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Abstract. Blind signatures represent a class of cryptographic primitives
enabling privacy-preserving authentication with several applications such
as e-cash or e-voting. It is still a very active area of research, in partic-
ular in the post-quantum setting where the history of blind signatures
has been hectic. Although it started to shift very recently with the in-
troduction of a few lattice-based constructions, all of the latter give up
an important characteristic of blind signatures (size, efficiency, or secu-
rity under well-known assumptions) to achieve the others. In this paper,
we propose another design which revisits the link between the two main
procedures of blind signatures, namely issuance and showing, demon-
strating that we can significantly alleviate the second one by adapting
the former. Concretely, we show that we can harmlessly inject excess
randomness in the issuance phase, and then recycle the entropy surplus
during showing to decrease the complexity of the zero-knowledge proof
which constitutes the main component of the signature. This leads to a
blind signature scheme with small sizes, low complexity, and that still
relies on well-known lattice assumptions.
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1 Introduction

Introduced by Chaum in 1982, blind signatures [Cha82] are one of the fundamen-
tal tools of cryptography for privacy. Contrarily to standard signatures where
the signer knows the message m they sign and can trace the signature s they
generate in the process, blind signatures aim at hiding both m and s to the
signer so as to limit traceability. More precisely, a blind signature comes with
an interactive signing protocol where one can get a signature s on a message m
such that (1) validity of s can be publicly verified (as is the case with standard
signatures) and (2) the signer cannot link (s,m) to a specific issuance. The latter
property necessarily implies that m is hidden to the signer at the issuance time,
hence the term “blind signature”.

This feature might seem unwise for those who have classical signature use-
cases in mind (e.g., signing a contract) but there are some other applications
where blind signatures significantly improve privacy without jeopardizing secu-
rity. This is typically the case of electronic cash that was introduced by Chaum
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in his seminal work mentioned above. In this context, the signed “message” is
essentially a serial number of a coin whose only purpose is to facilitate double-
spending detection. For the signer (the “bank” in the e-cash terminology), the
only value that matters is the number of signatures it issues as it corresponds to
the number of minted coins, not their actual serial numbers. Blinding the latter
is then harmless to security while being essential for privacy. Similar situations
occur in other use-cases such as electronic voting [BW16], which led ISO/IEC
to standardize blind signature [ISO16].

In [Cha83], Chaum introduced a first construction which astutely leverages
the RSA signing function. It defines a 2-round protocol where the user first
transmits a blinded message c = re · H(m) mod N where N is the RSA mod-
ulus, e is the signer’s public key and r is a random element of ZN . The signer
then generates an element s′ such that (s′)e = c mod N which can be unblinded
by computing s = s′/r. Indeed, se = H(m) mod N , meaning that s is a valid
RSA signature on m. This elegant design has however a downside as no secu-
rity reduction to a standard assumption is known as of today. This led Bellare
et al. [BNPS03] to introduce a tailored interactive assumption, one-more-RSA,
where the adversary has access to an RSA inverse oracle. Thanks to this oracle,
the reduction can easily handle all the signing queries of the EUF-CMA security
experiment and then extract the “one-more” RSA inverse from the forgery. It thus
allows the reduction to succeed but the security assurances such an assumption
provides are arguably lower than those provided by a standard computational
assumption.

Another approach, based on the celebrated Schnorr identification proto-
col [Sch89], was later proposed, with several variants, some of which proved
under the discrete logarithm assumption (see [PS00] and references therein).
All these schemes inherit the 3-round approach of Schnorr’s sigma protocol and
thus require an additional interaction compared to [Cha83]. While the differ-
ence might seem insignificant at a time of widespread fast communications, the
sigma protocol approach introduces a very subtle issue when several signatures
are generated in parallel. This problem was already detected by Pointcheval and
Stern [PS00] who noticed that security can only be proven when a very low
limit is enforced on the number of concurrent executions of the protocols. Far
from being an artefact of the proof, this problem stems from a very concrete
vulnerability studied by Wagner [Wag02]. The resulting ROS attack, later im-
proved in [BLL+22] demonstrates the limits of Schnorr’s blind signature and its
variants. This has led cryptographers to favour two-round designs although we
stress that this problem is not inherent to 3-round blind signatures, only to those
following Schnorr’s blueprint.

The development of efficient zero-knowledge proof systems has led to an al-
ternative approach in the design of blind signatures which was formalized by
Fischlin [Fis06]. It essentially consists in (1) issuing a standard signature s on a
hiding commitment c to the messagem and (2) producing a zero-knowledge proof
that s is valid for the committed m. This framework actually shares many com-
monalities with the ones of other privacy-preserving primitives such as group
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signature [CvH91,BMW03], direct anonymous attestation [BCC04] or anony-
mous credentials [CL01] and it is thus natural that all these mechanisms can be
implemented with the same building blocks, namely zero-knowledge proofs and
so-called signatures with efficient protocols (SEP) [CL02,CL04,BB08,PS16].

Unsurprisingly, the development of post-quantum blind signatures has proved
harder. To our knowledge, the first construction was proposed by Ruckert [Rüc10],
and was later improved in [ABB20,BCE+20]. These schemes were based on
Lyubashevsky’s identification protocol [Lyu08] which can somehow be seen as
the lattice counterpart of Schnorr’s protocol. As a consequence, they inherit the
limited number of allowed parallel issuances. Worse, these constructions were
proven unsafe by Hauck et al. [HKLN20] who pointed out errors in their secu-
rity proofs and even attacks for some of them. In the same paper, the authors
proposed a sound construction but with poor performance as blind signatures
are 7.73 MB long even when the total number of signatures is limited to 7.

In [AKSY22], the authors propose an interesting mix between the original
construction of Chaum and the framework of Fischlin. Concretely, the user first
generates a commitment c = Ar+H(m) which is inverted by the signer who gen-
erates a short s such that Cs = c (A and C are public elements and r is a short
random vector). A proof of knowledge of s is then produced, as in [Fis06]. The
first step of the protocol can thus be seen as a transposition of Chaum’s approach
in the lattice setting, where H(m) is blinded using Ar (instead of re) and then
inverted. Unfortunately, it leads to the same problem as in [Cha83]: the reduction
is unable to answer signing queries as it does not know any trapdoor for C in the
security game. This led [AKSY22] to resort to the same trick as in [BNPS03],
namely introduce a tailored interactive assumption called one-more-ISIS. The
nice performance of [AKSY22] comes thus at the cost of a heuristic security.

In [dPK22], del Pino and Katsumata circumvent this problem by using the
commitment to the message as a tag in a tag-based trapdoor system akin
to [MP12]. Thanks to this solution, they were able to prove security of their
construction under standard assumptions but at the cost of larger signatures
(about 100 KB per blind signature).

Very recently, Beullens et al. [BLNS23a] revisited the first part of the con-
struction in [AKSY22] by generating the commitment c as Ar + H(H(r),m).
This apparently simple modification allows to prove security of the resulting con-
struction under standard assumptions while offering a very attractive signature
size (22 KB). Unfortunately, the issuance process requires a proof that c is well-
formed, which is not easy to produce given its reliance on hash functions. The
authors suggest to use general purpose NIZKs but the latter are very complex to
implement and are very long to generate (about 20 seconds per proof according
to the authors’ estimation), which is likely to affect users’ experience.

Overall, when looking at the most advanced post-quantum blind signature
schemes from the state-of-the-art, one must then choose between an efficient
construction with heuristic security [AKSY22], a short and secure blind signature
but with an impractical issuance process [BLNS23a] and a secure construction
with larger signatures [dPK22]. As also highlighted in the context of e-cash in
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a project by the Swiss national bank [HB23], there is a need for future research
and development on post-quantum blind signatures.

1.1 Our Contributions

In this paper, we introduce a new lattice-based blind signature construction
which is both efficient and proven secure under standard assumptions. In partic-
ular, it comes with practical issuance and verification protocols, as demonstrated
by our implementation, and our signatures sizes are slightly smaller than those
in [AKSY22], namely 40 KB.

Our starting point is the first step of 2-round blind signature issuance proto-
cols. We note that, for all of them, it consists in generating some commitment c to
the (hashed) message H(m) blinded with some mask depending on a random ele-
ment r. In the context of cyclic or RSA groups, this mask can usually be removed
at the end of the process as illustrated by Chaum’s protocol [Cha83] or the ones
we could build using some SEP schemes (e.g., [PS16]). In such a case, r does not
affect the size of the blind signature and this approach therefore seems almost op-
timal. This is no longer true for lattice constructions [AKSY22,dPK22,BLNS23a]
which must carry this randomness into the signature where it is included in the
witnesses of the NIZK proof. Although the performance of lattice zero-knowledge
proofs have significantly improved over the past few years, as illustrated by the
powerful framework of [LNP22], the complexity of the latter is still impacted
by (1) the dimension of the witnesses vector and (2) the size of the witnesses
as larger witnesses requires larger masks and in turn a larger modulus. As a
consequence, the papers above naturally choose the minimal parameters for r so
as to ensure concealment of H(m) (through a mask Ar) while minimizing the
impact on the proof size.

In this paper, we take the opposite view. We choose a dimension and param-
eters for r which are much larger than what is necessary to hide H(m) in the
issuance process, but then recycle the remaining entropy to directly mask large
parts of the preimage s so as to reduce the whole witness size in the NIZK proof.
As we will explain, we can design our protocol in such a way that the negative
impact of larger r is largely offset by the positive impact of smaller NIZK proofs.

Let us consider the following basic blind signature scheme where the user first
blinds the message H(m) by computing a commitment c = Ar + dH(m) (for
some public d) and then obtain a short s′ from the signer such that Cs′ = c for
a public matrix C. Our first remark is that, by enforcing mild requirements on
C, one can set A = C without jeopardizing blindness. In such a case, we usually
end up with a vector r of higher dimension (because A has generally less columns
than C) but we can then merge s′ and r since we now have A(s′− r) = dH(m).
At this stage, compared to the classical approach, we thus only need a proof
of knowledge of a unique vector (s′ − r) instead of two vectors s′ and r, which
already reduces the proof size.

However, when we look at the new relation A(s′−r) = dH(m), we can make
the following comments. The first one is that the size of r moderately impacts
the one of s = (s′ − r) as long as the coefficients of r remain smaller than those
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of s′. In other words, trying to make r as small as possible has only very limited
impacts on the resulting vector s. The second one is that our approach leads r to
play two roles. As in previous post-quantum blind signatures schemes, it is still
the key to blind m. But now, it also acts as some perturbation of the preimage
s′ which is very much akin to the one used in the preimage sampling process
of [MP12]. While we cannot use the convolution results of [Pei10] to conclude
in our case, we can still recycle a large part of the entropy of r to blind parts
of s′. More precisely, we show in our paper that we can fully disclose the lower
part (i.e., the lower bits) of each element in s as they are perfectly blinded by
the remaining entropy of r. It thus only remains to hide the higher part of s in
a zero-knowledge proof whose size is significantly smaller than the one of the
classical approach where the whole vector s would have been hidden. Obviously
the amount of bits of s we can safely leak directly depends on the size of r
but, as mentioned in our first remark, we can harmlessly increase the latter as
long as we remain under a reasonable threshold. In other words, we rely on the
somewhat counter-intuitive reasoning : the more we increase r, the smaller is
our blind signature.

If we were to rely on an interactive argument, such as one-more-ISIS, we
could prove security with only a few tweaks. Indeed, we would leverage the
oracle to handle signing queries and would extract the one-more-ISIS solution
from the forgery. However, as we restrict ourselves to standard assumptions we
need to adapt our protocol. To handle signing queries, we will resort to tag-based
pre-image sampling as in [MP12], which has a very important consequence for
our construction. Indeed, instead of using the same matrix A for all issuances,
we will use a matrix At which is parametrised by a tag t which evolves across
issuances. Fortunately, t can be efficiently hidden in the zero-knowledge proof as
illustrated in e.g. [dPLS18,LNPS21,JRS23,AGJ+24] but as the commitment c =
Atr+dH(m) now depends on it, t must be either transmitted by the signer to the
user in a prior flow or selected by the user. We show that both options are possible
but they lead to different variants with specific features. Concretely, the first
option is conceptually the simplest one and yields the shortest blind signatures
but it technically makes our protocol 3-round. While this is not ideal, we stress
that this does not expose us to the ROS attack due to the very different structure
of our protocol. Moreover, contrarily to the Schnorr-style approach, this extra
round does not require to store secret values on the signer side in preparation for
the third round (as the used tag t can be made public), which facilitates state
management. Nevertheless, we show for completeness in Section 6 that we can
make our construction 2-round using the second approach which allows the user
to select his own tag. This variant obviously removes this additional round but
requires to implement safeguards to prevent a malicious user from selecting the
same tag twice. For example, this can be done by maintaining a set of used tags
on the signer side (and rejecting new requests associated with a tag in this list)
or by deriving deterministically this tag using a hash function evaluated on some
public information, when available. In all cases, it requires to work with a larger
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tag space (to avoid incidental collisions), which in turns affects the structure of
At (to limit the reduction loss) and hence the system complexity.

Our blind signature then essentially consists in one vector s whose lower bits
can be safely disclosed and whose higher bits are concealed in a zero-knowledge
proof. Limiting to a minimum the size of the witness is the key to the performance
of the system, leading to a blind signature size of only 40.47 KB when plugged
in the framework by [AGJ+24] which provides all the necessary tools (tag-based
pre-image sampling and ZK proofs) for our construction. In addition to achiev-
ing such compact sizes while being based on well-known lattice assumptions, our
scheme is also reasonably efficient. We provide a proof-of-concept implementa-
tion in C1 which showcases a concrete practicality. To our knowledge, this is the
first implementation of lattice-based blind signatures. In particular, we achieve
a reasonably fast issuance proof (the most computationally intensive part of
issuance) of only 720ms with a not yet optimized implementation, which is or-
ders of magnitude more efficient than when relying on general-purpose NIZKs
as required by [BLNS23a].

2 Preliminaries

In this paper, for two integers a ≤ b, we define [a, b] = {k ∈ Z : a ≤ k ≤ b}. When
a = 1, we simply use [b] instead of [1, b]. Further, q is a positive integer, and
we define Zq = Z/qZ. We may identify the latter with the set of representatives
(−q/2, q/2] ∩ Z. Vectors are written in bold lowercase letters a and matrices
in bold uppercase letters A. The transpose of a matrix A is denoted by AT .
The identity matrix of dimension d is denoted by Id. We use ∥·∥p to denote
the ℓp norm of Rd, i.e., ∥a∥p = (

∑
i∈[d]|ai|

p
)1/p for any positive integer p, and

∥a∥∞ = maxi∈[d]|ai|. We also define the spectral norm of a matrix A by ∥A∥2 =
maxx ̸=0∥Ax∥2/∥x∥2.

2.1 Algebraic Number Theory

We now give the necessary notions in algebraic number theory. A more complete
background can be found in Appendix A.1.1. We present our results over a power-
of-two cyclotomic ring. We take n a power of two and let R = Z[x]/⟨xn + 1⟩ be
the power-of-two cyclotomic ring of degree n. We also define Rq = Zq[x]/⟨xn+1⟩
for any modulus q ≥ 2. We sometimes use real-valued polynomials and consider
elements in KR = R[x]/⟨xn + 1⟩.

We use τ to denote the coefficient embedding, i.e., for all a =
∑

i∈[0,n−1] aix
i ∈

R, τ(a) = [a0| . . . |an−1]
T . We sometimes use τi(a) = ai to be the projection of

τ(a) onto the i-th component. We also denote by Mτ the multiplication matrix
map, defined by the relation τ(ab) = Mτ (a)τ(b). In power-of-two cyclotomic
fields, this corresponds to the usual nega-circulant matrix featuring the coef-
ficients of a. Then, the conjugate is defined by a∗ = a(x−1). These notations
1 https://github.com/latticeblindsignature/lattice-blind-signature
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are extended to vectors and matrices entry-wise, except that the conjugate of
a matrix actually corresponds to the conjugate transpose. For an integer η, we
define Sη = τ−1([−η, η]n), S̃η = τ−1([−η, η−1]n) and Tη = τ−1([0, η]n). We also
define the usual vector norms ∥·∥p over R by ∥r∥p := ∥τ(r)∥p, and the spectral
norm ∥A∥2 by ∥Mτ (A)∥2.

2.2 Lattices

A full-rank lattice L of rank d is a discrete subgroup of (Rd,+). The dual lattice
of L is defined by L∗ = {x ∈ SpanR(L) : ∀y ∈ L,xTy ∈ Z}. A lattice over Rd

is identified with the lattice corresponding to its embedding into Rnd. For any
A ∈ Rd×m

q , we define the lattice L⊥
q (A) = {x ∈ Rm : Ax = 0 mod qR}, while

for any u ∈ Rd
q , we similarly define Lu

q (A) = {x ∈ Rm : Ax = u mod qR}.

2.3 Probabilities

For a finite set S, we define |S| to be its cardinality, and U(S) to be the uniform
probability distribution over S. We also let ψη be the centered binomial distri-
bution of parameter η ∈ N \ {0} defined by the distribution of

∑
i∈[η] ai − bi for

a1, b1, . . . , aη, bη independently drawn from U({0, 1}). We then use Bη to denote
the distribution over R whose coefficients follow ψη, i.e., τ−1(ψn

η ). We use x←↩ P
to note the action of sampling x ∈ S according to the probability distribution
P. In contrast, we use x ∼ P when the random variable x follows P.
Probabilistic Norm Bounds. The preimage sampler of [AGJ+24], which is
an instantiation of [MP12], requires a bound a priori on the spectral norm of the
secret trapdoor R. We use the following heurisitically verified bound, used in
a variety of works in the structured case, e.g. [MP12,GMPW20,LNP22]. Addi-
tionally, the security proof requires bounding projections Rm. For that we use
the following heuristic Johnson-Lindenstrauss-like bound which is empirically
verified.

Lemma 2.1 ([AGJ+24, Lem. 2.2 & 2.4]). Let R = Z[x]/⟨xn + 1⟩ with n
a power-of-two. Let d,m be two positive integers. It (heuristically) holds that
PR∼Bd×m

1
[∥R∥2 ≤

7
10 (
√
d +
√
m + 6)] = 1/O(1) (in particular non-negligible).

Also, for an arbitrary m ∈ Rm, it heuristically holds that PR∼Bd×m
1

[∥Rm∥2 ≤
1√
2

√
nd∥m∥2] = 1/C with C = O(1) (in particular non-negligible).

Gaussian Measures. For a center c ∈ Rd and positive definite S ∈ Rd×d, we
define the Gaussian function ρ√S,c : x ∈ Rd 7→ exp(−π(x− c)TS−1(x− c)). For
a countable set A ⊆ Rd, we define the discrete Gaussian distribution DA,

√
S,c

of support A, covariance S and center c by its density DA,
√
S,c : x ∈ A 7→

ρ√S,c(x)/ρ
√
S,c(A), where ρ√S,c(A) =

∑
x∈A ρ

√
S,c(x). When c = 0, we omit it

from the notations. When S = s2Id, we use s as subscript instead of
√
S.

For c ∈ Kd
R and a positive definite matrix S ∈ Rnd×nd, we define the dis-

crete Gaussian distribution over Rd by τ−1(Dτ(Rd),
√
S,τ(c)), which we denote by
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DR,
√
S,c. Since τ(Rd) = Znd, the distribution corresponds to sampling an integer

vector according to DZnd,
√
S,τ(c) which thus defines a vector of Rd via τ−1. As

coined by Micciancio and Regev [MR07], we define the smoothing parameter of
a lattice L, parameterized by ε > 0, by ηε(L) = inf{s > 0 : ρ1/s(L∗) = 1 + ε}.

We first need a Gaussian regularity lemma from [GPV08, Lem. 5.2] gener-
alized to non-spherical distributions. We state it over rings for coherence but it
also applies to the integers.

Lemma 2.2 ([GPV08, Lem. 5.2] adapted). Let d,m, q be positive integers,
and A ∈ Rd×m

q such that ARm
q = Rd

q . Then, let ε ∈ (0, 1) and S ∈ Rnm×nm

such that S − ηε(L⊥
q (A))2Inm is positive semi-definite. We finally define P =

ADRm,
√
S mod qR. It holds that ∀x ∈ Rd

q ,P(x) ∈ [(1− ε)/(1 + ε), 1 + ε]q−nd.

We now give the standard discrete Gaussian tail bound from [Ban93]. Notice
that when c = 0, the smoothing requirement s ≥ ηε(L) in the following is not
needed.

Lemma 2.3 ([Ban93, Lem. 1.5]). Let L ⊂ Rd be a lattice of rank d, and
s > 0. Then, for all c > 1/

√
2π, we have

Px∼DL,s

[
∥x∥2 > cs

√
d
]
<
(
c
√
2πee−πc2

)d
.

We use cd to denote the smallest c > 1/
√
2π such that (c

√
2πee−πc2)d ≤

2−(λ+O(1)), where λ is the implicit security parameter.
Our scheme leverages the elliptic sampler SamplePre of [AGJ+24, Alg. 3.2]

which corresponds to the sampler of [MP12] producing an elliptical distribution
with two widths s1, s2 instead of a spherical one. Concretely, SamplePre takes a
trapdoor R, the matrix A′ defining the first block A = [Id|A′], a syndrome u to
invert, a tag matrix T ∈ GLd(Rq), and two Gaussian widths s1, s2 for the top
and bottom parts. It then outputs a sample that is close to DLu

q ([A|TG−AR]),
√
S

with S = diag(s21I2d, s
2
2Ikd). They provide a detailed security analysis and instan-

tiation of the latter. The security proof of our blind signature relies in particular
on the recent trapdoor switching argument proposed in [AGJ+24], which we
recall here. It is based on the structure of the trapdoors of [MP12] and argues
that one can extend the matrix to embed a partial trapdoor slot and change the
sampling method unbeknownst to the adversary. This lemma is essential in the
public key simulation step for the security of standard model signatures based
on such trapdoors.

Lemma 2.4 ([AGJ+24, Lem. 4.1]). Let d, q, k be positive integers, b = ⌈q1/k⌉.
Let ε ∈ (0, 1/4) and sG ≥ ηε(Zndk)

√
b2 + 1. Then let A′ ∈ Rd×d

q , A = [Id|A′],
(Rj)j∈[d+1] ∈ (R2d×k)d+1, and the partial gadget matrices (Gj)j∈[d] = (ej ⊗
[1|b| . . . |bk−1])j ∈ (Rd×k)d. Let (tj)j∈[d+1] ∈ (R×

q )
d+1. Let i ∈ [d]. We define

G = [G1| . . . |Gd], R = [R1| . . . |Rd] and R−i the matrix where the block Ri

in R has been replaced by Rd+1. We also call T = diag(t1, . . . , td) and T−i the
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matrix T where the i-th diagonal entry is replaced by td+1. Let s1, s2 be two
positive reals such that s1 ≥

√
2s4G/(s

2
G − 1) · max(∥R∥2, ∥R−i∥2) and s2 ≥√

2s2G + ηε(Znd(2+k))2. Finally, fix u ∈ Rd
q .

We call A the matrix [A|TG − AR|td+1Gi − ARd+1] mod qR for clarity,
and then define the following distributions.

P1
Sample v3 ←↩ DRk,s2

, (v1,v2)← SamplePre(R,A′,u−(td+1Gi−ARd+1)v3 mod
qR,T, s1, s2) and output (v1,v2,v3).

P2

Sample v2,i ←↩ DRk,s2
, (v1, (v2,1, . . . ,v2,i−1,v3,v2,i+1, . . . ,v2,d)) ←

SamplePre(R−i,A
′,u − (tiGi − ARi)v2,i mod qR,T−i, s1, s2), define and

output (v1, (v2,j)j∈[d],v3).

It holds that ∀v ∈ Lu
q (A),P1(v) ∈ [δ−1, δ] · P2(v), where

δ =

(
1 + ε

1− ε

)12d(n−1)+5(
1 + ε/ndk

1− ε/ndk

)2ndk

∼
ε→0

1 + 2(12d(n− 1) + 7)ε

Rejection Sampling. Our security proof relies on a rejection sampling argu-
ment proven in [LNS21].

Lemma 2.5 ([LNS21, Lem. 3.2]). Let d be a positive integer, and S ⊂ Rd

a set of vectors of Euclidean norm at most T > 0. Let DS be a distribution
over S. Let M > 1, α =

√
π/ lnM and s ≥ αT . We then define the following

distributions.

P1

Sample s ←↩ DS, y ←↩ DRd,s and set z = y + v. Then, sample u ←↩ U([0, 1)).
If ⟨τ(z) , τ(s)⟩ < 0 or if u > 1

M
exp(π(∥τ(s)∥22 − 2⟨τ(z) , τ(s)⟩)/s2), output ⊥.

Otherwise, output (s, z).

P2
Sample s←↩ DS, and z←↩ DRd,s. Then, sample u←↩ U([0, 1)). If ⟨τ(z) , τ(s)⟩ < 0
or if u > 1

M
, output ⊥. Otherwise, output (s, z).

Conditioned on not aborting, it holds that P1 and P2 are identical.

2.4 High and Low Decomposition

Our blind signature scheme relies on decomposing some vectors into low order
bits and high order bits, so as to only hide the high part. For that, we use the
decomposition functions from [CCD+23] but tweaked to meet the requirements
of our system. We consider b to be a power of two.

Algorithm 2.1: High(x, b)
return 2⌊x/2b⌋+ 1

Algorithm 2.2: Low(x, b)

return x− b · High(x, b)

Algorithm 2.3: Decompose(x, b)
return (xH , xL) = (High(x, b), Low(x, b)) ▷ Verifies xL + bxH = x

To prove the security of our scheme, we need the following two lemmas related
to the low and high order distribution of a uniform variable.
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Lemma 2.6. Let b be a power of two. It holds that Low(U([−2b, 2b − 1]), b) =
U([−b, b− 1]) and High(U([−2b, 2b− 1]), b) = U({−1, 1}). Additionally, it holds
that U([−b, b− 1]) + b · U({−1, 1}) = U([−2b, 2b− 1]).

Proof. Let x be in [−2b, 2b− 1]. If x ∈ [−2b,−1], then we have High(x, b) = −1
which implies that Low(x, b) = x+ b. If x ∈ [0, 2b− 1], then High(x, b) = 1 which
implies that Low(x, b) = x− b.

We thus directly get that High(U([−2b, 2b − 1]), b) = U({−1, 1}) as both
1 and −1 happen with probability 2b/4b = 1/2. Also, from the expressions of
Low(·, b) on each interval, we deduce that for x′ ∈ [−b, b− 1] it holds

Px∼U([−2b,2b−1])[Low(x, b) = x′] = P[x+ b = x′ ∧ x < 0] + P[x− b = x′ ∧ x ≥ 0]

= P[x = x′ − b] + P[x = x′ + b]

= 1/2b

As a result Low(U([−2b, 2b−1]), b) = U([−b, b−1]). Next, consider x ∼ U([−b, b−
1]), y ∼ U({−1, 1}) and define z = x + by. Then z takes values in [−2b, 2b − 1]
and for all possible outcome z′, we have

Pz[z = z′] =
1

2
Px[x = z′ + b] +

1

2
Px[x = z′ − b]

=
1

4b
(1(z′ + b ∈ [−b, b− 1]) + 1(z′ − b ∈ [−b, b− 1]))

=
1

4b
,

where the last equality comes from the fact that z′ + b and z′ − b are distant by
2b and thus cannot be in [−b, b−1] simultaneously, but because z′ ∈ [−2b, 2b−1]
at least one of them is.

The motivation for this decomposition is to (1) minimize the size of x, while
(2) still having independent low and high part when x is uniform, and (3) still
have enough entropy in the high bits. The latter two points will be essential
for proving security of our construction. Another property we need from our
decomposition is the invariance of the uniform distribution by shift, which we
state in the following.

Lemma 2.7. Let b be a power of two. It holds that for any y ∈ Z, Low(y +
U([−b, b− 1]), b) = U([−b, b− 1]).

Proof. We define yH = High(y, b) and yL = Low(y, b). For any x ∈ [−b, b − 1],
we have that ⌊y/2b⌋ − 1/2 ≤ (x + y)/2b ≤ ⌊y/2b⌋ + 3/2. As a result, we have
High(x+ y, b) ∈ {yH − 2, yH , yH +2} and thus Low(x+ y, b) ∈ {x+ yL +2b, x+
yL, x+ yL − 2b}. Hence, for x′ ∈ [−b, b− 1], it holds that

Px∼U([−b,b−1])[Low(x+ y, b) = x′] = Px∼U([−b,b−1])[x ∈ S]],

with S = {x′ − yL − 2b, x′ − yL, x′ − yL + 2b} ∩ [−b, b − 1]. Because x′, yL ∈
[−b, b − 1], we always have |S| = 1. Indeed, −2b + 1 ≤ x′ − yL ≤ 2b − 1. So

10



if we assume towards contradiction that S = ∅, it directly means that either
−2b+1 ≤ x′−yL ≤ −b−1 in which case x′−yL+2b ∈ S, or b ≤ x′−yL ≤ 2b−1
in which case x′ − yL − 2b ∈ S. Either way, we get a contradiction proving that
|S| ≥ 1. Then, if we assume that S contains two distinct elements A ̸= B, it holds
that |A−B| ≥ 2b. As a result, both A and B cannot be in S simultaneously,
which proves that |S| ≤ 1. In the end, because |S| = 1, it holds that

Px∼U([−b,b−1])[Low(x+ y, b) = x′] =
1

2b
,

thus proving that Low(y + U([−b, b− 1]), b) = U([−b, b− 1]).

2.5 Hardness Assumptions

The security of our blind signature is based on the Module Learning With Er-
rors (M-LWE) and Module Short Integer Solution (M-SIS) problems [LS15]. We
consider both problems in their Hermite Normal Form, i.e., we use the same
distribution for the M-LWE secret and error, and we specify the identity in the
M-SIS matrix.

Definition 2.1 (M-LWE). Let R = Z[x]/⟨xn + 1⟩ with n a power-of-two. Let
d,m, k, q be positive integers and Dr a distribution on R. The Module Learn-
ing With Errors problem M-LWEk

n,d,m,q,Dr
asks to distinguish between the fol-

lowing distributions: (1) (A′, [Im|A′]R mod qR), where A′ ∼ U(Rm×d
q ) and

R ∼ Dd+m×k
r , and (2) (A′,B), where A′ ∼ U(Rm×d

q ) and B ∼ U(Rm×k
q ).

The advantage of a PPT adversary A against M-LWEk
n,d,m,q,Dr

is

AdvM-LWE[A] = |P [A(A′, [Im|A′]R) = 1]− P [A(A′,B) = 1]|,

When the parameters are clear from the context, we define the hardness
bound as εM-LWE = supA PPT AdvM-LWE[A]. Additionally, a standard hybrid
argument shows that M-LWEk

n,d,m,q,Dr
is at least as hard as M-LWE1

n,d,m,q,Dr

at the expense of a loss factor k in the reduction.

Definition 2.2 (M-SIS). Let R = Z[x]/⟨xn + 1⟩ with n a power-of-two. Let
d,m, q be positive integers and β > 0 with m > d. The Module Short In-
teger Solution problem in Hermite Normal Form M-SISn,d,m,q,β asks to find
x ∈ L⊥

q ([Id|A′]) \ {0} such that ∥x∥2 ≤ β, given A′ ←↩ U(Rd×m−d
q ).

The advantage of a probabilistic polynomial-time (PPT) adversary A against
M-SISn,d,m,q,β is defined by

AdvM-SIS[A] = P [[Id|A′]x = 0 mod qR ∧ 0 < ∥x∥2 ≤ β : x← A(A′)] ,

where the probability is over the randomness of A′ and the random coins of A.
When the parameters are clear from the context, we define the hardness bound
as εM-SIS = supA PPT AdvM-SIS[A]. We now present the M-LWE problem in its
multiple secrets variant which we use throughout the paper.
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2.6 Blind Signatures

Blind signatures extend the standard notion of digital signatures by requiring a
blindness property which prevents the signer from tracing a presented signature
to a specific issuance. This blindness logically affects the signing process as the
signed message must be concealed but also the unforgeability notion as the signer
can only keep track of the number of signed messages, not their actual content.

We use the definition and security properties from [JLO97] that we recall
below. A blind signature is a collection of three algorithms Setup, KeyGen, Verify
and an interactive protocol Sign between a signer and a user. The Setup algo-
rithms takes as input a security parameter λ and outputs the public parameters
of the system pp. Then, the KeyGen algorithms uses pp and generates a pair of
keys (pk, sk) for the signer. A user can then interact in Sign with a signer holding
sk to sign a message m. In the end, the user gets back a signature sig and the
signer gets no output. Finally, the Verify algorithm takes as input pp, pk as well
as the message-signature pair (m, sig) and outputs 1 if the blind signature is
valid, and 0 otherwise.

From the security perspective, we expect a blind signature scheme to be
correct, one-more unforgeable and blind. We define these notions precisely here
in accordance with [JLO97]. We note that in the blindness game, the adversary
may choose the public parameters and keys maliciously.

Definition 2.3 (Correctness). A blind signature (Setup,KeyGen,Sign,Verify)
is correct if for any λ, pp← Setup(1λ), (pk, sk)← KeyGen(pp), message m and
signature sig outputted to U in the execution of Sign⟨S(pp, pk, sk), U(pp, pk,m)⟩,
it holds that Verify(pk,m, sig, pp) = 1 with probability 1− negl(λ).

Definition 2.4 (One-More Unforgeability). Let (Setup,KeyGen,Sign,Verify)
define a blind signature. We define the following game.

Challenger C Adversary A

pp← Setup(1λ)
(pk, sk)← KeyGen(pp) pp, pk

(⊥, sigi)← Sign⟨C(pp, pk, sk),A(pp, pk,mi)⟩
Choose mi

Choose
(m⋆

i , sig
⋆
i )i∈[Q+1]

(m⋆
i , sig

⋆
i )i∈[Q+1]

A wins if ∀i ̸= j,m⋆
i ̸= m⋆

j

and ∀i,Verify(pk,m⋆
i , sig

⋆
i , pp) = 1

Blind Signature Queries (at most Q)

The advantage of the adversary A is its probability of winning the above
game, that is

AdvOM-UF[A] = P[∀i ∈ [Q+ 1],Verify(pk,m⋆
i , sig

⋆
i , pp) = 1 ∧ ∀i ̸= j,m⋆

i ̸= m⋆
j ]
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We say that the blind signature is one-more unforgeable if the advantage of any
probabilistic polynomial-time adversary A is negligible in λ.

Definition 2.5 (Blindness). Let (Setup,KeyGen,Sign,Verify) define a blind sig-
nature scheme. We define the following game.

Challenger C Adversary A

Choose pp, pk, sk,m0,m1

pp, pk,m0,m1

ρ←↩ U({0, 1})
(⊥, sig0)← Sign⟨A(pp, pk, sk), C(pp, pk,mρ)⟩

(⊥, sig1)← Sign⟨A(pp, pk, sk), C(pp, pk,m1−ρ)⟩
sig0, sig1

Choose ρ⋆ ∈ {0, 1}ρ⋆

A wins if ρ⋆ = ρ

The advantage of the adversary A is AdvBlind[A] = |P[ρ⋆ = ρ]− 1/2|. We say
that the blind signature satisfies blindness if the advantage of any probabilistic
polynomial-time adversary A is negligible in λ.

3 Blind Signature from Lattices

We now introduce our new blind signature scheme. It requires a variety of tools
that we choose so as to leverage synergies. More precisely, we need a commit-
ment, a public key encryption, a signature that interfaces to sign commitments,
and zero-knowledge proof systems. Most of these tools are provided in the recent
framework of signatures with efficient protocols from [AGJ+24], which internally
uses a concrete instantiation of the Micciancio-Peikert sampler [MP12], and the
zero-knowledge proof system of [LNP22]. Our scheme also embarks the proof sys-
tem optimizations from [LNP22, Sec. 4.4, App. A] and [LN22, Sec. 3]. Although
the authors of [AGJ+24] use a simple Ajtai commitment from part of the sig-
nature matrix, which could be used in our case as well, we aim at salvaging the
commitment randomness to blind part of the signature to minimize the amount
of secret data in the zero-knowledge proof. As mentioned in the introduction,
we thus use the full signature matrix At = [A|tG−B|A3] for the commitment.
Finally, the encryption mechanism only has a detection role in most blind signa-
ture constructions. As such, we do not need it to interact with the signature per
se, but the encryption circuit must be provable in zero-knowledge, while mini-
mizing the witness size to keep proofs short. For that we use a module version
of Regev’s encryption scheme [Reg09].

13



3.1 The Construction

Algorithm 3.1: BS.Setup
Input: Security parameter λ.

1. Choose a positive integer d.
2. Choose an odd prime q s.t. q = 5 mod 8.
3. Choose positive integer w. ▷ Hamming weight of tags
4. Choose positive integer b. ▷ Gadget base
5. Choose positive integers b1, b2. ▷ Decomposition bases
6. Tw ← {t ∈ T1 : ∥t∥1 = w}. ▷ Tag space
7. k ← ⌈logb q⌉.
8. G = Id ⊗ [1 · · · bk−1] ∈ Rd×dk

q . ▷ Gadget matrix

9. r ←
√

ln(2nd(2 + k)(1 + ε−1))/π. ▷ r ≳ ηε(Znd(2+k))

10. sG ← r
√
b2 + 1. ▷ Gadget sampling width

11. s1 ← max

(√
π

ln(2)
(n
√
d+ 2b1

√
2nd),

√
2s4

G

s2
G

−1
· 7
10
(
√
2nd+

√
ndk + 6)

)
. ▷ Top

preimage width

12. s2 ← max(r
√
2b2 + 3,

√
π

ln(2)
b2
√

nk(d+ 1)). ▷ Bottom preimage width

13. α1 ← s1
n
√

d+2b1
√
2nd

▷ Rejection sampling slack

14. α2 ← s2

b2
√

nk(d+1)

15. Mi ← exp(π/α2
i ) for i ∈ [2].

16. seed←↩ U({0, 1}256)
17. d← H(seed, domain_separator1). ▷ follows U(Rd

q )

18. A′ ← H(seed, domain_separator2). ▷ follows U(Rd×d
q )

19. A3 ← H(seed, domain_separator3). ▷ follows U(Rd×k
q )

20. u← H(seed, domain_separator4). ▷ follows U(Rd
q )

21. A← [Id|A′] ∈ Rd×2d
q .

Verifiable Encryption.
22. Choose a prime p ̸= q ▷ Verifiable encryption modulus
23. Choose positive integers me, de, ηe ▷ Verifiable encryption parameters
24. Ae ← H(seed, domain_separator5). ▷ follows U(Rme×de

p )

25. be ← H(seed, domain_separator6). ▷ follows U(Rme
p )

Output: pp = (λ, n, d, q, w, b, k, r, sG, s1, s2, α1, α2,M1,M2, seed).

Algorithm 3.2: BS.KeyGen
Input: Public parameters pp as in Algorithm 3.1.

1. R←↩ B2d×dk
1 conditioned on ∥R∥2 ≤

7
10
(
√
2nd+

√
ndk + 6).

2. B← AR mod qR ∈ Rd×dk
q .

Output: pk = B, and sk = R.

Algorithm 3.3: BS.Sign
Input: Signer S with pp, pk, sk, and user U with pp, pk and message m ∈ {0, 1}∗.

Signer S.
1. t← F (st).
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2. st← st+ 1
3. Send t to U .

User U .
4. if t /∈ Tw, abort.
5. r1,L ←↩ U(S̃2d

b1
), r1,H ←↩ τ−1(U({−1, 1}2nd)).

6. r1 ← r1,L + b1r1,H .
7. r2 ←↩ U(S̃kd

b2
), r3 ←↩ U(S̃k

b2
).

8. c← Ar1 + (tG−B)r2 +A3r3 + dH(m) mod qR. ▷ H(m) ∈ T1

9. re ←↩ Bme
ηe .

10. ct0 ← AT
e re mod pR.

11. ct1 ← bT
e re + ⌊p/2⌉H(m) mod pR.

12. π1 ← Prove1(r1, [r2|r3], re,H(m)).
13. Send (c, ct0, ct1, π1) to S.

Signer S.
14. if Verify1(π1) = 0, abort.
15. v3 ←↩ DRk,s2

.
16. v = [vT

1 |vT
2 ]

T ← SamplePre(R,A′,u+ c−A3v3, t, s1, s2).
17. Parse v1 into [vT

1,1|vT
1,2]

T with v1,1,v1,2 ∈ Rd

18. Send (v1,2,v2,v3) to U .
User U .

19. v1,1 ← u+ c−A′v1,2 − (tG−B)v2 −A3v3 mod qR.
20. ρ← (∥[v1,1|v1,2∥22 ≤ B2

1) ∧ (∥[v2|v3]∥22 ≤ B2
2).

21. if ρ ̸= 1, abort.
22. (w1,H ,w1,L)← Decompose(v1 − r1,L, b1)− (r1,H ,0)
23. (wi,H ,wi,L)← Decompose(vi − ri, b2) for i ∈ {2, 3}.
24. π2 ← Prove2(t,w1,H ,w2,H ,w3,H).

Output: S gets ⊥, and U gets sig = (w1,L,w2,L,w3,L, π2).

Algorithm 3.4: BS.Verify
Input: Public key pk, message m, blind signature sig = (w1,L,w2,L,w3,L, π2), and
public parameters pp.
Output: Verify2(π2) ∧ (w1,L ∈ S̃2d

b1
) ∧ ([w2,L|w3,L] ∈ S̃

k(d+1)
b2

) ∧ (H(m) ∈ T1).

To remain as general as possible, our protocol description does not make any
assumption on the messagem which is simply parsed as a bitstring. The mapping
to the appropriate set is then done through a hash function H which only add
the mild requirement that the produced digests do not collide. We stress that,
in the blind issuance process, π1 is a proof of knowledge of H(m), and not of m.
In particular, we do not need to prove that H(m) is indeed the output of some
hash function, which is key to the performance of our scheme.

Actually, we treat H as an extended output function such as SHAKE256,
which is why we use the same notation all along our protocol although the
output space depends on which element is expanded.
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3.2 Verifiable Encryption

The verifiable encryption is there to detect, in the one-more unforgeability proof,
the actual forgery so as to extract the witnesses of only one zero-knowledge proof.
Concretely, the challenger will use its knowledge of the decryption keys to keep
track of each message it has signed and thus be able to identify the one(s) it
has not. This naturally conflicts with the blindness property where the signer is
now controlled by the adversary and thus cannot access to such a knowledge. As
usual, this problem is dealt with by resorting to the random oracle model which
enables to set the public key be either as a uniformly random element (standard
use and blindness proof) or as Aese + ee mod pR for Ae ←↩ U(Rme×de

p ) and
(se, ee) ←↩ Bde+me

ηe
(one-more unforgeability proof). In the latter case (se, ee)

serves as decryption key and uniformity of be is argued under M-LWE. A zero-
knowledge proof ensures well-formedness of the ciphertexts (that may be gener-
ated by the adversary) but note that it only enforces a certain Euclidean bound
Br,e on r⋆e, not that it follows the expected distribution. We thus need to set the
parameters so that

∥∥eTe r⋆e∥∥∞ < p/2 based on this sole requirement. For that, we
rely on

∥∥eTe r⋆e∥∥∞ ≤ ∥ee∥2 ·∥r⋆e∥2 and use a concentration bound for the binomial
distribution to upper-bound ∥ee∥2 (which is selected by the challenger and thus
follows the prescribed distribution).

Binomial Tail Bound. We can obtain a tail bound for the binomial distribu-
tion using Hoeffding’s inequality on X = ∥x∥22. In particular, X is a sum of i.i.d
random variables which all take values in [0, η2e ]. Additionally, the expectation
of X is exactly ηe/2 ·N where N = nme is the dimension of τ(x). As a result,
Hoeffding’s inequality shows that

Px∼Bme
ηe

[∥x∥22 − nmeηe/2 > t] ≤ exp(−2t2/nmeη
4
e),

which can be written as

Px∼Bme
ηe

∥x∥2 >√ηenme

2

√√√√1 + ηe

√
2λ

nme log2 e

 ≤ 2−λ.

For typical parameters (e.g., n = 256,me = 7, λ = 128, ηe = 1) we get a bound of
around Br,e = t

√
ηenme/2 for t ≈ 1.15. When ηe is small, we can actually derive

the exact probability. We do it for the case ηe = 1 which is used in our scheme. We
first observe that for each coefficient of τ(x), τi(x) ∼ ψ1 and therefore τi(x)2 ∼
U({0, 1}). We now consider the polynomial P = 1/2+1/2 ·T ∈ Q[T ], and define
PX = PN = Pnme . We can express PX directly as PX = 2−nme

∑nme

i=0

(
nme

i

)
T i.

Finally, we observe that the probability that X equals i is exactly the i-th
coefficient of PX , that is

(
nme

i

)
/2nme . For each α ∈ [0, nme], we can then compute

exactly

Px∼Bme
1

[
∥x∥22 > α

]
= 1−

α∑
i=0

2−nme

(
nme

i

)
.
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For n = 256,me = 7, λ = 128, we find that the probability is less than 2−λ

for α = 1170 which corresponds to a tail cut t ≈ 1.14272. As it only affects
the verifiable encryption which represents only a small fraction of the issuance
phase, we use the tailcut t = 1.15 and thus the proven bound Br,e = t

√
ηenme/2,

giving us a security margin on the tail bound.

Security. In the security proofs of our blind signature, we need both the fact
that ciphertexts are indistinguishable from uniform, and that the public key
(when embedding a secret key in the one-more unforgeability proof) is indistin-
guishable from uniform as well. The latter simply relies on the M-LWEn,de,me,p,Bηe

assumption. The former relies on the fact that for perfectly uniform (Ae,be),
the vector [

AT
e

bT
e

]
re mod pR

is uniform. This is argued using the Knapsack formulation of M-LWE which here
reduces from M-LWEn,me−(de+1),me,p,Bηe

. Choosing me = 2de + 1 thus means
that both arguments rely on the same M-LWE assumption.

3.3 Relations of Zero-Knowledge Arguments

Our blind signature requires two zero-knowledge arguments. The first one, em-
ployed in the issuance phase, aims at proving the commitment and the ciphertext
are well-formed by proving knowledge of (r1, r23, re, h) ∈ R2d+k(d+1)+me+1 such
that

Ar1 + [tG−B|A3]r23 + dh = c mod qR, ∥r1∥2 ≤ Br,1, ∥r23∥2 ≤ Br,2, h ∈ T1
AT

e re = ct0 mod pR, bT
e re + ⌊p/2⌉h = ct1 mod pR, and ∥re∥2 ≤ Br,e,

where Br,1 = 2b1
√
2nd, Br,2 = b2

√
nk(d+ 1), and Br,e = t

√
ηenme/2 and

r23 = [rT2 |rT3 ]T . We recall here that there is no need to prove correct hash
evaluation as the witness is the digest h = H(m) of the message m and not
m itself. In particular, our security proofs will not make any assumption on h
beyond that it belongs to the set T1.

The second argument is used to finalize the blind signature and proves knowl-
edge of (w1,H ,w2,H ,w3,H , t) ∈ R2d+k(d+1)+1 such that

b1Aw1,H + tGw2,L + b2tGw2,H − b2Bw2,H + b3A3w3,H

= u+ d · H(m)−Aw1,L +Bw2,L −A3w3,L mod qR,

∥w1,H∥22 ≤ B
′
1
2, ∥[w2,H |w3,H ]∥22 ≤ B

′
2
2, and t ∈ Tw,

where (w1,L,w2,L,w3,L) is included in the blind signature, and B′
1 = ⌊(B1/b1+

3
√
2nd)2⌋1/2, and B′

2 = ⌊(B2/b2 + 2
√
nk(d+ 1))2⌋1/2.

The full description of these arguments is deferred to Sections A.3 and A.4
respectively.
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4 Security Analysis

We now prove the correctness, one-more unforgeability and blindness of our
scheme.

4.1 Correctness

Lemma 4.1. The blind signature of Algorithms 3.1, 3.2, 3.3 and 3.4 is correct.

Proof. First, we study the possible aborts of a legitimate signature generation.
Since F maps to Tw, the user does not abort at step 4. Then, the bounds Br,i, Br,e

are set so as to ensure that the proof generation in step 12 always succeeds except
if ∥re∥2 > Br,e, which happens with negligible probability. The verification at
step 14 also goes through due to the completeness of the proof system. This
holds true for the checks performed on the partial signature (v1,v2,v3) thanks
to the correctness of the signature scheme from [AGJ+24]. Finally, we have to
show that the decomposition and bounds are correct for the second argument.

First, we have w1,L + b1w1,H = Low(v1 − r1,L, b1) + b1High(v1 − r1,L, b1)−
b1r1,H = v1−(r1,L+b1r1,H) = v1−r1. Similarly, we have wi,L+biwi,H = vi−ri
for i ∈ {2, 3}. We thus have

b1Aw1,H + tGw2,L + b2tGw2,H − b2Bw2,H + b3A3w3,H

= u+ d · H(m)−Aw1,L +Bw2,L −A3w3,L mod qR

Then, it holds that ∥w1,H∥2 ≤ (B1 + ∥r1∥2 + ∥w1,L∥2)/b1 ≤ B′
1, because w1,L

has entries in S̃b1 , and r1 in S̃2b1 . Additionally, we have ∥[w2,H |w3,H ]∥2 ≤ (B2+

∥[r2|r3]∥2+∥[w2,L|w3,L]∥2)/b2 ≤ B
′
2, as ri,wi,L has entries in S̃b2 for i ∈ {2, 3}.

Generation and verification of the second argument then always succeeds.

4.2 One-More Unforgeability

Theorem 4.1. The blind signature of Algorithms 3.1, 3.2, 3.3 and 3.4 is one-
more unforgeable based on the hardness of M-LWEn,de,me,p,Bηe

, M-LWEn,d,d,q,B1 ,
M-SISn,d,2d+2,q,β➊

, M-SISn,d,2d,q,β➋
, the collision resistance of H, and the sound-

ness of (Prove1,Verify1) and (Prove2,Verify2). More precisely, the advantage of
PPT adversary in breaking the one-more unforgeability of the blind signature is
upper-bounded by

AdvOM-UF[A]

≲ ε
(e)
M-LWE + εcr(H) + ε

(2)
sound + 2max

(
h◦d

(
C(|Tw| −Q)ε➊

M-SIS + kε
(1)
M-LWE

)
,

ε
(1)
M-LWE +

1 + ε

1− ε

(
ε
(1)
sound + 4CM1M2h

◦d
(
CQε➋

M-SIS + kε
(1)
M-LWE

)))
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where ε(i)sound is the soundness error of (Provei,Verifyi) from Lemma A.2 and A.3,
εcr(H) is the advantage of A against the collision resistance of the hash function
H, ε(e)M-LWE and ε(1)M-LWE are the respective hardness bounds of M-LWEn,de,me,p,Bηe

and M-LWEn,d,d,q,B1
, and ε➊

M-SIS and ε➋
M-SIS are the respective hardness bounds

of M-SISn,d,2d+m+1,q,β➊
and M-SISn,d,2d,q,β➋

. The constant C ≈ 2 is the one
from Lemma 2.1. The function h◦d corresponds to the d-th composition power of
the function h defined by

h(x) = kε
(1)
M-LWE + δ

(
2kε

(1)
M-LWE + δ

(
kε

(1)
M-LWE + x

) 2λ−1
2λ

) 2λ−1
2λ

,

with

δ = 1 +Q(λ− 1/2) ·

((
1 + ε

1− ε

)12d(n−1)+5(
1 + ε/ndk

1− ε/ndk

)2ndk

− 1

)2

Proof. At a high level, the proof changes the one-more unforgeability game as
follows. The challenger guesses the tag t⋆ that will be included in one of the
Q + 1 produced signatures, hoping that it will actually correspond to a fresh
adversarial signature and not a legitimately issued one. Depending on this guess,
the challenger will craft the cryptographic material following either the type
➊ or type ➋ approach from [AGJ+24], while also hiding a decryption key in
be. For each of the Q emitted signatures, the challenger stores the digests2 h′i
decrypted from the ciphertexts. Upon reception of the Q+ 1 message-signature
(mi, sigi)i∈[Q+1] pairs, the challenger chooses a pair (mi, sigi) such that H(mi)
does not belong to the set of decrypted digests mentioned above. Note that such
an index i necessarily exists under the collision resistance of the function H. It
then extracts the proof included in sigi, which can be used to solve an M-SIS
instance if the included tag is t⋆. We now prove it formally.

We denote G0 to be the original game. For each game G, we call AdvG[A]
the advantage of A in winning the one-more unforgeability game in the modified
setting of game G.
Game G1. We first change the encryption material so that the challenger can
embed a secret decryption key. More precisely, the challenger samples Ae ←↩
U(Rme×de

p ), (se, ee)←↩ Bde+me
ηe

and set be = Aese + ee mod pR. Then, when A
queries H on (seed, domain_separator5) and (seed, domain_separator6), it repro-
grams the random oracle and outputs Ae and be respectively. A distinguisher be-
tween G0 and G1 can then be turned into a distinguisher for M-LWEn,de,me,p,Bηe

on the instance (Ae,be). When receiving an instance (Ae,be), the M-LWE
distinguisher would program H to output Ae and be as above. As such, if
be is uniform, it perfectly simulates G0 in the random oracle model, and if
2 We insist that because the encryption and proof generations are adversarial, the

adversary does not need to know an underlying input for these digests. As such we
use h′

i and h+ later for these decrypted/extracted elements instead of H(m′
i) and

H(m+) to avoid confusion.
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be = Aese + ee mod pR, it simulates G1. The distinguisher between G0 and G1

can then be used to distinguish between these two cases. As a result, we get

AdvG0
[A] ≤ AdvG1

[A] + ε
(e)
M-LWE,

where ε(e)M-LWE is the hardness bound of M-LWEn,de,me,p,Bηe
.

Game G2. We now generate all the tags {t(i); i ∈ [Q]} at the outset of the game
instead of at each signature issuance. The challenger also uses se to decrypt
the ciphertext in each of the (at most) Q queries. More precisely, it computes
u(i) = ct1

(i) − sTe ct0
(i) mod pR and defines the coefficients of h′i ∈ T1 to be 0 if

the corresponding coefficient of u(i) is closer to 0 than to ⌊p/2⌉, and 1 otherwise.
The challenger then stores the pairs (h′i, t

(i)) in a table T. We note that at
this stage, the decrypted digests are not used. Additionally, as the ciphertexts
are adversarially chosen, the decrypted digests may not be those which have
been used in the commitment and zero-knowledge proofs. Because these changes
do not change the view of the adversary, it then holds that G2 is identically
distributed as G1.
Game G3. In this game, the challenger proceeds as in G2 and thus eventually
receives ((mi,w

(i)
L , π

(i)
2 ))i∈[Q+1] where all mi are distinct. It then computes the

corresponding digests hi = H(mi) and aborts if a collision occurs. In the latter
case, A can readily be used against the collision resistance of H and we thus get

AdvG2
[A] ≤ AdvG3

[A] + εcr(H).

Game G4. We proceed as in G3. At the end of the game, the challenger receives
((mi,w

(i)
L , π

(i)
2 ))i∈[Q+1] from the adversary where all the proofs π(i)

2 verify and all
the mi are distinct. Since G3, there is no collision among the H(mi) either. The
challenger then computes j = min{i ∈ [Q+ 1] : H(mi) /∈ T}. Then, except with
the soundness error ε(2)sound of (Prove2,Verify2) stated in Lemma A.3, it extracts
π
(j)
2 and gets (w⋆

1,H ,w
⋆
2,H ,w

⋆
3,H , t

⋆) such that

b1Aw⋆
1,H + t⋆Gw

(j)
2,L + b2t

⋆Gw⋆
2,H − b2Bw⋆

2,H + b3A3w
⋆
3,H

= u+ d · H(mj)−Aw
(j)
1,L +Bw

(j)
2,L −A3w

(j)
3,L mod qR,∥∥w⋆

1,H

∥∥2
2
≤ B′

1
2,
∥∥[w⋆

2,H |w⋆
3,H ]

∥∥2
2
≤ B′

2
2, and t⋆ ∈ Tw.

It then holds that
AdvG3

[A] ≤ AdvG4
[A] + ε

(2)
sound.

Game G5. We now introduce the branching of our security reduction. At the
outset, the challenger samples ρ ←↩ U({1, 2}). If ρ = 1, the challenger expects
what we call a type ➊ forgery which corresponds to a one-more forgery where
the extracted tag t⋆ from G4 is not in {t(i); i ∈ [Q]}. On the other hand, if ρ = 2,
the challenger expects a type ➋ forgery which corresponds to a one-more forgery
where the extracted tag is among the emitted ones, i.e., there exists i ∈ [Q] such
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that t⋆ = t(i). The reduction aborts if the guess on the type of the forgery is
wrong. As a result, we get

AdvG4 [A] = 2AdvG5 [A].

Based on the value of ρ the challenger will then set the cryptographic ma-
terials and queries differently. We define Adv➊

G[A] to be the advantage of A
in returning a type ➊ one-more forgery in game G, and Adv➋

G[A] for a type
➋ one-more forgery. Because in G5 the type guess is correct, it holds that
AdvG5

[A] ≤ max(Adv➊
G[A],Adv➋

G[A]). We later introduce changes that may be
specific to one branch only. When describing each game, we specify which branch
is impacted (➊ or ➋), except if the change impacts both branches.

The first change we introduce is that after sampling ρ and the set of tags,
the challenger samples t+ ←↩ U(Tw \ {t(i); i ∈ [Q]}) in branch ➊, and in branch
➋ it samples i+ ←↩ U([Q]) and sets t+ = t(i

+). Because t+ is not used anywhere
yet, it does not change the advantage. Hence, it still holds that

AdvG4 [A] ≤ 2max
(
Adv➊

G5
[A],Adv➋

G5
[A]
)

Game G6 (➋). In branch ➋, the challenger hides a short relation in d. More
precisely, it samples s from B2d1 and defines d = As mod qR. It then reprograms
H so as to output d when queried on (seed, domain_separator1). Similarly to the
change in G1, we argue this change based on the M-LWEn,d,d,q,B1 assumption.
As it only impacts the branch i+ ≤ Q, we have

Adv➊
G5

[A] = Adv➊
G6

[A], and Adv➋
G5

[A] ≤ Adv➋
G6

[A] + ε
(1)
M-LWE,

where ε(1)M-LWE is the hardness bound of M-LWEn,d,d,q,B1
.

Game G7 (➋). We hide a short relation in u in branch ➋. The challenger samples
v1 ←↩ DR2d,s1 and [vT

2 |vT
3 ]

T ←↩ DRk(d+1),s2 , and computes u = Av1 + (t+G −
B)v2 +A3v3 mod qR. It then reprograms H so that it outputs u when queried
on (seed, domain_separator4). We use the same argument as from [AGJ+24] by
relying on the regularity lemma of [GPV08, Cor. 5.2] recalled in Lemma 2.2.
With our parameter choices, we then get that

Adv➊
G6

[A] = Adv➊
G7

[A], and Adv➋
G6

[A] ∈
[

1

1 + ε
,
1 + ε

1− ε

]
Adv➋

G7
[A],

Game G8 (➋). In branch ➋, the tag t+ is chosen among the tags used in the
signing queries. As our goal will be to hide t+ in the public key while still being
able to answer signing queries, we need to change the query i+. All other queries
can be answered legitimately. Our goal is to use the hidden relation of u to
answer the i+-th query later. But it also needs to be a correct partial signature,
which means we need to extract the message digest and commitment randomness
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from π
(i+)
1 . In this game, we thus use the extractor from the soundness property

of (Prove1,Verify1). It thus obtains (r+1 , r
+
2 , r

+
3 , h

+, r+e ) such that

Ar+1 + (t+G−B)r+2 +A3r
+
3 + dh+ = c(i

+) mod qR,

AT
e r

+
e = ct0

(i+) mod pR, bT
e r

+
e + ⌊p/2⌉h+ = ct1

(i+) mod pR,∥∥r+1 ∥∥2 ≤ Br,1,
∥∥[r+2 |r+3 ]∥∥2 ≤ Br,2,

∥∥r+e ∥∥2 ≤ Br,e, h+ ∈ T1

except with a soundness error ε(1)sound, detailed in Lemma A.2.
Correct decryption. Notice here that the verifiable encryption proof ensures

that the decrypted digest h′i+ matches the one (h+) that is in the commitment
and thus actually signed by the challenger. Indeed, when decrypting, it holds
that h′i+ is obtained by decoding ct1

(i+) − sTe ct0
(i+) = eTe r

+
e + ⌊p/2⌉h+ mod pR.

Yet, it holds that
∥∥eTe r+e ∥∥∞ ≤ ∥ee∥2∥re∥2 ≤ ∥ee∥2 · Br,e. Then, as ee is drawn

from Bme
ηe

, it holds that its norm is bounded with overwhelming probability by
Br,e as well. Because we choose p > 4B2

r,e, we get that the decryption is correct if
the tail bound on ee is verified. We insist here that because re is adversarial, we
can only deduce a norm bound from the proof extraction but not a particular
distribution. In particular, one cannot set p based on a bound on the inner
product of two binomial vectors (which would be smaller) and needs to use this
worst-case bound on re. This correct decryption will be needed to exploit the
forgery in the final game.

We then have

Adv➊
G7

[A] = Adv➊
G8

[A], and Adv➋
G7

[A] ≤ Adv➋
G8

[A] + ε
(1)
sound,

Game G9 (➋). We now enforce a bound on s ·h+ in anticipation of the rejection
sampling argument in the next games. We use the heuristic bound from [AGJ+24,
Lem. 2.4] recalled in Lemma 2.1. Concretely, for the i+-th query in branch ➋,
after extracting h+ we abort the reduction altogether if ∥sh+∥2 >

√
nd∥h+∥2.

It then holds that

Adv➊
G8

[A] = Adv➊
G9

[A], and Adv➋
G8

[A] ≤ CAdv➋
G9

[A],

for a small constant C ≈ 2.
Game G10 (➋). We further prepare the rejection sampling argument for the i+-

th query only. During the i+-th query, the challenger samples (v
(+)
1 ,v

(+)
2 ,v

(+)
3 )

legitimately using the preimage sampler, and then rejects based on the value of
(v1,v2,v3) which are so far independent of (v(+)

1 ,v
(+)
2 ,v

(+)
3 ). More precisely, it

samples u1, u2 ←↩ U([0, 1)). The reduction continues only if u1 ≤ 1/M1, u2 ≤
1/M2, and ⟨v1 , sh+ + r+1 ⟩ ≥ 0 and ⟨[v2|v3] , [r+2 |r

+
3 ]⟩ ≥ 0, otherwise the

challenger aborts. We insist that if the challenger does not abort, it answers the
query with (v

(+)
1 ,v

(+)
2 ,v

(+)
3 ) and not the hidden relation of u. It then holds that

Adv➊
G9

[A] = Adv➊
G10

[A], and Adv➋
G9

[A] ≤ 4M1M2Adv➋
G10

[A],
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Game G11 (➋). We now use the relation hidden in u to answer the i+-th query
in branch ➋, and perform rejection sampling to ensure a correct distribution
so that the adversary does not notice. After extracting π

(i+)
1 , the challenger

samples u1, u2 ←↩ U([0, 1)), computes δ1 = ⟨v1 + sh+ + r+1 , sh+ + r+1 ⟩ and
δ2 = ⟨[v2 + r+2 |v3 + r+3 ] , [r+2 |r

+
3 ]⟩. It then aborts the reduction if

δ1 < 0, or u1 >
1

M1
exp

(
π

s21

(∥∥sh+ + r+1
∥∥2
2
− 2δ1

))
,

or δ2 < 0, or u2 >
1

M2
exp

(
π

s22

(∥∥[r+2 |r+3 ]∥∥22 − 2δ2

))
.

If the challenger did not abort, it constructs[
v
(i+)
1,1

v
(i+)
1,2

]
= v1 + sh+ + r+1 , and v

(i+)
2 = v2 + r+2 ,v

(i+)
3 = v3 + r+3 ,

and outputs (v
(i+)
1,2 ,v

(i+)
2 ,v

(i+)
3 ) as the partial signature in step 18 of Algo-

rithm 3.3. Based on the bounds proven on the r+i , the one enforced on sh+,
and the way the parameters s1, s2 are set in Algorithm 3.1, the rejection sam-
pling argument of Lemma 2.5 shows that the view of the adversary is identically
distributed in G11 and G10.
Hybrid Games Gj,i. For both branches, we now use the hybrid argument used
in [AGJ+24] to hide the tag t+ in the public key B. The authors rely on a
specific trapdoor switching method and define hybrid games Gj,i for j ∈ [d]
and i ∈ [0, 9]. More precisely, Gj,0 is essentially G11 but where B = [AR1 +
t+G1| . . . |ARj−1+t+Gj−1|ARj | . . . |ARd] with Gℓ = eℓ⊗[1|b| . . . |bk−1] ∈ Rd×k

where eℓ is the zero vector that has a 1 at the ℓ-th entry. In particular, we note
that G1,0 = G8. Then, Gj,1 hides a gadget in A3 as A3 = Gj−A′

3 for A′
3 drawn

uniformly, thus reprogramming H on input (seed, domain_separator3). In Gj,2,
the challenger hides a relation in A3 as A3 = Gj−AR′

j under M-LWEk
n,d,d,q,B1

.
In Gj,3, the challenger uses the partial trapdoor R′

j instead of Rj to produce
signatures (except for the i+-th query, if i+ ≤ Q, which remains unchanged),
which is argued by the trapdoor switching lemma of [AGJ+24, Lem. 4.1] recalled
in Lemma 2.4. Then, Gj,4 simulates the partial public key Bj = ARj mod qR
and instead samples Bj uniformly in Rd×k

q , which is unbeknownst to A under
M-LWEk

n,d,d,q,B1
. Gj,5 adds the tag guess as Bj = B′

j + t+Gj with B′
j uniform.

In Gj,6, it re-introduces a partial secret key to get Bj = ARj + t+Gj under
M-LWEk

n,d,d,q,B1
. The trapdoor switching is used again in Gj,7 to use the partial

trapdoor Rj instead of R′
j . In Gj,8, we replace AR′

j by a uniform A′
3 again

under M-LWEk
n,d,d,q,B1

. Finally, A3 is again changed to be perfectly uniform in
Gj,9 so that Gj,9 = Gj+1,0.

The analysis of the hybrid argument is exactly the same as in [AGJ+24], and
it thus holds that by looping over j ∈ [d], we have

Adv➊
G11

[A] ≲ h◦d
(
Adv➊

Gd,9
[A]
)
, and Adv➋

G11
[A] ≲ h◦d

(
Adv➋

Gd,9
[A]
)
,
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where h◦d corresponds to the d-th composition power of the function h, which
is itself defined by

h(x) = kε
(1)
M-LWE + δ

(
2kε

(1)
M-LWE + δ

(
kε

(1)
M-LWE + x

) 2λ−1
2λ

) 2λ−1
2λ

,

with

δ = 1 +Q(λ− 1/2) ·

((
1 + ε

1− ε

)12d(n−1)+5(
1 + ε/ndk

1− ε/ndk

)2ndk

− 1

)2

Game G12. For both branches, we re-introduce a short relation (without gadget)
in A3. More precisely, it samples R′ from B2d×k

1 and defines A3 = AR′ mod qR.
It then reprograms the random oracle H so as to output A3 when queried
on (seed, domain_separator3). We can again argue this change based on the
M-LWEn,d,d,q,B1 assumption. We thus get

Adv➊
Gd,9

[A] ≤ Adv➊
G12

[A] + kε
(1)
M-LWE, and Adv➋

Gd,9
[A] ≤ Adv➋

G12
[A] + kε

(1)
M-LWE,

Game G13. In this game, the challenger aborts if the tag guess is incorrect. More
precisely, in branch ➊, the adversary must return a type ➊ one-more forgery
which means that t+ /∈ {t(i); i ∈ [Q]}. Because t+ is hidden to the view of the
adversary, the guess is correct with probability 1/(|Tw| −Q). For branch ➋, the
adversary must return a type ➋ one-more forgery meaning there exists i⋆ ∈ [Q]
such that t⋆ = t(i

⋆). The challenger thus aborts if i+ ̸= i⋆, meaning the guess is
correct with probability 1/Q. We thus get

Adv➊
G12

[A] = (|Tw| −Q)Adv➊
G13

[A], and Adv➋
G12

[A] = QAdv➋
G13

[A],

Exploiting the one-more forgery. We now explain for each branch how to ex-
ploit the one-more forgery outputted by A to find a solution of a specific M-SIS
instance. As the two branches are fairly different, we thus bound Adv➊

G13
[A]

and Adv➋
G13

[A] separately. The challenger indeed receives two instances A =

[Id|A′|d|u] and A
′
= [Id|A′] of M-SISn,d,2d+2,q,β➊

and M-SISn,d,2d,q,β➋
respec-

tively. The first will be used to define the material when ρ = 1, while the other
will serve for the branch where ρ = 2. Depending on the value ρ sampled at
the outset, it discards one of these two instances and reprograms H for the rel-
evant material3 from the M-SIS instance. It then proceeds as in G13 following
the determined branch.
Branch ➊. We start with the easier branch to bound Adv➊

G13
[A]. It holds that

t⋆ = t+, which means that t⋆G − B = t⋆G − AR − t+G = −AR mod qR.
We define w1 = w

(j)
1,L + b1w

⋆
1,H and w23 = [w

(j)
2,L|w

(j)
3,L] + b2[w

⋆
2,H |w⋆

3,H ]. The

3 Recall that in the branch ➊, all the partial signature queries are answered legiti-
mately using the preimage sampler, and there is no hidden relation in d nor u.
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challenger then aborts if ∥[−R|R′]w23∥2 >
√
nd∥w23∥2. Again, by the Johnson-

Lindenstrauss-like bound of [AGJ+24, Lem. 2.4] recalled in Lemma 2.1 (as
[−R|R′] is indeed drawn from B1), the challenger continues with probability
at least 1/C for C ≈ 2. We then re-write the extraction equation as

Aw1 +A[−R|R′]w23 − dH(mj)− u = 0 mod qR,

i.e., [Id|A′|d|u]x⋆ = 0 mod qR with x⋆ = [(w1+[−R|R′]w23)
T |−H(mj)|−1]T .

The last coefficient is non zero which ensures x⋆ ̸= 0. Based on the extracted
value, it holds that ∥w1∥2 ≤ b1

√
2nd+b1B

′
1, and ∥w23∥2 ≤ b2

√
nk(d+ 1)+b2B

′
2.

We thus have

∥x⋆∥2 ≤
√(

b1

(√
2nd+B′

1

)
+
√
nd · b2

(√
nk(d+ 1) +B′

2

))2
+ n+ 1 = β➊,

thus proving that x⋆ is a solution of M-SISn,d,2d+2,q,β➊
. We get AdvM-SIS[A] ≥

Adv➊
G13

[A]/C which leads to

Adv➊
G13

[A] ≤ Cε➊
M-SIS.

Branch ➋. We now bound Adv➋
G13

[A]. Recall we are also in the case where t⋆ = t+

so that t⋆G − B = −AR mod qR. We define w1 and w23 as in the previous
branch and thus obtain the same bounds on their norm from the extraction.
We then define ∆w1 = w1 − (v

(i+)
1 − r+1 ) where v

(i+)
1 was part of the partial

signature in the i+-th query, and r+1 was the randomness extracted in the i+-th
query. We also define

∆w23m =

w23 −

[
v
(i+)
2 − r+2

v
(i+)
3 − r+3

]
h+ −H(mj)

 .
The challenger then aborts if ∥[−R|R′|s]∆w23m∥2 >

√
nd∥∆w23m∥2 which hap-

pens with probability at most 1 − 1/C for C ≈ 2 using Lemma 2.1 again.
Then, it holds that Aw1 + A[−R|R′]w23 − AsH(mj) = u mod qR. Yet, u =

Av1−ARv2+AR′v3 = A(v
(i+)
1 − sh+− r+1 )−AR(v

(i+)
2 − r+2 )+AR′(v

(i+)
3 −

r+3 ) mod qR. We can thus rewrite the equation as

A (∆w1 + [−R|R′|s]∆w23m) = 0 mod qR.

Because H(mj) /∈ T , it holds that H(mj) ̸= h′i+ . Also, based on the de-
cryption correctness explained in Game G8, it holds that h′i+ = h+, and as
such we have H(mj) ̸= h+. Using the same argument as in previous works,
e.g., [LLM+16,LNPS21,LNP22,JRS23,AGJ+24], the unpredictability of s en-
sures that x⋆ = ∆w1+[−R|R′|s]∆w23m is non-zero except with negligible prob-
ability. We now bound x⋆. Because of the rejection sampling argument in game
G11, it holds that v

(i+)
1 ∼ DR2d,s1 , and [v

(i+)
2 |v(i+)

3 ] ∼ DRk(d+1),s2 . We can then
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derive bounds on ∆w1 and ∆w23m using the Gaussian tail bound of Lemma 2.3,
and the bounds proven on the r+i , as well as the facts that h+ and H(mj) are
in T1. In particular, we get ∥∆w1∥2 ≤ b1(

√
2nd + B′

1) + B1 + 2b1
√
2nd (≈

2B1 + 6b1
√
2nd), and similarly

∥∆w23m∥2 ≤
√
(b2(B′

2 +
√
nk(d+ 1)) +B2 + b2

√
nk(d+ 1))2 + n.

In the end, we obtain

∥x⋆∥2 ≤ b1
(
B′

1 + 3
√
2nd

)
+B1 +

√
nd

√(
b2

(
B′

2 + 2
√
nk(d+ 1)

)
+B2

)2
+ n

= β➋,

thus proving that x⋆ is a solution of M-SISn,d,2d,q,β➋
. We obtain AdvM-SIS[A] ≥

Adv➋
G13

[A]/C − negl(λ) which leads to

Adv➋
G13

[A] ≤ Cε➋
M-SIS + negl(λ).

Advantage Bound. We can now combine all of the advantage bounds from each
game hop from G5, with the derived bounds on the advantages in G13. We obtain
the following equations.

Adv➊
G5

[A] ≲ h◦d
(
C(|Tw| −Q)ε➊

M-SIS + kε
(1)
M-LWE

)
,

Adv➋
G5

[A] ≲ ε
(1)
M-LWE +

1 + ε

1− ε

(
4CM1M2h

◦d
(
CQε➋

M-SIS + kε
(1)
M-LWE

)
+ ε

(1)
sound

)
.

Combining these inequalities with the first game hops from G0 to G5 gives the
claimed bound on AdvG0 [A].

4.3 Blindness

Theorem 4.2. The blind signature of Algorithms 3.1, 3.2, 3.3 and 3.4 is blind
in the random oracle model based on M-LWEn,de,me,p,Bηe

, M-LWEn,d,d,q,U(T̃1)
,

and the zero-knowledge property of (Prove1,Verify1) and (Prove2,Verify2). More
precisely, the advantage of PPT adversary in breaking the blindness of the blind
signature is upper-bounded by

Advblind[A] ≤ 2(ε
(1)
zk + ε

(2)
zk + ε

(e)
M-LWE + ε

(2)
M-LWE),

where ε(i)zk is the zero-knowledge loss of (Provei,Verifyi) from Lemma A.2 and A.3,
ε
(e)
M-LWE and ε

(2)
M-LWE are the respective hardness bounds of M-LWEn,de,me,p,Bηe

and M-LWEn,d,d,q,U(T̃1)
.
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Proof. We prove the blindness by a sequence of hybrids where we change the
blindness game progressively while proving these changes can be made unbe-
knownst to the adversary. The game G0 is the original blindness game from Def-
inition 2.5. More precisely, the adversary chooses (potentially maliciously) the
public parameters pp (which includes seed ∈ {0, 1}256 to derive public matrices
and vectors), the public key pk = B and two messages m0 and m1 in {0, 1}∗. It
sends it to the challenger, who then samples a random bit ρ←↩ U({0, 1}). After
that, the challenger plays the role of the user in two concurrent interactions of
Sign with the adversary A. In the end, it gets sig0 as the blind signature on mρ

and sig1 as the blind signature on m1−ρ and sends both signatures to A. The
adversary then decide on a value ρ⋆ ∈ {0, 1} and wins if ρ = ρ⋆.
Game G1. In this game we first change the way hash queries are handled, es-
pecially those to derive the verifiable encryption materials. When A queries the
random oracle on (seed, domain_separatori), the challenger samples the matrix or
vector uniformly in its space. In particular, on input (seed, domain_separator2),
(seed, domain_separator5) and (seed, domain_separator6), the challenger samples
A′ ←↩ U(Rd×d

q ), Ae ←↩ U(Rme×de
p ) and be ←↩ U(Rme

p ) respectively. In the
random oracle model, G0 and G1 are identical.
Game G2. The challenger now simulates the zero-knowledge proofs involved in
both executions of the blind signing protocols. Instead of calling Prove1 and
Prove2 on the secret data, it calls the simulators S1 and S2 without resorting
to the secret witnesses. Based on the zero-knowledge properties of both proof
systems, Lemma A.2 and A.3 yield

|AdvG2 [A]−AdvG1 [A]| ≤ 2(ε
(1)
zk + ε

(2)
zk )

Game G3. In this game, the challenger will further simulates the ciphertexts.
For each of the two executions of the blind signature, instead of computing ct0
and ct1 legitimately, it samples u0 ←↩ U(Rde

p ) and u1 ←↩ U(Rp) and define the
ciphertexts as ct0 = u0 and ct1 = u1 + ⌊p/2⌉H(mρ) mod pR (or with H(m1−ρ)
for the other execution). Noticing that the randomness re is no longer used in
the proof generation, this change can be argued with the M-LWEn,de,me,p,Bηe

assumption. This argument follows the one we would use to prove the IND-CPA
security of the encryption scheme. Here, we already enforced the encryption key
to be uniform (i.e., so that the adversary does not have a secret key to decrypt)
which results in a slightly simpler argument.

More precisely, we can use a distinguisher D between G2 and G3 to distin-
guish a 2-secret M-LWEn,de,me,p,Bηe

instance[
AT

e

bT
e

]
[r(ρ)e |r(1−ρ)

e ]

from uniform. This instance follows the Knapsack formulation of M-LWE, which
is equivalent to M-LWEn,de,me,p,Bηe

as shown for example in [BJRW23, Sec. 4.1]4.
4 The loss incurred by the reduction is linked to the splitting of p. In our case, we can

choose p to split into at most n/4 factors to keep this loss negligible.
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Given a 2-secret instance ([u
(ρ)
0 |u

(ρ)
1 ], [u

(1−ρ)
0 |u(1−ρ)

1 ]), the distinguisher would
proceed as in G2 and G3 except in the generation of the ciphertexts where
ct0

(i) = u
(i)
0 and ct1

(i) = u
(i)
1 + ⌊p/2⌉H(mi) mod pR. If the instance is uniform,

it perfectly simulates G3 and otherwise it simulates G2. It then holds that

|AdvG3
[A]−AdvG2

[A]| ≤ sup
D

AdvG2,G3
[D] ≤ 2ε

(e)
M-LWE,

where ε(e)M-LWE is the hardness bound of M-LWEn,de,me,p,Bηe
.

Game G4. As the messages are now masked by a perfectly random and indepen-
dent value, we can have the challenger sample the ciphertexts at random directly
without using the messages. So it directly samples ct1

(i) ←↩ U(Rp). As u(i)1 was
chosen independently of mi, the distribution stays the same and G3 and G4 are
then identical.
Game G5. We now change the way the commitment is computed by essentially
relying on its hiding property. By decomposing c into b1Ar1,H +(Ar1,L+(tG−
B)r2 +A3r3 +dH(m)) mod qR, we replace Ar1,H by a uniform vector. As r1,H
is independent from the rest, this can be done under the M-LWEn,d,d,q,U(T̃1)

assumption. The reason for using only the high-order bits r1,H and not the
whole r1 is because r1,L is also used in the masked part w1,L revealed in the
blind signatures. But r1,H is used nowhere else as we simulate the second zero-
knowledge proof. As a result, the challenger samples t(i) ←↩ U(Rd

q) for each
execution and constructs c(i) = b1t

(i) +(t(i)G−B)r
(i)
2 +A3r

(i)
3 +dH(mi)) mod

qR. Using the same reasoning as that of G2-G3 but for the M-LWEn,d,2d,q,U(T̃1)

instance [Id|A′]r1,H mod qR, we get that

|AdvG5 [A]−AdvG4 [A]| ≤ 2ε
(2)
M-LWE,

where ε(2)M-LWE is the hardness bound of M-LWEn,d,d,q,U(T̃1)
. Note that for that

we need to ensure that A′ is perfectly uniform which is the case due to our
change in G1. Also, notice that T̃1 does not include zero coefficients which may
be unusual. Using the bijection x ∈ {0, 1} 7→ 2x−1 ∈ {−1, 1}, a trivial reduction
shows that M-LWEn,d,d,q,U(T̃1)

is equivalent to M-LWEn,d,d,q,U(T1), that is with
binary secret/error.
Game G6. We keep modifying the commitment by sampling t(i) ←↩ U(Rd

q) and
computing c(i) = t(i)+(t(i)G−B)r

(i)
2 +A3r

(i)
3 +dH(mi)) mod qR. Because b1 is a

power-of-two less than q, it holds that b1 ∈ Z×
q ⊂ R×

q . As such, b1U(Rd
q) = U(Rd

q)
which proves that G5 and G6 are identically distributed.
Game G7. As t(i) is independent from the rest, we can simply sample c(i) uni-
formly in Rd

q without using the messages. It then holds that G6 and G7 are
identically distributed.
Game G8. Now that the randomness r1,L, r2, r3 are used nowhere else, we com-
plete our argument by sampling the wj,L uniformly in S̃bj without resorting to
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the adversarially chosen signatures vi. So the challenger, for each of the two
blind signature executions, samples w

(i)
j,L uniformly with entries in S̃bj .

To argue that it is identically distributed, we rely on the fact that our decom-
position preserves the invariance of the uniform distribution by shift. It means
that Low(y+U([−bj , bj−1]), bj) = U([−bj , bj−1]) for any y ∈ Z by Lemma 2.7.
Applying it coefficient-wise ensures that G7 and G8 are identically distributed.

The final blind signatures (w1,L,w2,L,w3,L, π2), as well as the issuance tran-
scripts, no longer depend on the messages and elements chosen by the adversary.
As a result, they are independent of the bit ρ which means the probability that
A finds the correct bit is exactly 1/2, making its advantage 0. We then have
AdvG8

[A] = 0. By combining the above hybrids, it then holds that

Advblind[A] ≤ 2(ε
(1)
zk + ε

(2)
zk + ε

(e)
M-LWE + ε

(2)
M-LWE)

as claimed.

5 Performance

5.1 Parameter Selection

The soundness and zero-knowledge losses ε(i)sound and ε
(i)
zk rely on some M-SIS

and M-LWE assumptions identified in Theorem 4.1 and 4.2. As a result, we
have to estimate the hardness of each of them and compute the actual security
by taking into account the reduction loss specified in these theorems. For the
M-LWE assumptions, we use the lattice estimator [APS15] on the unstructured
assumptions to determine the minimal BKZ block size B for lattice reduction
attacks. We note that algebraic attacks [AG11,ACF+15] or combinatorial at-
tacks [Wag02,BKW03] in our case are more expansive than those based on lattice
reduction. We then estimate the hardness bound with εM-LWE = 2−(0.292B+16.4)

classically and εM-LWE = 2−(0.257B+16.4) quantumly. For M-SISn,d,m,q,β assump-
tions, standard attacks find a smaller-dimensional lattice of dimension N ∈
[nd, nm] that minimizes the root Hermite factor δB = β1/Nq−nd/N2

, and then
we use the formula by Chen [Che13] to find the BKZ block size from δB . More
precisely, Chen [Che13] showed that under the Gaussian heuristic and the Ge-
ometric Series Assumption, the root Hermite factor δB of a BKZ-reduced basis
with block size B is δB ≈ (B(πB)1/B/2πe)1/2(B−1). Then again, we estimate
the hardness bound of said M-SIS instance by εM-SIS = 2−(0.292B+16.4) classi-
cally and εM-SIS = 2−(0.257B+16.4) quantumly.

We thus search for parameters n, d, de, q, p and also the parameters of the
proof systems to get the desired security when plugged into the loss functions and
the plethora of assumptions considered in Theorem 4.1 and 4.2. The parameters
detailed in Tables B.1, B.2, B.3, B.4 in Appendix B lead to the hardness bounds
indicated in Table 5.1, which still ensures 126 bits of classical security for the
one-more unforgeability and 125 for the blindness, despite the reduction loss.

For these parameters, we reach blind signatures of 40.47 KB, for a total
issuance transcript of 58.86 KB. We give in Table 5.2 the sizes in KB of each
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ε➊
M-SIS ε➋

M-SIS ε
(1)
M-LWE ε

(2)
M-LWE ε

(e)
M-LWE ε

(1)
sound ε

(2)
sound ε

(1)
zk ε

(2)
zk

2−203.5 2−182.2 2−157.7 2−147.2 2−163.2 2−128.2 2−126.9 2−127.3 2−127

Table 5.1. Classical hardness bounds of the different assumptions for the signature,
encryption and proof systems.

contribution. The public key of the signer is 53.94 KB but only needs to be
transmitted once so we do not include it in the issuance transcript.

Issuance Transcript Blind Signature

|t| |c| |ct| |π1| |v| |wL| |π2|
0.03 KB 3.59 KB 1.62 KB 44.91 KB 8.70 KB 5.38 KB 35.09 KB

Total 58.85 KB 40.47 KB

Table 5.2. Size estimates for the issuance transcript between the user and signer, and
the blind signature.

These estimates are obtained based on the parameters chosen as described
above and thus depend on the reduction loss. In particular, in the case of one-
more unforgeability, we need to set a bound Q on the maximal number of signa-
tures per key pair. We set Q = 232 which means that the tag guess loss |Tw| is
at least 232. In practice, the loss incurred via guessing arguments is sometimes
implicitly not taken into account in the parameter selection. Actually, it is un-
clear whether previous papers on blind signatures account for such loss factors
or not. In our case, we design our scheme so as to keep this loss acceptable and
consider it when setting parameters. By discarding it, we could choose smaller
parameters and end up with a transcript size of 52.41 KB and a blind signature
of 35.72 KB.

5.2 Implementation Performance

One caveat of the blind signature in [BLNS23a] is that the issuance relies on
general-purpose NIZKs which are very complex and very slow in practice, even
though they lead to short proofs. Our system does not need to rely on such
tools which then significantly improves the issuance phase. To demonstrate the
concrete practicality of our blind signature, we propose a proof-of-concept im-
plementation in C5. For that, we built upon the implementation of anonymous
credentials of [AGJ+24] which is publicly available6 and adapted it to our scheme
and parameters. In particular, we updated the parameter-specific parts such as
5 https://github.com/latticeblindsignature/lattice-blind-signature
6 https://github.com/Chair-for-Security-Engineering/
lattice-anonymous-credentials
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expansion and sampling procedures. We also implemented the encryption mech-
anism modulo p, the decomposition functions, and obviously overhaul the whole
implementation of zero-knowledge proofs as our relations are different. Regard-
ing the latter, we point out that our scheme features the optimizations on the
proof from [LNP22, Sec. 4.4, App. A] and [LN22] as opposed to [AGJ+24].

We benchmarked our implementation using a laptop featuring an Intel Core
i7 12800H CPU running at 4.6 GHz. We used the same compilation options
as [AGJ+24], namely -O3 -march=native using gcc 11.4.0 with pthread dis-
abled when building FLINT. The timings (in milliseconds) of each main step of
the blind signature can be found in Table 5.3.

Round Procedure Reference
Time (ms)

mean med min max

key gen. Alg. 3.2 673.873 498.793 451.248 1212.177

➀ tag gen. Alg. 3.3, Steps 1-2. 0.002 0.002 0.002 0.014

➁

tag verify Alg. 3.3, Step 4. 0.001 0.001 0.001 0.001
commit Alg. 3.3, Steps 5-8. 2.305 2.302 2.294 2.325
encrypt Alg. 3.3, Steps 9-11. 0.373 0.375 0.360 0.385
embed1 Alg. 3.3, Step 12. 0.674 0.672 0.629 0.848
prove1 Alg. 3.3, Step 12. 721.214 514.244 189.558 1774.477

➂
verify1 Alg. 3.3, Step 14. 121.494 121.556 118.736 125.494
pre sign cmt. Alg. 3.3, Steps 15-17. 73.859 73.617 73.264 75.445

pre sig verify Alg. 3.3, Steps 19-21. 2.119 2.116 2.105 2.153
decomp. Alg. 3.3, Steps 22-23. 0.081 0.080 0.077 0.095
embed2 Alg. 3.3, Step 24. 2.556 2.551 2.521 2.655
prove2 Alg. 3.3, Step 24. 669.633 386.768 141.606 1738.951
verify2 88.231 88.022 85.609 90.618

verify Alg. 3.4 90.775 90.569 89.105 93.165

Table 5.3. Benchmark results. Statistics over 100 executions. Where applicable, the
key and message were randomized. High variance timings are due to rejection sampling.

The entire blind signature generation following Algorithm 3.3 can thus be
performed in 1595 ms on average, mostly because of the generation of the two
ZK proofs π1 and π2. Note that although Prove2 is part of the blind signature
generation, it no longer requires the signer. The total “online” time can thus
be amortized to 925 ms on average. We insist that these timings are reported
by our implementation which is not yet optimized. Vast improvements could be
brought for example by the use of a parameter-specific arithmetic backend (so
as to rely on stack allocations rather than heap allocations which are generally
much slower), parallel hashing, vectorized computations leveraging the AVX2
instruction set, etc. Additionally, as we only prove quadratic lattice relations,
improvements on the zero-knowledge proof framework itself would transfer to our
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scheme. We leave these optimizations as future work. Nevertheless, this provides
a first milestone in the implementation of lattice-based blind signatures.

5.3 Comparison

As discussed in the introduction, the state-of-the art of post-quantum blind
signatures is limited to a few constructions, in particular since the work by
Hauck et al. [HKLN20] which invalidates all previous 3-round designs. While
this paper introduced a secure 3-round construction, it was essentially a proof
of concept that is clearly outperformed by our scheme. We thus choose to
compare our scheme to the much more competitive two-round constructions
in [AKSY22,dPK22,BLNS23a]. Obviously, this comparison has some limits but
we believe it remains relevant as the spirit of our construction is closer to the
one of two-round designs.

In our security assessment, we opted for a more realistic lattice sieving cost
model but we note that certain previous works use the Core-SVP model instead
which estimate the hardness bounds as 2−0.292B instead of 2−(0.292B+16.4). Nev-
ertheless, they aim for a smaller security target which means that we achieve
a similar security level to these works when using the Core-SVP model. The
comparison is therefore given for a target classical security of 128 bits.

Assumptions Round NIZK (iss.) |transcript| |bsig|

[AKSY22]
One-More-ISIS

2 None 1.37 KB 45.19 KBNTRU
M-SIS/M-LWE

[dPK22] NTRU 2 Algebraic Relations 932 KB 102.6 KBM-SIS/M-LWE

[BLNS23a] NTRU 2 General Purpose 60 KB 22 KBM-SIS/M-LWE

Ours M-SIS/M-LWE 3 Algebraic Relations 58.85 KB 40.47 KB

Table 5.4. Comparison of lattice-based blind signatures. The transcript size corre-
sponds to all the messages exchanged between the signer and user. The “NIZK (iss.)”
column describes the type of relations proven only in the issuance part, the proof being
part of the transcript. The final generation of the blind signature includes a proof of
algebraic lattice relations for all the constructions cited above.

Compared to [AKSY22], we achieve slightly smaller blind signatures at the
expense of a larger transcript due to the commitment opening proof π1. But
most importantly, our construction shows that we can achieve the same level
of compactness without compromising on security. Indeed, we do not need the
one-more-ISIS assumption and only rely on the standard lattice assumptions
M-SIS and M-LWE. Our blind signature and transcript sizes are also much
smaller than the construction of [dPK22], whose security is based on standard
assumptions as well. Finally, the blind signature of [BLNS23a] achieves a similar
transcript size but with a blind signature that is almost twice as small as ours.
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However, as mentioned in the introduction, their construction requires the use of
general purpose NIZKs for the commitment opening proof which are very time-
consuming. The author estimate this proof generation to be around 20 seconds.
In our case, our issuance does not need to prove hash evaluations which means
we can use efficient proof systems for algebraic lattice relations. Typically, the
generation of π1 takes on average 720 ms in our proof-of-concept implementation.
As mentioned above, this timing can be vastly improved with a highly optimized
implementation. All in all, our blind signature is competitive with the existing
ones in terms of size, while providing strong security guarantees by relying solely
on standard lattice assumptions, and by having a concretely efficient issuance.

6 Round-Optimal Blind Signature

The previous construction describes a blind signature in three rounds, the role of
the first round being only to transfer the tag t to use in the commitment phase.
This 3-round version essentially allows us to rely on the stateful (adapted) version
of the signature of [AGJ+24]. As such, it avoids certain intricacies of the security
proof making the scheme more efficient. We insist however that as mentioned
in Section 1.1, our 3-round blind signature of Section 3 is not subject to the
ROS attack due to its very different structure compared to Schnorr-like blind
signatures. Nevertheless, in this section, we describe how to simply obtain a
round-optimal, i.e., 2-round, version of our scheme.

Actually, all we require from t is that it differs for each signature issuance.
For example, the tag t could be randomly generated by the user and then sent,
along with the commitment and the proof, to the signer. The latter would then
check if t has already been used in a previous session in which case it would
abort. An alternative option, which does not require to maintain a state on the
signer side, is the one where the user would deterministically derive the tag from
some fresh public data using a hash function. For example, in the case of a user
accessing to a remote signer, those data could be extracted from the previous
messages exchanged to establish a secure channel (e.g. the TLS handshake).

In all cases, we need to limit the number of incidental tags collisions, which
requires to work with a larger tag space and thus to adapt our protocol to limit
the reduction loss. In the following, we consider the option where the tag is
derived from a hash function since the other alternative can readily be derived
from it.

Actually, our 3-round scheme follows a similar argument to the stateless
version of [AGJ+24] described in the construction of [JRS23] from which it takes
inspiration. We let ω be a positive integer smaller than n. In the first round, the
user U starts by hashing a bitstring in (the public data mentioned above) of
length l using an extendable output function such as SHAKE256) to obtain ω
ring elements t1, . . . , tω in

∑
i∈[0,⌊n/ω⌋−1]{0, 1} ·Xi, that is elements of T1 such

that all the coefficients of degree higher than ⌊n/ω⌋ are 0. The signature matrix
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(also used for the commitment) is then

At1,...,tω = [A|
∑
j∈[ω]

tjBj −B|A3],

where the matrices Bi are appended to the public key and are defined as Bj =
X(j−1)⌊n/ω⌋G − ARj mod qR, for Rj ∼ B2d×kd

1 which are appended to the
secret key. It then holds that the second block of At1,...,tω is equal to tG −
A(R+

∑
i∈[ω] tiRi) with t =

∑
i∈[ω]X

(i−1)⌊n/ω⌋ti ∈ T1. As a result, the effective
tag is t and the trapdoor matrix used to sample preimages is R +

∑
i∈[ω] tiRi

whose spectral norm can be bounded by (1 + ω⌊n/ω⌋) 7
10 (
√
2nd+

√
nkd+ 6).

Note that there are no longer restrictions on the Hamming weight of each
tag segment ti, which means that the tag space is of size 2ω⌊n/ω⌋, which prevents
incidental collisions with overwhelming probability as long as the inputs in are
different.

The caveat with having an exponentially large tag space is that the one-more
unforgeability proof needs to guess the tag. Fortunately, we can use a confined
guessing strategy akin the one from [LLM+16][JRS23, App. G] to avoid this
exponential loss in the security proof. More precisely, at the outset of the game,
the challenger would sample Q tags (t

(i)
1 , . . . , t

(i)
ω )i∈[Q] and reprogram the ran-

dom oracle queries on in to output the preselected tags. In the branching in
Game G5, we note that if it expects the adversary to use an already queried tag
(t

(i+)
1 , . . . , t

(i+)
ω ) in the extracted forgery, the reduction can proceed as for the

3-round case and still end up with a loss term CQε➋
M-SIS (which is independent

of the size of the tag space). If it expects a type ➊ one-more forgery, the chal-
lenger cannot guess the forgery tag as it will incur an exponential loss. Instead,
it samples iℓ ←↩ U([Q]) and ℓ+ ←↩ U([ω]). Then, with probability 1/Qω, the
challenger correctly guesses the longest common prefix between the forgery tag
(t⋆1, . . . , t

⋆
ω) and the issued tags. More formally, it expects that

∀j ∈ [ℓ+ − 1], t⋆j = t
(iℓ)
j , and ∀i ∈ [Q], t⋆ℓ+ ̸= t

(i)
ℓ+ .

Then, we only have to guess the value of t⋆ℓ+ . So the challenger samples t+ℓ+

uniformly and also sets t+j = t
(iℓ)
j for j < ℓ+. Using the same hybrid games we

progressively replace B = AR by B = AR + (
∑

j∈[ℓ+] t
+
j X

(j−1)⌊n/ω⌋)G, and
finally change Bj = ARj mod qR for j > ℓ+. In the end, when extracting the
proof from the blind signature, the guess of the ℓ+ first tag segments is correct
with probability 1/(Qω2⌊n/ω⌋). In that case, the second block of the matrix is

∑
i∈[ω]

tiBi −B =

 ∑
j∈[ℓ+]

(t⋆j − t+j )X
(j−1)⌊n/ω⌋

G−AR+
∑
j>ℓ+

t⋆jARj

= A

−R+
∑
j>ℓ+

t⋆jRj


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We can therefore re-write the verification equation as [A|d|u]x⋆ = 0 mod qR
with

x⋆ =

w1 +
[
−R+

∑
j>ℓ+ t⋆jRj

∣∣∣R′
]
w23

−H(mj)
−1


which allows to conclude our security proof as well. Due to the confined guessing,
the corresponding loss term is CQω2⌊n/ω⌋ε➊

M-SIS which can be made polynomial
depending on the value of ω. By tweaking the parameter ω, we can thus have
a 2-round blind signature while trading off between the security reduction loss
and the size of the signer’s keys.

Additionally, the relation to be proven with Prove2 would be different so as to
account for the different tag structure. In particular, it would require committing
to each ti individually.
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A Zero-Knowledge Arguments

A.1 Additional Preliminaries

A.1.1 Background on Algebraic Number Theory. We briefly recall some
additional details in algebraic number theory, especially on the subring embed-
ding technique used in zero-knowledge arguments, e.g., [LNPS21,AGJ+24].
Subring Embedding. When considering a power-of-two cyclotomic ring R =
Z[x]/⟨xn + 1⟩ with n a power of two, we can naturally benefit from the tower
of ring structure and embedding elements of R into smaller degree power-of-two
cyclotomic rings. Formally, we let n̂ be another power of two dividing n, and
R̂ = Z[x]/⟨xn̂ + 1⟩. Then, we can map R to R̂k̂ where k̂ = n/n̂. To do so, we
define the subring embedding θ : R→ R̂k̂ by

∀a ∈ R, θ(a) =

 â0
...

âk̂−1

 =


∑

j∈[0,n̂−1] τjk̂+0(a) · x
j

...∑
j∈[0,n̂−1] τjk̂+(k̂−1)(a) · x

j

 ∈ R̂k̂

If we use ⊗R to denote the product in R, and ⊗R̂ for the product in R̂ to avoid
confusion, it then holds that the inverse embedding is efficiently computable by
θ−1([â0, . . . , âk̂−1]) =

∑
i∈[0,k̂−1] âi(x

k̂)⊗R x
i.

Multiplication Matrix. The product in R translates to a matrix-vector mul-
tiplication in R̂k̂ with the subring embedding. More precisely, it holds that
θ(a⊗R b) = Mθ(a)θ(b) where the matrix-vector product is performed in R̂ and
where

Mθ(a) =


â0 âk̂−1x . . . â1x

â1
. . .

. . .
...

...
. . .

. . . âk̂−1x
âk̂−1 . . . â1 â0

 ,
where âix = âi ⊗R̂ x is the product in R̂. The subring embedding θ is extended
to vectors entrywise and the multiplication map Mθ blockwise to vectors and
matrices over R, i.e., for A = [ai,j ]i,j ∈ Rd×m by Mθ(A) = [Mθ(ai,j)]i,j ∈
R̂k̂d×k̂m.
Coefficient Embedding. The coefficient embedding introduced in Section 2.1
can then be seen as a specific subring embedding where n̂ = 1, k̂ = n and
R̂ = Z[x]/⟨x + 1⟩ = Z. The multiplication matrix map Mθ also generalizes Mτ

as âi ⊗R̂ x = −âi when R̂ is of degree 1.

A.1.2 Dilithium Compression. The zero-knowledge protocol we use em-
barks the optimization put forth in [LNP22, App. A], namely the compression
of the commitments. We thus recall the additional functions and notations that
we use for this. These functions aim at extracting low and high-order components
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of elements of Zq (and coefficient-wise for vectors of Rd
q). They are originally pre-

sented in Dilithium-G [DLL+17]. We introduce specific notations which are only
used in these functions. For an integer a, we call a′ = a mod+ q the unique
element in [0, q) such that a′ = a mod q. Then, for an even integer α, and an
integer a, we let a′ = a mod± α be the unique integer in (−α/2, α/2] such that
a′ = a mod α. Note that as opposed to our previous decomposition functions of
Section 2.4, mod± maps to an interval where the lower end is excluded instead
of the upper end. We note that in our case, γ is chosen so that it is an even
divisor of q − 1, and such that α = (q − 1)/γ is also even. More details on these
functions can be found in [DLL+17,LNP22].

Power2Roundq(r,D)

00 r ← r mod+ q
01 rL ← r mod± 2D

02 return (rH , rL) = ((r − rL)/2
D, rL)

UseGHintq(y, r, γ)
03 α← (q − 1)/γ
04 rH ← HighBitsq(r, γ)

05 return (rH + y) mod+ α

MakeGHintq(z, r, γ)
06 α← (q − 1)/γ
07 rH ← HighBitsq(r, γ)
08 vH ← HighBitsq(r + z, γ)

09 return (vH − rH) mod± α

Decomposeq(r, γ)

10 r ← r mod+ q
11 rL ← r mod± γ
12 if r − rL = q − 1
13 then (rH , rL)← (0, rL − 1)
14 else rH ← (r − rL)/γ
15 return (rH , rL)

HighBitsq(r, γ)

16 (rH , rL)← Decomposeq(r, γ)
17 return rH

Fig.A.1. Functions for commitment compression.

A.2 Parameter Setting

We use the challenge space from [LNP22], which was also used in other works,
e.g., [LN22,BLNS23b,AGJ+24]. More precisely, we let ρ =

⌊
(22(λ+1)/n̂ − 1)/2

⌋
and η be a positive integer (heuristically determined so that the bound in the
definition of C is verified with probability at least 1/2), and define the challenge
space to be

C =
{
c ∈ Ŝρ : c∗ = c and ∥c2k

′
∥1/2k

′

1 ≤ η
}
.

Because we chose moduli that split into two prime ideals in power-of-two cyclo-
tomic rings, we can rely on [LNP22, Lem. 2.6] to argue that any difference of
distinct challenges is in R̂×

q̂ .
We employ the commitment compression technique from [LNP22, App. A]. It

involves two parameters γ and D for the low-order bit cuts of w and tA respec-
tively. Both parameters impact the bound of the M-SIS assumption underlying
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the soundness argument. As such, we proceed as prescribed in [LNP22] by first
selecting the largest γ that makes the M-SIS problem still hard, and we then
set D to be the largest integer such that 2D−1ρn̂ < γ. Note that γ is selected
so that it is an even divisor of q̂ − 1. We thus adjust the modulus factor q1 so
that q1q−1 has such a divisor close to the threshold value of γ (threshold above
which M-SIS does not meet the security target). Note that this decomposition
is recalled in Section A.1.2 and is different from the one presented in Section 2.4
which is used in our blind signature generation procedure.

Once q1 is set, we define qmin = min(q, q1), and set ℓ = ⌈λ/2 log2 qmin⌉ so
that the soundness error term q−2ℓ

min is smaller than 2−λ. The parameter ℓ defines
the number of parallel repetitions for boosting the soundness, i.e., the number
of garbage commitments gi for the quadratic evaluations. The factor 2 is due to
the optimization presented in [LNP22, Sec. 4.4].

A.3 Commitment Opening and Verifiable Encryption Proof

A.3.1 Initial Relation. We now detail how to prove the desired relation in
the issuance phase. We start by describing the relation we aim to prove.

After receiving the tag t from the signer, the user sample r1 ←↩ U(S̃2d
2b1

),
r23 ←↩ U(S̃

k(d+1)
b2

) and commits to H(m) ∈ T1. Notice that the sampling of
r1 in the scheme is decomposed into first sampling (r1,L, r1,H) and combining
them into r1 = r1,L + b1r1,H . By Lemma 2.6, both methods yield the same
distribution for r1. The user also samples re ←↩ Bme

ηe
and encrypts h = H(m)

using the verifiable encryption scheme from Section 3.2. The user now wants
to prove the following equations. We again insist that the prover only proves
knowledge of h but not m itself. As a result, it does not need to prove the hash
evaluation circuit.

Ar1 + [tG−B|A3]r23 + dh = c mod qR (1)[
AT

e

bT
e

]
re +

[
0
⌊p/2⌉

]
h =

[
ct0
ct1

]
mod pR (2)

∥r1∥22 ≤ B
2
r,1 (3)

∥r23∥22 ≤ B
2
r,2 (4)

∥re∥22 ≤ B
2
r,e (5)

h ∈ T1 (6)

where Br,1 = 2b1
√
2nd, Br,2 = b2

√
nk(d+ 1), and Br,e = t

√
ηenme/2. Note

that Equation (2) must hold over Rp and not Rq. We explain how to deal with
the Rp equation, as well as with the r1,1 element more compactly using the
approximate range proof.

A.3.2 Verifiable Encryption with Approximate Range Proof. Because
the encryption modulus p is much smaller than all other moduli, it is undesirable
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to have a proof modulus that has p as factor. To prove the well-formedness of
the ciphertexts, we would thus need to prove knowledge of (re, h, j) such that[

ct0
ct1

]
=

[
AT

e

bT
e

]
re +

[
0
⌊p/2⌉

]
h+ pj

over R. For that, we prove the equation modulo the proof modulus q̂ and argue
that all the elements are small enough so that the equation holds over R. As each
element of Rp can be seen as an element of Sp/2, and that p≪ q̂, the argument
would go through. In particular, from this equation, we have

∥j∥2 ≤
1

p

∥∥∥∥[AT
e

bT
e

]∥∥∥∥
2

∥re∥2 +
1

p

∥∥∥∥[ct0ct1

]∥∥∥∥
2

+ ⌊p/2⌉
√
n/p

≤
√
n

2
(
√
nme(de + 1)Br,e +

√
de + 1 + 1 + 1/p).

We define Bj =
√
n
2 (
√
nme(de + 1)Br,e +

√
de + 1 + 1 + 1/p). In the approach

described in [LNP22], the authors avoid committing to j and instead add an
approximate range proof in infinity norm to prove that

j = p−1

([
ct0
ct1

]
−
[
AT

e

bT
e

]
re −

[
0
⌊p/2⌉

]
h

)
,

has a small infinity norm. In our case, we instead show that this vector is small in
Euclidean norm as we already require a Euclidean approximate range proof for
other parts of the witness. This avoids computing another high-dimensional chal-
lenge matrix R(e) which was identified in [AGJ+24] as an intensive step when
the dimensions are large. Most importantly, it avoids requiring an additional
mask y(e), response z(e), and rejection sampling step, which would increase the
number of repetitions, in turn degrading performances. The Euclidean approx-
imate range proof will give us the desired conclusion without impacting other
parts of the proof. This is mostly due to the fact that the constraint will be
(roughly) that the proof modulus q̂ should exceed pBarp. But this is already
subsumed by other equations which require q̂ ≳ B2

arp. We however insist that,
besides from the approximate range proof, we do not prove any specific norm on
j. As such the norms of j only determine the correctness of the proof system for
the approximate range proof to go through. Indeed, in the extraction, we would
extract r⋆e, h

⋆ and define the vector

j⋆ = p−1

([
ct0
ct1

]
−
[
AT

e

bT
e

]
r⋆e −

[
0
⌊p/2⌉

]
h⋆
)

mod q̂R,

and from the approximate range proof, we would get that ∥j⋆∥∞ ≤ ∥j⋆∥2 ≤ Barp.
We can then re-write the definition of j⋆ as[

ct0
ct1

]
−
[
AT

e

bT
e

]
r⋆e −

[
0
⌊p/2⌉

]
h⋆ − pj⋆ = 0 mod q̂R

Because all the elements are short with respect to q̂, the equation holds over R
if q̂ > p/2 + p

√
nmeBr,e/2 + ⌊p/2⌋+ pBarp. We thus remove Equation (2) as it

will be proven differently as we just described.
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A.3.3 Lifting. First, the lifting simply consists in multiplying the mod-q
equations by q1. If one then proves the equation q1a = q1b mod q1qR, we can
deduce that a = b mod qR. Indeed, it holds that q1a = q1b+ q1qc in R, and thus
it also holds in the fraction field K where q1 is invertible. As a result, we get
a = b+ qc in R which means a = b mod qR. We thus change Equation (1) into
Equation (7) below.

q1Ar1 + q1[tG−B|A3]r23 + q1dh = q1c mod q̂R (7)

A.3.4 Embedding. We now embed the relation in R̂ using θ. The idea is to
define an equivalent relation over R̂ in terms of the subring embeddings of the
secret elements. First of all, we note that the coefficient embedding of θ(a) ∈ R̂k̂

is a simple permutation of that of a ∈ R. As a result, Equations (3), (4), (5)
and (6) can be expressed directly in terms of their embedding. It gives Equa-
tions (8), (9), (10) and (11).

∥θ(r1)∥22 ≤ B
2
r,1 (8)

∥θ(r23)∥22 ≤ B
2
r,2 (9)

∥θ(re)∥22 ≤ B
2
r,e (10)

θ(h) ∈ T̂ k̂
1 (11)

where k̂ = n/n̂ is the dimension of the subring embedding. Let us now look
at the linear equations. We essentially apply θ to each row and rewrite it to
be in terms of θ(ri), θ(h), θ(re). Using the multiplication matrix map Mθ, we
can easily express all the linear terms. We can then substitute Equation (7) by
Equation (12).

q1Mθ(A)θ(r1)+q1Mθ([tG−B|A3])θ(r23)+q1Mθ(d)θ(h) = q1θ(c) mod q̂R̂ (12)

We also note that the approximate range proof term for the encryption will need
to be updated to be expressed in terms of θ(re) and θ(m). More precisely, it will
be defined as

p−1

(
θ

([
ct0
ct1

])
−Mθ

([
AT

e

bT
e

])
θ(re)−

[
0

⌊p/2⌉Ik̂

]
θ(h)

)
.

A.3.5 Norm Inequalities. To tackle the norm inequalities from Equation (8),
we use the four-squares decomposition method employed in [BLNS23b,AGJ+24].
More precisely, we compute four integers a1,0, a1,1, a1,2, a1,3 such that B2

r,1 −
∥θ(r1)∥22 = a21,0 + a21,1 + a21,2 + a21,3. We define the ring element a1 = a1,0 +

a1,1x + a1,2x
2 + a1,3x

3 ∈ R̂. It then holds that ∥[θ(r1)|a1]∥22 = B2
r,1. Proving

the equality (while hiding a1) will indeed prove the desired inequality. We do
the same thing for θ(r23) and θ(re) and define the ring element a23, ae ∈ R̂
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such that ∥[θ(r23)|a23])∥22 = B2
r,2, and ∥[θ(re)|ae])∥22 = B2

r,e. We thus replace
Equation (8), (9) and (10) by Equations (13), (14) and (15).∥∥∥∥[θ(r1)a1

]∥∥∥∥2
2

= B2
r,1 (13)∥∥∥∥[θ(r23)a23

]∥∥∥∥2
2

= B2
r,2 (14)∥∥∥∥[θ(re)ae

]∥∥∥∥2
2

= B2
r,e (15)

A.3.6 Bimodal Rejection Sampling. We now transform the relation fur-
ther in order to support bimodal rejection sampling on the witness vector. Con-
cretely, it means that within the proof we would form z1 = y1 + c · bs1 for a
random bit b ∈ {−1, 1}. This however affects the relation we are proving and
we thus need to adjust it slightly. The way this task is performed in [DDLL13]
is to consider an even modulus so that the equation is sign-invariant. Another
way, described in [LN22], is to additionally commit to b. Concretely, the proof
would start – after lifting, embedding, etc – by sampling b ←↩ U({−1, 1}) and
considering part of the witness vector in the BDLOP part. The relation to be
proven would then be slightly different. The idea is to commit to bs1 instead of
s1 in the Ajtai part. The quadratic terms would not change, but the linear ones
would need to be multiplied by b. Also, we would need to prove that b is a sign as
described in [LNP22, Sec. 5.1]. The problem is that [LNP22, Sec. 5.1] holds for a
prime modulus. They prove that b is an integer in Zq̂ and that b2 = 1 mod q̂R̂.
Concluding that b ∈ {−1, 1} only holds for q̂ prime. If q̂ = q1q, the equation
proves that b ∈ {−1, 1, q1[q−1

1 ]q − q[q−1]q1 , q[q
−1]q1 − q1[q−1

1 ]q}. To circumvent
this issue, we can instead commit to b in the Ajtai part and use the approximate
norm bound on s1 to conclude that b is small. In general, other conditions on
the modulus will ensure that the equation b2 = 1 holds over Z, thus concluding
that b ∈ {−1, 1}. We note that it is actually sufficient to discard the two prob-
lematic solutions by arguing that they are much larger than the approximate
norm bound proven on b. More precisely, the approximate range proof shows
that ∥s1∥2 ≲

√
q̂ whereas, in most cases,

∣∣q1[q−1
1 ]q − q[q−1]q1

∣∣≫√
q̂. Combined

with b2 = 1 mod q̂, it thus proves that b is a sign. Let us now translate each
equation to its new form.

Equations (13), (14) and (15) are sign-invariant which results in no changes
whatsoever when multiplying by b. We can thus express them directly as∥∥∥∥[bθ(r1)ba1

]∥∥∥∥2
2

= B2
r,1 (16)∥∥∥∥[bθ(r23)ba23

]∥∥∥∥2
2

= B2
r,2 (17)∥∥∥∥[bθ(re)bae

]∥∥∥∥2
2

= B2
r,e (18)
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Equation (11) would need to be transformed so as to prove that τ(bθ(h)) ∈
{0, b}n̂k̂. In [LN22], the authors argue that it can be done by proving that bθ(h)−
(b − 1)/21R̂k̂ has binary coefficients. Albeit true, the proof would need to first
prove an equation modulo q̂ with a masking term yb ∈ R̂ which do not a priori
verify that yb − 1 has even coefficients. It thus seems that one need to resort to
2−1 mod q̂ which is generally extremely large, which means it is going to place
further constraints on q̂ for that equation to hold over Z. Instead, we proceed
in a slighlty different manner by revisiting [LNP22, Lem. 2.5]. In our case, it
suffices to show Equation (19).

⟨τ(bθ(h)) , τ(bθ(h)− b1R̂k̂)⟩ = 0 mod q̂Z. (19)

Let us explain how we can conclude based on the other statements we prove.
Since we prove that b is a sign, if Equation (19) holds, then we can conclude
that ⟨τ(bθ(h)) , τ(bθ(h))−b1n̂k̂⟩ = 0 mod q̂. Then, using the approximate norm
bound Barp on bθ(h) and that b is a sign, we have that the equation holds over
Z if q̂ > Barp(Barp+

√
n). Finally, we use the following generalization of [LNP22,

Lem. 2.5] to conclude that τ(bθ(h)) ∈ {0, b}n̂k̂.

Lemma A.1 ([LNP22, Lem. 2.5] generalized). Let N be a positive integer,
x ∈ ZN and b ∈ {−1, 1}. Then, ⟨x , x− b1N ⟩ = 0 if and only if x ∈ {0, b}N .

Proof. If x ∈ {0, b}N , then we trivially have that ⟨x , x−b1N ⟩ = 0. Now assume
⟨x , x− b1N ⟩ = 0. It holds that ⟨x , x− b1N ⟩ =

∑
i∈[N ] xi(xi− b). Yet, because

b ∈ {−1, 1}, the map a ∈ Z 7→ a(a − b) is positive. As such, ⟨x , x − b1N ⟩ is
a zero sum of non-negative terms, which implies that each term is zero. As a
result, xi ∈ {0, b} for all i ∈ [N ].

We now change Equation (12) to express it in terms of (bθ(ri), bθ(m), b).
Since b will be proven to be a sign, and because the equation is purely linear,
we can simply multiply it by b and get the equivalent equation is

q1Mθ(A)bθ(r1) + q1Mθ([tG−B|A3])bθ(r23) + q1Mθ(d)bθ(h)

− bq1θ(c) = 0 mod q̂R̂ (20)

We note that multiplying the whole equation by b does not work for equations
featuring quadratic terms because it would make the equation cubic. For the
approximate range proof term of encryption, we also need to adjust it. We can
virtually see it as if we committed to bj instead of j. It means that the approxi-
mate range proof will feature the term

p−1

(
bθ

([
ct0
ct1

])
−Mθ

([
AT

e

bT
e

])
bθ(re)−

[
0

⌊p/2⌉Ik̂

]
bθ(h)

)
(21)

while still allowing us to extract the correct equation from it. Finally, the equa-
tions needed to prove that b is a sign are

∀i ∈ [n̂− 1], ⟨τ(b) , τ(xi)⟩ = 0 mod q̂Z (22)

b2 − 1 = 0 mod q̂R̂ (23)
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A.3.7 Requirements on q̂. We note that the majority of the equations we
prove must hold over Z to be meaningful. This is ensured by the approximate
range proof subroutine which derives a approximate norm on the witness vector
later denoted by s1 (and the term from Equation (21)) from the norm of a
low-dimensional projection of it. Typically, we get that ∥s1∥22 is bounded by
B2

arp with high probability where B2
arp = 2

13

⌊
c2256 · 337γ23B2 · 256

⌋
, with B2 =

B2
r,1 + B2

r,2 + B2
r,e + n + B2

j + 1. To derive this approximate bound, we rely
on [LNP22, Lem. 2.9] which requires

q̂ > 41n̂m1Barp (24)

Next, to be able to prove Equations (16), (17) and (18), we need −q̂ < −B2
r,i

and B2
arp −B2

r,i < q̂ for i ∈ {1, 2, e}.
For Equation (22), we simply need Barp < q̂. Then, when combined with

Equation (23), we either need −q̂ < −1 and B2
arp−1 < q̂ for the equation to hold

over Z, or simply
∣∣q1[q−1

1 ]q − q[q−1]q1
∣∣ > Barp to discard the two problematic

solutions as described above The latter condition is in most cases less restrictive.
Once all these equations are true over Z, we can deduce that Equation (19) is also
true over Z if q̂ > Barp(Barp+

√
n) as described before. Finally, for as mentioned

in Section A.3.2, we need q̂ > p
√
nmeBr,e/2 + pBarp + p+ 1/2 for the verifiable

encryption proof. All things considered, we need q̂ to verify Equation (24) as
well Equations (25), (26), (27), (28), (29) and (30) below.

q̂ > max(B2
r,1, B

2
r,2, B

2
r,e) (25)

q̂ > B2
arp −min(B2

r,1, B
2
r,2, B

2
r,e) (26)

q̂ > Barp (27)∣∣q1[q−1
1 ]q − q[q−1]q1

∣∣ > Barp (28)

q̂ > B2
arp +Barp

√
n (29)

q̂ > p(
√
nmeBr,e/2 +Barp + 1) + 1/2 (30)

In our case, all these conditions will be subsumed by Equation (29).

A.3.8 The Prove1 protocol. We now describe the protocol to prove Equa-
tions (20), (16), (17), (18), (19), (22), (23) (and (21)). To simplify the notations,
we define the following quantities.

s1 =



bθ(r1)
ba1

bθ(r23)
ba23
bθ(re)
bae
bθ(h)
b


, and

 s1,i = bθ(ri) s
′
1,i =

[
bθ(ri)
bai

]
, i ∈ {1, 23, e}

s1,h = bθ(h) s1,b = b
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The witness dimension is thenm1 = (2dk̂+1)+(k(d+1)k̂+1)+(mek̂+1)+k̂+1 =

k̂(2d+ k(d+ 1) +me + 1) + 4. We also define the following public matrices and
vectors.

{
Aθ = q1Mθ(A)
Bθ = q1Mθ([tG−B|A3])
Dθ = q1Mθ(d)

u = q1θ(c)
A′

e =Mθ([Ae|be]
T )

I′ = [0|⌊p/2⌉Ik̂]
T

{
ct′ = θ

([
ct0
ct1

])

We detail each step of the five rounds needed in the zero-knowledge arguments.
As it follows the blueprint from [LNP22,LN22] already described in details in,
e.g., [BLNS23b,AGJ+24], we refer to these works for more explanations of each
step.

Algorithm A.1: Prove1.Round-1

1. s2,1 ←↩ χm2−d̂, s2,2 ←↩ χd̂

2. y1 ←↩ DR̂m1 ,σ1

3. y2,1 ←↩ DR̂m2−d̂,σ2
, y2,2 ←↩ DR̂d̂,σ2

4. y3 ←↩ DR̂256/n̂,σ3

5. g←↩ U({x ∈ R̂q̂ : τ0(x) = 0 ∧ τn̂/2(x) = 0}ℓ)
6. m̂← [yT

3 |gT ]T

7. tA ← A1s1 +A′
2s2,1 + s2,2 mod q̂R̂

8. w← A1y1 +A′
2y2,1 + y2,2 mod q̂R̂

9. tB ← Bygs2,1 + m̂ mod q̂R̂
10. (wH ,wL)← Decomposeq̂(w, γ)
11. (tA,H , tA,L)← Power2Roundq̂(tA, D)

(R0,R1) = H(1, crs, x,msg1) ∈ ({0, 1}256×n̂(m1+k̂de+k̂))2 with msg1 =
(tA,H , tB ,wH).

Algorithm A.2: Prove1.Round-2

1. zZ3 ←↩ τ(y3) + R

[
τ(s1)

τ(p−1(s1,bct
′ −A′

es1,e − I′s1,h))

]
▷ R = R0 − R1

(γi,j) i∈[2ℓ]
j∈[259+n̂]

= H(2, crs, x,msg1,msg2) ∈ Z2ℓ×259+n̂
q̂ with msg2 = zZ3 .

Algorithm A.3: Prove1.Round-3
1. For i ∈ [2ℓ] do

tmpi ←
∑

j∈[256] γi,j(e
∗
jy3+r∗j,1s1+r∗j,2 ·p−1(s1,bct

′−A′
es1,e−I′s1,h)−zZ3,j)+

γi,257(s
′
1,1

∗s′1,1 − B2
r,1) + γi,258(s

′
1,23

∗s′1,23 − B2
r,2) + γi,259(s

′
1,e

∗s′1,e − B2
r,e) +

γi,260s
∗
1,h(s1,h − s1,b1R̂k̂ )−

∑
j∈[n̂−1] γi,260+js1,bx

n̂−j

2. For i ∈ [ℓ] do
fi ← gi + 2−1(tmp2i−1 + tmp∗2i−1) + xn̂/2 · 2−1(tmp2i + tmp∗2i) mod q̂R̂

(µi)i = H(3, crs, x,msg1,msg2,msg3) ∈ R̂ℓ+dk̂+1
q̂ with msg3 = (f1, . . . , fℓ).
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By developping the expression of fi, we can express it as follows:

fi = gi + (γ2i−1,257 + xn̂/2γ2i,257)s
′
1,1

∗s′1,1

+ (γ2i−1,258 + xn̂/2γ2i,258)s
′
1,23

∗s′1,23

+ (γ2i−1,259 + xn̂/2γ2i,259)s
′
1,e

∗s′1,e

+ 2−1(γ2i−1,260 + xn̂/2γ2i,260)(s
∗
1,h(s1,h − s1,b1R̂k̂) + (s∗1,h − s∗1,b1

∗
R̂k̂)s1,h)

+ 2−1(SE2i−1 + xn̂/2SE2i)y
∗
3 + 2−1(SE∗

2i−1 + xn̂/2SE∗
2i)y3

+ 2−1(SR2i−1,1 + xn̂/2SR2i,1)s
∗
1 + 2−1(SR∗

2i−1,1 + xn̂/2SR∗
2i,1)s1

+ 2−1(SR2i−1,2 + xn̂/2SR2i,2)p
−1(s1,bct

′ −A′
es1,e − I′s1,h)

∗

+ 2−1(SR∗
2i−1,2 + xn̂/2SR∗

2i,2)p
−1(s1,bct

′ −A′
es1,e − I′s1,h)

+ cis
∗
1,b + c′is1,b

− di

where
SEi⋆ =

∑
j∈[256]

γi⋆,jej , and SRi⋆,l =
∑

j∈[256]

γi⋆,jrj,l, (31)

and the polynomials ci, c′i and di are defined by

ci = 2−1

−γ2i,260+n̂/2 +

n̂/2−1∑
j=1

(γ2i−1,260+j − γ2i,260+j+n̂/2)x
j + γ2i−1,260+n̂/2x

n̂/2

+

n̂−1∑
j=n̂/2+1

(γ2i−1,260+j + γ2i,260+j−n̂/2)x
j

 (32)

c′i = 2−1

γ2i,260+n̂/2 +

n̂/2−1∑
j=1

(γ2i,260+n̂/2−j − γ2i−1,260+n̂−j)x
j − γ2i−1,260+n̂/2x

n̂/2

+

n̂−1∑
j=n̂/2+1

−(γ2i−1,260+n̂−j + γ2i,260+3n̂/2−j)x
j

 (33)

di =

 ∑
j∈[256]

γ2i−1,jz
Z
3,j + γ2i−1,257B

2
r,1 + γ2i−1,258B

2
r,2 + γ2i−1,259B

2
r,e


+ xn̂/2

 ∑
j∈[256]

γ2i,jz
Z
3,j + γ2i,257B

2
r,1 + γ2i,258B

2
r,2 + γ2i,259B

2
r,e

 (34)

Algorithm A.4: Prove1.Round-4

1. m̂y ← −Bygy2,1 mod q̂R̂
2. e0 ←

∑
i∈[ℓ] µi

(
(γ2i−1,257 + xn̂/2γ2i,257)y

′
1,1

∗y′
1,1 + (γ2i−1,258 + xn̂/2γ2i,258)y

′
1,23

∗y′
1,23

+(γ2i−1,259 + xn̂/2γ2i,259)y
′
1,e

∗y′
1,e

+ 2−1(γ2i−1,260 + xn̂/2γ2i,260)(y
∗
1,h(y1,h − y1,b1

R̂k̂
) + (y∗

1,h − y∗
1,b1

∗
R̂k̂

)y1,h)
)
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+µ
ℓ+dk̂+1

y2
1,b

3. Compute SE1, SR1,1, SR1,2, . . . , SE2ℓ, SR2ℓ,1, SR2ℓ,2 and c1, c
′
1 . . . , cℓ, c

′
ℓ as in

Equations (62), (63) and (64)
4. e1 ←

∑
i∈[ℓ] µi

(
[m̂y ]256/n̂+i

+2−1[m̂y ]
∗
: 256

n̂
(SE2i−1 + xn̂/2SE2i) + 2−1(SE∗

2i−1 + xn̂/2SE∗
2i)[m̂y ]: 256

n̂

+2−1y∗
1(SR2i−1,1 + xn̂/2SR2i,1) + 2−1(SR∗

2i−1,1 + xn̂/2SR∗
2i,1)y1

+2−1p−1(y1,bct
′ − A′

ey1,e − I′y1,h)
∗(SR2i−1,2 + xn̂/2SR2i,2)

+2−1p−1(SR∗
2i−1,2 + xn̂/2SR∗

2i,2)(y1,bct
′ − A′

ey1,e − I′y1,h)

+ciy
∗
1,b + c′iy1,b

+(γ2i−1,257 + xn̂/2γ2i,257)(y
′
1,1

∗s′1,1 + s′1,1
∗y′

1,1)

+(γ2i−1,258 + xn̂/2γ2i,258)(y
′
1,23

∗s′1,23 + s′1,23
∗y′

1,23)

+(γ2i−1,259 + xn̂/2γ2i,259)(y
∗
1,es1,e + s∗1,ey1,e)

+2−1(γ2i−1,260 + xn̂/2γ2i,260)(y
∗
1,h(s1,h − s1,b1

R̂k̂
) + s∗1,h(y1,h − y1,b1

R̂k̂
)

+ (y∗
1,h − y∗

1,b1
∗
R̂k̂

)s1,h + (s∗1,h − s∗1,b1
∗
R̂k̂

)y1,h)

)
+
∑

i∈[dk̂]
µℓ+i[Aθy1,1 + Bθy1,23 + Dy1,h − y1,bu]i

+2µ
ℓ+dk̂+1

s1,by1,b

5. t0 ← bTy2,1 + e0 mod q̂R̂
6. t1 ← bT s2,1 + e1 mod q̂R̂

c = H(4, crs, x,msg1,msg2,msg3,msg4) ∈ C with msg4 = (t0, t1).

Algorithm A.5: Prove1.Round-5
1. z1 ←↩ y1 + cs1
2. z2,1 ←↩ y2,1 + cs2,1 and z′2,2 ← y2,2 + cs2,2

3. Set z′2 ←
[
z2,1
z′2,2

]
, s2 ←

[
s2,1
s2,2

]
4. x← τ([sT1 |(p−1(s1,bct

′ −A′
es1,e − I′s1,h))

T ]T )
5. u1,3, u2 ←↩ U([0, 1))

6. if u1,3 >
exp

(
π

∥cs1∥22
σ2
1

+π
∥Rx∥22

σ2
3

)
M1M3·cosh

(
2π

⟨τ(z1), τ(cs1)⟩
σ2
1

+2π
⟨zZ3, Rx⟩

σ2
3

) , go to Algorithm A.1

7. if u2 >
exp(π∥cs2∥22/σ

2
2)

M2·cosh(2π⟨τ(z′2), τ(cs2)⟩/σ2
2)

, go to Algorithm A.1
8. z2,2 ← z′2,2 − ctA,L −wL

9. if ∥z2,1∥22 + ∥z2,2∥
2
2 > Bπ,2, go to Algorithm A.7

10. h← MakeGHintq̂(z2,2, γwH − z2,2, γ)

Output: π2 = (tA,H , tB , z
Z
3 , f1, . . . , fℓ, t1, c, z1, z2,1,h)

Note here that as opposed to [AGJ+24], we are not performing rejection
sampling on zZ3 at round 2 but only at round 5. In addition, we perform rejection
sampling on the joint distribution of (z1, zZ3 ). The main reason is that we use the
same bit b for the bimodal rejection sampling, which prevents us from separating
the two rejection steps. We now argue that our method leads to the same compact
parameters as if we used two different bits for each separate rejection, but with
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only one single bit b to commit to by adjusting the rejection step. If we define z =
[τ(z1)|zZ3 ] ∈ Zn̂m1+256, it equals [τ(y1)|τ(y3)]+b[τ(cs̃1)|Rx̃] where x̃ is the actual
secret we set out to hide in the approximate range proof and is such that bx̃ = x.
We also define s̃1 similarly, which is the actual witness to be hidden. For clarity,
we define y = [τ(y1)|τ(y3)] and v = [τ(cs̃1)|Rx]. As b is uniformly random,
the source distribution of z is 1

2DZn̂m1+256,
√
S,−v+

1
2DZn̂m1+256,

√
S,v, where

√
S =

diag(σ1In̂m1
, σ3I256). We then perform rejection sampling to achieve a target

distribution for z of DZn̂m1+256,
√
S. For a fixed σ1, σ3, the joint rejection rate M

must satisfy

M ≥
exp

(
π

∥cs̃1∥2
2

σ2
1

+ π
∥Rx̃∥2

2

σ2
3

)
cosh

(
2π ⟨τ(z1), τ(cs̃1)⟩

σ2
1

+ 2π
⟨zZ

3, Rx̃)⟩
σ2
3

)
Because cosh ≥ 1, it suffices to bound the numerator. We can do so by setting
σ1 =

√
π/ lnM1K1 and σ3 =

√
π/ lnM3K3 where K1 and K3 are the usual

bounds on ∥cs̃1∥2 and ∥Rx̃∥2 as in [LNP22]. The rejection rate M would then
be M1M3, which is the same rate as if we were doing two separate rejections.
Overall, the only change comes from adapting the rejection probability. Finally,
we note that the rejection probability is an even function of (s̃1, x̃), which is why
the specification of Algorithm A.5 uses (s1,x) directly instead of the "unsigned
pair" (s̃1, x̃).

The only caveat in performing this joint rejection is that we cannot reject zZ3
early on in the protocol. As such, we have to perform all the computations of
rounds 3 and 4 at each iteration. It can therefore cause very slight slowdowns
in the proof generation compared to [AGJ+24] where the reported timings were
for a protocol that could abort at round 2.

A.3.9 Verification. We now give the algorithm Verify1 associated to the proof
system. We note that as opposed to the interactive version presented in [LNP22,
App. A], our proof is non-interactive. In particular, notice the elements wH and
t0 are not part of the proof and thus need to be recovered during verification. The
vector wH can be recovered using UseGHintq̂ with the proper inputs depending
only on the proof elements and the hint vector h. Once wH is computed, we can
derive all the challenges from round 1 through 3. We can then recompute t0 and
recover the last challenge c and check it is consistent with the one provided in the
proof. Finally, we check all the norms of the responses z1, z2,1 (with the recovered
z2,2), zZ3 as well as h. The expressions of Bπ,1 and Bπ,3 are determined by the
Gaussian tail bound of Lemma 2.3, while Bπ,2 (also used in Algorithm A.5) is
determined by the Gaussian tail bound on the compression error norm bounds.
More precisely, we have


Bπ,1 = cn̂m1

σ1
√
n̂m1

Bπ,2 = cn̂m2
σ2
√
n̂m2 +

(
η2D−1 + γ

2

)√
n̂d̂

Bπ,3 = c256σ3
√
256
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Algorithm A.6: Verify1
1. tmp← A1z1 +A′

2z2,1 − c2DtA,H mod q̂R̂
2. wH ← UseGHintq̂(h, tmp, γ)
3. z2,2 ← γwH − tmp

4. z2 ←
[
z2,1
z2,2

]
5. (R0,R1)← H(1, crs, x, (tA,H , tB ,wH)) and R← R0 − R1

6. (γi,j)← H(2, crs, x, (tA,H , tB ,wH), zZ3)
7. (µi)← H(3, crs, x, (tA,H , tB ,wH), zZ3 , (f1, . . . , fℓ))

8. m̂z ← ctB −Bygz2,1 mod q̂R̂
9. Compute SE1, SR1, . . . , SE2ℓ, SR2ℓ and c1, c1, d1 . . . , cℓ, c

′
ℓ, dℓ as in Equa-

tions (31), (32), (33) and (34)
10. t0 ←

∑
i∈[ℓ] µi

(
(γ2i−1,257 + xn̂/2γ2i,257)z

′
1,1

∗z′
1,1 + (γ2i−1,258 + xn̂/2γ2i,258)z

′
1,23

∗z′
1,23

+(γ2i−1,259 + xn̂/2γ2i,259)z
′
1,e

∗z′
1,e

+ 2−1(γ2i−1,260 + xn̂/2γ2i,260)(z
∗
1,h(z1,h − z1,b1

R̂k̂
) + (z∗

1,h − z∗
1,b1

∗
R̂k̂

)z1,h)
)

+µ
ℓ+dk̂+1

z2
1,b

+c
(∑

i∈[ℓ] µi

(
[m̂z ]256/n̂+i

+2−1[m̂z ]
∗
: 256

n̂
(SE2i−1 + xn̂/2SE2i) + 2−1(SE∗

2i−1 + xn̂/2SE∗
2i)[m̂z ]: 256

n̂

+2−1z∗
1(SR2i−1,1 + xn̂/2SR2i,1) + 2−1(SR∗

2i−1,1 + xn̂/2SR∗
2i,1)z1

+2−1p−1(z1,bct
′ − A′

ez1,e − I′z1,h)
∗(SR2i−1,2 + xn̂/2SR2i,2)

+2−1p−1(SR∗
2i−1,2 + xn̂/2SR∗

2i,2)(z1,bct
′ − A′

ez1,e − I′z1,h)

+ciz
∗
1,b + c′iz1,b

)
+
∑

i∈[dk̂]
µℓ+i[Aθz1,1 + Bθz1,23 + Dz1,h − z1,bu]i

)
−c2

(∑
i∈[ℓ] µi(di + fi) + µ

ℓ+dk̂+1

)
−c · t1 + bT z2,1 mod q̂R̂

11. c′ ← H(4, crs, x, (tA,H , tB ,wH), zZ3 , (f1, . . . , fℓ), (t0, t1))

Output: Jc = c′K ∧ J∥z1∥2 ≤ Bπ,1K ∧ J∥z2∥2 ≤ Bπ,2K ∧ J
∥∥zZ3∥∥2

≤ Bπ,3K ∧ J∥h∥∞ ≤
q̂−1
2γ

K ∧ J∀i ∈ [ℓ], τ0(fi) = 0 ∧ τn̂/2(fi) = 0K.

A.3.10 Proof Size. We can then compute the proof size as in [AGJ+24] where
the Gaussian vector are encoded with rANS, and where here the commitment
tA is compressed. We also account for the size of the hint vector h as given
in [LNP22]. Overall, the proof size is given by

|π2| = n̂d̂ (⌈log2 q̂⌉ −D + 2.25) +

(
256

n̂
+ 2ℓ+ 1

)
⌈log2 q̂⌉+ n̂⌈log2(2ρ+ 1)⌉

+ n̂m1

(
1

2
+ log2 σ1

)
+ n̂(m2 − d̂)

(
1

2
+ log2 σ2

)
+ 256

(
1

2
+ log2 σ3

)
.

A.3.11 Security. Let us now state the security result for the proof system
regarding soundness and zero-knowledge. The zero-knowledge property relies
more precisely on the extended M-LWE assumption defined in [LN22], which is
generally assumed not significantly easier than M-LWE itself. We refer to [LN22,
Sec. 3.1] for more details.

50



Lemma A.2 ([LNP22,LN22] adapted). Let M1,M2,M3 be in (1,∞), and
let αj =

√
π/ lnMj for j ∈ [3]. Let Bs1 =

√
B2

r,1 +B2
r,2 +B2

r,e + n+ 1 be a

bound on the witness and B =
√
B2

s1 +B2
j be a bound on the vector used in the

approximate range proof. We then define σ1 = α1ηBs1 , σ2 = α2η
√
n̂m2, and

σ3 = α3

√
337B. We take the other parameters, especially q1, be such that the

conditions on q̂ of Section A.3.7 are verified. Then, (Prove1,Verify1) is knowledge
sound with an extractor running in expected polynomial time and soundness error

ε
(1)
sound =

2

|C|
+ q

−n̂/2
min + q−2ℓ

min + 2−128 + εsound
M-SIS

and zero-knowledge with loss ε(1)zk = εzkM-LWE + negl(λ). The term εsound
M-SIS is the

hardness bound of M-SISn̂,d̂,m1+m2,q̂,β(1) where

β(1) = 4η

√
4c2n̂m1

σ2
1n̂m1 +

(
2cn̂m2

σ2
√
n̂m2 + (2Dη + γ)

√
n̂d̂
)2
,

while εzkM-LWE is the hardness bound of M-LWE
n̂,m2−d̂−⌊256/n̂⌋−ℓ−1,m2,q̂,B̂1

.

A.4 Signature Verification Proof

A.4.1 Initial Relation. After receiving the partial signature (t,v1,v2,v3)
from the signer, the user checks that the received elements satisfy the correct
constraints and moves on to generating the final blind signature. For that, the
user decompose each vi − ri. For i = 1, it directly separates r1,L and r1,H so
as to avoid remaining carries. In particular, it obtains wi,L,wi,H that verify
vi − ri = wi,L + biwi,H . In particular, we have ∥w1,H∥2 ≤ (∥v1∥2 + ∥r1∥2 +
∥w1,L∥2)/b1 ≤ B

′
1 and ∥[w2,H |w3,H ]∥2 ≤ B

′
2 where

B′
1
2 =

⌊
(B1/b1 + 3

√
2nd)2

⌋
, and B′

2
2 =

⌊
(B2/b2 + 2

√
nk(d+ 1))2

⌋
,

The division by bi allows us to reduce the proof modulus compared to the case
without compression. The user now wants to prove the following equations.

b1Aw1,H + tGw2,L + b2tGw2,H − b2Bw2,H + b3A3w3,H = u′ mod qR (35)

∥w1,H∥22 ≤ B
′
1
2 (36)

∥[w2,H |w3,H ]∥22 ≤ B
′
2
2 (37)

∥t∥22 = w (38)
t ∈ T1 (39)

where the wi,L are public and u′ = u+d·H(m)−Aw1,L+Bw2,L−A3w3,L mod
qR. We follow the same blueprint as in Section A.3, namely by lifting it modulo
q̂ = qq1, embedding it into R̂, and changing it so as to perform bimodal rejection
sampling. In particular, we encompass the optimizations from [LNP22,LN22].
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A.4.2 Lifting. We lift Equation (35) by multiplying by q1 and get the equiv-
alent Equation (40) below.

q1(b1Aw1,H+tGw2,L+b2tGw2,H−b2Bw2,H+b3A3w3,H) = q1u
′ mod q̂R (40)

A.4.3 Embedding. As in Section A.3, the equation on the coefficients of the
witness directly translate in the subring as the embedding simply permutes the
coefficients. The linear terms are also easily handled using the multiplication
matrix map Mθ. Note that the term q1tGw2,L is also linear as w2,L is known.
In particular it can be expressed as

θ(q1tGw2,L) =

q1θ([Gw2,L]1 · t)
...

q1θ([Gw2,L]d · t)

 = q1Mθ(w2,L) · θ(t).

Finally, the term q1b2tGw2,H is quadratic. It was shown in [AGJ+24] that it can
be expressed as

θ(q1b2tGw2,H) =

 θ(t)T · q1b2G0 · θ(w2,H)
...

θ(t)T · q1b2Gdk̂−1 · θ(w2,H)

 ,
where Gi = [0k̂×i1k̂

|Mθ(x
k̂−1−i2)TP|0k̂×(d−i1−1)k̂]Mθ(G) with (i1, i2) the quo-

tient and remainder of the Euclidean division of i by k̂ and P the permutation
matrix with ones only on the anti-diagonal. From these transformations, we can
substitute Equations (40), (36), (37), (38) and (39) by the equivalent Equa-
tions (41), (42), (43), (44) and (45).

q1(b1Mθ(A)θ(w1,H) +Mθ(Gw2,L)θ(t) + b2

 θ(t)TG0θ(w2,H)
...

θ(t)TGdk̂−1θ(w2,H)


− b2Mθ(B)θ(w2,H) + b3Mθ(A3)θ(w3,H)) = q1θ(u

′) mod q̂R̂. (41)

∥θ(w1,H)∥22 ≤ B
′
1
2 (42)

∥[θ(w2,H)|θ(w3,H)]∥22 ≤ B
′
2
2 (43)

∥θ(t)∥22 = w (44)

θ(t) ∈ T̂ k̂
1 (45)

A.4.4 Norm Inequalities. We then turn norm inequalities into equalities
using the four-squares decomposition method and additionally committing to
this decomposition. We thus replace Equations (42) and (43) by Equations (46)
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and (47). ∥∥∥∥[θ(w1,H)
a1

]∥∥∥∥2
2

= B′
1
2 (46)∥∥∥∥∥

[
θ(w2,H)
θ(w3,H)
a2

]∥∥∥∥∥
2

2

= B′
2
2 (47)

(48)

for ai = ai,0 + ai,1x + ai,2x
2 + ai,3x

3 ∈ R̂ such that ∥a1∥22 = B′
1
2 − ∥θ(w1,H)∥22

and ∥a2∥22 = B′
2
2 − ∥[θ(w2,H)|θ(w3,H)]∥22.

A.4.5 Bimodal Rejection Sampling. We now use the same methodology
as in Section A.3 to change the relation so as to support bimodal rejection
sampling on the witness vector. Equations (46), (47) and (44) are sign-invariant
which results in no changes whatsoever when multiplying by b. The membership
proof to τ−1({0, b}n̂k̂) of θ(t) is also handled as in Section A.3. We can thus
express them directly as∥∥∥∥[bθ(w1,H)

ba1

]∥∥∥∥2
2

= B′
1
2 (49)∥∥∥∥∥

[
bθ(w2,H)
bθ(w3,H)

ba2

]∥∥∥∥∥
2

2

= B′
2
2 (50)

∥bθ(t)∥22 = w (51)
⟨τ(bθ(t)) , τ(bθ(t)− b1R̂k̂)⟩ = 0 mod q̂Z (52)

We just note that as opposed to Section A.3 where we do not prove a norm on
the message, here Equation (51) shows the tag has norm

√
w. We can then use

this to have a much less restrictive modulus condition for Equation (54) to hold
over Z. In particular, using the fact that b is proven to be a sign and that t has
norm

√
w, it only requires q̂ > w +

√
wn̂k̂. Then, we change Equation (41) into

Equation (53), and add the sign proof for b

q1(b1Mθ(A)b · bθ(w1,H) +Mθ(Gw2,L)b · bθ(t) + b2

 bθ(t)TG0bθ(w2,H)
...

bθ(t)TGdk̂−1bθ(w2,H)


− b2Mθ(B)b · bθ(w2,H) + b3Mθ(A3)b · bθ(w3,H)) = q1θ(u

′) mod q̂R̂. (53)

∀i ∈ [n̂− 1], ⟨τ(b) , τ(xi)⟩ = 0 mod q̂Z (54)

b2 − 1 = 0 mod q̂R̂ (55)

A.4.6 Requirements on q̂. The approximate range proof ensures that the
witness vector s1 has norm less than Barp with high probability where B2

arp =
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2
13

⌊
c2256 · 337γ23B2 · 256

⌋
, with B2 = B′

1
2+B′

2
2+w+1. To derive this approximate

bound, we rely on [LNP22, Lem. 2.9] which requires condition (56). The norm
equations, the sign proof, and the tag membership proof then require that the
following conditions are met.

q̂ > 41n̂m1Barp (56)

q̂ > max(B′
1
2, B′

2
2, w) (57)

q̂ > B2
arp −min(B′

1
2, B′

2
2, w) (58)

q̂ > Barp (59)∣∣q1[q−1
1 ]q − q[q−1]q1

∣∣ > Barp (60)

q̂ > w +
√
wn̂k̂ (61)

In our case, all these conditions will be subsumed by q̂ ≥ B2
arp.

A.4.7 The Prove2 protocol. We now describe the protocol to prove Equa-
tions (53), (49), (50), (51), (54) and (55). To simplify the notations, we define
the following quantities.

s1 =



bθ(w1,H)
ba1

bθ(w2,H)
bθ(w3,H)

ba2
bθ(t)
b

 , and



s1,i = bθ(wi,H)

s′1,1 =

[
bθ(w1,H)

ba1

]
s′1,2 =

[
bθ(w2,H)
bθ(w3,H)

ba2

]
s1,t = bθ(t)
s1,b = b

The witness dimension is then m1 = (2dk̂ + 1) + (k(d + 1)k̂ + 1) + k̂ + 1 =

k̂(2d+k(d+1)+1)+3. We also define the following public matrices and vectors.{
A′ = q1b1Mθ(A)
G′ = q1Mθ(Gw2,L)
B′ = q1b2Mθ(B)

{
A′

3 = q1b3Mθ(A3)
u′′ = q1θ(u

′)
G′

i = q1b2Gi

where Gi is defined before Equation (41). We detail each step of the five rounds
needed in the zero-knowledge argument as in the issuance proof of Section A.3.

Algorithm A.7: Prove2.Round-1

1. s2,1 ←↩ χm2−d̂, s2,2 ←↩ χd̂

2. y1 ←↩ DR̂m1 ,σ1

3. y2,1 ←↩ DR̂m2−d̂,σ2
, y2,2 ←↩ DR̂d̂,σ2

4. y3 ←↩ DR̂256/n̂,σ3

5. g←↩ U({x ∈ R̂q̂ : τ0(x) = 0 ∧ τn̂/2(x) = 0}ℓ)
6. m̂← [yT

3 |gT ]T

7. tA ← A1s1 +A′
2s2,1 + s2,2 mod q̂R̂
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8. w← A1y1 +A′
2y2,1 + y2,2 mod q̂R̂

9. tB ← Bygs2,1 + m̂ mod q̂R̂
10. (wH ,wL)← Decomposeq̂(w, γ)
11. (tA,H , tA,L)← Power2Roundq̂(tA, D)

(R0,R1) = H(1, crs, x,msg1) ∈ ({0, 1}256×n̂m1)2 with msg1 = (tA,H , tB ,wH).

Algorithm A.8: Prove2.Round-2
1. zZ3 ←↩ τ(y3) + Rτ(s1) ▷ R = R0 − R1

(γi,j) i∈[2ℓ]
j∈[259+n̂]

= H(2, crs, x,msg1,msg2) ∈ Z2ℓ×259+n̂
q̂ with msg2 = zZ3 .

Algorithm A.9: Prove2.Round-3
1. For i ∈ [2ℓ] do

tmpi ←
∑

j∈[256] γi,j(e
∗
jy3 + r∗j s1 − zZ3,j) +

∑
j∈[2] γi,256+j(s

′
1,j

∗s′1,j −B′
j
2)

+γi,259(s
∗
1,ts1,t−w)+γi,260s

∗
1,t(s1,t−s1,b1R̂k̂ )−

∑
j∈[n̂−1] γi,260+js1,bx

n̂−j

2. For i ∈ [ℓ] do
fi ← gi + 2−1(tmp2i−1 + tmp∗2i−1) + xn̂/2 · 2−1(tmp2i + tmp∗2i) mod q̂R̂

(µi)i∈[ℓ+dk̂+1] = H(3, crs, x,msg1,msg2,msg3) ∈ R̂ℓ+dk̂+1
q̂ with msg3 = (f1, . . . , fℓ).

By developping the expression of fi, we can express it as follows:

fi = gi +
∑
j∈[2]

(γ2i−1,256+j + xn̂/2γ2i,256+j)s
′
1,j

∗s′1,j

+ ((γ2i−1,259 + γ2i−1,260) + xn̂/2(γ2i,259 + γ2i,260))s
∗
1,ts1,t

− 2−1(γ2i−1,260 + xn̂/2γ2i,260)(s
∗
1,ts1,b1R̂k̂ + s∗1,b1

∗
R̂k̂s1,t)

+ 2−1(SE2i−1 + xn̂/2SE2i)y
∗
3 + 2−1(SE∗

2i−1 + xn̂/2SE∗
2i)y3

+ 2−1(SR2i−1 + xn̂/2SR2i)s
∗
1 + 2−1(SR∗

2i−1 + xn̂/2SR∗
2i)s1

+ cis
∗
1,b + c′is1,b

− di

where

SEi⋆ =
∑

j∈[256]

γi⋆,jej , and SRi⋆ =
∑

j∈[256]

γi⋆,jrj , (62)
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and the polynomials ci, c′i and di are defined by

ci = 2−1

−γ2i,260+n̂/2 +

n̂/2−1∑
j=1

(γ2i−1,260+j − γ2i,260+j+n̂/2)x
j + γ2i−1,260+n̂/2x

n̂/2

+

n̂−1∑
j=n̂/2+1

(γ2i−1,260+j + γ2i,260+j−n̂/2)x
j

 (63)

c′i = 2−1

γ2i,260+n̂/2 +

n̂/2−1∑
j=1

(γ2i,260+n̂/2−j − γ2i−1,260+n̂−j)x
j − γ2i−1,260+n̂/2x

n̂/2

+

n̂−1∑
j=n̂/2+1

−(γ2i−1,260+n̂−j + γ2i,260+3n̂/2−j)x
j

 (64)

di =

 ∑
j∈[256]

γ2i−1,jz
Z
3,j + γ2i−1,259w + γ2i−1,257B

′
1
2 + γ2i−1,258B

′
2
2


+ xn̂/2

 ∑
j∈[256]

γ2i,jz
Z
3,j + γ2i,259w + γ2i,257B

′
1
2 + γ2i,258B

′
2
2

 (65)

Algorithm A.10: Prove2.Round-4

1. m̂y ← −Bygy2,1 mod q̂R̂
2. e0 ←

∑
i∈[ℓ] µi

(∑
j∈[2](γ2i−1,256+j + xn̂/2γ2i,256+j)y

′
1,j

∗y′
1,j

+((γ2i−1,259 + γ2i−1,260) + xn̂/2(γ2i,259 + γ2i,260))y
∗
1,ty1,t

− 2−1(γ2i−1,260 + xn̂/2γ2i,260)(y
∗
1,ty1,b1

R̂k̂
+ y∗

1,b1
∗
R̂k̂

y1,t)
)

+
∑

i∈[dk̂]
µℓ+i

(
yT
1,tG

′
iy1,2 + y1,b([A

′y1,1]i − [B′y1,2]i + [A′
3y1,3]i + [G′y1,t]i)

)
+µ

ℓ+dk̂+1
y2
1,b

3. Compute SE1, SR1, . . . , SE2ℓ, SR2ℓ and c1, c
′
1 . . . , cℓ, c

′
ℓ as in Equa-

tions (62), (63) and (64)
4. e1 ←

∑
i∈[ℓ] µi

(
[m̂y ]256/n̂+i

+2−1[m̂y ]
∗
: 256

n̂
(SE2i−1 + xn̂/2SE2i) + 2−1(SE∗

2i−1 + xn̂/2SE∗
2i)[m̂y ]: 256

n̂

+2−1y∗
1(SR2i−1 + xn̂/2SR2i) + 2−1(SR∗

2i−1 + xn̂/2SR∗
2i)y1

+ciy
∗
1,b + c′iy1,b

+
∑

j∈[2](γ2i−1,256+j + xn̂/2γ2i,256+j)(y
′
1,j

∗s′1,j + s′1,j
∗y′

1,j)

+((γ2i−1,259 + γ2i−1,260) + xn̂/2(γ2i,259 + γ2i,260))(y
∗
1,ts1,t + s∗1,ty1,t)

−2−1(γ2i−1,260 + xn̂/2γ2i,260)((y
∗
1,ts1,b + s∗1,ty1,b)1

R̂k̂
+ 1∗

R̂k̂
(y1,ts

∗
1,b + s1,ty

∗
1,b))

)
+
∑

i∈[dk̂]
µℓ+i

(
sT1,tG

′
iy1,2 + s1,b([A

′y1,1]i − [B′y1,2]i + [A′
3y1,3]i + [G′y1,t]i)

+yT
1,tG

′
is1,2 + y1,b([A

′s1,1]i − [B′s1,2]i + [A′
3s1,3]i + [G′s1,t]i)

)
+2µ

ℓ+dk̂+1
s1,by1,b

5. t0 ← bTy2,1 + e0 mod q̂R̂
6. t1 ← bT s2,1 + e1 mod q̂R̂

c = H(4, crs, x,msg1,msg2,msg3,msg4) ∈ C with msg4 = (t0, t1).
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Algorithm A.11: Prove2.Round-5
1. z1 ←↩ y1 + cs1
2. z2,1 ←↩ y2,1 + cs2,1 and z′2,2 ← y2,2 + cs2,2

3. Set z′2 ←
[
z2,1
z′2,2

]
, s2 ←

[
s2,1
s2,2

]
4. u1,3, u2 ←↩ U([0, 1))

5. if u1,3 >
exp

(
π

∥cs1∥22
σ2
1

+π
∥Rτ(s1)∥22

σ2
3

)
M1M3·cosh

(
2π

⟨τ(z1), τ(cs1)⟩
σ2
1

+2π
⟨zZ3, Rτ(s1)⟩

σ2
3

) , go to Algorithm A.7

6. if u2 >
exp(π∥cs2∥22/σ

2
2)

M2·cosh(2π⟨τ(z′2), τ(cs2)⟩/σ2
2)

, go to Algorithm A.7
7. z2,2 ← z′2,2 − ctA,L −wL

8. if ∥z2,1∥22 + ∥z2,2∥
2
2 > Bπ,2, go to Algorithm A.7

9. h← MakeGHintq̂(z2,2, γwH − z2,2, γ)

Output: π2 = (tA,H , tB , z
Z
3 , f1, . . . , fℓ, t1, c, z1, z2,1,h)

As is done in the issuance proof of Section A.3, we perform rejection sampling
on zZ3 conjointly with z1 in round 5.

A.4.8 Verification. We now give the algorithm Verify2 associated to the proof
system. The expressions of Bπ,1 and Bπ,3 are determined by the Gaussian tail
bound of Lemma 2.3, while Bπ,2 (also used in Algorithm A.11) is determined by
the Gaussian tail bound on the compression error norm bounds. The expressions
are the same as those from Section A.3 but the parameters have different values.

Bπ,1 = cn̂m1
σ1
√
n̂m1

Bπ,2 = cn̂m2
σ2
√
n̂m2 +

(
η2D−1 + γ

2

)√
n̂d̂

Bπ,3 = c256σ3
√
256

Algorithm A.12: Verify2
1. tmp← A1z1 +A′

2z2,1 − c2DtA,H mod q̂R̂
2. wH ← UseGHintq̂(h, tmp, γ)
3. z2,2 ← γwH − tmp

4. z2 ←
[
z2,1
z2,2

]
5. (R0,R1)← H(1, crs, x, (tA,H , tB ,wH)) and R← R0 − R1

6. (γi,j)← H(2, crs, x, (tA,H , tB ,wH), zZ3)
7. (µi)← H(3, crs, x, (tA,H , tB ,wH), zZ3 , (f1, . . . , fℓ))

8. m̂z ← ctB −Bygz2,1 mod q̂R̂
9. Compute SE1, SR1, . . . , SE2ℓ, SR2ℓ and c1, c1, d1 . . . , cℓ, c

′
ℓ, dℓ as in Equa-

tions (62), (63), (64) and (65)
10. t0 ←

∑
i∈[ℓ] µi

(∑
j∈[2](γ2i−1,256+j + xn̂/2γ2i,256+j)z

′
1,j

∗z′
1,j

+((γ2i−1,259 + γ2i−1,260) + xn̂/2(γ2i,259 + γ2i,260))z
∗
1,tz1,t

− 2−1(γ2i−1,260 + xn̂/2γ2i,260)(z
∗
1,tz1,b1

R̂k̂
+ z∗

1,b1
∗
R̂k̂

z1,t)
)

+
∑

i∈[dk̂]
µℓ+i

(
zT
1,tG

′
iz1,2 + z1,b([A

′z1,1]i − [B′z1,2]i + [A′
3z1,3]i + [G′z1,t]i)

)
+µ

ℓ+dk̂+1
z2
1,b
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+c
∑

i∈[ℓ] µi

(
[m̂z ]256/n̂+i

+2−1[m̂z ]
∗
: 256

n̂
(SE2i−1 + xn̂/2SE2i) + 2−1(SE∗

2i−1 + xn̂/2SE∗
2i)[m̂z ]: 256

n̂

+2−1z∗
1(SR2i−1 + xn̂/2SR2i) + 2−1(SR∗

2i−1 + xn̂/2SR∗
2i)z1

+ciz
∗
1,b + c′iz1,b

)
−c2

(∑
i∈[ℓ] µi(di + fi) +

∑
i∈[dk̂]

µℓ+i[u
′′]i + µ

ℓ+dk̂+1

)
−ct1 + bT z2,1 mod q̂R̂

11. c′ ← H(4, crs, x, (tA,H , tB ,wH), zZ3 , (f1, . . . , fℓ), (t0, t1))

Output: Jc = c′K ∧ J∥z1∥2 ≤ Bπ,1K ∧ J∥z2∥2 ≤ Bπ,2K ∧ J
∥∥zZ3∥∥2

≤ Bπ,3K ∧ J∥h∥∞ ≤
q̂−1
2γ

K ∧ J∀i ∈ [ℓ], τ0(hi) = 0 ∧ τn̂/2(hi) = 0K.

A.4.9 Proof Size. We can then compute the proof size as in [AGJ+24] where
the Gaussian vector are encoded with rANS, and where here the commitment
tA is compressed. We also account for the size of the hint vector h as given
in [LNP22]. Overall, the proof size is given by

|π2| = n̂d̂ (⌈log2 q̂⌉ −D + 2.25) +

(
256

n̂
+ 2ℓ+ 1

)
⌈log2 q̂⌉+ n̂⌈log2(2ρ+ 1)⌉

+ n̂m1

(
1

2
+ log2 σ1

)
+ n̂(m2 − d̂)

(
1

2
+ log2 σ2

)
+ 256

(
1

2
+ log2 σ3

)
.

A.4.10 Norm Gap after Extraction. Recall that the bound proven on
the wi,H was a worst-case bound B′

i (in particular independent on wi,L). As a
result, the extracted solution, when recombined with the lower part, will verify
∥w⋆

1∥2 ≤ b1B
′
1 + b1

√
2nd, and ∥[w⋆

2|w⋆
3]∥2 ≤ b2B

′
2 + b2

√
nk(d+ 1). This small

additive gap is then taken into account when deriving the M-SIS bounds in the
one-more unforgeability.

A.4.11 Security. Let us now state the security result for the proof system
regarding soundness and zero-knowledge just like for the issuance proof system.
We note that we used the same notations for the parameters of the two proof
systems but the actual value are likely different (d̂,m1,m2, q1, etc.).

Lemma A.3 ([LNP22,LN22] adapted). Let M1,M2,M3 be in (1,∞), and
let αj =

√
π/ lnMj for j ∈ [3]. Let Bs1 =

√
B′

1
2 +B′

2
2 + w + 1 be a bound on

the witness. We then define σ1 = α1ηBs1 , σ2 = α2η
√
n̂m2, and σ3 = α3

√
337Bs1 .

We take the other parameters, especially q1, be such that the conditions on q̂ of
Section A.4.6 are verified. Then, (Prove2,Verify2) is knowledge sound with an
extractor running in expected polynomial time and soundness error

ε
(1)
sound =

2

|C|
+ q

−n̂/2
min + q−2ℓ

min + 2−128 + εsound
M-SIS
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and zero-knowledge with loss ε(1)zk = εzkM-LWE + negl(λ). The term εsound
M-SIS is the

hardness bound of M-SISn̂,d̂,m1+m2,q̂,β(2) where

β(2) = 4η

√
4c2n̂m1

σ2
1n̂m1 +

(
2cn̂m2

σ2
√
n̂m2 + (2Dη + γ)

√
n̂d̂
)2

while εzkM-LWE is the hardness bound of M-LWE
n̂,m2−d̂−⌊256/n̂⌋−ℓ−1,m2,q̂,B̂1

.

B Parameters
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Symbol Description Value
Signature Parameters

λ Security parameter 128

n Signature ring degree 256

d Module rank 5

q Modulus 8388581 ≈ 223

k Gadget length 3

b Gadget base 204

b1 First decomposition base 512

b2 Second decomposition base 8

ε Smoothing loss for samplers 2−40

s1 Top preimage sampling width 111520.358

s2 Bottom preimage sampling width 1156.135

w Hamming weight of tags 5

κ Number of splitting factors of q 2

Q Maximal number of signature queries 232

α1, α2 Rejection sampling slack 2.13

M1,M2 Rejection sampling repetition rate 2

B1 First verification bound 2687499.37

B2 Second verification bound 35802.64

B′
1 First proof bound 5400.81

B′
2 Second proof bound 4611.09

Security Estimates

BKZ➊ Required BKZ blocksize for M-SIS➊ 641

BKZ➋ Required BKZ blocksize for M-SIS➋ 568

BKZ(1) Required BKZ blocksize for M-LWE(1) (key) 484

BKZ(2) Required BKZ blocksize for M-LWE(2) (hiding cmt.) 448

ε➊
M-SIS Hardness bound for M-SIS➊ 2−203.5

ε➋
M-SIS Hardness bound for M-SIS➋ 2−182.2

ε
(1)
M-LWE Hardness bound for M-LWE(1) 2−157.7

ε
(2)
M-SIS Hardness bound for M-LWE(2) 2−147.2

Efficiency Estimates
|pk| Size of public key (B, rest generated from seed) 53.94 KB
|sk| Size of secret key (R) 9.38 KB
|sig| Size of partial signature (v1,2,v2,v3) 8.70 KB
Table B.1. Suggested parameter set for the blind signature (signature).
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Symbol Description Value
Signature Parameters

λ Security parameter 128

n Signature ring degree 256

de Module rank 3

p Modulus 4993 ≈ 212.3

me Number of samples 7

ηe Binomial parameter 1

Br,e Binomial tail bound 34.42

p/B2
r,e Decryption correctness gap 4.21

Security Estimates

BKZ(e) Required BKZ blocksize for M-LWE(e) (IND-CPA) 503

ε
(e)
M-LWE Hardness bound for M-LWE(e) 2−163.2

Efficiency Estimates
|ct| Size of ciphertext 1.63 KB

Table B.2. Suggested parameter set for the blind signature (encryption to the sky).
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Symbol Description Value
Proof System Parameters

λ Security parameter 128

n̂ Proof system ring degree 64

k̂ Subring embedding dimension 4

d̂ Module rank 22

q1 Modulus factor 17179868957 ≈ 234

qmin Smallest modulus factor 8388581

q̂ Proof system modulus (qq1) 144114722315180017

ℓ Soundness amplification dimension 3

m1 Witness dimension 148

m2 Dimension of ABDLOP randomness 69

χ Distribution of ABDLOP randomness B1

ρ Infinity norm of challenges 8

η Manhattan-like norm of challenges 93

(α1, α2, α3) Rejection sampling slacks (2.13, 2.13, 2.13)

(M1,M2,M3) Rejection sampling repetition rates (2, 2, 2)

σ1 First rejection sampling width 10258622.895

σ2 Second rejection sampling width 13157.086

σ3 Third rejection sampling width 2220943.590

γ Mask commitment compression parameter 603990638

D Witness commitment compression parameter 21

Security Estimates

BKZsound
M-SIS Required BKZ blocksize for M-SIS, Lem. A.2 389

BKZzk
M-LWE Required BKZ blocksize for M-LWE, Lem. A.2 280

εsound
M-SIS Hardness bound for M-SIS, Lem. A.2 2−129.9

εzk
M-LWE Hardness bound for M-LWE, Lem. A.2 2−127.3

ε
(1)
sound Soundness error 2−128.2

ε
(1)
zk Zero-Knowledge security bound 2−127.3

Efficiency Estimates
|π1| Proof size 44.90 KB

Table B.3. Suggested parameter set for the blind signature (Prove1).

62



Symbol Description Value
Proof System Parameters

λ Security parameter 128

n̂ Proof system ring degree 64

k̂ Subring embedding dimension 4

d̂ Module rank 22

q1 Modulus factor 268435157 ≈ 228

qmin Smallest modulus factor 8388581

q̂ Proof system modulus (qq1) 2251790057742217

ℓ Soundness amplification dimension 3

m1 Witness dimension 119

m2 Dimension of ABDLOP randomness 65

χ Distribution of ABDLOP randomness B1

ρ Infinity norm of challenges 8

η Manhattan-like norm of challenges 93

(α1, α2, α3) Rejection sampling slacks (2.13, 2.13, 2.13)

(M1,M2,M3) Rejection sampling repetition rates (2, 2, 2)

σ1 First rejection sampling width 1406027.473

σ2 Second rejection sampling width 12770.028

σ3 Third rejection sampling width 277540.144

γ Mask commitment compression parameter 146557902

D Witness commitment compression parameter 19

Security Estimates

BKZsound
M-SIS Required BKZ blocksize for M-SIS, Lem. A.3 380

BKZzk
M-LWE Required BKZ blocksize for M-LWE, Lem. A.3 379

εsound
M-SIS Hardness bound for M-SIS, Lem. A.3 2−127.3

εzk
M-LWE Hardness bound for M-LWE, Lem. A.3 2−127

ε
(2)
sound Soundness error 2−126.9

ε
(2)
zk Zero-Knowledge security bound 2−127

Efficiency Estimates
|π2| Proof size 35.09 KB

Table B.4. Suggested parameter set for the blind signature (Prove2).
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