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Abstract. Recently, Picnic3 has introduced several alternative LowMC
instances, which prompts the cryptanalysis competition for LowMC. In
this paper, we provide new solutions to the competition with full S-
box layers under single-data complexity. First, we present a new guess-
and-determine attack framework that achieves the best trade-off in com-
plexity, while effectively enhancing two algorithms applicable to 2-round
LowMC cryptanalysis. Next, we present a new meet-in-the-middle attack
framework for 2-/3-round LowMC, which can gradually reduce the num-
ber of variables and narrow down the range of candidate keys in stages.
As a result, our 3-stage MITM attacks have both lower time complexity
and memory complexity than the best previous 2-round attacks proposed
by Banik et al. at ASIACRYPT 2021, with memory reduced drastically
by a factor of 229.7 ∼ 270.4.
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1 Introduction

LowMC [1] is a family of block ciphers based on the flexible substitution permuta-
tion network (SPN) structure, first proposed by Albrecht et al. at EUROCRYPT
2015. It allows users to independently customize various parameters, including
the block size n, the key size k, the number of S-boxes s in the nonlinear layer
and the allowed data complexity D of attacks. LowMC employs 3-bit S-boxes,
which are specifically designed to achieve low multiplicative complexity.

Since proposed, LowMC instances with partial S-box layers (e.g. s = 1) are
used in security protocols such as secure multi-party computation (MPC), fully
homomorphic encryption (FHE), and zero-knowledge proofs (ZK). Moreover,
LowMC has demonstrated its effectiveness within signature schemes and the
ability to impact the size of the resulting signature. Compared to standard func-
tions, employing LowMC can reduce the signature size by approximately one
order of magnitude [9]. With development, there have been a number of such
novel primitives [21,2,8,12,3,14,15].
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Following the proposal of LowMCv1 (with the initial version of the round
calculation formula), several related cryptanalyses were conducted. Notably, Do-
braunig et al. [13] introduced a high-order differential attack, and Dinur et al.
[11] presented an interpolation attack. In response to these attacks, the design
team upgraded LowMCv1 to LowMCv2 [2] by revising the round calculation
formula. At ToSC 2018, Rechberger et al. [23] conducted a low-data cryptanal-
ysis of LowMCv2, focusing on specific partial nonlinear layers. They introduced
the framework of difference enumeration techniques based on meet-in-the-middle
(MITM) principles, which breached the prescribed security boundaries and di-
rectly prompted the evolution of LowMCv2 into LowMCv3. Subsequently, Liu et
al. [17,19], Qiao et al. [22], and Sun et al. [24] gradually improved the techniques,
leading to the development of a new difference enumeration framework and key
recovery techniques. Note that the above cryptanalysis of LowMC was carried
out in a known plaintext attack mode, requiring a certain number of plaintexts,
i.e. data complexity D > 1.

One significant application of LowMC is as the underlying block cipher for the
Picnic signature scheme [9]. Picnic is a highly adaptable post-quantum signature
scheme currently in the third round of NIST post-quantum cryptography (PQC)
standardization process. Now, Picnic3 [16] employs LowMCv33 for instantiation
and introduces several instances with full S-box layers, which can achieve faster
signing and verification speeds while the signature size is almost kept the same
compared to the previous version. Unlike previous cryptanalysis, the attacker
can only choose a single known plaintext-ciphertext pair (P,C) to recover the
key under the Picnic setting. This is because, in the instantiation of Picnic, the
public key (verification key) is equivalent to the pair (P,C) of LowMC, while
the secret key (signing key) corresponds to the encryption key K of LowMC.
In other words, the attacker can only perform a key recovery attack on LowMC
with data complexity D = 1 to genuinely jeopardize the security of Picnic. It
presents an interesting avenue for cryptanalysis.

1.1 Previous Work

In May 2020, Rechberger et al. initiated a cryptanalysis competition4 for LowMC
under the Picnic setting, aimed at exploring key recovery attacks using a single
known plaintext-ciphertext pair. The challenge contains 9 instances, including 3
instances with full S-box layers and 6 instances with partial S-box layers:

– (n, k, s) = (129, 129, 43), (192, 192, 64), and (255, 255, 85).
– (n, k, s) = (128, 128, 1), (192, 192, 1), and (256, 256, 1).
– (n, k, s) = (128, 128, 10), (192, 192, 10), and (256, 256, 10).

Note that the number of rounds r for instances with full S-box layers is either 2,
3 or 4 and for instances with partial S-box layers can vary between 0.8×

⌊
n
s

⌋
,
⌊
n
s

⌋
and 1.2×

⌊
n
s

⌋
. If these values are not integers, the number of rounds is rounded

3 In the following, LowMCv3 is referred to as LowMC for short.
4 https://lowmcchallenge.github.io/

https://lowmcchallenge.github.io/
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up to the nearest higher integer. Furthermore, Picnic3 [16] recommends that
3 instances with full S-box layers: (n, k, s, r) = (129, 129, 43, 4), (192, 192, 64, 4)
and (255, 255, 85, 4).

At ToSC 2020, Banik et al. [5] first proposed a linearization technique for
the LowMC S-box and a key recovery attack employing MITM and guess-and-
determine (GnD) methods. They successfully solved the 2-round LowMC in-
stances with full S-box layers and the 0.8 ×

⌊
n
s

⌋
-round LowMC instances with

partial S-box layers. Following this work, at ASIACRYPT 2021, Banik et al. [6]
improved their attack methodology and presented a 2-stage MITM attack with a
Gray-codes based approach, which can solve more LowMC challenge instances.
Moreover, their results for instances with partial S-box layers were improved
upon in [25].

At EUROCRYPT 2021, Dinur [10] presented an efficient algorithm for solv-
ing the polynomial system of degree d with n variables over F2. By transforming
the key recovery problem of LowMC into a problem of solving a system of mul-
tivariate Boolean equations, this method can solve all instances with full S-box
layers and even extend the number of attacked rounds to 5 rounds. However,
Dinur’s algorithm requires a large amount of memory that prompts cryptana-
lysts to develop low-memory attacks on LowMC.

In order to achieve this goal, at ToSC 2022, Liu et al. [18] proposed a new
attack on LowMC by using a simplified version of the crossbred algorithm com-
bined with the naive guess strategy, which offered a better time-memory trade-
off. Later, Banik et al. [4] and Sun et al. [24] further extended the low-memory
attacks on LowMC, the memory required for the attacks on some instances was
effectively reduced, although with a slight sacrifice in time complexity.

1.2 Our Contributions

In this paper, we provide new solutions to the LowMC cryptanalysis competition
using only a single known plaintext-ciphertext pair.

– We present a new GnD attack framework designed for 2-round LowMC in-
stances with full S-box layers. In this framework, two strategies are used
to linearize LowMC S-boxes, aiming to achieve the best trade-off in com-
plexity. Then, all free variables associated with the key can be reduced in
two stages, leading to enhanced results when performing the fast exhaustive
search algorithm and Dinur’s algorithm to 2-round LowMC cryptanalysis.

– By revisiting our attack algorithm in a more fine-grained manner, we present
a new MITM attack framework that combines the GnD method. In our op-
timal attacks for 2-/3-round LowMC instances with full S-box layers, we
can reduce the number of variables while achieving a trade-off in guess com-
plexity, deduce an additional collision equation to narrow down the range of
candidate keys, and perform a final attack to recover the secret key.

– As shown in Table 1.2, our 3-stage MITM attacks outperform the best pre-
vious 2-round attacks proposed in ASIACRYPT 2021 paper [6] in terms of
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time complexity and memory complexity, with memory drastically reduced
by a factor of 229.7 ∼ 270.4. Thus, our results set a new record in the LowMC
cryptanalysis competition.

While our 3-round attack did not break the record, the concept of algebraic
attacks based on the MITM idea still holds potential and serves as our future
research work.

1.3 Organization

In Section 2, we introduce a description of LowMC, the linearization techniques
for LowMC S-box, and an overview of both the fast exhaustive search algorithm
and Dinur’s algorithm. In Section 3, we present the GnD attack framework and
its application effects. In Section 4, we present the MITM attack framework,
including both a 2-stage MITM attack and a 3-stage MITM attack. Finally, we
summarize the full paper in Section 5.

2 Preliminaries

2.1 Description of LowMC

LowMC [1] is a family of block ciphers with flexible SPN structures. Unlike
conventional block ciphers, the instantiation of LowMC is not fixed, and users
can independently select parameters: the block size n, the key size k, the number
of S-boxes s in each round and the allowed data complexity D of attacks. The
number of rounds r for LowMC is determined by the round calculation formula,
to reach the security margins from these parameters.

               

 

  1Round Key iK 

#S-boxes s

Blocksize n

S S S S

Affine Layer

Fig. 1. LowMC Round Function

Specifically, LowMC encryption begins with a key whitening, and the round
function given in Fig. 1 at the (i+ 1)-th (0 ≤ i ≤ r− 1) round can be described
as follows:
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Table 1. A summary of the cryptanalysis results for the 2-/3-round LowMC in-
stances with full S-box layers under single-data complexity. Where the time com-
plexity T is estimated in bit operations and the memory complexity M is estimated
in bits. The Exh.Search denotes the log2 bit operations required for exhaustive
search, which is based on a single r-round LowMC encryption requires about 2rn2

bit operations [6]. The values of (h, t) are the optimal parameters for minimizing
the time complexity of our attacks.

n k s r (h, t) log2(T ) log2(M) Exh.Search References

129 129 43 2 /

97 53

145

[6]
118 92 [10]

125.43 77.4 [4]
128.4* 40.2* [24]

(28, 15) 94.4 23.3 Ours

192 192 64 2 /

139 75

209

[6]
170 126 [10]

181.91 112.58 [4]
186.6* 55.9* [24]

(46, 18) 136.6 26.6 Ours

255 255 85 2 /

182 97

273

[6]
222 173 [10]

243.03 152.67 [4]
244.5* 71.4* [24]

(67, 18) 178.7 26.6 Ours

129 129 43 3 /

140 53

146

[6]
125 104 [10]

127.2 16.9 [18]
129.46 81.5 [4]

(28, 15) 137.4 23.3 Ours

192 192 64 3 /

203 75

210

[6]
180 150 [10]

186.2 18.6 [18]
187.88 118.41 [4]

(46, 18) 200.6 26.6 Ours

255 255 85 3 /

267 97

274

[6]
235 197 [10]

246.8 19.8 [18]
247.35 155.55 [4]

(67, 18) 263.7 26.6 Ours
* The optimal complexity was recalculated using the formula in [24].

1. SBoxLayer : A 3-bit S-box S(x0, x1, x2) = (x0 ⊕ x1x2, x0 ⊕ x1 ⊕ x0x2, x0 ⊕
x1 ⊕ x2 ⊕ x0x1) = (y0, y1, y2) is applied to the first 3m bits of the state in
parallel, while an identity mapping is applied to the remaining n− 3m bits.
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2. LinearLayer : The n-bit state is multiplied with a random matrix Li, which
is an invertible n× n matrix over F2.

3. ConstantAddition: The n-bit state is XORed with the n-bit round constant
RCi, which is randomly generated.

4. KeyAddition: The n-bit state is XORed with the n-bit round key Ki+1,
where Ki+1 is obtained by multiplying the k-bit master key with an n × k
binary matrix Mi+1. The matrix is chosen independently and uniformly at
random from all binary n× k matrices of full-rank.

Note that the combination of LinearLayer and ConstantAddition represents the
Affine Layer displayed in Fig. 1. The whitened key is denoted by K0 and it is also
calculated by multiplying the master key with a randomly generated full-rank
n×k binary matrix M0. Moreover, a single r-round LowMC encryption requires
about 2rn2 bit operations as in [6].

2.2 Linearization Techniques for the LowMC S-box

In our subsequent key recovery attacks, it is necessary to linearize a portion of
the LowMC S-boxes. Due to the characteristics of the S-box, linearizing it is a
straightforward process. The first linearization technique for the LowMC S-box
was proposed by Banik et al. [5], which can be summarized as the following
Lemma.

Lemma 1. [5] Consider the LowMC S-box S defined over the input bits x0, x1, x2.
If we guess the value of any 3-variable quadratic Boolean function f which is bal-
anced over the input bits of the S-box, then it is possible to re-write the S-box as
an affine function of its input bits. And the same is true for the inverse LowMC
S-box.

Specifically, we consider the quadratic expressions on the LowMC S-box as
shown below:

y0 = x0 ⊕ x1x2,

y1 = x0 ⊕ x1 ⊕ x0x2,

y2 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1.

Take notice of the expressions of y0, y1 and y2 are all 3-variable quadratic bal-
anced Boolean functions over the input bits x0, x1 and x2. Hence, we can lin-
earize the S-box by guessing the value of any one output bit. For example, let
α = x0 ⊕ x1x2, the output bits can be rewritten as

y0 = α,

y1 = α⊕ x1 ⊕ αx2,

y2 = α⊕ x1 ⊕ x2 ⊕ αx1.

If we guess the value of α, then (y0, y1, y2) can be expressed as linear functions
in terms of (x0, x1, x2), and the 3-bit S-box is fully linearized.
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In addition, the LowMC S-box (or inverse S-box) can also be linearized
through the naive guess strategy, which involves guessing the values of any two
input bits. Each output bit can then be expressed as a linear expression of the
input bits. This conclusion can be directly derived from the definition of the
LowMC S-box and was first employed by Liu et al [18].

2.3 Algorithms for Solving Multivariate Equation Systems over F2

Given that our upcoming attack strategy will involve the utilization of two al-
gorithms for solving the system of multivariate Boolean equations, it is essential
to provide a concise overview of their capabilities.

Fast Exhaustive Search for Polynomial Systems in F2. At CHES 2010
Bouillaguet et al. [7] presented an exhaustive search algorithm that can evaluate
a single Boolean polynomial of degree d with u variables requires just d · 2u
bit operations, and its initialization phase of complexity is about O(u2d), which
is negligible when d ≪ u. In particular, this algorithm is highly suitable for
evaluating polynomials of degree 2 or less. It allows us to evaluate any u-variable
quadratic Boolean function within 2u+1 bit operations and any u-variable linear
Boolean function within 2u bit operations.

Furthermore, the extended fast exhaustive search algorithm can find all the
common zeroes to a random Boolean polynomial system of degree d with u
variables, its time complexity is only 2d·log2 u·2u bit operations, and the required
memory to store the m polynomials is about m ·

(
u
≤d

)
, where

(
u
≤d

)
=

∑d
i=0

(
u
i

)
.

The characteristic of this efficient exhaustive search algorithm is that it it-
erates in Gray-codes order instead of lexicographic order, effectively leveraging
the properties of Gray-codes, i.e. the Hamming difference between two adjacent
Gray-codes is equal to 1. On the other hand, the time complexity of the algo-
rithm is independent of the number of equations, which allows this algorithm to
be applicable in various scenarios, particularly in the field of cryptanalysis.

Efficient Algorithm for Solving Multivariate Boolean Equations based
on Polynomial Method. At EUROCRYPT 2021, Dinur [10] presented a con-
cretely efficient algorithm (called Dinur’s algorithm subsequently) to attack all
LowMC instances with full S-box layers. In fact, Dinur’s algorithm is an algo-
rithm for solving multivariate equation systems over F2, which is based on the
polynomial method from [20]. Moreover, in our attacks on the 2-round LowMC
instances with full S-box layers, we further enhance the effectiveness of Dinur’s
algorithm using a GnD attack framework.

Considering a system of m Boolean equations of degree d with u variables,
which is denoted by E(x). We choose a parameter u1 and split these variables
into two disjoint parts y ∈ Fu−u1

2 and z ∈ Fu1
2 . As a result, E(x) can be rewritten

as E(y, z). The fundamental concept of Dinur’s algorithm is to randomly select
four different choices for the system Ẽ(y, z), each containing u1 + 1 equations
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from E(y, z), and assume that the correct solution is isolated in E(y, z) with
probability 1− 2u1−m, which is typically very close to 15.

Definition 1. [10] A solution x̂ = (ŷ, ẑ) to E(y, z) is called isolated (with
respect to the variable partition (y, z)), if (ŷ, ẑ′) is not a solution to the system
E for any ẑ′ ̸= ẑ.

Then, we can efficiently enumerate all isolated solutions to the four derived
systems by using the method described in [10]. When an identical solution is
found in two derived equation systems, this solution is suggested as a candidate
solution to E(y, z). Next, all candidate solutions are tested within the original
system, so that the cost of testing the solutions is negligible.

Hence, by transforming the key recovery problem of LowMC instances into a
problem of solving the multivariate Boolean equation system, it can be effectively
addressed using Dinur’s algorithm. The total time complexity is estimated as

4 ·
(
2d · log2 u · 2u1 ·

(
u− u1

≤ dF̃ − u1 + 1

)
+ (u1 + 1) · (u− u1) · 2u−u1

)
(1)

bit operations and the total memory complexity is estimated as

8 · (u1 + 1) ·
(

u− u1

≤ dF̃ − u1 + 1

)
(2)

bits. Finally, we recommend referring to [10] for more details.

3 New GnD Attacks on the LowMC Instances with Full
S-box Layers

In this section, we introduce a GnD attack framework that maximizes the lin-
earization potential of S-boxes. Additionally, this strategy transforms the key
recovery problem of 2-round LowMC into the problem of solving a smaller sys-
tem of Boolean equations, and it makes the fast exhaustive search algorithm [7]
and Dinur’s algorithm [10] more effective.

3.1 The GnD Attack Framework for the 2-round LowMC Instances

Note that in the LowMC challenge instances, both the whitened key K0 and all
round keys Ki+1 are generated by multiplying the master key K with a full-rank
n× k binary matrix (n = k). As a result, the key schedule of LowMC is linear,
and each bit of the subkey can be expressed as a linear function in terms of the
master key K.

As shown in Fig. 2, we initiate the GnD attack on 2-round LowMC with full
S-box layers. First, we linearize the last g S-boxes in the 1st round by guessing
5 In our 2-round attack using Dinur’s algorithm, all the instances satisfy u1 ≪ m, so

that the correct key will be isolated with a probability very close to 1.
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Fig. 2. The GnD Attack Framework for 2-round LowMC

two input bits for each S-box. Combined with the plaintext, it directly provides
a system of 2g linear equations concerning the master key K. We can perform
Gaussian elimination on this system to obtain n − 2g free variables, which are
denoted by v = (v1, v2, · · · , vn−2g). Then, we linearize the remaining t S-boxes by
guessing one output bit for each S-box, so that the 1st round is fully linearized.

Next, we consider the inverse of the 2nd S-box layer and linearize the first
h inverse S-boxes by guessing one output bit for each S-box. At this point,
starting from the plaintext and ciphertext to reach the intermediate state of
the first 3h circuits between two rounds, we can construct 3h linear equations
about v. Hence, we can perform Gaussian elimination on these linear equations
to obtain new free variables β = (β1, β2, · · · , βn−2g−3h). Note that the input and
output states of the remaining n

3 − h S-boxes in the 2nd round can naturally be
represented as linear functions of β. Through the quadratic expressions on the
LowMC S-box, we can finally construct n−3h quadratic Boolean equations about
β. Since each key bit of K can be linearly represented by (β1, β2, · · · , βn−2g−3h),
then finding the value of β is equivalent to recovering the secret key. The entire
GnD attack framework can be summarized in Algorithm 1.

Complexity Estimation. Now, let us solve the target system of quadratic
Boolean equations using the fast exhaustive search algorithm introduced in Sec-
tion 2.3. Since n − 2g − 3h ≤ n − 3h, it implies that the system has a unique
solution, eliminating the need for additional key testing expenses. Thus the time
complexity of the algorithm is estimated as TFES = log2(n−2g−3h)·2n−2g−3h+2,
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Algorithm 1 The GnD attack framework for the 2-round LowMC
Input: A plaintext-ciphertext pair (P,C).
Output: The secret key K.
1: Linearize the last g S-boxes in the 1st round by guessing two input bits for each

S-box. Denote the guess vector as V ec1.
2: for each V ec1 ∈ {0, 1}2g do
3: A system of 2g linear equations about K can be obtained directly, and perform

Gaussian elimination on this system to yield n− 2g free variables v.
4: Linearize the first t S-boxes (t = s− g) in the 1st round by guessing one output

bit for each S-box. Denote the guess vector as V ec2.
5: for each V ec2 ∈ {0, 1}t do
6: Linearize the first h inverse S-boxes in the 2nd round by guessing one output

bit for each S-box. Denote the guess vector as V ec3.
7: for each V ec3 ∈ {0, 1}h do
8: A system of 3h linear equations about v can be obtained through the first 3h

circuits, and perform Gaussian elimination on this system to yield n−2g−3h
free variables β.

9: The target system of n− 3h quadratic equations about β can be obtained
through the remaining n−3h circuits, and then use algebraic techniques to
solve it and verify the correctness via (P,C).

10: if the solution is correct then
11: Output it and end the algorithm.
12: end if
13: end for
14: end for
15: end for

and the total time complexity is estimated as

Tb = 22g ·
(
TG,1 + 2t+h · (TG,2 + TFES)

)
bit operations, where TG,1, TG,2 represent the first and second Gaussian elimi-
nation complexity respectively, with TG,1 = (2g)2 ·n and TG,2 = (3h)2 · (n− 2g).
In the entire attack framework, we only need to store the system of equations
for two Gaussian eliminations and n− 3h quadratic polynomials. Therefore, the
total memory complexity is estimated as

Mb = 2g · n+ 3h · (n− 2g) + (n− 3h) ·
(
n− 2g − 3h

≤ 2

)
bits. Specifically, we perform the GnD attack on the 2-round LowMC instances,
and the results are displayed in Table 2.

3.2 Improving Dinur’s Attacks on LowMC using the GnD Strategy

Likewise, we can employ this GnD attack framework to enhance the results of
Dinur’s algorithm [10] when applied to 2-round LowMC cryptanalysis. Assuming
that the symbol definitions and attack process remain the same as before, we
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Table 2. Results for the 2-round instances with full S-box layers. Where FES denotes
the time complexity of using the fast exhaustive search algorithm directly. The values of
(t, g, h) are the optimal parameters for minimizing the time complexity of our attacks.

n k s r (t, g, h) Tb Mb FES

129 129 43 2 (43, 0, 38) 2102.1 214.0 2134

192 192 64 2 (64, 0, 58) 2145.3 215.2 2197

255 255 85 2 (85, 0, 79) 2188.2 216.0 2260

have constructed a target system of n− 3h quadratic Boolean equations related
to x = (x1, x2, · · · , xn−2g−3h) in Algorithm 1, denoted by E(x).

Now, let us choose a parameter u1 and split the n− 2g− 3h variables x into
two disjoint parts y ∈ {0, 1}n−2g−3h−u1 and z ∈ {0, 1}u1 . As a result, E(x) can
be rewritten as E(y, z), and we randomly select four different choices for Ẽ(y, z).
Then, it has reached the usage scenario of Dinur’s algorithm [10].

Complexity Estimation. We employ Dinur’s algorithm to solve the above
quadratic Boolean equations (d = 2). Let u = n− 2g− 3h, referring to Equation
(1) and Equation (2), the time complexity is estimated as

T ′ = 4 ·
(
2d · log2 u · 2u1 ·

(
u− u1

≤ dF̃ − u1 + 1

)
+ (u1 + 1) · (u− u1) · 2u−u1

)
= log2 u · 2u1+4 ·

(
u− u1

≤ dF̃ − u1 + 1

)
+ (u1 + 1) · (u− u1) · 2u−u1+2

bit operations. Note that dF̃ can be optimally determined by using Dinur’s
observation on the 3-round LowMC instances [10]. Specifically, if ℓ = u1 +1 ≡ 0
(mod 3), then dF̃ ≤ 4 · ℓ

3 ; if ℓ ≡ 1 (mod 3), then dF̃ ≤ 4 · ℓ−1
3 + 2; and if ℓ ≡ 2

(mod 3), then dF̃ ≤ 4 · ℓ−2
3 + 3.

Furthermore, the memory complexity of the algorithm is estimated as

M ′ = 8 · (u1 + 1) ·
(

u− u1

≤ dF̃ − u1 + 1

)
bits. Therefore, the total time complexity of the improved attack is estimated as

Td = 22g ·
(
TG,1 + 2t+h · (TG,2 + T ′)

)
bit operations and the total memory complexity is estimated as

Md = 2g · n+ 3h · (n− 2g) +M ′

bits. As shown in Table 3, it can be found that our results6 are better than
Dinur’s results [10], with a significant advantage of requiring only negligible
memory.
6 We simply restrict 2u1 > 1000u to satisfy the condition that 2u1 ≫ u, as discussed

in Remark 2.2 of [10].
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Table 3. Results for the 2-round instances with full S-box layers. Where the time
complexity TD is estimated in bit operations and memory complexity MD is estimated
in bits, which are derived from [10]. The values of (t, g, h) are the optimal parameters
for minimizing the time complexity of our attacks.

n k s r (t, g, h) (u1, dF̃ ) Td Md TD MD

129 129 43 2 (41, 2, 34) (15, 22) 2108.2 215.5 2118 292

192 192 64 2 (62, 2, 55) (15, 22) 2150.2 216.0 2170 2126

255 255 85 2 (83, 2, 76) (15, 22) 2192.2 216.5 2222 2173

4 New MITM Attacks on the LowMC Instances with
Full S-box Layers

Indeed, the GnD attack framework described above is essentially an MITM at-
tack. Through the construction of linear equations in a portion of the state
that meets in the middle of the two rounds, the key K can be transformed into
free variables using Gaussian elimination. Subsequently, another portion of the
state is used to create quadratic equations about free variables over F2. These
equations are then solved to recover the secret key. However, inspired by the
MITM attack proposed by Banik et al. [5,6], we revisit our attack algorithm and
transform it into a more fine-grained MITM attack in this section.

Guess  bitsh 



Affine Layer

S S S S S

    



 (the secret key)K

S



S



S



S



S



Affine Layer

    

1K

2K

Guess  bits
3
n



 

 3
0 0,1 hU   1 0,1 tU    3

2 0,1 n h tU  

1 2 3State , , , ha a a 1 2 3State , , , n hx x x 

Fig. 3. 2-stage MITM Attack Framework for 2-round LowMC
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4.1 2-stage MITM Attack Framework for the 2-round LowMC
Instances

Due to the linear key schedule of LowMC, we can regard the whitened key as
the secret key K = [k1, k2, · · · , kn] for cryptanalysis. As illustrated in Fig. 3,
we have devised the 2-stage MITM attack framework on the 2-round LowMC
instances with full S-box layers. In the following, we will elucidate this attack
framework in stages.

1st MITM Stage. First, we split K into three parts: U0 = [k1, k2, · · · , k3h],
U1 = [k3h+1, k3h+2, · · · , k3h+t] and U2 = [k3h+t+1, k3h+t+2, · · · , kn], where t =
⌊(n− 3h)/6⌋ · 3. Then, each bit of the round key K1, K2 can be expressed as a
linear function in terms of U0, U1, U2.

Next, let us guess one input bit value for each S-box in the 2nd round so
that the inverse of the 2nd round is fully linearized. Additionally, we guess one
output bit value for each of the first h S-boxes in the 1st round and define
X = (a1, · · · , a3h, x1, · · · , xn−3h) to be the output state of the 1st S-box layer.
Obviously, starting from the plaintext and ciphertext to reach the intermediate
state (a1, a2, · · · , a3h), a system of 3h linear equations involving U0, U1, U2 can
be constructed. The system can be rewritten as

A · U0 = A · [k1, k2, · · · , k3h]T = B, (3)

where A is an 3h× 3h matrix over F2, and B is a formal vector whose elements
are affine functions in terms of U1, U2. Assuming that the matrix A is full-rank,
after the Gaussian elimination is applied to Equation (3), each bit of U0 can be
an affine function over U1, U2.

2nd MITM Stage. Note that starting from the ciphertext side to arrive at
the intermediate state xb (b ∈ [1, n− 3h]), each of them can be expressed as an
affine function in terms of U1, U2. Since 3|t, in the process of starting from the
plaintext side to reach xb, the key bits of U1 and U2 are never multiplied. In the
end, the intermediate state xb can be expressed as follows:

xb = fi(U1) + ci = Ai(U1) +Bi(U2) for ∀b = i ∈ [1, t],

xb = gj(U2) + dj = Cj(U1) +Dj(U2) for ∀b = j ∈ [t+ 1, n− 3h],

where each fi, gj are quadratic functions about U1, U2 and each Ai, Bi, Cj , Dj

are affine functions about U1, U2, and each ci, dj are single bit constants. Hence,
we can rearrange the terms to obtain the following collision equations:

fi(U1) +Ai(U1) + ci = Bi(U2) for ∀i ∈ [1, t],

Cj(U1) = gj(U2) +Dj(U2) + dj for ∀j ∈ [t+ 1, n− 3h].

Now, we start to describe the entire 2-stage MITM attack as follows:
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1. Calculate the functional forms of fi, gj and the values of ci, dj for ∀i ∈ [1, t],
∀j ∈ [t+ 1, n− 3h].

2. Use Gray-codes to enumerate all possible values of U1 ∈ {0, 1}t, precompute
all the values of fi(U1) for ∀i ∈ [1, t] and store them in table L′. Similarly,
enumerate all possible values of U2 ∈ {0, 1}n−3h−t based on Gray-codes
order, precompute all the values of gj(U2) for ∀j ∈ [t+ 1, n− 3h] and store
them in table L′′.

3. Linearize the first h S-boxes of the 1st round and the entire S-box layer in
the 2nd round, which requires 2n/3+h guesses in the worst case.
– 1st MITM stage:
– In the intermediate state (a1, a2, · · · , a3h), construct a system of 3h linear

equations about U0, U1, U2, then perform Gaussian elimination on this
system. After that, each bit of U0 can be an affine function over U1, U2.

– 2nd MITM stage:
– According to the current guessing scenario, use Gray-codes to enumerate

all possible values of U1 ∈ {0, 1}t, create hash table L1 indexed by the
(n − 3h)-bit vector [fi(U1) +Ai(U1) + ci, · · · , Cj(U1)], ∀i ∈ [1, t], ∀j ∈
[t+ 1, n− 3h].

– Enumerate all possible values of U2 ∈ {0, 1}n−3h−t based on Gray-
codes order, create hash table L2 indexed by the (n − 3h)-bit vector
[Bi(U2), · · · , gj(U2) +Dj(U2) + dj ], ∀i ∈ [1, t], ∀j ∈ [t+ 1, n− 3h].

– Find possible collisions between L1 and L2, we expect the number of
collisions to be about 2t+n−3h−t · 23h−n = 1.

– When a collision is found, the values of U1 and U2 are derived to check
for correctness. If the key K = (U0, U1, U2) is correct, the algorithm
terminates, otherwise it proceeds to the next guess values and continues
iteratively.

Complexity Estimation. Let us analyze the complexity of this attack algo-
rithm, beginning with the time cost of precomputation. Through the fast exhaus-
tive search algorithm based on Gray-codes, we can precompute all the values of
fi(U1) for ∀i ∈ [1, t] in t · 2t+1 bit operations. Similarly, we precompute all the
values of gj(U2) for ∀j ∈ [t+1, n− 3h] in (n− 3h− t) · 2n−3h−t+1 bit operations.
Thus, the time complexity of the precomputation is estimated as

Tpre = t · 2t+1 + (n− 3h− t) · 2n−3h−t+1

bit operations and the required memory is estimated as

Mpre = t · 2t + (n− 3h− t) · 2n−3h−t

bits to store L′ and L′′.
In fact, the time cost of precomputation is negligible, because the total com-

plexity of the attack algorithm is dominated by the process of Gaussian elim-
ination and the generation of two hash tables. Specifically, in the first MITM
stage, the time complexity of Gaussian elimination is about (3h)3. For the second
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MITM stage, creating the indexes of table L1 requires calculating all values of
Ai(U1)+ci and Cj(U1), and then adding each precomputed fi(U1) for ∀i ∈ [1, t].
The time complexity is estimated as

TL,1 = (n− 3h) · 2t + t · 2t = (n− 3h+ t) · 2t

bit operations. In the same way, creating the indexes of table L2 requires calcu-
lating all values of Dj(U2) + dj and Bi(U2), and then adding each precomputed
gj(U2) for ∀j ∈ [t+ 1, n− 3h]. The time complexity is estimated as

TL,2 = (n− 3h) · 2n−3h−t + (n− 3h− t) · 2n−3h−t = (2n− 6h− t) · 2n−3h−t

bit operations. Therefore, the total time complexity of this attack is estimated
as

TH = Tpre + 2
n
3 +h ·

(
(3h)3 + TL,1 + TL,2

)
≈ 2

n
3 +h ·

(
(3h)3 + TL,1 + TL,2

)
bit operations, while the total memory complexity of this attack is estimated as

MH = 3h · n+ (n− 3h) · (2t + 2n−3h−t) +Mpre

bits to store the system of linear equations and L′, L′′, L1, L2.
As shown in Table 4, it displays the parameters h, t that minimize the com-

plexity of our attack. For example, when considering the 2-round LowMC in-
stance of (n, k, s, r) = (129, 129, 43, 2) with optimal parameters, the total time
complexity of the attack is approximately 297.9. However, the time complexity
of precomputation is about 220.9, which is negligible compared to 297.9.

Table 4. Results for the 2-round instances with full S-box layers

n k s r h t TH MH

129 129 43 2 33 15 297.9 221.5

192 192 64 2 54 15 2140.8 221.5

255 255 85 2 73 18 2183.2 224.8

4.2 3-stage MITM Attack Framework for the 2-round and 3-round
LowMC Instances

To further reduce the time complexity of attacks, we can expand our algorithm
into a 3-stage MITM attack framework. In this attack framework, we will deduce
an additional collision equation by utilizing properties of the linear code, which
refines the key candidates in the final MITM stage.
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1st MITM Stage. Similar to Section 4.1, we regard the whitened key as K
and split it into three parts: V0 = [k1, k2, · · · , k3h], V1 = [k3h+1, k3h+2, · · · , k3h+t]
and V2 = [k3h+t+1, k3h+t+2, · · · , kn], note that t = ⌊(n− 3h)/9⌋ · 3 here. Conse-
quently, each bit of the round key K1, K2 can be expressed as a linear function
in terms of V0, V1, V2.

Next, we linearize the inverse of the entire 2nd round by guessing one input
bit value for each S-box, and linearize each of the first h S-boxes in the 1st round
by guessing one output bit value. Define Y = (b1, · · · , b3h, y1, · · · , yn−3h) to be
the output state of the 1st S-box layer, then starting from both the plaintext
and ciphertext sides to reach the intermediate state (b1, b2, · · · , b3h), we can
construct a system of 3h linear equations in terms of V0, V1, V2, which can be
rewritten as

A′ · V0 = A′ · [k1, k2, · · · , k3h]T = B′, (4)

where A′ is an 3h×3h matrix over F2, and B′ is a formal vector whose elements
are affine functions in terms of V1, V2. Similarly, we assume that the matrix A′

is full-rank, after the Gaussian elimination is applied to Equation (4), each bit
of V0 can be an affine function over V1, V2.

2nd MITM Stage and 3rd MITM Stage. The process is the same as in
Section 4.1, starting from both the plaintext and ciphertext sides to reach the
intermediate state yc (c ∈ [1, n− 3h]), each of them can be expressed as follow:

yc = pi(V1) + wi = Ei(V1) + Fi(V2) for ∀c = i ∈ [1, t],

yc = qj(V2) + sj = Gj(V1) +Hj(V2) for ∀c = j ∈ [t+ 1, n− 3h],

where each pi, qj are quadratic functions about V1, V2 and each Ei, Fi, Gj ,
Hj are affine functions about V1, V2, and each wi, sj are single bit constants.
Therefore, rearranging the terms to obtain the following collision equations:

pi(V1) + Ei(V1) + wi = Fi(V2) for ∀i ∈ [1, t], (5)
Gj(V1) + sj = qj(V2) +Hj(V2) for ∀j ∈ [t+ 1, n− 3h]. (6)

In fact, even though the expressions on the LowMC S-box are quadratic,
S(x0, x1, x2) is an affine function on (x0, x1, x2, x0x1, x1x2, x0x2). Then, we let
k′i = k3h+i for ∀i ∈ [1, t] and define

V 1 =
[
k′1, k

′
2, k

′
3, k

′
1k

′
2, k

′
2k

′
3, k

′
1k

′
3, · · · , k′t−2, k

′
t−1, k

′
t, k

′
t−2k

′
t−1, k

′
t−1k

′
t, k

′
t−2k

′
t

]
.

Hence, there exist affine functions pi, Ei, Gj over V 1, so that

pi(V 1) = pi(V1), Ei(V 1) = Ei(V1), Gj(V 1) = Gj(V1)

for ∀i ∈ [1, t], ∀j ∈ [t + 1, n − 3h]. Next, Equation (5) and Equation (6) can be
rewritten as

pi(V 1) + Ei(V 1) + wi = Fi(V2) for ∀i ∈ [1, t], (7)

Gj(V 1) + sj = qj(V2) +Hj(V2) for ∀j ∈ [t+ 1, n− 3h]. (8)
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Next, let us define a map ϕ:

V 1 →
[
p1(V 1) + E1(V 1), · · · , pt(V 1) + Et(V 1), Gt+1(V 1), · · · , Gn−3h(V 1)

]T
,

which can be seen as a linear code of length n− 3h and dimension 2t. Thus, we
can find the (n− 3h)× 2t generator matrix G and the (n− 3h− 2t)× (n− 3h)
check matrix H of ϕ, note that they satisfy H ·G = 0.

Define Vc to be the vector [w1, w2, · · · , wt, st+1, · · · , sn−3h]
T . It is evident

that the left side of Equation (7) and Equation (8) can be written as ϕ(V 1)+Vc.
After that, we let H ·

[
ϕ(V 1) + Vc

]
= H ·

[
G · V 1 + Vc

]
= H ·Vc and try to obtain

a new collision equation. Specifically, we split V2 into two parts V ′
2 ∈ {0, 1}t,

V ′′
2 ∈ {0, 1}n−3h−2t and rewrite

Fi(V2) = F
(1)
i (V ′

2) + F
(2)
i (V ′′

2 ),

qj(V2) = q
(1)
j (V ′

2) + q
(2)
j (V ′′

2 ),

Hj(V2) = H
(1)
j (V ′

2) +H
(2)
j (V ′′

2 )

for ∀i ∈ [1, t], ∀j ∈ [t+ 1, n− 3h]. Then define

N1 =
[
F

(1)
i (V ′

2), · · · , q
(1)
j (V ′

2) +H
(1)
j (V ′

2)
]T

,

N2 =
[
F

(2)
i (V ′′

2 ), · · · , q(2)j (V ′′
2 ) +H

(2)
j (V ′′

2 )
]T

for ∀i ∈ [1, t], ∀j ∈ [t + 1, n − 3h]. Then, the right side of Equation (7) and
Equation (8) can be written as N1 +N2. Hence, let us make

H · (N1 +N2) = H · Vc ⇔ H ·N1 = H ·N2 +H · Vc,

which is an additional collision equation. Now, we start to describe the entire
3-stage MITM attack as follows:

1. Calculate the functional forms of pi, qj , pi, q
(1)
j , q(2)j and the values of wi, sj

for ∀i ∈ [1, t], ∀j ∈ [t+ 1, n− 3h].
2. Use Gray-codes to enumerate all possible values of V1 ∈ {0, 1}t, V ′

2 ∈ {0, 1}t,
V ′′
2 ∈ {0, 1}n−3h−2t, precompute all the values of pi(V1), q

(1)
j (V ′

2), q
(2)
j (V ′′

2 )
for ∀i ∈ [1, t], ∀j ∈ [t + 1, n − 3h] and store them in table I ′, I ′′, I ′′′,
respectively.

3. Linearize the first h S-boxes of the 1st round and the entire S-box layer in
the 2nd round, which requires 2n/3+h guesses in the worst case.
– 1st MITM stage:
– In the intermediate state (b1, b2, · · · , b3h), construct a system of 3h linear

equations about V0, V1, V2, then perform Gaussian elimination on this
system. After that, each bit of V0 can be an affine function over V1, V2.

– 2nd MITM stage:
– Based on the current guessing scenario, calculate the functional forms of

Ei, Gj , F
(1)
i , F (2)

i , H(1)
j , H(2)

j for ∀i ∈ [1, t], ∀j ∈ [t+ 1, n− 3h].
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– Define the map ϕ as before, then we can obtain its generator matrix G
and check matrix H.

– Define Vc, N1, N2 as before, then we can calculate the value of H · Vc.
– Use Gray-codes to enumerate all possible values of V ′

2 ∈ {0, 1}t, create
hash table I1, Ia indexed by the (n − 3h − 2t)-bit vector H · N1, N1

respectively, ∀i ∈ [1, t], ∀j ∈ [t+ 1, n− 3h].
– Use Gray-codes to enumerate all possible values of V ′′

2 ∈ {0, 1}n−3h−2t,
create hash table I2, Ib indexed by the (n− 3h− 2t)-bit vector H ·N2 +
H · Vc, N2 respectively, ∀i ∈ [1, t], ∀j ∈ [t+ 1, n− 3h].

– Find possible collisions between I1 and I2, we expect the number of
collisions to be about 2t+n−3h−2t · 23h+2t−n = 2t. Therefore, we can
obtain 2t candidate keys V2 = (V ′

2 , V
′′
2 ) and store them in table I0.

– 3rd MITM stage:
– Use Gray-codes to enumerate all possible values of V1 ∈ {0, 1}t, create

hash table I3 indexed by the (n − 3h)-bit vector [pi(V1) + Ei(V1) +
wi, · · · , Gj(V1) + sj ], ∀i ∈ [1, t], ∀j ∈ [t+ 1, n− 3h].

– For all values of V2 ∈ I0, create hash table I4 indexed by the (n−3h)-bit
vector [Fi(V2), · · · , qj(V2) +Hj(V2)], ∀i ∈ [1, t], ∀j ∈ [t+ 1, n− 3h].

– Find possible collisions between I3 and I4, we expect the number of
collisions to be about 22t · 23h−n ≈ 2−(n−3h)/3 < 1.

– When a collision is found, the values of V1 and V2 are derived to check
for correctness. If the key K = (V0, V1, V2) is correct, the algorithm
terminates, otherwise it proceeds to the next guess values and continues
iteratively.

Complexity Estimation. First, we analyze the complexity of the precompu-
tation phase. Based on the fast exhaustive search algorithm, we can precompute
all the values of pi(V1), q

(1)
j (V ′

2), q
(2)
j (V ′′

2 ) within

T0 = t · 2t+1 + (n− 3h− t) · (2t+1 + 2n−3h−2t+1)

bit operations, which is actually negligible, while the memory of precomputation
is estimated as

M0 = t · 2t + (n− 3h− t) · (2t + 2n−3h−2t)

bits to store I ′, I ′′, I ′′′. Similar to Section 4.1, the total time complexity is
dominated by the process of Gaussian elimination and the generation of six
hash tables. Specifically, the cost of Gaussian elimination is still about (3h)3. To
create Ia, Ib, we need to calculate all values of N1, N2 respectively. Note that
q
(1)
j , q(2)j have been precomputed. Then, the time complexity is estimated as

T1 = (n− 3h) · (2t + 2n−3h−2t) + (n− 3h− t) · (2t + 2n−3h−2t)

= (2n− 6h− t) · (2t + 2n−3h−2t)
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bit operations. Similarly, to create I1, I2, we need to calculate all values of
quadratic expressions H ·N1 and H ·N2 +H · Vc, and then the time complexity
is estimated as

T2 = (n− 3h− 2t) · (2t+1 + 2n−3h−2t+1)

bit operations. Next, to create I3 that requires calculating all values of Ei(V1)+wi

and Gj(V1) + sj , and adding each precomputed pi(V1) for ∀i ∈ [1, t], thus the
time complexity is estimated as

T3 = t · 2t + (n− 3h− t) · 2t + t · 2t = (n− 3h+ t) · 2t

bit operations. Finally, since all the values of N1, N2 are already stored in table
Ia, Ib , then to create I4 can be done by simply adding N1, N2 for ∀(V ′

2 , V
′′
2 ) ∈ I0.

The time complexity is about (n− 3h) · 2t bit operations.
Therefore, the total time complexity of this attack is estimated as

Tall = T0 + 2
n
3 +h ·

(
(3h)3 + T1 + T2 + T3 + (n− 3h) · 2t

)
≈ 2

n
3 +h ·

(
(3h)3 + T1 + T2 + T3 + (n− 3h) · 2t

)
bit operations, while the total memory complexity of this attack is estimated as

Mall = 3h · n+ (2n− 6h− 2t) · (2t + 2n−3h−2t) + (3n− 9h− t) · 2t +M0

bits to store the system of linear equations and above ten tables.

The Success Probability and Expansibility. Note that the entire attack
algorithm is based on the assumption that the coefficient matrix A′ is of full-
rank. However, in previous work, the relationship between variables was always
assumed to be linearly independent during formal Gaussian elimination, so our
attack assumption can be established by default. On the other hand, we can
also estimate the success probability by using the well-known result of discrete
mathematics. Specifically, we denote λ = rank(A′), then

Pr[λ = d] =

d−1∏
i=0

(
1− 2i

2n

)
for ∀d ≤ n. When d = n/n−1/n−2, the probability Pr[λ ≥ d] ≈ 0.29/0.58/0.77
as n increases. Hence, in the case of a correct guess, we expect the matrix A′ to
be full-rank with a success probability of 0.29, which is useful in practice. Even
if the condition is not met, we can significantly increase the success probability
by guessing no more than two key bits, with a slight sacrifice in time complexity.

For expansibility, our optimal attacks can be extended to the 3-round LowMC
instances with full S-box layers. This can be achieved simply by linearizing the
3rd S-box layer, where we guess one output bit for each of s S-boxes to transform
them into 2-round instances that can be efficiently solved, thereby increasing the
time complexity by a factor of 2s. However, as shown in Table 1.2, our results
for 3-round LowMC are still better than those of Banik et al [6], especially in
terms of memory complexity.
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5 Conclusion

In this paper, we first present a new GnD attack framework designed for 2-round
LowMC instances with full S-box layers. When we perform efficient algorithms
to solve the transformed system of Boolean equations, the size of the problem
has been significantly reduced. Hence, The potential of the fast exhaustive search
algorithm and Dinur’s algorithm can be maximized for the cryptanalysis of 2-
round LowMC. Following that, we present a new MITM attack framework in a
more fine-grained manner that combines the GnD method, which can gradually
reduce the number of variables and narrow down the range of candidate keys
in stages. Most importantly, our 3-stage MITM attacks currently stand as the
most effective 2-round attacks and can be implemented with negligible memory,
which set a new record in the LowMC cryptanalysis competition.
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