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Abstract

Order fairness in the context of distributed ledgers has received recently significant attention
due to a range of attacks that exploit the reordering and adaptive injection of transactions (vio-
lating what is known as “input causality”). To address such concerns an array of definitions for
order fairness has been put forth together with impossibility and feasibility results highlighting
the difficulty and multifaceted nature of fairness in transaction serialization. Motivated by this
we present a comprehensive modeling of order fairness capitalizing on the universal composi-
tion (UC) setting. Our results capture the different flavors of sender order fairness and input
causality (which is arguably one of the most critical aspects of ledger transaction processing with
respect to serialization attacks) and we parametrically illustrate what are the limits of feasibility
for realistic constructions via an impossibility result. Our positive result, a novel distributed
ledger protocol utilizing trusted enclaves, complements tightly our impossibility result, hence
providing an optimal sender order fairness ledger construction that is also eminently practical.

∗An abridged version of this paper appears in Proc. CRYPTO 2024.
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1 Introduction

An important variant of the consensus problem [PSL80] that has recently gained significant atten-
tion asks for the maintenance and continuous extension of a ledger of transactions. This “ledger”
variation of the classical consensus problem has two fundamental objectives. Consistency: the
ledgers in the views of any two participants are consistent with each other in the sense that they
are either equal, or one is a prefix of the other. Liveness: there is a time bound, after which, any
valid transaction will be incorporated in the view of the ledger of any honest participant. It is easy
to see that these two properties individually can be easily satisfied by trivial protocols, however
achieving them in tandem is an interesting protocol design question.

Ledger consensus is covered within the context of state machine replication (SMR) [Sch90].
More recently, the Bitcoin blockchain protocol [Nak08] provided a solution in a “permissionless”
setting where participants do not know of each other and only a public setup operation is permitted.
The protocol and its properties has been analyzed over a sequence of works [GKL15, PSs17, GKL17]
that established its explicit guarantees regarding liveness and consistency.

The main task of a ledger consensus protocol is to continuously serialize the submitted trans-
actions. While such serialization is not necessary for all applications of transaction services (e.g.,
payments is a notable exception [DM16, GKM+22]), serialization is of critical importance in the
context of smart contracts. Indeed, when multiple parties interact with the same contract, the
ordering of transactions can be crucial in terms of the effects that each transaction may have
on the smart contract state. Observe that the properties of consistency and liveness necessitate
that a certain serialization must take place (as the ledger must be well defined as a sequence of
transactions) nevertheless do not impose a lot of constraints on that serialization except for the
straightforward fact that transactions submitted very far apart from each other (in particular at
least one full liveness property window) will be serialized in the order they were submitted.

This state of affairs leaves undetermined how transactions that are submitted more closely to
each other should be serialized. This is by far not a theoretical consideration: by exploiting the
behavior of Ethereum decentralized finance (DeFi) contracts it was shown how to deploy Miner
Extractable Value (MEV) attacks [DGK+20] that exploit the ability of Ethereumminers to influence
transaction serialization. By strategically placing suitable DeFi transactions in the serialization
order of submitted transactions, miners gain additional profits (beyond what is provided in terms
of transaction fees and newly minted coins associated with block production).

Motivated by mitigating such MEV attacks, a series of works attempted to enhance the ledger
with a fair-order policy based on the maintainers’ local receiving time of transactions. Two main
directions emerged in this line of “receiver order fairness” approach. On one hand, batch order
fairness [KZGJ20, KDK22] (and later further improvements [CMSZ22, KLS24]) focus on defining
valid transaction order based on their local relative order. On the other hand, by assuming a
system-wide clock, timed order fairness [Kur20, ZSC+20] specifies a suitable order for a pair of
transactions, if there is a point in time t such that all honest parties receive one transaction before
t and the other transaction after t.

It is worth observing that looking at the receiving end of transaction dissemination, provides
at best modest protection against front running attacks as it pits the adversary in a network game
against the honest parties: the adversary may still attempt to front run when it becomes aware
of a transaction by rushing the network delivery of its own transactions. Such attacks violate
what is known as “input causality” a concept studied early by Reiter and Birman [RB94] with
the aim to protect against an adversary that settles a transaction that depends in a meaningful
way on transactions that are pending. This property has been later studied in the context of
atomic broadcast by Cachin et al. [CKPS01] and recently in blockchain systems by Malkhi and
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Szalachowski [MS23]. It can be seen that input causality complements receiver order fairness as
it focuses on the sender side and tries to protect transactions in transit from being meaningfully
front-run. Nevertheless input causality cannot entirely substitute receiver order considerations,
since, even if input causality holds perfectly, one would still want to mandate that serialization
adheres to a fairness criterion that attempts to serialize transactions in a way consistent with the
timings that they were generated, disseminated and received by the ledger maintainers.1

1.1 Our Results

Motivated by the above considerations we set out to model formally in the universal composition
(UC) setting [Can01] the concept of order fair transaction serialization and realize it under plausible
assumptions in a proof-of-work (PoW) setting.

Our starting point is the previous UC formalization of [BMTZ17] that focused on abstracting
ledger consensus as an ideal functionality and showing how it can be realized in the PoW setting.
One of the key features of this functionality is its ledger “extend policy” that allows the ideal world
adversary to drive the progress of the ledger while being subject only to the liveness and “chain
quality” properties [GKL15]. Note that no order fairness is provided by this functionality as the
adversary is free to choose the order of pending transactions at will and even inject transactions
adaptively, based on the transactions that honest parties have submitted for inclusion to the ledger.

Modeling. To capture comprehensively all fair ordering considerations, we adapt the ledger func-
tionality of [BMTZ17] so that: (i) It only leaks to the adversary transaction identifiers that do not
carry any information about the transactions themselves. The adversary has to commit first to an
ordering and then subsequently the contents of the transactions are revealed so that the ledger can
be assembled. (ii) It offers a parametric extend policy that constraints the adversary to follow an
order that belongs to a class of admissible reorderings of the input transactions. Observe that this
two-pronged approach combines input causality and receiver fair order considerations. This ideal
functionality model results to a class of fair ledgers.

The most stringiest extend policy one can imagine for serializing transactions is the exact order
that they were submitted to the ideal functionality. Note that in many ways such a “perfect” order
is unreasonable; taking into account the global clock in the model, it could be the case that two
transactions are “simultaneously” delivered w.r.t. the global clock. It follows that even though
the perfect transaction order is available to the ideal functionality, it would be unreasonable to
expect to realize it. Following this, our strictest formalization of sender order fairness is the one
that restricts the adversary to conform to the arrival times to the ledger functionality as recorded
by the global clock functionality. It is easy to see that one cannot expect to realize that level of
fairness either. The reason is that in any setting where transaction delivery is not instantaneous
(a setting that covers pretty much all reasonable deployment scenarios), there is no conceivable
way that a ledger system can obey it. We formalize this result and in fact prove a much stronger
relativized version of this impossibility theorem: even given any “private” helper functionality (i.e.,
one that is just responding to the caller) and a correlated random string, it is infeasible to achieve
sender order fairness in a network with bounded delays.

The above results suggest that a relaxation is in order. To capture this, we introduce a natural
but more relaxed sender order fairness property, δ-approximate order fairness, where the adversary
is allowed to violate sender order fairness but only in a limited way, namely for transactions that are

1To see why by an example, consider two DeFi traders that react to an external signal and perform a certain
type of transaction (e.g., selling an asset). They are not aware of each other’s transaction so input causality is not a
consideration; but it is still desirable that the system respects the order with which they submit their transactions.
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sent δ time apart. It is easy to show that our impossibility result for sender order fairness extends
to the setting where δ is below the network delay ∆, even in the relativized sense as described
above. This leaves open the question of whether there exists a plausible helper functionality under
which we can prove ∆-approximate order fairness.

It will not take long for the reader to guess a helper ideal functionality under which it is
fairly easy to achieve our ∆-approximate sender order fairness formulation: for example, consider
a functionality that encrypts all valid transactions and allows parties to disseminate them in an
encrypted form so that their validity can be publicly verified and subsequently decrypt them only
when they are settled. Given such functionality, it is possible for parties to disseminate transactions
in an encrypted form and subsequently open them to reconstruct the state of the ledger. While
this approach can work (and indeed it is folklore, see also [MS23] for a specific implementation) it
imposes a rather heavy price if it is to be somehow realized from simpler components: it requires a
shared private state (in order to facilitate decryption) and an ability to realize that the settlement of
the encrypted transactions has taken place (since premature decryption of transactions would break
security). Maintaining a shared private state can be expensive in the permissionless setting, e.g.,
using techniques such as YOSO MPC [BGG+20] it is possible for a committee to keep redistributing
a secret-key of a threshold encryption function — with the downside of a quadratic communication
complexity (in the security parameter) overhead at each round to facilitate the continuous resharing
of the private key between successive committees.

Instead, poised to obtain a construction relevant to practice, we focus on the concept of a
private functionality, thinking of it as a trusted execution enclave in the model of [PST17]. We
ask whether it is possible to realize our approximate sender anonymous ledger functionality in a
hybrid setting where the private functionality is instantiated as an enclave and is seeded only by an
initialization string that is drawn from the correlated randomness functionality (this captures the
ability of an enclave to be safely initialized by the enclave issuer). In particular this means that our
enclave functionality does not have any shared private state across different enclave instances: each
enclave has its own independent signing and encryption key. Finally, we also insist on transaction
submission being a public operation that does not require access to an enclave.

Protocol overview. We first show how to enforce input-causality, and then we show how to lift
the security of our protocol to realize a ledger that has ∆-approximate order fairness. Our protocol
is built on top of a Nakamoto-style PoW blockchain C, whose maintainers are equipped with a
stateless2 trusted execution environment[CD16] (enclave for brevity). Each enclave is equipped
with its own public-key encryption key pair (pk, sk)3, where only pk is revealed, while sk is hidden
to everyone (including the owner of the enclave). Every output generated by the enclave is signed
with a secret key known only to the enclave, but verifiable by anyone holding an attested verification
key VK.

We require the maintainers to publish the enclave public-keys (pk,VK) on the blockchain4,
upon registration. When a client wants to issue a transaction tx, it first samples a subset of
polylogarithmic size Spk of the registered public-keys (more detail on how Spk is chosen is provided

2By stateless here we mean without secure counters, or without any mechanism that prevents the adversary from
resetting the enclave.

3Note that in the hybrid model where communication takes place strictly via the diffusion functionality FDiffuse

that we use to model the peer-to-peer network, sharing a secret key sk among n enclaves requires diffusing n distinct
messages from a single source — a prohibitive overhead. Contrary, in our protocol, in the worst case, each party has
to diffuse polylogarithmic in the number of enclaves sized messages. Combining the capabilities of the enclave with
the gossiping protocol over point-to-point channels may improve communication complexity — we leave exploring
this interesting direction for future work.

4The maintainer will also issue the hash of the code that the enclave will run, which will make sure that every
registered enclave will behave accordingly to what our protocol prescribes.
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later) and encrypts (tx, h) using all the selected public keys, where h corresponds to the block-
header of C, thus obtaining a set of ciphertexts ct. Then, the client generates a zero-knowledge
proof π proving that all the ciphertexts contain the same transaction and that this transaction is
not equal to 0κ. The client then diffuses to the network (ct, π).

Each maintainer verifies the zero-knowledge proof, and if valid, it selects the ciphertext gen-
erated using its public key pk (if such a ciphertext does not exist, then (ct, π) is simply ignored).
Then the maintainer queries the enclave with the ciphertext along with h′, which corresponds to
the current blockchain header. Upon receiving the query, the enclave decrypts the ciphertext, thus
obtaining the pair (tx, h) and checks how many blocks apart the chain with header h is compared
to h′. If the number of blocks is more than Λ, then the enclave returns tx to the caller, else it waits
to receive a new block header that satisfies the above condition.

This mechanism guarantees that an honest transaction can be decrypted only after a minimum
amount of time, which is defined by the number of rounds required to add Λ blocks to the PoW
blockchain. Moreover, the selection of Spk guarantees that at least one public-key in the set belongs
to an honest maintainer (more detail on this later), hence, the honest transactions will be surely
decrypted. Once tx is obtained, it is diffused to the network, and it is the maintainers’ goal now
to include tx in the blockchain. Given that the underlying blockchain protocol we devise provides
liveness, we are guaranteed that all honest transactions will appear in the blockchain.

The above approach seems to not cover the following attack. A malicious party could generate a
ciphertext, and send it only to corrupted maintainers. The maintainers can decrypt the ciphertext
as an honest party would, thus obtaining a signature for tx, and decide whether to diffuse it or not
in the network based on honest transactions that have been already decrypted and diffused in the
network. This form of adaptive rejection is clearly incompatible with our goals.

To solve this problem we design a selection process for the set Spk, which guarantees that the
party generating the set (even if it is corrupted) always includes in Spk a public-key of an honest
maintainer. In particular, we prove that as long as some constant fraction of the enclave owners
is honest, then Spk will contain with overwhelming probability at least one public-key of an honest
party. We note that this could be achieved by simply requiring each transaction issuer to encrypt
the transaction using all the enclave public keys. We instead propose an approach that yields the
set Spk being of polylogarithmic size. We refer the reader to the technical section for more details
on this. On a final note, we stress that the enclaves we use are quite simple. In particular, no
synchronization is required among them, and the adversary has full control of the internal clock of
the enclaves it owns.

Transaction timestamping. We will now argue how to modify the blockchain C, to finally realize
our ledger with ∆-approximate order fairness (recall that ∆ denotes the network delay). We modify
the Nakamoto-style PoW C by binding the mining procedure of the blocks that form the chain C
with a new type of blocks called profile blocks, using 2×1 (pronounced two-for-one) PoW [GKL15].
In 2×1 PoW, a hash function output u is checked twice for u and its reversed bit-string [u]R. If
u < T , a block that extends the chain C is produced; and if [u]R < T , a new profile block (PB) is
mined (which we will detail soon). In such a way, the mining procedure of the chain C and profile
blocks are bound together and the adversary cannot gain advantage on either type of block by
dropping from mining the other.

The blockchain C we use for our protocol is a sequence of blocks and all validation algorithms
follow the longest-chain rule. The only difference between our chain C and that in, e.g., Bitcoin, is
that blocks in C do not include transactions directly. The profile blocks instead are those storing
the actual transactions, which in our case will correspond to a list of pairs of the form (tag, t) where
tag = (ct, π) (which represents a transaction identifier) and t denotes the local receiving time. For a
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transaction tx with identifier tag to be declared as included in a block B of the ledger, our protocol
requires that the majority of the profile blocks connected to K consecutive blocks report (tag, ·).
In a nutshell, we require each party generating a profile block to vote for the transaction and the
position this transaction should finally have once it is included in the ledger.

In more detail, we employ two additional parameters for validating profile blocks — the recency
parameter R, which is used to guarantee the freshness of profile blocks, and the profile window
length parameter K. Specifically, a profile block PB should be allowed to be connected to a valid
block B in the settled part of the blockchain, only if PB has not been mined too long ago. Let ℓ
denote the height of block B that PB attaches to. PB is considered as a valid profile block only
when PB is included in blocks with height less than ℓ+R.

Finally, the timestamp of tx (or, its position in the final ledger) is computed by calculating
the median timestamps of tag from all profile blocks included in blocks with height at most ℓ+K.
Note that if a profile block in the K-block window does not report an entry (tag, ·), it is counted as
reporting (tag,+∞) (i.e., the miner had never received tx thus cannot decrypt it). Formally, the
timestamping of the transaction is computed as follows:

TS(tag) := med{t | (tag, t) ∈ PB ∈ B ∧ ℓ ≤ height(B) < ℓ+K}.

The median provides ∆-order fairness because we can argue that in the K-block window asso-
ciated with tag the majority of the timestamps are generated by honest parties.

On the enclave assumption. For our protocol we rely on enclaves, and one may wonder whether
the use of enclaves trivializes the problem we are trying to solve. Indeed, it could be that realizing a
ledger that achieves δ-order fairness with δ < ∆ becomes a trivial task with such assumptions. We
prove that our result is optimal. In particular, we argue that even under stronger assumptions than
the ones we use (e.g., enclaves synchronized with each other) it is impossible to design a protocol
with better fairness than the one we provide. The high-level intuition behind this is that order
fairness is strongly influenced by network delay. We also conjecture that it is possible to obtain a
similarly optimal result by employing out of the box YOSO MPC [BGG+20] with the threshold
encryption approach of [MS23] — nevertheless the relevance of such a construction is of less interest
in practice and for this reason we do not pursue it here.

We also highlight that realizing sender order fairness and processing transactions in our pro-
tocol requires possession of a trusted enclave and hence it is only possible for permissioned nodes;
specifically, in our setting such a “permissioned” node refers to a node that has been initialized
with such an enclave and can be authenticated as such by other permissioned nodes. Note that our
protocol is a PoW-based blockchain and hence it allows non-permissioned nodes to still contribute
to the protocol without processing encrypted transactions; in fact such unpermissioned blocks may
even contain transactions that are submitted unencrypted for which the clients do not wish to
have them protected for sender-order fairness. As a side remark, this simple observation suggests
that our protocol can be implemented as a “soft-fork” over bitcoin — we leave the details of this
implementation to be explored in future work.

Additionally, the security of our protocol relies on two assumptions — honest majority in terms
of computational power and a constant fraction of the enclaves being possessed by honest hosts.
While the second assumption is arguably weaker, we comment on how these two assumptions can
be unified into one: Suppose all miners are equipped with enclaves and the honest parties account
for the majority of computational power yet possess only a minority constant number of enclaves
(i.e., the adversary is allowed to possess an arbitrary number of enclaves). Our approach is to
extend the 2×1 PoW to 3×1 PoW (by checking non-overlapping 0s at different positions of the
RO output), thus additionally mining the enclave public keys (each message mines only one key).
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These PoW-ed enclave public keys are included in the blockchain, and the key subset selection
procedure is then applied on the set of public keys with weights based on their PoW (for instance,
a key with two unique PoW-ed messages is weighed two times than another key with one unique
message). This adaption, with appropriate protocol parametrization, guarantees that the majority
of weighted public keys are controlled by honest parties regardless of the fraction of honest keys.

Finally, one may consider it a compromise to use enclaves in a permissionless setting: we argue
that this is not the case in practice. For instance, it is already the case that Bitcoin miners
use specialized hardware to engage in mining and there are a handful of providers that offer such
hardware in the market. Transitioning to a setting where such specialized hardware is also utilizing a
trusted enclave may be a small step — especially if the benefits are substantial — as we demonstrate
here: optimal sender order fairness.

2 Preliminaries

UC basics. We provide our protocols and security proofs in Canetti’s universal composition
(UC) framework [Can00]. We discuss the main components of our real-world model (including the
associated hybrids).

We assume that the reader is familiar with simulation-based security and has basic knowledge
of the (G)UC framework. We review all the aspects of the execution model that are needed for
our protocols and proof, but omit some of the low-level details and refer the interested reader to
relevant works wherever appropriate.

We now recall the mechanics of activations in UC. In a UC protocol execution, an honest party
(ITI) gets activated either by receiving an input from the environment, or by receiving a message
from one of its hybrid functionalities (or from the adversary). Any activation results in the activated
ITI performing some computation on its view of the protocol and its local state, and ends with
either the party sending a message to some of its hybrid functionalities, sending an output to the
environment, or not sending any message at all. In any of these cases, the party loses the activation.5

We denote the identities of parties by Pi, i.e. Pi = (pidi, sidi), and call Pi a party for short. The
index i is used to distinguish two identifiers, i.e., Pi ̸= Pj , and otherwise carries no meaning. We will
assume a central adversary A who gets to corrupt miners and might use them to attempt to break
the protocol’s security. As is common in (G)UC, the resources available to the parties are described
as hybrid functionalities. Our protocols are synchronous (G)UC protocols [BMTZ17]: parties have
access to a (global) clock setup, denoted by GClock. and can communicate over a network diffuse
functionality FDiffuse (mode details on these functionalities are provided later). We next sketch its
main components: All functionalities, protocols, and setups have a dynamic party set. I.e., they
all include special instructions allowing parties to register and deregister, and allow the adversary
to learn the current set of registered parties. Additionally, global setups allow any other setup (or
functionality) to register and deregister with them6 and also allow other setups to learn their set
of registered parties.

Next we elaborate on the main hybrid functionality used in our paper.

Clock and diffusion functionality. Following the treatment in [BMTZ17], we model the syn-
chronous processors and bounded-delay network as GClock and FDiffuse respectively. The global
clock GClock maintains a round index for each session, and this index can only be forwarded when

5In the latter case the activation goes to the environment by default.
6We note that the functionality can learn the code of the registering party (functionality) by considering the

extended identifier in [BCH+20].
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all registered honest parties (in this session) have finished their computation for this round. The
diffuse functionality F∆

Diffuse captures ∆-bounded network — i.e., when a message (either honest or
adversarial) is reached by at least one honest party at round r, it is guaranteed to be delivered to
all honest parties before round r +∆. A detailed description of these functionalities is presented
in Appendix A.

Global random oracles. The hash function H to generate PoW is modeled as a (global) random
oracle GPoWRO ; by convention, we use a wrapper functionalities W(GPoWRO ) to restrict the adversarial
and environmental access to GPoWRO . We assume honest majority in terms of the computational
power to solve PoWs. I.e., in every round the RO wrapper allows more accesses from the honest
parties than the corrupted (and environmental) ones. We also adopt a restricted programmable and
observable global random oracle GrpoRO [CDG+18] to model a hash function G that is different from
the one used to generate PoW. We discuss these two global random oracles in detail in Appendix A.

Non-interactive zero knowledge. For our construction we use a non-interactive, straight-line
simulation extractable (NISLE) proof system that relies on GrpoRO as the only setup assumption. A
protocol that satisfies such a security definition is provided in [LR22]. We assume familiarity with
the notion of simulation extractable NIZK, and refer to Appendix A for the formal definition.

Pseudorandom functions, one-way functions and hardcore bits. Let F : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ be a keyed function. F is a pseudorandom function (PRF) if for all PPT distinguisher D it
holds that |Prk←{0,1}n [D

Fk(·) = 1]−Prf←Fn [D
f (·) = 1]| ≤ negl(n). A function f : {0, 1}∗ → {0, 1}∗

is a one-way function if there exists an efficient algorithm for evaluating f , and for all PPT adversary
A, we have Prx←{0,1}n [A(f(x)) ∈ f−1(f(x))] ≤ negl(n). A hardcore bit is a function b : {0, 1}∗ →
{0, 1} such that for all PPT adversary A, it holds that |Prx←{0,1}n [A(f(x)) = b(x)] ≤ 1

2 + negl(n).

3 Ledger Functionality with Parametric Extend Policy

In order to capture fairness in transaction serialization, we extend the ledger functionality GLedger in
[BMTZ17] by enhancing the extend policy with parametric order policy and revising the transaction
information leakage behavior (which we denote by GFairLedger). We highlight our main adaptions in
this section; refer to Appendix B for a detailed description of the ledger functionality.

Parametric extend policy. The ledger in [BMTZ17] is parametrized with an ExtendPolicy al-
gorithm such that, for every new block, the adversary is allowed to propose an arbitrary sequence
using an arbitrary subset of the transaction buffer, as long as (i) all valid transactions are included
timely (liveness); (ii) the proposed ledger grows at a relatively steady rate (chain growth); and (iii)
the fraction of honest blocks in any section of the blockchain is lower-bounded (chain quality). This
captures exactly the transaction inclusion mechanism in real-world Bitcoin. Meanwhile, subject to
the designated chain quality parameter, front-running is possible during the ongoing of a sequence
of blocks that is at most the same number of the common prefix parameter.

In order to capture order fairness and towards a more modular design of the core ledger ex-
tending mechanism, we propose a new ExtendPolicy in Algorithm 1 which (i) can be parameterized
with different fair-order policies; and (ii) revises the liveness guarantee check (which is necessary
since we decouple the consensus and transaction settlement). To improve accessibility, we mark in
blue the differences compared with the original ExtendPolicy in [BMTZ17].

More specifically, upon receiving a proposed block from the adversary, ExtendPolicy iterates all
transactions; for each transaction tx, its order and validity with respect to the current state and
buffer is evaluated. If tx turns out to be a valid transaction and extends the ledger following the fair-
order policy, the algorithm goes for the next transaction; otherwise, it aborts and returns default
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blocks from DefaultExtension. The transaction validation procedure follows that in [BMTZ17].
Regarding the fair-order examination, we let ValidOrder and DefaultExtension be parameters of
Algorithm 1. ValidOrder takes the target transaction tx, current ledger state state and pending
transaction buffer buffer as input and returns whether tx is a valid extension with respect to
state and buffer under a designated fair-order policy; DefaultExtension takes the honest input
sequence I⃗TH , the current ledger state state and pending transaction buffer buffer and returns
the default block under the designated fair-order policy that ledger GFairLedger should specify. The
ValidOrder algorithm is called for every transaction (Line 21 in Algorithm 1). Different ValidOrder
and DefaultExtension algorithms can implement different fair-order policies, and we discuss them
in Section 4.

Alongside with the new ValidOrder examination, we revise the transaction liveness check. Recall
that in [BMTZ17], once an honest block is proposed, it should include all relatively recent pending
transactions in the buffer to avoid the violation of liveness. Looking ahead, our protocol employs
a blockchain scheme that decouples consensus and transaction inclusion (a similar framework has
been used in, e.g., [PS17, FGKR20]), hence the liveness parameter is not exactly the same as
windowSize (which indicates the number of blocks that needs to be pruned to achieve a consistent
view on the level of blockchains). We adopt a new parameter waitTime for transaction liveness, so
the old transaction checks only those sent before time τL−waitTime. Additionally, old transactions
will be excluded if they commit to an invalid order with respect to the current ledger. See Line 27
and 28 in Algorithm 1.

Algorithm 1 ExtendPolicy(I⃗TH , state, NxtBC, buffer, τ⃗state)

1: N⃗df ← OrderPolicy.DefaultExtension(I⃗TH , state, NxtBC, buffer, τ⃗state)

2: τL ← current ledger time (computed from I⃗TH)
3: Create local copies of the values buffer, state and τ⃗state.
4: Parse NxtBC as a vector ((hFlag1, NxtBC1), . . . , (hFlagn, NxtBCn))
5: N⃗ ← ε
6: if |state| ≥ windowSize then
7: τlow ← τ⃗state[|state| − windowSize+ 1]
8: else
9: τlow ← 0

10: end if
11: oldValidTxMissing← false
12: for each list NxtBCi of transaction IDs do
13: Use the txid contained in NxtBCi to determine the list of transactions
14: Let t⃗x = (tx1, . . . , tx|NxtBCi|) denote the transactions of NxtBCi
15: if tx1 is not a coinbase trasnaction then
16: return N⃗df

17: else
18: N⃗i ← tx1
19: for j = 2 to |NxtBC| do
20: sti ← Blockify(N⃗i)

▷ Default Extension if proposal violates fair order
21: if ValidOrder(txj , state ∥ sti, buffer) = false then return N⃗df

▷ Default Extension if proposal includes invalid transaction
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22: if ValidTX(txj , state ∥ sti) = false then return N⃗df

23: N⃗i ← N⃗i ∥ txj
24: end for
25: sti ← Blockify(N⃗i)
26: end if

▷ Test that all old transactions are included.
27: for each BTX = (tx, txid, τ ′,P) ∈ buffer of an honest party P with time τ ′ < τL −

waitTime do
28: if ValidTX(tx, state ∥ sti) = true and ValidOrder(tx, state ∥ sti, buffer) = true

and tx ̸∈ N⃗i then
29: oldValidTxMissing← true
30: end if
31: end for
32: N⃗ ← N⃗ ∥ N⃗i

33: state← state ∥ sti
34: τ⃗state ← τ⃗state ∥ τL

▷ Must not proceed with too many adversarial blocks
35: j ← max{{windowSize} ∪ {k | stk ∈ state ∧ proposal of stk had hFlag = 1}}
36: if |state| − j ≥ η then return N⃗df

37: if |state| ≥ windowSize then
38: τlow ← τ⃗state[|state| − windowSize+ 1]
39: else
40: τlow ← 0
41: end if
42: end for

▷ A sequence of blocks cannot take too much time
43: if τlow > 0 and τL − τlow > maxTimewindow then return N⃗df

▷ Bootstrapping cannot take too much time
44: if τlow = 0 and τL − τlow > 2 · maxTimewindow then return N⃗df

▷ Old enough, valid transactions should be included
45: if oldValidTxMissing then return N⃗df

46: return N⃗

Transaction leakage after settlement. Recall that while Bitcoin is pseudonymous, all trans-
actions are actually public and transparent (both on-chain and in the mempool). The ledger
functionality in [BMTZ17] thus leaks all information to the adversary once it receives a transac-
tion. This gives the adversary the full power to adaptively issue transactions, even within the same
round as the victim. In order to capture the goal that the adversary cannot finalize a transaction
that depends in a meaningful way of any pending transactions (i.e., input causality, cf. [CKPS01]),
the ideal functionality must hide the transaction content and metadata before it gets settled.

We make the following two enhancements to GFairLedger. On one hand, upon a transaction is sent

to the functionality, GFairLedger book-keeps the transaction as (tx, txid, τL,P) where tx denotes the
plain transaction (i.e., content and metadata including issuer’s signature), txid is a unique random
tag generated upon receipt, τL is the time that this transaction is sent and P denotes the sender.
Our new functionality GFairLedger immediately leaks transaction length |tx|, identifier txid, receiving

11



time τL and sender P to the adversary (recall that we assume a network adversary); however, tx
itself remains hidden (note that in [BMTZ17] the entire tuple is leaked immediately). On the
other hand, upon the adversary requests to read all transactions so far, GFairLedger returns (i) the
current state state where all transactions are transparent (indicating that they have been settled
in the immutable ledger); and, (ii) transaction buffer buffer except that for each transaction tuple
(tx, ·, ·, ·) in buffer, tx is replaced with its length |tx| in the response. Precisely, upon receiving
the read command, the functionality returns (state, b̂uffer) such that

b̂uffer ≜ {(|tx|, txid, τ,P) | BTX = (tx, txid, τ,P) ∈ buffer}.

In such a way, the ideal world adversary is limited to learn only the “existence” of a transaction
tx before its settlement. To learn the full information of tx, the adversary has to either propose
tx in the next block or wait for the default extension policy to handle tx. In other words, the time
interval that GFairLedger hides the plain transaction is upper-bounded by liveness; but it is up to the
ideal world adversary to decide whether to propose tx earlier and learn its content, or wait for the
default extension. (Arguably, a good simulator never uses the default extension to learn tx; details
see the protocol analysis.) Also, notice that the sender P leaks information at the network level
and is not necessarily linked with the transaction issuer. Thus tx remains completely secret before
being committed to the ledger state.

4 Extend Policies with Sender Order Fairness

The parametric ExtendPolicy introduced in Section 3 allows us to insert a customized fair-order
policy into GFairLedger such that its output ledger state should follow a legitimate transaction sequence

under the designated policy. In this section we consider two policy instances7. The first one is
the most natural sender-side order fairness SenderOrder where transactions should be serialized by
the order they are received by the ledger GFairLedger. The second policy is a (necessary) relaxation on
sender order fairness (namely, δ-ApproxSenderOrder) which asks for the order of two transactions
if they reach GFairLedger at times that are δ apart from each other. We discuss impossibility results
with respect to both policies in the same setting as Bitcoin (i.e., with global clock and ∆-bounded
delay diffusion network). Further, we show that the unfairness stemmed from network delay is
impossible to circumvent — we prove that even if we employ additional powerful setups, still no
δ-ApproxSenderOrder can be achieved for any ∆ < δ.

4.1 Sender Order Fairness

Sender-side order fairness captures the natural desire that a ledger GFairLedger serializes transactions
based on the time that they are released by their senders. This order is well-defined by looking at
the GFairLedger transaction buffer and order transactions based on their arrival time recorded. Hence,

every time the adversary tries to propose a transaction tx that is sent at time τ (i.e., GFairLedger receives
tx and records (tx, txid, τ,P)), our ValidOrder algorithm in SenderOrder checks whether there exists
valid transactions in buffer with time τ ′ < τ . If such transaction exists, the proposed order is
invalid and this will force the ExtendPolicy to return a default extension.

Regarding the DefaultExtension mechanism, since the original construction in [BMTZ17] has
been proposing a default order that follows the one stored in the ledger, we follow that construction
with one minor modification. Precisely, in [BMTZ17] a default extension will blockify all pending

7Capturing receiver order fairness definitions, e.g., [KZGJ20, CMSZ22], can be an interesting direction for future
work.
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transactions in the buffer, while ours only include those that are about to violate liveness — again
this adaption follows our blockchain scheme that decouples the consensus and transaction inclusion.
We note that this adaption is insignificant, as a good simulator shall never allow the ledger to trigger
this subroutine.

Algorithm 2 SenderOrder

1: function ValidOrder(tx, state, buffer)
2: Parse tx as (tx, txid, τ,P)

▷ Extract the most recent transaction time in the ledger state.
3: τ∗ ← max{τ ′ | BTX = (tx, ·, τ ′, ·) ∧ tx ∈ state}
4: t⃗x← {tx | BTX = (tx, ·, τ ′, ·) ∈ buffer ∧ BTX ̸∈ N⃗ ∧ τ∗ ≤ τ ′ < τ}
5: for tx ∈ t⃗x do
6: if ValidTX(tx, state) = true then return false
7: end for
8: return true
9: end function

10: function DefaultExtension(I⃗TH , state, NxtBC, buffer, τ⃗state)

11: τL ← current ledger time (computed from I⃗TH)

12: N⃗df ← txbase−txminerID of an honest miner
13: Let t⃗x = {tx | BTX = (tx, txid, τ ′L,P) ∈ buffer ∧ τ ′L < τL − waitTime}
14: Sort t⃗x according to timestamps
15: st← Blockify(N⃗df)
16: repeat
17: Let t⃗x = (tx1, . . . , txℓ) be the current set of (remaining) transactions
18: for i = 1 to ℓ do
19: if ValidTX(txi, state ∥ st) = true and ValidOrder(txi, state ∥ st, buffer) =

true then
20: N⃗df ← N⃗df ∥ txi
21: Remove txi from t⃗x

22: st← Blockify(N⃗)
23: end if
24: end for
25: until N⃗df does not increase any more
26: if |state|+ 1 ≥ windowSize then
27: τlow ← τ⃗state[|state| − windowSize+ 2]
28: else
29: Set τlow ← 0
30: end if

c← 1
31: while τL − τlow > maxTimewindow do
32: Set N⃗c ← txbase−txminerID of an honest miner

33: N⃗df ← N⃗df ∥ N⃗c

34: c← c+ 1
35: if |state|+ c ≥ windowSize then
36: τlow ← τ⃗state[|state| − windowSize+ c+ 1]
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37: else
38: τlow ← 1
39: end if
40: end while
41: return N⃗df

42: end function

The sender fairness SenderOrder is our desideratum; unfortunately, SenderOrder is impossible
to realize, even in the synchronous network (i.e., ∆ = 1 in F∆

Diffuse). The high level intuition is that
transactions issued by corrupted parties can always reach honest parties in two consecutive rounds
by sending to one honest party P at round r and let P diffuse it to others at round r + 1, where
in the case of honest party issuing transactions, the sender can book-keep their receiving time to
the next round. The fact that the adversary A can exploit this one round advantage allows him
to make the following two executions identical: in the first execution, A sends a transaction tx at
round r to only one honest party and in the second execution he sends tx to all honest parties at
round r + 1. Later, in the second execution A lets one corrupted party behave like it receive and
diffuses the message at round r. In the first execution, tx in GFairLedger owns timestamp r while in the
second execution it owns timestamp r + 1, however these two executions are indistinguishable.

4.2 Approximate Sender Order Fairness

Given that SenderOrder is unachievable unless under unrealistic network assumptions (that is, the
delivery of a transaction is instant and before any transaction that is issued later thus every honest
parties see the same sequence of transactions), we next propose a natural alternative that relaxes
the sender order fairness, giving up on asking for the order of two transactions if they enter the
network at approximately the same time.

We leave the DefaultExtension procedure the same as that in SenderOrder where an order fol-
lowing what GFairLedger receives is proposed (hence we omit it in the algorithm description). Note
that such default extension will still yield a legitimate order with respect to δ-ApproxSenderOrder.
Regarding the ValidOrder algorithm, when the adversary is to propose a transaction tx sending the
ledger at time τ , all transactions in the buffer which are sent at time before τ − δ and are valid
with respect to state should be proposed before tx; otherwise, ValidOrder returns false to instruct
the ledger to use the DefaultExtension.

Algorithm 3 δ-ApproxSenderOrder

1: function ValidOrder(tx, N⃗ , buffer)
2: Parse tx as (tx, txid, τ,P)

▷ Extract the most recent transaction time in the ledger state.
3: τ∗ ← max{τ ′ | BTX = (tx, ·, τ ′, ·) ∧ tx ∈ state}
4: t⃗x← {BTX = (·, ·, τ ′, ·) | BTX ∈ buffer ∧ BTX ̸∈ N⃗ ∧ τ∗ ≤ τ ′ < τ − δ}
5: for tx ∈ t⃗x do
6: if ValidTX(tx, state) = true then return false
7: end for
8: return true
9: end function
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Impossibility of δ-Approximate Order with ∆ network latency for δ < ∆. We show that
in the same setting as Bitcoin (i.e., with GClock,W(GPoWRO ) and FDiffuse), it is impossible to guarantee
fairness for two transactions tx, tx′ that enters the system less than δ rounds apart from each other
for any δ < ∆.

Theorem 1. In the (GClock,W(GPoWRO ),F∆
Diffuse)-hybrid environment, there exist no protocol Π that

securely realizes GFairLedger parameterized with δ-ApproxSenderOrder for any δ < ∆.

Proof. Suppose towards a contradiction, there exists a protocol Π that securely realizes GFairLedger

parameterized with δ-ApproxSenderOrder in the (GClock,W(GPoWRO ),F∆
Diffuse)-hybrid environment.

Consider two transactions tx, tx′. Let τ, τ ′ denote the timestamp that GFairLedger assigns to them
in the transaction buffer respectively. Consider a world W1 where tx is sent more than δ yet less
than ∆ rounds before tx′ (i.e., τ +δ < τ ′ < τ +∆). I.e., δ-ApproxSenderOrder would force GFairLedger to
output tx ≺ tx′. Regarding the transaction diffusion pattern in W1, assume all but the sender of
tx receives tx at time τ̃ such that τ ′ < τ̃ < τ +∆; and all but the sender of tx′ receives tx′ at time
τ̃ ′ such that τ ′ ≤ τ̃ ′ < τ̃ . I.e., for all parties except the senders, they saw tx′ ≺ tx unanimously.
Then, we consider the following three scenarios.

First, neither the sender of tx nor the sender of tx′ has the chance to send a message. We prove
that for all other protocol participants in W1 this is indistinguishable from the world W2 where
GFairLedger shall output tx

′ ≺ tx. Consider the following scenario in W2: two transactions tx, tx′ are
sent at time τ ′, τ respectively and are delivered to all other parties at time τ̃ , τ̃ ′ respectively. Due
to δ-ApproxSenderOrder, GFairLedger outputs tx

′ ≺ tx. The local views of all other parties are identical
to the ones in W1 hence the messages they send are also identical.

Second, at least one of the two senders of tx, tx′ successfully sends at least one message. Note
that this implies Π is a protocol such that the pairwise order of any two transactions could be
dominated by a single party (or, a tiny fraction of resources to run the protocol). Again we show
that W1 is indistinguishable from the world W3 where GFairLedger shall output tx

′ ≺ tx. Suppose, with
out loss of generality, tx is generated by a corrupted party. Consider the following scenario in W3:
the transaction timestamp in GFairLedger and diffusion pattern are exactly the same as those in W2

except that now the corrupted issuer of tx sends a message claiming that tx is sent at time τ (this
is a valid message even if ∆ is known and parties use it to filter old messages). If in W1 the issuer
of tx sends the same message that tx is generated at time τ , then in all honest parties’ local views,
W3 is identical to the scenario in W1 and they send the identical messages.

Finally, consider the case where both transaction issuers send messages claiming their transac-
tion time. We show W1 is indistinguishable from the world W4 where GFairLedger shall output tx

′ ≺ tx.

Consider the following scenario in W4: the transaction issuer of tx is corrupted and GFairLedger assigns
timestamp τ ′, τ − ϵ to transaction tx and tx′ respectively. In addition, tx, tx′ are diffused to all
parties except their senders at at the same time as those in W1; the (honest) issuer of tx′ sends
messages saying that tx′ is sent at time τ−ϵ and the corrupted issuer of tx sends messages claiming
tx is sent at time τ . Assume in W1, the issuer of tx′ is corrupted; then, the honest issuer of tx
sends messages claiming that tx is sent at time τ and the corrupted issuer of tx′ sends messages
claiming that tx′ is sent at time τ − ϵ. In such a case, the diffusion pattern and messages sent in
both W1 and W4 are identical.

Approximate order with any private F . Trusted hardware may be considered as a promising
solution to transaction order fairness, as they are promised to help “authenticate and timestamp”
a transaction that is generated even by a malicious host. Despite the fact that trusted execution
environments are hard to synchronize, we show that when network delay exists, it leads to the
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imprecision on order fairness that cannot be circumvented by any powerful time-aware private
functionalities.

We consider the model where there exists a functionality Fi for each party Pi which, can only
communicate with Pi, global clock GClock and a correlated randomness functionality GDCR; however
Fi can function arbitrarily. Specifically, the correlated randomness setup GDCR returns a random
string s from some distribution D to a functionality F only when F owns the code as specified
in code in GDCR; in such a way only the designated F can acquire the randomness. This can be
achieved, by considering the request message of format (cf. UC with global subroutine in [BCH+20])
(µ, (sid,pid)) where µ specifies the sender’s code.

Functionality GDCR
Upon receiving eid = (µ, (sid, pid)) from P:
� If µ ̸= code ignore this message.
� If there is no tuple of the form (sid, . . .), generate (s1, . . . , sn) ← D(1λ)) and store

(sid, s1, . . . , sn). Otherwise, retrieve (sid, s1, . . . , sn).
� Send Send (sid, si) to Pi.

Given GDCR, all responses parties acquired from F can be verified by other parties (in other words,
they can be “convinced” by the messages from F). We showcase that even if F can implement an
arbitrary function and is time-aware (i.e., F learns the global time from GClock), this does not help
circumvent the impossibility result from the network delay. The subtlety in our proof, at a high
level, is that corrupted parties can keep querying his local F for the same message in every round
via different corrupted parties. We formalize this result in Theorem 2.

Theorem 2 (Impossibility of δ-approximate order with any private F). If ∆ > 0,
then for any δ < ∆ there exist no protocol Π that securely realizes GFairLedger parameterized with

δ-ApproxSenderOrder in the (GClock,W(GPoWRO ),FDiffuse,GDCR,F)-hybrid environment.

Proof. Suppose towards a contradiction, there exists a protocol Π that securely realizes GFairLedger

parameterized with δ-ApproxSenderOrder in the (GClock,W(GPoWRO ),FDiffuse,GDCR,F)-hybrid environ-
ment.

Consider two transactions tx, tx′ in scenario W1. Let τ, τ ′ denote the timestamp that GFairLedger

assigns to them in the transaction buffer respectively. With out loss of generality, assume τ + δ <
τ ′ < τ + ∆ and tx′ is generated by the adversary. Due to δ-ApproxSenderOrder, GFairLedger should

output tx ≺ tx′. We show this is indistinguishable from the scenario W2 where GFairLedger shall output
tx′ ≺ tx. Before we go to W2, consider the responses from F in W1. The issuer of tx, when
sending tx, can attach the message that he queries his own F at round τ ; the (corrupted) issuer of
tx′, when sending tx’, however can attach the message that he queries his own F at round τ (but
not τ ′). This is because the adversary can keep querying tx′ to F in every round up to τ ′ (which
includes round τ < τ ′). Since in each round, the adversary can query F via different corrupted
parties (and these parties behave honestly for all other operations) the message that he acquired
from F in round τ is admissible by all honest parties.

Now consider the following scenario W2: GFairLedger assigns timestamp τ ′, τ to transaction tx and
tx′ respectively, and the transaction issuer of tx is corrupted. In addition, tx, tx′ are diffused to
all parties except their senders at at the same time in W1 and W2 (this diffusion pattern is possible,
see the proof of Theorem 1). In W2, the (honest) issuer of tx′ queries its private F the same time
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as it was sent messages hence get a response with respect to time τ ; meanwhile the corrupted issuer
of tx keeps querying tx and diffuses tx with a response with respect to time τ at round τ ′.

We learn that the diffusion pattern and the responses from F sent in both scenarios are identical,
thus parties must decide the same order, which contradicts the fact that the protocol realizes δ-
ApproxSenderOrder.

5 Protocol Details

We describe our protocol ΠFair
Ledger in this section. The technical roadmap mainly consists two parts

— transaction encryption and decryption using enclaves (in Section 5.1) and encrypted-transaction
serialization (in Section 5.2). A full code specification of our protocol is presented in Appendix C.
For the ease of presentation, we describe our protocol in the PoW and static setting (where the
computational power is fixed yet known), we discuss how our protocol can be translated to different
settings (PoS and dynamic participation) in Section 5.3.

5.1 Transaction Encryption from Trusted Hardware

Our protocol follows the classical setting of state machine replication, where two types of parties —
maintainers (miners/validators) and clients — are considered as protocol participants. We assume
that all protocol maintainers are equipped with their own trusted hardware8. In contrary, a client,
who sends transactions to the maintainers to use the ledger, is not equipped with an enclave.

The trusted hardware functionality Gatt. Following the model and treatment by Pass et al.
[PST17], we capture the maintainers’ enclaves as a shared setup Gatt. This enclave functionality Gatt
is parameterized with a signature scheme SIG and a registered set of parties P. Upon initialization,
a master signing/verification key pair (msk,mvk) is generated, and parties can query the verification
key via the get-vk interface (i.e., it is assumed that in the real world such master verification key
is securely distributed).
Gatt has two “local” interfaces install and resume, and maintains a table T to record the

installed program and their associated parties and internal states. Specifically, every registered
party can install a program that can later be resumed by herself. Each program has its own
memory which can only be reached and modified by the program itself. After resuming a program,
the enclave signs the output and the executed program (with session id) using the master signing
key msk; later, any party can verify the output by using the master verification key queried from
Gatt.

Functionality Gatt
The functionality is parameterized with a signature scheme SIG = (KeyGen,Sign,Verify) and
a registered party set P. On initialization, (mpk,msk)← SIG.KeyGen(1κ) and T ← ∅.

Master key query. Upon receiving (get-vk) from P, send (get-vk,mpk) to P.

Install an enclave. Upon receiving (install, idx, prog) from some P ∈ P:
1. If P is honest, assert idx = sid.
2. Generate nonce eid ∈ {0, 1}κ, store T [eid,P] = (idx, prog, 0⃗), send eid to P.

8Note that owning an enclave has no implication on the maintainer’s computational power. Our protocol works
as long as the majority of the computational power is honest and a constant fraction of the enclaves are controlled
by honest maintainers.
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Resume an enclave. Upon receiving (resume, eid, inp) from some P ∈ P:
1. Let (idx, prog,mem) = T [eid,P], abort if not found.
2. Let (outp,mem) = prog(inp,mem), update T [eid,P] = (idx, prog,mem).
3. Let σ = SIG.Sign(msk, idx, eid, prog, outp), and send (outp, σ) to P.

Transaction encryption scheme. We detail the code that Gatt is expected to execute in TxDec
(Program 1). This program is parameterized with a public key encryption scheme PKE and Λ ∈ N+

which indicates the time interval for hiding the transaction information and is counted by the
number of blocks. TxDec has two interfaces, both can be executed for multiple times. The first
interface key-gen returns the public key pk in storage. When called for the first time, it runs the
key generation algorithm of PKE and stores the key pair (pk, sk). I.e., for each session, one enclave
can only hold one public key pair. The second interface tx-dec, taking input a ciphertext ct and a
chain C, decrypts ct to a plain transaction tx when all the following conditions are satisfied: (i) ct
successfully decrypts to tx ∥ h where h is a valid block state in C; and (ii) the length of C, starting
from the block with hash h has progressed for at least Λ blocks.

Importantly, in tx-dec there is a backdoor that can be triggered only when the decrypted
transaction is an all-zero string. This backdoor, when triggered, re-decrypts the ciphertext using
an alternate decryption algorithm Dec∗ (which we detail very soon below). Looking ahead, this
backdoor enables the simulator to equivocate fake transactions, as Dec∗ allows for the adversary
to program the random oracle and decrypt ct to an arbitrary string he chooses. Note that while
every party can exploit this backdoor and equivocate her transaction, this is indeed harmless in
the real world, because in order for a transaction to be considered legitimate, it should be proved
by NIZKPoK as a valid transaction; though, an all-zero string can never be proved. In the ideal
world, the simulator can generate a fake NIZK proof by hiding the information that random oracle
is programmed from the black-box adversary, thus convincing him that an all-zero string is a valid
transaction.

Program 1 TxDec(PKE,Λ)

Key generation. Upon receiving (key-gen):
1. If (sk, pk) is not stored, generate a key pair (pk, sk)← PKE.KeyGen(1κ) and store (sk, pk).
2. Return (key-gen, pk).

Transaction Decryption. Upon receiving (tx-dec, ct, C):
1. Compute tx ∥ h← PKE.Dec(sk, ct); abort if decryption fails.
2. If ∄B ∈ C such that H(B) = h, abort.
3. Let ℓ denote the block height of B, abort if ℓ+ Λ < len(C).
4. If tx = 0|tx|, tx ∥ h← PKE.Dec∗(sk, ct)
5. Return (tx-dec, tx, ct).

Next we introduce the public-key encryption scheme PKE to be used in the TxDec program,
consisting of four algorithms KeyGen, Enc, Dec and Dec∗. It is parameterized with a collection of
one-way trapdoor functions and the restricted programmable and observable global random oracle
GrpoRO introduced by Camenish et al. [CDG+18]. Specifically, a trapdoor one-way function in Fowf

consists of three functions f, f−1 and b which is the hardcore predicate of f.

� The key generation KeyGen algorithm randomly selects a trapdoor one-way function from Fowf ,
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and returns (f, b) as the public key and (f, f−1, b) as the secret key.
� The encryption algorithm Enc takes a k-bit message as input. For the i-th bit, it samples a

random element xi in the input domain of f and computes ciphertext cti by concatenating f(xi)
and b(xi)⊕mi. After computing all cti it outputs the ciphertext ct = ct1, . . . , ctk.

� The decryption algorithm Dec to compute a k-bit plaintext works as follows. For the i-th bit
and its corresponding ciphertext piece cti, mi is computed by first extracting xi = f−1(ct′i) (ct

′
i

denotes all but the last bit), and then b(xi) is XORed with b′i which is the last bit of cti to get
m′i. The plaintext is decrypted by concatenating all m′i.

� The alternate decryption algorithm Dec∗ works exactly the same as Dec, except that it replaces
the computation of hardcore bit b(xi) with the random oracle query, and the response is XORed
with b′i (where last bit is used as result).

Algorithm 4 PKE(Fowf ,GrpoRO)

Let Fowf = {fi : Di → Ci}i∈I be a collection of one-way trapdoor functions, where I and
all Di, Ci have cardinality at least 2κ. Let f−1i : Ci → Di denote the trapdoor function with
respect to fi, and bi : Di → {0, 1} denote the hardcore predicate of fi.

1: function KeyGen(1κ)

2: Sample i
$← I.

3: Set pk← (fi, bi) and sk← (fi, f
−1
i , bi).

4: Return (pk, sk).
5: end function

1: function Enc(pk,m)
2: Parse pk as (f, b) and m as m1, . . . ,mk.
3: for i from 1 to k do
4: Set xi

$← D
5: Set cti ← f(xi) ∥ (b(xi)⊕mi)
6: end for
7: Set ct← ct1, . . . , ctk and return ct.
8: end function

1: function Dec(ct)
2: Parse sk as (fi, f

−1
i , bi) and ct as ct1, . . . , ctk.

3: for i from 1 to k do
4: Parse cti as ct

′
i ∥ b′i

5: Compute x′i ← f−1i (ct′i) and set m′i ← b(x′i)⊕ b′i
6: end for
7: Set m′ ← m′1, . . . ,m

′
k and return m′.

8: end function

1: function Dec∗(ct)
2: Parse sk as (fi, f

−1
i , bi) and ct as ct1, . . . , ctk.

3: for i from 1 to k do
4: Parse cti as ct

′
i ∥ b′i

5: Compute x′i ← f−1i (ct′i) and set m′i ← h⊕ b′i where (eval, h) = GrpoRO(eval, x′i)
6: end for
7: Set m′ ← m′1, . . . ,m

′
k and return m′.

8: end function
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We note that the first three algorithms (KeyGen,Enc,Dec) in PKE has actually instantiated a
CPA-secure public-key encryption scheme. Nonetheless, the subtlety of using PKE in our protocol
is that the secret key is stored in the enclave, and the simulator cannot control the parameter that
the black-box adversary would like to query Gatt. Hence, equivocation in the ideal world should
happen in a delicate fashion — by exploiting the last algorithm Dec∗, it provides a simple way for
equivocating dummy ciphertexts without letting the enclave to directly interact with the simulator.

Remark 1. The PKE scheme can also be instantiated more efficiently using one-way trapdoor
permutation. In particular, we can sample n hard-core bits from just one element x of the function
domain by computing b(x) ∥ b(f(x)) ∥ . . . ∥ b(fn−1(x)) [KO04].

Looking ahead, in the ideal world, the simulator can equivocate honest transaction by using the
fact that only the senders (which are now dummy party) are allowed to equivocate their transactions
and all other partiess cannot distinguish whether a response (tx-dec,m, ct) from Gatt is decrypted
by using Dec or Dec∗.

Lemma 3. No PPT distinguisher D, after observing polynomially many (m, ct), can tell whether
m is decrypted from ct by using PKE.Dec or PKE.Dec∗ with non-negligible probability.

Proof (Sketch). To prove the lemma we show that giving only the ciphertext and its decryption
(we consider one bit message),

|Prb←{0,1}[A(Enc(b),Dec(Enc(b))) = 1]

−Prb←{0,1}[A(Enc(b),Dec∗(Enc(b))) = 1]| < negl(κ).

We first consider a new distinguisher D1 trying to tell whether a plaintext is decrypted using
PKE.Dec or PKE.Dec′ where in PKE.Dec′, the challenger returns decryption computed by randomly
sample a bit and XOR it with the last bit of Enc(b) (and he remembers this bit for later queries).
We show that D1 cannot distinguish with non-negligible probability, by showing a reduction to the
security game of the hardcore bit. Roughly speaking, the adversary in the hardcore bit game runs
D1; if D1 decides on PKE.Dec, then the adversary picks one (m, ct) outputs m XOR the last bit
of c. If D1 distinguishes with non-negligible probability, then the adversary finds b(x) of f(x) with
probability non-negligibly more than one half, contradicting the security of hard-core bit.

We consider the next distinguisher D2 trying to tell whether a plaintext is decrypted using
PKE.Dec∗ or PKE.Dec′. This is true because when D2 is given a ciphertext ct = y ∥ b, he cannot
check whether the point f−1(y) is programmed in GrpoRO. Otherwise, a reduction to the security
of one-way function can be made where the distinguisher of one-way function can invert and find
preimage with non-negligible probability. By combining these two we conclude the proof.

Enclave public-key selection. Since all maintainers are equipped with trusted hardware and
each holds a public key, in the sense of communication complexity it is infeasible for a client to
encrypt transactions to all the enclaves. To reduce the size of an encrypted transaction, the clients
should pick a small subset of all public keys and only encrypt to these specific enclaves.

Arguably, as long as the client sends an encrypted transaction tx to at least one honest main-
tainer, it guarantees the correct and timely decryption of tx. Nonetheless, it is a non-trivial task
to design a key subset selection scheme and the näıve solution to let clients pick public keys by
themselves does not work. The reason is that when a transaction issuer takes full control over
selecting public keys to encrypt to, the adversary can collude with her and select only the public
keys of enclaves that are controlled by the adversary. Especially, the adversary can create different
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transactions and release them simultaneously to the network; later, he selectively opens one of them
that profits him the most9.

To address this dilemma between the size of encrypted transactions and the security against
selective decryption, we propose a new random subset selection scheme using Gatt. Specifically,
protocol maintainers run a program BlockTicket parameterized with a pseudorandom function fPRF.
This program has only one interface which takes a κ-bit string h as input. Upon queried, it returns
fPRF(key, h) where key is a stored PRF key (which is sampled uniformly upon initialization). For
every maintainer, once they receive a valid block B with hash h, they generate a ticket (h, τ) and
diffuse it to the network.

Program 2 BlockTicket(fPRF)

Ticket generation. Upon receiving (ticket-gen, h):

1. If key is not stored, generate key
$← {0, 1}κ and store key.

2. Set τ ← fPRF(key, h) and return (ticket-gen, (h, τ)).

We then consider a function fselect(S,m, τ) which, taking a set S, a threshold m ∈ N+ and
τ ∈ {0, 1}κ as parameters, outputs an element in S. Formally, let

(S
m

)
denote the the (ordered)

set of all m-combinations of S (when |S| < m, fselect returns S directly), we define the selection
function as

fselect =

(
S
m

)[
τ mod

∣∣∣(S
m

)∣∣∣].
Looking ahead, when a client is to issue a transaction tx, she picks a block hash h on (the

settled part of) her local chain Cloc and encrypts tx concatenated with h. Then, she selects a ticket
(h, τ) (from the set of all tickets (h, ·) that she has) and applies fselect on the set of public keys
published on the blockchain up to block with hash h, m = polylogκ which will be a parameter of
the protocol and the ticket (h, τ).

We provide some intuition on why this block ticket scheme underpins a secure subset selection
over the public keys. Notice that m = polylogκ and the public keys of enclaves controlled by honest
parties account for a constant fraction of all the public keys. By randomly selecting an element
in

(S
m

)
, the probability that the chosen m-combination contains no honest public key is negligible

with respect to the security parameter κ. Furthermore, since only a ticket that is associated with
a settled block will be used by parties to select public keys (otherwise the encrypted transaction
will be considered illegitimate), the total number of tickets that are eligible to use throughout an
execution running for L = poly(κ) rounds is polynomially bounded by κ and n where n is the
number of enclaves. Refer to Lemma 6 for the formal analysis of this scheme.

Remark 2. Our public-key subset selection scheme still allows transaction issuers to select the ticket
that she prefers. I.e., when the issuer chooses not to trust some enclaves, she can select tickets that
does not contain their public keys. This can be useful in the model where some enclaves can be
compromised, but later honest parties get notified and avoid using their public keys. In such a way
the system self-heals from temporarily losing input causality.

Issuing a transaction. We elaborate on how a client can issue a transaction, the code description
of this procedure is presented in Algorithm 7 in Appendix C. Recall that clients are not equipped

9This is also known as the selective opening problem, which is a major issue when using commitment to hide
transaction contents. While this problem can be partially mitigated by employing a penalty scheme, under certain
MEV circumstances the revenue of selective opening can be much higher than the penalty.
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with trusted hardware thus they should encrypt their transactions using the maintainers’ public
keys. They can acquire the master verification key mvk from Gatt, and the maintainers will publish
their public key on the blockchain. Further, by listening to the network they get tickets for every
block in the settled part of the blockchain10.

In order to send a transaction tx, the client first picks a block B in the settled part of her local

chain; i.e., B ← head(C⌈kloc). Let h denote the hash of B and Sh the set of tickets associated with h.
The client first picks a (h, τ) ∈ Sh randomly, and then selects the public keys Sτpk ← fselect(Spk,m, τ)
where Spk denotes the set of on-chain enclave public keys up to block B. Let m′ = |Sτpk|. The client
then encrypts tx as ct = (ct1, ct2, . . . , ctm′) such that

cti = PKE.Enc(pki, (tx ∥ h)) where pki = Sτpk[i]

using the encryption algorithm in Algorithm 4. Note that tx denotes both the transaction content
and metadata and they are all encrypted11, hence each cti is indistinguishable from a random string
and can only be decrypted using the trusted hardware with public key pki.

In order to prevent the adversary from issuing “bad” transactions (e.g., different cti encrypts
different transactions, or tx is not a valid transaction), a NIZKPoK proof should be attached. Our
statement is of form stmt = (h, st, (ct1, . . . , ctm), (pk1, . . . , pkm)) and witness w = (tx, (r1, . . . , rm)).
The NP relation is defined as follows (where we slightly abuse the notation and let Enc taking an
additional parameter r to replace the randomness generation by using r):

∀i ∈ [m], ∃(ri, tx) s.t. cti = PKE.Enc(pki, (tx ∥ h), ri) and QvalidTX(tx, st) = 1. (1)

Note that to simplify the transaction validation, we write QvalidTX, taking input a transaction tx

and a blockchain state st, as the predicate such that QvalidTX(tx, st) = 1 if and only if tx is a valid
transaction with respect to state st.

We elaborate on the NIZKPoK scheme that we are going to use. Let ΠNIZK denote a NIZKPoK
protocol [LR22] consisting of six algorithms Setup, Prove, Verify, SimSetup, SimProve and Extract.
Especially, ΠNIZK satisfies three properties, namely (i) overwhelming completeness; (ii) non-interactive
multiple special honest-verifier zero-knowledge; and (iii) non-interactive special simulation-soundness.
Note that ΠNIZK can be implemented in the GrpoRO model.

After selecting the block ticket τ , the set of public keys Sτpk and generating the ciphertexts ct,
the client then generates a NIZK proof π = ΠNIZK.Prove((h, st, ct,Sτpk), (tx, r)) where st is the
(hash of) blockchain state with respect to h. The client now is ready to issue the new transaction
by diffusing (π, ct, τ) to the network.

Transaction decryption. To open a transaction associated with block hash h, a chain mined
from h, progressing for at least Λ blocks, should be provided. We note that while in our description,
clients should select a block in the immutable part of the blockchain (thus h will be extended with
overwhelming probability), there is actually no restrictions on the clients to prevent them from
selecting a very recent block. However, this comes with the risk of hurting liveness — if a block B
in the unsettled part is selected for issuing a transaction and B get orphaned, then that transaction
cannot be considered legitimate on this chain.

10Note that our protocol requires an initial enclave public key registration stage to gather sufficiently many on-
chain honest enclave public keys. This requires the clients to wait until the blockchain grows to at least 2k blocks
(where k is the common prefix parameter) so that at least one honest block gathers honest public keys and gets
buried sufficiently deep in the settled blockchain. This “warm-up” stage can be captured by enforcing the transaction
process mechanism to start after the chain grows to 2k blocks.

11Previous works encrypt only transaction content but metadata (e.g., transaction issuer’s public key) remains
transparent.
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While a transaction associated with an orphaned block won’t be accepted on the main chain,
we highlight that all valid transactions can be opened eventually, when there is a curious adversary
that works on the orphaned fork alone and hence open the encryption using his own enclave.

5.2 Blind Transaction Serialization

In this section we present our PoW blockchain framework and show how a virtual ledger L can
be built on top of the chain C. In a nutshell, the blockchain C can be seen as derived from the
Nakamoto-style PoW chain by additionally binding the mining procedure of the blocks that forms
the chain C and a new type of block called “profile blocks”, using 2×1 (pronounced “two-for-one”)
PoW. Note that the 2×1 PoW blockchain has been proposed in [GKL15]. We borrow their basic
constructions but adapt it specifically to reach agreement over the timestamp of each transaction.
The virtual ledger L is built by serializing all transactions based on their aggregated timestamp.

In 2×1 PoW, a hash function output u is checked twice for u and its reversed bit-string [u]R.
If u < T , a block that extends the chain C is produced; and if [u]R < T , a new profile block PB is
mined (which we will detail soon). In such a way, the mining procedure of the chain C and profile
blocks are “bound” together and the adversary cannot gain advantage on either type of blocks by
dropping from mining the other.

The blockchain C in ΠFair
Ledger is a sequence of blocks connected by the hash reference to the

previous block, and all validation and chain-selection algorithms follow the longest-chain rule. The
only difference between our chain C in ΠFair

Ledger and that in, e.g., Bitcoin, is that blocks in C does not
include transactions “directly”. Instead, they only include valid profile blocks and valid enclave
public keys (also, valid transaction decryption signed by the enclave). As for the profile blocks,
they share the same block head structure with on-chain blocks; further, for each PB, its content is a
transaction list of pair (tag, t) where tag is the transaction identifier (hash of the tuple of encrypted
transaction, NIZK proof and block ticket (ct, π, τ)) and t is its local receiving time.

When a maintainer P receives a transaction in the form of (ct, π, τ), it first extracts the block
hash h associated with this transaction. If h is not on P’s local chain, the transaction gets rejected.
Further, if the proof π fails to verify, or it contains a state st does not match h, or ct is encrypted
from the wrong set of enclave public keys associated with block ticket τ , P rejects this transaction
either. When all these verification pass, P bookkeeps the current time r with this transaction in
its buffer as ((ct, π, τ), r)

Transaction timestamping. To facilitate transaction timestamping via profile blocks, we employ
two additional parameters for validating profile blocks — the recency parameter R which is used to
guarantee the freshness of profile blocks and the profile window length parameter K. Specifically, a
profile block PB should “attach” to a valid block B in the settled part of the blockchain (by including
B’s blockhash in its header), as the freshness proof that PB is not mined too early ago. Meanwhile,
the blockchain C should reject stale profile blocks (to prevent the adversary from withholding them
and releasing in the very future). Let ℓ denote the height of block B that PB attaches to. PB is
considered as a valid profile block only when PB is included in a block with height less than ℓ+R.

We detail the transaction settlement and timestamping scheme. Consider a transaction tx (at
this stage miners only know its unique identifier tag) and B the first block that contains a profile
block PB with entry (tag, ·). Let ℓ denote the block height of B. The timestamp of tx (or, its
position in the final ledger) is computed by calculating the median timestamps of tag from all
profile blocks included in blocks with height at most ℓ+K. Formally,

TS(tag) ≜ med{t | (tag, t) ∈ PB ∈ B ∧ ℓ ≤ height(B) < ℓ+K}.
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Note that if a profile block in the K-block window does not report an entry (tag, ·), it is counted as
reporting (tag,+∞) (i.e., the miner had never received tag thus cannot decrypt it). In other words,
in order for a transaction tx with identifier tag to be included in the ledger L, the majority of these
profile blocks should report an entry (tag, ·), otherwise the computed timestamp is ∞ meaning tag
fails to settle into the ledger12.

Security guarantees. Looking ahead, in our analysis we show that our blockchain C provides
all security guarantees as the conventional ones, with additional good properties on the profile
blocks. In particular, for any transaction tx and its associated K-block window, at least half of the
profile blocks in this window are produced by honest parties. Given the overwhelming probability
on winning the majority of profile blocks, the ledger built on top of C is a consistent and live one
with two additional properties — sender fairness and input causality. In terms of sender fairness,
for each transaction tx that enters the network at round r, eventually our ledger will finalize a
timestamp t such that r ≤ t ≤ r + ∆ for tx. Further, regarding input causality, since no party
except the transaction issuer can learn (any information about) tx before the chain extends for at
least Λ > K blocks, the adversary can only issue transactions after tx has got finalized.

5.3 Further Discussions

In this section we discuss how our protocol can be naturally translated to a Nakamoto-style Proof-
of-Stake protocol, and how it can operate with dynamic participation.

Proof-of-Stake instantiation. Our protocol turns out to have a natural adaption to the PoS
setting with a few minor adaptions. Note that the transaction encryption mechanism that we
employ are blockchain-agnostic hence no additional modification is required. We hence focus on
the blockchain part.

On one hand, we shall instantiate the 2×1 PoW blockchain using PoS. This translation is
immediate: the 2×1 PoW can be replace by using two independent VRF evaluations, one for
extending the PoS chain and the other for generating profile blocks. This replacement is provably
equivalent and has been seen wide usage (see, e.g., [FGKR20] for more discussion). On the other
hand, in PoS the simulation for chain extending is “for free”, and since the enclaves are clock-
oblivious they should not decrypt transactions using the “progression” on a PoS chain. To address
this problem, we point to the “density”-based chain selection rule in Ouroboros Genesis [BGK+18],
where the selection of two chains with long forks is based on selecting the denser chain after the
fork, capturing the fact that honest parties win more slots than the adversary. A similar approach
can be applied in the enclave decryption program: in order to decrypt a transaction tx, a chain
extending from the state bound with tx should be provided, with sufficiently many blocks in each
interval (i.e., the chain should be dense), until some pre-defined time length.

Dynamic participation. Our protocol can operate with dynamic participation, with certain
modifications that we provide a high-level intuition. The 2×1 PoW blockchain that we use can go
with fluctuating computational power (the 2×1 mining with difficulty adjustment has been used
and proved secure in, e.g., [KLS24]). Further, the enclave program can be modified to decrypt
transactions if certain amount of block difficulty has been accumulated since the state that trans-
action bound to. The main challenge is when maintainers come and go, the set of enclave public
keys that clients are supposed to use should be updated periodically. Notice that in [KLS24] the
mining difficulty is adjusted by epochs, hence we could employ an additional public key registra-
tion phase for each epoch, and based on the block that a transaction is bound with, it selects the

12Under this majority rule, even if the adversary with minority of computational power completely drop from
mining a transaction tag, honest parties can still settle tag on their own with a good timestamp.
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appropriate set of keys to apply the ticket selection — and of course, this requires a more refined
parametrization.

6 Security Analysis

Overview of the security analysis. In the ideal world, the simulator S simulates the network
functionality for a black-box adversary A; S also simulates the ledger maintenance procedure of
honest parties and jointly builds a blockchain with A. When dummy parties issue new transactions,
S generates a fake ciphertext of an all-zero string and send it to the simulated network. When
an encrypted transaction is received from A, S extracts the plain transaction by using ΠNIZK.
Importantly, when the simulated blockchain has progressed such that S learns the transaction
order, S proposes those transactions (using txid) to GFairLedger and thus learn the honest transactions.
S then programs the GrpoRO (and hides this “isProgramed” information to A) and equivocate the
corresponding encrypted transactions to the real honest transaction.

We provide some more details on handling honest transactions. When the ledger GFairLedger notifies
S that a dummy honest party P submits a new transaction of length m with txid at time τ , S
simulates the IssueNewTransaction procedure for P by associating a block B with this transaction,
based on P’s simulated local chain state. In order to learn the honest transactions, S waits until
that in the simulated blockchain, all transactions that might precede the transaction with txid get
settled. S proposes the sequence of transactions to GFairLedger and thus learns the transaction tx that
is associated with txid. Note that since the transaction decryption interval parameter Λ is set
slightly longer than the time that it will get settled on the blockchain, S always has enough time
to program GrpoRO and equivocate the ciphertext of an all-zero string to tx.

The simulator terminates when certain bad event happens. Specifically, we define the following
bad events BAD-CP (violation of common prefix), BAD-CQ (violation of chain quality), BAD-CG
(violation of chain growth), BAD-PROFILE (violation of honest profile majority in anyK consecutive
blocks), BAD-NIZK (failure of the NIZK scheme), BAD-DEC (failure of transaction equivocation),
BAD-TICKET (failure of selecting enclave public-key subset with at least one honest key). We prove
that all these bad events happen with negligible probability with respect to the security parameter.
Hence, the simulator can run the simulation for any polynomial time without abortion.

Refer to Appendix D for a full description of simulator.

6.1 Blockchain Security Properties

In our protocol, a blockchain is built as an intermediate step to agree on transaction timestamp
and provide long chains for decrypting transactions. We thus first focus on the good properties on
the chain — namely, common prefix, chain growth and chain quality.

� Common Prefix (CP); parameterized with k ∈ N+. The chains C1, C2 possessed by two

alert parties at the onset of the round r1 < r2 are such that C⌈k1 ⪯ C2, where C
⌈k
1 denotes the

chain obtained by removing the last k blocks from C1, and ⪯ denotes the prefix relation.
� Chain Growth (CG); parameterized with τ ∈ (0, 1] and s ∈ N. Consider a chain C

possessed by an alert party at the onset of a round r. Let r1 and r2 be two previous rounds for
which r1 + s ≤ r2 ≤ r. Then |C[r1 : r2]| ≥ τ · s where τ is the speed coefficient.

� Chain Quality (CQ); parameterized with µ ∈ (0, 1] and s ∈ N. Consider any portion of
length at least s of the chain possessed by an alert party at the onset of a round; the ratio of
blocks originating from alert parties is at least µ. We call µ the chain quality coefficient.
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Note that our blockchain framework can be viewed as a “superset” of the Bitcoin backbone
protocol, where they share the same chain structure (recall that all our revisions are regarding
letting the chain accept new types of “profile blocks” and the transaction encryption scheme is
blockchain-agnostic). Hence, following the similar arguments in [GKL15, PSs17, BMTZ17], the
following Lemma 4 concluding that these properties hold throughout the entire execution except
with negligible probability is immediate. Note that to simplify the presentation, we omit the
detailed parametrization of the protocol but only focus on the achieved properties. Specifically,
common prefix is achieved by pruning last k = polylog(κ) blocks, and the chain quality parameter
µ > 0, indicating that there is at least one honest block for every k consecutive blocks.

Lemma 4. There exist protocol parametrizations such that the following properties hold throughout
the an execution of ΠFair

Ledger for L = poly(κ) rounds: (i) common prefix property with parameter
k = Θ(polylog(κ)) (ii) chain growth property with parameter τCG and sCG; and (iii) chain quality
with parameter µ > 0 and s = k, except with probability negligibly small in the security parameter
κ.

We next focus on the properties regarding profile blocks. We show that honest parties can always
produce profile blocks that account for the majority, for any K = Θ(k) consecutive blocks on the
blockchain. We provide a sketched proof using only the common prefix, chain growth and chain
quality parameter; a more refined proof and parametrization can be found in, e.g., [PS17, KLS24].

Lemma 5 (Majority of honest profile blocks). If the properties as in Lemma 4 are not violated
during the execution, then in an execution of ΠFair

Ledger over a lifetime of L = poly(κ) rounds, for any
segmentation of the blockchain of K = Θ(k) consecutive blocks, the majority of the profile blocks
included are produced by honest parties.

Proof (Sketch). Consider any consecutive K blocks Bi, . . .Bi+K−1. Due to chain quality, there is at
least one honest block Bh such that i ≤ h < i+ k− 1 and Bh′ such that i+K− k < h′ ≤ i+K− 1.
It suffices to show that the profile blocks produced by honest parties in the time interval between
Bh and Bh′ is larger than those produced by the corrupted parties in an interval between the time
of t and t′ where t = timestamp(Bi)− R and t′ = timestamp(Bi+K−1) + k. By setting R = 3k and
K = Θ(k) (the constants depends on the advantage of honest computational power compared with
the corrupted parties, and the chain growth parameter τCG) we conclude the proof.

Given that for any sliding window of K blocks the majority of the profile blocks included are
produced by honest parties, we consider a transaction tx enter the system at time t (when tx is
issued by corrupted parties, let t denote the earliest time such that tx is learnt by at least one
honest party). Every honest maintainer will receive tx at a time t′ such that t ≤ t′ < t+∆, hence
majority of the profile blocks report time in this interval — i.e., in the final ledger L, the position
of tx will be later than any transaction that enters the system at time before t−∆; meantime, tx
is positioned at a place earlier than those transactions entering the system at time later than t+∆.

6.2 Composable Guarantees

Section 6.1 shows that when the simulator jointly builds the blockchain with the black-box adver-
sary, bad events regarding the violation of good blockchain properties, namely BAD-CP, BAD-CQ,
BAD-CG and BAD-PROFILE, happens with negligible probability. We next prove that the simu-
lator S can simulate the transaction encryption mechanism well, by showing that all bad events
BAD-TICKET, BAD-NIZK and BAD-DEC happen with negligible probability.
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First, we consider BAD-TICKET which implies that the adversary A can send an encrypted
transaction such that all public keys used in the encryption are from enclaves controlled by the
corrupted parties thus A can decided whether to open the transaction or not.

Lemma 6 (Good block tickets). Consider an execution of ΠFair
Ledger over a lifetime of L = poly(κ)

rounds. The probability such that there exists a block ticket (h, τ) such that h equals the hash of a
block in the settled part of the blockchain held by an honest party (at any time during the execution)
is negligible with respect to the security parameter κ.

Proof. Recall that the mining target T is appropriately parameterized such that the block gen-
eration rate f < 1 is a small constant, by applying Chernoff bound (Theorem 10), the number
of blocks generated in L = poly(κ) rounds is bounded by (1 + ϵ)f · L except with probability
exp(−ϵ2fL/3) = exp(−Ω(poly(κ))) which is negligibly small with respect to κ. I.e., consider n
enclaves, at most n · poly(κ) block tickets will be associated with hash of a block in the settled
blockchain.

Let p ∈ (0, 1] denote the fraction of honest enclave public keys. We first consider a variant
of Program 2 where for each hash h, the enclave returns a randomly selected value (and records
this value for h for later queries), which applies a random subset selection on the set of enclave
public-key set Spk for each h. We show that by randomly select a subset of size m = polylog(κ)
in Spk for n · poly(κ) times, the probability such that event E — there exists at least one selected
subset such that all keys are from the enclaves controlled by corrupted corrupted parties — is
negligible. For each random subset selection, the probability that no honest key is selected is
bounded by (1 − p)m < exp(−Ω(polylogκ)), by selecting n · poly(κ) we get Pr[E] = 1 − (1 −
exp(−Ω(polylogκ)))n·poly(κ) = exp(−Ω(polylog(κ)) + lnn) which is negligible in κ.

Now it suffices to show that by replacing the random number with fPRF(key, h), for each ticket
there is still at least one key controlled by honest party get selected. This can be proved by a
reduction to the indistinguishability experiment of the underlying pseudorandom function fPRF
which we omit here (note that while each enclave possesses her own key, since the total number of
the enclaves are polynomially bounded this does not hurt the argument).

Then we consider BAD-NIZK which implies that the simulator S cannot extract the encrypted
transactions issued by the corrupted parties thus the simulation fails (note that it is not hard to
see that the event such that honest parties fail to create a proof, or the corrupted parties generate
a proof for a relation not in Equation (1) is negligible).

Lemma 7 (Good NIZK). The probability that the simulator fails to extract the witness from a
NIZK proof created by the black-box adversary is negligibly small in the security parameter κ.

Proof. We prove this by a reduction to the security game of the special simulation-soundness
(Game 1 in Definition 3), and show that if the simulator fails to extract, then the game returns
fail with non-negligible probability, contradicting the fact that ΠNIZK is non-interactive special
simulation-soundness.

The reduction in general works as follows. When the simulator S is to generate a NIZK proof
for dummy honest parties, S forwards the query (Prove, x, w) as that in Game 1; when receiving a
proof (x, π) from the black-box adversary, S forwards (Challenge, x, π) and extracts the witness.
If this extraction fails and simulator aborts, then in Game 1 it must be the case that after running
the Extract algorithm and get witness w it holds that R(x,w) = 0. I.e., if the simulator aborts
for the failed extraction with non-negligible probability, then in Game 1 it also returns Fail with
non-negligible probability.
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Recall that in Lemma 3, the black-box adversary A cannot distinguish if a plaintext of PKE is
decrypted by Dec or Dec∗, finally we consider the event BAD-DEC which implies that the simulator
fails to equivocate a faked ciphertext to its corresponding honest transaction.

Lemma 8 (Good decryption). The probability such that when A queries Gatt a faked ciphertext
ct of an all-zero string corresponding to transaction tx and Gatt returns a response other than
(tx-dec, (tx, ct)) is negligible with respect to the security parameter κ.

Proof. The event of BAD-DEC happens, because either S has no time to program the random
oracle, or the programming fails.

We first consider the case that S has no time to program. Note that since the decryption
parameter is set as Λ > 4k + K, for an honest transaction tx that associates with a block with
height ℓ, there will exist an honest block with height at most ℓ+2k (due to chain quality) such that
it contains the profile blocks with tx. I.e., when the blockchain has progressed to length ℓ+4k+K,
the timestamp of tx get settled, and the same holds for all transactions that enters the system
before tx. Hence S can propose a block containing tx and learn its plaintext before the chain
grows to length ℓ + Λ > ℓ + 4k + K; i.e., when the simulator program all ciphertext for tx the
tx-dec interface will never try to use Dec∗ to decrypt ct of tx.

Regarding the event that programming GrpoRO fails, note that this only happens when the point
x to program has already been queried before. Note that for any point x to program, there exists
a (piece of) ciphertext ct with respect to pk = (f, b), such that ct = f(x). If the event that any
programming on point x fails, then it implies Prx∈{0,1}κ [A(f(x)) ∈ f−1(f(x))] is non-negligible,
contradicting the fact that f is a secure one-way function.

We conclude that our protocol ΠFair
Ledger, when appropriately parameterized, securely realizes

GFairLedger in an (GClock,W(GPoWRO ),FDiffuse,Gatt,GrpoRO)-hybrid environment.

Theorem 9. Let ∆ denote the network delay, τCG the chain-growth coefficient, k the common
prefix parameter, K the length of profile block window and PKE,Λ the parameter of Program 1
where PKE is as specified in Algorithm 4. Assuming honest majority in terms of computational
power and honest parties controlling a constant fraction of enclave public keys, there exists protocol
parametrization (k = Θ(∆ log2 κ), K = Θ(k) and Λ = K + 5k, h/n = Ω(log2 κ)) such that
Protocol ΠFair

Ledger UC-realizes GFairLedger parameterized with ∆-ApproxSenderOrder, with windowSize =

k, Delay = 2∆ and waitTime = (4k+K)/τCG, in the (GClock,W(GPoWRO ),FDiffuse,Gatt,GrpoRO)-hybrid
environment.

Proof (Sketch). We prove the theorem by providing a simulator Sledger in the ideal world such
that the protocol execution in the (GClock,W(GPoWRO ),FDiffuse,Gatt,GrpoRO)-hybrid world is indistin-
guishable from the ideal-world execution with the ledger functionality and the simulator. We
detail the full description of Sledger in Appendix D. This simulation can be done perfectly, as the
only events that prevent a successful simulation are those defined by BAD-CP, BAD-CQ, BAD-CG,
BAD-PROFILE, BAD-NIZK and BAD-DEC, which we have been proving in the previous Lemma 4,
5, 6, 7 and 8 that happens with negligible probability.
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processors. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
– EUROCRYPT 2017, Part I, volume 10210 of Lecture Notes in Computer Science, pages 260–
289, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany. https://doi.org/
10.1007/978-3-319-56620-7_10.

[RB94] Michael K. Reiter and Kenneth P. Birman. How to securely replicate services. ACM Trans.
Program. Lang. Syst., 16(3):986–1009, 1994. https://doi.org/10.1145/177492.177745.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: a
tutorial. ACM Comput. Surv., 22(4):299–319, dec 1990. https://doi.org/10.1145/98163.

98167.

[ZSC+20] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. Byzantine ordered
consensus without byzantine oligarchy. In Proceedings of the 14th USENIX Conference on Op-
erating Systems Design and Implementation, USA, 2020. USENIX Association.

A Preliminaries (Cont’d)

Global clock. We model synchronous processors using GClock (cf. [KMTZ13]). At a high level,
GClock maintains a round variable τ for each session, and the round forwards only when all registered
parties send GClock the clock-update command. The current time can be checked by sending
a clock-read command. Whenever a party who has finished the computation in a round is
activated, she checks if the time from GClock has been forwarded; if not, she does nothing and wait
for the next activation.
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Functionality GClock
The functionality manages the set P of registered identities, i.e., partyset P = (pid, sid). It
also manages the set F of functionalities (together with their session identifier). Initially,
P ← ∅ and F ← ∅.
For each session sid the clock maintains a variable τsid. For each identity P = (pid, sid) ∈ P
it manages variable dP. For each pair (F , sid) ∈ F it manages variable d(F , sid) (all integer
variables are initially 0).

Synchronization:
� Upon receiving (clock-update, sidC) from some party P ∈ P set dP ← 1; execute

Round-Update and forward (clock-update, sidC ,P) to A.
� Upon receiving (clock-update, sidC) from some functionality F in a session sid such

that (F , sid) ∈ F set d(F , sid) ← 1, execute Round-Update and return (clock-update,
sidC ,F) to this instance of F .

� Upon receiving (clock-read, sidC) from any participant (including the environment on
behalf of a party, the adversary, or any ideal—shared or local—functionality) return
(clock-read, sidC , τsid) to the requestor (where sid is the sid of the calling instance).

Procedure Round-Update: For each session sid do: If d(F , sid) = 1 for all F ∈ F and dP = 1
for all honest partyset P = (·, sid) ∈ P, then set τsid ← τsid + 1 and reset d(F , sid)← 0 and
dP ← 0 for all partyset P = (·, sid) ∈ P.

Diffuse functionalities. Wemodel the∆-bounded delay network with FDiffuse [BMTZ17, BGK+18].
Note that once a corrupted message reaches at least one honest party at round r, FDiffuse guarantees
to deliver this message to all honest parties before round r+∆ (i.e., honest parties keep “echoing”
messages). By convention, different types of messages are diffused by different functionalities, and

we write Fbc
Diffuse, F tx

Diffuse, F
pb
Diffuse, F

pk
Diffuse to denote the network for chains, transactions, profile

blocks and enclave publick keys respectively.

Functionality F∆
Diffuse

The functionality is parameterized with a set possible senders and receivers P. Any newly
registered (resp. deregistered) party is added to (resp. deleted from) P.

� Honest sender diffusion. Upon receiving (diffuse, sid,m) from some P ∈ P,
where P = {U1, . . . , Un} denotes the current party set, choose n new unique message-
IDs mid1, . . . ,midn of the form midi = (midn, i), initialize 2n new variables Dmid1 :=
DMAX

mid1
. . . := Dmidn := DMAX

midn
:= 1, a per message delay ∆midi = ∆ for i =

1, . . . , n and set M := M ∥ (m,mid1, Dmid1 , U1) ∥ . . . ∥ (m,midn, Dmidn , Un), and send
(diffuse, sid,m,P, (U1,mid1), . . . , (Un,midn)) to the adversary.

� Adversarial sender diffusion. Upon receiving (diffuse, sid,m) from some P ∈ P
(where P = {U1, . . . , Un} denotes the current party set), do execute it the same way as
an honest-sender diffusion, with the only difference that ∆midi =∞.

� Honest party fetching. Upon receiving (fetch, sid) from P ∈ P (or from A on behalf
of P if P is corrupted):
1. For all tuples (m,mid, Dmid,P) ∈M, set Dmid := Dmid − 1.
2. Let MP

0 denote the subvector M including all tuples of the form (m,mid, Dmid,P) with
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Dmid = 0 (in the same order as they appear in M). Then, delete all entries in MP
0 from

M and in case some (m,mid, Dmid,P) is in MP
0 , where P is honest, set ∆mid′ = ∆ for

any (m,mid′, Dmid′ ,P
′) in M and replace this record by (m,mid′,min{Dmid′ , ∆},P′).

Finally, send MP
0 to P.

� Adding adversarial delays. Upon receiving (delays, sid, (Tmidi1
,midi1), . . . , (Tmidiℓ

,

midiℓ)) from the adversary do the following for each pair (Tmidij
,midij ): if DMAX

midij
+

Tmidij
≤ δmidij

and midij is a message-ID registered in the current M, set Dmidij
:=

Dmidij
+ Tmidij

and set DMAX
midij

:= DMAX
midij

+ Tmidij
; otherwise, ignore this pair.

� Adversarially reordering messages. Upon receiving (swap, sid,mid,mid′) from the
adversary, if mid and mid′ are message-IDs registered in the current M, then swap the
triples (m,mid, Dmid, ·) and (m,mid′, Dmid′ , ·) in M. Return (swap, sid) to the adversary.

Random oracle for PoW and its wrapper. Our random oracle for generating PoW follows
that in [BMTZ17] except that now it is a shared functionality.

Functionality GPoWRO

The functionality is parameterized by the security parameter κ. It maintains a dynamically
updatable function table H where H[x] = ⊥ denotes the fact that no pair of the form (x, ·)
is in H. Initially, H = ∅.
� Upon receiving (eval, sid, x) from some party P ∈ P (or from A on behalf of a corrupted

P), do the following:
1. If H[x] = ⊥ sample a value y uniformly at random from {0, 1}κ and set H[x]← y.
2. Return (eval, sid, x,H[x]) to the requestor.

In order to limit the adversary on making a certain number of queries per round, we adopt a
functionality wrapper [BMTZ17] that wraps the corresponding resource to capture such restrictions.
Note that since now GPoWRO is shared among different sessions, the adversary can ask the environment
to make queries on behalf. Hence, our wrapper W(GPoWRO ) also puts restrictions on queries that are
made by the environment.

Functionality W(GPoWRO )

The wrapper functionality is parameterized by a set of parties P, and an upper bound t
which restricts the evaluations of all corrupted party per round. The functionality manages
the variable τ ∈ N+ and the current set of corrupted miners P ′. It also manages variable tA.
Initially, τ = 1.

General: The wrapper stops the interaction with the adversary as soon as the adversary
tries to exceed its budget of t queries per nominal round.

Relaying inputs to the random oracle:
� Upon receiving (eval, sid, x) from A on behalf of a corrupted party P ∈ P ′ or any party

(pid′, sid′) such that sid′ ̸= sid, first execute Round Reset. Then, set tA ← tA + 1 and
only if tA ≤ tτ forward the request to GPoWRO and return to A whatever GPoWRO returns.

� Any other request from any participant or the adversary is simply relayed to the underlying
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functionality without any further action and the output is given to the destination specified
by the hybrid functionality.

Corruption Handling: Upon receiving (corrupt, sid,P) from the adversary, set P ′ ← P ′∪P.
Procedure Round-Reset: Send (clock-read, sidC) to GClock and receive (clock-read,
sidC , τ

′) from GClock. If |τ − τ ′| > 0, then set tA ← 0 for the adversary and set τ ← τ ′.

Global random oracle. The restricted programmable and observable global random oracle GrpoRO
follows the modelling in [CDG+18]. We allow the adversary to observe and program the GRO;
meantime, every party (in the same session) can check if a point is programmed by calling the
“IsProgrammed” interface.

Functionality GrpoRO
The functionality is parameterized by the security parameter κ. It maintains a dynamically
updatable list H and prog Initially, H = prog = ∅.
� Eval. Upon receiving (eval,m) from a party (P, sid) or from the adversary, do the

following:
1. If H[m] = ⊥, sample a value h uniformly at random from {0, 1}κ and set H[m]← h.
2. Parse m as (s,m′).
3. If the query is made by the adversary, or if s ̸= sid, then add (s,m′, h) to the (initailly

empty) list of illegitimate queries Qs.
4. Output (eval,m, h) to the requestor.

� Observe. Upon receiving (observe, sid) from the adversary: If Qsid does not exist, set
Qsid = ∅. Output (observe,Qsid) to the adversary.

� Program. Upon receiving (program,m, h) with h ∈ {0, 1}κ from the adversary, do the
following:
1. If ∃h′ ∈ {0, 1}κ such that H[m] = h′ and h ̸= h′, ignore this input.
2. Set H[m]← h and prog← prog ∪ {m}.
3. Output (program, ok) to the adversary.

� IsProgrammed. Upon receiving (is-programmed,m) from a party (P, sid) or from the
adversary, do the following:
1. If the input was given by (P, sid), parse m as (s,m′). If s ̸= sid, ignore this input.
2. Set b← m ∈ prog and output (is-programmed, b) to the requestor.

Non-interactive zero knowledge scheme ΠNIZK. The NIZKPoK scheme that we use in this
paper are from [LR22], specifically a non-interactive, straight-line extractable (NISLE) proof system
satisfying the following three properties.

Definition 1 (Overwhelming Completeness). A NISLE proof system ΠSLC
R = (SetupH , ProveH ,

VerifyH , SimSetup, SimProve, Extract) for relation R in the random-oracle model has the over-
whelming completeness property if for any security parameter λ, any random oracle H, any (x,w) ∈
R, and any proof π ← ΠSLC

R .ProveH(x,w), Pr[ΠSLC
R .VerifyH = 1] ≥ 1− negl(λ).

Definition 2 (Non-Interactive Multiple SHVZK). A NISLE proof system ΠSLC
R = (SetupH ,

ProveH , VerifyH , SimSetup, SimProve, Extract) for relation R in the random-oracle model has
the non-interactive multiple special honestverifier zero-knowledge (NIM-SHVZK) property if for
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any security parameter λ, any random oracle H, any PPT adversary A, and a bit b
$← {0, 1},

ther exist some negligible function negl such that Pr[b′ = b] ≤ 1/2 + negl(λ), where b′ is the
result of running the game NIM-SHVZKH∗,∗

A,ΠSLC
R
(1λ, b). We say A wins the NIM-SHVZK game if

Pr[b′ = b] > 1/2 + negl(λ).

Definition 3 (Non-Interactive Special Simulation-Soundness). A NISLE proof system ΠSLC
R =

(SetupH , ProveH , VerifyH , SimSetup, SimProve, Extract) for relation R in the random-oracle model
has the non-interactive special simulation-soundness property if for any security parameter λ,
any random oracle H, any PPT adversary A, there exist some negligible function negl such that
Pr[Fail← NIM-SSS

H∗,Prog
A,ΠSLC

R
(1λ)] ≤ negl(λ).

For completeness, we also describe the security game NIM-SSS
H∗,Prog
A,ΠSLC

R
(1λ) related to the non-

interactive special simulation-soundness property of the NIZK protocol where QA are A’s queries
to the RO (details see [LR22]).

Game 1 NIM-SSSH∗,Prog
A,ΠSLC

R
(1λ)

1: L← ⊥
2: ppm, z ← ΠSLC

R .SimSetupprogL(1λ)
3: st← AHL(1λ, ppm)
4: pflist, Response← ⊥
5: while st ̸= ⊥ do
6: (Query,QA, st)← AHL(st)
7: if Query = (Prove, x, w) then
8: if R(x,w) = 1 then
9: Π← ΠSLC

R .SimProveprogL(z, x)
10: Append (x, π) to pflist

11: Set Response← (x, π)
12: end if
13: else if Query = (Challenge, x, π) then
14: if ΠSLC

R .VerifyprogL(x, π) = 1 and (x, π) ̸∈ pflist then
15: w ← ΠSLC

R .Extract(x, π,QA)
16: if R(x,w) = 0 then
17: return Fail

18: end if
19: end if
20: end if
21: end while
22: return Success

B The Extended Ledger Functionality

We provide a complete description of our ledger GFairLedger. For brevity, major revisions compared
with [BMTZ17] are marked with blue text.
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Functionality GFairLedger

General: The functionality is parametrized by four algorithms Validate, ExtendPolicy,
Blockify, and predict-time, along with two parameters windowSize, Delay, waitTime ∈ N.
The functionality manages variables state, NxtBC, buffer, τL and τ⃗state. Initially,
state← ε, NxtBC← ε, τ⃗state ← ε, buffer← ∅, τL ← 0.
For each party Pi ∈ P the functionality maintains a pointer pti (initially set to 1) and a
current-state view statei ← ε (initially set to empty). The functionality keeps track of the
timed honest-input sequence I⃗TH (initially I⃗TH ← ε).

Party management: The functionality maintains the set of registered parties P, the (sub-
)set of honest parties H ⊆ P, and the (sub-set) of de-synchronized honest parties PDS ⊂ H
(following the definition in the previous paragraph). The sets P, H, PDS are all initially set
to ∅. When a new honest party is registered at the ledger, if it is registered with the clock
already then it is added to the party sets H and P and the current time of registration is
also recorded; if the current time is τL > 0, it is also added to PDS . Similarly, when a party
is deregistered, it is removed from both P (and therefore also from PDS or H). The ledger
maintains the invariant that it is registered (as a functionality) to the clock whenever H ̸= ∅.
A party is considered fully registered if it is registered with the ledger and the clock.

Upon receiving any input I from any party or from the adversary, send
(clock-read, sidC) to GClock and upon receiving response (clock-read, sidC , τ) set τL ← τ ,
and do the following

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been registered
(continuously) since time τ ′ < τL−Delay (to both ledger and clock). Set PDS ← PDS\P̂.
On the other hand, for any synchronized party P ∈ H\PDS , if P is not registered to the
clock, then PDS ∪ {P}.

2. If I was received from an honest party Pi ∈ P:
(a) Set I⃗TH ← I⃗TH ∥ (I,Pi, τL);

(b) Compute N⃗ = (N⃗1, . . . N⃗ℓ) ← ExtendPolicy(I⃗TH , state, NxtBC, buffer, τ⃗state) and if

N⃗ ̸= ε set state← state ∥ Blockify(N⃗1) ∥ . . . ∥ Blockify(N⃗ℓ) and τ⃗state ← τ⃗state ∥ τ ℓL
where τ ℓL = τL ∥ . . . ∥ τL;

(c) For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0 then delete BTX from
buffer. Also, reset NxtBC← ε.

(d) If there exists Pj ∈ H\PDS such that |state|−ptj > windowSize or ptj < |statej |,
then set ptk ← |state| for all Pk ∈ H\PDS .

3. Depending on the input I and the ID of the sender, execute the respective code:

� Submitting a transaction:
If I = (submit, sid, tx) and is received from a party P ∈ P or from A (on behalf of a
corrupted party P) do the following:
(a) Choose a unique transaction ID txid and set BTX← (tx, txid, τL,P);
(b) If Validate(BTX, state, buffer) = true, then buffer← buffer ∪ {BTX};
(c) Send (submit, (|BTX.tx|, BTX.txid, BTX.τL, BTX.P)) to A.

� Reading the state:
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If I = (read, sid) is received from a fully registered party Pi ∈ P then set statei ←
state|min{pti,|state|} and return (read, sid, statei) to the requestor. If the requestor is

A then send (state, b̂uffer, I⃗TH) to A where b̂uffer ≜ {(|tx|, ·, ·, ·) |BTX = (tx, ·, ·, ·) ∈
buffer}.

� Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party Pi ∈ P and (af-
ter updating I⃗TH as above) predict-time(I⃗TH) = τ̂ > τL then send (clock-update, sidC)
to GClock. Else send I to A.

� The adversary proposing the next block:
If I = (next-block,hFlag, (txid1, . . . , txidℓ)) is sent from the adversary, update NxtBC
as follows:
(a) Set listOfTxid← ε;
(b) For i = 1, . . . , ℓ do: if there exists BTX = (·, txid, τL,Pi) ∈ buffer with ID txid =

txidi then set listOfTxid← listOfTxid ∥ txidi;
(c) Finally, set NxtBC← NxtBC∥ (hFlag, listOfTxid) and output (next-block, ok) to
A.

� The adversary setting state-slackness:
If I = (set-slack, (Pi1 , p̂ti1), . . . , (Piℓ , p̂tiℓ)), with {Pi1 , . . . , Piℓ} ⊆ H\PDS is received
from the adversary A do the following:
(a) If for all j ∈ [ℓ] : |state| − p̂tij ≤ 4windowSize and p̂tij ≥ |stateij |, set ptij ←

p̂tij for every j ∈ [ℓ] and return (set-slack, ok) to A;
(b) Otherwise set ptij ← |state| for all j ∈ [ℓ].

� The adversary setting the state for desychronized parties:
If I = (desync-state, (Pi1 , state

′
i1
), . . . , (Piℓ , state

′
iℓ
)), with {Pi1 , . . . ,Piℓ} ⊆ PDS

is received from the adversary A, set stateij ← state′ij for each j ∈ [ℓ] and return

(desync-state, ok) to A.

C A Full Protocol Description

We introduce the main ΠFair
Ledger protocol instance that dispatches to the relevant subprocesses. This

protocol is parameterized with the k the common prefix, R the recency parameter, m the public-
key subset size and K the profile window length. Refer to Table 1 in Appendix F for a detailed
explanation.

Protocol ΠFair
Ledger

Global Variables:
� Parameters: k,R,m,K
� Local states: r, Cloc, buffertx, bufferPB, bufferpk
Registration/Deregistration:
� Upon receiving (register,R), where R ∈ {GFairLedger,GClock,Gatt}, execute

Registration(P, sid, Reg,R).
� Upon receiving (de-register,R), where R ∈ {GFairLedger,GClock,Gatt}, execute
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Deregistration(P, sid, Reg,R).
� Upon receiving input (is-registered, sid) return (register, sid, 1) if the local registry

Reg indicates that this party has successfully completed a registration with R = GFairLedger

(and did not de-register since then). Otherwise, return (register, sid, 0).

Interacting with the Ledger: Upon receiving a ledger-specific input I ∈
{(submit, . . .), (read, . . .), (maintain-ledger, . . .)} verify first that all resources are avail-
able. If not all resources are available, then ignore the input; else (i.e., the party is operational
and time-aware) execute one of the following steps depending on the input I:
� If I = (submit, sid, tx) then invoke IssueNewTransaction(P, sid, tx).
� If I = (maintain-ledger, sid,minerID) then invoke LedgerMaintenance(Cloc,P); if

LedgerMaintenance halts then halt the protocol execution (all future input is ignored).
� If I = (read, sid) then invoke ReadState(P, sid).

Handling external calls:
� Upon receiving (clock-read, sidC) forward it to GClock and output GClock’s response.
� Upon receiving (clock-update, sidC), record that a clock-update was received in the

current round. If this protocol instance is currently only registered to the clock (and no
other functionality), then forward (clock-update, sidC) to GClock.

Registration and de-registeration. In order to participate in the protocol, parties need to
register with their resources. Algorithm 5 captures the registration procedure. Note that before
registering with the network and random oracle, parties should check if they have access to all
global functionalities.

Algorithm 5 Registration(P, sid, Reg,G)

1: if G ∈ {GClock,Gatt} then
2: Send (register, sid) to G, set registration status to registered with G, and output

the valued received by G.
3: else if G = GFairLedger then
4: if the party is not registered with GClock or Gatt or is already registered with all setup

functionalities then
5: ignore this input
6: else
7: Send (register, sid) to F∆

Diffuse and GPoWRO .
8: Output (register, sid,P) once completing the registration with all the above

resources F .
9: end if

10: end if

The de-registration procedure (Algorithm 6) is analogous to the above, where de-registering
from the ledger is simplified as dropping from the network functionality.
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Algorithm 6 Deregistration(P, sid, Reg,G)

1: if G ∈ {GClock,Gatt} then
2: Send (de-register, sid) to G, set registration status as de-registered with G, and

output the valued received by G.
3: end if
4: if G = GFairLedger then

5: Send (de-register, sid) to F∆
Diffuse, set its registration status as de-registered with

F∆
Diffuse and output (de-register, sid,P).

6: end if

The transactions issuing procedure. In order to issue a transaction tx, party P needs to encrypt
tx using a subset of on-chain public keys, computed from a ticket associated with a block in the
settled blockchain. Additionally, a NIZKPoK that proves the validity of tx and the correctness of
each ciphertext should be attached (See the relation in Equation (1)).

Algorithm 7 IssueNewTransaction(P, sid, tx)

1: h← head(C⌈kloc) and st← blockchain state associated with h
2: Spk ← all enclave public keys up to block with hash h
3: Sτpk ← fselect(Spk,m, τ) and m′ ← |Sτpk|
4: for i from 1 to m′ do
5: pki ← Sτpk[i], ri

$← {0, 1}κ
6: cti ← PKE.Enc(pki, tx, h; ri)
7: end for

▷ Generate NIZK proof.
8: π ← ΠNIZK.Prove((h, st, (ct1, . . . , ctm′), (pk1, . . . , pkm′)), (tx, (r1, . . . , rm′)))
9: buffertx ← buffertx ∥ (π, ct1, . . . , ctm′)

10: Send (diffuse, sid, (π, ct1, . . . , ctm′ , τ)) to F tx
Diffuse

Fetch information. Parties fetch information from different diffusion functionalities — Fbc
Diffuse,

Fpb
Diffuse, F

tx
Diffuse, F

pk
Diffuse— to learn the new chains, profile blocks, transactions and enclave public

keys, respectively. When receiving an encrypted transaction, they verify if it provides a valid block
ticket and whether it attaches a good NIZK proof. If the transaction verifies, bookkeep its local
receiving time.

Algorithm 8 FetchInformation(P, sid)

▷ Fetch blocks.
1: Send (fetch, sid) to Fbc

Diffuse; denote the response from Fbc
Diffuse by (fetch, sid, b).

2: Extract chains C1, . . . , Ck from b.
3: Cloc ← maxvalid(Cloc, C1, . . . , Ck)

▷ Fetch profile blocks.
4: Send (fetch, sid) to Fpb

Diffuse; denote the response from Fpb
Diffuse by (fetch, sid, b).

5: Extract profile blocks PB1, . . . ,PBk from b.
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6: Set bufferPB ← bufferPB ∥ (PB1, . . . ,PBk)
▷ Fetch enclave public keys and tickets.

7: Send (fetch, sid) to Fpk
Diffuse; denote the response from Fpk

Diffuse by (fetch, sid, b).
8: Extract all public keys pk1, . . . , pkk from b.
9: Set bufferpk ← bufferPB ∥ (pk1, . . . , pkk)

▷ Fetch encrypted transactions.
10: Send (fetch, sid) to F tx

Diffuse; denote the response from F tx
Diffuse by (fetch, sid, b).

11: Extract transactions (π1, ct1, τ1), . . . , (πk, ctk, τk) from b.
12: for i from 1 to k do
13: if τi is valid and ΠNIZK.Verify(π) = 1 and h, st ∈ π match that on Cloc then
14: buffertx ← buffertx ∥ ((πi, cti, τi), r) ◁ Bookkeep local receiving time r
15: end if
16: end for

Chain validation rules. The validation procedure (Algorithm 9) generally follows that in Bitcoin
backbone protocol, plus additionally verifying the validity and freshness of profile blocks.

For simplicity, we use validBlockT to verify if a block is a successful PoW.

validBlockT (ctr, r, h, st, h′, st′)
def
= H(ctr, r, h, st, h′, val) < T ∧ ctr < 232

Similarly, we use use validProfileT to verify if a profile block is a successful PoW by checking the
reverse of the string.

Algorithm 9 IsValidChain(C)

1: if C starts with a block other than G then return false
2: if C encodes an invalid state with isvalidstate(s⃗t) = 0 then return false
3: if C contains profile blocks with invalid content then return false
4: r′ ← r,B ← head(C), h∗ ← H(B)
5: while C ̸= ε do
6: isValid← true

▷ Check validity of block header
7: if (validBlockT (B) = false) ∨ (h∗ ̸= H(B)) ∨ (TS(B) ≥ r′) then
8: isValid← false
9: end if

▷ Check validity of profile blocks in B
10: for PB ∈ B do
11: Parse PB as ⟨·, r, ·, ·, h′, ·⟩
12: B′ ← the block in C s.t. H(B) = h′

13: if (validProfileT (PB) = false) ∨ r ≥ TS(B) then ◁ Check validity of profile header
14: isValid← false
15: end if
16: if (B′ = ε) ∨ r ≥ TS(B′) +R then ◁ Check freshness and recency
17: isValid← false
18: end if
19: end for
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20: if isValid = true then
21: r′ ← r, h∗ ← h
22: Remove the rightmost block in C
23: B ← head(C)
24: else
25: return false
26: end if
27: end while
28: return true

Longest chain selection. Parties use the same longest-chain rule (Algorithm 10) as the Bitcoin
backbone protocol to select their working chain.

Algorithm 10 maxvalid(C1, . . . , Ck)

1: Cmax ← ε
2: for i from 1 to k do
3: if IsValidChain(Ci) and len(Ci) > len(Cmax) then
4: Cmax ← Ci
5: end if
6: end for
7: return Cmax

The mining procedure. Parties use 2×1 PoW to extend the blockchain and mine new profile
blocks. If they succeed on either procedure, they diffuse the extended chain and new profile blocks
to the corresponding diffusion network.

Algorithm 11 MiningProceudre(P, sid)

▷ The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible
manner:

1: Set st ← Merkle root of profile blocks in bufferPB, decrypted transactions in buffertx
and public keys in bufferpk that are not mined in Cloc

2: Set st′ ← Merkle root of ((π1, t1, τ1), . . . , (πk, tk, τk)) where πi is a transaction that is not
settled in Cloc and ti its local receiving time

3: h← H(head(Cloc)), h′ ← H(head(C⌈kloc))
4: u← H(ctr, r, h, h′, st, st′)
5: if u < T then
6: B ← ⟨ctr, h, h′, r, st, st′⟩ and Cloc ← Cloc ∥ B
7: Send (diffuse, sid, Cloc) to Fbc

Diffuse and proceed from here upon next activation of
this procedure

8: end if
9: if [u]R < T then

10: PB← ⟨ctr, h, h′, r, st, st′⟩
11: Send (diffuse, sid,PB) to Fpb

Diffuse and proceed from here upon next activation of this
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procedure
12: end if
13: ctr ← ctr + 1

Ledger Maintenance. We group all the steps in the main ledger operation in LedgerMaintenance.

Algorithm 12 LedgerMaintenance(P, sid)

▷ The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible
manner:

1: Invoke FetchInformation(sid,P) to receive the newest messages for this round
▷ Decrypt transactions

2: for (π, ct, τ) ∈ Cloc do
3: if len(Cloc) > B + Λ where B is a block with hash h in π and pki ∈ π is miner’s

enclave public key then
4: Send (tx-dec, cti, Cloc) to Gatt and get response (tx, ct, σ)
5: Add (tx, ct, σ) to buffertx
6: end if
7: end for
8: if twork < τ then
9: Call MiningProcedure(P, sid)

10: Set twork ← τ
11: end if
12: while A (clock-update, sidC) has not been received during the current round do
13: Give up activation (set the anchor here)
14: end while
15: Send (clock-update, sidC) to GClock. ◁ Party will lose its activation here

Reading the state. Upon receiving a read command, parties extract a transaction list from
their local chain Cloc . Recall that transaction inclusion and consensus are decoupled, we first
introduce an algorithm ExtractTransactionSequence such that, taking input a chain C, converts it
to a sequence of blocks of transactions N⃗ , which are extracted using the median timestamp. Note
that N⃗ shares the same length as C.

Algorithm 13 ExtractTransactionSequence(C)

1: Initialize txList← ∅, N⃗ ← ε
▷ Extract transactin timestamps

2: for i from 1 to len(C)−K do
3: for tag = (ct, π, τ) ∈ PB ∈ Bi do
4: Set B = {Bj | i ≤ j < i+K}
5: t← med({t | (tag, t) ∈ PB ∈ B} ∪ {+∞ | tag ̸∈ PB ∈ B})
6: if t ̸= +∞ then Add (tag, t) to txList
7: end for
8: end for
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▷ Construct transaction sequence
9: for i from 1 to len(C) do

10: Set N⃗i ← ε
11: if i ≥ K + k then
12: Let ⃗tag denote the set of transaction tag s.t. the K-window of tag ends in Bi−k
13: Order ⃗tag non-decreasingly based on timestamp
14: for tag ∈ ⃗tag do
15: if there is tag′ in block Bi−k+1, . . .Bi s.t. TS(tag′) < TS(tag) then
16: N⃗i ← N⃗i ∥ ˜tag1 ∥ . . . ˜tagk ∥ tag where ˜tag1 ∥ . . . ˜tagk are tag that are in txList

with TS( ˜tagi) < TS(tag) however not in N⃗
17: end if
18: end for
19: end if
20: N⃗ ← N⃗ ∥ N⃗i

21: end for
22: return N⃗

When the decryption of a transaction tag is available, that tag is replaced with the plain
transaction. A state s⃗t is acquired by extracting a prefix of the transaction sequence N⃗ such that
all transactions are decrypted.

Algorithm 14 ReadState(P, sid)

1: Invoke FetchInformation(sid,P) to receive the newest messages for this round
2: N⃗ ← ExtractTransactionSequence(Cloc)
3: for tag = (π, ct, τ) ∈ N⃗ do
4: if there is a tx ∈ Cloc such that tx is a signed decryption for ct then
5: Replace tag with tx

6: end if
7: end for
8: Extract the state s⃗t from Blockify(N⃗ ′), where N⃗ ′ is a prefix of N⃗ up to a block such that

all transactions are decrypted

9: Output (read, sid, s⃗t
⌈k
) to Z.

D The Simulator

We present the simulator used in the UC proof of ΠFair
Ledger that securely implements the ledger

functionality GFairLedger. The main structure follows those discussed in [BMTZ17, BGK+18] but we
adapt it with fair-order extend policy and trusted hardwares.

Simulator Sledger (Part 1 - Main structure)

Overview:
� The simulator internally emulates all local UC functionalities by running the code (and
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keeping the state) of GPoWRO , Fbc
Diffuse, F tx

Diffuse and Fpb
Diffuse.

� The simulator mimics the execution of ΠFair
Ledger for each honest party Up (including their

state and the interaction with the hybrids).
� The simulator emulates a view towards the adversary A in a black-box way, i.e., by

internally running adversary A and simulating his interaction with the protocol (and
hybrids) as detailed below for each hybrid. To simplify the description, we assume A does
not violate the requirements by the wrapper W(GPoWRO ) as this would imply no interaction
between Sledger (i.e., the emulated hybrids) and A.

� For global functionalities, the simulator simply relays the messages sent from A to the
global functionalities (and returns the generated replies). Recall that the ideal world
consists of the dummy parties, the ledger functionality, the clock, and the enclave.

Party sets: An honest miner P registered to GFairLedger is assumed to be registered in all
simulated functionalities. Upon any activation, the simulator will query the current party
set from the ledger (and simulate the corresponding message they send out to the network
in the first maintain-ledger activation after registration), query all activations from honest
parties I⃗TH , and read the current clock value to learn the time. In particular, the simulator
knows which parties are honest and synchronized and which parties are de-synchronized.

Messages from the Clock: Upon receiving (clock-update, sidC , Up) from GClock, if Up is
an honest registered party, then remember that this party has received such a clock update
(and the environment gets an activation). Otherwise, send (clock-update, sidC , Up) to A.

Messages from the ledger:
� Upon receiving (submit,m, txid, τ,P) from GFairLedgerwherem denotes the transaction length,

execute IssueNewTransaction(P, τ,m) and denote response by (π, ct, τ). Forward
(diffuse, sid, (π, ct, τ)) to the simulated network F tx

Diffuse in the name of P. Output the
answer of F tx

Diffuse to the adversary.

� Upon receiving (maintain-ledger, sid,minerID) from GFairLedger, extract from I⃗TH the party
P that issued this query. If P has already completed its round-task, then ignore this
request. Otherwise, execute SimulateMining(P, τL).

Messages from the enclave: S acts as a dummy adversary and simply forward all re-
sponses from Gatt to its requestor.

Messages from the GRO GPoWRO : S acts as a dummy adversary and forward all responses
from GPoWRO to its requestor (the wrapper will stop talk to the adversarial request if all PoW
budget has been consumed).

Messages from the GRO GrpoRO: S acts as a dummy adversary and forward all responses
from GrpoRO to its requestor except that when receiving a (is-programmed,m) request,
return (is-programmed, false) if the m is previously programed by the simulaotr.

Simulator Sledger (Part 2 - Blacc-Box Interaction)

Simulation of the Network Fbc
Diffuse (over which chains are sent) towards A:

� Upon receiving (multicast, sid, (Ci1 , Ui1), . . . , (Ciℓ , Uiℓ)) with a list of chains and corre-
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sponding parties from A (or on behalf some corrupted P ∈ P), then do the following:
(a) Relay this input to the simulate network functionality and record its response to A.
(b) Execute ExtendLedgerState(τL).
(c) Provide A with the recorded output of the simulated network.

� Upon receiving (multicast, sid, C) from A on behalf of some corrupted party P, then do
the following:
(a) Relay this input to the simulate network functionality and record its response to A.
(b) Execute ExtendLedgerState(τL).
(c) Provide A with the recorded output of the simulated network.

� Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ P forward the request
to the simulated Fbc

Diffuse and return whatever is returned to A.
� Upon receiving (delays, sid, (Tmidi1

,midi1), . . . (Tmidiℓ
,midiℓ)) fromA forward the request

to the simulated Fbc
Diffuse and record the answer to A. Before giving this answer to A, query

the ledger state state and execute AdjustView(state, τL).
� Upon receiving (swap, sid,mid,mid′) from A forward the request to the simulated Fbc

Diffuse

and record the answer to A. Before giving this answer to A, query the ledger state state
and execute AdjustView(state, τL).

Simulation of the Network Ftx
Diffuse (over which transactions are sent) towards A:

� Upon receiving (multicast, sid,m) from A with list a transaction m = (π, ct, τ) from A
on behalf some corrupted P ∈ P, then do the following:
(a) If τ is a valid ticket with respect to an existing block that only contains corrupted

enclave public keys, Abort simulation: violation of good ticket (event BAD-TICKET)
(b) Extract tx from π using ΠNIZK.SimSetup, ΠNIZK.SimProve and ΠNIZK.Extract. If

extraction fails, textbfAbort simulation: violation of good NIZK (event BAD-NIZK)
(c) Submit tx to the ledger on behalf of this corrupted party, and receive for the trans-

action id txid.
(d) Forward the request to the internally simulated Ftx

Diffuse, which replies for each mes-
sage with a message-ID mid.

(e) Remember the association between mid and the corresponding txid.
(f) Provide A with whatever the network outputs.

� Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ P forward the request
to the simulated Ftx

Diffuse and return whatever is returned to A.
� Upon receiving (delays, sid, (Tmidi1

,midi1), . . . (Tmidiℓ
,midiℓ)) fromA forward the request

to the simulated Ftx
Diffuse and return whatever is returned to A.

� Upon receiving (swap, sid,mid,mid′) from A forward the request to the simulated Ftx
Diffuse

and return whatever is returned to A.

Simulation of the Network Fpb
Diffuse (Fpk

Diffuse resp.) (over which input blocks (enclave public
keys resp.) are sent) towards A:
� Upon receiving (multicast, sid,m) from A with an input block m on behalf some cor-

rupted P ∈ P, then do the following:
(a) Forward the request to the internally simulated Fpb

Diffuse (F
pk
Diffuse resp.), which replies

for each message with a message-ID mid.
(b) Remember the association between mid and the corresponding input block.
(c) Provide A with whatever the network outputs.
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� Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ P forward the request

to the simulated Fpb
Diffuse (Fpk

Diffuse resp.) and return whatever is returned to A.
� Upon receiving (delays, sid, (Tmidi1

,midi1), . . . (Tmidiℓ
,midiℓ)) fromA forward the request

to the simulated Fpb
Diffuse (Fpk

Diffuse resp.) and return whatever is returned to A.
� Upon receiving (swap, sid,mid,mid′) from A forward the request to the simulated Fpb

Diffuse

(Fpk
Diffuse resp.) and return whatever is returned to A.

Simulator Sledger (Part 3 - Internal Procedures)

1: procedure SimulateMining(P, τ)
▷ Simulate the mining procedure of P in the protocol in round τ

2: Execute FetchInformation(P, sid)
3: if UpdateP,τ then
4: Send (clock-update, sidC ,P) to A if Sledger has received such an input in round

τ
5: else
6: Execute MiningProcedure(P, sid) and set UpdateP,τ ← true
7: Before the activation goes to A, execute ExtendLedgerState(τ).
8: end if
9: end procedure

1: procedure ExtendLedgerState(τ)
2: Let N⃗ be the longest state (extracted from Cloc by ExtractTransactionSequence) among

all such states N⃗Up where Up ∈ H
3: Let N⃗L denote the sequence reconstructed from state in GFairLedger

4: if |N⃗L| > |N⃗ ⌈k| then Execute AdjustView(state)
5: if N⃗L is not a prefix of N⃗ ⌈k then
6: Abort simulation: consistency violation. ◁ Event BAD-CP
7: end if
8: Define the difference diff to be the block sequence s.t. N⃗L ∥ diff = N⃗ ⌈k.
9: Parse diff = diff1 ∥ . . . ∥ diffn.

10: for j from 1 to n do
11: Map each transaction tx in this block to its unique transaction ID txid.
12: Let listj = (txidj,1, . . . , txidj,ℓj ) be the corresponding list for this block diffj

13: if coinbase txidj,1 specifies a party honest at block creation time then
14: hFlag← 1
15: else
16: hFlag← 0
17: end if
18: Output (next-block, listj) to GFairLedger and receive (next-block, ok) as an imme-

diate answer.
19: end for
20: if Fraction of blocks with hFlag = 0 in the recent k blocks > 1− µCQ then
21: Abort simulation: chain quality violation ◁ Event BAD-CQ
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22: else if State increases less than k blocks during the last k/τCG rounds then
23: Abort simulation: chain growth violation ◁ Event BAD-CG
24: else if Honest profiles account for less than half in the last K blocks then
25: Abort simulation: profile block violation ◁ Event BAD-PROFILE
26: end if

▷ Equivocate honest transactions.
27: Send (read, sid) to GFairLedger and receive state
28: for tx ∈ state and txid corresponds to a faked transaction and equivocatetx = false

do
29: Let r1, . . . rm denote the randomenss used to generate ct1, . . . , ctm of tx (via txid)
30: for i from 1 to m do
31: Split ri into |tx| pieces and for each piece ri,j send (program, ri,j , h) such

that h⊕ cti = tx[j] to GrpoRO
32: if programming GrpoRO fails then
33: Abort simulation: failure of decryption ◁ Event BAD-DEC
34: end if
35: end for
36: Set equivocatetx ← true
37: end for
38: Execute AdjustView(state)
39: end procedure

▷ Adjust the view of synchronized parties.
1: procedure AdjustView(state, τ)
2: pointers← ε
3: for party Up ∈ H of round τ do
4: Execute ReadState(Up, sid) and let the chain’s decoded state be s⃗tUp

5: end for
6: for each synchronized party Up ∈ (H\PDS) of round τ do

7: Determine the pointers ptUp
s.t. s⃗t

⌈k
Up

= state|ptUp

8: if such a point does not exist then
9: return ◁ Call on invalid input or event BAD-CP occurred

10: end if
11: if UpdateUp,τ then
12: pointers← pointers ∥ (Up, ptUp

)
13: end if
14: end for
15: Output (set-slack, pointers) to GFairLedger

▷ Adjust the view of desynchronized parties
16: pointers← ε
17: desyncStates← ε
18: for each desynchronized party Up ∈ PDS of round τ do
19: if UpdateUp,τ = false then

20: Set ptUp
to be |s⃗t⌈kUp

|
21: pointers← pointers ∥ (Up, ptUp

)
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22: desyncStates← desyncStates ∥ (Up, s⃗t
⌈k
Up
)

23: end if
24: Output (set-slack, pointers) to GFairLedger

25: Output (desync-state, desyncStates) to GFairLedger

26: end for
27: end procedure

1: procedure IssueNewTransaction(P, τ,m) ◁ Issue dummy transactions.
2: Let C denote the simulated blockchain for party P
3: h← head(C⌈k) and st← blockchain state associated with h
4: Spk ← all enclave public keys up to block with hash h
5: Sτpk ← fselect(Spk,m, τ) and m′ ← |Sτpk|
6: if Sτpk contains only corrupted enclave keys then
7: Abort simulation: violation of good block ticket ◁ Event BAD-TICKET
8: end if
9: for i from 1 to m′ do

10: pki ← Sτpk[i], ri
$← {0, 1}κ

▷ Encrypt an all-zero string.
11: cti ← PKE.Enc(pki, 0

m ∥ h; ri) and remember ri for equivocation later
12: end for

▷ Generate fake NIZK proof, telling an all-zero string is a valid transactino.
13: π ← ΠNIZK.Prove((h, st, (ct1, . . . , ctm′), (pk1, . . . , pkm′)), (tx, (r1, . . . , rm′)))
14: return (π, ct, τ)
15: end procedure

E Mathmatical Facts

Theorem 10 (Chernoff bounds). Suppose {Xi : i ∈ [n]} are mutually independent Boolean
random variables, with Pr[Xi = 1] = p, for all i ∈ [n]. Let X =

∑n
i=1Xi and µ = pn. Then, for

any δ ∈ (0, 1], it holds that

Pr[X ≤ (1− δ)µ] ≤ e−δ
2µ/2 and Pr[X ≥ (1 + δ)µ] ≤ e−δ

2µ/3.

F Glossary

Variable Description

κ Security parameter; length of the random oracle output.

T The target to successful solve a PoW.

m
The size of enclave public key that clients should encrypt to; m =
Θ(log2 κ).

k
The common prefix parameter; k = Θ(log2 κ). When clients issue a

transaction tx, they asscoiate tx with the block on the tip of C⌈kloc.
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R The recency parameter of profile blocks.

K
The size of a window that is used to decide transaction timestamp,
counted by the number of blocks.

hr Number of RO queries made by honest parties at round r.

tr Number of RO queries made by corrupted parties at round r.

δ Advantage of honest parties (t ≤ (1− δ)h).

f
Block generation rate; the probability at least one honest party succeeds
in finding a PoW in a round.

Table 1: Main parameters of ΠFair
Ledger.
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