
MAESTRO: Multi-party AES using Lookup Tables

Hiraku Morita
Aarhus University
Aarhus, Denmark

University of Copenhagen
Copenhagen, Denmark

hiraku@cs.au.dk

Erik Pohle
COSIC, KU Leuven
Leuven, Belgium

erik.pohle@esat.kuleuven.be

Kunihiko Sadakane
The University of Tokyo

Tokyo, Japan
sada@mist.i.u-tokyo.ac.jp

Peter Scholl
Aarhus University
Aarhus, Denmark

peter.scholl@cs.au.dk

Kazunari Tozawa
The University of Tokyo

Tokyo, Japan
tozawa.kazunari@mail.u-tokyo.ac.jp

Daniel Tschudi
Concordium

Zürich, Switzerland
dt@concordium.com

ABSTRACT

Secure multi-party computation (MPC) enables multiple distrust-

ing parties to jointly compute a functionwhile keeping their inputs

private. Computing the AES block cipher in MPC, where the key

and/or the input are secret-shared among the parties is important

for various applications, particularly threshold cryptography.

In thiswork, we propose a family of dedicated, high-performance

MPC protocols to compute the non-linear S-box part of AES in the

honest majority setting. Our protocols come in both semi-honest

and maliciously secure variants. The core technique is a combina-

tion of lookup table protocols based on random one-hot vectors

and the decomposition of finite field inversion in�� (28) into mul-

tiplications and inversion in the smaller field�� (24), taking inspi-
ration from ideas used for hardware implementations of AES. We

also apply and improve the analysis of a batch verification tech-

nique for checking inner products with logarithmic communica-

tion. This allows us to obtain malicious security with almost no

communication overhead, and we use it to obtain new, secure ta-

ble lookup protocols with only $ (
√
# ) communication for a table

of size # , which may be useful in other applications.

Our protocols have different trade-offs, such as having a similar

round complexity as previous state-of-the-art but 37% lower band-

width costs, or having 27% fewer rounds and 16% lower bandwidth

costs. An experimental evaluation in various network conditions

using three party replicated secret sharing shows improvements

in throughput between 23% and 27% in the semi-honest setting.

For malicious security, we improve throughput by 46% and 270%

in LAN and by up to 453% in WAN due to a new multiplication

verification protocol.

1 INTRODUCTION

Securemulti-party computation (MPC) has become a practical com-

ponent to realize privacy-preserving computation and to improve

both privacy and security of existing processes and data flows. Us-

ing MPC, a set of distrusting parties can jointly evaluate a func-

tion while keeping their own input private. The security of this ap-

proach relies on distributed trust that no adversary corrupts more

parties than the allowed corruption threshold.

Often, MPC protocols are designed to support generic compu-

tation with good performance over commonly used functions. For

specific, complex functions, such as symmetric-key primitives like

block ciphers, using a generic MPC protocol will not yield opti-

mal performance. In these cases, the effort of designing highly-

specialized and high performanceMPCprotocols for essential build-

ing blocks is worthwhile to improve the overall performance of

privacy-preserving systems and applications.

An MPC protocol to evaluate the AES block cipher with secret-

shared key and input has various applications that all benefit from

improved performance of the primitive in MPC. Such specialized

protocols for AES will be the main focus of this work.

AES evaluations in MPC can be used when clients communi-

cate and exchange data with a cluster of MPC engines in a se-

cure and opaque manner using, e.g., oblivious TLS [2] or clients

secret-share a secret key to enable MPC parties to distributively de-

crypt [10, 50] and arbitrarily process their data on their behalf [48]

in a secure way, e.g., for secure IoT data collection and process-

ing [1]. Furthermore, it enables secure database joins [43], keyword

search [30], private set intersection [36] or allows to increase the

trust in systems that rely on centralized secrets, like the Key Distri-

bution Center in the Kerberos authentication protocol or brokered

identifcation systems [17]. Distributed variants [6] and similar dis-

tributed authentication protocols [9] rely on AES evaluations with

a secret-shared key or can use AES as an oblivious PRF with high

confidence in its security. The general case of this class of applica-

tions is threshold cryptography, which uses MPC to protect crypto-

graphic keys while they are used, adding a layer of distributed trust

to a secure system. NIST identified this use-case and initiated the

multi-party threshold cryptography project1 to study, among oth-

ers, symmetric-key functions like AES-based enciphering, CMAC

and HMAC in a threshold way.

Since cryptographic primitives tend to be fairly complex to eval-

uate inside an MPC protocol, much effort has been put into de-

signingMPC-friendly variants of standard primitives such as hash

functions [3], block ciphers [4] and pseudorandom functions [34].

This approach comes with two major drawbacks, however. Firstly,

since these primitives are relatively new, they have not been sub-

jected to the same level of scrutiny from cryptanalysts as estab-

lished, longstanding primitives like AES or SHA-256, so there is

less confidence in their security. Secondly, none of these primitives

are standardized or even in widespread use. This rules out deploy-

ing these types of constructions in applications where MPC must

1https://csrc.nist.gov/projects/threshold-cryptography
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be integrated into an existing system, which only uses standard

cryptographic primitives. Aside from these adoption and integra-

tion challenges, some MPC-friendly primitives also require many

more rounds, e.g., MiMC [3] needs ≈ 8 times more rounds for the

same security level compared to AES. Furthermore, large (prime)

field arithmetic or extensive use of bit-bit multiplication (e.g., in the

linear layers of LowMC [4]) makes them relatively slow to evaluate

in plain software.

1.1 Contribution

We present a family of MPC protocols to evaluate the AES block

cipher in the multi-party, honest majority setting with both semi-

honest and maliciously secure variants.

Our contribution is three-fold:

• We securely compute the AES block cipher with novel pro-

tocols to compute the inversion in �� (28) (where 0 maps

to 0). The proposed protocols either rely on lookup table

protocols based on preprocessed random one-hot vectors,

or on the isomorphism between �� (28) and �� ((24)2) or
on a combination of both techniques. This results in a range

of different trade-offs in computational complexity, band-

width costs and round complexity.Malicious security (with

abort) is achieved by a multiplication verification check

with logarithmic communication. The overall design focus

is maximizing online phase and total throughput.

• We present several lookup table protocols for (C, =) repli-
cated and (=, =) additive secret-sharing, which may be of

independent interest. In particular, our protocol based on

replicated secret sharing is maliciously secure and only

needs $ (
√
# ) communication for a table of size # . All

prior malicious protocols based on information-theoretic

primitives require Ω(# ) communication.

• We implemented some of the described protocols in the 3-

party setting, and experimentally verify their performance

in multiple network settings. We obtain improvements of

27% and 23% for online phase and total throughput in the

semi-honest setting, compared with the best prior work of

Chida et al. [21]. For malicious security, we improve the to-

tal throughput from 46% to 270% in LAN while decreasing

communication by up to 93%. In WAN, the total through-

put is increased up to 453%.

1.2 Technical Overview

We now give a brief overview of our main protocols. Their perfor-

mance characteristics in the 3-party setting, together with those of

the most competitive related work, are summarised in Table 1.

Here, the communication volume represents the number of bits

sent by each party, excluding the cost of key expansion steps. As

shown in Table 1, the execution of a 10-round oblivious AES pro-

tocol involves a communication volume of 4320 bits in 22 commu-

nication rounds. We have reduced the round complexity by 27%

and communication by 16% compared to the state-of-the-art [21],

whilst also adding malicious security with almost no communica-

tion overhead.

S-box via �� (24) inversion. Our main approach to evaluating

the S-box in MPC views the inversion in �� (28) as an extension

of �� (24) at the cost of one inversion and 3 multiplications in

�� (24). We observe that this representation considerably simpli-

fies the complexity of the S-box and identify suitable MPC sub-

protocols for the �� (24) inversion. Although methods for finite

field inversion via a tower of field extensions are well-known [39]

and have been applied to AES [12, 20], as far as we are aware, they

have not been explicitly considered in an MPC context.

�� (24)-circuit: inversion as an arithmetic circuit. First, we

consider the simple approach of computing G−1 = G14 = G2 ·G4 ·G8
in�� (24). This can be donewith just 2multiplications, since squar-

ing is �� (2)-linear. This already reduces the communication by

more than one third, compared with a �� (28) circuit-based ap-

proach [21], while preserving the same round complexity.

�� (24)-LUT-16: inversion with a lookup table. Our next vari-

ant uses lookup table techniques to evaluate the inverse. Here, we

adapt techniques from the dishonest majority MPC literature [18,

25, 40], which allow to offload the work of computing a lookup

table to a preprocessing phase. The high-level idea is to use the

preprocessing phase to compute a secret-shared, random one-hot

binary vector (that is, all-zero except for a single position) of length

equal to the table size, which we do based on a protocol from [40,

42]. Using this, in the online phase the parties can open themasked

input and then compute the table lookup with a single linear com-

bination. This reduces communication in the online phase by a fur-

ther 20%, and reduces round complexity, but adds some cost in an

input-independent preprocessing phase.

LUT-256: S-box via a single table lookup. Our second class of

protocols treats the S-box as a single lookup table of 256 elements.

The main advantage of this approach is that it gets the best round

complexity, since the S-box can be evaluated in a single round in

the online phase (or 10 rounds for 1 AES block). Here, we present

two different variants, based on either additive secret sharing (〈〈·〉〉)
or replicated secret sharing (J·K). Replicated secret sharing has the
lowest online communication cost, but has very expensive prepro-

cessing.With additive secret sharing, through a novel approachwe

are able to reduce the preprocessing cost by more than 10x, whilst

only doubling the communication in the online phase. Based on

our initial implementation of the semi-honest version of the repli-

cated protocol, it seems that the LUT-256 protocols are best suited

to a WAN setting, where round complexity is more critical, espe-

cially since the local computation cost of the table lookups is larger.

Achieving malicious security. One of the main challenges in

our protocols is to achieve malicious security with a low overhead.

One reason this is difficult is that our protocols rely on additive

secret at various points, instead of purely a robust scheme like

replicated or Shamir secret sharing. This makes it hard to apply

standard verification techniques, such as the batch multiplication

procedure of Boneh et al. [11], which is often used for distributed

zero-knowledge proofs and MPC protocols [15, 32]. To overcome

this, we carefully design our protocols such that the necessary

replicated shares can be extracted from our additively shared table

lookup protocols. This allows the result of a table lookup on ad-

ditively shared inputs to be cheaply verified by checking the pre-

vious multiplication gate. Additionally, for our additively shared

LUT-256 protocol, we rely on the algebraic structure of the S-box
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Table 1: Performance comparison of our multi-party AES protocols and other approaches (communication measured in bits).

For malicious security, our protocols incur an additional$ (log# ) rounds in both the preprocessing and online phases, where

# is the total number of multiplications verified
† the protocol communicates$ (^ ) during the input phase but nothing is sent during the computation phase.

Preprocessing Phase Online Phase

Protocol Comm. Rounds Comm. Rounds Total Comm. Malicious

Obliv. select [43] – – 286720 30 39800 ✗

�� (2)-circuit [6, 43] – – 5120 60 5120 ✗

�� (2)-circuit (mal.) [5] – – 35840 60 35840 ✓

�� (28)-circuit [21] – – 5120 30 5120 ✗

�� (28)-circuit (mal.) [21, 31] ≈ 15000 $ (1) 6144 30 ≈ 21144 ✓

Garbled circuit [44, 49] 614400 1 0† 1 ≈ 614400 ✓

�� (24)-circuit – – 3200 30 3200 ✓

�� (24)-LUT-16 1760 2 2560 20 4320 ✓

〈〈·〉〉-LUT-256 3520 2 2560 10 6080 ✓

J·K-LUT-256 39520 6 1280 10 39800 ✓

to reduce the cost of the correctness check of an S-box computa-

tion, after a potentially faulty table lookup, inspired by recent work

in zero-knowledge proofs [8]. This allows all of our maliciously se-

cure protocols to have the same amortized communication cost as

their semi-honest counterparts.

As a stepping stone in one of our protocols, we also obtain a

general-purpose, malicious protocol for table lookups with$ (
√
# )

communication complexity for a table of size # . To the best of our

knowledge, all prior practical approaches with malicious security

require a cost of Ω(# ). Our protocol relies on the observation that

a table lookup can be verified using a single inner product check.

By applying the generalised version of the batchmultiplication ver-

ification from [11], which allows for checking inner product rela-

tions, we show how to verify a $ (
√
# ) complexity lookup table

with almost no communication overhead.

Interestingly, for our additively shared AES protocol based on a

specialization of this technique, we observe that it’s not sufficient

to directly use the verification protocol from [11, 15, 32], which in-

herently leak any errors in multiplication (or inner product) triples

being verified to the adversary. While this leakage would typically

be harmless, since the errors are already known to the adversary,

this turns out not to be the case for us (for further discussion, see

Section 3.5.2). We therefore show how to modify the verification

procedure to remove any leakage.

Overall, as can be seen in Table 1, our maliciously secure pro-

tocols lead to a large reduction in communication costs compared

with prior approaches. Our implementation results show that this

approach comes with a slight increase in computational costs, but

is still highly practical.

1.3 Related Work

1.3.1 Background. Known oblivious AES protocols are classified

into two primary categories: those utilizing garbled circuits and

those employing secret sharing schemes. Garbled circuit-based ap-

proaches [35, 37, 40, 49, 53] have the advantage of fewer communi-

cation rounds, but have high bandwidth costs due to the extensive

size of garbled circuits. On the other hand, secret sharing schemes

requires more communication rounds, but less communication. In

recent years, efficient methods for performing secure Boolean op-

erations have been proposed [6, 21] in the honest-majority setting,

improving the performance of AES in MPC. The main challenge

in constructing oblivious AES protocols lies in computing S-boxes,

which requires non-linear operations [6] and thus communication.

Previous research addressing this challenge can be broadly cate-

gorized into two types: methods using secure table lookup proto-

cols [42, 43], and secure computation of algorithms that focus on

the specific structure of S-boxes [23, 43]. Our proposed protocol

integrates good aspects from both of these methods.

1.3.2 Oblivious AES using Lookup Tables. Oblivious AES compu-

tation using secure table lookup was proposed by Launchbury et

al. [42] and Laur et al. [43], by converting the secret lookup in-

dex G into a one-hot vector encoding, with a one in position G and

zeroes elsewhere. This approach performs the encoding entirely

in the online phase, and requires 304 secure multiplications and 3

rounds to process one S-box as a size-256 table. Later works have

used this technique in both the dishonest majority and honest ma-

jority settings [7, 18, 25, 40, 47], with the main improvement being

to offload the computation of the one-hot vector to a preprocessing

phase, leading to a very lightweight online phase. For example, the

protocols from [18, 40] require 2: −: − 1 secure AND gates to pre-

process a table of size # = 2: . Our J·K-LUT-256 protocol is based
on these ideas applied to the setting of replicated secret sharing.

Other approaches using distributed point functions can reduce the

bandwidth cost to$ (:_), for security parameter _, but this comes

with computational security and an expensive setup phase [13, 14].

1.3.3 Structure of the S-box. Protocols exploiting the structure of

the AES S-box have proposed various ways to improve efficiency.

Laur et al. [43] securely computed S-boxeswith the optimized Boolean

circuit of Boyar et al. [12], obtaining a protocol in 6 rounds and

with 32 AND gates. Subsequent works [5, 6] employ the same tech-

nique in the replicated secret-sharing setting for semi-honest and
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malicious adversaries. By focusing on the algebraic structure of

the S-box, methods like the one in [21, 23, 24, 40] securely com-

pute the S-box as a multiplicative inverse G−1 = G254 in �� (28).
The previous most efficient AES protocols compute the inversion

as a circuit in�� (28) [21, 40]. In Chida et al.’s protocol [21], this in-
version can be performed with only four secure multiplications in

three rounds. While it is also possible to interpolate the AES S-box

as a sparse polynomial in�� (28) [45], as explored in [24], the cost

of 18 multiplications in 12 rounds is prohibitively high compared

to other techniques.

1.3.4 Technique for Multiplicative Inverse. The technique we use

in this paper to calculate the multiplicative inverse using an exten-

sion of�� (24) has mainly been used in hardware implementations

of AES [51, 52]. Garbled circuit-based methods for oblivious AES

have used optimized circuits based on this approach [37].

1.3.5 Maliciously Secure Protocols. There are also oblivious AES

protocols that are secure against malicious adversaries [5, 24, 26,

27]. Ourmaliciously secure protocols target the three-party honest-

majority setting. In the same setting, [5], improving over [31], to

compute Boolean circuits use bucket cut-and-choose techniques

with a total communication cost of 7 bits per AND gate. The three-

party garbling framework by Mohassel et al. [44] lifts any semi-

honest two-party garbling scheme into amalicious three-party pro-

tocol in the honest-majority setting. Instantiated with the Three-

Halves scheme [49], the communication cost per ANDgate is 1.5^ ≈
120 bits for 80-bit security.

In other settings, maliciously secure two-party protocols [26]

and multi-party protocols [23, 24, 27] for dishonest majority im-

plement the AES function. These protocols require more than five

times the communication cost compared to semi-honest secure

protocols. Due to the new multiplication verification check, our

maliciously secure protocols only have a logarithmic communica-

tion overhead over the semi-honest variants.

2 PRELIMINARIES

We begin by outlining some notation. We write ®G to denote vectors
and index them as ®G8 . We ®G · ®~ to describe the inner product. We use

®I = ®G ‖ ®~ to denote concatenation, i.e., ®I first contains elements of

®G , then ®~. One-hot vectors are written as e (A ) where A is the index
of the single one in the vector, i.e., e

(A )
A = 1 and e

(A )
8 = 0 for 8 ≠ A .

Public truth table vectors are denoted with ) , omitting the ®.

2.1 Finite Fields and Field Inversion

Let F2 be the field of order 2. We define the finite fields�� (28) and
�� (24) as follows:

�� (28) := F2 [- ]/(- 8 + - 4 + - 3 + - + 1) ,
�� (24) := F2 [- ]/(- 4 + - + 1) .

Note that the irreducible polynomial used in the definition of�� (28)
comes from the AES specification [28]. We consider elements of

�� (28) as bit-strings of length 8 corresponding to the coefficients

of a degree-7 polynomial over F2. In particular, wewrite
∑7
8=0 08G

8 ∈
�� (28) as the string {0706 . . . 0100}2 or the corresponding 2-digit

hexadecimal notation. For example, {6�}16 represents the equiva-
lence class of - 6 +- 5 +- 3 +- 2 +- . Similarly, elements of�� (24)

are represented as 4-bit sequences or 1-digit hexadecimal notation.

For example, {�}16 ∈ �� (24) represents the equivalence class of
- 3 + - 2 + - .

We define the finite field (extension) �� ((24)2) over �� (24) as
�� ((24)2) := �� (24) [- ]/(- 2 + - + {�}16) .

Elements of �� ((24)2) are represented as a degree-1 polynomial

0ℎ- + 0ℓ over �� (24). Each coefficient’s binary representation is

{0ℎ30ℎ20ℎ10ℎ0}2 and {0ℓ30ℓ20ℓ10ℓ0}2.
2.1.1 Multiplicative Inversion in �� ((24)2). A formula for the in-

verse of 0 = 0ℎ- + 0ℓ ∈ �� ((24)2) can be calculated by solving a

system of equations derived from 00−1 = 1 (see, for instance, [20,

29]), giving

(0ℎ- + 0ℓ )−1 = (0ℎ ⊗ E−1)- + (0ℎ ⊕ 0ℓ ) ⊗ E−1 . (1)

Here, ⊕, ⊗ represent addition and multiplication in�� (24) respec-
tively, and E ∈ �� (24) is defined as follows

E := (02
ℎ
⊗ {�}16) ⊕ (0ℎ ⊗ 0ℓ ) ⊕ 02ℓ . (2)

This shows that the inverse in�� ((24)2) can be obtained through

the calculation of one inverse E−1 in�� (24), plus three multiplica-

tions and two squarings in �� (24).
2.1.2 IsomorphismBetween�� (28) and�� ((24)2). The finite fields
�� (28) and�� ((24)2) are isomorphic. We use the explicit isomor-

phism and its inverse, described byWolkerstorfer, Oswald and Lam-

berger [52], given by the followingmaps (specified in Appendix A):

Φ : �� (28) ∼−−→ �� ((24)2) : {0706 . . . 00}2 ↦−→ (0ℎ, 0ℓ ) ,
Φ
−1 : �� ((24)2) ∼−−→ �� (28) : (0ℎ, 0ℓ ) ↦−→ {0706 . . . 00}2 .

2.2 Advanced Encryption Standard (AES)

AES is a block cipher standardized by NIST [28], with a 128-bit

block size. We focus on AES-128, with a key length of 128 bits. For

a detailed overview of the algorithm, we refer to Appendix A.

2.2.1 High-Level Structure and S-box. AES follows a substitution-

permutation network design, with alternating layers of non-linear

S-boxes and linear permutations. In addition, there is a key sched-

ule that expands the 128-bit key into a set of round keys to be used

in each round. The linear components of a round are Shi�Rows,

MixColumns and AddRoundKey, which XORs the state with the

round key. These can be expressed as linear operations in �� (28).
The S-box of AES — also called SubBytes — operates on one

byte of the state at a time, and is the only non-linear part of AES.

It can be expressed as the mapping over the finite field �� (28)
that sends G ↦→ Affine(G254), where Affine as an invertible affine

transformation. Since the multiplicative group of�� (28) has order
255, the computation of G254 maps every non-zero G to G−1 and 0

to 0. We will often abuse terminology slightly and refer to this as

an inversion in �� (28).

2.3 Security Model

We consider protocols secure against up to C − 1 out of = corrupted
parties, where C − 1 < =/2. We will often focus on the case of 1-

out-of-3 corruptions, where = = 3, C = 2. All of our protocols are
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presented and analyzed in the malicious model with abort, where

a corrupt party may deviate from the protocol specification and

honest parties are not guaranteed to receive output. We also con-

sider relaxations in the semi-honest model, where each party is

assumed to follow the protocol, which are obtained by omitting

any verification steps in the protocol.

We model ideal functionalities and give security proofs in the

Universal Composability (UC) framework [19], which gives strong

composition guarantees.

2.4 Secure Multi-Party Computation

Webuild uponMPCprotocols based on replicated secret sharing [38].

This approach is well-suited for secure computations involving

�� (2: ) values such as those occurring in oblivious AES. Addition-

ally, it offers the advantage of a lightweight protocol for multipli-

cation of secret-shared values.

2.4.1 Replicated Secret Sharing and Additive Secret Sharing. We

use both C-out-of-= replicated secret sharing ((C, =)-RSS) and =-out-
of-= additive secret sharing ((=, =)-SS):

• J0K: (C, =)-RSS. For a secret 0 in a finite field F, 0 is split into( =
C−1

)
random shares 0 () ) ∈ F, for each subset ) ⊂ [=] of

size C − 1, with the shares sampled so that 0 =
∑
) 0
() ) .

Party 8 gets the
(=−1
C−1

)
shares J0K8 = {0 () ) }),8∉) . The over-

all sharing of 0 is J0K = (J0K1, . . . , J0K=). In case of three

parties, each party holds exactly two of the three shares.

• 〈〈0〉〉: (=, =)-SS. For a secret0 ∈ F, each party 8 holds 〈〈0〉〉8 =
0 (8 ) ∈ F s.t. 0 = 0 (1) + · · · + 0 (=) . A share of a value 0 is

〈〈0〉〉 = (〈〈0〉〉1, . . . , 〈〈0〉〉=).
In this paper, the field F is always characteristic 2, and typically

either �� (2), �� (24), or �� (28). With both replicated and addi-

tive sharing, a sharing in�� (2: ) can be decomposed into an array

of : shares over �� (2) without communication by doing binary

decomposition.

We denote the set of corrupted parties by C, and the set of hon-
est parties by H . For a sharing JGK, we let JGKC = {JGK8 }8∈C be

the set of all corrupt parties’ shares, and JGKH the set of all honest

shares (and similarly define 〈〈·〉〉C , 〈〈·〉〉H for additive sharings).

Definition 2.1 (Consistent shares). Let ( ⊂ [=] and consider a set
of replicated shares {JGK8 }8∈( , where JGK8 = {G () )8 })∌8 . We say

that the set of shares is consistent if G
() )
8 = G

() )
8′ for every 8, 8′ and

) where 8, 8′ ∉ ) .

When modelling security, we often define ideal functionalities

where the adversary provides as input a set of shares JGKC . In this

case, we implicitly require that the functionality only accepts a

set of consistent shares. Our functionalities also often rely on the

following straightforward fact.

Proposition 2.2. Given a secret G and a consistent set of cor-

rupted parties’ shares JGKC , a consistent set of honest shares JGKH

can always be defined.

Note that if exactly C parties are corrupted, then the honest par-

ties’ shares are defined uniquely; otherwise, they can be sampled

at random.

2.4.2 Reconstruction. We consider reconstruction as an interac-

tive protocol, where parties exchange shares and reconstruct a se-

cret. We have the following two protocols.

Opening additive shares: G = Reconst(〈〈G〉〉). Each party sends

its share G (8 ) to all other parties, and reconstructs G =
∑
G (8 ) . This

requires = − 1 field elements of communication per party in one

round. Alternatively, one can use the “king” approach, where the

parties send their shares to a designated party, who reconstructs

and sends back G . This takes on average only 2(= − 1)/= field el-

ements per party but two rounds of interaction. In our implemen-

tation, since we focus on the 3-party setting, we chose to take the

one-round approach with two elements of communication.

Note that in the malicious setting, a corrupted party can easily

change the result of reconstruction by lying about their share.

Opening replicated shares: G = Reconst(JGK). With replicated

secret sharing, the parties can robustly open a secret, guarantee-

ing that each party either outputs the correct value, or aborts. The

simplest protocol is for the parties to exchange all of their shares,

and check whether the resulting sharing is consistent before re-

constructing G . When reconstructing many values, this protocol

can be optimized by optimistically sending the minimal number

of shares needed to reconstruct G , and later verifying all openings

in a batch by exchanging and comparing hashes of the remaining

shares. This was demonstrated for the 3-party setting in [31] and

later extended to the multi-party setting [41].

2.4.3 Correlated Randomness and Coin Tossing. We require the

parties to have access to different forms of correlated randomness,

for obtaining replicated sharings of random values, and additive

sharings of zero (see Fig. 1). The Frand functionality can be imple-

mented using pseudorandom secret sharing [22], where after a one-

time setup to distribute pseudorandom function keys among the

parties, the correlated randomness can be generated non-interactively.

Obtaining random additive sharings of zero, modelled in Fzero, can
similarly be done using pseudorandom secret sharing. One simple

approach is to use Frand to obtain a random JAK, and then each

party XORs together = − 1 of its share elements, appropriately se-

lected such that all shares cancel out and sum to zero.

Finally, we also rely on the coin-tossing functionality,Fcoin, which
can be realized by running Reconst on a random sharing from

Frand.

2.4.4 Computations on Shares.

Linear Operations. Any�� (2)-linear operation can be performed

locally on replicated or additively shared values, by simply apply-

ing the operation to each element of each party’s share. Similarly,

addition by a constant can be performed by adding it to a fixed sub-

set of the share elements. Given sharings JGK, J~K and public values
0, 2 , we denote these operations by J0G + ~ + 2K := 0JGK + J~K + 2
and similarly 〈〈0G + ~ + 2〉〉 := 0〈〈G〉〉 + 〈〈~〉〉 + 2 .

Free Squaring. Since squaring in �� (2: ) is linear over �� (2),
it can be performed locally in both (t, n)−'(( and (n, n)−(( : each
party simply squares their corresponding shares.We denote JG2K ≔
Square(JGK).
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Functionality Frand (F)
(1) Frand receives from the adversary the shares JAKC .
(2) Frand samples A ← F, and uses (A, JAKC) to define JAKH .
(3) Frand distributes the shares JAKH to the honest parties.

Functionality Fzero (F)
(1) Fzero receives from the adversary the shares 〈〈I〉〉C , and

samples random shares 〈〈I〉〉H , such that I = 0 ∈ F.
(2) Fzero distributes the shares 〈〈I〉〉H to the honest parties.

Functionality Fcoin (:)
(1) Fcoin samples (11, . . . , 1: ) ← {0, 1}: and sends this to the

adversary.

(2) On receiving $ from the adversary, it delivers

(11, . . . , 1: ) to the honest parties.

Figure 1: The functionalities Frand, Fzero and Fcoin.

Local Multiplication. We rely on the multiplicative property of

replicated secret sharing: given sharings JGK and J~K, the parties

can obtain an additive sharing 〈〈G~〉〉 without any interaction. This

holds becausewhen C−1 < =/2, any pair of share elementsG () ) , G ()
′ ) ,

for size-C − 1 subsets ),) ′, is held by at least one party. For exam-

ple, when = = 3, party 8 holds (G (8 ) , G (8+1) ), (~ (8 ) , ~ (8+1) ) and can

compute 〈〈G~〉〉8 := G (8 )~ (8 ) +(G (8 ) +G (8+1) ) (~ (8 ) +~ (8+1) ). We write

this multiplication as 〈〈G~〉〉 := MultLocal(JGK, J~K).

Share Conversion from 〈〈G〉〉C>JGK. This can be achieved with a

single communication round. Essentially, each party creates a repli-

cated secret sharing JG (8 )K of its additive share, and distributes the
resulting shares to the remaining parties. With = = 3, this can be

achieved by having the parties first re-randomize their shares by

adding a share of zero from Fzero. Then, party 8 sends its share G (8 )
to party 8 + 1. The cost is sending 1 field element per party in one

round [6]. We write this as JGK = Reshare(〈〈G〉〉).

Multiplication with Additive Errors. Combining the local multi-

plication and resharing protocols, above, we obtain a multiplica-

tion protocol on J·K-shared values. In the malicious setting, a cor-

rupted party may cheat during the resharing step, introducing an

error into the output. We model this in the FweakMult functionality

(Fig. 2), adapted from [33], which allows the adversary to choose an

error3 that is added into the output shares. We additionally extend

this to FweakDotProduct, for computing an inner product, where the

inner product is computed locally followed by a single resharing.

2.5 Verifying Multiplications and Dot Products
with Malicious Security

To ensure correct multiplications with malicious security, we use

a batch verification procedure. The idea is that during the main

MPC execution, the parties can use FweakMult, and later verify that

all multiplications were correct with batch verification. This batch

verification can be safely postponed until the end of the protocol,

Functionality FweakMult / FweakDotProduct
Input: J®GK, J®~K: (C, =)-RSS share of ®G and ®~.
Output: J®G · ®~K: (C, =)-RSS share of the product ®G · ®~.
(1) FweakMult receives the shares J®GKH , J®~KH from honest

parties and reconstructs the secrets ®G, ®~.
(2) FweakMult computes the corrupted parties’ shares

J®GKC, J®~KC and sends these shares to the adversary.

(3) FweakMult receives an error 3 and a set of shares JIKC

from the adversary.

(4) FweakMult computes I := ®G · ®~ + 3 and samples honest

parties’ shares JIKH by using 3 and JIKC .
(5) FweakMult distributes the shares of JIK

C to honest parties.

Figure 2: Functionality for multiplication with additive er-

ror. We refer to the functionality as FweakMult if ®G, ®~ have

length-1, and FweakDotProduct otherwise.

as long as any outputs of the computation are only revealed after

the multiplications have been verified.

Prior works implementing MPC for Boolean circuits, such as [5,

31], use cut-and-choose techniques to verifymultiplications. These

have a large communication overhead, and require running in very

large batches to obtain reasonable parameters. Instead, we verify

multiplication triples by adapting the protocol of [32, 33], origi-

nally presented for Shamir-based MPC, and based on similar ideas

used previously for distributed zero-knowledge proofs [11] and

MPC [15, 16, 46].

Adapting the protocol to the setting of replicated secret shar-

ing, with security with abort, is quite straightforward. However,

we make two key changes that are needed in some of our applica-

tions. Firstly, we extend the protocol to verifying a batch of inner

product relations, rather than just multiplications. This allows for

a maliciously secure inner product protocol with communication

independent of the vector size, apart from the batch verification

procedure which only scales logarithmically with the total length

of all inner products. Secondly, prior works [16, 32] only realized

a functionality that leaks the errors I8 − G8~8 in all multiplication

triples to the adversary. Instead, we realize the functionality Fverify
(Fig. 3), which only leaks the result of the verification check, and no

additional information. This turned out to be critical for proving

security of our AES protocol in Section 3.5.3.

The protocol is shown in Protocol 2. To ensure correct triples

with high probability, we need to work over an exponentially large

finite field F; we therefore use the protocol by first taking our

Boolean (or small field) triples and lifting the shares into a large ex-

tension field. Then, the protocol begins by randomizing the batch

of inner product triples, converting it into a single, large inner prod-

uct of length # . To verify the inner product, the protocol proceeds

in log# rounds, where in each round the dimension is halved, by

first viewing the inner product as an inner product on length-# /2
vectors of suitably defined degree-1 polynomials, followed by eva-

luting the polynomials at a random challenge to compress this to

an inner product of vectors of field elements. Eventually, it reaches

a base case where # = 1, and performs a naive triple check (Pro-

tocol 1) that uses one extra, random multiplication and a random
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Protocol 1 CheckTriple(JGK, J~K, JIK) → 0/1
Input: JGK, J~K, JIK.
Output: Verify that G~ = I.

1: JG ′K, JAK ← Frand (F)
2: JI′K ← FweakMult (JG ′K, J~K)
3: C ← Fcoin (F)
4: d := Reconst(JGK + CJG ′K)
5: JfK := FweakMult (JIK + CJI′K − dJ~K, JAK)
6: if Reconst(JfK) = 0 then

7: return 1

8: else

9: return 0

10: end if

Functionality Fverify
Input: (J®G (1)K, J®~ (1)K, JI (1)K), . . . , (J®G (<)K, J®~ (<)K, JI (<)K),

where < is the number of inner product triples to be

verified.

Output: 1 ∈ {accept(1), abort(0)} to honest parties.

(1) Fverify receives from honest parties their shares of

(J®G (8 )K, J®~ (8 )K, JI (8 )K) to reconstruct ( ®G (8 ) , ®~ (8 ) , I (8 ) ) for
all 8 ∈ [<].

(2) Fverify computes the rest of the corrupted parties’ shares

of (J®G (8 )K, J®~ (8 )K, JI (8 )K) for all 8 ∈ [<] and sends these

shares to the adversary.

(3) Fverify computes 3 (8 ) = I (8 ) − ®G (8 ) · ®~ (8 ) .
(4) Fverify sets 1 := abort if there exists 8 ∈ [<] such that

3 (8 ) ≠ 0 and sets 1 := accept otherwise.

(5) Fverify sends 1 to the adversary and proceeds as follows:

• If the adversary replies continue, send 1 to honest

parties.

• If the adversary replies abort, send abort to honest

parties.

Figure 3: The functionality Fverify.

challenge to check the remaining one. Importantly, step 5 of the

protocol computes the value I + CI′ − d~ = (I − G~) + C (I′ − G ′~),
which should equal 0 if the triple is correct. However, this can-

not be revealed directly, as it would leak information on I − G~
to the adversary. To prevent this, we rerandomize it via the addi-

tional multiplication with JAK; this change allows us to realize the

stronger Fverify functionality.
We prove the following in Appendix B.

Theorem 2.3. Protocol 2 (Verify) securely realizes the functional-

ity Fverify (see Fig. 3), in the (FweakMult, Fcoin, Frand)-hybrid model.

The failure probability in the simulation is at most (<+2 log# )/|F|.

2.6 Functionality for Table Lookup

In Fig. 4, we present a functionality for performing a secret-shared

table lookup. The functionality is parameterized by the secret-sharing

schemes used for the inputs and outputs, denoted BB1 and BB2 re-

spectively, which can be any combination of replicated shares (J·K)

Protocol 2 Verifying a batch of inner products

Functionality: 0/1← Fverify (J· · ·K).
Input: Shared triples {J®G8K, J®~8K, JI8K}<−18=0 , where ®G8 , ®~8 ∈ F=8 and

I8 ∈ F for each 8 .
Output: Verify that ®G8 · ®~8 = I8 , for all 8 .
1: A ← Fcoin (F)
2: return VerifyDotProduct(J®G0K, AJ®G1K, · · · , A<−1J®G<−1K,

J®~0K, · · · , J®~<−1K,
∑<−1
8=0 A 8JI8K)

3: return VerifyDotProduct(J®G0‖A ®G1‖ · · · ‖A<−1 ®G<−1K,
J®~0‖ · · · ‖ ®~<−1K,

∑<−1
8=0 A 8JI8K)

4: procedure VerifyDotProduct((JG0K, . . . , JG#−1K), (J~0K, . . . ,
J~#−1K), JIK)

5: if # = 1 then

6: return CheckTriple(JG0K, J~0K, JI0K)
7: end if

8: for 8 = 0 to # /2 − 1 do
9: J58 (- )K := JG28K + (JG28K + JG28+1K)-
10: J68 (- )K := J~28K + (J~28K + J~28+1K)-
11: end for ⊲polynomials in - such that 58 (1) = G28+1 ,

68 (1) = ~28+1 , for 1 ∈ {0, 1}
12: Jℎ(1)K ← FweakDotProduct (J ®5 (1)K, J®6(1)K)
13: Jℎ(2)K ← FweakDotProduct (J ®5 (2)K, J®6(2)K)
14: Jℎ(0)K := JIK − Jℎ(1)K ⊲defines degree-2 ℎ(- )
15: A ← Fcoin (F)
16: Locally compute Jℎ(A )K via Lagrange interpolation

17: return VerifyDotProduct(J ®5 (A )K, J®6(A )K, Jℎ(A )K)
18: end procedure

and additive shares (〈〈·〉〉). We shorten the description to F BB
LUT

if

BB1 = BB2. Note that the variant J·K ↦→ J·K is fully maliciously se-

cure, while variants where the input or output is 〈〈·〉〉-shared inher-
ently allow a corrupt party to change the input or output. Impor-

tantly, if the input is 〈〈·〉〉-shared then the functionality additionally
outputs a J·K sharing of the input that was used. We use this in our

maliciously secure protocols for verifying the correct inputs were

used after the protocol execution.

In Section 3.3, wewill describe a protocol for realizingF 〈〈·〉〉→J·K
LUT

.

Later, in Section 3.5.3, we give protocols for the other variants.

3 PROTOCOLS FOR MULTI-PARTY AES

In this section, we construct the MPC protocols that compute AES.

We define the ideal functionality FAES as the functionality that

computes the AES block encryption taking secret-shared inputs

{JG8K}8=0,...,127 and a secret-shared encryption key {J:8K}8=0,...,127,
and returns shared outputs of Enc(:, G), {JI8K}8=0,...,127. All pro-
posed protocols securely compute the ideal functionality FAES.

3.1 Overview of the Proposed Protocols

To compute the AES algorithm in MPC, all steps need to be com-

puted on secret-shared data. However, the linear layers of AES

(Shi�Rows,MixColumns, AddRoundKey) can be computed locally
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Functionality F BB1 ↦→BB2
LUT

/F BB
LUT

Input: E shared under scheme BB1 ∈ {〈〈·〉〉, J·K}, and public

vector ) .

Output: )E shared under scheme BB2 ∈ {〈〈·〉〉, J·K}, where)E
is the E-th element of ) . If BB1 = 〈〈·〉〉, also output JEK.

(1) To define the input sharings, if BB1 = 〈〈·〉〉:
• FLUT receives from each party a share 〈〈E〉〉8 , and re-

constructs E =
∑
8 〈〈E〉〉8 .

(2) Otherwise, if BB1 = J·K:
• FLUT receives from honest parties their shares JEKH ,

and reconstructs E .

• FLUT computes the corrupted parties’ shares JEKC

and sends these to the adversary.

(3) FLUT looks up )E .

(4) FLUT receives from the adversary a set of corrupted

shares sh()E)C , under scheme BB2.

(5) FLUT samples consistent honest shares sh()E)H using

()E, sh()E)C), under scheme BB2.

(6) If BB1 = 〈〈·〉〉: FLUT additionally receives consistent shares
JEKC from the adversary, and defines the honest shares

JEKH using (E, JEKC).
(7) FLUT outputs the shares sh()E)H , and optionally JEKH ,

to the honest parties.

Figure 4: Ideal functionality for secret-shared table lookup.

on the shares, as detailed in Sect. 2.4.4. Thus, we focus on con-

structing the non-linear operations within the KeyExpansion and

SubBytes steps, that is, multiplicative inversions in�� (28) within
the S-box. This is (essentially) the only place where our variants

differ. For completeness, we give the full oblivious AES algorithm

in Protocol 8 in Appendix A. We briefly summarize the following

approaches to compute multiplicative inversions in �� (28); their
costs are also summarized in Table 2.

The straightforward approach is to compute the inverse directly

using a 256-elements lookup table. We call this protocol the LUT-

256 (see Sect. 3.5). Here, parties prepare a public 256-elements lookup

table for inversion and convert an input share JGK for G ∈ �� (28)
into a one-hot vector e (G ) ∈ {0, 1}256 that has 1 at the position

G and 0 otherwise. Then, they compute an inner product of the

lookup table and the one-hot vector to obtain JG−1K. While this

approach is optimal in round complexity, it requires heavy offline

communication to generate random one-hot vectors.

Themain protocol (Protocol 3 in Sect. 3.2), LUT-16, reduces such

offline cost by using a smaller lookup table. The idea is to reduce

the computation of multiplicative inversion over �� (28) into the

one over�� (24) as shown in Eq. (1), (2) by using the isomorphism

between �� (28) and �� ((24)2) from Sect. 2.1.2. Computing the

inverse in �� (24) only requires a look-up table of size 16.

Our lookup table protocol (Protocol 4) in Sect. 3.3 takes 〈〈E〉〉, E ∈
�� (24) as well as a public table ) and outputs the corresponding

shared value J)EK using the table. When the table is the inversion

table, the obtained output )G = E−1. The key subfunctionality is

FRandOHV by which we can obtain a shared randomness JAK and

the corresponding shared one-hot vector Je (A )K. This allows the

Table 2: Comparison of maliciously secure S-Box evalua-

tionmethods. # Mult is the number of multiplication triples

checked by Fverify.

Offline Online
Rounds # Mult

Comm. Comm.

Boolean circuit – 32 6 32

�� (28) circuit – 32 4 4

�� (24) circuit – 20 4 5

�� (24)/LUT-16 11 16 2 3

(3, 3) LUT-256 22 16 1 7

(2, 3) LUT-256 247 8 1 7

Functionality FInv
Input: JGK
Output: JG−1K
(1) FInv receives from honest parties their shares of JGKH to

reconstruct G .

(2) FInv computes the corrupted parties’ shares JGKC and

sends these shares to the adversary.

(3) FInv obtains G−1 from G .

(4) FInv receives a set of shares JG−1KC from the adversary.

(5) FInv computes the honest shares JG−1KH by using the set

of shares JG−1KC and G−1.
(6) FInv outputs the shares JG−1KH to the honest parties.

Figure 5: The functionality FInv for �� (28).

table lookup to be performed as a linear function on e
(A ) , after

reconstructing a masked value 2 = E ⊕ A in the online phase, for a

lookup table input E .

3.2 Secure Protocol for Multiplicative Inverse

We propose a protocol for securely computing the multiplicative

inverse in �� (28) in Protocol 3. The ideal functionality FInv is de-
scribed in Fig. 5. By applying Φ from Sect. 2.1.1, the secure compu-

tation of a multiplicative inverse in�� (28) can be reduced to three
secure multiplications in �� (24) and one secure multiplicative in-

verse in �� (24).
To achieve malicious security, we need to ensure that corrupt

parties use the correct additively shared input 〈〈E〉〉 to F 〈〈·〉〉→J·K
LUT

.

To do this, we rely on the fact that F 〈〈·〉〉→J·K
LUT

also outputs the

replicated sharing JEK, giving a commitment to what value was

actually used as input. We then check that E was correct by work-

ing backwards until the previous multiplication (step 6), comput-

ing replicated shares of the multiplication input. Then, if we verify

this multiplication using Fverify, this guarantees that the correct

value was input to F 〈〈·〉〉→J·K
LUT

.

We prove the following in Appendix D.1.

Lemma 3.1. The protocol Inv in Protocol 3 securely computes FInv
with abort in the

{
F 〈〈·〉〉→J·K
LUT

, FweakMult, Fverify
}
-hybrid model in
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Protocol 3Multiplicative Inversion over�� (28) againstMalicious

Adversary

Functionality: JG−1K ← FInv (JGK)
Input: Share JGK of G ∈ �� (28)
Output: Share JG−1K of the inverse of G ∈ �� (28)
Subfunctionality: LUT

1: (J0ℎK, J0ℓK) ← Φ(JGK) ∈ �� ((24)2) ⊲Φ in Sec. 2.1.2

2: J02
ℎ
K := Square(J0ℎK)

3: 〈〈02
ℎ
〉〉 ← ToAdditive(J02

ℎ
K)

4: J02ℓ K := Square(J0ℓK)
5: 〈〈02ℓ 〉〉 := ToAdditive(J02ℓ K)
6: 〈〈0ℎ × 0ℓ 〉〉 := MultLocal(J0ℎK, J0ℓK)
7: 〈〈E〉〉 := ({�}16 × 〈〈02ℎ〉〉) ⊕ 〈〈0ℎ × 0ℓ 〉〉 ⊕ 〈〈0

2
ℓ 〉〉

8: (JE−1K, JEK) ← F 〈〈·〉〉→J·K
LUT

(〈〈E〉〉,) 8=E) ⊲1 round, 8 bits

9: J0ℎ × 0ℓK := JEK ⊕ ({�}16 × J02
ℎ
K) ⊕ J02ℓ K⊲Necessary for Fverify

10: J0′
ℎ
K ← FweakMult (J0ℎK, JE−1K)

11: J0′ℓK ← FweakMult (J0ℎK ⊕ J0ℓK, JE
−1K) ⊲1 round, 8 bits

12: J~K ← Φ
−1 (J0′

ℎ
K, J0′ℓK) ∈ �� (28)

13: Execute Fverify for the following multiplication triplets:

(1) (J0ℎK, J0ℓK, J0ℎ × 0ℓK)
(2) (J0ℎK, JE−1K, J0′

ℎ
K)

(3) (J0ℎ ⊕ 0ℓK, JE−1K, J0′ℓK)
14: return J~K

the presence of a malicious adversary under the honest majority set-

ting.

Reducing the number of multiplication checks. Instead of check-

ing 3 multiplications, we observe that the protocol can be opti-

mized by embedding all checks into one multiplication. For some

: ≥ 3 and degree-: , irreducible polynomial 5 (U) over �� (24), de-
fine the extension field  = �� ((24): ) = �� (24) [U]/5 (U). An
element of  can be expressed as a polynomial 0:−1U:−1 + · · · +
01U + 00, for 08 ∈ �� (24). Then, we can check the following equa-

tion over  :

(J0ℎK+UJ0ℓK)·(J0ℓK+UJE−1K) = J0ℎ × 0ℓK+UJ0′
ℎ
+ 02ℓ K+U2J0′ℓ ⊕ 0′ℎK .

Note that shares of02ℓ can be computed locally. Furthermore, notice

that if the above equation holds then it must be that multiplications

(1), (2) and (3) are all correct.

3.3 Secure Table Lookup Protocol

We present Protocol 4 that securely computes the ideal functional-

ity F 〈〈·〉〉→J·K
LUT

from Fig. 4. Step 1 executes the ideal functionality

FRandOHV, which performs secure random one-hot vector encod-

ing that takes # = 2: as input and outputs the shared randomness

JAK and its corresponding shared random one-hot vector Je (A )K
(see Fig. 6). Using the randomness, the protocol masks the input

and reveals 2 = E + A . The rest of the computation can be done

locally as in Step 4-5.

We show that the proposed approach correctly computes the

desired value. It is sufficient to show that for each 8 , the value C8
computed in Step 4 matches the 8-th digit )

(8 )
E of ) ’s E-th element

Functionality FRandOHV
Input: # = 2:

Output: : random bits
{
JA8K

}:−1
8=0 and length-# one-hot

vector Je (A )K for A = A:−1 . . . A0
(1) FRandOHV receives from the adversary A the shares{

JA8K
C}:−1

8=0 and Je (A )KC considered as the shares of ran-

domness and the corresponding share of the one-hot vec-

tor held by corrupted parties.

(2) FRandOHV samples {A8 }:−18=0 then computes A =
∑:−1
8=0 28 ·A8

and e
(A ) .

(3) FRandOHV generates JA8K
H from (A8 , JA8KC) for 8 ∈

{0, 1, . . . , : − 1}.
(4) FRandOHV generates Je (A )KH from e

(A ) and Je (A )KC .
(5) FRandOHV distributes the shares JA8K

H and Je (A )KH to the

honest parties.

Figure 6: The functionality FRandOHV to create a randomone-

hot vector of length # .

)E . According to the definition, C =
⊕

0≤ 9≤=−1 e
(A )
9 )2⊕ 9 , and since

the inner product on the right-hand side turns 0 for all terms but

e
(A )
A )2⊕A , resulting in C = )E .

Protocol 4 Table lookup of size # = 2: , from 〈〈·〉〉 to J·K sharing

Functionality: J)EK ← FLUT (〈〈E〉〉,) )
Input: Share 〈〈E〉〉 of E ∈ �� (2: ), table ) : �� (2: ) → �� (2ℓ )
Output: Share J)EK of the value )E ∈ �� (2ℓ )
Subfunctionality: FRandOHV
1: ({JA8K}0≤8<: , {Je (A )9 K}0≤ 9<# ) ← FRandOHV (:)
2: 〈〈0〉〉 ← FZero (�� (2: ))
3: 2 := Reconst

(
〈〈E〉〉 + ToAdditive(JAK) + 〈〈0〉〉

)
⊲1 round, 2:

bits

4: JCK :=
⊕#−1

9=0 Je
(A )
9 K ·)2⊕ 9

5: JEK := JAK ⊕ 2
6: return (JCK, JEK)

We prove the following in Appendix D.2.

Lemma 3.2. The protocol LUT in Protocol 4 securely computes

F J·K→〈〈·〉〉
LUT

in the {FRandOHV, Fzero}-hybrid model in the presence

of a malicious adversary.

3.4 General One-Hot Vector Protocol

Wenow show how to compute the random one-hot vector that was

required in the table lookup. We start with a general protocol Ohv

to securely compute the one-hot vector of a shared input and turn

it to a random one-hot vector protocol by running it on input a set

of random shared bits (see Protocol 5). In Appendix C, we also give

a specialized protocol for vectors of length 16, with lower round

complexity.

We sketch the procedure of Ohv, which is based on the dishon-

est majority protocol from [40]. It takes (JE:−1K, . . . , JE0K) as input.
First, it selects bit JE0K and creates a one-hot vector with length 2,
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Protocol 5 Random One-hot Vector

Functionality: (JAK, Je (A ) K ) ← FRandOHV (# = 2: )
Input: ⊥
Output: Shared random bits {JA8K}:−18=0 , and length-# one-hot vector

Je (A ) K for A =
∑:−1

8=0 28A8
1: (JA:−1K, . . . , JA0K ) := Frand (: )
2: Je (A ) K := Ohv(JA:−1K, . . . , JA0K;# )
3: Execute Fverify for the following multiplication triplets from Ohv:

(E8−1, 528−1−2, 428−1−2 ) for all 8 ∈ {2, . . . , : }
4: return ({JA8K}:8=0, J®4 (A ) K )

5: procedure Ohv((JE:−1K, . . . , JE0K;# = 2: ))
6: if # = 2 then

7: return (1 − JE0K, JE0K )
8: else

9: J50K, . . . , J5# /2−1K := Ohv(JE:−2K, . . . , JE0K;# /2)
⊲log# − 2 recursive calls with # > 2

10: J40K, . . . , J4# /2−2K := Mult(JE:−1K, (J50K, . . . , J5# /2−2K ) )
⊲1 round, # /2 − 1 bits

11: J4# /2−1K := JE:−1K −
⊕# /2−2

8=0 J48K

12: Je (E) K := (J50K − J40K, . . . , J5# /2−1K − J4# /2−1K,
J40K, . . . , J4# /2−1K )

⊲e
(E)

= ( (1 − E:−1 ) · ®5 , E:−1 · ®5 )
13: return Je (E) K
14: end if

15: end procedure

(1 − JE0K, JE0K). Then, it selects bit JE1K and computes a one-hot

vector ((1 − JE1K) · (1 − JE0K, JE0K), JE1K · (1 − JE0K, JE0K)) with
length 4. This is repeated until bit JE:−1K computes a one-hot vec-

tor ((1−JE:−1K) · ®5 , JE:−1K · ®5 ) with length 2: , where ®5 is a one-hot
vector with length 2:−1 from the previous iteration.

The communication complexity with three parties is as follows.

For general # , the communication cost is # − log# −1 bits within
log# − 1 rounds. For # = 256, the communication cost will be 247

bits.

3.5 Approaches Using Large Lookup Tables

In this section, we explore alternative ways of securely computing

the AES S-box, using a single lookup table of size 256. We present

two protocols for secure AES evaluation with different tradeoffs in

communication complexity and round complexity.We also present

a third protocol, in Section 3.5.4, which is less efficient for AES, but

allows securely evaluating an arbitrary lookup table of size # on

J·K-shared values, with a communication cost in$ (
√
# ) instead of

$ (# ). The cost of this protocol (Protocol 10) is shown in Table 3,

together with other protocols for comparison.

3.5.1 NewF BB1 ↦→BB2
LUT

Instantiations. As building blocks, we use three

variants of the F BB1 ↦→BB2
LUT

functionality with different combinations

of secret sharing schemes, namely, F J·K
LUT

, F 〈〈·〉〉
LUT

and F J·K→〈〈·〉〉
LUT

.

In F J·K
LUT

, both the input JEK and output J)EK are given as repli-

cated sharings. This is a stronger requirement than previously, where

E was only given additively shared, allowing an adversary to add

an error to the input. The simplest way to realize F J·K
LUT

is with

a slight tweak to the LUT protocol (Protocol 4): since the input

Table 3: Comparison of protocols for table lookup of size # = 2: , with

communication complexity for = = 3, C = 1. # Mult is the length of the

input to Fverify needed for malicious security

Protocol Offline Online Rounds # Mult

〈〈·〉〉 ↦→ J·K (Prot. 4) # − : − 1 2: 1 : − 1
J·K ↦→ J·K (Prot. 4 variant) # − : − 1 : 1 : − 1
〈〈·〉〉 ↦→ 〈〈·〉〉 (Prot. 6) 2(

√
# − :

2 − 1) 2: 2 : − 2
J·K ↦→ 〈〈·〉〉 (Prot. 6 variant) 2(

√
# − :

2 − 1) : 1 : − 2
J·K ↦→ J·K (Prot. 10) 2(

√
# − :

2 − 1) 2: 2 #

is given in replicated shares, we now run the Reconst procedure

(step 3) on the replicated sharing JE + AK instead of 〈〈E + A 〉〉. For a
small number of parties, this reduces communication since open-

ing replicated shares is cheaper. For instance, with = = 3, C = 1, the

cost is reduced from 2: bits per party down to just : . Note that

the preprocessing cost — generating a random one-hot vector of

length # = 2: via Protocol 5 — is identical to that of FLUT.
F 〈〈·〉〉
LUT

can be implemented using Protocol 6. This protocol is

very similar to that for F 〈〈·〉〉→J·K
LUT

(Protocol 4), except the one-hot

vector only needs to be generated in additive shares, rather than

replicated shares. This allows for a much more efficient prepro-

cessing protocol: the parties can run the replicated one-hot vector

functionality FRandOHV twice on input length 2:/2, obtaining two
one-hot vectors Je (A )K, Je (A

′ )K. Then, they can locally compute ad-

ditive shares of the tensor product vector e (A ) × e (A ′ ) , giving a one-
hot vector of length 2: . Note that, since FRandOHV gives replicated

shares of the non-zero index, the same shares can still be used to

obtain replicated shares of the index of the length 2: vector.

Protocol 6 Table Lookup of size # = 2: in additive sharing

Functionality: (〈〈)E〉〉, JEK) ← FLUT (〈〈E〉〉,) )
Input: Share 〈〈E〉〉 of E ∈ �� (2: ), table ) : �� (2: ) → �� (2ℓ )
Output: Share 〈〈)E〉〉 of the value )E ∈ �� (2ℓ ), and share JEK
Subfunctionality: FRandOHV
1: Call FRandOHV (:/2) twice to get ({JA8K}:/2−18=0 , {Je (A )9 K}

√
#−1

9=0 )
and ({JA ′8 K}

:/2−1
8=0 , {Je (A

′ )
9 K}

√
#−1

9=0 )
2: JAK := (JA0K, . . . , JA:/2−1K, JA ′0K, . . . , JA ′:/2−1K)
3: 〈〈0〉〉 ← Fzero (�� (2: ))
4: 2 ← Reconst (〈〈E〉〉 + ToAdditive(〈〈A 〉〉) + 〈〈0〉〉) ⊲1 round, 2:

bits

5: JEK := JAK + 2

6: 〈〈 ®5 〉〉 ←
(
MultLocal(Je (A )8 K, Je

(A ′ )
9 K)

)√#−1
8, 9=0

7: 〈〈C〉〉 ←
⊕#−1

9=0 〈〈 ®59 〉〉 ·)2⊕ 9
8: return (〈〈C〉〉, JEK)

The protocol securely realises the functionality F 〈〈·〉〉
LUT

from Fig-

ure 4. Despite being maliciously secure, one must still take care

when composing this protocol with others, since the ideal function-

ality inherently allows an adversary to cheat by simply changing

its additive share of the input or output. In Section 3.5.3, we show

how to overcome this issue for the case of AES.
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We omit the proof of the following, which is very similar to

Lemma 3.2.

Lemma 3.3. Protocol 6 securely realizes the functionality F 〈〈·〉〉
LUT

in

the (FRandOHV, Fzero)-hybrid model.

Finally, F J·K→〈〈·〉〉
LUT

can be implemented using Protocol 6, except

the opening of 2 in step 4 is done on replicated sharings instead of

additive. This achieves the strongest performance characteristics

of all variants: only : bits of communication per party (for = =

3, C = 1) and a cheap preprocessing phase that only requires two

replicated, random one-hot vectors of length 2:/2.

3.5.2 AES Protocol Based on Replicated Sharing. Given the F J·K
LUT

functionality, our protocol for AES evaluation is straightforward.

We assume the parties start with replicated shares of the input and

expanded key. Then, each S-box is evaluated with a single call to

F J·K
LUT

of length # = 256, and the linear layers are evaluated locally

on the shares. Assuming a maliciously secure implementation of

F J·K
LUT

, this protocol is malicious secure, since F J·K
LUT

does not allow

any errors to be introduced by the adversary.

With = = 3, C = 1, the cost of this protocol in the online phase

is just 8 bits of communication per party per S-box, or a total of

10 ·8 ·16 = 1280 bits for one block of AES. The total round complex-

ity is 10 rounds. The preprocessing phase, however, is much more

expensive, due to the need to generate a large, replicated one-hot

vector for each S-box. This costs 247 bits per party, per S-box, for

a total of 39520 bits. Achieving malicious security can be done by

batch verifying each of the multiplications in the RndOhv protocol

using Fverify.

3.5.3 AES Protocol Based onAdditive Sharing. By relying onF 〈〈·〉〉
LUT

instead of F J·K
LUT

, we can reduce the preprocessing cost of the pre-

vious protocol by more than 10x. This is because F 〈〈·〉〉
LUT

can be re-

alized by generating only two replicated one-hot vectors of length

16, instead of one of length 256. Running the whole protocol on

additive instead of replicated shared inputs, we get a 3-party, pas-

sively secure protocol with an online communication complexity

of 16 bits per S-box (or, 2560 bits overall) and only 22 bits per S-box

in the preprocessing phase (or, 3200 overall). The main challenge

with this approach is to add malicious security, since we are now

dealing with additive shares which are easily tampered with.

We consider two approaches to malicious security. First, we de-

scribe a specialized method tailored to AES, which needs no addi-

tional communication except for one call to Fverify. The core idea is
to exploit the fact that F 〈〈·〉〉

LUT
outputs replicated shares of its input

G , and use this to obtain replicated shares of the F 〈〈·〉〉
LUT

output from

the previous round, by evaluating the AES linear layer backwards.

We combine this with a cheap way of verifying input/output S-

box pairs by verifying two multiplication triples, relying on the

algebraic structure of the S-box.

Our second approach is more general, and can be used to realize

F J·K
LUT

withmalicious security for arbitrary lookup tables of domain

size 2: . The preprocessing cost is the same as the AES-specific pro-

tocol, but the online phase has slightly more communication, and

Protocol 7 〈〈·〉〉-LUT based AES

Input: Message JGK, round keys {J: (8 )K, 〈〈: (8 ) 〉〉}108=0
Output: JIK, where I = ��(: (G)
1: JG0K ← JGK + J: (0)K ⊲AddRoundKey

⊲G8
1
, ~8

1
is byte 1 of G8 , ~8

2: {〈〈~0
1
〉〉}15

1=0
← {F J·K→〈〈·〉〉

LUT
(JG0

1
K)}15

1=0
⊲SubBytes

3: for 8 = 1, . . . , 9 do

4: 〈〈G8 〉〉 ← !8
(
〈〈~8−1〉〉

)
+ 〈〈: (8 ) 〉〉 ⊲Shi�/Mix/AddRK

5: {(〈〈~8 〉〉1 , JG81K)}15
1=0
← {F 〈〈·〉〉

LUT

(
〈〈G8

1
〉〉
)
}15
1=0

⊲SubBytes

6: J~8−1K ← !−18

(
JG8K − J: (8 )K

)
7: end for

8: J~9K ← Reshare(〈〈~9〉〉)
9: JIK ← !10

(
J~9K

)
+ J: (10)K ⊲Shi�Rows/AddRoundKey

10: triples← ⋃9
8=0

⋃15
1=0

VerifySbox
(
JG8

1
K,Affine−1 (J~8

1
K)
)

11: Run Fverify to check triples

12: return JIK

13: procedure VerifySbox(JGK, J~K)
14: JG2K = Square(JGK)
15: J~2K = Square(J~K)
16: return {(JG2K, J~K, JGK), (JGK, J~2K, J~K)}
17: end procedure

requires using Fverify to verify a length-2: dot product triple, in-

stead of just two multiplications.

AES-Optimized Protocol. We present the full protocol for AES

evaluation in Protocol 7. The protocol begins with the inputs and

round keys distributed as replicated shares. The first round of S-

boxes is computed with F J·K→〈〈·〉〉
LUT

. For each subsequent round,

we proceed to evaluate the linear layer, denoted !8 , and round key

addition, followed by the S-box with F 〈〈·〉〉
LUT

to get an S-box output

~8 = SubBytes(G8 ). We then invert the linear layer on the repli-

cated shares of G8 to recover replicated shares of~8−1. Finally, each
S-box input/output pair (G8 , ~8 ) is verified with Fverify, by first in-

verting the affine component of the S-box, denoted Affine, to get ~̂8 ,

and checking the two equations: G28 ~̂8 = G8 , and G8~̂
2
8 = ~̂8 which

hold if and only if ~̂8 = G2548 in �� (28). This idea was recently

proposed for zero-knowledge proofs of AES [8].

One subtlety of the security proof (in Appendix D.3) is that

when using Fverify, we cannot allow the adversary to learn the er-

rors in the multiplication triples, e.g. the values 38 = G
2
8 ~̂8 −G8 . This

is because an error in an S-box input corresponds to an error in G8 ,

which would lead to a non-zero value of 38 that leaks information

on ~̂8 . While at first glance, it may seem that even the presence of

input-dependent errors would leak information to the adversary,

in our case it is not a security issue to reveal whether some error

occurred: if any error38 is non-zero then at least one of G
2
8 ~̂8 = G8 or

G8~̂
2
8 = ~̂8 must be false. The key point is that we cannot reveal the

value or location of this error, which is why we need the stronger

Fverify functionality from Section 2.5.

We prove the following in Appendix D.3.
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Lemma 3.4. Protocol 7 securely realizes the functionality FAES in
the (F 〈〈·〉〉

LUT
, Fverify)-hybrid model with malicious security.

3.5.4 Improved Protocol for F J·K
LUT

. In Protocol 10, shown in Ap-

pendix E, we present an alternative protocol for F J·K
LUT

, which gen-

eralizes the ideas of the previous protocol to arbitrary lookup ta-

bles. Compared with the naive protocol for F J·K
LUT

discussed in the

previous section, we reduce the communication cost of the prepro-

cessing to$ (
√
# ). The online phase, however, has roughly double

the cost in terms of communication and rounds. This is not as effi-

cient as the AES-specific protocol in the previous section, but may

still be useful in other applications.

The protocol follows a similar approach to Protocol 6, building a

length-# one-hot vector taking the tensor product of two length-√
# vectors, except it works on replicated shared inputs. Recall

that Protocol 6 computes the output E =
⊕

9
®59 · )2⊕ 9 , where

2 is a masked version of the input and ®5 is the one-hot vector.

We observe that, when ®5 is decomposed into a tensor product of

two smaller one-hot vectors, E can be seen as an inner product

of two secret, J·K-shared vectors of length # . This means we can

tweak this to obtain replicated shares of the output, by using the

FweakDotProduct functionality, followed by Fverify to obtain mali-

cious security.

4 PERFORMANCE

We implemented several variants of our protocol and two most re-

lated protocols from the state of the art in the same software frame-

work. This ensures a fair comparison and minimizes performance

differences due to different networking architectures, primitives

used for PRNGs and hashing, etc. The two state-of-the-art proto-

cols serve as a baseline for the comparison. In the semi-honest se-

curity setting, we use Chida et al.’s �� (28)-Circuit protocol as de-
scribed in [21]. In the malicious security setting, we adapt�� (28)-
Circuit using bucket cut-and-choose to generate correct multiplica-

tion triples in the offline phase that are used to verify the correct-

ness of the multiplications in the online phase using sacrificing.

The techniques are adapted from [31] but in �� (28).
Below, we describe details of the implementation and include

notable optimizations that were applied. This is followed by a dis-

cussion of the experimental setup and the performance benchmark.

4.1 Implementation

We implemented the protocols from scratch using the Rust pro-

gramming language. Our code is available2. Non-linear operations

of small fields, e.g., �� (28), �� (24), are implemented via table

lookups. Networking and I/O is done in a separate thread where

each channel between two parties is encrypted and mutually au-

thenticated using TLS1.3 with client/server certificates. Local ran-

domness, for instance to implement Frand, comes from a PRNG

based on Chacha20, the hash function we use for compare-view is

SHA-256. The data representation is mostly in the struct of arrays

style to allow for SIMD auto-vectorization by the compiler and I/O

with lower memory copying. Next, we describe the implemented

protocols in detail.

2in the public repository https://github.com/KULeuven-COSIC/maestro.

�� (28)-Circuit Baseline for semi-honest security, described

in [21] in Algorithm 5.

Mal. �� (28)-Circuit Baseline for malicious security. In the

offline phase,multiplication triples are generated using bucket

cut-and-choose with bucket size � = 3 and � = 3 triples

to open described in [31] (for ≥ 219 multiplications, i.e.,

≥ 820 AES blocks). After computing the circuit but before

revealing the output, the multiplications from the online

phase are checked by sacrificing the preprocessed triples.

We call this phase post-sacrifice.

LUT-16 This variant implements Protocol 3 using Protocol 9

in the offline phase to generate random one-hot vectors.

For malicious security, Protocol 2 is used to verify correct-

ness of multiplications.

�� (24)-Circuit This variant implements Protocol 3 but com-

putes the inverse JE−1K as JE2K · JE4K · JE8K which does not

require preprocessing. For malicious security, Protocol 2 is

used to verify correctness of multiplications.

(2,3) LUT-256 In this variant, the LUT protocol (see Proto-

col 4) computes the complete AES S-box consuming one

random one-hot vector of size 256 from the offline phase.

The offline phase creating the one-hot vectors is imple-

mented with Protocol 5. We did not implement the mali-

ciously secure variant.

For LUT-16 and LUT-256, the offline phase computes on bit shares.

We implemented the generation of random one-hot vectors us-

ing bit-slicing where we operate on a pack of 16 bits. This im-

proves both local computation and efficiency for I/O. The inner

product required in oblivious table lookups is realized using 16

and 256 hard-coded tables, respectively, that contain the lookup

table permuted by the reconstructed public 2 ⊕ 9 (see Step 4 in

Protocol 4). Specifically, the table entry contains 4 and 8 bitvec-

tors, respectively, where each encodes the 8-th output bit of the

permuted table. Then, given the random one-hot vector ®4 as bitvec-
tor, the inner product for each output bit can be computed as (®4 &

®C [8]).parity() mod 2 where & denotes bit-wise AND. This ap-

proach neither requires branching nor multiplication instructions

and improves local computation of Protocol 4 by about 10 times

compared to a naive approach.

Protocol 2 is implemented in �� (264) to achieve an acceptable

level of soundness of at least 40 bits and utilize hardware sup-

port for carry-less multiplication (CLMUL). We also gain some ef-

ficiency by doing modular reduction only once at the end when

computing inner products. Protocol 7 is not implemented.

4.2 Experimental Setup

We experimentally evaluate the performance of the proposed pro-

tocols in two different setups and settings. In the high through-

put setting, we evaluate on three machines with identical speci-

fications (16-core Intel Core i9-9900 3.10GHz, 128GB RAM) con-

nected via a network with ≈ 9.4 Gbits/sec bandwidth and <1ms

latency. To observe the protocol behaviour in different network set-

tings, we evaluate on three machines (each 16-core Intel XEON E5-

2650v2 2.60GHz, 128 GB RAM) connected via a network of ≈ 950

MBits/sec, <1ms latency and ≈ 50 Mbits/sec with 100ms round

12
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Table 4: Benchmark results for passive security on batches of 250 000 AES blocks in the LAN setting with ≈ 9.42 Gbits/sec

bandwidth. Time and communicated data is reported per batch, the throughput is reported as AES blocks per second. We

denote the best value for online phase and throughput in bold.

Protocol Preprocessing Online Throughput (blocks/s)

Time (s) Data (MB) Time (s) Data (MB) Preprocessing Online Total

�� (28)-Circuit [21] - - 0.410 160 - 610 701 610 701

LUT-16 0.505 55 0.321 80 494 712 777 943 302 405

�� (24)-Circuit - - 0.331 100 755 621 755 621

(2,3) LUT-256 9.53 1235 0.663 40 26 223 377 282 24 519

Table 5: Benchmark results for active security on batches of 100 000 AES blocks in the LAN setting with ≈ 9.42 Gbits/sec

bandwidth. Time and communicated data is reported per batch, the throughput is reported as AES blocks per second. We

denote the best value per metric in bold.

Protocol Preprocessing Online Throughput (blocks/s)

Time (s) Data (MB) Time (s) Data (MB) Preprocessing Online Total

Mal. �� (28)-Circuit ([21]+[31]) 9.47 ≈ 470 0.655 ≈ 192 10 556 152 744 9 874

LUT-16 0.242 22 6.68 ≈ 40 413 661 14 972 14 449

LUT-16 (prep) 6.61 ≈ 22 1.86 ≈ 40 15 137 53 880 11 817

LUT-16 (prep+sbox) 6.61 ≈ 22 2.28 ≈ 40 15 100 43 853 11 232

�� (24)-Circuit - - 3.61 ≈ 40 - 27 686 27 686

�� (24)-Circuit (sbox) - - 2.73 ≈ 40 - 36 585 36 585

trip time. The network throughput/latency was altered using tc.

In both settings, 16 computation threads were used.

Wemeasure execution time (wall clock time) and the total amount

of bytes sent per party during the computation of a AES block en-

ciphering without the keyschedule. To amortize performance, we

compute on ( manyAES blocks in parallel. The time/communication

for preprocessing and online phase includes all necessary checks

formalicious security (e.g., Protocol 2 and compare-view).We don’t

measure the negligible setup phase for the correlated randomness.

The data that is reported in the following benchmark is the ex-

ecution time/data communication of the slowest party, averaged

over at least 10 iterations of the protocol. The throughput (denoted

in AES blocks per second) is computed as ⌊(/C⌋ where ( are the

number of AES blocks and C is the execution time in seconds.

4.3 Benchmark and Discussion

We first report on the high-throughput setting for semi-honest se-

curity in Table 4 and malicious security in Table 5. For semi-honest

security, two of our protocols, LUT-16 and �� (24)-Circuit outper-
form the state-of-the-art �� (28)-Circuit protocol. LUT-16 offers

the fastest online phase which improves online throughput by 27%

compared to�� (28)-Circuit, while�� (24)-Circuit has the highest,
overall throughput resulting in a ≈ 23% improvement compared

to �� (28)-Circuit. The (2, 3) LUT-256 protocol variant allows for

a potentially rapid online phase due to the few communication

rounds and low amount of data. Our current implementation can-

not fully realize this potential. The bottleneck is the local compu-

tation of the inner product between the random one-hot bitvector

and the permuted 256-element lookup table. Further optimization

is required for this step. This poor performance coupled with the

high cost of the preprocessing makes the variant not attractive for

the malicious security setting, so we didn’t implement it.

For malicious security, we first note that our implementation of

the multiplication correctness check of Protocol 2 is comparatively

much slower than, e.g., the triple post-sacrifice step in [31], despite

optimizations using carry-less multiplication for�� (264) multipli-

cation and inner products (about 3 to 4 times). This results in a

significantly slower online phase for our protocols. Due to this ob-

servation, we included variants that compute an intermediate veri-

fication step after preprocessing (prep) and after every S-box layer

(sbox). However, regarding overall throughput, both LUT-16 and

�� (24)-Circuit outperform the maliciously secure�� (28)-Circuit
protocol with improvements ranging from 46% and 270%, respec-

tively. It is also noteworthy that our protocol variants use much

less communication, decreasing the number of sent bytes by 90%

(LUT-16) and 93% (�� (24)-Circuit).
We now report on the protocol performance for varying net-

work settings in Table 6. In the setting of semi-honest security,

�� (24)-Circuit improves overall throughput by about 37% in the 1

Gbit/s LAN, and by 72% in the WAN setting, while LUT-16 also im-

proves online phase throughput by 33% and 71%. The high latency

of the WAN setting even allows (2,3) LUT-256 to improve the on-

line throughput by 16%, however total throughput is still less than

all other protocols due to the expensive preprocessing.

For active security, we make two observations. First, our proto-

cols consistently increase total throughput in both 1 Gbit/s LAN
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Table 6: The throughput in AES blocks per second for dif-

ferent network settings. We denote the best value for online

and total throughput in bold.

Network Protocol Throughput (blocks/s)

Preprocessing Online Total

10 Gbit/s

�� (28)-Circuit [21] - 610701 610701

LUT-16 494712 777943 302405

�� (24)-Circuit - 755621 755621

(2, 3) LUT-256 26223 377282 24519

≤ 1ms RTT Mal. �� (28)-Circuit ([21]+[31]) 10556 152744 9874

(Mal.) LUT-16 413661 14972 14449

(Mal.) LUT-16 (prep) 15137 53880 11817

(Mal.) �� (24)-Circuit (sbox) - 36585 36585

1 Gbit/s

�� (28)-Circuit - 118551 118551

LUT-16 201719 158333 88706

�� (24)-Circuit - 162949 162949

(2, 3) LUT 256 9208 89508 8349

≤ 1ms RTT Mal. �� (28)-Circuit 2781 34073 2571

(Mal.) LUT-16 155580 3877 3783

(Mal.) LUT-16 (prep) 7676 24376 5838

(Mal.) �� (24)-Circuit - 14227 14227

(Mal.) �� (24)-Circuit (sbox) - 11388 11388

50 Mbit/s

�� (28)-Circuit - 6341 6341

LUT-16 16188 10903 6515

�� (24)-Circuit - 10932 10932

(2, 3) LUT 256 1111 7371 965

100ms RTT Mal. �� (28)-Circuit 1002 2843 741

(Mal.) LUT-16 14655 3489 2818

(Mal.) LUT-16 (prep) 4138 6275 2493

(Mal.) �� (24)-Circuit - 4877 4877

and WAN with improvements ranging from 127% and 453% for

LUT-16 and �� (24)-Circuit, respectively. Second, unlike in the 10

Gbit/s network, now in the WAN setting, the post-sacrifice em-

ployed in Mal. �� (28)-Circuit sends too much data and thus our

multiplication check enables improvements in the online phase

from 120% and 71%, respectively for LUT-16 and �� (24)-Circuit.
While our protocol implementation was geared towards high-

throughput, it is possible to get an approximation of the computa-

tion latency by evaluating only one AES block (see Table 7). In the

WAN setting, lookup-table based approaches with a lower number

of rounds therefore have a lower latency. LUT-16 and LUT-256 re-

duce latency by 26% and 65% compared to �� (28)-Circuit, respec-
tively. Our�� (24)-Circuit variant requires 4 rounds per S-box and
thus increases computation latency by 11%.

Chida et al. [21] also report on another setup where machines

are connected in a ring topology with dual connections between

each machine. This allows for optimizations where for each step,

half of the data is sent to one party, and half is sent to the other

party, essentially rotating the parties’ roles to improve throughput.

Moreover, they also implement counter-mode caching as a mode-

level optimization. Both optimizations can also be applied to our

protocols and should also benefit our protocols.
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A DETAILS ON AES AND FIELD
ISOMORPHISM

A.1 AES

A.1.1 Encryption Algorithm for Each Block. The encryption of a

block in AES is a deterministic algorithm that takes a 128-bit array

and an encryption key as input and produces a 128-bit array as

output. The algorithm can be defined as a function Enc : {0, 1}128×
{0, 1}128 → {0, 1}128.

The protocol proceeds as follows:

(1) Initialization: The input values are divided into 8-bit seg-

ments, each of which is considered an element of �� (28).
These elements are represented in a 4×4 arraywith column-

first order, denoted as {BA,2 }0≤A,2≤3. The same process is

applied to the encryption key.

(2) Key Expansion: The round keys {: (8 )A,2 }0≤A,2≤3,0≤8≤10 to

be used in each round 8 ∈ {1, . . . , 10} are generated from

the encryption keys {:A,2 }0≤A,2≤3. This is done as follows:

:
(8 )
A,2 :=



:A,2 if 8 = 0 ,

:
(8−1)
A,0 ⊕ Sbox(: (8−1)(A+1 mod 4),3 ) ⊕ A2

(8 )
A if 8 ≠ 0, 2 = 0 ,

:
(8−1)
A,2 ⊕ : (8 )

A,2−1 otherwise .

Here, A2
(8 )
A ∈ �� (28) is defined as A2 (8 )0 := ({02}16)8−1 and

A2
(8 )
A := {00}16 for 1 ≤ A ≤ 3. Sbox represents a substitu-

tion according to a predefined table (Section A.1.2).

(3) Each element of the array is computed as BA,2 := BA,2 ⊕: (0)A,2 .

(4) Round Processing: For 8 = 1, . . . , 10, the following steps

are repeated:

• SubBytes: Each element of the array is substituted

according to a predefined table (AES S-box):

BA,2 := Sbox(BA,2 )

• ShiftRows: Each row is shifted according to the fol-

lowing rule:

BA,2 := BA,(2+A mod 4)

• MixColumns: For each column, the following are cal-

culated:

©
«

B0,2
B1,2
B2,2
B3,2

ª®®®
¬
:=

©
«

{02}16 {03}16 {01}16 {01}16
{01}16 {02}16 {03}16 {01}16
{01}16 {01}16 {02}16 {03}16
{03}16 {01}16 {01}16 {02}16

ª®®®
¬
©
«

B0,2
B1,2
B2,2
B3,2

ª®®®
¬

Note that this step is omitted when 8 = 10.

• AddRoundKey: Each element of the array is XORed

with the round key:

BA,2 := BA,2 ⊕ : (8 )A,2

(5) Finalization: The 4 × 4 array {BA,2 } is concatenated in

column-first order to produce the output.

A.1.2 AES S-Box. The AES S-Box is a substitution table used in

the key expansion and SubBytes step to ensure the non-linearity

of encryption. Specifically, for an input B ∈ �� (28), it produces an
output {07 · · ·00}2 ∈ �� (28) defined as follows:

00 := 10 ⊕ 14 ⊕ 15 ⊕ 16 ⊕ 17 ⊕ 1

01 := 10 ⊕ 11 ⊕ 15 ⊕ 16 ⊕ 17 ⊕ 1

02 := 10 ⊕ 11 ⊕ 12 ⊕ 16 ⊕ 17
03 := 10 ⊕ 11 ⊕ 12 ⊕ 13 ⊕ 17 (3)

04 := 10 ⊕ 11 ⊕ 12 ⊕ 13 ⊕ 14
05 := 11 ⊕ 12 ⊕ 13 ⊕ 14 ⊕ 15 ⊕ 1

06 := 12 ⊕ 13 ⊕ 14 ⊕ 15 ⊕ 16 ⊕ 1

07 := 13 ⊕ 14 ⊕ 15 ⊕ 16 ⊕ 17 .

Here, {17 · · ·10}2 represents the bit sequence that denotes themul-

tiplicative inverse B−1 ∈ �� (28) of the input value B ∈ �� (28). Note
that when B = {00}16, all 18 are set to 0 for all 8 .

A.1.3 Oblivious AES. Protocol 8 describes the whole AES algo-

rithm that is computed in MPC. The main body of the paper fo-

cused on computing SubBytes.

A.2 Finite Field Isomorphism

Below,we give the explicit isomorphism between�� (28) and�� ((24)2),
from [52]:

Φ : �� (28) ∼−−→ �� ((24)2) : {0706 . . . 00}2 ↦−→ (0ℎ, 0ℓ )

0ℎ0 := 04 ⊕ 05 ⊕ 06, 0ℓ0 := 00 ⊕ 04 ⊕ 05 ⊕ 06
0ℎ1 := 01 ⊕ 04 ⊕ 06 ⊕ 07, 0ℓ1 := 01 ⊕ 02
0ℎ2 := 02 ⊕ 03 ⊕ 05 ⊕ 07, 0ℓ2 := 01 ⊕ 07
0ℎ3 := 05 ⊕ 07, 0ℓ3 := 02 ⊕ 04

The inverse mapping is defined as follows:

Φ
−1 : �� ((24)2) ∼−−→ �� (28) : (0ℎ, 0ℓ ) ↦−→ {0706 . . . 00}2

00 := 0ℓ0 ⊕ 0ℎ0, 04 := 0ℓ1 ⊕ 0ℓ3 ⊕ 0ℎ0 ⊕ 0ℎ1 ⊕ 0ℎ3
01 := 0ℎ0 ⊕ 0ℎ1 ⊕ 0ℎ3, 05 := 0ℓ2 ⊕ 0ℎ0 ⊕ 0ℎ1
02 := 0ℓ1 ⊕ 0ℎ0 ⊕ 0ℎ1 ⊕ 0ℎ3, 06 := 0ℓ1 ⊕ 0ℓ2 ⊕ 0ℓ3 ⊕ 0ℎ0 ⊕ 0ℎ3
03 := 0ℎ0 ⊕ 0ℎ1 ⊕ 0ℎ2 ⊕ 0ℓ1, 07 := 0ℓ2 ⊕ 0ℎ0 ⊕ 0ℎ1 ⊕ 0ℎ3
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Protocol 8 Oblivious AES

Functionality: {JI8K} ← FAES ({JG8K}, {J:8K})
Input: 128-bit Boolean shared values {JG8K}8=0,...,127,
{J:8K}8=0,...,127

Output: 128-bit Boolean shared value {JI8K}8=0,...,127
Subfunctionality:

1: Servers locally perform initialization step to obtain

{JGA,2K}0≤A,2≤3 and {J:A,2K}0≤A,2≤3
2: {J: (8 )A,2 K}0≤8≤10,0≤A,2≤3 ← KeyExpansion({J:A,2K}0≤A,2≤3)

⊲one-time operation for each key

3: {JGA,2K} ← AddRoundKey({JGA,2K}, {J: (0)A,2 K})
4: for 8 = 1, . . . , 9 do

5: {JGA,2K} ← SubBytes({JGA,2K})
6: {JGA,2K} ← Shi�Rows({JGA,2K})
7: {JGA,2K} ← MixColumns({JGA,2K})
8: {JGA,2K} ← AddRoundKey({JGA,2K}, {J: (8 )A,2 K})
9: end for

10: {JGA,2K} ← SubBytes({JGA,2K})
11: {JGA,2K} ← Shi�Rows({JGA,2K})
12: {JGA,2K} ← AddRoundKey({JGA,2K}, {J: (10)A,2 K})
13: Servers locally perform finalization step to obtain

{JI8K}8=0,...,127
14: return {JI8K}8=0,...,127

B PROOF OF BATCH VERIFICATION
PROTOCOL

We now prove security of Protocol 2.

Theorem B.1 (Theorem 2.3, restated). Protocol 2 (Verify) se-

curely realizes the functionality Fverify (see Fig. 3), in the (FweakMult,

Fcoin, Frand)-hybrid model. The failure probability in the simulation

is at most (< + 2 log# )/|F|.

Proof. We begin by proving the base case when # = 1, namely,

Protocol 1.

Proposition B.2. Protocol 1 securely realizes Fverify for a single

multiplication triple.

Proof. The simulator, S, receives the corrupted parties’ shares
JGKC, J~KC, JIKC fromFverify, and receives the outcome1 ∈ {accept,
abort}. It emulatesFrand andFweakMult, receiving shares JG ′KC, JAKC

and JI′KC , plus an additive error3 , and then sends a random C ← F
for Fcoin. It simulates the first Reconst by sending a random value

d . For the second FweakMult, it receives the shares JfKC , together
with another additive error 5 . For the secondReconst, if1 = accept,

3 = 0 and 5 = 0 then S opens f by sending honest shares corre-

sponding to the secret 0, and sends continue to Fverify. Otherwise,
it samples honest shares corresponding to a random f , sends these

to the adversary and sends abort to Fverify.
First, notice that in the real world, d is statistically close to uni-

form, because of the CG ′ term that masks G . Secondly, if 4 = I − G~
is the error in the triple, then we have:

I + CI′ − d~ = I − G~ + C (I′ − G ′~) = 4 + C3

So, if the triple is correct and the adversary chooses 3 = 0, 5 = 0

then we always have f = 0 in both real and ideal worlds, and

furthermore the output in both cases will be accept. On the other

hand, if there are any errors then in the real world we have f =

(4 + C3)A + 5 . If 4 is non-zero, then 4 + C3 is non-zero except with

probability 1/|F|, since3 is fixed before the sampling of C . It follows

that f is statistically close to uniform, since A is uniformly random

and unknown to the adversary. Finally, this implies that the pro-

tocol output will be abort except with probability 1/|F|, which is

statistically close to the ideal world. �

Next, we analyze the VerifyDotProduct procedure with an in-

ductive argument. Namely, we show that if the recursive call to

VerifyDotProduct of length # /2 securely realizes the functional-

ity, then so does the main procedure.

Proposition B.3. Suppose that VerifyDotProduct on input of an

inner product triple of length # /2 securely implements Fverify, with
< = 1 and length# /2. Then,VerifyDotProduct securely implements

Fverify with< = 1 and length # . The failure probability in the sim-

ulation is 2/|F|.

Proof. We construct a simulator,S, as follows.S receives from

Fverify the corrupted shares of the triple J®GKC, J®~KC, JIKC , and the

result 1 ∈ {accept, abort}. S computes the shares of 58 and 68 , and

uses these to simulate FweakDotProduct. It receives the adversary’s
sharesℎ(1), ℎ(2), and locally computes the shares ofℎ(0), to define
shares of the polynomial Jℎ(- )KC . It also receives from A errors,

which define via interpolation an error polynomial 4 (- ) such that

ℎ(- ) = ®5 (- ) · ®6(- ) + 4 (- ).
Next, S sends a random A ← F to A. It then emulates the re-

cursive call to VerifyDotProduct; if 1 = abort or 4 (- ) ≠ 0, it sends

abort to the adversary, followed by abort to the length-# Fverify.
Otherwise, it sends accept to the adversary; if it responds with

continue, then send accept to Fverify, otherwise send abort.

We now argue indistinguishability. In the real world, if the inner

VerifyDotProduct check succeeds then ℎ(A ) = ®5 (A ) · ®6(A ). Since
ℎ(- ) is degree at most 2, this implies that ℎ(- ) and ®5 (- ) · ®6(- ) are
equal as polynomials, except with probability 2/|F|. Since ℎ(0) +
ℎ(1) = I, by construction, it follows that, except with negligible

probability, if the protocol accepts then I = ®5 (0) · ®6(0)+ ®5 (1) · ®6(1) =
®G · ®~, as required.

Meanwhile, in the ideal world, the simulator always aborts if

the triple is incorrect, or if 4 (- ) ≠ 0. The only possible differences

between the two worlds are the cases: (i) the triple is correct, but

4 (- ) ≠ 0 and VerifyDotProduct accepts, or (ii) the triple is incor-

rect, but the real protocol accepts. Each of these cases would re-

quire VerifyDotProduct to accept in the real world, even though

ℎ(- ) ≠ ®5 (- ) · ®6(- ). As argued above, this happens with probabil-

ity at most 2/|F|. �

Proposition B.4. If at least one triple input to Protocol 2 is incor-

rect, then so is the input toVerifyDotProduct, except with probability

at most</|F|.
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Proof. Suppose that I8 = ®G8 · ®~8 + X8 , and at least one X8 ≠ 0.

Then, if

( ®G0, A ®G1, . . . , A<−1 ®G<−1) · ( ®~0, . . . , ®~<−1) =
<−1∑
8=0

A 8I8 ,

then it holds that

(1, A , . . . , A<−1) · (X0, . . . , X<−1) = 0 .

Viewing the X8 ’s as coefficients of a non-zero, degree< − 1 poly-

nomial, this holds with probability at most </|F|, for a random

A . �

The claim and final bound in the theorem follows by a hybrid

argument over the log# recursive calls to VerifyDotProduct and

the final base case. �

C RANDOM ONE-HOT VECTOR PROTOCOL
FOR LENGTH 16

We propose a protocol to securely compute the ideal functionality

FRandOHV with length-16 output in Protocol 9. Compared to Proto-

col 5, it has the same communication complexity but fewer rounds.

The fundamental idea is based on the two-party Unitv-prep pro-

tocol for secure random unit vectorization protocol proposed in

[7]. However, our proposed approach differs in that it allows the

multi-party setting and it outputs sharings that are suitable for our

construction.

The idea behind the construction is based on the fact that for

a single random bit 1, the pair (1 ⊕ 1, 1) forms a one-hot vector

of length 2. Additionally, two one-hot vectors of length C can be

tensor-multiplied to generate a one-hot vector of length 2C .

In the proposed approach, the constructed one-hot vector e (A )

satisfies the following equation

e
(A )
9 =

∧
0≤8≤3

( 9 [8] ⊕ A [8] ⊕ 1), (4)

where 9 [8] (resp., A [8]) represents the 8-th bit of 9 ∈ Z16 (resp.,

A ∈ Z16).
Note that, by the distributive property, the terms on the right-

hand side for any 9 ∈ Z16 can be expressed as the sum of par-

tial products of {A0, A1, A2, A3}. The proposed protocol achieves the

one-hot encoding by generating random shares of A [8] ∈ F2 and

securely computing all their partial products using Eq. (4).

LemmaC.1. The protocolRndOhv in Protocol 9 securely computes

FRandOHV for : = 4 with abort in the
{
Frand, FweakMult, Fverify

}
-

hybrid model in the presence of a malicious adversary under the hon-

est majority setting.

Proof. Simulation ofRndOhv. S emulatesFrand and receives
from A the share JA3K

C, . . . , JA0KC held by corrupted parties. For

11 invocations of Mult, S emulates FweakMult and sends A cor-

rupt parties’ input shares (JA8KC, JA 9 KC) for all 3 ≥ 8 > 9 ≥ 0,

(JA8KC, JA 9A:KC) for all 3 ≥ 8 > 9 > : ≥ 0, and (JA3A2KCJA1A0KC).
S receives from A the pairs of the error and shares (38 9 , JA8A 9 KC)
for all 3 ≥ 8 > 9 ≥ 0, (38 9: , JA8A 9A:KC) for all 3 ≥ 8 > 9 >

: ≥ 0, and (3, JA3A2A1A0KC). S computes Je
(A )
9 KC for 9 ∈ [0, 15]

using the above shares held by corrupted parties. S sends JAKC :=

Protocol 9 Random One-hot Vector (RndOhv) with Length 16

Functionality: ({JA8K}8 , {Je (A )9
K} 9 ) ← FRandOHV (⊥)

Input: ⊥
Output: Shared random boolean values (JA3K, JA2K, JA1K, JA0K ) for

A0, A1, A2, A3 ∈ {0, 1} and the corresponding shared one-hot vector

Je (A ) K for A =
∑3

8=0 2
8A8 , where

��
e
(A ) �� = 16

Subfunctionality: Frand
1: JA:K ← Frand (⊥) for : ∈ [0, 3]
2: JA8A 9 K ← FweakMult (JA8K, JA 9 K ) for all 3 ≥ 8 > 9 ≥ 0

3: JA8A 9A:K ← FweakMult (JA8K, JA 9A:K ) for all 3 ≥ 8 > 9 > : ≥ 0

4: JA3A2A1A0K ← FweakMult (JA3A2K, JA1A0K )
⊲2 offline rounds, 11 bits

5: Servers locally compute Je
(A )
9

K from the shares of the products as in

Eq.(4), for 9 ∈ [0, 15]
6: Execute Fverify for the following multiplication triplets:

(1) (JA8K, JA 9 K, JA8A 9 K ) for all 3 ≥ 8 > 9 ≥ 0

(2) (JA8K, JA 9A:K, JA8A 9A:K ) for all 3 ≥ 8 > 9 > : ≥ 0

(3) (JA3A2K, JA1A0K, JA3A2A1A0K )
7: return {JA8K}0≤8≤3, {Je (A )9

K}0≤ 9≤15

JA:−1‖ . . . ‖A0KC and Je (A )KC := Je
(A )
0 ‖ . . . ‖e

(A )
15 KC to FRandOHV.S

emulates Fverify and sendsA the tuples consisting of the error and

multiplication triple, (38 9 , (JA8KC, JA 9 KCJA8A 9 KC)) for all 3 ≥ 8 >

9 ≥ 0, (38 9: , (JA8KC, JA 9A:KCJA8A 9A:KC)) for all 3 ≥ 8 > 9 > : ≥ 0,

and (3, (JA3A2KC, JA1A0KC, JA3A2A1A0KC)). If there exists a non-zero
error, S sets 1 = abort, and otherwise S sets 1 = accept. If 1 =

accept and A replies continue , S proceeds to the next step. Oth-

erwise, S sends abort to FRandOHV and aborts.

We now show that the ideal execution and the real execution

are indistinguishable. The view of A consists of the corrupt par-

ties’ input shares to FweakMult, which are computed the same since

they are obtained through linear operations from JA3K
C, . . . , JA0KC .

We also show that the output shares of all parties are distributed

the same in both executions. The corrupted parties output shares

in the ideal world are computed the same way as those in the real

world. For the honest parties’ shares, they are determined by us-

ing Je (A )KC and e
(A ) in the ideal world conditioned on Je (A )KH

is a shared one-hot vector of A . In the real world, Je (A )KH is com-

puted from JA3K
H, JA2KH, JA1KH , JA0KH as defined in Eq. (4) which

satisfies e (A ) is a one-hot vector of A . Here, Je (A )KH is distributed

uniformly since it is computed via linear combination of corrupted

parties’ shares of output from FweakMult. �

Reducing the number of multiplication checks. Instead of verify-

ing all 11 AND gates separately, we observe that it suffices to check

2 multiplications over a sufficiently large extension field�� (2: ) =
�� (2) [- ]/5 (- ):

The first multiplication verifies all the pairwise products A8A 9 :

(A0 + A1- + A2- 2) · (A3 + A0- 3 + A1- 6) =
A0A3 + A1A3- + A2A3- 2

+- 3 (A0 + A0A1- + A0A2- 2)
+- 6 (A0A1 + A1- + A1A2- 2) .
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The second multiplication verifies the remaining products:

(A0A1 + A0A3- + A1A3- 2) · (A2 + A3- 3 + A2A3- 6) =
A0A1A2 + A0A2A3- + A1A2A3- 2

+- 3 (A0A1A3 + A0A3- + A1A3- 2)
+- 6 (A0A1A2A3 + A0A2A3- + A1A2A3- 2) .

D DEFERRED PROOFS

D.1 Proof of Lemma 3.1

LemmaD.1 (Lemma 3.1, restated). The protocol Inv in Protocol 3

securely computesFInv with abort in the
{
F 〈〈·〉〉→J·K
LUT

, FweakMult, Fverify
}
-

hybrid model in the presence of a malicious adversary under the hon-

est majority setting.

Proof. S receives JGKC fromFInv and computes JEG KC through
Step 1–7 using JGKC .S emulatesF 〈〈·〉〉→J·K

LUT
and receives 〈〈E〉〉C, JE−1KC

and JEKC from A, and defines the error 3E = JEG KC ⊕ JEKC . S
emulates FweakMult, computes J0ℎKC and J0ℎKC ⊕ J0ℓK

C using

JGKC , and sends (J0ℎKC, JE−1KC), (J0ℎKC ⊕ J0ℓK
C, JE−1KC) to A.

S receives (31, J0′ℎKC), (32, J0′ℓKC) fromA. S emulates Fverify and
sendsA the tuples consisting of the error andmultiplication triple;

• (3E, (J0ℎK, J0ℓK, J0ℎ × 0ℓK))
• (31, (J0ℎK, JE−1K, J0′

ℎ
K))

• (32, (J0ℎ ⊕ 0ℓK, JE−1K, J0′ℓK))
Note that the first triple (J0ℎK, J0ℓK, J0ℎ × 0ℓK) can indirectly prove
that F 〈〈·〉〉→J·K

LUT
outputs the correct JEK, that is, 2 is correctly com-

puted. Here, JE−1K is computed locally and we don’t need to verify.

If there exists a non-zero error, S sets 1 = abort, and otherwise

S sets 1 = accept. If 1 = accept and if A replies continue, S
proceeds to the next step. Otherwise, S sends abort to FInv and

aborts.

S computes JG−1KC using J0′
ℎ
KC and J0′ℓK

C . S sends JG−1KC to

FInv.
We state why the ideal execution is indistinguishable from the

real execution. The view of the adversary consists of the corrupt

parties’ shares of the first inputs to multiplicative inversions J0ℎK
and J0ℎ ⊕ 0ℓK, but these are uniformly random in both executions

because they are obtained by applying a non-zero affine map to

JGKC . We also need to show that the output shares of all parties

are distributed the same in both executions. The corrupted parties’

output shares are the same in both executions. For the honest par-

ties’ output shares in the ideal execution, they are sampled at ran-

dom conditioned on that they can be reconstructed to G−1. In the

real execution, the honest parties’ output share J~KH is obtained

as JG−1KH as the correctness was shown in Sect. 2.1.1, and it is

uniformly distributed since it is computed by applying a non-zero

affine map to the output of multiplications that were sampled uni-

formly. �

D.2 Proof of Lemma 3.2

Lemma D.2 (Lemma 3.2, restated). The protocol LUT in Proto-

col 4 securely computes F J·K→〈〈·〉〉
LUT

in the {FRandOHV, Fzero}-hybrid
model in the presence of a malicious adversary.

Proof. Let A denote the adversary. We will construct a simu-

lator, S, to simulate the honest parties’ behaviour in the real exe-

cution.

Simulation of LUT. S emulates FRandOHV and receives JAKC

and Je
(A )
9 KC from A, and defines 〈〈A 〉〉C = ToAdditive(JAKC). S

emulates Fzero and receives J0KC from A. S receives 〈〈2〉〉C from

the adversary and computes 〈〈E〉〉C = 〈〈2〉〉C ⊕ 〈〈A 〉〉C ⊕ 〈〈0〉〉C . S
samples at random a set of shares 〈〈2〉〉H held by honest parties

and sends them to the adversary. S computes the set of shares

JCKC :=
⊕=−1

9=0 Je
(A )
9 KC · )2⊕ 9 and JEKC := JAKC ⊕ 2 . S sends to

F 〈〈·〉〉→J·K
LUT

the corrupted parties’ input shares 〈〈E〉〉C , and the out-

puts shares JCKC, JEKC .
We now argue why the ideal execution is indistinguishable from

the real execution. The view of the adversary consists of the honest

parties’ shares of the reconstructed 2 , but these are uniformly ran-

dom in both executions, thanks to the masking with 〈〈0〉〉. We also

need to show that the output shares of all parties are distributed the

same in both worlds. The corrupted parties’ shares are computed

exactly the same way in both executions. For the honest parties’

shares, in the ideal world they are sampled at random conditioned

on C = )E . In the real protocol, since e
(A )
9 has a 1 in position A , we

have C = )E⊕A⊕A = )E . Furthermore, since the shares Je (A )KH , JAKH

sampled by FRandOHV are sampled uniformly, the output shares

JCKH , JEKH are also uniformly distributed, since they are each ob-

tained by applying a non-zero affinemap to Je (A )KH and JAKH . �

D.3 Proof of Lemma 3.4

Lemma D.3 (Lemma 3.4, restated). Protocol 7 securely realizes

the functionality FAES in the (F 〈〈·〉〉LUT
, Fverify)-hybrid model with ma-

licious security.

Proof. We construct a simulator,S, as follows. First,S receives

from FAES the corrupted parties’ shares JGKC and J: (8 )KC , and
defines 〈〈: (8 ) 〉〉C = ToAdditive(J: (8 )KC). For the first set of calls

to F J·K→〈〈·〉〉
LUT

, S sends to A the appropriate shares of G0
1
, and re-

ceives the output shares 〈〈~0
1
〉〉C . For each subsequent round, for

8 = 1, . . . , 9, S does as follows:

• Apply the linear layer !8 to the corrupted parties’ shares

to obtain 〈〈G8 〉〉C
• Receive 〈〈Ĝ8 〉〉C from A, as input to F 〈〈·〉〉

LUT

• Define the error X8 =
⊕

9∈C (〈〈G8 〉〉 9 ⊕ 〈〈Ĝ8 〉〉 9 )
• Receive the adversary’s output sharings 〈〈~8 〉〉C, JG8

1
KC for

F 〈〈·〉〉
LUT

• Compute the shares J~8−1KC according to the protocol

Finally, S emulates Reshare, and computes the corresponding er-

ror X10 in the new sharing of~9. To emulate Fverify,S first sends to

A the corresponding shares of the triples. Then, if any X8 is non-

zero, S sends abort to A and aborts; otherwise, S sends accept,

and if A responds with continue, S sends to FAES the corrupted

parties’ shares of the outputs, I.

We claim that the ideal execution is distributed identically to

that of the real execution. Note that the real protocol aborts if any
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of the S-box input/output pairs are incorrect; otherwise, the out-

put I must be the result of a correct AES evaluation. In the ideal

execution, the protocol aborts if any error X8 is non-zero. Since X8

is the sum of all corrupt parties’ shares of the G8 value which was

meant to be input intoFLUT, and Ĝ8 waswas used as input, any non-
zero X8 means that an incorrect S-box input was used in round 8 .

Since this input is used to derive the sharings JG8K, this will cause
the S-box verification for round 8 − 1 to fail, and the protocol will

abort. �

E IMPROVED PROTOCOL FOR F 〈〈·〉〉
LUT

We present the improved protocol for F 〈〈·〉〉
LUT

in Protocol 10. Since

the protocol operates entirely on J·K-shared data, its security is

straightforward and we omit the proof of the following.

Lemma E.1. Protocol 10 securely realizes the functionality F J·K
LUT

with malicious security.

Protocol 10 Table Lookup of size # = 2: in replicated sharing

Functionality: J)EK ← FLUT (JEK,) )
Input: Share JEK of E ∈ �� (2: ), table ) : �� (2: ) → �� (2ℓ )
Output: Share J)EK of the value of ) at E

Subfunctionality: FRandOHV
1: Call FRandOHV (:/2) twice to get ({JA8K}:/2−18=0 , {Je (A )9 K}

√
#−1

9=0 )
and ({JA ′8 K}

:/2−1
8=0 , {Je (A

′ )
9 K}

√
#−1

9=0 )
2: JAK := (JA0K, . . . , JA:/2−1K, JA ′0K, . . . , JA ′:/2−1K)
3: 2 ← Reconst(JEK + JAK) ⊲1 round, : bits

⊲
®5 (0) , ®5 (1) ∈ {0, 1}#

4: J ®5 (0)K := (Je (A )0 K, . . . , Je
(A )
0 K, . . . , Je

(A )√
#−1

K, . . . , Je
(A )√
#−1
)K

5: J ®5 (1)K := (Je (A
′ )

0 K, . . . , Je
(A ′ )√
#

K, . . . , Je
(A ′ )
0 K, . . . , Je

(A ′ )√
#−1
)K

6: J®6 (0)K := ()2 · J ®5 (0)0 K, . . . ,)2⊕(#−1) · J ®5 (0)#−1K)
7: JEK ← FweakDotProduct (J®6 (0)K, J ®5 (1)K) ⊲1 round, : bits

8: Run Fverify on input (J®6 (0)K, J ®5 (1)K, JEK)
9: return JEK
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