoted
by Ore and Oid, and tries to distinguish them. The H-coefficient [Pat09,CS14] is
a general technique to evaluate the distinguishing probability of A. We define a
transcript as a set of input/output values that A obtains during the interaction
with the world. Let Tre (resp. Tid) denote the probability distribution of the
transcript induced by the real world (resp. the ideal world). By extension, we
also use the same notation to refer to a random variable distributed according to
each distribution. We say that a transcript θ is attainable if Pr[Tid = θ] > 0 holds
with respect to A. Let Θ denote the set of attainable transcripts. The following
is the fundamental lemma of the H-coefficient technique. See e.g. [CS14] for the
proof.

Lemma 7. Let Θ = Θgood⊔Θbad be a partition of the set of attainable transcripts.
Assume that there exists ε1 ≥ 0 such that for any θ ∈ Θgood, one has

Pr[Tre = θ]
Pr[Tid = θ] ≥ 1− ε1,

and that there exists ε2 ≥ 0 such that Pr[Tid ∈ Θbad] ≤ ε2. Then |Pr[AOre =
1]− Pr[AOid = 1]| ≤ ε1 + ε2.

B Proof of Lemma 1

We show the INT-RUP game of A can be simulated by B in the UF-CMA+ game.

Encryption oracle: GCM.E can be simulated using GMAC.T and KSG. Suppose
that A queries (Ne, Ae, Me) to GCM.E . To simulate the output of GCM.E ,
B queries (Ne, 1), . . . , (Ne, me) to KSG, where me = |Me|n, and obtains
their outputs KS1, . . . , KSme . Then, B computes the ciphertext Ce = Me ⊕
msb|Me|(KS1 ∥ · · · ∥KSme). The tag derivation can also be simulated by
querying (Ne, Ae, Ce) to GMAC.T and obtaining T e = GMAC.T (Ne, Ae, Ce).
Thus, B can output (Ce, T e) (= GCM.E(Ne, Ae, Me)) with me queries to
KSG and one query to GMAC.T . The total cost for qe encryption queries to
GCM.E is σe queries to KSG and qe queries to GMAC.T . Note that the above
simulation maintains the nonce-respecting condition for UF-CMA+ game as
long as A is also nonce-respecting.

Unverified decryption oracle: GCM.uD can be simulated using KSG. Sup-
pose that A queries (Nd, Ad, Cd, T d) to GCM.uD. The adversary B queries
(Nd, 1), . . ., (Nd, md) to KSG, where md = |Cd|n, obtains their outputs
KS1, . . . , KSmd , and outputs the unverified plaintext Md = Cd⊕msb|Cd|(KS1 ∥
· · · ∥KSmd). The total cost for qd encryption queries to GCM.uD is at most
σd queries to KSG.
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Verification oracle: GCM.V can be simulated by simply forwarding its query
to GMAC.V since their algorithms are identical. This simulation does not
invoke B’s forwarding query from GMAC.T to GMAC.V since the forwarding
queries from GCM.E to GCM.V are not allowed in INT-RUP game.

Therefore, the queries in INT-RUP game can be simulated by B, and when A
obtains ⊤ from GCM.V, B also obtains ⊤ from GMAC.V. This concludes the
proof of Lemma 1.

C Alternative bound for Theorem 1

In addition to Lemma 2, the authors of [NOMI15] show an alternative bound for
the probability of CollL([0..m], N1, N2) useful for the case ν ̸= 96.
Lemma 8 (Lemmas 4 and 5 in [NOMI15]). For 0 ≤ m ≤ 232−1 and two dis-
tinct nonces N1 and N2 which are not 96 bits, it holds that Pr[CollL([0..m], N1, N2)]
≤ 232(ℓN + 1)/2n, where |N1|n, |N2|n ≤ ℓN .
Lemma 8 could be used to derive another bound for AdvINT-RUP

GCM[P](A). While the
above bound has a larger constant than that of Lemma 2, it is independent of
m. Which lemma we should choose for bad event evaluations depends on the
parameters. Specifically, when (σe + σd)/(qe + qd) > 227− 1, the following bound,
based on Lemma 8, is smaller than that of Theorem 1. See [NOMI15, Sect. 6.5]
for more details on the comparison.
Theorem 6. For the same adversary A as in Theorem 1, we have

AdvINT-RUP
GCM[E](A) ≤ AdvPRP

E (B) + σ2
all

2n+1

+ (q2
e + 2qeqv + 2qe + 2qv + 2σe + 2σd)(ℓN + 1)

2n

+ 233(2qe + qd + qv − 1)(qe + qd)(ℓN + 1)
2n

+ 2qv(ℓA + 2)
2τ

for a PRP adversary B with σall queries and time complexity t + O(σall).

Proof. The proof of Theorem 6 mostly follows the proof of Theorem 1 and [NOMI15].
From Lemma 8, we can reevaluate probabilities of Bad2, Bad4, and Bad5 as
follows.

Pr[Bad2] ≤
qt∑

i=1

d∑
j=1

Pr[CollL([0..idxM
j ], N t

i , Nks∗
j )] ≤ qtd

232(ℓN + 1)
2n

,

Pr[Bad4] ≤
d∑

i=1

d∑
j ̸=i
j=1

Pr[CollL([0..idxM
j ], Nks∗

i , Nks∗
j )] ≤ d(d− 1)232(ℓN + 1)

2n
,

Pr[Bad5] ≤
qv∑

i=1

d∑
j=1

Pr[CollL([0..idxM
j ], Nv

i , Nks∗
j )] ≤ qvd

232(ℓN + 1)
2n

.
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We then obtain the following evaluations in the same manner as the previous
proof.

Pr[Bad] ≤ (0.5q2
t + qtqv + qt + q′

ks + qv)(ℓN + 1)
2n

+ 232d(qt + qv + d− 1)(ℓN + 1)
2n

+ qv(ℓA + 1)
2τ

,

AdvInd+
GMAC[R](B) ≤ (0.5q2

t + qtqv + qt + q′
ks + qv)(ℓN + 1)

2n
,

+ 232d(qt + qv + d− 1)(ℓN + 1)
2n

+ qv(ℓA + 2)
2τ

AdvUF-CMA+
GMAC[R](B) ≤ (q2

t + 2qtqv + 2qt + 2q′
ks + 2qv)(ℓN + 1)

2n
,

+ 233d(qt + qv + d− 1)(ℓN + 1)
2n

+ 2qv(ℓA + 2)
2τ

,

AdvINT-RUP
GCM[R](A) ≤ (q2

e + 2qeqv + 2qe + 2qv + 2σe + 2σd)(ℓN + 1)
2n

,

+ 233(qe + qd)(2qe + qd + qv − 1)(ℓN + 1)
2n

+ 2qv(ℓA + 2)
2τ

.

Note that qt = qe, q′
ks ≤ qks = σe + σd, and d ≤ qe + qd.

D Proof of Lemma 4

We define a new game, Game-1, against CCM. For Game-1 and an adversary
A1 following Game-1, we relax the NMR-INT-RUP game against CCM[R] by
changing the outputs of CCM.E and CCM.V. When the adversary A1 queries
(Ne, Ae, Me) and (Nv, Av, Cv, T v) to them, suppose it obtains (Ce, Ue, T e) and
(Uv, b), respectively, where U# = R(ecN(N#, 0)) for # ∈ {e, v}. We trivially ob-
tain AdvNMR-INT-RUP

CCM[R] (A) ≤ AdvGame-1
CCM[R](A1) since Game-1 is the same as NMR-INT-

RUP game except that Game-1 additionally reveals U#. Here, the computational
resource of A1 is the same as that of A.

We then prove AdvGame-1
CCM[R](A1) ≤ AdvUF-CMA+

CBC-MAC[R](B). For a simulation of
CCM.E in Game-1, B can forward the query of A1, (Ne, Ae, Me), to CBC-MAC.T
and obtain V . Then B queries (Ne, 0), (Ne, 1), . . . , (Ne, me) to KSC and obtains
Ue, KS1, . . ., KSme , where me = |Me|n. As a value of CCM.E(Ne, Ae, Me), B
can return (Ce, Ue, T e) = (Me ⊕ msb|Me|(KS1 ∥ · · · ∥KSme), Ue, V ⊕ msbτ (Ue))
to A1. Thus, qe queries to CCM.E of A1 costs qe queries to CBC-MAC.T and
σe + qe queries to KSC of B. Note that the total number of input blocks to
CBC-MAC.T equals σ′

e.
Let (Nd, Ad, Cd, T d) be the unverified decryption query of A1. For a sim-

ulation of CCM.uD in Game-1, B queries (Nd, 1), . . . , (Nd, md) to KSC and
obtains KS1, . . ., KSmd , where md = |Cd|n, and it returns Md = Cd ⊕
msb|Cd|(KS1 ∥ · · · ∥KSmd). Thus, qd queries to CCM.uD of A1 costs σd queries
to KSC of B.

37



For a simulation of CCM.V in Game-1, let (Nv, Av, Cv, T v) be the query
of A1. Similar to above, B queries (Nv, 0), (Nv, 1), . . . , (Nv, mv) to KSC and
obtains Uv, KS1, . . ., KSmv , where mv = |Cv|n. Then B queries (Nv, Av, Mv, V )
to CBC-MAC.V, where Mv = Cv ⊕ msb|Cv|(KS1 ∥ · · · ∥KSmv ) and V = T v ⊕
msbτ (Uv) and obtains b, and it can return (Uv, b) to A1. Thus, qv queries to
CCM.V ofA1 costs qv queries to CBC-MAC.V and σv+qv queries toKSC of B. Note
that the total number of blocks to execute CBC-MAC.V equals σ′

v. This simulation
does not invoke B’s forwarding query from CBC-MAC.T to CBC-MAC.V since
Game-1 prohibits the forwarding query from CCM.E to CCM.V.

Therefore, the queries in Game-1 can be simulated by B, and when A1
obtains ⊤ from CCM.V, B also obtains ⊤ from CBC-MAC.V. Thus, we obtain
AdvGame-1

CCM[R](A1) ≤ AdvUF-CMA+
CBC-MAC[R](B), and this concludes the proof of Lemma 4.

E Proof of Theorem 6

We first apply PRP/PRF switching lemma.

AdvNML-Priv
CCM[E] (A) ≤ AdvPRP

E (Â) + σ2
all

2n+1 + AdvNML-Priv
CCM[R] (A′), (22)

where Â makes σall queries, and the computational cost of A′ is the same as
A. We then define a function CCM+.E [R] by revising the output of CCM.E [R];
it takes (N, A, M) as input and outputs (C, U, V ), where U = R(ecN(N, 0)) and
V = T ⊕ msbτ (U). Since CCM+ just additionally outputs U compared to CCM,
we obtain

AdvNML-Priv
CCM[R] (A′) ≤ AdvNML-Priv

CCM+[R](B), (23)

where the computational cost of B is the same as A′.
Let CCM+$.E [R] be a function obtained by replacing CBC-MAC of CCM+.E [R]

with a random oracle $. Thus, CCM+$.E [R] takes (N, A, M) as input and outputs
(C, U, V ), where C and U are determined in the same manner as CCM+.E , but
V is chosen from {0, 1}τ at random. We then obtain the following inequations.

AdvNML-Priv
CCM+[R](B) = |Pr[BCCM+.E,CCM+.E = 1]− Pr[B$,CCM+.E = 1]|

= |Pr[BCCM+.E,CCM+.E = 1]− Pr[B$,CCM+.E = 1]
+ Pr[B$,CCM+$.E = 1]− Pr[B$,CCM+$.E = 1]|
≤ |Pr[BCCM+.E,CCM+.E = 1]− Pr[B$,CCM+$.E = 1]|

+ |Pr[B$,CCM+.E = 1]− Pr[B$,CCM+$.E = 1])|
≤ 2|Pr[BCCM+.E,CCM+.E = 1]− Pr[B$,CCM+$.E = 1]|
=: 2AdvNML-Priv$

CCM+[R] (B). (24)

We evaluate AdvNML-Priv$
CCM+[R] (B) using H-coefficient technique. Let (Nr

i , Ar
i , Mr

i ,
Cr

i , Ur
i , V r

i ) and (Nm
j , Am

j , Mm
j , Cm

j , Um
j , V m

j ) be i-th nonce-respecting query
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for i ∈ [1..qr] and j-th nonce-misusing query for j ∈ [1..qm], respectively. For
# ∈ {r, m} and i ∈ [1..q#], let m#

i = |M#
i |n; thus, σer =

∑qr

i=1 mr
i and σem =∑qm

i=1 mm
i . Let ec(N#

i , A#
i , M#

i ) = B#
i = (B#

i [0], . . . , B#
i [ℓ#

i ]), and |B#
i |n =

ℓ#
i + 1; thus, σ′

# =
∑q#

i=1(ℓ#
i + 1).

Similarly to the NMR-INT-RUP proof of CCM, we suppose that B obtains
all the block cipher inputs in nonce-respecting and nonce-misusing queries after
all queries but before determining an output bit. For # ∈ {r, m}, i ∈ [q#] and
j ∈ [0..ℓ#

i ], let X#
i [j] be j + 1-th block cipher input of CBC-MAC in i-th nonce-

respecting/nonce-misusing query. Here, we list all queries as (Nr
1 , Ar

1, Mr
1 , Cr

1 , Ur
1 ,

V r
1 ), . . ., (Nr

qr
, Ar

qr
, Mr

qr
, Cr

qr
, Ur

qr
, V r

qr
), (Nm

1 , Am
1 , Mm

1 , Cm
1 , Um

1 , V m
1 ), . . ., (Nm

qm
,

Am
qm

, Mm
qm

, Cm
qm

, Um
qm

, V m
qm

). In the real world, B obtains the real values of X#
i [j].

In the ideal world, B obtains the dummy values of X#
i [j], which are determined

in the same way as in the NMR-INT-RUP proof of CCM.
Including all the revealed X#

i [j], we define a transcript θ = (θr, θm, θx) of B
such that

– θr = {(Nr
i , Ar

i , Mr
i , Cr

i , Ur
i , V r

i )}i∈[1..qr],
– θm = {(Nm

i , Am
i , Mm

i , Cr
i , Ur

i , V m
i )}i∈[1..qm],

– θx = {X#
i [j]}#∈{r,m},i∈[1..q#],j∈[0..ℓ#

i
].

Bad event evaluation. We define θ ∈ Θbad if at least one of the following
events happens in θ.

Bad1 Collision of X[·] corresponding to representative nodes in θx: there exists
#1, #2 ∈ {r, m}, i1 ∈ [1..q#1 ], i2 ∈ [1..q#2 ], j1 ∈ [0..ℓ#1

i1
], j2 ∈ [0..ℓ#2

i2
]

s.t. X#1
i1

[j1], X#2
i2

[j2] ∈ X$ ⊔ X⊕ and X#1
i1

[j1] = X#2
i2

[j2].
Bad2 Collision of X[·] corresponding to representative nodes in θx and

ecN(Nr, ·)/ecN(Nm, ·) in θr/θm: there exists #1, #2 ∈ {r, m}, i1 ∈
[1..q#1 ], j1 ∈ [0..ℓ#1

i1
], i2 ∈ [1..q#2 ], j2 ∈ [0..m#2

i2
] s.t. X#1

i1
[j1] ∈ X$⊔X⊕

and X#1
i1

[j1] = ecN(N#2
i2

, j2).
We can evaluate the upper bound of Pr[Tid ∈ Θbad] := Pr[Bad1 ∪Bad2] in the
same manner as that in the NMR-INT-RUP proof of CCM; thus, we obtain

Pr[Tid ∈ Θbad] ≤ (σ′
r + σ′

m)2

2n+1 + (σ′
r + σ′

m)(σer + σem + qr + qm)
2n

= (σ′
r + σ′

m)(0.5σ′
r + 0.5σ′

m + σer + σem + qr + qm)
2n

. (25)

Good transcript ratio. For i ∈ [1..qm], we split transcript θm = {(Nm
i , Am

i ,
Mm

i , Cr
i , Ur

i , V m
i )} into θm1 = {(Nm

i , Am
i , Mm

i , Cr
i , Ur

i )} and θm2 = {V m
i }. For

# ∈ {re, id}, let Tr
#, Tm1

# , Tm2
# , Tx

# denote the random variables of θr, θm1, θm2,
θx in each world, respectively. For a good transcript θ ∈ Θgood, we have

Pr[T# = θ] = Pr[Tm1
# = θm1] · Pr[Tx

# = θx | Tm1
# = θm1]

· Pr[Tr
# = θr | (Tm1

# , Tx
#) = (θm1, θx)]

· Pr[Tm2
# = θm2 | (Tr

#, Tm1
# , Tx

#) = (θr, θm1, θx)].
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We first obtain Pr[Tm1
re = θm1] = Pr[Tm1

id = θm1] because we define CCM+$.E to
output (C, U) in the same distribution as CCM+.E . In both worlds, we obtain

Pr[Tx
# = θx | Tm1

# = θm1] =
(

1
2n

)qx

, (26)

Pr[Tr
# = θr | (Tm1

# , Tx
#) = (θm1, θx)] =

(
1
2

)∑qr

i=1
|Mr

i | (
1
2n

)qr
(

1
2τ

)qr

,(27)

Pr[Tm2
# = θm2 | (Tr

#, Tm1
# , Tx

#) = (θr, θm1, θx)] =
(

1
2τ

)qm

, (28)

where qx is the number of X#
i [j] ∈ X$ for j ̸= 0. In the ideal world, Eq. (26)

holds since all X#
i [j] ∈ X$ for j ̸= 0 are randomly chosen, and Eqs.(27) and (28)

hold since (Cr
i , Ur

i , V r
i ) and V m

j for i ∈ [1..qr], j ∈ [1..qm] are output from the
random oracles.

In the real world, Eq. (26) holds in the same manner as Eq. (17). All X#
i [j] ∈

X$, where j ̸= 0 can be derived using representative node X#
i [j − 1]; i.e.,

X#
i [j] = R(X#

i [j−1])⊕B#
i [j]. Bad1 and Bad2 enables us to fix all X#

i [j] ∈ X$,
where j ̸= 0, with the probability (1/2n)qx . Moreover, once all X#

i [j] ∈ X$
for j ̸= 0 are fixed, all other X#

i [j] is fixed with probability 1. Regarding
Eq. (27), Bad2 and N1 ∩N2 = ∅ enables us to fix Cr

i and Ur
i with probability

(1/2)
∑qr

i=1
|Mr

i | and (1/2n)qr , respectively. Also, V r
i can be fixed in the same

manner as Eq. (18); distinctness of queries and prefix-freeness ensure all Xr
i [ℓr

i ],
which are the input of R deriving V r

i , are representative nodes. Bad1 ensures
that all Xr

i [ℓr
i ] are distinct, and R(Xr

i [ℓr
i ]) is not fixed due to Bad1, Bad2, and

prefix-freeness. Similarly, we obtain Eq. (28).
From Eqs. (26), (27), (28), and Pr[Tm1

re = θm1] = Pr[Tm1
id = θm1], we obtain

Pr[Tre = θ]
Pr[Tid = θ] = 1 (29)

for θ ∈ Θgood. From Eqs. (25) and (29), we obtain the following bound.

AdvNML-Priv$
CCM+[R] (B) ≤ (σ′

r + σ′
m)(0.5σ′

r + 0.5σ′
m + σer + σem + qr + qm)
2n

. (30)

Combining Eqs. (22), (23), (24), (30) concludes the proof.

F Algorithms of ΘCB3

Figure 5 shows the algorithms of ΘCB3.
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Algorithm ΘCB3.E [ẼK ](N, A, M)

1. Σ ← 0n

2. (M [1], . . . , M [m− 1]) n←−M
3. for i = 1 to m− 1 do
4. C[i]← Ẽ

(N,i)
K (M [i])

5. Σ ← Σ ⊕M [i]
6. if |M [m]| = n then
7. C[m]← Ẽ

(N,m)
K (M [m])

8. Σ ← Σ ⊕M [m]
9. V ← Ẽ

(N,m,$)
K (Σ)

10. else
11. C[m] = msb|M [m]|(Ẽ(N,m,∗)

K (0n)⊕M [m])
12. Σ ← Σ ⊕ (M [m] ∥ 10∗)
13. V ← Ẽ

(N,m,∗$)
K (Σ)

14. T ← msbτ (V ⊕Hash[ẼK ](A))
15. C ← C[1] ∥ · · · ∥C[m− 1] ∥C[m]
16. return (C, T )

Algorithm Hash[ẼK ](N, A, M)

1. Γ ← 0n

2. (A[1], . . . , A[a− 1]) n←− A
3. for i = 1 to a− 1 do
4. Γ ← Γ ⊕ Ẽ

(i)
K (A[i])

5. if |A[a]| = n then
6. Γ ← Γ ⊕ Ẽ

(m)
K (A[m])

7. else
8. Γ ← Γ ⊕ Ẽ

(m,∗)
K (A[m] ∥ 10∗)

9. return Γ

Algorithm ΘCB3.D[ẼK ](N, A, C, T )

1. Σ ← 0n

2. (C[1], . . . , C[m− 1]) n←− C
3. for i = 1 to m− 1 do
4. M [i]← D̃

(N,i)
K (C[i])

5. Σ ← Σ ⊕M [m]
6. if |C[m]| = n then
7. M [m]← D̃

(N,m)
K (C[m])

8. Σ ← Σ ⊕M [m]
9. V ← Ẽ

(N,m,$)
K (Σ)

10. else
11. M [m] = msb|C[m]|(D̃(N,m,∗)

K (0n)⊕ C[m])
12. Σ ← Σ ⊕ (M [m] ∥ 10∗)
13. V ← Ẽ

(N,m,∗$)
K (Σ)

14. T̂ ← msbτ (V ⊕Hash[ẼK ](A))
15. if T ̸= T̂ then return ⊥
16. else
17. M ←M [1] ∥ · · · ∥M [m− 1] ∥M [m]
18. return M

Fig. 5: Algorithms of ΘCB3[ẼK ].
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