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Abstract. Coppersmith’s method plays an important role in cryptanalysis. By introducing a
new tool called Sumsets theory from Additive Combinatorics, we propose a novel strategy for
Coppersmith’s method based on Newton polytope. With our novel strategy, we provide the
first provable and efficient algorithm for calculating the asymptotic bounds of Coppersmith’s
method, which is typically a tedious and non-trivial task. Moreover, our new perspective offers
a better understanding of Coppersmith’s method. As a byproduct, we apply our new technique
and prove the new heuristic introduced by Meers and Nowakowski at Asiacrypt’23 and improve
the cryptanalytic result for the Commutative Isogeny Hidden Number Problem.
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1 Introduction

In 1996, Coppersmith [Cop96, Cop97] introduced methods to find the small solutions of univariate
polynomial modular equation and bivariate polynomial. Since then, Coppersmith’s methods have
been extended in several ways, such as [HG01, May03], and have found significant applications in
cryptanalysis [BHHG01,BV96,HR23,May02,May03,MNS22,DMH20,TLP17].

The main idea behind Coppersmith’s methods starts with constructing a set G of polynomials
sharing common roots with the original polynomial. In general, the coefficients of such polynomials
are used to build a lattice L to be reduced. Roughly speaking, the set of polynomials determines
everything about Coppersmith’s methods, such as the bound of the desired root and the running time.
Therefore, to improve Coppersmith’s method, the key is to construct a better family of polynomials
G.

To find the small roots of a single polynomial equation g(x1, . . . , xk) = 0 over the integers, or
the small solutions of the modular equation g(x1, . . . , xk) ≡ 0 mod M , Jochemsz and May [JM06]
presented in 2006 a heuristic strategy, known as the Jochemsz-May Strategy, to choose a collection
Gm of polynomials g[i1,...,ik](x1, . . . , xk) satisfying g[i1,...,ik](x1, . . . , xk) ≡ 0 mod Mm for a specific
integer m. The main idea in the Jochemsz-May strategy is to decrease the order of M in g[i1,...,ik],
which generalizes the work of Blömer and May [BM05] that finds optimal bound for small integer
roots of bivariate polynomials. At Asiacrypt’23, Meers and Nowakowski [MN23] proposed Automated
Coppersmith, which generalized the Jochemsz-May Strategy from a single polynomial equation to a
system of polynomial equations.

The goal of Jochemsz-May Strategy is to achieve better bound of Coppersmith’s method for
general polynomial equations and the bound should be determined before constructing the lattice.
However, as pointed out in [MN23], it is typically a tedious and non-trivial task to determine the
asymptotic upper bounds for Coppersmith’s method and manual analysis has to be performed anew
when a new set of polynomials is considered. It seems convoluted to prove the asymptotic bound.

More precisely, Coppersmith’s methods encounter estimating the exponents of the following in-
equality at the end 4, where Xi is the upper bound, to be determined, of the absolute value of root
xi for i = 1, · · · , k:

det(L) < Mm dim(L)−ϵ.

How to quickly compute these dim(L) and det(L) is an unavoidable issue.
4 This is just a simplified version, details can be found in Section 2
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For some simple polynomials, we can compute them by summation. Taking the modular polyno-
mial equation f(x1, x2) = a1x1+a2x2+C ≡ 0 mod M as an example, the Jochemsz-May Strategy 5

yields a lattice L and the corresponding dim(L) is

|{λ|λ is a monomial of fm}| =
m∑

i1=0

m−i1∑
i2=0

1 =
1

2
m2 +

3

2
m+ 1 =

1

2
m2 + o(m2).

However, it can be easily seen that it become more and more difficult when dealing with polynomials
with more and more variables.

To avoid the significantly tedious and time-consuming manual analysis, Meers and Nowakowski
[MN23] heuristically assumed that the functions dim(L) and det(L) are polynomials in m. This allows
them to select specific values m and then utilize Lagrange interpolation to compute dim(L) and det(L)
with the help of a computer, although it is still time-consuming usually.

Unfortunately, there is some flaw in their claim. They claim that for a polynomial f with k
variables, dim(L) is a polynomial in m with degree k. Considering the counterexample when f =
x5 + x + 1 for m = 1, 2, . . ., the corresponding dim(L) is the number of monomials in fm, which is
3, 6, 10, 15, 20, 25 and so on. It can be seen that for m ≥ 3, dim(L) always satisfies the polynomial
5 ∗m− 5 while this does not hold for m < 3. In fact, we need the constraint that m is big enough to
ensure that dim(L) is some polynomial in m.

However, even counting the condition that m is sufficiently large, there are still some unsatisfactory
aspects of the interpolation method.

First, since we do not know how large m can be to ensure that dim(L) is a polynomial in m, a
natural idea is that we can terminate the interpolation method for some m’s when the corresponding
polynomial is stable. However, we find that sometimes the interpolation method may get stuck in
local convergence, that is the polynomial will be stable for a long time before the correct polynomial
appears, which will certainly result in an incorrect polynomial when a natural termination strategy
is employed (see more details in Section 5.2). Hence, the output of the interpolation method seems
untrusted.

Second, by the state-of-the-art results in additive combinatorics, for some polynomials f with just
4 variables like the examples in Section 5.2 or Section 5.3, m needs to be greater than 2300 in theory
in order for dim(L) to be a polynomial in m [GSW23]. Since m needs to be sufficiently large to ensure
that dim(L) and det(L) are polynomials on m, it is necessary to compute the values of dim(L) and
det(L) for large enough m. Hence, the interpolation method must involve the computation of fm for a
large m to make the results provable, which requires a significant amount of time in the worst case, as
the number of monomials in the powers of f grows very quickly. Therefore, Automated Coppersmith
is still very time-consuming for general polynomials, which is also verified by our experiments in
Section 5.

As a consequence, the following natural question arises:

Can we compute dim(L) and det(L) more efficiently?

1.1 Our contributions

By introducing new tools, we provide a novel way to avoid the tedious computation in Coppersmith’s
method, which allows us to handle more complicated polynomial equations and achieve better results.

New Tools from Additive Combinatorics We introduce new tools for Coppersmith’s method
from Additive Combinatorics, including Sumset theory and a series of results for counting integer
points in convex hulls. The new perspective based on the new tools will help us clarify further
Coppersmith’s method and may inspire some novel ideas.

For example, we can reformulate the lattice dimension and determinant computation in Copper-
smith’s method with the Sumset theory. Note that for the asymptotic upper bound of the roots, only
the leading coefficient of these polynomials (if they are) are needed and for the single polynomial f ,
dim(L) is the number of monomials in fm. In 1992, Khovanskii [Kho92] proved that this is indeed
polynomial in m when m is big enough and the leading coefficient of |supp{fm}| is exactly the volume
5 Details about the Jochemsz-May Strategy can be found in Section 3.1.
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of the convex hull related to f , where supp{fm} is the set of the monomials of fm. See Fig. 1 for
an example. Hence we can compute the leading coefficient of dim(L)(m) by computing the volume,
which is usually very fast in practice.

(0, 0)

(0, 1)

(1, 0)

f(x1, x2) = a1x1 + a2x2 + C,

∆ is a triangle of {(0, 0), (0, 1), (1, 0)},

S∆ =
1

2
.

Fig. 1: Newton polytope corresponding to supp{f} = {x1, x2, 1}

Subsequently, researchers investigated how large m needs to be such that the number of monomials
in fm is a polynomial in m. Such explicit results were only previously known in the special cases when
the number of variables is k with k = 1 [GS20, GW21, Nat72, WCC11], when the convex hull of f
is a simplex or when f has k + 2 monomials [CG20] until 2023 Granville et al. [GSW23] gave the
first effective upper bounds for this threshold for arbitrary f . When f has n monomials, it tends to
be at least nn! It might imply that in certain worst-case, if we use Lagrange interpolation, we would
need to compute fm for very large m = O(nn). Obviously, Khovanskii’s results can help improve the
computation of dim(L) for the Jochemsz-May strategy.

Moreover, we obtain similar results for the calculation of det(L), and we extend these results to
a system of polynomial equations.

Novel strategy based on Newton polytope We also propose a novel Newton polytope-based
strategy to choose polynomials for Coppersmith’s method. In theory, we rigorously prove that our
strategy can achieve the same bound as the Jochemsz-May Strategy, which is currently the optimal
strategy used for solving general cases of f .

Compared to the original Jochemsz-May Strategy [JM06,MN23], our new strategy has the follow-
ing advantages.

– We directly eliminate the time-consuming computation for fm when computing asymptotic upper
bound in Automated Coppersmith for large m, which brings a 1000x∼1200x improvement in
running time for some polynomials in our experiment, as presented in Section 5. Moreover, our
strategy also provides a way to construct the lattice basis without computation for fm.

– We overcome the issue of getting stuck in local convergence when using interpolation method to
compute the bound, which means that the output of our method is reliable.

– Our new method is provable, which gets rid of the heuristic assumptions in [MN23]. In fact, our
method also offers a new perspective on understanding Automated Coppersmith, thus we also
prove Meers and Nowakowski’s Heuristic 2 [MN23].

– Our new method provides an explicit formula for the computation in Coppersmith’s method,
which is no doubt significant for the further study. The same explicit formula also holds for the
Jochemsz-May Strategy. Specifically, suppose f ∈ Z[x1, . . . , xk] has a small root u = (u1, . . . , uk)
and known bounds Xj such that uj ≤ Xj for j = 1, . . . , k. Let M be the modulus and m a fixed
integer. Then, in Coppersmith’s method, the basic inequality det(L) < Mm dim(L) can be written
as

X

∫
N(f)

x1 dV

1 · · · · ·X
∫
N(f)

xk dV

k M
k

k+1

∫
N(f)

1 dV < M
∫
N(f)

1 dV ,

where N(f) is the Newton polytope of f , that is the convex hull of {(i1, . . . , ik) | xi1
1 . . . xik

k is a monomial of fm}.

As with Meers and Nowakowski in [MN23], we also do not consider the Extended Strategy men-
tioned in [JM06]. Just Basic Strategy is enough in practice, such as CI-HNP in [MN23]. Moreover,
considering whether the Extended Strategy has a result related to Newton polytope is quite challeng-
ing, and we leave it as an open problem.
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New cryptanalytic result for CI-HNP Based on our strategy, we improve the results for the
Commutative Isogeny Hidden Number Problem (CI-HNP) proposed by Meers and Nowakowski in Asi-
acrypt’23. Additionally, we rigorously prove that their Automated Coppersmith’s method is equivalent
to the Jochemsz-May Strategy when handling single polynomial equations, which is non-trivial.

Roadmap. The paper is organized as follows: In Section 2 we give some basic preliminaries about
Coppersmith’s method and newly introduced tools—Sumset Theory. In Section 3, we provide the
explicit formula for the Jochemsz-May strategy and our novel strategy when handling a single poly-
nomial equation. Then, in Section 4, we extend this to a system of polynomial equations. As an
application, we improve the results of CI-HNP for CSURF, details can be found in Section 5. More-
over, in order to fully demonstrate the efficiency of computing asymptotic upper bounds, we have
conducted sufficient experiments, which also can be found in Section 5. Finally, we conclude our work
in Section 6.

2 Preliminaries

Let Z denote the ring of integers and Q denote the field of rational numbers. We use lowercase
bold letters (e.g., v) for vectors and uppercase bold letters (e.g., A) for matrices. The notation

(
n
m

)
represents the number of ways to select m items out of n items, which is defined as n!

m!(n−m)! . If
m > n, we set

(
n
m

)
= 0. o(·) (Little-o) denotes the upper bounds that cannot be tight.

2.1 Polynomials

Let x1, . . . , xk be k variables. Suppose f is a polynomial in Z[x1, . . . , xk], then the polynomial f can
be expressed as

f(x1, . . . , xk) =
∑

i1,...,ik∈N
αi1,...,ik · xi1

1 · . . . · xik
k .

Here, xi1
1 · . . . · xik

k is termed as a monomial of f if its coefficient αi1,...,ik ̸= 0. The set of all
monomials of f is denoted as supp{f}. The total degree deg(f) of f is defined as

deg(f) := max
αi1,...,ik

̸=0
(i1 + · · ·+ ik).

The following definitions serve to simplify the notations related to multivariate polynomials.

Definition 1 (Monomial Order). Let M be a set of monomials. A monomial order on M is a
total order ≺ that satisfies the following two properties:

1. For every λ ∈ M, it holds that 1 ≺ λ.
2. If λ1 ≺ λ2, then λ · λ1 ≺ λ · λ2 for every monomial λ ∈ M.

For example, suppose x1 ≺ x2 ≺ x3, then x2
2 ≺ x3 and x1 ≺ x2 ≺ x2

2 when using the lexicographic
monomial order ≺lex. Because lexicographic monomial order (≺lex) first compares exponents of x1 in
the monomials, and in case of equality compares exponents of x2, and so forth.

If ≺ is a monomial order, the leading monomial of a polynomial f is the unique monomial λ of f
that satisfies λ′ ≺ λ for every monomial λ′ of f . We denote the leading monomial, and the leading
coefficient of the leading monomial of f by LM(f) and LC(f) respectively. The leading term of f is
denoted LT(f) and satisfies

LT(f) = LC(f)× LM(f).

If LC(f) = 1, then we say that f is a monic polynomial.

Definition 2 (Ideal). Let F = {f1, . . . , fn} be a set of polynomials in Z[x1, . . . , xk]. The ideal I
generated by F is the set of all linear polynomial combinations of f1, . . . , fn, that is

I = {a1f1 + . . .+ anfn : ai ∈ Z[x1, . . . , xk]} .

If I is an ideal, then the set of all leading terms of the elements of I is denoted LT(I) and satisfies
LT(I) = {LT(f)|f ∈ I}.



Wombat 5

Definition 3. Fix a monomial order, and let I be an ideal. A finite subset G = {g1, . . . , gr} ⊂ I is
a Gröbner basis for I if

LT(I) = {LT(g1), . . . ,LT(gr)} .

Before we introduce the Hilbert Function of an ideal I, we need the following definition:

Definition 4. Suppose I is an ideal in Z[x1, x2, . . . , xk] and then we define Z[x1, x2, . . . , xk]⩽s to be
the set of polynomials in Z[x1, x2, . . . , xk] of total degree ⩽ s, and I⩽s is the set of polynomials in I
of total degree ⩽ s. That is,

Z[x1, x2, . . . , xk]⩽s = {f ∈ Z[x1, x2, . . . , xk] : deg(f) ⩽ s},
I⩽s = I ∩ Z[x1, x2, . . . , xk]⩽s = {f ∈ I : deg(f) ⩽ s}.

Both Z[x1, x2, . . . , xk]⩽s and I⩽s are vector spaces over Z, with I⩽s exactly being a subspace of
Z[x1, x2, . . . , xk]⩽s. Now, we are prepared to introduce the Hilbert function.

Definition 5 (Hilbert function). Let I be an ideal in Z[x1, x2, . . . , xk], and let I⩽s be the space
of elements of I of degree at most s. The (affine) Hilbert function HF (s) of I is defined to be the
dimension of Z[x1, x2, . . . , xk]⩽s/I⩽s as a vector space over Z. That is,

HFI(s) = dim(Z[x1, x2, . . . , xk]⩽s/I⩽s).

There is a useful lemma for Hilbert function, which is called Hilbert’s theorem (see [Mum76], Theorem
6.21):

Lemma 6. Let I ⊂ Z[x1, x2, . . . , xk] be a proper ideal. Then there exists a polynomial h(z) ∈ Q[z]
such that deg(h) = dim(I), for sufficiently large m,

HFI(m) = h(m).

The polynomial h(z) is often referred to as the Hilbert polynomial of I.

Remark 7. The concepts of Hilbert functions and Hilbert polynomials of graded algebras are crucial
in commutative algebra. For more detailed results, please refer to [Sta78].

2.2 Lattices, SVP, and LLL

Let m ≥ 2 be an integer. A lattice is a discrete additive subgroup of Rm. A more explicit definition
is presented as follows.

Definition 8 (Lattice). Let v1,v2, . . . ,vn ∈ Rm be n linearly independent vectors with n ≤ m. The
lattice L spanned by {v1,v2, . . . ,vn} is the set of all integer linear combinations of {v1,v2, . . . ,vn},
i.e.,

L =

{
v ∈ Rm | v =

n∑
i=1

aivi, ai ∈ Z

}
.

The integer n denotes the rank of the lattice L, while m represents its dimension. The lattice L is
said to be full rank if n = m. We use the matrix B ∈ Rn×m, where each vector vi contributes a row
to B. The determinant of L is defined as det(L) =

√
det (BBt), where Bt is the transpose of B. If L

is full rank, this reduces to det(L) = |det (B)|.

Definition 9 (Fundamental domain). For a lattice basis v1,v2, . . . ,vn ∈ Rm, the space generated
by all real number combinations in [0, 1)n is called the fundamental domain of the lattice L. It is
denoted as

P(L) =

{
n∑

i=1

aivi|0 ≤ ai < 1

}
.

The volume of the fundamental domain P is equal to the determinant of the lattice, that is vol(P) =
det(L).

In lattice theory, numerous hard problems are used to secure several cryptosystems. The Shortest
Vector Problem (SVP) is one of them.
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Definition 10 (Shortest Vector Problem (SVP)). Given a lattice L, the Shortest Vector Prob-
lem (SVP) asks to find a non-zero lattice vector v ∈ L of minimum Euclidean norm, i.e., find
v ∈ L\{0} such that ∥v∥ ≤ ∥w∥ for all non-zero w ∈ L.

Although SVP is NP-hard under randomized reductions [Ajt98], there exist algorithms that can
find a relatively short vector, instead of the exactly shortest vector, in polynomial time, such as the
famous LLL algorithm proposed by Lenstra, Lenstra, and Lovász [LLL82] in 1982. The following
result is useful for our analysis [May03].

Lemma 11 (LLL). Let L be a lattice spanned by a basis (u1, . . . ,uω). In polynomial time, the LLL
algorithm finds a new basis (v1, . . . ,vω) of L satisfying

∥v1∥ ≤ . . . ≤ ∥vi∥ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i ,

for i = 1, . . . , ω.

2.3 Sumsets theory

For any given finite subset A of an abelian group G, suppose 0 ∈ A, we consider the sumset mA :=
{a1 + a2 + · · · + am : ai ∈ A}. Khovanskii’s 1992 theorem [Kho92] states that if A ⊂ Zk is finite,
then there exists p(x) ∈ Q[x] of degree k and NKh(A) such that if m ≥ NKh(A), then |mA| = p(m).
Moreover, if the difference set A− A generates all of Zk additively, then deg(p) = k and the leading
coefficient of p is the volume of the convex hull of A, which we define as N = H(A).

To make things more straightforward, we introduce the Newton polytope.

Definition 12 (Set of points). Let G = Zk. For a polynomial f , consider A(f) as the set of points
corresponding to the monomials of f as follows:

A(f) = {(i1, . . . , ik)|xi1
1 · . . . · xik

k is a monomial of f}.

Definition 13 (Newton polytope). Let f be a polynomial in Z[x1, . . . , xk]. The Newton polytope
N(f) of f is defined as the convex hull of A(f)

Obviously, the Newton polytope has the following property:

Property 14. For all polynomials f1, f2 in Z[x1, . . . , xk], it holds that

N(f1 · f2) = N(f1) +N(f2).

Definition 15 (Saturated Newton polytope). We say that a polynomial f has Saturated Newton
Polytope if every integer point of the convex hull of its exponent vectors corresponds to a monomial
of f .

For example, when supp{f} = {x2
1, x1, x2, 1}, A(f) is {(0, 0), (1, 0), (2, 0), (0, 1)}, corresponding

to {1, x, x2, y} and the Newton Polytope of f is a triangle with {(0, 0), (2, 0), (0, 1)}. Then |mA(f)|
corresponds to supp{fm}. For simplicity, we write A(f) as A and the convex hull of A as N . So
Khovanskii’s 1992 theorem [Kho92] can be stated as follows:

Lemma 16 (Khovanskii, [Kho92]). Suppose A ⊂ Zk is finite. Then there exists a value Nkh with
the following propery: if m > Nkh, then there exists a polynomial p(x) ∈ Q[x] such that |mA| = p(m).

Khovanskii proved this by constructing a finitely generated graded module M over the polynomial
ring C[t1, . . . , ts], where the cardinality of set A is denoted by s. This module possesses the character-
istic that its homogeneous component Mm forms a vector space over C with precisely m dimensions
for all m ≥ 1. Therefore, the dimension of Mm over C is exactly the Hilbert Function. According to
Hilbert’s theorem, the dimension of Mm over C is a polynomial in m for sufficiently large m, thereby
yielding the desired result.

Suppose A ⊂ Zk is full rank, which means there exist v1, . . . ,vk that are linearly independent.
We denote the linear space spanned by A over Z as spanZ(A), that is

spanZ(A) = {a1v1 + . . .+ akvk|a1, . . . , ak ∈ Z}.
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We denote the convex hull of A as N and its volume as V (N). Moreover, if spanZ(A) = Zk additively,
then deg(p) = k and the leading coefficient of p is V (N).

When spanZ(A) ̸= Zk, we denote [Zk : spanZ(A)] as the index of spanZ(A) over Zk. Actually, if
we view spanZ(A) as a lattice over Z, then [Zk : spanZ(A)] is equal to the fundamental domain of
spanZ(A).

See Fig 2 as an example, where f = a1x1 + a2x2 + C. We have supp{f} = {x1, x2, 1}. Now it
holds that

A(f) = {(1, 0), (0, 1), (0, 0)}
and

spanZ(A) = {(1, 0)z1 + (0, 1)z2|z1, z2 ∈ Z}
is a lattice over Z. Then the fundamental domain of spanZ(A) is a unit square and [Zk : spanZ(A)] = 1

(0, 0)

(0, 1)

(1, 0)

v2

v1(0, 0)

(0, 1)

(1, 0)

(1, 1)

Fig. 2: A(f) and P(f): we can see that A(f) is a triangle and the fundamental domain of spanZ(A)
is a unit square.

Then we can rewrite Corollary 2 in [Kho92] as follows:

Lemma 17. Suppose A ⊂ Zk is full rank. Then there exists a value Nkh with the following property:
if m > Nkh, then there exists a polynomial p(x) ∈ Q[x] of degree k such that |mA| = p(m) and the
leading coefficient of p is V (N)/[Zk : spanZ(A)], where N is the convex hull of A, and V (N) is its
volume.

Regarding the size of Nkh, in 2023, Granville et al. [GSW23] provided the first effective upper
bounds for this threshold for arbitrary A. For any such A in terms of the width of A, w(A) =
width(A) := maxa1,a2∈A ∥a1−a2∥∞. Then the upper bound proposed by Granville et al. is as follows:

Lemma 18 (Granville et al., [GSW23]). If A ⊂ Zk is finite, then |mA| = p(m) for all m ≥
(2|A| · width(A))(k+4)|A|.

We note that the former upper bound is too large. When |A| = n, it tends to be at least nn!
Finally, we give another useful theorem called Ehrhart Theorem proposed by Ehrhart in 1962 [Ehr62].

Lemma 19 (Ehrhart, [Ehr62]). Suppose A ⊂ Zk is full-rank and N is the convex hull of A,
then the number of integer points contained in the polytope mN is a polynomial of m with degree k.
Moreover, the leading coefficient is V (N).

It was later generalized by Michel Brion and Michèle Vergne [BV97] into the following result.

Lemma 20 (Brion and Vergne, [BV97]). Let N be a convex integer polytope with vertices in Zk

and ϕ be any homogeneous polynomial function. Then the following counting function:∑
δ∈mN∩Zk

ϕ(δ)

is a polynomial of m with degree k+deg(ϕ). Moreover, the leading coefficient is the integral of ϕ over
the polytope N .

Now Lemma 19 can be seen as a special case of Lemma 20 when ϕ = 1.
Considering A as a Saturated Newton polytope, the number of integer points in mN is not less

than that in mA as A ⊂ N . However, by comparing Lemma 17 and Lemma 19, we can see that if we
view the number of integer points in mN and mA as polynomials in m, the leading terms of these
two polynomials are the same, both equal to V (N).
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2.4 Coppersmith’s method

Suppose f ∈ Z[x1, ...xk] is a polynomial with a small root u = (u1, . . . , uk) ∈ Zk modulo some integer
M . Here, a small root means |ui| < Xi for known bound Xi, for i = 1, . . . , k. To find such a root,
Coppersmith’s method is usually employed. Below we will give a brief introduction to Coppersmith’s
method for solving modular equations. More details can be found in [May03].

Coppersmith’s method first constructs a lattice L with the coefficient vector of a system of poly-
nomials that has the same small root u of f when modulo Mm where m is some positive integer. For
example, the polynomials can be selected as:

g[i1,...,ik] = xi1
1 · . . . · xik

k f ℓMm−ℓ, for ℓ = 0, . . . ,m.

Note that each g[i1,...,ik] has the same small root of f modulo Mm.
Coppersmith’s method tries to find the short vectors, or equivalently, the short polynomials

g1, . . . , gk, in the lattice L by applying the LLL algorithm. Using the following result, due to Howgrave-
Graham, and Lemma 11, we just need det(L) < Mm dim(L) to ensure that g1, . . . , gk have the same
small root u with f , not only modulo Mm but also over Z.

Lemma 21 (Howgrave-Graham [HG97]). Let g(x1, . . . , xk) ∈ Z[x1, . . . , xk] be a polynomial with
at most ω monomials. Let M be a positive integer. If there exist k integers (u1, . . . , uk) satisfying the
following two conditions:

1. g(u1, . . . , uk) ≡ 0 mod M ,
2. there exist k positive integers X1, . . . , Xk such that |ui| < Xi for i = 1, . . . , k, and ∥g(x1X1, . . . , xkXk)∥ <

M√
ω
,

then g(u1, . . . , uk) = 0 holds over Z.

Lastly, Coppersmith’s method computes the desired root u = (u1, . . . , uk) by solving the system
of polynomial equations gi(x1, . . . , xk) = 0 for i = 1, . . . , k.

In the multivariate scenario, that is, for k > 1, we usually assume the ideal generated by g1, . . . , gk
being zero-dimensional, allowing us to compute the small root u by Gröbner basis. The following
Assumtion 1 is widely used in many works [May03,MR09,MNS21,MNS22,MN23,FNP24].

Assumption 1 The ideal generated by the polynomials obtained from Coppersmith’s method is zero-
dimensional.

3 Newton polytope-based strategy

In this section, we propose our Newton polytope-based strategy and provide the corresponding explicit
formulas for dim(L) and det(L) due to fruitful results in Additive Combinatorics [Ehr62,Kho92,Nat23,
GSW23]. Based on the results proposed by Ehrhart [Ehr62] and Khovanskii [Kho92], we also prove
that our strategy achieves the same bound as the Jochemsz-May strategy. Thus, the Jochemsz-May
strategy and ours share the same explicit formulas. Note this strategy cannot simply be seen as a
rewrite of the Jochemsz-May strategy on the Newton polytope. Actually, our strategy introduces
some simplifications to the lattice construction.

In Section 3.1, we first recall the widely used Jochemsz-May Strategy [JM06] in Coppersmith’s
method, which is the optimal strategy for the general case. Then we propose our novel Newton
Polytope-Based Strategy in Section 3.2. It has two appealing properties: simpler lattice construction
and faster asymptotic bound computation. We will show them in Section 3.3 and Section 3.4. For
simplicity, we assume f satisfies [Zk : spanZ(A(f))] = 1, otherwise, the result needs to be divided by
[Zk : spanZ(A(f))].

3.1 Jochemsz-May Strategy and Meers-Nowakowski Strategy 6

Suppose f ∈ Z[x1, ...xk] is a polynomial with a small root u = (u1, . . . , uk) ∈ Zk modulo some
integer M . Here a small root means we assume that we know an upper bound for the root, namely
6 The Jochemsz-May strategy can be viewed as the Meers-Nowakowski Strategy (Automated Coppersmith’s

method) [MN23] in the case n = 1.
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|uj | < Xj for some given Xj . The key step in Coppersmith’s method is to construct a lattice L with
the coefficient vector of a system of polynomials as follows:

g[i1,...,ik](x1, . . . , xk) = xi1
1 · . . . · xik

k f ℓMm−ℓ, for ℓ = 0, . . . ,m. (1)

Note that each g[i1,...,ik] has the same small root of f modulo Mm, where m is some positive integer.
At Asiacrypt’06, Jochemsz and May [JM06] described a strategy to choose polynomials in Equa-

tion (1) to make det(L) as small as possible. This remains the best available strategy for the general
problem. They defined the following set

Jℓ = {λ|λ ∈ supp{fm} and
λ

LM(f)ℓ
∈ supp{fm−ℓ}}

and then define the shift polynomials as follows

g[i1,...,ik](x1, . . . , xk) =
xi1
1 · . . . · xik

k

LM(f)ℓ
f ℓMm−ℓ, (2)

for ℓ = 0, . . . ,m, and xi1
1 . . . xik

k ∈ Jℓ \ Jℓ+1.
The lattice L is constructed by taking the coefficient vectors of the polynomials g(x1X1, . . . , xnXn)

as a basis.
Recently, Meers and Nowakowski proposed the Automated Coppersmith’s method, which can be

seen as a generalization of the Jochemsz-May Strategy from a single polynomial equation to a system
of polynomial equations. However, the Meers-Nowakowski Strategy and the Jochemsz-May Strategy
still have a slight difference in the single polynomial equation case. In the Meers-Nowakowski Strategy,
they choose

J ′
ℓ = {λ|λ ∈ supp{fm} and

λ

LM(f)ℓ
f ℓ ∈ supp{fm}}.

These two strategies can be seen as greedy strategies, aiming to reduce the order of M in Equation (2)
as much as possible.

Although Jℓ and J ′
ℓ appear somewhat different, nevertheless, we will prove in Appendix A that

this difference is essentially negligible. In this section, we only consider the case of a single polyno-
mial equation. When comparing with previous work, we only just compare with the Jochemsz-May
Strategy.

3.2 Newton polytope-based strategy

Now we propose our novel Newton polytope based strategy. For simplicity, we assume that in the
following, f is monic and the lattice spanned by the points corresponding to all monomials of f is
Zk. Otherwise, we need to divide by the volume of the lattice.

Suppose f ∈ Z[x1, ...xk] is a polynomial with a small root u = (u1, . . . , uk) ∈ Zk modulo some
integer M , the leading monomial of f corresponds to the integer point α ∈ Zk. Here, a small root
means |uj | < Xj for known bound Xj , for j = 1, . . . , k. We also focus on selecting the basis of the
lattice used in Coppersmith’s method. Our algorithm is described as follows:

Fix an integer m: Consider A(f) = {(i1, . . . , ik) | xi1
1 · . . . · xik

k is a monomial of f} and its convex
hull N(f), then compute mN(f).

Define the sets
Sℓ = ℓα+ (m− ℓ)N(f),

so that Sm ⊂ . . . ⊂ S0. For each integer point (i1, . . . , ik) in mN(f), compute ℓ such that (i1, . . . , ik) ∈
Sℓ but (i1, . . . , ik) /∈ Sℓ+1. Record

g[i1,...,ik](x1, . . . , xk) =
xi1
1 · . . . · xik

k

LM(f)ℓ
f ℓMm−ℓ.

Use the coefficient vectors of all g[i1,...,ik](x1X1, . . . , xkXk) to form the basis of the lattice.
We provide Algorithm 1 to better understand our novel strategy. Compared with Jochemsz-

May Strategy, we do not need to compute the monomials in fm precisely. This leads to an efficient
construction of the lattice.

It is worth mentioning that, due to the introduction of new tools from additive combinatorics, our
proposed strategy can quickly compute asymptotic bounds.
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Algorithm 1: Construction of the lattice in Coppersmith’s method
Input: f ∈ Z[x1, . . . , xk], integer m, modulus M , and bounds Xj for j = 1, . . . , k
Output: Set of polynomials, whose coefficient vector forms the basis of the lattice L

1 Define α ∈ Zk is the integer point correspond to LM(f);
2 Compute Newton polytope N(f) of f ;
3 G← ∅;
4 for (i1, . . . , ik) ∈ mN(f) do
5 ℓ← 0;
6 while (i1, . . . , ik) ∈ ℓα+ (m− ℓ)N(f) do
7 ℓ← ℓ+ 1;
8 end

9 g[i1,...,ik](x1, . . . , xk)←
x
i1
1 ·...·xik

k

LM(f)ℓ
f ℓMm−ℓ;

10 G← G ∪ {g[i1,...,ik](x1X1, . . . , xkXk)};
11 end
12 return G;

3.3 Computing dim(L) efficiently

Next, we will associate the leading coefficient of dim(L) with the volume of the convex hull by
analyzing the Hilbert Function of some graded algebra. Therefore, we only need to compute the
volume of the convex hull to obtain the desired value, which is a very fast operation.

For example, when we consider a modular polynomial equation f ≡ 0 (mod M) with supp{f} =
{x1, x2, 1}, the computation about dim(L) is

m∑
i1=0

m−i1∑
i2=0

1 =
1

2
m2 +

3

2
m+ 1.

For calculating the asymptotic bounds of Coppersmith’s method, we only need the leading coefficient
1/2 for the asymptotic bound in Coppersmith’s method. This can be computed easily by calculating
the volume of the Newton polytope of f , that is, a triangle with vertices at (0, 0), (0, 1), and (1, 0).

According to our strategy in Algorithm 1, for each integer point (i1, . . . , ik) in mN(f), we selected
a corresponding polynomial g[i1,...,ik], and then constructed the lattice L using the coefficient vectors
of all g[i1,...,ik](x1X1, . . . , xkXk). Therefore, the dimension of our lattice is equal to the number of
integer points in mN(f). Next, we present a formal theorem regarding the calculation of dim(L).

Theorem 22. Suppose f ∈ Z[x1, . . . , xk] and m is an integer. The dimension of the lattice obtained
by Algorithm 1 is a polynomial in m, and the leading coefficient is the volume of the Newton polytope
corresponding to f . That is,

dim(L) = V (N(f))mk + o(mk).

Proof. The dimension of the lattice is the number of integer points in mN(f). Therefore, by Lemma 19,
we know that there exists a degree k polynomial pE such that dimL = pE(m), and LM(pE) =
V (N(f)). ⊓⊔

In fact, we find that, not only our strategy can compute dim(L) in such an elegant way, but the
Jochemsz-May Strategy also has a similar result.

Theorem 23. Suppose f ∈ Z[x1, . . . , xk] and m is an integer. There exists Nkh such that for m >
Nkh, the dimension of the lattice obtained by the Jochemsz-May Strategy is a polynomial in m, and
the leading coefficient is the volume of the Newton polytope corresponding to f . That is,

dim(L) = V (N(f))mk + o(mk).

Proof. The dimension of the lattice is the number of integer points in mA(f). Therefore, by Lemma 17,
there exists Nkh and a degree k polynomial pK , such that for m > Nkh, it holds that dim(L) = pK(m),
and the leading term of pK is LM(pK) = V (N(f)). ⊓⊔
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Comparison with the Jochemsz-May Strategy. By comparing the theorems for calculating
dim(L) in both our strategy (Theorem 22) and Jochemsz-May Strategy (Theorem 23), we find that
if we view dim(L) as a polynomial in m, the leading terms of these two polynomials are the same.
However, Jochemsz-May Strategy involves a more precise calculation of mA, which results in a greater
computational burden.

3.4 Computing det(L) efficiently

Suppose f ∈ Z[x1, ...xk] is a polynomial with a small root u = (u1, . . . , uk) ∈ Zk modulo some integer
M . Here, a small root means |uj | < Xj for known bound Xj , for j = 1, . . . , k. Recall we take the
coefficient vectors of g(x1X1, . . . , xnXn) to construct the lattice L in Algorithm 1. Then we can write
det(L) as

det(L) = X
p1(m)
1 · . . . ·Xpk(m)

k MpF (m).

We will divide the discussion into three parts regarding det(L). In the first two parts, we show that
we can compute the leading coefficients of pj for j = 1, . . . , k and pF in a manner similar to how we
compute dim(L). Finally, we will show that the leading coefficient of det(L) in our strategy is the
same as that in the Jochemsz-May Strategy, which can also be viewed as a proof of Heuristic 2 (for
n = 1) in [MN23]. Therefore, the asymptotic bounds computed by both strategies are the same, which
demonstrates that our strategy can achieve the same effectiveness as the Jochemsz-May Strategy.

Computing the leading coefficient of pj. Considering the computation of pj , the main idea is
to transform pj into an integral or a higher-dimensional Newton polytope. For example, we choose f
with supp{f} = {x1, x2, 1}. If we want to directly compute p1, we need to compute

p1(m) =

m∑
i1=0

m−i1∑
i2=0

i1 =
1

6
m3 + o(m3).

However, we can use the following method to compute LC(p1). Now we consider about the convex
hull of {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 0, 1)} as in Figure 3. Note that the volume of this tetrahedron is
equal to the integral of x1 over N(f).

A tetrahedron of {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 0, 1)},

Volume of tetrahedron=
1

6
· 1 · 1 · 1 =

1

6
,

LC(p1) =
1

6
.

Fig. 3: supp{f} = {x1, x2, 1}

Our formal theorem regarding the calculation of pj is as follows.

Theorem 24. Suppose f ∈ Z[x1, . . . , xk] and m is an integer. Then pj in det(L) obtained by Algo-
rithm 1 is a polynomial in m, and the leading coefficient is the integral of xj over the Newton polytope
corresponding to f . That is,

pj(m) =

∫
N(f)

xj dV mk+1 + o(mk+1).

Proof. Regarding the lattice constructed in our strategy, we can write pj as follows:

pj(m) =
∑

δ∈mN(f)∩Zk

xj(δ), (3)

Here xj is a homogeneous polynomial. When δ = (i1, . . . , ik), it holds that xj(δ) = ij .
Therefore, by Lemma 20, we know that pj(m) is a degree k + 1 polynomial and LM(pj) =∫

N(f)
xj dV . ⊓⊔
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Computing the leading coefficient of pF . Suppose f ∈ Z[x1, ...xk] is a polynomial with a small
root u = (u1, . . . , uk) ∈ Zk modulo some integer M , the leading monomial of f correspond to the
integer point α ∈ Zk. Here, a small root means |uj | < Xj for known bound Xj , for j = 1, . . . , k. In
our novel Newton polytope-based strategy, we define the sets

Sℓ = ℓα+ (m− ℓ)N(f),

satisfied Sm ⊂ . . . ⊂ S0. For each integer point (i1, . . . , ik) in mN(f), compute ℓ such that (i1, . . . , ik) ∈
Sℓ but (i1, . . . , ik) /∈ Sℓ+1. Recall that

g[i1,...,ik](x1, . . . , xk) =
xi1
1 · . . . · xik

k

LM(f)ℓ
f ℓMm−ℓ,

and then use the coefficient vectors of all g[i1,...,ik](x1X1, . . . , xkXk) to form the basis of the lattice.
Define Tm = {mα} and Tℓ for ℓ = 0, . . . ,m− 1 as follows:

Tℓ = Sℓ \ Sℓ+1.

Therefore, we can write pF (m) as follows:

pF (m) = m dim(L)−
m∑
ℓ=0

ℓ|Tℓ ∩ Zk|.

Before presenting the theorem for calculating pF , we first give a lemma for counting the sum of
the number of integer points in Sℓ.

Lemma 25. For f ∈ Z[x1, . . . , xk],
∑m

ℓ=0 |Sℓ ∩ Zk| = V (N(f))mk+1 + o(mk+1).

Proof. From Lemma 19, we know that there exists a polynomial pE(m) such that |mN(f) ∩ Zk| =
pE(m), and the leading coefficient is V (N(f)). Therefore, we have

m∑
ℓ=0

|Sℓ ∩ Zk| =
m∑
ℓ=0

|(m− ℓ)N(f) ∩ Zk|

=

m∑
ℓ=0

|ℓN(f) ∩ Zk|

=

m∑
ℓ=0

V (N(f)) ℓk + o(mk+1)

=
1

k + 1
V (N(f))mk+1 + o(mk+1).

⊓⊔

Therefore, we can compute pF as in the following theorem:

Theorem 26. Suppose f ∈ Z[x1, . . . , xk] and m is an integer. Then the exponent pF of M in det(L)
obtained by Algorithm 1 is a polynomial in m, and its leading coefficient is kV (N(f))/(k + 1). That
is,

pF (m) =
k

k + 1
V (N(f))mk+1 + o(mk+1).

Proof. As pF (m) = m dim(L) −
∑m

ℓ=0 ℓ|Tℓ ∩ Zk| and Tℓ = Sℓ \ Sℓ+1 for ℓ = 0, . . . ,m − 1, we can
rewrite pF as follows:

pF (m) = m dim(L)−m|Sm ∩ Zk| −
m−1∑
ℓ=0

ℓ(|Sℓ ∩ Zk| − |Sℓ+1 ∩ Zk|). (4)

Then Equation (4) holds that

pF (m) = m dim(L)−
m∑
ℓ=0

|Sℓ ∩ Zk|.
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Using Theorem 22 and Lemma 25, we have

mdim(L) = V (N(f))mk+1 + o(mk+1),

and
m∑
ℓ=0

|Sℓ ∩ Zk| = 1

k + 1
V (N(f))mk+1 + o(mk+1).

Therefore, the exponent pF in det(L) obtained by Algorithm 1 is a polynomial in m, and the leading
coefficient is V (N(f))− V (N(f))/(k + 1) = kV (N(f))/(k + 1), that is

pF (m) =
k

k + 1
V (N(f))mk+1 + o(mk+1).

⊓⊔

Comparison with the Jochemsz-May Strategy. One may ask whether our strategy can achieve
the same bounds as the Jochemsz-May Strategy. Next, we will prove that our strategy can achieve
the same bounds, i.e., the leading coefficients of both dim(L) and det(L) are the same.

Define ∆(f) = (mN(f)∩Zk) \mA(f). In Section 3.3, we have already proven that the difference
between our strategy and the Jochemsz-May Strategy lies in ∆(f). Comparing Theorem 22 with
Theorem 23, this part has been shown to be a very small portion, i.e., o(mk). Therefore, the leading
coefficient of dim(L) in our strategy is the same as that in the Jochemsz-May Strategy, which is the
volume of N(f).

Considering det(L), specifically the leading coefficients of pj and pF , we discuss this in two parts.
For pj , we need to show that the difference between our pj and the pj in the Jochemsz-May

Strategy, that is ∑
δ∈mN(f)∩Zk

xj(δ)−
∑

δ∈mA(f)

xj(δ) =
∑

δ∈∆(f)

xj(δ),

is within o(mk+1). Note that xj(δ) ≤ deg(f)m, thus
∑

δ∈∆(f) xj(δ) belongs to o(mk+1). Hence, the
leading coefficient of our pj is the same as in the Jochemsz-May Strategy.

For pF , for (i1, . . . , ik) ∈ ∆(f), the order of M in g[i1,...,ik] is less than m. Therefore, the difference
in pF between our strategy and the Jochemsz-May Strategy is less than m · |∆(f)|, which is within
o(mk+1). As a result, the leading coefficient of pF is also the same in both strategies.

In summary, our strategy can achieve the same bounds as the Jochemsz-May Strategy.

4 Generalization to a system of equaitons

The Jochemsz-May Strategy [JM06] is designed for the case of a single polynomial equation. How-
ever, in cryptanalysis, it is sometimes necessary to handle a system of polynomial equations, such
as in the Implicit Factorization Problem [MR09] and the Modular Inversion Hidden Number Prob-
lem [XSH+19]. Recently, Meers et al. [MN23] introduced the Commutative Isogeny Hidden Number
Problem at Asiacrypt’23, where solving this problem is reduced to solving a system of equations.

Next, we will generalize our Newton polytope-based strategy to handle a system of polynomial
equations. Using summation techniques for proving some combinatorial identities, we will also provide
similar results for calculating asymptotic bounds as in the single polynomial equation case in Sec-
tion 3. Finally, we will compare our strategy with the Meers-Nowakowski Strategy (the Automated
Coppersmith method) proposed by Meers and Nowakowski [MN23]. They proposed a heuristic and
used Lagrange interpolation to compute asymptotic bounds, whereas our approach computes these
bounds faster and is provable. As an application, we improve the results for the CSURF problem
proposed by Meers and Nowakowski in Asiacrypt’23 [MN23]. The details about the improvement of
CI-HNP will be provided in Section 5.
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4.1 Newton polytope-based strategy

There is more than one way to extend to multiple polynomial equations. Meers et al. [MN23] proposed
one approach in Asiacrypt’23, that is the Meers-Nowakowski Strategy (the Automated Coppersmith
method), but here we choose an alternative method, which allows us to improve the result of CI-HNP
over CSURF proposed by Meers and Nowakowski in Asiacrypt’23 [MN23].

Suppose f1, . . . , fn ∈ Z[x1, ...xk] have a common small root u = (u1, . . . , uk) ∈ Zk modulo some
integer M , αj ∈ Zk are the integer points corresponding to the leading monomial of fj for j = 1, . . . , n.
Here, a small root means |uj | < Xj for known bound Xj , for j = 1, . . . , k. Our strategy is described
as follows:

Fix an integer m. Consider

A =

n⋃
j=1

A(fj)

and denote its convex hull N , then compute mN .
Define the sets

Sℓ = (m− ℓ)N(f) +
⋃

ℓ1+···+ℓn=ℓ
0≤ℓj≤m

n∑
j=1

ℓjαj , (5)

so that Sm ⊂ . . . ⊂ S0. For each integer point (i1, . . . , ik) in mN(f), compute ℓ such that (i1, . . . , ik) ∈
Sℓ but (i1, . . . , ik) /∈ Sℓ+1. Then there exist ℓ1, . . . , ℓn with

∑n
j=1 ℓj = ℓ, such that

(i1, . . . , in) ∈ (m− ℓ)N(f) +

n∑
j=1

ℓjαj .

Recall that

g[i1,...,ik](x1, . . . , xk) =
xi1
1 · . . . · xik

k∏n
j=1 LM(fj)ℓj

n∏
j=1

f
ℓj
j Mm−ℓ.

Use the coefficient vectors of all g[i1,...,ik](x1X1, . . . , xkXk) to form the basis of the lattice.

4.2 Compute dim(L) efficiently

In our strategy, we selected a set of polynomial g[i1,...,ik], and then constructed the lattice L using
the coefficient vectors of all g[i1,...,ik](x1X1, . . . , xkXk).

For f1, . . . , fn ∈ Z[x1, . . . , xk], let A be the union of all A(fj) and N be its convex hull. Then, the
dimension of the lattice is the number of integer points in mN . This means that the case of multiple
polynomial equations can be reduced to a single one. The formal theorem for calculating dim(L) is
as follows.

Theorem 27. Suppose f1, . . . , fn ∈ Z[x1, . . . , xk] and m is an integer. Let A be the union of all
A(fj) and N be its convex hull. The dimension of the lattice obtained by the Newton polytope-based
strategy is a polynomial in m, and the leading coefficient is the volume of N . That is,

dim(L) = V (N)mk + o(mk).

Proof. The dimension of the lattice is the number of integer points in mN . Therefore, by Lemma 19, we
know that there exists a degree k polynomial pE such that dimL = pE(m), and LM(pE) = V (N(f)).

⊓⊔

In fact, A corresponds to the set of all monomials of fj for j = 1, . . . , n. Informally speaking, A
can be written as A(f1 + · · ·+ fn).

4.3 Compute det(L) efficiently

Suppose f1, . . . , fn ∈ Z[x1, . . . , xk] have a common small root u = (u1, . . . , uk) ∈ Zk modulo some
integer M , which satisfies |uj | < Xj for known bounds Xj , for j = 1, . . . , k.

Let the lattice L be constructed by our novel strategy. Then we can write det(L) as

det(L) = X
p1(m)
1 · . . . ·Xpk(m)

k MpF (m).

We will discuss the computation of the leading coefficients of pj and pF in the following two parts.
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Computing the leading coefficient of pj. Similar to dim(L), we can reduce the case of multiple
polynomial equations to that of a single one. The formal theorem is as follows.

Theorem 28. Suppose f1, . . . , fn ∈ Z[x1, . . . , xk] and m is an integer. Let A be the union of all
A(fj) and N be its convex hull. Then pj of the lattice obtained by the Newton polytope-based strat-
egy is a polynomial in m, and the leading coefficient is the integral of xj over the Newton polytope
corresponding to N . That is,

pj(m) =

∫
N

xj dV mk+1 + o(mk+1).

The proof is similar to that of Theorem 24, so we omit it here.

Computing the leading coefficient of pF . The pF corresponding to a system of polynomial
equations is fundamentally different from the single polynomial case because we need to consider all
the leading monomials, LM(fj) for j = 1, . . . , n. We use a lifting technique to address this issue here,
that is, lifting a calculation from Zk to Zk+1.

First, we define B = {α1, . . . , αn} and rewrite Sℓ in Equation (5) as

Sℓ = (m− ℓ)N(f) +
⋃

ℓ1+···+ℓn=ℓ
0≤ℓj≤m

n∑
j=1

ℓjαj

= ℓB + (m− ℓ)N(f).

Next, we provide the result of Lemma 25 in the case of a system of polynomial equations.
Denote Ã = (A, 1)∪(B, 0) and its convex hull as Ñ . Here, (A, 1) means {(i1, . . . , ik, 1) | (i1, . . . , ik) ∈

A}, and similarly for (B, 0).

Lemma 29. For f1, . . . , fn ∈ Z[x1, . . . , xk],
∑m

ℓ=0 |Sℓ ∩ Zk| = V (Ñ)mk+1 + o(mk+1).

Proof. From Lemma 19, we know that there exists a polynomial pE(m) such that |mN(f) ∩ Zk| =
pE(m), and the leading coefficient is V (N(f)). Therefore, we have

m∑
ℓ=0

|Sℓ ∩ Zk| =
m∑
ℓ=0

|ℓB + (m− ℓ)N(f) ∩ Zk|

= |mÑ ∩ Zk|

= V (Ñ)mk+1 + o(mk+1).

⊓⊔

The key idea is lifting a calculation from Zk to Zk+1. Therefore, we can compute pF as the
following theorem:

Theorem 30. Suppose f1, . . . , fn ∈ Z[x1, . . . , xk] and m is an integer. Then pF of the lattice obtained
by the Newton polytope-based strategy is a polynomial in m, and the leading coefficient is V (N)−V (Ñ).
That is,

pF (m) = (V (N)− V (Ñ))mk+1 + o(mk+1).

Proof. As pF (m) = m dim(L)−
∑m

ℓ=0 |Sℓ ∩Zk|, then using Theorem 27 and the above Lemma 29, we
have

m dim(L) = V (N(f))mk+1 + o(mk+1),

and
m∑
ℓ=0

|Sℓ ∩ Zk| = V (Ñ)mk+1 + o(mk+1).

Therefore, the leading coefficient of pF is V (N)− V (Ñ) ⊓⊔
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4.4 Comparison with the Meers-Nowakowski Strategy

We mainly discuss two issues and place the improved results on CI-HNP for CSURF in Section 5:

– For a polynomial f with k variables, the claim of Meers and Nowakowsk is that m dim(L), pj
and pF are k + 1-degree polynomials is incorrect. We provide the revised version and proof for
Heuristic 2 in their paper [MN23].

– Comparing the efficiency of calculating asymptotic bounds, noting that their results are not
provable.

Specifically, they claim that for a polynomial f with k variables, dim(L) is a degree k polynomial
in m. This is incorrect because this property only holds when m is sufficiently large.

Considering the counterexample when f = x5 + x+ 1 for m = 1, 2, . . ., the corresponding dim(L)
is the number of monomials in fm, which is 3, 6, 10, 15, 20, 25 and so on. It can be seen that for
m ≥ 3, dim(L) always satisfies the polynomial 5 ∗m− 5 while this does not hold for m < 3. In fact,
we need the constraint that m is big enough to ensure that dim(L) is some polynomial in m. The
same applies to pj as well.

They propose a new heuristic assumption that pF is also a k + 1-degree polynomial in m. We
find that this heuristic assumption is still incorrect, as it also requires m to be sufficiently large.
Additionally, we present a counterexample for pF involved in Heuristic 2, still considering f as x5 +
x+ 1. For m = 1, 2, . . ., the number of pF (m) is 2, 8, 20, 40, 65, 95 . . . .
If we interpolate with m = 1, 2, 3, we get

pF (m) = 3m2 − 3m+ 2.

If we continue with m = 2, 3, 4, we get

pF (m) = 4m2 − 8m+ 8

and with m = 3, 4, 5, we get

pF (m) =
5

2
m2 +

5

2
m− 10.

It is only at this point that we get the correct result 5
2 but it still looks like not provable. However,

using our Newton polytope-based explicit formula, we can quickly compute that the leading term of
pF (m) is

k

k + 1
· V (N(f)) =

1

2
· 5 =

5

2
.

Therefore, for the heuristic of Meers and Nowakowsk, we need to add the condition that m is suffi-
ciently large as a correction. The corrected proof can be obtained through our Theorem 30.

When using Lagrange interpolation to compute asymptotic bounds, by the state-of-the-art results
in additive combinatorics, for some polynomials f with just 4 variables like examples in Section 5.2 or
Section 5.3, m needs to be greater than 2300 in theory for dim(L) to be a polynomial in m [GSW23].
Hence, the interpolation method must involve the computation of fm for a large m to make the results
provable. Since we do not know how large m can be to ensure that dim(L) is a polynomial in m, a
natural idea is that we can terminate the interpolation method for some m’s when the corresponding
polynomial is stable. However, we find that sometimes the interpolation method may get stuck in
local convergence (see more details in Section 5.2). Hence, the output of the interpolation method
seems unbelievable. Moreover, for some f , it still requires a significant amount of time. We conducted
several experiments in Section 5.

5 Applications

In this section, we present improved results on CI-HNP for CSURF as an application of our theory.
We also compare with the Lagrange interpolation method. In Section 5.2, we point out that it suffers
from cases of local convergence, leading to unprovable results. Then, we compare the time required for
calculating asymptotic bounds to validate the efficiency of our algorithm in Section 5.3 and Section 5.4.
Our experiments were performed using SageMath 10.3 on a MacBook Pro with an M1 chip, boasting
a maximum CPU clock rate of 3.2 GHz.
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5.1 Improving the Hidden Number Problem for CSURF

We first introduce the result of CI-HNP for CSURF proposed by Meers and Nowakowski [MN23].
Essentially, the CI-HNP for CSURF is to solve a system of the following polynomial equations:

Lemma 31 (Meers et al., [MN23]). Given a modulus M ∈ N and polynomials

f1(x1, x2, x3) := x2
1 + a1x1x

2
2 + a2x1x2 + a3x1 + a4x

2
2 + a5x2 + a6,

f2(x1, x2, x3) := x2
3 + b1x

2
1x3 + b2x1x3 + b3x3 + b4x

2
1 + b5x1 + b6,

for some constants ai, bi ∈ Z, a bound X ∈ N, and an arbitrarily small constant ϵ > 0, if M is
sufficiently large, and

X < M10/41−ϵ,

then we can find all small roots u = (u1, u2, u3) of f1 and f2 modulo M , such that |ui| < X in time
polynomial in log(M), under Assumption 1.

For CI-HNP in CSURF, the dimension and determinant of the lattice are quite complex to com-
pute. However, using the explicit formulas we discovered, it becomes much more convenient. Below
are the improved results we obtained by our strategy in Section 4:

Theorem 32. Given a modulus M ∈ N and polynomials

f1(x1, x2, x3) := x2
1 + a1x1x

2
2 + a2x1x2 + a3x1 + a4x

2
2 + a5x2 + a6,

f2(x1, x2, x3) := x2
3 + b1x

2
1x3 + b2x1x3 + b3x3 + b4x

2
1 + b5x1 + b6,

for some constants ai, bi ∈ Z, a bound X ∈ N, and an arbitrarily small constant ϵ > 0, if M is
sufficiently large, and

X < M8/31−ϵ,

then we can find all small roots u = (u1, u2, u3) of f1 and f2 modulo M , such that |ui| < X. in time
polynomial in log(M), under Assumption 1.

Proof. Using our strategy mentioned in Section 4 and explicit formulas, we can quickly compute

dim(L) = 8

3
m3 + o(m3),

p1 = 2m4 + o(m4),

p2 =
5

3
m4 + o(m4),

p3 =
3

2
m4 + o(m4),

pF =
4

3
m4 + o(m4),

resulting in X < M8/31. ⊓⊔

This improves Theorem 4 in [MN23] of XY Z < M30/40, thereby improving the CSURF result
from requiring 31/40 MSBs in Theorem 7 in [MN23] to only requiring 23/31 MSBs.

5.2 Example for Local Convergence

Let us illustrate the phenomenon of local convergence encountered when using the interpolation
method proposed in [MN23]. Consider the following polynomial f with

supp{f} = {x3
1, x1x2, x1x3, x2, x

2
3x

2
4, x

5
4, 1}.

Here we use pM to represent m dim(L). We compute fm and then track the corresponding pM(m)
and pj(m). Here, f has four variables, i.e., k = 4. According to the results of [Kho92], we know that
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dim(L) should be polynomials in m with degree 4 when m > Nkh. However, according to the result
in [GSW23], the upper bound,

Nkh = (2× 7× 5)8×7 ≈ 2343,

is extremely large, making it impractical.
A natural idea is to consider the values of pM and pj at m−5,m−4,m−3,m−2,m−1,m when

m ≥ 5, and then interpolate to obtain a fifth-degree polynomial, recording the leading coefficient.
The relevant numerical values are presented in Figure 4. In Figure 4a, we observe that as m increases,
the leading coefficient of pM stabilizes at 25/12. However, this is incorrect. Continuing to increase m,
we eventually find that the leading coefficient of pM stabilizes at 2. All the information can be found
in Figure 4b, where the part to the left of the gray dashed line corresponds to Figure 4a.

(a) No.1 (b) No.2

Fig. 4: An example for Local Convergence

In practical applications of the interpolation method, one might encounter issues with results
getting stuck in local convergence. Additionally, even the state-of-the-art results in Additive Combi-
natorics as proposed in [GSW23] may lead to overly large computations. Our novel strategy effectively
tackles these challenges, which further highlights the value of our work.

5.3 A Toy Example

Here we use a toy example to demonstrate the significant reduction in computational time achieved
by our new method to compute asymptotic upper bounds.

We use the following system of polynomial equations:{
f1 with supp{f1} = {x3

3x
2
4, x

2
2, x1x2, 1}

f2 with supp{f2} = {x5
4, x

2
3x1, x

3
1, x2, 1}.

Now we see the following Figure 5 to see how large m needs to be to satisfy the interpolation and
get the value we want.

Fig. 5: The left subfigure represents the Newton polytope corresponding to {f1, f2}. For the right
subfigure, for the horizontal coordinate m, the vertical coordinate indicates the leading coefficient
obtained by interpolating pM and pj at m− 5,m− 4,m− 3,m− 2,m− 1,m when m ≥ 5.
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If we want to obtain provable results using Lagrange interpolation, we must require that m is
greater than Nkh proposed by [GSW23], which is more than 2300. It is infeasible to compute fm for
such a large m. If we heuristically choose m such that the leading term of dim(L) remains invariant
with respect to m, we must also choose m > 40, which costs more than 20 minutes! However, if we
use the explicit formula, the time cost is less than 0.5s to compute the volume of its Newton polytope!

5.4 More Experiments

We conducted more experiments to demonstrate the advantages of our method compared to the
interpolation method.

As we discussed above, using interpolation requires m to be sufficiently large such that |supp(fm)|
is a polynomial in m. Therefore, the inevitable computation of fm consumes a significant amount of
time. Intuitively, for f ∈ Z[x1, . . . , xk], the sparser the points in A(f) are within N(f), the larger the
required m. As the number of variables k increases, the corresponding m also increases. We conducted
experiments under different values of k as the following Table 1.

k Interpolation [MN23] Ours

Exp. 1 3 10.9 s 0.2 s
Exp. 2 3 46.2 s 0.04 s
Exp. 3 3 2238.2 s 0.1 s
Exp. 4 3 828.3 s 0.1 s
Exp. 5 4 33112.4 s 0.2 s
Exp. 6 4 32451.7 s 0.1 s
Exp. 7 4 - 0.1 s
Exp. 8 4 - 0.2 s

Table 1: Running time for computing asymptotic upper bounds ( " - " means longer than 24 h). The
details about the polynomials used in our experiments can be found in Table 2 in Appendix B.

For the polynomial f , using Lagrange interpolation, we employ the Automated Coppersmith
method to construct the lattice, compute dim(L) and det(L), and then use interpolation to obtain
the leading coefficient. For our Newton polytope approach, we directly calculate the volume of the
corresponding polytope and record the computation time. Our method shows significant time advan-
tages, as these polynomials require large values of m before becoming polynomial-like. For instance,
in Exp. 5 - Exp. 8, the minimum required values of m were 12, 12, 14, and 18, respectively.

6 Conclusion

In this paper, we introduced a new and powerful mathematical tool from Additive Combinatorics to
improve Coppermith’s method for solving polynomial equations. We revisited the strategy of Jochemsz
and May, as well as the strategy of Meers and Nowakowski, and proved that the bounds obtained by
the two strategies can be efficiently achieved by the volume of the corresponding Newton polytope.
We also proposed a novel Newton polytope-based strategy, eliminating the need for computing large
exponentiations of polynomials in the previous strategies. As applications, we proved a heuristic
introduced by Meers and Nowakowski at Asiacrypt’23 and improved the cryptanalytic result for the
Commutative Isogeny Hidden Number Problem.
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A The equivalence of the Jochemsz-May Strategy and the
Meers-Nowakowski Strategy for a single polynomial equation

Suppose f ∈ Z[x1, ...xk] is a polynomial with a small root u = (u1, . . . , uk) ∈ Zk modulo some integer
M . Here a small root means we assume that we know an upper bound for the root, namely |uj | < Xj

for some given Xj .
For the Jochemsz-May Strategy [JM06], they defined the following set

Jℓ = {λ|λ ∈ supp{fm} and
λ

LM(f)ℓ
∈ supp{fm−ℓ}} (6)

and then define the shift polynomials as follows

g[i1,...,ik](x1, . . . , xk) =
xi1
1 · . . . · xik

k

LM(f)ℓ
f ℓMm−ℓ,

for ℓ = 0, . . . ,m, and xi1
1 . . . xik

k ∈ Jℓ \ Jℓ+1.
Recently, Meers and Nowakowski generalized the Jochemsz-May Strategy from a single polynomial

equation to a system of polynomial equations. However, the Meers-Nowakowski Strategy and the
Jochemsz-May Strategy still have a slight difference in the single polynomial equation case. In the
Meers-Nowakowski Strategy, they choose

J ′
ℓ = {λ|λ ∈ supp{fm} and

λ

LM(f)ℓ
f ℓ ∈ supp{fm}}. (7)

Although Jℓ and J ′
ℓ appear somewhat different, nevertheless, we will prove that this difference is

essentially negligible.
Suppose the lattices obtained through the Jochemsz-May strategy and the Meers-Nowakowski

strategy are L and L′, respectively. They have the same dimension, which is mA(f). For determinate,
we have the following theorem:

Theorem 33. For f ∈ Z[x1, . . . , xk] and an integer m, suppose the lattices obtained through the
Jochemsz-May strategy and the Meers-Nowakowski strategy are L and L′, respectively. Write

det(L) = X
p1(m)
1 · . . . ·Xpk(m)

k MpF (m),

det(L′) = X
p′
1(m)

1 · . . . ·Xp′
k(m)

k Mp′
F (m).

We have
pj(m) = p′j(m), for j = 1, . . . , k,

and

lim
m→∞

pF (m)

p′F (m)
= 1.
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Proof. The difference lies in the fact that Jℓ ⊂ J ′
ℓ, which results in differences in pF and p′F . However,

assuming that the lattice obtained through the Newton polytope strategy is L′′ with corresponding
p′′F , we have pF ≥ p′F ≥ p′′F . From Section 3, we know that

lim
m→∞

pF
p′′F

= 1.

Thus, it follows that
lim

m→∞

pF
p′F

= 1.

In fact, they both have the leading coefficient k
k+1V (N(f)).

B Details for f in Section 5

We also provide detailed information about the polynomials used in our experiments in Table 2.

supp{f}

Exp. 1 supp{(x1 ∗ x2 + x1 + x2 + 1) ∗ (x2 ∗ x3 + x2 + x3 + 1) ∗ (x1 ∗ x3 + x1 + x3 + 1)}

Exp. 2 supp{x3
1 + x1 ∗ x2 + x1 ∗ x2

3 + x2
2 ∗ x3

3 + x2
2 + x2 + 2}

Exp. 3 supp{(x3
3 ∗ x2

2 + x2
2 + x1 ∗ x2 + 1) ∗ (x2

3 ∗ x1 + x3
1 + x2 + 1)}

Exp. 4 supp{(x2
2 + x3

1 ∗ x2 + 1) ∗ (x2
1 + x2 ∗ x3 + x4

3 + 1)}

Exp. 5 supp{(x2
2 + x3

1 ∗ x2 + x2
2 ∗ x3

4 + 1) ∗ (x2
1 + x2 ∗ x3 + x4

3 + 1)}

Exp. 6 supp{(x2
2 + x3

1 ∗ x2 + x2
2 ∗ x5

4 + 1) ∗ (x2
1 + x2 ∗ x3 + x4

3 + 1)}

Exp. 7 supp{(x2
2 + x3

1 ∗ x2 + x2
2 ∗ x3

4 + 1) ∗ (x2
1 + x2 ∗ x3 + x2

3 ∗ x4 + 1)}

Exp. 8 supp{(x2
2 + x3

1 ∗ x2 + x2
2 ∗ x5

4 + 1) ∗ (x2
1 + x2 ∗ x3 + x2

3 ∗ x4 + 1)}
Table 2: Details of f in Table 1.
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