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Abstract. Zero-knowledge proofs allow one party to prove the truth
of a statement without disclosing any extra information. Recent years
have seen great improvements in zero-knowledge proofs. Among them,
zero-knowledge SNARKs are notable for their compact and efficiently-
verifiable proofs, but have relatively high prover costs. To accelerate
proving, distributed zero-knowledge proof systems (Wu et al., Usenix
Security 2018) are proposed: by distributing the proving process across
multiple machines, such systems can achieve notable speedups in overall
proving time. However, existing distributed zero-knowledge proof sys-
tems still have quasi-linear proving complexity, and they either incur a
linear communication cost in circuit size among the distributed machines
or achieve sub-linear communication cost with a trusted setup.
In this paper, we introduce HyperPianist, a distributed zero-knowledge
proof system with a linear-time prover and sub-linear communication
cost under a transparent setup. It applies to arbitrary circuits given the
assumption that the witnesses are initially distributed. We first build a
distributed multivariate polynomial interactive oracle proof system based
on the distributed multivariate SumCheck protocol in deVirgo (Xie et al.,
CCS 2022) and the multivariate proof system HyperPlonk (Chen et al.,
Eurocrypt 2023), with a linear-time prover and incurring no extra over-
head in communication or the number of constraints during distribution.
To instantiate the interactive oracle proof system, we adapt a multi-
variate polynomial commitment scheme, Dory (Lee et al., TCC 2021),
to the distributed setting, and achieve logarithmic communication cost
among the distributed machines with a transparent setup. In addition,
we propose HyperPianist+ as an extension of HyperPianist, by designing
an optimized lookup argument based on Lasso (Setty et al., Eurocrypt
2024) and adapting it to the distributed setting.

1 Introduction

Zero-knowledge proofs (ZKPs) were first introduced in the 1980s by Goldwasser,
Micali, and Rackoff, and have since become a staple of modern cryptography. In



recent years, the efficiency of ZKPs has dramatically improved, enabling a mul-
titude of new applications in blockchains and machine learning, among others.

Zero-knowledge succinct non-interactive arguments of knowledge (SNARK)
are a representative type of ZKPs where the proof is short and fast to verify
(“succinctness”). One of the most popular constructions of modern SNARKs is
to first construct a polynomial interactive oracle proof (PIOP) system and then
instantiate it with a polynomial commitment scheme (PCS). Two of the most
deployed SNARKs in industries, Plonk [17] and Marlin [7], fall into this category.
Plonk stands out with its compact proof size and fast verifier with a universal
trusted setup, as well as support for custom gates; it has been adopted in various
blockchain-related applications such as zkRollups and zkEVM (Zero-knowledge
Ethereum Virtual Machine). An extension work Plonkup [31] enhances Plonk
with the lookup arguments from Plookup [16], allowing the proof system to
efficiently handle non-linear functions.

However, high prover costs (in computation and memory consumption) have
been a main roadblock for SNARKs like Plonk to apply to large-scale circuits,
such as complex EVM traces on blockchains and large language models (LLMs)
in machine learning. As reported in a recent work Pianist [25], Plonk requires
about 200GB of memory for a circuit with 225 gates.

Wu et al. proposed a distributed zero-knowledge proof system DIZK [39]
in 2018, aiming to accelerate proving by distributing the proof generation pro-
cess across multiple machines (called sub-provers). As a seminal work, DIZK
shows significant improvements in proving time by using distributed systems.
However, considering the computational complexity, each sub-prover also needs
quasi-linear time for polynomial interpolation; the communication cost among
the distributed sub-provers is linear in circuit size. Subsequently, zkBridge in-
troduced deVirgo [41], a distributed ZKP system based on multivariate poly-
nomials. The PIOPs in deVirgo only have linear-time proving complexity, but
the multivariate PCS still requires polynomial interpolation and incurs a linear
communication cost among sub-provers. The most recent work Pianist [25] built
a distributed ZKP system on Plonk. It utilized bivariate PIOPs for distribution,
and designed a bivariate PCS based on KZG10 [23]. Armed with these, Pianist
is able to achieve constant communication cost per sub-prover, but it still has
quasi-linear proving cost for interpolation and requires a trusted setup.

We identify that all previous distributed ZKP systems incur quasi-linear
proving time due to polynomial interpolation, involved in either PIOPs or PCS.
On the other hand, another recent work HyperPlonk [6] adapts Plonk’s univari-
ate PIOPs to multivariate ones; by cooperating with a suitable multivariate PCS
(that requires no polynomial interpolation), HyperPlonk can achieve linear prov-
ing complexity. As Hyperplonk’s linear-time prover scales better than Plonk’s
quasi-linear-time prover, in practice, it can be nearly 3× as fast in proving when
circuit size gets to 220, and the factor gets larger as the circuit size increases.

2



1.1 Our Contributions

HyperPianist. In this work, we propose HyperPianist1, a distributed proof system
featuring linear proving cost and sub-linear communication cost per sub-prover
with a transparent setup. It satisfies the notion of “fully” distributed ZKP system
introduced in Pianist [25], as it supports general circuits other than data-parallel
ones (different from Pianist, the generalization of HyperPianist from data-parallel
circuits to arbitrary ones incurs no extra cost). At the core of HyperPianist, we
design a distributed multivariate PIOP system based on HyperPlonk, and a
distributed multivariate PCS based on Dory.

Distributed Multivariate PIOP System. We observe that the constraint system of
HyperPlonk can be reduced to multivariate SumCheck identities. We thus follow
the distribution paradigm of deVirgo’s multivariate SumCheck PIOP, and design
a distributed multivariate PIOP system based on HyperPlonk without incurring
extra communication cost or new constraints. To be more specific, in Pianist, the
main challenge of distributing Plonk’s PIOP system for general circuits arises
from the wiring constraints (i.e., copy constraints). The constraints are handled
by a grand product check PIOP, but unlike data-parallel circuits, each sub-prover
is unable to construct a valid sub-proof in this case. Pianist introduces a helper
polynomial and two additional constraints to solve this problem, which incurs
extra communication and computational costs. Distributing HyperPlonk’s PIOP
system faces the same challenge: the copy constraints are reduced to a multiset
check identity, and are further handled by the grand product check PIOP from
Quarks [35]. This Quarks PIOP also involves a helper polynomial that is not
distributively computable. Computing the polynomial requires an extra linear
communication cost among the sub-provers.

To handle wiring constraints in the distributed setting without incurring
extra overhead, we opt for the logarithmic derivative techniques [22] to reduce the
multiset check identity to a rational sumcheck PIOP. The reduction process and
the rational sumcheck PIOP are distributively computable, with only logarithm
communication cost among sub-provers and proof size. We point out that using
layered circuits to directly prove the multiset relation is also suitable for the
distributed setting. This approach has logarithm communication cost as well,
but O(log2 N) proof size for circuit size N .

Distributed Multivariate PCS: deDory. We notice that the quasi-linear prov-
ing cost and linear communication cost of deVirgo’s multivariate SumCheck
protocol all come from its FRI-based multivariate PCS: it requires univariate
polynomial interpolation and witness exchanging among sub-provers for con-
structing Merkle proofs. We thus design deDory, a distributed multivariate PCS
based on an additively-homomorphic PCS Dory. Given a degree-N multivariate
polynomial and M distributed sub-provers, deDory has O(1) commitment size,
O(logN+logM) communication cost per sub-prover and O(logN) proof size as
1 “HyperPianist” stands for “HyperPlonk vIA uNlimited dISTribution”, analogously to

“Pianist” stands for “Plonk vIA uNlimited dISTribution”.
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Table 1: Comparisons of deDory with other distributed PCS from deVirgo and
Pianist. (Communication: the communication cost among the distributed

machines. Proof Size: the communication cost between the master prover and
the verifier. 2n: circuit size, 2m: the number of distributed machines,

2t = 2n−m: the number of witnesses each machine holds. H,P,F, G,GT : hash,
field, pairing, group operation. | · |: the size of corresponding elements.)

PCS Trans-
parent Pi Time V Time Communication Proof Size

deVirgo ✓ O(t · 2t)F+O(2t)H O(n2)H O(2n) |F| O(n2 + 2m) |H|
Pianist ✗ O(2t)G+O(2t)F O(1)P O(2m) |G| O(1) |G|
deDory ✓ O(2t)G O(n)GT O(n · 2m) |G| O(n) |GT |

Table 2: Comparisons of HyperPianist with other distributed ZKP systems.
(Notations are the same as above.)

Scheme Trans-
parent Pi Time V Time Communication Proof Size

deVirgo ✓
O(t · 2t)F
+O(2t)H O(n2)H O(2n) |F| O(n2 + 2m) |H|

Pianist ✗
O(t · 2t)F
+O(2t)G O(1)P O(2m) |G| O(1) |G|

Ours ✓ O(2t) (F+G) O(n) (F+GT ) O(n · 2m) (|F|+ |G|) O(n) (|F|+ |GT |)

well as verifier time with a transparent setup. Intuitively, the additively homo-
morphic property of Dory enables efficient aggregation of partial results with con-
stant communication cost per sub-prover. But due to the vector-matrix-vector
argument nature of Dory’s evaluation proof, naïvely distributing Dory would en-
tail O(

√
N) communication cost per sub-prover. We thus re-organize the matrix

representation of Dory in a distributively computable fashion to avoid commu-
nication costs for unnecessary aggregation, and bring down the communication
cost from O(

√
N) to O(logN + logM). We give the comparison of deDory with

previous distributed PCS from deVirgo [41] and Pianist [25] in Table 1. By in-
stantiating our distributed multivariate PIOP system with deDory, we can get
HyperPianist. We compare HyperPianist with deVrigo and Pianist in Table 2.HyperPianist+. Our second contribution is HyperPianist+, an enhancement of
HyperPianist with an optimized distributed lookup argument based on Lasso [36].
A lookup argument allows a party to prove that every element in a committed
vector exists in a pre-determined table. To build an optimal distributed lookup
argument compatible with HyperPianist, we studied the state-of-the-art lookup
argument Lasso [36] that is built over multivariate polynomials. We note that
Lasso involves a well-formation check to guarantee the correctness of purported
values given by some polynomials w.r.t. the table. In Lasso, this is done by us-
ing offline memory checking techniques from Spartan [34]. We identify that the
well-formation check can be handled more efficiently using logarithmic derivative
techniques from Logup [22]. By viewing the well-formation check as a set inclu-
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sion relation, we can reduce it to a rational SumCheck identity using logarithmic
derivative techniques, and can immediately save 50% of commitment work and
roughly 30% of the SumCheck prover cost.

We note a concurrent work [12] uses the same idea for optimizing Lasso. We
emphasize that our construction of lookup arguments is developed independently
of theirs, and we additionally adapt it to the distributed setting to get a more
functional distributed ZKP system.

1.2 Organization of the paper.

Section 2 presents the preliminaries. Section 3 introduces the distributed multi-
variate PIOP system of HyperPianist. Section 4 present the distributed multivari-
ate polynomial commitment scheme, deDory. Section 5 shows the construction
of our optimized lookup argument for HyperPianist+. Section 6 gives some ex-
perimental results. We introduce some additional related works in Appendix I.

2 Preliminaries

2.1 Notations

We use λ to denote the statistical security parameter. A function f(λ) is poly(λ)
if there exists a c ∈ N such that f(λ) = O(λc). If for all c ∈ N, f(λ) is o(λ−c),
then f(λ) is in negl(λ) and is said to be negligible. A probability that is 1 −
negl(λ) is overwhelming. We write all groups additively, and assume we are given
some method to sample Type III pairings at a given security level. Then we are
furnished with a prime field F = Fp, three groups G1,G2,GT of order p, a
bilinear map e : G1 × G2 → GT , and generators G1 ∈ G1, G2 ∈ G2 such that
e(G1, G2) generates GT . We generally suppress the distinction between e(·, ·)
and multiplication of F,G1,G2 or GT by elements of F, writing all of these
bilinear maps as multiplication; we will also use ⟨·, ·⟩ to denote the generalized
inner product given by ⟨a, b⟩ =

∑n
i=1 aibi, with signatures: Fn × Fn → F, Fn ×

Gn
{1,2,T} → Gn

{1,2,T} or Gn
1 ×Gn

2 → GT .
For n ∈ N, let [n] be the set {0, 1, . . . , n−1}. Vector, matrix and tensor indices

will begin at 0. For any two vectors v1, v2, we denote their concatenation by
(v1||v2). We use ⊗ to denote the Kronecker product, mapping an m× n matrix
A and p× q matrix B to an mp×nq matrix. For any vector v of even length we
will denote the left and right halves of v by vL and vR. The natural injection
mapping an integer to its binary representation is denoted as bin(·). We write
←$ S for uniformly random samples of a set S.

2.2 SNARKs

Definition 1 (Interactive Argument of Knowledge [6]). An interactive
protocol Π = (Setup, I,P,V) between a prover P and verifier V is an argument
of knowledge for an indexed relation R with knowledge error δ : N→ [0, 1] if the
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following properties hold, where given an index i, common input x and prover
witness w, the deterministic indexer outputs (vk, pk) ← I(i) and the output of
the verifier is denoted by the random variable ⟨P(pk,x,w),V(vk,x)⟩:

– Perfect Completeness: for all (i,x,w) ∈ R,

Pr

[
⟨P(pk,x,w),V(vk,x)⟩ = 1

∣∣∣∣ pp← Setup(1λ)
(vk, pk)← I(pp, i)

]
= 1.

– δ-Knowledge Soundness: There exists a polynomial poly(·) and a PPT
oracle machine E called the extractor such that given oracle access to any
pair of PPT adversarial prover algorithm (A1,A2), the following holds:

Pr

⟨A2(i,x, st),V(vk,x)⟩ = 1 ∧ (i,x,w) /∈ R

∣∣∣∣∣∣∣∣
pp← Setup(1λ)

(i,x, st)← A1(pp)
(vk, pk)← I(pp, i)
w← EA1,A2(pp, i,x)


≤ δ(|i|+ |x|).

An interactive protocol is knowledge sound if the knowledge error δ is negli-
gible in λ.

– Public coin: An interactive protocol is public-coin if V’s messages are cho-
sen uniformly at random.

If an interactive argument of knowledge protocol is public-coin, then it can
be made non-interactive by the Fiat-Shamir transformation [14]. If the scheme
further satisfies the following property:

– Succinctness: The proof size is |π| = poly(λ, log |C|) and the verification
time is poly(λ, |x|, log |C|),

then it is a Succinct Non-interactive Argument of Knowledge (SNARK).

2.3 Polynomial Interactive Oracle Proof

Definition 2 (Public-coin Polynomial Interactive Oracle Proof [6]). A
public-coin polynomial interactive oracle proof (PIOP) is a public-coin interac-
tive proof for a polynomial oracle relation R = (i,x;w), where i and x can
contain oracles to n-variate polynomials over some field F. These oracles can
be queried at arbitrary points in Fn to evaluate the polynomial at these points.
The actual polynomials corresponding to the oracles are contained in pk and w,
respectively. We denote an oracle to a polynomial f by [[f ]]. In each round, P
sends multivariate polynomial oracles, and V replies with a random challenge.

2.4 Multilinear Extension

We define the set F (≤d)
n to be all n-variate polynomials f : Fn → F where the

degree is at most d in each variable. In particular, an n-variate polynomial f is
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said to be multilinear if f ∈ F (≤1)
n . It is well-known that for any f : {0, 1}n → F,

there is a unique multilinear polynomial f̃ : Fn → F such that f̃(x) = f(x) for
all x ∈ {0, 1}n. The polynomial f̃ is called the multilinear extension (MLE) of f ,
and can be expressed as f̃(X) =

∑
x∈{0,1}n f(x) · ẽq(x,X), where ẽq(x,X) :=∏n

i=1(xiXi + (1− xi)(1−Xi)).

2.5 Polynomial Commitment Scheme

Definition 3. A commitment scheme [5] for some space of messages X is a
tuple of three protocols (Gen,Commit,Open) :
– pp← Gen(1λ,F) generates public parameters pp.
– (com, π) ← Commit(pp;x) takes as input some x ∈ X ; produces a commit-

ment com and an opening hint π.
– b ← Open(pp; com, x, π): verifies the opening of commitment com to x with

the opening hint; outputs b ∈ {0, 1}.
Definition 4. A commitment scheme should satisfy the binding property, mean-
ing that for all PPT adversaries A,

Pr

b0 = b1 ̸= 0 ∧ x0 ̸= x1

∣∣∣∣∣∣∣∣
pp← Setup(1λ)

(com, x0, x1, π0, π1)← A1(pp)
b0 ← Open(pp, com, x0, π0)
b1 ← Open(pp, com, x1, π1)

 ≤ negl(λ).

Our distributed polynomial commitment scheme is built upon Dory [24],
which makes use of the Pedersen and AFGHO commitments. For messages X =
Fn and any i ∈ {1, 2, T}, the Pedersen commitment scheme is defined as:

Definition 5 (Pedersen Commitment).
– pp← Gen(1λ) = (g ←$ Gn

i , h←$ Gi)
– (com, π)← Commit(pp;x) = {r ←$ F; (⟨x, g⟩) + rh, r)}
– Open(pp; com, x, π) : Check whether ⟨x, g⟩+ S · h = C.

AFGHO commitment is a structure-preserving commitment to group ele-
ments. In this case we have X = Gn

i for i ∈ {1, 2} and we have:

Definition 6 (AFGHO Commitment [1]).
– pp← Gen(1λ) = (g ←$ Gn

3−i, H1 ←$ G1, H2 ←$ G2);
– (com, π)← Commit(pp;x) = {r ←$ F; (⟨x, g⟩) + r · e(H1, H2), r)};
– Open(pp; com, x, π) : Check whether ⟨x, g⟩+ S · e(H1, H2) = C.

Let (GenF,CommitF,OpenF) be a commitment scheme for F with public pa-
rameters ppF. The polynomial commitment scheme for multilinear polynomials
is defined as follows.

Definition 7 (Polynomial Commitment Scheme [24]). A tuple of proto-
cols (Gen,Commit,Open,Eval) is a polynomial commitment scheme for n-variable
multilinear polynomial if (Gen,Commit,Open) is a commitment scheme for n-
variable multilinear polynomials, and Eval is an interactive argument of knowl-
edge for: REval(pp, ppF) = {((comf ,x, comv); (f, πf , v, πv))} s.t. f ∈ F (≤1)

n ,
f(x) = v, Open(pp; comf , f, πf ) = 1 and OpenF(ppF; comv, v, πv) = 1.
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3 Distributed Multivariate PIOP System

In this section, we present the distributed multivariate PIOP system of Hy-
perPianist. As illustrated in Figure 1, we decompose all constraints into gate
identities and wiring identities (i.e., copy constraints) as in HyperPlonk. But we
use different building blocks to construct a PIOP system that is more compatible
with the distributed setting. Since the bottom building block is the fundamental
SumCheck protocol, below we start from the distributed SumCheck PIOP of de-
Virgo [41], and show how to construct a distributed multivariate PIOP system
for HyperPianist with minimal communication cost in a bottom-up fashion.

HyperPianist+

HyperPianist

Gate Identity Wiring Identity

ZeroCheck

SumCheck

Lookup

Rational SumCheck

Multiset Equality

Fig. 1: Overview of the Multivariate PIOP System of HyperPianist(+).

3.1 Starting Point: Distributed SumCheck PIOP From deVirgo

A SumCheck relation is defined as follows.

Definition 8 (SumCheck Relation). The relation RSum is the set of all tu-
ples (x;w) = ((v, [[f ]]); f) where f ∈ F (≤d)

n and
∑

x∈{0,1}n f(x) = v.

We present the SumCheck PIOP from literature in Protocol 3.1.01. For an
n-variate polynomial f , the SumCheck PIOP involves n rounds of interactions;
in each round k, P computes a univariate polynomial fk(Xk) for V to check
correctness of the claim in the last round k − 1 using a random challenge rk−1.
After n rounds of reduction, V can check the final claim using an oracle call to
the polynomial f . The prover cost of the SumCheck PIOP is O(2n) F operations,
and the verifier cost is O(n). The proof size is O(n)F elements plus an oracle
corresponding to the polynomial f .

Now we review deVirgo’s distributed SumCheck PIOP. In deVirgo [41], the
authors explored the aggregation of multiple SumCheck instances for data-
parallel circuits held by several distributed machines. Here we generalize it to
distributing a single SumCheck across multiple machines, given the assumption
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PROTOCOL 3.1.01 SumCheck PIOP

P claims ((v, [[f ]]; f) ∈ RSum to V.

– In the first round:
• P sends a univariate polynomial f1(X1) =

∑
x∈{0,1}n−1 f(X1,x) to V.

• V checks v = f1(0) + f1(1). If the check passes, V sends a random
challenge r1 ∈ F to P.

– In the k-th round where 2 ≤ k ≤ n− 1:
• P sends a univariate polynomial

fk(Xk) =
∑

x∈{0,1}n−k f(r1, . . . , rk−1, Xk,x) to V.
• V checks fk−1(rk−1) = fk(0) + fk(1). If the check passes, V sends a

random challenge rk ∈ F to P.
– In the n-th round:
• P sends a univariate polynomial fn(Xn) = f(r1, . . . , rn−1, Xn) to V.
• V checks fn−1(rn−1) = fn(0) + fn(1). If the check passes, V generates a

random challenge rn ∈ F, and accepts iff fn(rn) = f(r1, . . . , rn) using
one oracle call to [[f ]].

PROTOCOL 3.1.02 Distributed SumCheck PIOP

P0, · · · ,PM−1 claim ((v, [[f ]]); f) ∈ RSum to V. Pi holds f (i)(x) = f(x, bin(i)).

– In the first round:
• Each Pi sends a local univariate polynomial

f
(i)
1 (X1) =

∑
x∈{0,1}n−m−1 f(X1,x, bin(i)) to P0.

• P0 sums up all the univariate polynomials to get
f1(X1) =

∑
i∈[M ] f

(i)
1 (X1), and sends it to V.

• V checks v = f1(0) + f1(1). If the check passes, V sends a random
challenge r1 ∈ F to P0. P0 transmits r1 to the other Pi.

– In the k-th round where 2 ≤ k ≤ n−m:
• Each Pi sends a local univariate polynomial

f
(i)
k (Xk) =

∑
x∈{0,1}n−m−k f(r1, . . . , rk−1, Xk,x, bin(i)) to P0.

• P0 sums up all the univariate polynomials to get
fk(Xk) =

∑
i∈[M ] f

(i)
k (Xk), and sends it to V.

• V checks fk−1 = fk(0) + fk(1). If the check passes, V sends a random
challenge rk ∈ F to P0. P0 transmits rk to the other Pi.

– After the (n−m)-th round:
• Each Pi sends f(r1, · · · , rn−m, bin(i)) to P0.
• P0 computes v′ =

∑
i∈[M ] f(r1, · · · , rn−m, bin(i)), and constructs the

multilinear polynomial f ′(x) = f(r1, · · · , rn−m,x).
– P0 and V run the SumCheck PIOP to check v′ =

∑
x∈{0,1}m f ′(x).

9



that the initial witnesses have already been distributed. We present the PIOP
in Protocol 3.1.02, and elaborate on it below.

Without loss of generality, suppose we have M = 2m distributed machines
acting as sub-provers. For an n-variate polynomial f , each sub-prover holds
2n−m witnesses. We assume that for the i-th sub-prover Pi, its 2n−m witnesses
are indexed by (x1, . . . , xn−m, bin(i)) where x1, . . . , xn−m ∈ {0, 1}, and bin(i)
is the binary representation of the value i. In other words, each sub-prover Pi is
allocated with a fixed binary suffix bin(i). Following deVirgo [41], we can define
f (i)(x) := f(x, bin(i)), and have∑

x∈{0,1}n

f(x) =
∑

x∈{0,1}n−m

∑
bin(i)∈{0,1}m

f(x, bin(i))

=
∑
i∈[M ]

∑
x∈{0,1}n−m

f(x, bin(i))

=
∑
i∈[M ]

f (i)(x).

The key observation for the distributed SumCheck PIOP is, in each round
k where 1 ≤ k ≤ n − m, the sub-prover Pi is able to locally compute a uni-
variate polynomial f (i)

k (Xk) =
∑

x∈{0,1}n−m−k f(r1, . . . , rk−1, Xk,x, bin(i)). By

construction, we have
∑

i∈[M ] f
(i)
k (Xk) =

∑
x∈{0,1}n−k f(r1, . . . , rk−1, Xk,x); the

RHS is exactly the polynomial fk(Xk) defined in the regular SumCheck PIOP.
Thus, by letting a master prover, say, P0, collect and aggregate all f (i)

k (Xk) from
the sub-provers, it can recover the univariate polynomial f (i)

k , and then interact
with V as in the regular SumCheck PIOP. Note that after receiving the random
challenge rk from V in each round, P0 needs to transmit it to other sub-provers.

Note that the distributed reduction happens only in the first n−m rounds.
After the (n − m)-th round, the multivariate polynomial has been reduced to
f ′(x) = f(r1, · · · , rn−m,x) where x ∈ {0, 1}m. At this point, all sub-provers
need to send f(r1, · · · , rn−m, bin(i)) to P0, who then computes v′ =

∑
bin(i)∈{0,1}m

f(r1, · · · , rn−m, bin(i)), and constructs the multivariate polynomial f ′(x) s.t.
f ′(bin(i)) = f(r1, · · · , rn−m, bin(i)) for all bin(i) ∈ {0, 1}m. Now in the fol-
lowing rounds, the master prover P0 acts as a single prover in the regular Sum-
Check PIOP to prove that

∑
x∈{0,1}m f ′(x) = v′. In the last round, V also

invokes an oracle call to evaluate f(r1, · · · , rn) and checks the final identity.

Remark 1. HyperPlonk proposed a SumCheck PIOP for high-degree polynomi-
als, achieving a prover time of O(d log2 d · 2n) for f ∈ F (≤d)

n , where can be
evaluated in O(d) operations. This algorithm can be adapted similarly to the
distributed setting and we give the detailed description in Protocol A.0.01.

3.2 Distributed ZeroCheck PIOP

The ZeroCheck relation shows that a multivariate polynomial evaluates to zero
everywhere on the boolean hypercube.

10



PROTOCOL 3.2.01 ZeroCheck PIOP (in HyperPlonk)

P claims (([[f ]]); f) ∈ RZero to V.

– V samples r ←$ Fn and sends it to P.
– P computes f̂(x) = f(x) · ẽq(x, r).
– P,V run the SumCheck PIOP (Protocol 3.1.01) to check

((0, [[f̂ ]]); f̂) ∈ RSum.

PROTOCOL 3.2.02 Distributed ZeroCheck PIOP

P0, · · · ,PM−1 claim (([[f ]]); f) ∈ RZero to V. Pi holds f (i)(x) = f(x, bin(i)).

– V samples r ←$ Fn and sends it to P0. P0 transmits r to the other Pi.
– Each Pi views r as r = (r′, r′′) ∈ Fn−m × Fm, and locally computes

f̂ (i)(x) = f (i)(x) · ẽq(x, r′) · ẽq(bin(i), r′′).
– P0, · · · ,PM−1 and V run the distributed SumCheck PIOP (Protocol 3.1.02)

to check ((0, [[f̂ ]]); f̂) ∈ RSum.

Definition 9 (ZeroCheck Relation). The relation RZero is the set of all tu-
ples (x;w) = (([[f ]]); f) where f ∈ F (≤d)

n and f(x) = 0 for all x ∈ {0, 1}n.

In HyperPlonk [6], a ZeroCheck relation is reduced to a SumCheck relation
using a random challenge r. We show the reduction in Protocol 3.2.01.

In the distributed setting, we follow the same distribution paradigm as in
the distributed SumCheck PIOP, assuming that each sub-prover Pi holds a sub-
polynomial f (i)(x) = f(x, bin(i)). Given the verifier’s random challenge vector
r, the i-th sub-prover Pi can construct its local witness for ẽq(x, r) by naturally
splitting the random challenge vector into r = (r′, r′′) ∈ Fn−m × Fm and then
calculating {ẽq(x, r′)· ẽq(bin(i), r′′)|x ∈ {0, 1}n−m}. From here, the adaptation
of ZeroCheck PIOP to the distributed setting follows naturally. We give the
distributed ZeroCheck PIOP in Protocol 3.2.02.

Theorem 1. The PIOP for RZero in Protocol 3.2.01 is perfectly complete and
has knowledge error O(dn/|F|).

3.3 Distributed Multiset Check PIOP

We now focus on the Multiset Check PIOP. A multiset is an extension of the con-
cept of a set where every element has a positive multiplicity. Two finite multisets
are equal if they contain the same elements with the same multiplicities.

Definition 10 (Multiset Check Relation). For any k ≥ 1, the relation
Rk

MSet is the set of all tuples

(x;w) = (([[f0]], . . . , [[fk−1]], [[g0]], . . . , [[gk−1]]); (f0, . . . , fk, g1, . . . , gk−1))

11



where fj , gj ∈ F (≤d)
n (j ∈ [k]) and the following two multisets of tuples are equal:{

fx := (f0(x), . . . , fk−1(x))
}
x∈{0,1}n =

{
gx := (g0(x), . . . , gk−1(x))

}
x∈{0,1}n .

As shown in Figure 3.3.01, HyperPlonk utilizes Reed-Solomon Hash and mul-
tiset hash to reduce a Rk

MSet relation to a R1
MSet relation and further to the

equality of two grand products.

PROTOCOL 3.3.01 Multiset Check PIOP (in HyperPlonk)

P claims (([[f0]], . . . , [[fk−1]], [[g0]], . . . , [[gk−1]]) ∈ Rk
MSet to V.

– V samples β, γ ←$ F and sends them to P.
– P computes f ′(x) =

∑k−1
j=0 γjfj(x) and g′(x) =

∑k−1
j=0 γjgj(x).

– P,V run a Product Check PIOP to check
((1, [[f ′ + β]], [[g′ + β]]); (f ′ + β, g′ + β)) ∈ RProd.

Theorem 2. The PIOP for RMSet is perfectly complete and has knowledge error
O((2n + dn)/|F|).

We formally define the grand product check relation as follows.

Definition 11 (Product Check Relation). The relation RProd is the set
of all tuples (x;w) = ((s, [[f0]], [[f1]]); (f0, f1)) where f0, f1 ∈ F (≤d)

n , f1(b) ̸=
0, ∀b ∈ {0, 1}n and

∏
x∈{0,1}n f ′(x) = s, where f ′ is defined as f ′ = f0/f1.

HyperPlonk applies the Product Check PIOP from Quarks [35] to prove
equality of two products. Below we briefly review the Product Check PIOP from
Quarks [35]. It relies on the following theorem.

Theorem 3 (Product Check in Quarks [35]). P =
∏

x∈{0,1}n f(x) if and

only if there exists h ∈ F (≤1)
n+1 such that h(1, . . . , 1, 0) = P , and ∀x ∈ {0, 1}n, the

following hold: h(0,x) = f(x), h(1,x) = h(x, 0) · h(x, 1).

Theorem 3 shows that to prove a product check relation, it suffices to prove
the existence of such a multilinear polynomial h. Therefore, P can provide an
oracle call to a polynomial purported to be such an h, and proves that (1)
h(1, · · · , 1, 0) = P , (2) h(0,x) = f(x), and (3) h(1,x)− h(x, 0) · h(x, 1) = 0 for
all x ∈ {0, 1}n. Condition (1) is straightforward to verify, while conditions (2)
and (3) can be verified using ZeroCheck PIOP.

Problems When Distributing Quarks Product Check PIOP. Now we
focus on the distributed setting. Recall that after reducing to the Product
Check identity, each sub-prover Pi holds its local sub-polynomial f (i)(x) =
f(x, (bin(i))). To apply the distributed ZeroCheck PIOP, Pi needs to con-
struct its sub-polynomial h(i) : Fn−m → F defined as h(i)(x) = h(x, bin(i)). In
Quarks [35], h is constructed as follows:

12



PROTOCOL 3.3.02 Rational SumCheck PIOP

P claims ((v, [[p]], [[q]]); (p, q)) ∈ RSum to V.

– P computes f(x) = 1
q(x)

, ∀x ∈ {0, 1}n and sends an oracle [[f ]] to V.
– P,V run the ZeroCheck PIOP (Protocol 3.2.01) to check

(([[f · q − 1]]); f · q − 1) ∈ RZero.
– P,V run the SumCheck PIOP (Protocol 3.1.01) to check

((v, [[p · f ]]); p · f) ∈ RSum.

– h(1, · · · , 1) = 0, and
– for all ℓ ∈ [0, n] and x ∈ {0, 1}n−ℓ, h(1ℓ, 0,x) =

∏
y∈{0,1}ℓ v(x,y).

Unfortunately, the sub-prover Pi is unable to construct h(i) from f (i) with-
out introducing extra communication cost. Due to the definition of h, Pi needs
other necessary values that are held by the other sub-provers to construct h(i),
which would incur a linear communication cost in total. We thus seek for other
approaches to avoid the linear communication cost.

Our Solution: Logarithmic Derivatives. Our insight here is to use logarith-
mic derivatives techniques [22] to construct a Multiset Check PIOP. By using
logarithmic derivatives, we can avoid introducing helper polynomials that are in-
compatible with the distributed setting (such as h in the Quarks Product Check
PIOP). We explain this below.

Definition 12. The logarithmic derivative of a polynomial p(X) over a field F
is the rational function p′(X)/p(X). In particular, when the polynomial p(X) =∏n

i=1(X + zi), with each zi ∈ F, the logarithmic derivative of it is equal to
p′(X)
p(X) =

∑n
i=1

1
X+zi

.

Our construction relies on the following theorem.

Theorem 4. Let (ai)
n
i=1 and (bi)

n
i=1 be sequences of a field F where |F| > n.

Then
∏n

i=1(ai +X) =
∏n

i=1(bi +X) in the polynomial ring F[X] if and only if∑n
i=1

1
ai+X =

∑n
i=1

1
bi+X in the fractional field F(X).

Recall that the final step of the Multiset Check PIOP in HyperPlonk is to
prove

∏
x∈{0,1}n

f ′(x)+β
g′(x)+β = 1. Instead of utilizing a grand product check, here

we extend the SumCheck PIOP to fractions (where both the numerator and
the denominator are polynomials) to prove the relation. We define the Rational
SumCheck relation as follows.

Definition 13 (Rational SumCheck Relation). The relation RRSum is the
set of all tuples (x;w) = ((v, [[p]], [[q]]); (p, q)), where p, q ∈ F (≤d)

n , q(x) ̸=
0,∀x ∈ {0, 1}n and

∑
x∈{0,1}n

p(x)
q(x) = v.
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PROTOCOL 3.3.03 Distributed Rational SumCheck PIOP

P0, · · · ,PM−1 claim ((v, [[p]], [[q]]); (p, q)) ∈ RSum to V. Pi holds
p(i)(x) = p(x, bin(i)), q(i)(x) = q(x, bin(i)).

– Each Pi computes f (i)(x) = 1

q(i)(x)
, ∀x ∈ {0, 1}n−m.

– P0 sends an oracle [[f ]] to V.
– P0, · · · ,PM−1 and V run the distributed ZeroCheck PIOP (Protocol 3.2.02)

to check (([[f · q − 1]]); f · q − 1) ∈ RZero.
– P0, · · · ,PM−1 and V run the distributed SumCheck PIOP (Protocol 3.1.02)

to check ((v, [[p · f ]]); p · f) ∈ RSum.

PROTOCOL 3.3.04 Distributed Multiset Check PIOP

P0, · · · ,PM−1 claim (([[f0]], . . . , [[fk−1]], [[g0]], . . . , [[gk−1]]) ∈ Rk
MSet to V. Pi

holds f
(i)
j (x) = fj(x, bin(i)), g(i)j (x) = gj(x, bin(i)), ∀j ∈ [k].

– V samples β, γ ←$ F and sends them to P0. P0 sends them to the other Pi.
– Each Pi computes f ′(i)(x) =

∑k
i=1 γ

i−1f
(i)
i (x), g′(i)(x) =

∑k
i=1 γ

i−1g
(i)
i (x).

– P0, · · · ,PM−1 and V run the distributed Rational SumCheck PIOP
(Protocol 3.3.03) to check ((1, [[f ′ + β]], [[g′ + β]]); (f ′ + β, g′ + β)) ∈ RRSum.

This is in the form of SumCheck, but the SumCheck PIOP does not apply
directly to fractions. To work it around, we can find the multilinear interpolation
of the fraction, i.e., f(x) = 1

q(x) , and reduce it to a normal SumCheck PIOP
as well as a ZeroCheck PIOP to guarantee the well formation of the helper
polynomial f . We present the Rational SumCheck PIOP in Protocol 3.3.02.

Theorem 5. The PIOP for RRSum in Protocol 3.3.02 is perfectly complete and
has knowledge error O(dn/|F|).

This Rational SumCheck PIOP is well suited to the distributed setting: given
the distributed polynomial q(x), the sub-polynomials of the introduced helper
polynomial f can be locally computed by the sub-provers without any additional
communication cost. We give the distributed Rational SumCheck PIOP in Pro-
tocol 3.3.03. And based on it, we present our distributed Multiset Check PIOP
in Protocol 3.3.04.

Remark 2. Other than the logarithmic derivative-based approach, directly using
layered circuits to prove the grand product check is also compatible with the
distributed setting, and adds no extra overhead in communication or the number
of constraints. It incurs a slightly larger proof size of O(n2), but with lower prover
cost. We elaborate on this approach in Appendix B.
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PROTOCOL 3.4.01 Permutation Check PIOP (in HyperPlonk)

P claims (σ; ([[f ]], [[g]]); (f, g)) ∈ RProd to V.

– P,V run a Multiset Check PIOP (Protocol 3.3.04 or Protocol B.0.02) to
check ((1, [[(sid]], [[f ]], [[sσ]], [[g]])); (sid, f, sσ, g) ∈ R2

MSet.

PROTOCOL 3.4.02 Distributed Permutation Check PIOP

P0, · · · ,PM−1 claims (σ; ([[f ]], [[g]]); (f, g)) ∈ RProd to V. Pi holds
f (i)(x) = f(x, bin(i)), g(i)(x) = g(x, bin(i)).

– Each sub-prover Pi locally computes s
(i)
id := {sid(x, bin(i)) | x ∈ {0, 1}n−m}

and s
(i)
σ := {sσ(x, bin(i)) | x ∈ {0, 1}n−m}.

– P0, · · · ,PM−1 and V run a distributed Multiset Check PIOP
(Protocol 3.3.04) to check ((1, [[(sid]], [[f ]], [[sσ]], [[g]])); (sid, f, sσ, g) ∈ R2

MSet.

3.4 Distributed Permutation Check PIOP

A permutation relation shows that for two multivariate polynomials f, g ∈ F (≤d)
n ,

the evaluations of g on boolean hypercube is a predefined permutation σ of f ’s
evaluations on the boolean hypercube.

Definition 14 (Permutation Check Relation). The indexed relation RPerm
is the set of tuples (i;x;w) = (σ; ([[f ]], [[g]]); (f, g)), where σ is a permutation
{0, 1}n → {0, 1}n, f, g ∈ F (≤d)

n , such that for all x ∈ {0, 1}n, f(σ(x)) = g(x).

Given a predefined permutation σ, HyperPlonk introduces two helper polyno-
mials sid, sσ s.t. the polynomial sid ∈ F (≤1)

n maps each binary string x ∈ {0, 1}n
to the corresponding integer value [x] =

∑n
i=1 xi · 2i−1 ∈ F, and analogously,

sσ ∈ F (≤1)
n maps x ∈ {0, 1}n to [σ(x)]. Then the Permutation check can be re-

duced to a Multiset Check based on the observation that if f(σ(x)) = g(x), then
the multisets {([x], f(x))}x∈{0,1}n must be identical to {([σ(x)], g(x))}x∈{0,1}n .
We formulate this PIOP in Protocol 3.4.01.

The above Permutation Check PIOP can be distributed naturally, as each
Pi is able to locally compute its sub-polynomial s(i)id = sid(x, bin(i)) and s

(i)
σ =

sσ(x, bin(i)) for x ∈ {0, 1}n−m. We present it in Protocol 3.4.02.

Theorem 6. The PIOP for RPerm is perfectly complete and has knowledge er-
ror O((2n + dn)/|F|).

The constraint system of HyperPianist directly follows HyperPlonk, and given
the building blocks described above, the overall distributed PIOP system for the
constraints of HyperPianist is trivial. We present them in Appendix F.
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Remark 3. The above distributed PIOP construction is not zero-knowledge, but
it can be achieved using the standard techniques from HyperPlonk [6, Appendix
A]. Therefore, we omit the details here for simplicity.

3.5 Complexity Analysis

Since all of our distributed PIOPs are reduced to the distributed SumCheck
protocol, we primarily focus on the complexity of the SumCheck PIOP in the
following analysis. Using Protocol A.0.01, the workload for each sub-prover is
O(d log2 d · 2n−m) for polynomials f ∈ F (≤d)

n . The additional workload for the
master prover during the first n − m rounds involves summing 2m degree-d
univariate polynomials, which can be done in O(d ·2m) per round. In the final m
rounds, the master prover performs the remaining SumCheck, incurring a cost of
O(d log2 d · 2m). Therefore, the total additional workload for the master prover
is O((d(n−m) + d log2 d) · 2m).

In each round, each sub-prover must send its univariate polynomial, consist-
ing of d + 1 F elements, to the master prover, while the master prover needs
to transmit the random challenge from the verifier to each sub-prover. Conse-
quently, the total communication overhead for each sub-prover is O(d(n−m)).

For each invocation of the distributed Rational SumCheck, each sub-prover
needs to additionally generate an oracle for the helper polynomial, which can be
done with O(2n−m) operations locally.

4 Distribuetd Multivariate PCS: deDory

In this section, we present deDory, a distributed multivariate PCS for instanti-
ating the multivariate PIOP system. It is a key component of HyperPianist, and
also may be of independent interest.

4.1 Review: Dory PCS

We first review the original Dory PCS in the following. The Dory PCS focuses
on multilinear polynomials, with the observation that on the boolean hyper-
cube, any polynomial (univariate or multivariate) can be transformed into an
equivalent multilinear polynomial. Given a multilinear polynomial f ∈ F (≤1)

n ,
its matrix representation is defined as follows.

Definition 15 (Matrix Representation of Multilinear Polynomial). For
a multilinear polynomial f : Fn → F, without loss of generality, we assume n
is even and let k := n/2. Then the polynomial f can be represented as matrix
M = (M ij), where M ij = f(x1, . . . , xn) for any (x1, . . . , xn) ∈ {0, 1}n and
i =

∑k
t=1 2

k−t · xt, j =
∑n

t=k+1 2
n−t · xt.
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Dory Commitment. In order to generate polynomial commitments using the ma-
trix representation, Dory [24] proposed to use a two-tiered homomorphic com-
mitment [20] by combining the Pedersen and AFGHO commitments. Formally,
for M ij ∈ Fn×m, we have

– pp← Gen(1λ) = (Γ1 ←$ Gm
1 , Γ2 ←$ Gn

2 );
–

(com, π)← Commit(pp;M ij) =

{
Vi ← CommitPedersen(Γ1;M ij);
C ← CommitAFGHO(Γ2;V );

}
;

– Open(pp; com, x, π) : Check whether
∑

i Γ2i(
∑

j M ijΓ1j) = C.

Dory Evaluation Proof. The evaluation proof of Dory is built on the following
observation: given the matrix representation of f , the evaluation of f at some
point (r1, . . . , rn) ∈ Fn can be written as a vector-matrix-vector product. More
specifically, we have

f(r1, . . . , rn) = (⊗k≤n/2vk)
TM(⊗k>n/2vk), (1)

where vk = (1 − rk, rk). We can define the following relation to capture the
vector-matrix-vector product identity.

Definition 16. Let L,R ∈ Fn be public vectors, M ∈ Fn×n be the secret matrix,
y = LTMR, comM be the commitment to M using the two-tiered commitment,
and comy be the Pedersen commitment to y. The relation RVMV is the set of all
tuples ((L,R, comM , comy); (M , y)).

To prove the opening of f at the point (r1, · · · , rn) ∈ Fn, it suffices to prove
the following vector-matrix-vector relation

((⊗k<n/2rk,⊗k≥n/2rk, comM , comy); (M , y)) ∈ RVMV.

The general strategy to prove RVMV is as follows. Suppose commitment to
y = LTMR is computed as CommitPedersen(Γ1,fin; y) = (y; comy). P can com-
pute the vector v = LTM , and by construction y = LTMR = ⟨v,R⟩. Since
Pedersen commitments are linearly homomorphic, we have comv := ⟨L, comrow⟩
= CommitPedersen(Γ1,v) is a commitment to v, where comrow is a vector
of Pedersen commitments to the rows of matrix M . Recall that comM is a
commitment to comrow ∈ Gn

1 . So to prove ((L,R, comM , comy); (M , y)) ∈
RVMV, it suffices to prove knowledge of comrow ∈ Gn

1 ,v ∈ Fn s.t. comM =
⟨comrow, Γ2⟩, ⟨L, comrow⟩ = ⟨v, Γ1⟩ and comy = ⟨v,R⟩Γ1,fin. This is further
proved by two sigma protocols and an Inner-Product Argument (IPA) showing
C = ⟨comrow,vΓ2,fin⟩. We formally define the inner-product relation below.

Definition 17. Let s1, s2 ∈ Fn be public vectors. The relation RInner is the set
of all tuples ((s1, s2, C,D1, D2, E1, E2); (v1,v2)), where v1 ∈ Gn

1 ,v2 ∈ Gn
2 are

witness vectors, and D1 = ⟨v1, Γ2⟩, D2 = ⟨Γ1,v2⟩, E1 = ⟨v1, s2⟩, E2 = ⟨s1,v2⟩,
C = ⟨v1,v2⟩.
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In Dory, we have v1 = comrow,v2 = vΓ2,fin, and two public vectors s1 =
R, s2 = L. To prove the inner-product relation, Dory utilizes an observation
that for any vector uL,uR,vL,vR, and any non-zero scalar a,

⟨uL||uR,vL||vR⟩ = ⟨auL + uR, a−1vL + vR⟩ − a⟨uL,vR⟩ − a−1⟨uR,vL⟩.

Thus a claim about the inner-product ⟨u,v⟩ of length n can be reduced to
a claim about the inner-product of vectors of length n/2. We give a detailed
description of the reduction process in Appendix C, Protocol C.0.01.

After log n iterations, the length of the inner-product is eventually reduced
to 1. V must also compute the final s1, s2 to verify the Fold-Scalars, as described
in Protocol C.0.02. In particular, there are the following scalars:

⟨s1,⊗n−1
k=0(αk, 1)⟩, ⟨s2,⊗n−1

k=0(α
−1
k , 1)⟩.

For polynomial evaluation proof, s1, s2 have special multiplicative structure,
where each vector is a tensor product of n vectors of length 2. Thus we have

⟨⊗n−1
k=0(lk, rk),⊗

n−1
k=0(ak, 1)⟩ =

N−1∏
i=0

(lkak + rk),

which allows computation of the product in O(log n) operations on F.
Combining the IPA reduction Protocol C.0.01 and Fold-Scalar verification

Protocol C.0.02, we can obtain the full IPA protocol to prove the inner-product
relation ((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner. We show the IPA pro-
tocol in Protocol C.0.03. Based on this, we give the protocol for proving the
vector-matrix-vector relation in Protocol C.0.04.

Remark 4. Protocol C.0.04 only satisfies the weaker notation called Random
Evaluation Knowledge Soundness, instead of Knowledge Soundness. To address
this issue, Dory [24] suggested that if the prover can open the polynomial at a
random challenge point using Protocol C.0.04, then we can achieve Knowledge
Soundness. We describe the final polynomial evaluation proof in Protocol C.0.05.

4.2 deDory: Adapting Dory to the Distributed Setting

A Naïve Attempt. At first thought, one may think Dory is naturally suitable
for distribution: the polynomial is represented as a matrix, the local witnesses
each sub-prover holds can be viewed as sub-columns of the matrix (or sub-rows
if we transpose the matrix), and all the intermediate values involved in the PCS
can be constructed by the sub-provers computing over their sub-columns (or
sub-rows) then aggregating their partial results together. This straightforward
approach works, but would inevitably incur a communication of O(2n/2) between
each sub-prover and the master prover. We elaborate on this issue below.

Recall that for an n-variate polynomial f , each sub-prover holds 2n−m wit-
nesses where M = 2m is the number of sub-provers. Given the matrix represen-
tation M of the polynomial f , it is clear that these witnesses construct 2n/2−m

columns (each of size 2n/2) of the matrix M . To commit to M in a distributed
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fashion, one may transpose M so that each sub-prover holds 2n/2−m rows of
the matrix and it can apply Pedersen commitment procedure to these rows and
then aggregate the commitments together using AFGHO commitment.

Now consider the evaluation procedure. In the original Dory evaluation proto-
col, the prover needs to compute and prove an inner-product C = ⟨v, comrow⟩,
which implies that the prover should be able to calculate both v, comrow at the
same time to obtain C. In the distributed setting, it’s easy for the sub-provers
to calculate comrow as each of them holds full vectors of some sub-rows of
M . However, the columns they hold are incomplete; given that v = LTM , to
compute v, each sub-prover needs to send its partial results (which have size
linearly in the number of columns) to the master prover for aggregation, which
incurs a communication cost of O(2n/2). Besides, after obtaining v, the master
prover needs to additionally re-allocate the corresponding sub-elements of v to
each sub-prover as witnesses to the following IPA reduction procedure.

Achieving Logarithm Communication Cost. Below we show how to opti-
mize the above process and construct a distributed Dory PCS with logarithm
communication cost. The key insight here is to re-organize the matrix to enable
the computation compatible with the distributed setting. Below we first give the
high-level idea of our construction.

Since each sub-prover Pi holds the witnesses defining the sub-polynomial
f (i), we could represent it using the matrix representation as well, denoted as
M (i) with size 2(n−m)/2×2(n−m)/2 (w.l.o.g. we assume n−m is even). To enable
the sub-provers to compute their partial results of C = ⟨v, comrow⟩ locally and
independently from each other, we need to re-organize their sub-matrices into a
large matrix carefully. To achieve this, we opt for the block-diagonal form and
define a new matrix M̂ as

M̂ =

M
(0)

. . .
M (2m−1)

 .

To be more specific, all sub-matrices M (i) are placed diagonally into the
new matrix and all the other entries are set to zero. In this way, the sub-provers
can calculate their local partial results com(i)

row,v(i) and C(i), and then further
use them as local witnesses directly in the following IPA reduction procedure.
This entirely avoids the two-round interaction between the sub-provers and the
master prover in the naïve approach, and thus saves O(2n/2) communication
cost. Below we give a detailed explanation of our construction, and formally
describe the procedures of deDory in Protocol 4.2.02.

Distributed Dory Commitment. Since each sub-matrix M (i) has size 2(n−m)/2×
2(n−m)/2, the new matrix M̂ is of size 2(n+m)/2 × 2(n+m)/2. With the new ma-
trix representation M̂ , the sub-provers can commit to M̂ by first committing its
local sub-matrix M (i) using the corresponding sub-vectors Γ

(i)
1 , Γ

(i)
2 , and then

aggregating the results together by the master prover (as described in Proto-
col 4.2.01).
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PROTOCOL 4.2.01 deDory-Commit(f)

Given f ∈ F (≤1)
n , Pi holds a sub-polynomial f (i) ∈ F (≤1)

n−m s.t.
f (i)(x) = f(x, bin(i)), ∀i ∈ [2m].

– Pi obtains the matrix representation of its sub-polynomial M (i), computes
comrow

(i) = CommitPedersen(Γ
(i)
1 ;M (i)),

com
(i)
M = CommitAFGHO(Γ

(i)
2 ; comrow

(i)),

and sends com
(i)
M to P0.

– P0 computes commitment comM =
∑

i∈[0,M−1] com
(i)
M .

PROTOCOL 4.2.02 deDory Polynomial Commitment Scheme

Given f ∈ F (≤1)
n , Pi holds a sub-polynomial f (i) ∈ F (≤1)

n−m s.t.
f (i)(x) = f(x, bin(i)), ∀i ∈ [2m].

– deDory.Gen(1λ) : Sample pp = (Γ1 ∈ GN
1 , Γ2 ∈ GN

2 ).
– deDory.Commit(pp; f) : P0, · · · ,PM−1 run deDory-Commit(f), and P0

outputs comM as the commitment to f .
– deDory.Open(pp; f, r)
• Each Pi locally computes L(i) and R(i) corresponding to r.
• P0 computes the commitment to the purported value y = f(r) as comy,

and sends it to the verifier V.
• P0, · · · ,PM−1 and V run deDory-Eval(comM , comy,L,R).

Distributed Dory Evaluation Proof. As we re-arranged the structure of the ma-
trix, we need to ensure that under this new representation, we can construct
a valid vector-matrix-vector argument that guarantees the correctness of f(r)

w.r.t. the commitment to M̂ . To this end, we need to also re-arrange the public
vectors L̂ and R̂ accordingly s.t.

L̂
T
M̂R̂ = f(r). (2)

To see how to arrange the two vectors, first recall that each sub-prover Pi holds
2n−m witnesses f(x, bin(i)) where x ∈ {0, 1}n−m. Given the fact that the last
m variables are fixed for each sub-prover, we divide the evaluation vector r into
three parts, namely: r(0) = r[0 : (n − m)/2], r(1) = r[(n − m)/2 : n − m],
r(2) = r[n−m : n].

Recall that M (i) is represented as in Definition 15 with a fixed suffix bin(i).
Then for each Pi, we can initially set its sub-vectors L̂ = ⊗rk∈r(0)(1 − rk, rk)

and R̂ = ⊗rk∈r(1)(1 − rk, rk). To guarantee Equation (2), we need additionally
multiply L̂ (or R̂ equivalently) by the i-th element of the vector ⊗rk∈r(2)(1 −
rk, rk). We then can get the full vectors of L̂, R̂ by collecting L̂

(i)
, R̂

(i)
together.

We give the formal construction of L̂, R̂ in the following theorem.
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PROTOCOL 4.2.03 deDory-IPA2n(s1, s2, C,D1, D2, E1, E2).

Pi holds witness v
(i)
1 ,v

(i)
2 w.r.t. v1,v2 s.t.

((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner.

For all j ∈ {0, . . . , n− 1}, the sub-provers pre-compute
Γ1,j+1 = (Γ1,j)L, Γ2,j+1 = (Γ2,j)L, for all i ∈ {0, . . . , n} compute
χi = ⟨Γ1,i, Γ2,i⟩, and for all i ∈ {0, . . . , n− 1} compute ∆1L,i = ⟨(Γ1,i)L, Γ2,i+1⟩,
∆2L,i = ⟨Γ1,i+1, (Γ2,i)L⟩, ∆1R,i = ⟨(Γ1,i)R, Γ2,i+1⟩, ∆2R,i = ⟨Γ1,i+1, (Γ2,i)R⟩.

– For j = 0, . . . , n−m− 1, P0, · · · ,PM−1 and V run
(s1, s2, C,D1, D2, E1, E2)← deDory-Reduce2n−j (s1, s2, C,D1, D2, E1, E2).

– Each Pi sends (s
(i)
1 , s

(i)
2 , C(i), D

(i)
1 , D

(i)
2 , E

(i)
1 , E

(i)
2 , v

(i)
1 , v

(i)
2 ) to P0.

– P0 computes C =
∑

i∈[0,M−1] C
(i), D1 =

∑
i∈[0,M−1] D

(i)
1 ,

D2 =
∑

i∈[0,M−1] D
(i)
2 , E1 =

∑
i∈[0,M−1] E

(i)
1 , and E2 =

∑
i∈[0,M−1] E

(i)
2 .

– P0 sets v1 =
(
v
(i)
1

)
i∈[0,M−1]

, v2 =
(
v
(i)
2

)
i∈[0,M−1]

, s1 =
(
s
(i)
1

)
i∈[0,M−1]

,

s2 =
(
s
(i)
2

)
i∈[0,M−1]

.

– For j = n−m, . . . , n− 1, P0 and V run
(s1, s2, C,D1, D2, E1, E2)← Dory-Reduce2n−j (s1, s2, C,D1, D2, E1, E2).

– P0 and V run Dory-Fold-Scalar(s1, s2, C,D1, D2, E1, E2).

Theorem 7. Let L̂ = ⊗rk∈(r(2)||r(0))(1−rk, rk), and R̂ = ⊗k∈[2m](1, 1)⊗rk∈r(1)

(1− rk, rk), then L̂
T
M̂R̂ = f(r).

Proof. Let L = ⊗rk∈r(0)(1− rk, rk) and R = ⊗rk∈r(1)(1− rk, rk). Then we have
R̂ = [R|| · · · ||R]. For L̂, since ⊗rk∈r(2)(1 − rk, rk) = {ẽq(r(2), bin(i))}i∈[2m],
then L̂ = [ẽq(r(2), bin(0))L|| · · · ||ẽq(r(2), bin(2m − 1))L].

Then, L̂
T
M̂R̂ =

∑2m−1
i=0 ẽq(r′′, bin(i))LTM (i)R. Since M (i) is the matrix

representation of sub-polynomial f (i), and f (i)(r(0)|| r(1)) = LM (i)R, we have
L̂

T
M̂R̂ =

∑2m−1
i=0 ẽq(r(2), bin(i))f (i)(r(0)||r(1)) = f(r). ⊓⊔

Let L̂
(i)
, R̂

(i)
be the sub-vectors of L̂, R̂ held by sub-prover Pi. At this point,

each Pi is able to locally run the IPA reduction process with public vectors
L̂

(i)
, R̂

(i)
and witness M (i) in (n−m)/2 rounds. After that, the master prover

P0 aggregates all the reduced results from the sub-provers, and performs the last
m rounds of IPA reduction and the final Fold-Scalars verification with V as in
the regular Dory. We present the full distributed IPA protocol in Protocol 4.2.03
(the distributed IPA reduction protocol and the regular Fold-Scalars verification
can be found in Protocol D.0.01 and Protocol C.0.02 respectively).

Given the distributed IPA protocol, we now present the distributed vector-
matrix-vector protocol in Protocol 4.2.04. This approach reduces the communi-
cation overhead from O(2n/2) to O(n), with only a modest increase in proof size,
from O(n) to O(n+m), due to the matrix size expanding from 2n/2 to 2(n+m)/2.
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PROTOCOL 4.2.04 deDory-Eval-Re(comM , comy,L,R)

Pi holds sub-matrix M (i), comrow
(i) w.r.t. M , comrow and common input

L(i),R(i) w.r.t. L,R s.t.
com(i)

row = CommitPedersen(Γ1;M
(i)), comM = CommitAFGHO(Γ2; comrow),

((L,R, comM , comy); (M , y)) ∈ RVMV.

– Each Pi computes v(i) = L(i)TM (i), y(i) = ⟨v(i),R(i)⟩, and sends y(i) to P0.
– P0 computes y =

∑
i∈[0,M−1] y

(i), and sends it to V.

– Each Pi computes C(i) = e(⟨v(i), comrow
(i)⟩, Γ2,fin), E

(i)
2 = y(i)Γ2,fin,

E
(i)
1 = ⟨L(i), comrow

(i)⟩, D(i)
2 = e(⟨Γ (i)

1 ,v(i)⟩, Γ2,fin), and sends them to P0.
– P0 computes C =

∑
i∈[0,M−1] C

(i), D2 =
∑

i∈[0,M−1] D
(i)
2 ,

E1 =
∑

i∈[0,M−1] E
(i)
1 , E2 =

∑
i∈[0,M−1] E

(i)
2 , and sends them to V.

– V checks that E2 = yΓ2,fin, comy = yΓ1,fin, and e(E1, Γ2,fin) = D2.
– P0, · · · ,PM−1 and V run deDory-IPA(L,R, C, comM , D2, E1, E2).

We present the final distributed protocol for polynomial evaluation proofs in
Protocol D.0.02. The batch algorithm of Dory can also be distributed similarly.

Theorem 8. Given polynomial f(X) ∈ F (≤1)
n and M = 2m sub-prover, Proto-

col 4.2.02 is PCS satisfying completeness and knowledge soundness. The total
proving computation consists of O(N = 2n) group operations, while O(N

M ) group
operations for each sub-prover and O(N

M +M) group operations for the master
prover. The total communication between Pi and P0 is O(n). The commitment
size is 1 GT element, and the proof size is O(n+m) GT elements. The verifica-
tion cost is O(n+m) group operations plus O(1) pairing.

5 HyperPianist+: with Optimized Lookup Arguments

In this section, we present an optimized lookup argument in the distributed
setting and obtain HyperPianist+.

The lookup relation can be interpreted as a set inclusion relation on com-
mitted vectors, as defined in Definition 18. HyperPlonk+ demonstrates how to
extend the univariate PIOP from Plookup [16] into a multivariate one. How-
ever, this transformation entails sorting the union table of public table and
prover’s witnesses, making the prover not strict linear. Our optimization builds
on Lasso [36], the most efficient known construction of multivariate lookup ar-
guments so far.

Definition 18 (Lookup Relation). The indexed relation RLookup is the set
of tuples (i;x;w) = (b; ([[a]], [[T ]]); (a, T )) where b ∈ Fℓ, a is the multilinear
polynomial representation of a ∈ Fℓ, and T is the multilinear polynomial repre-
sentation of a table T ∈ FN , such that for all i ∈ {1, · · · , ℓ},ai = T [bi].
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5.1 Review: Lookup Arguments from Lasso

Lasso is specialized for structured tables. It makes the observation that the
lookup tables for many non-linear operations (like bitwise AND) can be broken
down into smaller sub-tables, such that for some r = (r1, · · · , rc) and some
(simple) algebraic function g,

T [r] = g(T1[r1], · · · , Tk[r1], · · · , Tα−k+1[rc], · · · , Tα[rc]), (3)
where Ti are the sub-tables of the table T , and α = kc.

In Lasso, if the prover wants to convince the verifier that a committed vector
a ∈ Fℓ is contained in another committed vector (i.e., table) t ∈ Fn, it turns
to prove the existence of some sparse matrix M ∈ Fℓ×n such that in each row,
there is only one non-zero entry of value 1, and M · t = a. Then, they run the
SumCheck protocol on the claim∑

y∈{0,1}log n

M̃(r,y) · t̃(y) = ã(r), (4)

where r ∈ Flog ℓ is a random vector chose by the verifier, and M̃(x, y), t̃(y), ã(x)
is the MLE of M , t,a respectively.

Note that V can obtain ã(r) via an oracle call of ã. However, naïvely com-
mitting to M̃ for V to making oracle calls is expensive for P. To efficiently prove
the SumCheck claim (4), Lasso utilizes a key feature of the matrix M : it is
extremely sparse, i.e., only one entry in each row of M can be non-zero, and
the non-zero entry must be 1. Given this, Lasso transforms Equation (4) into∑

i∈{0,1}log ℓ ẽq(i, r) · T [nz(i)] = ã(r), where for each i-th row of the matrix M ,
nz(i) denotes the column index corresponding to the non-zero entry in this row,
and T [nz(i)] denotes the corresponding nz(i)-th entry of the table t. Since we
assume the table is decomposable, we can write the LHS of the equation as∑
i∈{0,1}log ℓ

ẽq(i, r) · g(T1[nz1(i)], · · · , Tk[nz1(i)], · · · , Tα−k+1[nzc(i)], · · · , Tα[nzc(i)]).

Let Ej(i) be the MLE of Tj [nz⌈j/k⌉(i)]. Then we have∑
i∈{0,1}log ℓ

ẽq(i, r) · g(E1(i), E2(i), · · · , Eα(i)) = ã(r). (5)

Now P and V can engage in a new SumCheck instance to check Equation (5).
To this end, the prover now needs to provide oracles to new polynomials Ej , and
additionally, it needs to show that they are well-formed, i.e., indeed equal to the
MLE of Tj [nz⌈j/k⌉(i)]. In Lasso, this well-formation check is done with the offline
memory checking technique from Spartan [34]. Due to page limit, we review the
technique in Appendix G.

Using the offline memory techniques, for each lookup argument, the prover
needs to commit 2c polynomials of size ℓ and c polynomials of size N1/c. The
prover also needs to run a SumCheck PIOP for Equation 5, which can be done
in 2 · c · ℓ using the algorithm in Remark 1. Finally, the prover needs to run c
instances of memory checking, which leads to c sized-2(N1/c + ℓ) commitment
and 2c invocation of sized-(N1/c + ℓ) SumCheck PIOP of degree 2 with the
grand product check PIOP from Quarks [35], or 4c invocation of sized-(N1/c+ℓ)
SumCheck PIOP of degree 2 using layered circuits [37].
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PROTOCOL 5.2.01 Well-Formation Check PIOP

P claims E(k) = T [nz(k)], ∀k ∈ {0, 1}log ℓ. V have oracles to E(x) and ñz(x).

– P sends an oracle of m(X) (defined in Equation (6)) to V.
– V samples β, γ ←$ F, and sends them to P.
– P sends the rational sum claim v =

∑
x∈{0,1}log l

1
β+ñz(x)+γ·E(x)

to V.
– P,V run the Rational SumCheck PIOP (Protocol 3.3.02) to check

((v, [[m(x)]], [[β+ sid(x)+ γ ·T (x)]]); (m(x), β+ sid(x)+ γ ·T (x))) ∈ RRSum,
and ((v, [[1]], [[β + ñz(x) + γ · E(x))]]); (1, β + ñz(x) + γ · E(x))) ∈ RRSum.

PROTOCOL 5.2.02 Lookup PIOP

P claims (b; ([[a]], [[T ]]); (a, T )) ∈ RLookup to V, where T is defined as in Equ. (3).

– P sends oracles of E1, · · · , Eα and ñz1, · · · , ñzα to V.
– V picks a random r ∈ Flog ℓ, and sends it to P.
– V makes an oracle call to ã and obtains ã(r).
– P,V run a SumCheck PIOP (Protocol 3.1.01) to check

v =
∑

k∈{0,1}log ℓ ẽq(r,k)g(E1(k), · · · , Eα(k)).
– P,V run a Well-Formation Check PIOP (Protocol 5.2.01) to check

Ej(k) = Tj(nz(k)), ∀k ∈ {0, 1}log ℓ, j ∈ [α].

5.2 Our Optimization: Using Logup Instead

We optimize the well-formation check of Lasso by making the observation that

Claim 1. If {(nz(k), E(k))|k ∈ {0, 1}log ℓ} ⊂ {(x, T [x)]|x ∈ {0, 1}logN}, then
E(k) = T [nz(k)] for all k ∈ {0, 1}log ℓ.

It is worth noting that here the two sides are sets, not multisets. This statement
can be proved more efficiently with techniques from Logup [22] (or its layered
circuit compilation version [30]). Logup [22] depends heavily on the logarithmic
derivative technique, which is a generalized version of Theorem 4.

Theorem 9. Let F be a field of characteristic p > max(ℓ,N). Suppose that
(ai)

ℓ
i=1, (bj)

N
j=1 are sequences of field elements. Then {ai} ⊂ {bj} as sets if and

only if there exists a sequence (mj)
N
j=1 such that

∑ℓ
i=1

1
ai+X =

∑N
j=1

mj

bj+X .

Recall that our task is to prove the following set inclusion relation (see
Claim 1) {(nz(k), E(k))|k ∈ {0, 1}log ℓ} ⊂ {(x, T (x))|x ∈ {0, 1}logN}. We first
use Reed-Solomon to fingerprint each tuple, i.e., using a random challenge to
combine each tuple into one element, and then apply Theorem 9. We can get
the following relation∑

x∈{0,1}log ℓ

1

nz(x) + γ · E(x) + β
=

∑
x∈{0,1}log N

m(x)

sid(x) + γ · T (x) + β
, (6)
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where γ, β are random challenges picked by V, and the polynomial sid ∈ F (≤1)
n is

defined the same as in Section 3.4 (i.e., mapping each binary string x ∈ {0, 1}n
to the corresponding integer value [x] =

∑n
i=1 xi · 2i−1 ∈ F).

It is worth noting that m(k) for k ∈ {0, 1}ℓ denotes the multiplicity of the
entry (nz(k), E(k)) in the lookup vector (in fact, it is equal to final_cts(k) in
the offline memory checking approach). Now, to prove the well-formation of E,
the prover needs to compute the polynomial m(x) and invokes two rational
SumCheck to prove Equation (6). The details are in Protocol 5.2.01.

We show the complete Lookup PIOP in Protocol 5.2.02. It follows Lasso [36],
except that we use the Logup-based techniques for the Well-Formation Check
PIOP rather than the offline memory checking approach.

Prover Time. We give a rough estimation on the prover time using our approach.
For each lookup argument, the prover needs to commit c polynomials of size ℓ
and size N1/c. With the PIOP compilation, the prover needs to additionally
commit c polynomials of size ℓ and size N1/c, and invoke c degree-2 SumCheck
protocol of size ℓ and size N1/c, and c multilinear SumCheck protocol. With
layered circuits, the additional prover’s work is equivalent to 4c invocation of
degree 2 SumCheck protocol of size (ℓ+N1/c). Compared with the Lasso PIOP
version, our optimization roughly saves 50% of commitment work and 30% of
SumCheck work. Compared with the Lasso layered circuit version, we can save
approximately 30% of commitment work.

5.3 Adapting Lookup PIOP to the Distributed Setting

Now we show how to distribute the above Well-Formation Check PIOP. As
before, we assume that each sub-prover holds a sub-polynomials nz(i)(x). Given
this, the sub-provers are able to locally construct E(i)(x) = T [nz(i)(x)]. The
main task of the sub-provers is to compute m(x). We let m′(i) : Fn → F be a
multivariate polynomial that maps x ∈ {0, 1}n to the multiplicity of the entry
nz(x, bin(i)), E(x, bin(i)) in the lookup vector. Note that the polynomial m′(i)

can be locally computed by the sub-prover Pi given E(i)(x), nz(i)(x). Then by
the definition of m, we have ∑

i∈[0,M−1]

m′(i)(x) = m(x).

Thus we can let the master prover adds up all the m′(i)(x) from the sub-provers,
and then re-allocate the corresponding sub-polynomial m(i)(x) = m(x, (bin(x)))
where x ∈ {0, 1}n−m. Note that there are at most m non-zero multiplicity val-
ues, thus the communication between each sub-prover and the master prover is
at most m.

Due to page limit, we present the distributed Well-Formation Check PIOP
in Protocol H.0.01, and the full distributed Lookup PIOP in Protocol H.0.02.
We then can get the final PIOP system for HyperPianist+ by combining the dis-
tributed PIOPs for HyperPlonk and the Lookup relation. We describe the con-
straint system and the distributed PIOP system HyperPianist+ in Appendix H.
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Table 3: Experiment results of proving 64-bit XOR statements (using C = 4
decomposed subtables each of size 216).

Statement Size Scheme Prover Time (ms) Proof Size (KB) Verifier Time (ms)

2
Lasso 70.42 54 3.979
Ours 37.44 (1.89×) 54 3.746

32
Lasso 73.28 58 7.863
Ours 42.88 (1.71×) 58 7.128

256
Lasso 74.35 66 17.73
Ours 52.58 (1.41×) 65 16.55

6 Evaluation

In this section, we conduct some evaluations on HyperPianist (+), and compare
it with the state-of-the-art distributed ZKP system Pianist.

6.1 Implementation

We fully implemented HyperPianist and HyperPianist+ 2 using the Rust ark-
works3 ecosystem. We build HyperPianist by adapting the multivariate PIOP
system of the open-source HyperPlonk and fully realizing the distributed multi-
variate PCS deDory. Our optimized lookup argument is implemented as a patch
to Lasso from the Jolt project [2] (a SNARK framework for zkVMs based on
Lasso). More implementation details can be found in Appendix ??.

6.2 Experiments

Setup. We conduct three types of experiments: (1) we first fix the number of
distributed machines as 32, and use random circuits of size varying from 221

to 225 to evaluate both HyperPianist and Painist, (2) we fix the circuit size to
225, and use different number of distributed machines from 4 to 32 to measure
the scalability of HyperPianist in the size of the distributed system, (3) we test
the performance of the lookup arguments of HyperPianist+ compared with the
original Lasso.

All the distributed machines are Alibaba ecs.r8i.8xlarge cloud servers with
32 vCPUs and 256 GB memory. These machines are located in two regions.

We performed some preliminary experiments generating proofs for m random
lookups of XOR statements. The subtables are the same as those used in Lasso,
and parameters are set to match Lasso’s default for RV32 (number of dimen-
sions C = 4, memory size/subtable size 216 = 65536). Proof size reported here

2 Our implementation is in https://anonymous.4open.science/r/HyperPianist.
3 https://github.com/arkworks-rs
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is the compressed size. Prover time does not include time needed to setup gen-
erators; verifier time does not include decompression, but includes time needed
to deserialize an uncompressed proof in memory.

We show the experimental results in Table 3. Compared with Lasso, our
construction of lookup arguments is 1.41 ∼ 1.89× as fast in proving time, and
slightly faster in verifier time with the same (or smaller) proof size. The prelim-
inary results have already shown the efficiency of our scheme. As our implemen-
tation and optimization are still ongoing, we expect more efficiency gains in the
future.
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A Distributed SumCheck PIOP for high degree
polynomials

In HyperPlonk [6], the authors proposed an algorithm for high-degree polyno-
mials with special structures. Consider a multivariate polynomial

f(X) = h(g0(X), . . . , gc−1(X)) (7)

such that h ∈ F (≤d)
c can be evaluated through an arithmetic circuits with O(d)

gates and gi,∀i ∈ [1, c] are all multi-linear polynomials. The core idea is to
compute the univariate polynomial ri(X) symbolically.

Algorithm 1 Evaluating fk(X) for each round. [6]
Input: The evaluation tables for current g0, . . . , gc−1, current table length ℓ.
Output: The corresponding fk(X).
1: Construct gj,x(X) := gj(X,x),∀x ∈ {0, 1}ℓ, ∀j ∈ [c].
2: Compute fx := h(g0,x(X), . . . , gc−1,x(X)),∀x{0, 1}ℓ using Algorithm 2.
3: Compute fk(X) =

∑
x∈{0,1}ℓ fx.

4: return fk(X).

Algorithm 2 Evaluating fx(X) =
∏d−1

j=1 gj,x(X) [6]

Input: g0, . . . , gd−1 are linear univariate polynomials.
Output: The corresponding fk(X)
1: t1,j ← gj,x for all j ∈ [d]
2: for i = 0 to log d do
3: for j = 0 to d/2i − 1 do
4: ti+1,j(X)← ti,2j−1(X) · ti,2j(X) ▷ Using fast polynomial multiplication
5: end for
6: end for
7: return fx(X) = tlog d,1(X)
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PROTOCOL A.0.01 Distributed SumCheck PIOP for high degree polynomials.

P0, · · · ,PM−1 claim ((v, [[f ]]); f) ∈ RSum to V, where
f(X) = h(g0(X), . . . , gc−1(X)). Pi holds g

(i)
j : Fn−m → F, s.t.

g
(i)
j (x) = gj(x, bin(i)), ∀j ∈ [c].

– In the first round:
• Each Pi computes its univariate polynomial f (i)

1 (X) using Algorithm 1
with tables for g

(i)
j , and table length n−m− 1, and sends it to P0.

• P0 sums up all the univariate polynomials to get
f1(X) =

∑
i∈[M ] f

(i)
1 (X), and sends it to V.

• V checks v = f1(0) + f1(1). If the check passes, V sends a random
challenge r1 ∈ F to P0. P0 transmits r1 to the other Pi.

• Each Pi updates the table corresponding to each g
(i)
j .

– In the k-th round where 2 ≤ k ≤ n−m:
• Each Pi computes its univariate polynomial f (i)

k (X) using Algorithm 1
with tables for g

(i)
j , and table length n−m− k, and sends it to P0.

• P0 sums up all the univariate polynomials to get
fk(X) =

∑
i∈[M ] f

(k)
k (X), and sends it to V.

• V checks fk−1(rk−1) = fk(0) + fk(1). If the check passes, V sends a
random challenge rk ∈ F to P0. P0 transmits rk to the other Pi.

• Each Pi updates the table corresponding to each g
(i)
j .

– After the (n−m)-th round, each Pi sends g
(i)
j (r), ∀j ∈ [c] to P0. P0 then

constructs current table for gj .
– In the k-th round where n−m+ 1 ≤ k ≤ n:
• P0 computes the univariate polynomial fk(X) using Algorithm 1 with

tables for gj , and table length n−m− k, and sends it to V.
• V checks fk−1(rk−1) = fk(0) + fk(1). If the check passes, V sends a

random challenge rk ∈ F to P0.
• P0 updates the table corresponding to each gj .

– Finally, the verifier checks fn(r) = h(g0(r), . . . , gc−1(r)) using oracle calls to
g0, . . . , gc−1.

Complexity. Let 2m be the number of sub-provers, f ∈ F (≤d)
n be the polyno-

mial defined as Equation 7. The complexity of Protocol A.0.01 is as follows:

– The running time of each sub-prover is O(d log2 d · 2n−m)F operations.
– The extra proving time for master prover is O(d(n−m) · 2m)F operations.
– The running time of the verifier is O(d · n)F operations.
– The proof size is O(d · n)F elements, plus an oracle corresponding to the

polynomial f .
– The communication complexity for each sub-prover is O(d · n)F elements.
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B Distributed Grand Product PIOP Using Layered
Circuits

Suppose we have a grand product s =
∏

z∈{0,1}n f(z). We first introduce how
to prove the relation using a layered circuit regularly. The circuit has depth
n, where layer 0 is the output layer and layer n is the input layer. The input
polynomial in layer n is specified by

Vn(z) = f(z).

Then in each j-th layer where n − 1 ≥ j ≥ 0, each gate takes inputs from two
gates in the (j + 1)-th layer, and the witness polynomial Vj for the j-th layer is
specified by

Vj(z) =
∑

x∈{0,1}j

ẽq(x, z)Vj+1(0,x)Vj+1(1,x). (8)

To prove the grand product, P and V need n invocations of the SumCheck
protocol. The proof starts from layer 0, and finally reduced to some random
point evaluation of input polynomial f . For layer 0, P sends two value v01 and v01
purported to be equal to V1(0) and V1(1) respectively. V checks that s = v01 · v11 ,
and using some random challenge γ1 to reduce the proof of v01 and v01 into a single
point v1, which can be done by proving the following equation with SumCheck
protocol.

v1 =
∑

x∈{0,1}

ẽq(x, γ1)V2(0, x)V2(1, x).

In each following layer j where 1 ≤ j ≤ n − 1, the random opening vj can be
verified by checking

vj =
∑

x∈{0,1}j

ẽq(x, rj ||γj)Vj+1(0,x)Vj+1(1,x), (9)

where rj ∈ Fj−1 is the random challenge vector chosen by V during the previous
SumCheck protocol, and γj is the random challenge used to combine two proofs
together in this round. At layer n− 1, the proof is finally reduced to a random
opening of Vn(z), which can be directly verified by V using one oracle call.

Now we consider the distributed setting. We first focus on the generation of
the witness polynomial for sub-provers. At the input layer n, each sub-prover
Pi holds a sub-polynomial of the input polynomial V (i)

n : Fn−m → F defined as
V

(i)
n (z) := f(z, bin(i)). Then in each layer j where n − 1 ≥ j ≥ m − 1, the

sub-prover Pi can locally compute a sub-polynomial V (i)
j : Fj−m → F by

V
(i)
j (z) :=

∑
x∈{0,1}j−m

ẽq(i)(x, z)V
(i)
j+1(0,x)V

(i)
j+1(1,x).

At layer m, each sub-prover Pi sends V
(i)
m = Vm(bin(i)) to the master prover

P0. Then P0 reconstructs the polynomial Vm : Fm → F using the received V
(i)
m

from the sub-provers. The witness polynomials corresponding to the remaining
layers can be constructed by P0 using Vm(z) locally.

After all the witness polynomials are generated properly in a distributed
manner, we now consider the distributed proving procedure. The protocol goes
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from the output layer 0 to the input layer n as in the normal setting in the first
m layers: the master prover P0 and the verifier V invoke the normal SumCheck
protocol to prove the claim in each layer. Then after m layers, the protocol differs
— the computation can be distributed among the sub-provers. Thus, the later
n −m invocations of SumCheck protocol are executed in a distributed fashion
using the distributed SumCheck protocol. We present the full protocol of this
construction in Protocol B.0.01. To prove equality of two grand products, we
need two invocations of Protocol B.0.01. We present the Multiset Check protocol
using layered circuits in Protocol B.0.02.

PROTOCOL B.0.01 Distributed Product Check with Layered Circuits.

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
prover. Given a multivariate polynomial f : Fn → F, suppose each sub-prover Pi

holds local partial polynomials f (i) : Fn−m → F s.t. f (i)(x) = f(x, bin(i)). All
sub-provers want to convince V that

∏
x∈{0,1}n f(x) = v.

– Witness Generation Phase
• Each sub-prover defines V

(i)
n (x) = f (i)(x), ∀x ∈ {0, 1}n−m.

• For n− 1 ≥ j ≥ m, each sub-prover Pi computes

V
(i)
j (x) = V

(i)
j+1(0,x)V

(i)
j+1(1,x), ∀x ∈ {0, 1}

j−m,

and sends V
(i)
m to the master prover P0.

• The master prover P0 constructs Vm(x) as

Vm(x) =
∑

i∈[0,M−1]

ẽq(x, bin(i))V (i)
m .

• For m− 1 ≥ j ≥ 1, the master prover P0 computes

Vj(x) = Vj+1(0,x)Vj+1(1,x), ∀x ∈ {0, 1}j .

– Proof Phase
• For 0 ≤ j ≤ m− 1, P0,V run the SumCheck PIOP (Protocol 3.1.01) to

check that

vj =
∑

x∈{0,1}j
ẽq(x, γj)Vj+1(0,x)vj+1(1,x).

• For m− 1 < j ≤ n− 1, {Pi}i∈[0,M−1],V run the distributed SumCheck
PIOP (Protocol 3.1.02) to check that

vj =
∑

x∈{0,1}j
ẽq(x, γj)Vj+1(0,x)vj+1(1,x).
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PROTOCOL B.0.02 Distributed Multiset Check PIOP (Using Layered Cir-
cuits)

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
prover. Given two multisets of tuples

{
(f1(x), . . . , fk(x))

}
x∈{0,1}n and{

(g1(x), . . . , gk(x))
}
x∈{0,1}n as defined in Definition 10, suppose each sub-prover

Pi holds local partial polynomials
{
(f

(i)
1 (x), . . . , f

(i)
k (x))

}
x∈{0,1}n and{

(g
(i)
1 (x), . . . , g

(i)
k (x))

}
x∈{0,1}n . All sub-provers want to convince V that the two

multisets are equal.

– V samples β, γ ←$ F and sends them to the master prover P0, who then
transmits it to the other sub-provers.

– Each sub-prover Pi computes f ′(i)(x) :=
∑k

i=1 γ
i−1f

(i)
i (x) and

g′(i)(x) :=
∑k

i=1 γ
i−1g

(i)
i (x).

– {Pi}i∈[0,M−1],V run the distributed Product Check PIOP (Protocol B.0.01)
to check the relation ((1, [[f ′ + β]], [[g′ + β]]); (f ′ + β, g′ + β)) ∈ RProd.

Theorem 10. The PIOP for RProd in Protocol B.0.01 is perfectly complete and
has knowledge error O(n/|F|).

Complexity. Let 2m be the number of sub-provers, f, g ∈ F (≤d)
n be the poly-

nomial for Rational SumCheck protocol. The complexity of Protocol B.0.02 is
as follows:

– The running time of the sub-prover is O(d · 2n−m)F operations.
– The running time of the verifier is O(n2).
– The proof size is O(n2)F elements, plus a oracle corresponding to the poly-

nomial f .
– The communication complexity for each sub-prover is O(n2)F elements.

C Dory Evaluation Proof

In this section, we present the formal protocols of the evaluation proof in Dory [24].

D Distributed Dory PCS

In this section, we give formal descriptions of the protocols in our distributed
Dory PCS.
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PROTOCOL C.0.01 Dory-Reduce2n(s1, s2, C,D1, D2, E1, E2)

P holds v1,v2 s.t. ((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner.
The prover pre-compute ∆1L = ⟨Γ1L, Γ

′
2⟩, ∆1R = ⟨Γ1R, Γ

′
2⟩, ∆2L = ⟨Γ ′

1, Γ2L⟩,
∆2R = ⟨Γ ′

1, Γ2R⟩, and χ = ⟨Γ1, Γ2⟩.

– P computes D1L = ⟨v1L, Γ
′
2⟩, D1R = ⟨v1R, Γ ′

2⟩, D2L = ⟨Γ ′
1,v2L⟩,

D2R = ⟨Γ ′
1,v2R⟩, E1β = ⟨Γ1, s2⟩, E2β = ⟨s1, Γ2⟩, and sends them to V.

– V samples β ←$ F and sends it to the prover P.
– P sets v1 ← v1 + βΓ1, and v2 ← v2 + β−1Γ2.
– P computes E1+ = ⟨v1L, s2R⟩, E1− = ⟨v1R, s2L⟩, E2+ = ⟨s1L,v2R⟩,

E2− = ⟨s1R,v2L⟩, C+ = ⟨v1L,v2R⟩, C− = ⟨v1R,v2L⟩, and sends them to V.
– V samples α←$ F and sends it to P.
– P sets v′

1 ← αv1L + v1R, and v′
2 ← α−1v1L + v1R.

– V computes

C′ = C + χ+ βD2 + β−1D1 + αC+ + α−1C−,

D′
1 = αD1L +D1R + αβ∆1L + β∆1R, D′

2 = α−1D2L +D2R + α−1β−1∆2L + β−1∆2R,

E′
1 = E1 + βE1β + αE1+ + α−1E1−, E′

2 = E2 + β−1E2β + αE2+ + α−1E2−.

– P and V both set s1
′ ← αs1L + s1R, and s2

′ ← α−1s2L + s2R.
– V accepts if ((s1

′, s2
′, C′, D′

1, D
′
2, E

′
1, E

′
2); (v

′
1,v

′
2)) ∈ RInner.
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PROTOCOL C.0.02 Dory-Fold-Scalar(s1, s2, C,D1, D2, E1, E2).

P holds v1, v2 s.t. ((s1, s2, C,D1, D2, E1, E2); (v1, v2)) ∈ RInner.
P pre-computes χ = ⟨Γ1, Γ2⟩.

– V samples γ ←$ F and sends it to P.
– P defines v′1 = v1 + γs1H1, v

′
2 = v2 + γ−1s2H2, and sends them to V.

– V computes C′ = C + s1s2HT + γ · e(H1, E2) + γ−1 · e(E1, H2),
D′

1 = D1 + e(H1, s1γΓ2) , D′
2 = D2 + e(s2γ

−1Γ1, H2).
– V samples d←$ F and accepts if

e(v′1 + dΓ1, v
′
2 + d−1Γ2) = χ+ C + dcD2 + d−1cD1.

PROTOCOL C.0.03 Dory-IPA2n(s1, s2, C,D1, D2, E1, E2).

P holds v1,v2 s.t. ((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner.
The prover P pre-computes Γ1,j+1 = (Γ1,j)L, Γ2,j+1 = (Γ2,j)L, for all
i ∈ {0, . . . , n} computes χi = ⟨Γ1,i, Γ2,i⟩, and for all i ∈ {0, . . . , n− 1} computes
∆1L,i = ⟨(Γ1,i)L, Γ2,i+1⟩, ∆2L,i = ⟨Γ1,i+1, (Γ2,i)L⟩, ∆1R,i = ⟨(Γ1,i)R, Γ2,i+1⟩, and
∆2R,i = ⟨Γ1,i+1, (Γ2,i)R⟩.

– For j = 0, . . . , n− 1, P and V run

(s1, s2, C,D1, D2, E1, E2)← Dory-Reduce2n−j (s1, s2, C,D1, D2, E1, E2).

– P and V run Dory-Fold-Scalar(s1, s2, C,D1, D2, E1, E2).

E Distributed Rational SumCheck with Layered Circuits

In this section, we elaborate the distirbuted Rational SumCheck protocol with
layered circuits. The original protocol was proposed in [30], and the key insight
of it is to represent the fractions with projective coordinates.

The layered circuit to prove v =
∑

x∈{0,1}n
p(x)
q(x) is greatly akin to the layered

circuit for product check, where layer 0 is the output layer and layer n is the
input layer. The input polynomial in layer n is specified by

(pn(x), qn(x)) = (p(x), q(x)).

Then in each j-th layer where n − 1 ≤ j ≤ 0, each gate takes inputs from two
gates in the (j + 1)-th layer, and the witness polynomial (pj(x), qj(x)) for j-th
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PROTOCOL C.0.04 Dory-Eval-RE(comM , comy,L,R)

P holds witness M , comcol and common input L,R s.t.

comcol = CommitPedersen(Γ1;Mij), comM = CommitAFGHO(Γ2; comcol),

((⊗i≥kvi,⊗i<kvi, comMT , comy); (M
T , y)) ∈ RVMV

where vi = (1− ri, ri) for (r1 · · · , rn) ∈ Fn.

– P computes v = LTM and y = ⟨v,R⟩ and sends y to V.
– P computes C = e(⟨v, comrow⟩, Γ2,fin), D2 = e(⟨Γ1,v⟩, Γ2,fin),

E1 = ⟨L, comrow⟩, E2 = yΓ2,fin, and sends them to V.
– V checks that E2 = yΓ2,fin, comy = yΓ1,fin and e(E1, Γ2,fin) = D2.
– P and V run Dory-IPA(L,R, C, comM , D2, E1, E2).

PROTOCOL C.0.05 Dory-Eval(comM , comy,L,R)

P holds witness M , comcol and common input L,R s.t.

comcol = CommitPedersen(Γ1;Mij), comM = CommitAFGHO(Γ2; comcol),

((⊗i≥kvi,⊗i<kvi, comMT , comy); (M
T , y)) ∈ RVMV

where vi = (1− ri, ri) for (r1 · · · , rn) ∈ Fn.

– V samples u←$ F and sends it to P.
– P and V both set L′ = (1, u, . . . , un−1), and R′ = (1, un, . . . , un(n−1)).
– P computes comy′ = L′MR′Γ1,fin and sends it to V.
– P and V run Dory-Eval-RE(comM , comy,L,R) and

Dory-Eval-RE(comM , comy′ ,L′,R′).

layer is specified by
pj(z) =

∑
x{0,1}j

ẽq(x, z)(pj+1(0, z) · qj+1(1, z) + pj+1(1, z) · qj+1(0, z)),

qj(z) =
∑

x{0,1}j

ẽq(x, z)qj+1(0,x)qj+1(1,x).

To prove the Rational SumCheck relation, P and V need n invocations of
the SumCheck protocol. The proof starts from the Layer 0, and finally reduced
to some random point evaluation of input polynomial p and q.
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PROTOCOL D.0.01 deDory-Reduce2n(s1, s2, C,D1, D2, E1, E2).

Pi holds witness v
(i)
1 ,v

(i)
2 w.r.t. v1,v2 s.t.

((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner.

The sub-provers pre-compute ∆1L = ⟨Γ1L, Γ ′
2⟩, ∆1R = ⟨Γ1R, Γ

′
2⟩,

∆2L = ⟨Γ ′
1, Γ2L⟩, ∆2R = ⟨Γ ′

1, Γ2R⟩, and χ = ⟨Γ1, Γ2⟩.

– Each Pi computes D
(i)
1L = ⟨v1L

(i), Γ
′(i)
2 ⟩, D(i)

1R = ⟨v1R
(i), Γ

′(i)
2 ⟩,

D
(i)
2L = ⟨Γ ′(i)

1 ,v2L
(i)⟩, D(i)

2R = ⟨Γ ′(i)
1 ,v2R

(i)⟩, E(i)
1β = ⟨Γ (i)

1 , s2
(i)⟩,

E
(i)
2β = ⟨s1

(i), Γ
(i)
2 ⟩, and sends them to P0.

– P0 computes D1L =
∑

D
(i)
1L, D1R =

∑
D

(i)
1R, D2L =

∑
D

(i)
2L, D2R =

∑
D

(i)
2R,

E1β =
∑

E
(i)
1β , E2β =

∑
E

(i)
1β and sends them to V.

– V samples β ←$ F and sends it to P0. Then P0 transmits β to the other Pi.
– Each Pi sets v1

(i) ← v1
(i) + βΓ

(i)
1 and v2

(i) ← v2
(i) + β−1Γ

(i)
2 .

– Each Pi computes E
(i)
1+ = ⟨v1L

(i), s2R
(i)⟩, E(i)

1− = ⟨v1R
(i), s2L

(i)⟩,
E

(i)
2+ = ⟨s1L

(i),v2R
(i)⟩, E(i)

2− = ⟨s1R
(i),v2L

(i)⟩, C(i)
+ = ⟨v1L

(i),v2R
(i)⟩,

C
(i)
− = ⟨v1R

(i),v2L
(i)⟩, and sends them to P0.

– P0 computes E1+ =
∑

E
(i)
1+, E1− =

∑
E

(i)
1−, E2+ =

∑
E

(i)
2+, E2− =

∑
E

(i)
2−,

C+ =
∑

C
(i)
+ , C− =

∑
C

(i)
− , and sends them to V.

– V samples α←$ F and sends it to P0. Then P0 transmits α to the other Pi.
– Each Pi sets v′

1
(i) ← αv1L

(i) + v1R
(i) and v′

2
(i) ← α−1v1L

(i) + v1R
(i).

– The verifier V computes
C′ = C + χ+ βD2 + β−1D1 + αC+ + α−1C−,

D′
1 = αD1L +D1R + αβ∆1L + β∆1R, D

′
2 = α−1D2L +D2R + α−1β−1∆2L + β−1∆2R,

E′
1 = E1 + βE1β + αE1+ + α−1E1−, E

′
2 = E2 + β−1E2β + αE2+ + α−1E2−.

– Each Pi sets s1
′(i) ← αs1L

(i) + s1R
(i) and s2

′(i) ← α−1s2L
(i) + s2R

(i).
– V accepts if ((s1

′, s2
′, C′, D′

1, D
′
2, E

′
1, E

′
2); (v

′
1,v

′
2)) ∈ RInner.
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PROTOCOL D.0.02 deDory-Eval(comM , comy,L,R)

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
prover. Each sub-prover Pi holds local partial witness M (i), comcol

(i) w.r.t.
M , comcol and common input L(i),R(i) w.r.t. L,R s.t.

comcol = CommitPedersen(Γ1;Mij), comM = CommitAFGHO(Γ2; comcol),

((⊗i≥kvi,⊗i<kvi, comMT , comy); (M
T , y)) ∈ RVMV

where vi = (1− ri, ri) for (r1 · · · , rn) ∈ Fn.

– The verifier samples u←$ F and sends it to the master prover P0.
– The master prover P0 transmits u to the other sub-provers Pi.
– Each sub-prover Pi sets the corresponding local vector L′(i),R′(i) w.r.t.

L′ = (1, u, u2, . . . , un−1), R′ = (1, un, u2n, . . . , un(n−1)).

– Each sub-prover Pi computes

com
(i)

y′ = L′(i)M (i)R′(i)Γ1,fin,

and sends it to the master prover P0.
– The master prover P0 computes

comy′ =
∑

i∈[0,M−1]

com
(i)

y′ ,

and sends it to the verifier V.
– All sub-provers {Pi}i∈[0,M−1] and the verifier V run

Distributed-Dory-Eval-RE(comM , comy,L,R) ∧
Distributed-Dory-Eval-RE(comM , comy′ ,L′,R′).

F Overall Distributed PIOP System of HyperPianist

In this section, we describe the overall PIOP system of HyperPianist.

F.1 Constraint System

The original Plonk considers fan-in-two circuits, where each gate takes at most
two inputs. The left input, the right input, and the output of each gate are
encoded by three univariate polynomials. The verifier can check the computation
of each gate by a polynomial equation, which we refer to as the gate constraint.
Additionally, the verifier also checks that the input and output of the gates are
connected correctly as defined by the structure of the circuit, which we refer to
as the wiring constraint (also called copy constraint).
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For gate j of the circuit C, let aj , bj and oj be its left input, right input,
and output, respectively. We define the multivariate polynomial ã(X) to be
the multilinear extension of the vector {aj}, and similarly define polynomials
b̃(X) and õ(X). If gate j is an addition gate, then aj + bj = oj , and thus
ã(⟨j⟩) + b̃(⟨j⟩) = õ(⟨j⟩); if gate j is a multiplication gate, then aj · bj = oj , and
thus ã(⟨j⟩) · b̃(⟨j⟩) = õ(⟨j⟩). Then we can express the gate constraints as follows
g(X) = qa(X)ã(X) + qb(X)b̃(x) + qo(X)õ(X) + qab(X)(ã(X) · b̃(X)) + qc(X),

where

– if gate j = X is an addition gate, qa(X) = qb(X) = 1, qo(X) = −1,
qab(X) = qc(X) = 0,

– if gate j = X is a multiplication gate, qab(X) = 1, qo(X) = −1, qa(X) =
qb(X) = qc(X) = 0,

– if gate j = X is a public input, qc(X) = inj , qo(X) = −1, qa(X) = qb(X) =
qab(X) = 0, where inj is the public input value of gate j.

In this way, the correct evaluation of the circuit is equivalent to g(X) = 0 for
all X ∈ {0, 1}n.

To check the wiring constraints, where a set of values are required to be
equal, Plonk uses a cycle connecting all indices to be checked, σ. Then if the
following sets are equal {(fj , j)} = {(fj , σ(j))}, all fj must be equal.

Definition 19 (Constraint System of HyperPianist [6]). Fix public param-
eters pp := (F, ℓ, n, ℓw, ℓq, f) where F is the field, ℓ = 2ν is the public input
length, n = 2ν is the number of constraints, ℓw = 2νm , ℓq = 2νq are the number
of witnesses and selector per constraint, and f : Fℓq+ℓw → F is an algebraic map
with degree d. The indexed relation RHyperPianist is the set of all tuples

(i; x; w) = ((q, σ); (p, [[w]]); w),

where σ : Bµ+νm
→ Bµ+νm

is a permutation, q ∈ F (≤1)
µ+νq

, p ∈ F (≤1)
µ+ν , w ∈ F

(≤1)
µ+νw

,
such that

– the wiring constraint is satisfied, that is, (σ; ([[w]], [[w]]); w) ∈ RPerm;
– the gate constraint is satisfied, that is, ([[f̃ ]], f̃) ∈ RZero, where the virtual

polynomial f̃ ∈ F≤d
µ is defined as

f̃(X) :=f(q(⟨0⟩νq
,X), . . . , q(⟨ℓq − 1⟩νq

,X),

w(⟨0⟩νw
,X), . . . , w(⟨ℓw − 1⟩νw

,X));

– the public input is consistent with the witness, that is, the public input poly-
nomial p ∈ F (≤1)

ν is identical to w(0µ+νw−ν ,X) ∈ F (≤1)
ν .

We present the PIOP protocol for HyperPianist in Protocol F.1.01. We can
instantiate it with the distributed multivariate PCS deDory.

G Memory-in-The-Head Used in Lasso

In the offline memory checking protocol, a checker performs a series of oper-
ations on an untrusted memory, and then checks that all operations are done
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PROTOCOL F.1.01 Distributed PIOP for HyperPianist.

Indexer. I(q, σ) calls the permutation PIOP indexer ([[sid]], [[sσ]])← I(σ). The
oracle output is ([[q]], [[sid]], [[sσ]]), where q ∈ F (≤1)

µ+νq
, sid, sσ ∈ F (≤1)

µ+νm
.

The Protocol. {Pi(pp, i, p, w(i))}i∈[0,M−1] and V(pp, p, [[q]], [[sid]], [[sσ]]) run the
following protocol.

1. The master prover P0 sends V the witness oracle [[w]] where w ∈ F (≤1)
µ+νm

.
2. P0, · · · ,PM−1 and V run a distributed PIOP for the gate constraint, which

is a distributed ZeroCheck PIOP (Protocol 3.2.02) for the relation ([[f̃ ]], f̃) ∈
RZero where f̃ ∈ F (≤d)

µ is as defined previously.
3. P0, · · · ,PM−1 and V run a distributed PIOP for the wiring constraint, which

is a distributed Permutation Check PIOP for (σ; ([[w]], [[w]]); (w,w)) ∈ RPerm.
4. V checks the consistency between witness and public input. It samples

r ← Fnu, queries [[w]] on input (⟨0⟩µ+νw−ν , r) and checks whether p(r) =
w(⟨0⟩µ+νw−ν , r).

honestly. The untrusted memory maintains one multiset: S, representing the
data stored. The checker locally maintains two multisets: WS and RS, repre-
senting the data written to and read from the untrusted memory, respectively.
Each multiset element is three-tuple of (1) the value’s address, (2) the value, and
(3) the value’s timestamp. During setup, The checker writes to the untrusted
memory (i, vi, 0),∀i ∈ [N ]. These tuples are added to S and WS. On each read
call to address i, the untrusted memory provides an output (vi, ti), purported to
be the value stored in address i and its corresponding timestamp. The checker
adds (i, vi, ti) to RS and (i, vi, ti + 1) to WS. The untrusted memory updates
the timestamp ti = ti + 1 in S; that is, it removes (i, vi, ti) from S and adds
(i, vi, ti + 1). After all queries are done, the untrusted memory returns the local
set S. Finally, the checker checks that the RS∪S and WS are equal as multisets.

In Lasso, for each polynomial E, the prover wants to show that ∀k ∈ {0, 1}log ℓ,
E(k) = T [nz(k)]. To do so, the prover plays the memory checking proto-
col in the head. It commits two more polynomials read_ts and final_cts. For
k ∈ [m], read_ts(k) represents the timestamps returned by the untrusted mem-
ory for k-th read. For j ∈ [N ], final_cts(j) represents the final timestamp for the
value stored at location j. Let write_cts = read_ts+1 denote the new timestamp
the untrusted memory writes for each read call. Then, the prover only needs to
show that RS ∪ S = WS as multisets, where

– WS = {(sid(i), T (i), 0) | i ∈ {0, 1}logN} ∪ {(nz(k), E(k),write_cts(k)) | k ∈
{0, 1}log ℓ};

– RS = {(nz(k), E(k), read_ts(k)) | k ∈ {0, 1}log ℓ};
– S = {(sid(i), T (i), final_cts(i)) | i ∈ {0, 1}logN}.
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PROTOCOL H.0.01 Distributed Well-Formation Check PIOP

P0, · · · ,PM−1 claim E(k) = T [nz(k)], ∀k ∈ {0, 1}log ℓ. V have oracles to E(x)
and ñz(x).

– P0 sends an oracle of m(X) (defined in Equation (6)) to V.
– Each Pi computes v(i) =

∑
x∈{0,1}ℓ

m(i)(x)

β+s
(i)
id

(x)+γ·T (x,bin(i))
, and sends it to P0.

– P0 computes the rational sumcheck claim v =
∑M

i=0 v
(i), and sends it to V.

– P0, · · · ,PM−1 and V run the distributed Rational SumCheck PIOP
(Protocol 3.3.03) to check the relation
((v, [[m(x)]], [[β + sid(x) + γ · T (x)]]); (m(x), β + sid(x) + γ · T (x))) ∈ RRSum,
and ((v, [[1]], [[β + ñz(x) + γ · E(x))]]); (1, β + ñz(x) + γ · E(x))) ∈ RRSum.

PROTOCOL H.0.02 Distributed Lookup PIOP

P0, · · · ,PM−1 claim (b; ([[a]], [[T ]]); (a, T )) ∈ RLookup to V, where T is defined as
in Equ. (3).

– P0 sends oracles of E1, · · · , Eα and ñz1, · · · , ñzα to V.
– V picks a random r ∈ Flog ℓ, and sends it to P0. P0 sends it to the other Pi.
– V makes an oracle call to ã and obtains ã(r).
– P0, · · · ,PM−1 and V run a distributed SumCheck PIOP (Protocol 3.1.02) to

check the relation that v =
∑

k∈{0,1}log ℓ ẽq(r,k)g(E1(k), · · · , Eα(k)).
– P0, · · · ,PM−1 and V run a distributed Well-Formation Check PIOP

(Protocol H.0.01) to check that Ej(k) = Tj(nz(k)) for all k ∈ {0, 1}log ℓ.

Claim 2. If E(k) ̸= T [nz(k)] for some k, there do not exist read_ts, final_cts
such that RS ∪ S = WS holds given write_cts = read_ts + 1.

H Distributed PIOP System of HyperPianist+

To integrate the lookup argument, we only need to add constraints enforcing
that some function over the witness values belongs to a pre-determined table.

Definition 20 (Constraint System of HyperPianist+ [6]). Let pp1 := (F, ℓ, n, ℓw, ℓq, f)
be the public parameters for Plonk. Let pp2 := (ℓlk, flk) be the additional public
parameters where ℓlk = 2νlk is the number of lookup selectors and flk : Fℓlk+ℓw →
F is an algebraic map. The indexed relation RHyperPianist+ is the set of all triples

(i;x;w) = ((i1, i2); (p, [[w]]);w)

where i2 := (table ∈ Fn−1, qlk ∈ F≤1
µ+νlk

) such that

– (i1;x;w) ∈ RHyperPianist
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PROTOCOL H.0.03 Distributed PIOP for HyperPianist+

Indexer. I(i1, i2 = (table, qlk)) calls the distributed HyperPlonk PIOP indexer
vpplonk ← Iplonk(i1), and calls the distributed Lookup PIOP indexer vpt ←
Ilkup(i2). The oracle output is vp = ([[qlk]], vpt, vpplonk).
The Protocol. {Pi(pp, i, p, w(i))}i∈[0,M−1] and V(pp, p, vp) run the following pro-
tocol.

1. The master prover P0 sends V the witness oracle [[w]] where w ∈ F (≤1)
µ+νm

.
2. {Pi}i∈[0,M−1] and V run a distributed HyperPianist PIOP (Protocol F.1.01)

for (i;x;w) ∈ RHyperPianist.
3. {Pi}i∈[0,M−1] and V run a distributed Lookup PIOP (Protocol H.0.02) for

(table; [[g]]) ∈ L(RLookup) where g is as defined in Definition 18.

– there exists addr : Bµ → [1, 2µ) such that (table; [[g]]; (g, addr)) ∈ RLookup,
where g ∈ F (deg(flk)

µ is defined as
g̃(X) :=flk(qlk(⟨0⟩νlk

,X), . . . , qlk(⟨ℓνlk
− 1⟩νlk

,X),

w(⟨0⟩νw ,X), . . . , w(⟨ℓw − 1⟩νw ,X)).

I Additional Related Works

I.1 Collaborative ZKPs.

A series of recent works [29,8,11,26] have focused on distributing the proof gen-
eration process while maintaining the privacy of the witnesses. One popular
approach relies on the notation of collaborative ZKPs introduced in [29]. This
approach consists of two phases: First, each server sends and receives its part of
the witness in a secret-sharing form. Then, all servers execute a certain secure
multi-party computation (MPC) protocol for the proof generation circuit. We
stress that these works are orthogonal to ours: their emphasis is on security and
privacy, while we focus on scaling proof generation with sub-provers which trust
each other.

I.2 Lookup Argument

Lookup arguments are extensively used in SNARKs due to their efficiency in
proving non-arithmetic operations, such as range proofs and bitwise operations.
A series of recent works [43,32,44,15,13,22,36] have focused on improving the ef-
ficiency of lookup arguments. These works can be categorized into two settings:
univariate and multivariate. In the univariate setting, with the one-time expen-
sive setup, prover complexity can be made only quasi-linear to the number of
queries. In the multivariate setting, Lasso [36] provides a generalized approach
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for proving lookup arguments on structured tables, significantly enhancing effi-
ciency. Building on Lasso, our scheme introduces additional optimizations and
further improves the prover’s performance.

I.3 Optimization of SumCheck PIOP

The SumCheck PIOP underpins many fast prover SNARKs[19,40,6,42]. In many
of its applications, the polynomial can be evaluated with a few operations on
several multilinear polynomials. The naïve algorithm has quadratic complexity
in the number of operations. HyperPlonk [6] introduced a quasi-linear algorithm
that performs well for high-degree polynomial, including custom gates in Plonk-
ish arithmetization. However, its advantage diminishes in low-degree settings,
due to its heavy reliance on FFTs. Recent works [3,9,10,21] focus on optimiz-
ing the constant factor of the vanilla protocol, with quadratic scaling factor
unchanged. These optimizations speed up provers for low-degree polynomials,
which is beneficial for many applications (e.g., [36,2,19,37]). Notably, all these
optimizations can be adapted to distributed settings with no overhead, further
benefiting our distributed SNARKS.

J Proof of Previous Theorem

J.1 Proof of Theorem 1

Proof. Completeness. For every ([[f ]]; f) ∈ RZero, f̂ is also zero everywhere
on the boolean hypercube, thus the summation of f̂ over boolean hypercube is
zero, and completeness follows from SumCheck protocol’s completeness.
Knowledge soundness. It is suffice to argue the soundness error of the
protocol. We note that ([[f ]]; f) ∈ RZero if and only if the following holds

g(Y ) =
∑

x∈{0,1}n

f(x) · ẽq(x,Y )

is identically zero. This is because for x, y ∈ {0, 1}n, ẽq(x,y) equals to 1 if
x = y and equals to 0 otherwise. So g(y) = f(y) for all y ∈ {0, 1}n. Therefore,
for any ([[f ]]; f) /∈ RZero, the corresponding g is a non-zero polynomials and
thus

g(r) =
∑

x∈{0,1}n

f(x) · ẽq(x, r) = 0

with probability n/|F| over the choice of r. Thus the probability that the
verifier accepts is at most n/|F| plus the probability that the SumCheck PIOP
verifier accepts when ((0, [[f̂ ]]); f̂) /∈ RSum, which is O(n/|F|).

J.2 Proof of Theorem 4

We follow the proof from [22]. In order to prover Theorem 4, we first give some
useful lemma.
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Lemma 1. Let F be a field of characteristic p, and p(X)/q(X) a rational func-
tion over F with both degree being less than p. If the derivative (p(X)

q(X) )
′ = 0, then

p(X)
q(X) = c for some constant c ∈ F.

Proof. If q(X) is a constant, then the assertion of the Lemma follows from the
corresponding statement for polynomials. Hence we only need to consider the
non-constant q(X). Use polynomial division to obtain the representation

p(X)

q(X)
= m(X) +

r(X)

q(X)
,

where m(x), r(x) ∈ F[X]. By linearity of the derivative, we have

0 =

(
p(X)

q(X)

)′

= m′(X) +

(
r(X)

q(X)

)′

,

and therefore
r′(X) · q(X)− r(X) · q′(X) = −m′(X) · q(X)2.

Comparing the degrees of left and right hand side, we conclude that m′(X) = 0.
Since the degree of m(X) is less than p, we have m(X) = c for some constant
c ∈ F. Furthurmore, if we had r(X) ̸= 0, tehn the leading term of the left hand
side would be

(k − n) · cn · dk ·Xn+k−1,

with cn ·Xn, n > 0 being the leading term of q(X), and dk ·Xk, 0 ≤ k < n, being
the leading term of r(X). As 0 < n − k < p, and both cn ̸= 0 and dk ̸= 0, the
leading term of the left hand side would not vanish. Therefore it must hold that
r(X) = 0 and the proof is complete.

Proof. If pa(X) =
∏n

i=1(X + ai) and pb(X) =
∏
(X + bi) coincide, so do their

logarithmic derivative. To show the other direction, assume that
p′a(X)

pa(X)
=

p′b(X)

pb(X)
.

Then (
pa(X)

pb(X)

)′

=
p′a(X) · pb(X)− pa(X) · p′b(X)

p2b(X)
= 0.

Hence by Lemma 1, we have pa(X)/pb(X) = c for some constant c ∈ F. As both
pa(X) and pb(X) have leading coefficient 1, we conclude that c = 1.

J.3 Proof of Theorem 5

Proof. Completeness. First, if the prover honestly generates f , it holds that
([[f · q − 1]]; f · q − 1) ∈ RZero, and the verifier accepts in the ZeroCheck PIOP,
given that ZeroCheck PIOP is complete. Second, if
((v, [[p]], [[q]]); (p, q)) ∈ RRSum, then v is exactly the summation of p · f ’s
evaluations on the {0, 1}n, and the verifier accepts in the SumCheck PIOP,
given that SumCheck PIOP is complete.
Knowledge soundness. It is sufficient to argue the soundness error of the
protocol. For any ((v, [[p]], [[q]]); (p, q)) /∈ RRSum, it holds that either q(x) = 0
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for some x ∈ {0, 1}n, or ∑
x∈{0,1}n

p(x)

q(x)
̸= v.

For the former situation, the probability that V accepts is at most equal to the
probability that the ZeroCheck PIOP verifier accepts for
([[f · q − 1]], f · q − 1) /∈ RZero, which is O(dn/|F|). To the later situation, the
probability that V accepts is at most equal to the probability that the
SumCheck PIOP verifier accepts for ((v, [[p · f ]]); p · f), which is O(dn/|F|).
Thus by union bound, the soundness error of the Rational SumCheck PIOP is
O(dn/|F|).

J.4 Proof of Theorem 6

Proof. Completeness. For any (σ; ([[f ]], [[g]]); (f, g)) ∈ RPerm, it holds that
the multiset (sidx, f(x)x∈{0,1}n is identical to the multiset (sσx, g(x)x∈{0,1}n .
Thus

(([[sid]], [[f ]], [[sσ]], [[g]]); (sid, f, sσ, g)) ∈ RMSet

and completeness follows from the completeness of the PIOP for RMSet.
Knowledge soundness. It is sufficient to argue the soundness error of the
protocol. Since the permutation relation holds if and only if the multiset check
relation holds, the PIOP has the same soundness error as Multiset Check PIOP.

J.5 Proof of Theorem 8

Proof. The completeness and soundness follow the original Dory protocol and we
mainly focus on the efficiency of the protocol. To commit the polynomial f(X),
each sub-prover Pi need to compute comrow

(i) and com
(i)
M , which costs O(N

M )G1

operations and O(
√

N
M ) parings, and the master prover products them up using

O(M) GT operations. To open the polynomial at r, each sub-prover needs to

compute the corresponding v(i), y(i), C(i), D
(i)
2 , E

(i)
1 , E

(i)
2 , which costs O(

√
N
M ) F,

G1 operations and pairings and the master prover reconstruct the elements using
O(M) G1 and GT operations. The operations cost in IPA protocol is O(N/M)
G1 and GT operations for each sub-prover, and the additional operations for
master prover is O(M) G1 and GT operations for the final rounds. For the
communication, in the commitment phase Pi sends com(i)

M to P0, and in opening
phase, Pi sends C(i), D

(i)
2 , E

(i)
1 , E

(i)
2 to P0 plus the O(n) G1 and GT elements

sending in the IPA protocol. Thus, the communication complexity is O(n) G1

and GT elements. The proof size and verification time are mainly determined by
IPA protocol, and in our case, they are all O(n+m).

J.6 Proof of Theorem 9

We follow the proof from [22]. The proof of Theorem 9 depends on the following
lemma:
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Lemma 2. Let F be an arbitrary field and m1,m2 : F → F be any functions.
Then

∑
z∈F

m1(z)
X−z =

∑
z∈F

m2(z)
X−z in the rational function field F(X) if and only

if m1(z) = m2(z) for every z ∈ F.

Proof. Suppose that
∑

z∈F
m1(z)
X−z =

∑
z∈F

m2(z)
X−z . Then we have

∑
z∈F

m1(z)−m2(z)
X−z =

0, and therefore

p(X) =
∏
w∈F

(X − w)
∑
z∈F

m1(z)−m2(z)

X − z

=
∑
z∈F

(m1(z)−m2(z))
∏

w∈F\{z}

(X − w)

= 0.

In particular, p(z) = (m1(z) −m2(z)) ·
∏

w∈F\{z}(X − w) = 0 for every z ∈ F.
Since

∏
w∈F\{z}(z − w) ̸= 0, we must have m1(z) = m2(z) for every z ∈ F. The

other direction is obvious.

With this lemma, we proceed to proof of Theorem 9

Proof. Let us denote by ma(z) be the multiplicity of a filed element z in the
sequence (ai)

ℓ
i=1. Likewise, we do for {bj}Nj=1. Suppose that {ai} ⊂ {bj} as

sets. Set (mi) as the normalized multiplicities mi =
ma(bi)
mb(bi)

. This choice of (mi)

obviously satisfies
∑ℓ

i=1
1

X+ai
=

∑N
i=1

mi

X+bi
.

Conversely, suppose that
∑ℓ

i=1
1

X+ai
=

∑N
i=1

mi

X+bi
holds. Collecting fraction

with the same denominator we obtain fractional representations for both sides
of the equation

N∑
i=1

1

X + ai
=

∑
z∈F

ma(z)

X + z
,

N∑
i=1

mi

X + bi
=

∑
z∈F

µ(z)

X + z
.

Note that since p > max(ℓ,N), we know that for each z ∈ {ai} we have ma(z) ̸=
0. By the uniqueness of fractional representations (Lemma 2), ma(z) = µ(z) for
every z ∈ {ai}, and therefore each z ∈ {ai} must occur also in {bj}.
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