
Collaborative CP-NIZKs: Modular, Composable
Proofs for Distributed Secrets

Mohammed Alghazwi
University of Groningen

m.a.alghazwi@rug.nl

Tariq Bontekoe
University of Groningen

t.h.bontekoe@rug.nl

Leon Visscher
University of Groningen

l.visscher.2@student.rug.nl

Fatih Turkmen
University of Groningen

f.turkmen@rug.nl

Abstract—Non-interactive zero-knowledge (NIZK) proofs of
knowledge have proven to be highly relevant for securely realizing
a wide array of applications that rely on both privacy and
correctness. They enable a prover to convince any party of the
correctness of a public statement for a secret witness. However,
most NIZKs do not natively support proving knowledge of a
secret witness that is distributed over multiple provers. Previously,
collaborative proofs [51] have been proposed to overcome this
limitation. We investigate the notion of composability in this set-
ting, following the Commit-and-Prove design of LegoSNARK [17].
Composability allows users to combine different, specialized
NIZKs (e.g., one arithmetic circuit, one boolean circuit, and one
for range proofs) with the aim of reducing the prove generation
time. Moreover, it opens the door to efficient realizations of many
applications in the collaborative setting such as mutually exclusive
prover groups, combining collaborative and single-party proofs
and efficiently implementing publicly auditable MPC (PA-MPC).

We present the first, general definition for collaborative
commit-and-prove NIZK (CP-NIZK) proofs of knowledge and
construct distributed protocols to enable their realization. We
implement our protocols for two commonly used NIZKs, Groth16
and Bulletproofs, and evaluate their practicality in a variety of
computational settings. Our findings indicate that composability
adds only minor overhead, especially for large circuits. We exper-
imented with our construction in an application setting, and when
compared to prior works, our protocols reduce latency by 18–55×
while requiring only a fraction (0.2%) of the communication.

I. INTRODUCTION

A zero-knowledge proof (ZKP) [37] is a cryptographic
construction, enabling a prover to convince a verifier of the
truth of a statement, without revealing anything other than its
validity. Its zero-knowledge property ensures that privacy of
the prover’s secrets is preserved, whilst its soundness property
guarantees that the statement is valid (i.e., we have correctness)
and that the prover did not cheat. In this work, we focus on
a broad class of ZKPs known as NIZK proofs of knowledge.
They are publicly verifiable due to their non-interactiveness,
i.e., the verifier is not involved in proof generation. Being a
proof of knowledge entails that the prover not only convinces
the verifier of the validity of a statement, but also that it
knows the secret data, or witness, for which the statement is
valid. Note, that zk-SNARKs are a subset of NIZK proofs of
knowledge, i.e., they form the subset of succinct proofs.

In recent years, many different constructions for NIZK
proofs have been proposed for generic statements, e.g., those
expressible as an arithmetic circuit. Each of these constructions
comes with its own advantages, e.g., no trusted setup, constant
proof size, efficient verification, or relying only on standard

cryptographic assumptions. However, these generic schemes
have a few major limitations [51]:

1) Proof generation is costly;
2) The witness should be known by the prover (a single party).

The former refers to the time/space it takes to generate proofs.
The latter instead refers to the limitation that the generation of
a proof where the witness is distributed over multiple parties
is not directly supported.

At the same time, there is an array of specialized NIZK
schemes, e.g., [24], [60], [17], that enable provers to generate
proofs for specific types of statements more efficiently. This
brings us to our third and final major limitation:

3) Proof schemes are not efficiently composable.

Thus, we cannot natively benefit from the distinguishing ad-
vantages of different schemes, by creating a proof for a single
statement using a composition of different schemes.

Collaborative proofs. The first two limitations could be
tackled by considering the notion of a distributed prover (where
all provers have access to the full witness). While this would
not directly improve efficiency, it would enable the outsourcing
of proof generation in a privacy-preserving manner with the
additional benefit of load distribution [61], [34], [21].

Even more interesting is the case where the secret witness
is also distributed amongst multiple provers, i.e., no prover
knows the full witness. This is particularly useful when several
parties wish to prove a statement about secret data distributed
amongst them without revealing their part of the witness to
each other or the verifier. Recently, a generic definition for
collaborative zk-SNARKs [51] was proposed as a solution
for this setting. Notably, this approach can also be used to
generically construct PA-MPC [6]. However, we note that
for PA-MPC, the provers need to open a large number of
commitments inside a proof circuit, which is computationally
inefficient. As we will show in this work, our proposal for
collaborative CP-NIZKs can be used to make this construction
scalable.

Composability. In accordance with the third limitation, we
observe that proof statements are often composed of several
substatements, for example by conjunction (see Section IV-B).
One substatement may be more efficiently proved in one
scheme (e.g., arithmetic circuits NIZK) and a second more
efficiently in another scheme (e.g., specialized or boolean
circuit NIZK). To benefit from both the efficiency of special-
ized NIZKs and the flexibility of general-purpose NIZKs, it

would be ideal to combine multiple schemes to gain efficiency.
At first glance, it may seem sufficient to naively generate
a proof for each substatement and have the verifier check
all proofs separately. However, since the verifier does not
know the witness, which is often (partially) shared amongst
substatements, it cannot verify whether the proofs are for the
same witness, i.e., correctness is no longer guaranteed.

The approach where multiple subproofs are combined into
a single main proof is called proof composition, and various
works have proposed methods to achieve this [18], [1]. It has
been most generically defined in [17], and is known as the
commit-and-prove paradigm. Following this method, proofs
can be generated for combined statements, where part of the
witness has been committed to beforehand, thereby enabling
composition, by linking proofs through witness commitments.
Finally, we note that this approach is also adaptive: the com-
mitments may be generated ahead-of-time and independently
of the statement.

This work. It is evident that both collaborative proofs
and the commit-and-prove paradigm provide a generic way of
dealing with the limitations of most NIZK schemes. However,
neither approach solves these limitations simultaneously, even
though they are of equal importance for improving the effi-
ciency and applicability of ZKPs. In this paper, we introduce
collaborative CP-NIZKs, combining the best of both worlds
to enable efficient proving in settings that are otherwise not
(natively) supported, and sketch several such use cases for their
use (Section I-A). Therefore, our work is centered around the
following question:

Can users efficiently prove knowledge of a distributed
witness using adaptive, composable NIZK proofs, and
does proof composition in this setting result in faster

proof generation?

Our contributions. We answer this question positively, by
defining, implementing and evaluating the novel concept we
call collaborative CP-NIZK. In summary, our contributions are
as follows:

• We formally define collaborative CP-NIZKs (Section IV).
• We propose two methods for generating Pedersen-like com-

mitments collaboratively (Section V-A).
• We design two collaborative CP-NIZKs by transforming two

existing (commit-and-prove) provers into their MPC coun-
terparts (Section V). Specifically, we construct a collabora-
tive CP-SNARK from LegoGro16 [17] (efficient verification
and small proof size) and collaborative, commit-and-prove
Bulletproofs [16] (no trusted setup, logarithmic proof size,
efficient range proofs).

• We implement all our collaborative CP-NIZKs and collab-
orative commitment schemes in Arkworks [4] in a modular
fashion and make our code available (Section VI). Modular-
ity allows for future extensions based on novel NIZK and
MPC schemes.

• We evaluate our constructions and demonstrate that our
approach incurs only a minor overhead, which is more
than compensated for by the benefits of modularity and
composition (Section VII). In our experiments, we show
several scenarios in which composition significantly im-
proves performance. Splitting large statements into smaller

substatements and using a combination of CP-NIZKs lead to
improved performance compared to using a single NIZKs
(Section VII-E). Additionally, splitting prover groups im-
proves efficiency by 1.3–2×. When compared to the con-
struction of [51], our protocols show an improvement of
18–55× when both constructions are applied in a realistic
application scenario (Section VIII).

A. Example Use Cases.

In this section, we discuss some example use cases, that
benefit from collaborative CP-NIZKs. As mentioned in [51]
many real-world and conceptual settings ask for collaborative
proofs. Our collaborative CP-NIZKs apply to similar use cases,
but additionally offer significant performance improvements
and modularity. Moreover, many applications require users to
commit to their data, which makes our construction a more
efficient and natural choice.

Auditing. Many government organizations, regulatory bod-
ies, and financial institutions regularly perform audits on
companies or individuals. Oftentimes, these audits also involve
data from external sources, next to information already held
by the party under audit.

Consider the process of a mortgage application. In general,
the bank needs to verify that the applicant satisfies certain
requirements, i.e., sufficient, stable income, decent credit score,
no other mortgages, potential criminal history, et cetera. The
majority of this information is privacy-sensitive. Since the
banks need only verify that the requirements are satisfied, we
can significantly reduce the privacy loss by replacing these
checks by ZKPs [50], [43].

The applicant can thus construct a proof for all statements
together with the external parties that hold the data using
collaborative NIZKs. Note that the applicant often cannot
access this external data themselves. Since the number of
external parties is rather large, it would be infeasible to create
one large collaborative proof. Fortunately, most statements will
be largely disjunct. Therefore, we can use the composability
of collaborative CP-NIZKs, by splitting the proof into several
parts, such that only a small subset of parties is needed to
prove each part. By using the same commitments for all parts,
correctness is guaranteed.

Moreover, the eventual CP-NIZKs proof guarantees public
verifiability, due to its non-interactive nature. This allows
regulatory bodies to confirm that banks adhere to the rules
when giving out mortgages, without seeing any sensitive data.

The idea, of splitting a large prover group into several
smaller parts, can be applied to many practical use cases
similar to this. Not only does it improve efficiency between
parties, it also reduces the risk of aborts due to adversarial
behavior, and removes the need for secure communication
channels between all parties.

PA-MPC for e-voting and online auctions. Secure multi-
party computation (MPC) allows a group of parties to collabo-
ratively evaluate a function, whilst guaranteeing input privacy
and correctness. Generally, however, correctness cannot be
verified by parties that are not involved in the computation.
PA-MPC [6], [44] aims to solve this problem by making results
publicly verifiable.

2

While many applications are thinkable, two prominent ones
are found in online auctions and e-voting. In fact, verifiable
auctions and e-voting have been an active topic of research
for a few decades [23], [45], [57], [19], [38], [47], [56], [2],
[52]. Both voting and auctions often have a large number of
participants, making it computationally infeasible to involve all
parties in the computation. Rather, the computation is run by
a fixed group of servers, that take inputs from participants and
compute the result, i.e., highest bid or vote tally. Generally,
participants do not send their plain input to the server but
rather a transformation that hides its true value, e.g., a secret
sharing, hiding commitment, or blinded value, depending on
the privacy-preserving protocol that is used.

So, while participants can guarantee privacy of their own
inputs, they have no control over the results being computed
correctly. But, by using PA-MPC and adding a correctness
proof to the computation, each participant can verify the cor-
rectness of the result, thereby guaranteeing an honest auction
or voting process. To verify the proof, one often needs access
to all commitments to the original input data. Collaborative
CP-NIZKs are a very efficient way of constructing proofs for
committed data, as we argue in Section IV-C.

Improving efficiency through modularity. Collabora-
tive CP-NIZKs can be constructed from any combination of
MPC and CP-NIZK schemes, as we show in Section IV
and onwards. Moreover, we note that many regular NIZKs
can be transformed into CP-NIZKs for select commitment
schemes [17].

The modularity of our construction in combination with its
composition property, i.e., we can compose proofs for differing
statements on partially overlapping commitments, gives its
users significant freedom. This freedom can be used to improve
efficiency, by cleverly combining MPC and CP-NIZK schemes,
depending on the users’ requirements and proof statements.
This potential for efficiency improvements is especially useful
to reduce the overhead introduced by MPC, as exemplified in
the use cases above.

II. RELATED WORK

Below, we give an overview of prior works on (adaptive)
composability and distributed ZKP provers and discuss their
relation to our unifying construction. In Appendix A, we also
provide an additional discussion on existing approaches for
distributed provers on committed data in PA-MPC, which
unlike our work are tailored to one specific, often monolithic,
combination of MPC, commitment, and NIZKs scheme.

Commit-and-Prove constructions. The concept of com-
bining different NIZKs to improve efficiency when handling
heterogeneous statements, i.e., handling substatements of a
larger proof statement with tailored NIZK schemes has pre-
viously been considered in [18], [1]. These works, however,
only focus on combining select schemes, e.g., [1] combines
Pinocchio [53] with Σ-protocols.

Our work builds upon the definition for commit-and-prove
zk-SNARKs (CP-SNARKs) as given in LegoSNARK [17].
In their work, the authors flexibly define CP-SNARKs, i.e.,
succinct CP-NIZKs. And, they show how to compose different
CP-SNARKs for Pedersen-like and polynomial commitments.

Additionally, they define the concept of commit-carrying
zk-SNARKs (cc-SNARKs), a weaker form of CP-SNARKs,
and show how to compile cc-SNARKs into CP-SNARKs.
Specifically, they introduce a commit-and-prove version of
Groth16 [40] for Pedersen-like commitments, that we make
collaborative in this work.

Next to this, we observe a number of schemes with commit-
and-prove functionality that were introduced before LegoS-
NARK. Geppetto [25] can be used to create proofs on commit-
ted data, however, the commitment keys depend on the relation
to be proven, i.e., it is not adaptive. Adaptive Pinocchio [59]
removes this restriction, making it a CP-SNARK according
to the definition of LegoSNARK. Other CP-SNARKs are
presented in [49] and [39], however, they rely on specific
commitment schemes, that may not be composable with other
NIZK schemes. Finally, we note that [25] and [49] give
alternative definitions for CP-SNARKs, however, we choose
LegoSNARK over these definitions due to its flexibility.

Distributed provers. The notion of distributed provers,
i.e., N parties respectively knowing N witnesses, has already
been considered by Pedersen in 1991 [54]. He describes
the general paradigm of distributing prover algorithms using
MPC and presents applications to undeniable signatures. More
recently, the authors of Bulletproofs [16], discuss how to use
MPC to create aggregated range proofs, however this does not
extend to generic arithmetic circuits. Both solutions are specific
to one honest-majority MPC scheme and not very efficient.

The authors of [27] aim to improve upon existing work, by
introducing a compiler to generate distributed provers for ZKPs
based on the interactive oracle proof (IOP) paradigm [11].
They construct distributed versions of Ligero [3], Aurora [10],
and a novel scheme called Graphene. Unlike our work, their
solution is restricted to a particular subset of ZKPs, and does
not consider composability.

Another solution, that we use as inspiration for our
constructions is presented by Ozdemir and Boneh[51], who
define collaborative zero-knowledge succinct non-interactive
arguments of knowledge (zk-SNARKs). They show how to
construct these from generic zk-SNARKs in combination with
MPC. Their implementation is evaluated for Groth16 [40],
Marlin [20], and Plonk [33]. Finally, they describe how to
implement collaborative Fractal [22].

Additionally, we note three schemes that consider distribut-
ing the prover to increase efficiency, e.g., for outsourcing pur-
poses: DIZK [61], Eos [21], and zkSaaS [34]. DIZK distributes
the prover across multiple machines in one cluster, by identify-
ing the computationally costly tasks and distributing these. Yet,
their method is not privacy-preserving and thus not applicable
to our setting. zkSaaS [34], on the other hand, does guarantee
privacy-preservation when outsourcing the prover to a group of
untrusted servers. The authors evaluate their construction for
three zk-SNARKs: (Groth16 [40], Marlin [20], and [33]). Eos
achieves similar results, but only considers zk-SNARKs based
on polynomial IOPs and polynomial commitments, such as
Marlin [20]. Neither Eos nor zkSaaS considers composability
and modularity, and thus their advantages.

Other notions of distribution. Lastly, we observe that
distribution is also considered for other ZKP aspects. Feta [7]

3

considers threshold distributed verification in the designated-
verifier setting. To increase the reliability of the trusted setup,
several works present solutions for replacing the setup algo-
rithm by a distributed setup ceremony [9], [46].

III. PRELIMINARIES

The finite field of integers modulo a prime p is denoted by
Zp. Additionally, G is a cyclic group of order q, where g, h ∈
G are arbitrary generators, all group operations are written
multiplicatively. x

$← Z∗
p denotes uniform random sampling

of an element from Z∗
p.

Some NIZK schemes make heavy use of bilinear groups
(q,G1,G2,GT , e), where G1, G2, and GT are of prime order
q. e : G1 ×G2 → GT is a bilinear map, or pairing, such that
e(ha

1 , h
b
2) = e(h1, h2)

ab, for all a, b ∈ Fq and all h1 ∈ G1,
h2 ∈ G2.

Vectors and matrices. We denote vectors as v and matrices
as A. For example, A ∈ Zn×m represents a matrix with n
rows and m columns, where ai,j is the element located in the
ith row and jth column of A. We denote multiplication of a
scalar c ∈ Zp and vector a ∈ Zn

p as b = c · a ∈ Zn
p , with

bi = c · ai.
Additionally, let g = (g1, . . . , gn) ∈ Gn and x =

(x1, . . . , xn) ∈ Zn
p , then gx is defined as gx = gx1

1 · · · gxn
n .

Also, ⟨a,b⟩ =
∑n

i=1 ai · bi denotes the inner product of two
vectors a,b ∈ Zn, and a ◦ b = (a1 · b1, . . . , an · bn) their
Hadamard product.

A vector polynomial is denoted by p(X) =
∑d

i=0 pi ·Xi ∈
Zn
p [X] where coefficients are n-vectors, i.e., pi ∈ Zn

p . Given
0 ≤ ℓ ≤ n, we use a[:ℓ] = (a1, . . . , aℓ) ∈ Zℓ to denote the left
slice and a[ℓ:] = (aℓ+1, . . . , an) ∈ Zn−ℓ for the right slice.

A. Multiparty computation

MPC is a collection of techniques that allow multiple
parties to jointly compute a function on their combined inputs
while preserving privacy of their respective inputs. Typically,
N parties P1, . . . , PN collaboratively evaluate f : XN → Y ,
where the i-th party Pi holds input xi ∈ X . A secure MPC
protocol Π should at least satisfy privacy, correctness, and in-
dependence of inputs [48]. Informally, this means that no party
should learn anything other than its prescribed output, that each
honest party is guaranteed correctness of its received output,
and that corrupted parties choose their inputs independently of
honest parties’ inputs.

Concretely, we say that Π is secure against t corrupted
parties, if Π is secure against any adversary A corrupting no
more than t out of N parties. Furthermore, security depends
on the type of behaviour that corrupted parties may show.
For semi-honest, or honest-but-curious, adversaries, corrupted
parties follow the protocol specification as prescribed. A
simply tries to learn as much information as possible from the
corrupted parties’ states. Adversely, in the malicious model,
corrupted parties may deviate arbitrarily from the specified
protocol to try and break security.

The majority of practical MPC protocols satisfy security in
either model, only when aborts are allowed. In this security-
with-abort model, the adversary may cause an abort of the

protocol, thereby denying outputs to honest parties. We refer
the reader to [35] for all formal definitions related to MPC.

Arithmetic circuits for MPC. An arithmetic circuit allows
us to describe a large class of computations using elementary
gates. Many generic MPC frameworks can be used to securely
evaluate bounded size arithmetic circuits. A circuit is repre-
sented by a directed acyclic graph (DAG) consisting of wires
and gates. Wires carry values in a finite field Zp, and can be
either public or private. Each gate takes two input values and
returns one output, either a multiplication or addition of its
inputs. A subset of the wires is dedicated for assigning the
circuit inputs and outputs.

SPDZ. Many MPC protocols are based on secret sharing,
in which private inputs and intermediate values are represented
by so-called shares. Oftentimes, inputs are secret shared using
a t-out-of-N secret sharing scheme, where each value is split
in N shares (one share per party), such that given at least t
shares one can reconstruct the full input, and otherwise no
information is revealed.

SPDZ [26] is an MPC framework based on additive N -out-
of-N secret sharing, i.e., a value y ∈ Zp is split into y1, . . . yN ,
such that all shares together sum to y. We will use JyKi to
denote the share of y held by party i. Additionally, JyK will
denote the vector of all shares of y. The SPDZ framework can
be used to evaluate arbitrary arithmetic circuits of bounded
size in the presence of malicious adversaries.

All shares in SPDZ are associated with a message authen-
tication code (MAC) that is used to maintain correctness of
the computation. A share together with its MAC is called an
authenticated share. SPDZ uses authenticated shares to achieve
active security, meaning that when a corrupted party deviates
from the protocol, the honest parties can detect this and abort
the protocol. SPDZ is thus a secure-with-abort protocol, being
able to handle up to and including N − 1 corrupted parties.
Since, each operation on an authenticated share updates both
the value and its MAC, each operation takes double the time
of a regular operation.

Note that, due to its additive property, arithmetic operations
between public and shared values, as well as addition of
shared values can be done ‘for free’, i.e., locally. However,
multiplying two shared values requires some form of interac-
tion. To solve this problem efficiently, SPDZ adopts somewhat
homomorphic encryption to create a sufficiently large amount
of Beaver triplets [8] in a circuit-independent offline phase.
These triplets can be used to multiply shared values more
efficiently during the online phase.

B. Commitments

A non-interactive commitment scheme is a 3-tuple of
probabilistic polynomial time (p.p.t.) algorithms:

• Setup(1λ) → ck: Given the security parameter λ, this
outputs the commitment key ck, which also describes the
input space D, commitment space C, and opening space O;

• Commit(ck, u, o)→ c: Given ck, an input u and opening o,
this outputs a commitment c;

• VerCommit(ck, c, u, o) → {0, 1}: Asserts whether (u, o)
opens the commitment c under ck, returns 1 (accept) or 0
(reject),

4

and should satisfy at least the following properties:

• Correctness: For all ck and for each u ∈ D, o ∈ O, if
c = Commit(ck, u, o), then VerCommit(ck, c, u, o) = 1;

• Binding: Given a commitment c to an input-opening pair
(u, o), it should be hard to find (u′, o′) with u′ ̸= u, such
that VerCommit(ck, c, u′, o′) = 1;

• Hiding: For any ck and every pair u, u′ ∈ D, the distri-
bution (with respect to o) of Commit(ck, u, o) should be
indistinguishable from that of Commit(ck, u′, o).

C. Zero Knowledge Proofs

ZKPs [37] allow a prover P to convince a verifier V of the
existence of a secret witness w for a public statement x, such
that both satisfy an NP-relation R ∈ Rλ, i.e., (x,w) ∈ R, for
some family of relations Rλ. In this work, we focus on NIZK
proofs of knowledge, in which P not only proves existence of
w, but also that it knows w. Specifically, we consider NIZKs
in the common reference string (CRS) model [13], [28], [40]
(where the CRS can be reused for any polynomial number of
proofs), which are defined by a 3-tuple of p.p.t. algorithms:

• KeyGen(1λ, R) → (ek, vk): takes the security parameter λ
and a relation R and outputs the CRS (ek, vk).

• Prove(ek, x, w). Given the evaluation key ek, statement x,
and witness w, generates a valid proof π (if (x,w) ∈ R).

• Verify(vk, x, π)→ {0, 1}. Given the verification key vk, x,
and π, outputs 1 if π is valid and 0 otherwise.

A secure NIZK proof of knowledge should at least satisfy
the following (informal) properties:

• Completeness: Given a true statement (x,w) ∈ R, an honest
prover P is able to convince an honest verifier V .

• Knowledge soundness: For any prover P , there exists an
extractor EP that produces a witness w such that (x,w) ∈
R, whenever P convinces V for any given x.

• Zero-knowledge: A proof π should reveal no information
other than the truth of the statement x.

We refer to [28] for their formal definitions. When knowledge
soundness only holds computationally, the scheme is called an
argument of knowledge, rather than a proof. For simplicity, we
refer to both as proofs in the remainder of this work unless we
wish to specify it explicitly. An example of a secure a NIZK,
that is also used in our work, is Bulletproofs [16], where non-
interactiveness follows from the Fiat-Shamir heuristic [32].

When a NIZK argument of knowledge is also succinct,
i.e., the verifier runs in poly(λ+ |x|) time and the proof
size is poly(λ), we call it a zk-SNARK [12]. In this work,
we build upon the Groth16 [40] zk-SNARK, to implement a
collaborative CP-SNARK.

D. Collaborative NIZKs

Ozdemir and Boneh [51] define collaborative zk-SNARKs,
building upon previous definitions [11]. They consider the
setting of multiple provers wanting to prove a statement about
a distributed witness, i.e., each party holds a vector of secret
shares that together reconstruct the full witness.

When leaving out the requirement of succinctness, we
obtain the general definition for collaborative NIZKs argu-
ments of knowledge. These are defined analogously to regular

NIZKs by a 3-tuple (KeyGen,Π,Verify), where KeyGen and
Verify have the same definition. Π is an interactive protocol
serving to replace Prove, where N provers with private inputs
w1, . . . , wN together create a proof π for a given statement x.

Completeness and knowledge soundness for collabora-
tive NIZKs arguments are defined analogously to their non-
collaborative counterpart. On the other hand, zero-knowledge is
replaced by the notion of t-zero-knowledge, which guarantees
that t colluding, malicious provers cannot learn anything about
the witnesses of other provers, other than the validity of the
full witness. The relation between regular and collaborative
NIZKs follows from [51]:

Theorem 1. If (KeyGen,Prove,Verify) is a NIZK argument
of knowledge for Rλ, and Π an MPC protocol for Prove
for N parties that is secure-with-abort against t corruptions,
then (KeyGen,Π,Verify) is a collaborative NIZK argument of
knowledge for Rλ. (Proof follows directly from [51, Thm. 1].)

IV. COLLABORATIVE CP-NIZKS

A collaborative CP-NIZK argument of knowledge is an
argument that, given x, is used to prove knowledge of w =
(w1, . . . , wN) such that (x,w1, . . . , wN) ∈ R, where wi =
(ui, ωi) and u = (u1, . . . , uN) opens a commitment cu. It is
collaborative in the sense that N provers, who have distributed
knowledge [41] of the witness vector w, together construct a
single argument of knowledge.

In practice, the commitment to u might be split over
ℓ commitments {cj}j∈[ℓ]. As noted in [17], this splitting
is crucial to efficiently exploit the compositional power of
CP-NIZKs, which we explain shortly after. We assume that
the specification of this splitting is described in R.

Formally, a CP-NIZK argument of knowledge is defined
by a 3-tuple of p.p.t. algorithms:

• KeyGen(1λ, ck, R)→ (ek, vk): Given the security parameter
λ, commitment key ck, and relation R, this algorithm
outputs the CRS, i.e., the evaluation ek and verification vk
keys;

• Π(ek, x, {cj}j∈[ℓ], {uj}j∈[ℓ], {oj}j∈[ℓ],ω) → π: In this in-
teractive protocol, given ek, statement x, and commitments
cj , all N provers use their respective private inputs, i.e.,
commitment openings (ui, oi)j and non-committed witness
ωi, to produce a proof π;

• Verify(vk, x, {cj}j∈[ℓ], π) → {0, 1}: Given vk, x, all cj’s,
and π, this algorithm returns 1 when π is a valid proof and
0 otherwise.

Building upon definitions for CP-SNARKs in [17], we
define commitment-enhanced (CE) relations as follows.

Definition 1 (Commitment-enhanced relation). Let Rλ be
a family of relations R over Dx × Du × Dω , such that
Du = Du1

×· · ·×Duℓ
. Given a commitment scheme Comm =

(Setup,Commit,VerCommit) with input space D, commitment
space C and opening space O, such that Duj ⊆ D,∀j ∈ [ℓ].
The CE version of Rλ is given by RComm

λ , such that:

• every RCE ∈ RComm
λ can be represented by a pair (ck, R)

where ck is a possible output from Setup(1λ), R ∈ Rλ; and

5

• RCE is the collection of statement-witness pairs (ϕ;w), with
ϕ = (x, {cj}) ∈ Dx ×Dℓ and w = ({uj}, {o},ω) ∈ Dℓ ×
Oℓ×Dω such that VerCommit(ck, cj ,uj ,oj) = 1,∀j ∈ [ℓ]
and (x, {uj},ω) ∈ R.

A. Security properties

Using Definition 1 and building upon [51], [11], we present
a unified definition for collaborative CP-NIZKs arguments:

Definition 2 (Collaborative CP-NIZK argument of knowl-
edge). Given a family Rλ of relations R over Dx×Du×Dω

and a commitment scheme Comm. Let U(λ) denote the uniform
distribution over all functions ρ : {0, 1}∗ → {0, 1}λ, i.e.,
if ρ ←$ U(λ), then ρ is a random oracle. In the random
oracle model, (KeyGen,Π,Verify) is a collaborative CP-NIZK
argument of knowledge for Rλ and Comm with N provers,
secure against t malicious provers if for all λ ∈ N, R ∈ Rλ,
with corresponding RCE ∈ RComm

λ as in Definition 1:

1) Completeness: For all (x, {cj}; {uj}, {oj},ω) ∈ RCE and
ck, the following is negligible in λ:

Pr [Verifyρ(vk, x, {cj}, π) = 0|
ρ←$ U(λ)
(ek, vk)← KeyGenρ(1λ, ck, R)
π ← Πρ(ek, x, {cj}, {uj}, {oj},ω)

2) Knowledge soundness: For all (x, {cj}), ck and p.p.t.

provers P⃗ = (P∗
1 , . . . ,P∗

N), there exists a p.p.t. extractor
E such that the following is negligible in λ:

Pr

[
(x, {cj};w) ̸∈ RCE

Verifyρ(vk, x, {cj}, π) = 1

∣∣∣∣
ρ←$ U(λ)
(ek, vk)← KeyGenρ(1λ, ck, R)

π ← P⃗ρ(ek, vk, x, {cj})
w← Eρ,P⃗ρ

(ek, vk, x, {cj})

Where Eρ,P⃗ρ

means that E has access to the random oracle
ρ and can re-run P⃗ρ(ek, x, {cj}), where E can reprogram
ρ each time, and only receives the output of P⃗ .

3) t-zero-knowledge: For all p.p.t. adversaries A controlling
k ≤ t provers Pi1 , . . . ,Pik , there exists a p.p.t. simulator
S such that for all (x, c;w) and p.p.t. distinguishers D

Pr

Dρ(tr) = 1

∣∣∣∣∣∣∣∣∣
ρ←$ U(λ)
(ek, vk)→ KeyGenρ(1λ, R)
b← (x, {cj};w) ∈ RCE

(tr, µ)← Sρ(ek, vk, x, {cj},
wi1 , . . . , wik , b)

 c≡

Pr

Dρ[µ](tr) = 1

∣∣∣∣∣∣
ρ←$ U(λ)
(ek, vk)→ KeyGenρ(1λ, R)
tr← Viewρ

A(ek, vk, x, {cj},w)

,
where tr denotes a transcript. Viewρ

A is the view of A when
the provers interact for the given inputs, where the honest
provers follow Π and dishonest provers may deviate. µ is a
partial function, and ρ[µ] is the function that returns µ(x)
if µ is defined on x and ρ(x) otherwise.

As a corollary, we obtain the following definition:

Definition 3 (cCP-SNARK). A collaborative CP-SNARK is a
collaborative CP-NIZK that additionally satisfies succinctness:
the verifier runs in poly(λ+ |x|) time and the proof size is
poly(λ).

Completeness, soundness, and zero-knowledge are defined
similarly to their (non-collaborative) CP-NIZK counterparts,
however there are some distinctions (in agreement with [51]).

For collaborative proofs, knowledge soundness only guar-
antees that the N provers together ‘know’ the complete witness
vector w. However, it does not state anything about how this
knowledge is distributed over the provers, i.e., there is no
guarantee that party Pi knows wi. Actually, an honest verifier,
observing only the proof π, is not even able to determine the
number of provers N that participated in Π. If desired, this
‘limitation’ could be circumvented, by including additional
conditions in R that link elements of w to secrets that are
known to be in possession of Pi.

In the regular definition of zero-knowledge, the simulator
S should be able to simulate a proof π for any (x, {cj},w) ∈
RCE, without having access to w. Observe that, in this case,
it is sufficient to consider only valid pairs (x,w), since we
consider an honest prover. However, for t-zero-knowledge, up
to t provers may act maliciously, implying that we cannot make
the same assumption. Actually, each malicious prover Pik can
arbitrarily choose wik . This is modelled by providing all wik ’s
to S along with a bit b, denoting whether (x, {cj},w) ∈ RCE.
All in all, t-zero-knowledgeness guarantees that, for no more
than t malicious provers, nothing other than the validity of
the witness w and (possibly) the entries wik of the malicious
provers is revealed.

Theorem 2. Let (KeyGen,Prove,Verify) be a CP-NIZK argu-
ment of knowledge forRλ and Comm, and Π an MPC protocol
for Prove for N parties that has security-with-abort against t
corrupted parties, then (KeyGen,Π,Verify) is a collaborative
CP-NIZK argument of knowledge for Rλ and Comm with N
provers, secure against t malicious provers.

Proof: A CP-NIZK argument of knowledge for Rλ and
Comm is a NIZK argument of knowledge forRComm

λ as defined
in Definition 1, where u, ω, o, uj are all single-element
vectors, i.e., there is only one prover.

Similarly, a collaborative a CP-NIZK argument of knowl-
edge with N provers for Rλ and Comm is a collaborative
NIZK argument of knowledge for RComm

λ as defined in Defi-
nition 1, where all vectors are of length N .

Thus, we are essentially in the situation of Theorem 1 and
can conclude that security holds.

We have opted to define security in the random oracle
model in Definition 2, since some NIZK schemes are only
proven secure in the random oracle model, such as those based
on the Fiat-Shamir paradigm [36], [32], e.g., non-interactive
Bulletproofs [16]. However, not all NIZK schemes depend
upon the random oracle model for security, e.g., Groth16 [40],
in which case security can be defined analogously, but without
giving parties access to a random oracle.

6

B. Composition of collaborative CP-NIZKs

To underscore the relevance of collaborative CP-NIZKs,
we show how to compose two different CP-NIZK schemes on
(partially) overlapping commitments and what benefits come
with. We specifically focus on the novel, added benefits of
composability for the collaborative setting.

Composition of relations with shared inputs. Build-
ing upon [17], consider two families of relations Ra

λ and
Rb

λ, such that Da
u and Db

u can be split as: Da
u = D0

u ×
D1

u and Db
u = D0

u × D2
u. In other words, we consider

two relations where part of the committed inputs (those in
D0

u) are identical. We define the family of conjunctions of
these relations as R∧

λ =
{
R∧

Ra,Rb : Ra ∈ Ra
λ, R

b ∈ Rb
λ

}
,

where (xa, xb,u0,u1,u2, (ωa,ωb)) ∈ R∧
Ra,Rb if and only if

(xa,u0,u1,ωa) ∈ Ra ∧ (xb,u0,u2,ωb) ∈ Rb.

Given a commitment scheme Comm, let cCPa/b be the
respective collaborative CP-NIZK arguments of knowledge for
Ra/b

λ and Comm. Building a collaborative CP-NIZK argument
cCP∧ for R∧

λ and Comm from this is straightforward. It
is sufficient to use the algorithms provided by cCPa/b to
compute two proofs πa and πb on the same commitment
cs to us. Verifying these proofs for the same value of cs

is sufficient to guarantee correctness of the conjunction. For
a more formal description and security proof of the non-
collaborative construction we refer to [17] and note that our
construction can be defined and proven secure analogously.

Next to this, we observe that this composition can be
readily extended to more than two relations, by applying the
above trick multiple times. Finally, we note that a disjunction
of relations can be efficiently constructed using a simple trick
with two additional witness entries, following [17].

Composing proofs with distinct prover sets. A useful
observation, which opens an efficient way of tackling a wide
range of practical use cases, is that the prover sets for cCPa/b

need not be equal. I.e., it is possible for two sets of provers
with only partial overlap1 to prove a single relation, as long as
this relation can be split into parts. We can simply adopt the
construction as described above for proving compositions of
relations and use different prover sets for different ‘subproofs’.

Improving efficiency and security by composition. We
observe 4 main ways of using the composability of collabo-
rative CP-NIZKs to significantly improve practical efficiency
and security properties:

• By splitting a conjunction of several statements, such that
each smaller statement contains witnesses held by a smaller
set of provers, we can let each smaller statement be proven
only by this smaller set of provers. Since many MPC
protocols have communication that scales quadratically in
the number of parties, having multiple smaller prover sets is
likely much more efficient. Moreover, many MPC protocols
require direct communication channels between each party
and that all parties are present simultaneously during the
online phase. This quickly becomes infeasible for large
prover groups. By splitting the statement and prover sets
into smaller parts, we avoid this issue.

1As a matter of fact, the prover sets need not have any overlap at all.

• By splitting a large statement into several smaller ones with
different prover sets for each, we can also use different MPC
schemes for each substatement. This is useful in settings
where different subsets of provers put different security
requirements than others. By splitting the proof along these
subsets, one could for example use a less efficient, dishonest
majority MPC scheme where needed and a more efficient
honest majority MPC scheme where possible.
• Similarly, one can use different NIZK schemes for different

substatements. This can improve efficiency, as some spe-
cialized NIZK schemes are more efficient at proving certain
statements than other generic schemes. Moreover, we can
improve the security guarantees by using different NIZK
schemes. For example, one could avoid schemes with trusted
setups for critical substatements, and only use those with a
trusted setup for less critical statements.
• Finally, in practice, many substatements of a larger statement

will only require witnesses held by a single party. These
substatements could be extracted and proved using a regular
CP-NIZK, that does not suffer from the overhead caused by
using MPC.

C. Practical PA-MPC from collaborative CP-NIZKs

PA-MPC [6] extends MPC with a publicly-verifiable proof
attesting to correct computation of the output. This correctness
holds with respect to the public commitments to each party’s
inputs. There exist several ways of instantiating this method for
verifiable privacy-preserving computation (VPPC). However,
most practical schemes are based on NIZKs. Especially those
based on succinct NIZKs are highly practical, due to their
small communication and verification costs. For an overview
and discussion of PA-MPC schemes we refer to [15].

Ozdemir and Boneh [51] discuss how to construct PA-MPC
from collaborative proofs. They use collaborative proofs to
construct a proof for the MPC computation result, whilst
keeping the witness secret. Since each party commits to their
inputs as part of the zero-knowledge proof, their construction
also requires the opening of a commitment inside the proof.

For general-purpose NIZKs this is possible, however does
lead to a significant increase in the number of constraints
needed to encode the statement, thus leading to, e.g., increased
proof generation times. Especially for an MPC prover, this
increase quickly becomes a bottleneck. We observe that dedi-
cated CP-NIZK schemes are notably more efficient at proving
statements including commitment openings.

Thus, the adoption of collaborative CP-NIZKs likely leads
to significant performance improvements for PA-MPC. Even
more so, when taking the techniques of Section IV-B into
account. For formal definitions and security guarantees of
PA-MPC from collaborative proofs we refer to [51], [15].

V. DISTRIBUTED PROTOCOLS FOR CP-NIZKS

In this section, we describe our methods for construct-
ing MPC protocols for two specific NIZKs: LegoGro16 and
Bulletproofs. Both can be used to construct CP-NIZKs as
we will show. We begin by describing two techniques that
we use to construct the collaborative CP-NIZKs: collaborative
commitment and CPlink. Our techniques are modular, and we
strongly believe that they are more generally applicable to any
NIZK that works over Pedersen-like commitments.

7

A. Collaborative Pedersen-like commitments

Overview of Pedersen-like commitments. Most
CP-NIZKs, such as those introduced in LegoSNARK [17]
or based on Bulletproofs [16] rely upon Pedersen-like
commitments. These are commitment schemes whose
verification algorithm follows the structure of the Pedersen
vector commitment scheme [55]. We recall the Pedersen
vector commitment scheme, for message vectors of length n:

Definition 4 (Pedersen vector commitment). Given a group
G of order p, define input space D = Zn

p , commitment space
C = G, and opening space O = Zp.

• Setup(1λ)→ ck = (g0, . . . gn)←$ Gn+1;
• Commit(ck, u, o)→ c = go0 ·

∏n
i=1 g

ui
i , with o←$ Zp;

• VerCommit(ck, c, u, o)→ c
?
= go0 ·

∏n
i=1 g

ui
i .

The above scheme is perfectly hiding and computationally
binding, given that the discrete log problem is hard in G.
We note that it is possible to open a Pedersen commitment
within a non-CP-NIZK for arithmetic circuits, as done in,
e.g., [42], [14]. However, this is significantly less efficient than
in CP-NIZKs [17].

Our Protocol. One of the main distinguishing components
of the CP-NIZK prover is generating a commitment to the
witness. The collaborative CP-NIZKs we consider operate over
data committed to with a Pedersen vector commitment and
the private witness is distributed. Below, we present an MPC
protocol that extends Commit(ck, u, o) to compute a single
commitment from a shared witness vector u = (u1, . . . , un),
for simplicity we assume that party i knows ui, and thus
n = N . In practice, the witness vector may hold more elements
than the number of parties, and each party could hold an
arbitrary number of these witnesses. The methods we present
are trivially extended to that case.

Intuitively, since Pedersen commitments are additively ho-
momorphic [55], i.e., the product of two commitments is a
commitment to the sum of the committed vectors, there are
two ways the parties can collaboratively commit to the witness
vector. We will refer to the approaches as Commit-then-Share
and Share-then-Commit.

Commit-then-Share (CtS). In the CtS approach, each party
commits to their witness element ui before sharing. To keep
the commitments hidden, each party must add a blinding factor
goi0 to the commitment as follows:

ci = goi0 · g
ui
i

Then, each party sends their commitment to the other party
where the commitments are multiplied to obtain a single, final
commitment to the full witness vector u: c = go

′

0 ·
∏n

i=1 g
ui
i ,

where o′ =
∑n

i=1 oi. As can be observed, the size of the
commitment key is one group element per witness vector
element, plus one common group element g0 for the blinding
factor, i.e., n+ 1 group elements in total.

Share-then-Commit (StC). The StC approach involves shar-
ing and distributing the witness vector u among the parties
before commitment. Initially, the witness vector, including a
blinding factor, is split into shares and distributed among the
parties. Then, each party commits to their shared version of

the witness vector. Because the Pedersen commitment process
is a linear operation, it works under the additive secret-sharing
scheme. Concretely party i computes its share as:

JcKi = g
JoKi
0

n∏
j=1

g
JujKi
j .

Just like for CtS, the commitment key consists of n+1 group
elements. Finally, the parties reveal the final full commitment
by exchanging and multiplying the commitment shares: c =∏n

i=1JcKi.

B. Collaborative CPlink

In this section, we demonstrate the technique used to link
the input commitment in CP-NIZKs, whose verification algo-
rithm is the same as the Pedersen commitment, to an external
commitment. This approach allows us to convert a commit-
carrying NIZK (cc-NIZK) into a CP-NIZKs. To achieve this
we rely on the CPlink construct from [17]. CPlink provides a
way to prove that two commitments, with different keys, open
to the same vector u (witness). Essentially, in this work, we
use this technique to prove that the committed witnesses in
two CP-NIZKs (LegoGro16 and Bulletproof) are equal.

CPlink is built from a zk-SNARK for linear subspaces
Πss, which essentially provides a way to prove the relation
RM (x,w):

RM (x,w) = 1 ⇐⇒ x = M ·w ∈ Gl
1,

where M ∈ Gl×t
1 is a public matrix, x ∈ Gl

1 a public vector,
and w ∈ Zt

p a witness vector. The following are the key
algorithms for the zk-SNARK for linear subspaces Πss:

• Πss.KeyGen(M)→ (ek,vk) :

k
$← Zl

p, a
$← Zp; P := M⊤ · k; C := a · k

return (ek := P ∈ Gl
1, vk := (C′ = gC2 , a′ = ga2) ∈

Gl
2 ×G2)

• Πss.Prove(ek,w)→ π :
return π ← w⊤P ∈ G1

• Πss.VerProof(vk,x, π)→ {0, 1} :
check that x⊤ ·C′ ?

= π · a′

Using Πss, we list the key algorithms for CPlink, which are
simplified below for a setting with two commitments c and c′,
commitment keys ck and ck′, and vector u:

• CPlink.KeyGen(ck, ck
′) → (ek,vk): constructs the matrix

M ← [g0, 0, g1, . . . , gn; 0, g
′
0, g

′
1, . . . , gn] for the relation

RM using ck = (g0, . . . , gn) ∈ Gn+1 and ck′ =
(g′0, . . . , g

′
n) ∈ Gn+1 and generates evaluation and verifi-

cation keys (ek, vk)← Πss.KeyGen(M).
• CPlink.Prove(ek, o, o

′,u) → π: computes the proof π ←
Πss.Prove(ek,w) by using the evaluation key ek, and set-
ting w← [o, o′, u1, . . . , un] where u = (u1, . . . , un) ∈ Zn

p .
• CPlink.Verify(vk, c, c

′, π) → {0, 1}: verifies the proof by
setting the vector x ← [c, c′] in the subspace relation
RM , and running the verification algorithm {0, 1} ←
Πss.Verify(vk,x, π)

The CPlink algorithms can be extended to link multiple
commitments as shown in [17]. Our goal is to compute the
prove function (Πss.Prove) using MPC, where each party i

8

has a share JwKi. We observe that the proof is essentially a
multiplication of matrix P by the witness vector w. Thus using
additive secret sharing based MPC, a simple approach is to run
CPlink.Prove on each share of the witness, and then open the
proof π. We also observe that Πss is essentially a zk-SNARKs
that works on bilinear groups, therefore, we can apply the
same optimization proposed in [51] to Πss. This allows us to
combine CPlink with collaborative LegoGro16 and bulletproof
efficiently, whilst also making them CP-NIZKs.

C. Collaborative LegoGro16

Overview of LegoGro16. This CP-NIZK is first presented
in [17], and is a commit-and-prove version of Groth16 [40],
a frequently used zk-SNARK. Its proof consists of a regular
Groth16 proof (which contains 2 elements from G1 and one
from G2), plus one additional element D (from G1) that
contains a commitment to the input. CPlink guarantees that the
element D is a commitment to the same value as the external
commitment c.

Proving a general statement about a commitment opening
using LegoGro16 is around 5000× faster than using Groth16,
where the commitment is opened inside a regular Groth16
circuit. Moreover, the CRS is approximately 7000× shorter.
These advantages come at a very small cost. Namely, the total
proof size is slightly larger (191B versus 127B) and the verifi-
cation time is around 1.2× slower. These performance results
further emphasize the potential of collaborative CP-NIZKs for
realizing efficient PA-MPC.

Our Protocol. To realize the collaborative LegoGro16
protocol, we essentially combine the collaborative Groth16
protocol from [51] and the previous two protocols. The re-
sulting protocol involves the following steps:

Setup. In the Setup phase, the CRSs for the Groth16 and
CPlink protocols are generated. The resulting keys are sent to
all parties.

Commit and Distribute. The input for the Commit algo-
rithm is the commitment key ck, and a vector of field elements
(Witnesses). Depending on whether the CtS or StC approach
(see Section V-A) is used, the input vector will be either one
party’s part of the plain witness input or the shared witness
input of all parties. The output is a commitment to the witness
input. Then, in the DistributeWitness step of the protocol,
all parties generate shares of their part of the witness and
distribute the shares to all other parties.

Prove. The input for the collaborative prove algorithm Π
is the proving key pk, the circuit’s public input, the shared
witness input, CPlink’s evaluation key ek, and the opening to
the external commitment. This algorithm executes the MPC
protocol to generate a proof share for each party. The proof
contains the standard Groth16 with the additional element D
and the CPlink proof.

RevealProof. The input for the RevealProof algorithm is a
vector of all proof shares generated in the proving phase. By
exchanging the proof shares, the parties can reconstruct the
full proof.

D. Collaborative Bulletproofs for arbitrary arithmetic circuits

In what follows, we introduce collaborative Bulletproofs,
starting with an overview of regular Bulletproofs [16], fol-
lowed by our collaborative version of Bulletproofs for arbitrary
arithmetic circuits. As explained in Section V-B, this is then
easily transformed into a CP-NIZK using CPlink. This does
however warrant a minor modification to the verification
algorithm (see Appendix C).

Overview of Bulletproofs. Bulletproofs have several ad-
vantages over other proof systems, including being based
only on standard assumptions, not requiring bilinear maps,
and having linear prover time complexity and proof size
logarithmic in the number of constraints. Additionally, it allows
building constraint systems on the fly, without a trusted setup.
Bulletproofs are constructed using inner product arguments
and employ a recursive approach for efficiency. This efficiency
makes it feasible to use bulletproof in blockchains and confi-
dential transactions.

Bulletproofs provide an efficient zero-knowledge argument
for arbitrary arithmetic circuits, whilst also generalizing to
include committed values (witnesses) as inputs to the arith-
metic circuit. Including committed input wires is important as
it makes Bulletproofs naturally suitable for CP-NIZKs without
the need to implement an in-circuit commitment algorithm,
thus aligning with our definitions.

Our Protocol. We describe here how we constructed the
collaborative bulletproof following the notation from [16], for
ease of comparison. The prover begins by committing to its
secret inputs v ∈ Zm

p using a blinding factor γ ∈ Zm
p and

generating a Pedersen commitment V where:

Vj = gvjhγj ∀j ∈ [1,m]

In our setting, v is distributed among the N provers. Each
prover Pi has a share JvKi of the witness. Therefore, all provers
collaboratively generate this commitment using either the CtS
or the StC protocols as described earlier.

Subsequently, the provers build the constraint system,
which allows them to perform a combination of operations
to generate the constraints. Specifically, the rank-1 constraint
system (R1CS) is used, which consists of two sets of con-
straints: (1) multiplication gates and (2) linear constraints in
terms of the input variables.

(1) Multiplication gates simply take two input variables and
multiply them to get an output. All multiplication gates in the
constraint system can be expressed by the relation:

aL ◦ aR = aO

Where aL ∈ Zn
p is the vector of the first input to each

gate, aR ∈ Zn
p is the vector of the second input to each gate,

and aO ∈ Zn
p is the vector of multiplication results. All three

vectors have size n representing the number of multiplication
gates.

(2) the input variables are used to express Q Linear
constraints in the form:

WL · aL +WR · aR +WO · aO = WV · v + c

9

Where WL,WR,WO ∈ ZQ×n
p are the public constraints

matrices representing the weights applied to the respective
inputs and outputs. WV ∈ ZQ×m

p is the matrix representing
the weights for a commitment V and c ∈ ZQ

p is a constant
public vector used in the linear constraints.

The provers’ goal in collaborative bulletproofs is to jointly
prove that there exists a v (in commitment V) such that the
linear constraints are satisfied while maintaining the secrecy
of their respective JvKi. The proof system can be summarized
in the following relation.:

 g,h ∈ Gn,V ∈ Gm, g, h ∈ G,
WL,WR,WO ∈ ZQ×n

p ,WV ∈ ZQ×m
p ,

c ∈ ZQ
p ;aL,aR,aO ∈ Zn

p ,v, γ ∈ Zm
p

 :

Vj = gvjhγj∀j ∈ [1,m] ∧ aL ◦ aR = aO
∧WL · aL +WR · aR +WO · aO = WV · v + c

In addition to proving the previous relation, the provers utilize
CPlink to prove that V commits to the same witnesses v as an
external commitment V̂ .

Specification. In Figure 1, we summarize the protocol
for proving this relation collaboratively with N provers. The
protocol relies on ΠDBP , a sub-protocol for collaboratively
generating proofs for arbitrary arithmetic circuits. ΠDBP is our
distributed construction of the regular bulletproofs from [16].
Unlike in [16], we show ΠDBP in its non-interactive form in
Figure 2. We use the cryptographic hash function denoted as H
to hash the transcript up to that point including the statements
to be proven st. The prover’s input to the collaborative
Bulletproof protocol in Figure 1 includes those required in the
standard protocol, along with ek the CPlink evaluation key and
JôK the party’s share of opening to the external commitment.

Additionally, the proving system employs the inner product
argument (IPA) protocol by expressing all the constraints in
terms of a single inner product and then running the IPA
protocol. This reduces the communication cost (proof size)
since IPA has logarithmic communication complexity. The IPA
is not zero-knowledge itself [16], nor does it need to be, and
therefore can be executed individually by each party on the
revealed vectors (l, r) as shown in step 11 of Figure 2. This
approach does not require any communication between parties,
however, all parties must check that the proof πIPA sent to
the verifier is consistent with the one they generated locally.
An alternative but costly approach is to run the IPA protocol
in a distributed fashion. This ensures that all parties generate
the same proof πIPA. We present a distributed IPA protocol
in Appendix B, and experimentally compare its performance
to the non-distributed version.

VI. IMPLEMENTATION

To evaluate and experiment with our newly developed
collaborative CP-NIZKs, a proof-of-concept system was im-
plemented that allows multiple parties to generate collaborative
CP-NIZK proofs.

Since implementing collaborative CP-NIZK relies heavily
on finite fields and pairing-friendly curves, we used a library
that abstracts the underlying cryptographic operations and
offers a generic interface for working with finite fields and
pairing-based cryptography.

Pi’s input: (g, h ∈ G, JvKi ∈ Zm
p , ek ∈ Gl, JôKi ∈ Zp)

Output: (π,V, πCPlink)

1. Generate input commitment:
a. Pi: JγKi

$← Zm
p

b. Parties use CtS or StC to commit to input v, each using their
share of the input JvKi and blinding factors JγKi, resulting
in commitment V ∈ Gm:

Vj = gvjhγj ∀j ∈ [1,m]

2. Build constraint system:
a. Parties build the constraint systems for the required state-

ments to be proven, generating a public description of the
circuit st = (g, h,g,h,WL,WR,WO,WV , c,V)

b. Each party Pi assign the left and right inputs to each
multiplication gate using their shares of JvKi and obtains
(JaLKi, JaRKi).

c. Parties use MPC to compute: JaOKi = JaLKi ◦ JaRKi
3. Prove: Each Pi runs ΠDBP and obtains the proof π

π ← ΠDBP (g, h,g,h, c, JaLKi, JaRKi, JaOKi,
WL,WR,WO,WV , JγKi)

4. Link:
a. Each Pi computes:

Jγ′Ki =
m∑

j=1

JγjKi

JπCPlinkKi ← CPlink.Prove(ek, Jγ′Ki, JôKi, JvKi)

b. P: open πCPlink

5. Output: (π,V, πCPlink)

Fig. 1. Collaborative bulletproof protocol for arbitrary arithmetic circuits

Our implementation2 is built on top of Arkworks [4], a Rust
ecosystem for zk-SNARK programming. It provides libraries
(crates) for working with finite fields and elliptic curves and
several implementations of existing zk-SNARKs and other
cryptographic primitives for implementing custom NIZKs.

MPC. A number of prior works [51], [34], [21] also base
their solutions on Arkworks. For instance, [51] implements
collaborative zk-SNARKs using the Arkworks library, includ-
ing the MPCs primitives. However, extending their imple-
mentation to support the CP-NIZKs considered in this work
proved to be a difficult task. The implementation in [51] uses
version v0.2.0 of Arkworks, and since Arkworks is in active
development, various breaking changes have occurred since.
As a result, we opted to implement the MPC primitives using
the recent version (v0.4.x). Although the implementation is
made from scratch, some design decisions from these existing
implementations are used. Similar to [51], introducing an MPC
Pairing Wrapper is our primary implementation strategy, in
addition to defining interfaces for shared field and group types.
However, we limited our MPC implementation to the SPDZ
framework.

Networking. Our collaborative CP-NIZK protocol requires
communication between all parties. We implemented the
network module to manage this communication. There are

2Our open-source implementation will be made available

10

Pi’s input:(
g, h ∈ G,g,h ∈ Gn, c ∈ ZQ

p , JaLKi, JaRKi, JaOKi ∈ Zn
p ,

WL,WR,WO ∈ ZQ×n
p ,WV ∈ ZQ×m

p , JγKi ∈ Zm
p

)
Output: proof π
1. Each Pi computes:

JαKi, JβKi, JρKi
$← Zp

JAIKi = hJαKigJaLKihJaRKi ∈ G
JAOKi = hJβKigJaOKi ∈ G

JsLKi, JsRKi
$← Zn

p

JSKi = hJρKigJsLKihJsRKi ∈ G

2. P: open (AI , AO, S)
3. P: y ← H(st, AI , AO, S), z ← H(AI , AO, S, y) ∈ Z∗

p

4. Each Pi computes:

yn = (1, y, y2, . . . , yn−1) ∈ Zn
p

zQ+1
[1:] = (z, z2, . . . , zQ) ∈ ZQ

p

δ(y, z) = ⟨y−n ◦ (zQ+1
[1:] ·WR), z

Q+1
[1:] ·WL⟩

5. Each Pi computes:

Jl(X)K = JaLK ·X + JaOK ·X2

+ y−n ◦ (zQ+1
[1:] ·WR) ·X

+ JsLK ·X3 ∈ Zn
p [X]

Jr(X)K = yn ◦ JaRK ·X − yn

+ zQ+1
[1:] · (WL ·X +WO)

+ yn ◦ JsRK ·X3 ∈ Zn
p [X]

Jt(X)Ki = ⟨Jl(X)Ki, Jr(X)Ki⟩

=

6∑
j=1

JtjKi ·Xj ∈ Zp[X]

JτjKi
$← Zp ∀j ∈ [1, 3, 4, 5, 6]

JTjKi = gJtjKi · hJτjKi ∀j ∈ [1, 3, 4, 5, 6]

6. P: open (Tj ∀j ∈ [1, 3, 4, 5, 6])
7. P: x← H(y, z, T1, T3, T4, T5, T6) ∈ Z∗

p

8. Each Pi computes:

JlKi = Jl(x)Ki ∈ Zn
p

JrKi = Jr(x)Ki ∈ Zn
p

JτxKi =
6∑

j=1,j ̸=2

JτjKi · xj

+ x2 ·
(
zQ+1
[1:] ·WV · JγKi

)
∈ Zp

JµKi = JαKi · x+ JβKi · x2 + JρKi · x3 ∈ Zp

9. P: open (l, r, τx, µ)
10. P: xu ← H(x, τx, µ) ∈ Z∗

p

11. Each Pi computes:

t̂ = ⟨l, r⟩ ∈ Zp

πIPA ← ΠIPA.Prove(g,h, gxu , l, r)

12. Output:
π = (AI , AO, S, T1, T3, T4, T5, T6, τx, µ, t̂, πIPA)

Fig. 2. Sub-protocol ΠDBP for collaboratively generating bulletproofs for
arbitrary arithmetic circuits

three types of communication between the parties: (1) ex-
changing witness shares; (2) communicating during the prov-
ing protocol to multiply two shared values; and (3) exchanging
proof shares to get the final proof.

Collaborative LegoGro16. We based our LegoGro16 im-
plementation on that of [17] and updated it to be compatible
with our version of Arkworks. Additionally, we observed that
the same MPC optimization applied to Groth16 in [51] can also
be applied to its CP counterpart (LegoGro16), and therefore,
these optimizations were implemented. The LegoGro16 imple-
mentation in this work does not support parallelization, and the
existing multi-scalar multiplication implementation is replaced
with a single-threaded alternative. Parallelization is disabled
because the order in which the parties exchange and reveal
values is essential. This problem could be solved by using a
more complex communication protocol, but this is beyond the
scope of this project. This decision is made similarly in prior
works like [51].

Collaborative CP-Bulletproofs. Our starting point for the
Bulletproof implementation is an existing Bulletproof imple-
mentation [30] that works over Curve25519 and is imple-
mented in Rust. We adapted this implementation to support
distributed provers by modifying the underlying field and
group elements to work over the MPC shared fields and group
types we defined. Then, we applied the techniques described
in Section V-D by building a wrapper for the prover functions
to allow multiple parties to generate a proof. We use Merlin
transcripts [29] to manage the generation of verifier challenges,
ensuring that all provers have a consistent transcript to generate
the correct challenge.

Summary. The main modules for the implementation can
be summarized as follows:

• The mpc module contains all the functionality for imple-
menting the MPC primitives on Arkworks;
• The network module implements all the networking and

communication functionalities required for the parties to
communicate with each other;
• The col-LegoGro16 module contains the implementa-

tion for the collaborative LegoGro16;
• The col-cp-BP module contains the implementation for

the collaborative CP-Bulletproofs.

VII. EXPERIMENTS

Below, we present the main results of our extensive exper-
imentation for evaluating the performance of our collaborative
CP-NIZKs constructions. Additional experimental results are
provided in Appendix D. Our evaluation was conducted on
a consumer machine equipped with a 10-core Apple M2
Pro CPU and 16GB of RAM. We focused on two metrics:
single-threaded runtime and communication cost. We report
the average results from three runs. We vary the following
parameters to examine their impact on performance:

• The number of R1CS constraints, varying from 2 to 215;
• The number of parties, increasing from 2 to 26.

With our experiments we answer the following questions:

1) How does the performance of both collaborative CP-NIZKs
(LegoGro16 and Bulletproofs) compare to the single prover
setting?

11

2) What is the overhead of composability (linking input com-
mitments), i.e., how does collaborative CP-NIZKs compare
to the non-CP variant such the ones in [51]?

3) Does the performance of using two different CP-NIZKs
improves efficiency over using a single NIZK?

A. Setup and commitments

The focus of this work is on distributing the prover in
CP-NIZKs and evaluating the benefits of composability in this
setting. Therefore, we omit the evaluation of the setup required
for LegoGro16 to generate the CRS and any computations
necessary to prepare the witness and public input to the circuit.
This decision is common for this line of work, since these
computations heavily depend on the type of circuit used and
can be performed when spare computational resources and
bandwidth are available. Additionally, we omit evaluating the
verifier cost since we do not modify the verification algorithms
and these costs are thus unchanged.

An essential part of the setup in our construction is that
provers must collaboratively generate a commitment to the
witness, which can then be linked to an external commitment
using CPlink. Figure 6 shows the performance of generating the
commitment collaboratively using both sub-protocols: CtS and
StC. The performance is measured with an increasing number
of provers N , where we assume each prover has a distinct
witness. The communication cost for both sub-protocols is
the same, consisting of N − 1 broadcast messages per prover.
However, the total runtime for the CtS method is significantly
less than the StC method, and this difference increases as the
number of provers increases. This can be explained by the fact
that the CtS method only requires each party to commit to their
part of the witness, while the StC method requires each party
to commit to the shared witness, a vector of N elements.

B. Varying number of constraints

To demonstrate the scalability of collaborative CP-NIZKs,
we evaluated both LegoGro16 and Bulletproof under varying
numbers of constraints. The results are depicted in Figures 3
and 4, along with the performance of a single prover and non-
collaborative variants of these NIZKs. The results show that
even in distributed settings collaborative CP-NIZKs overhead
is minimal and almost negligible in circuits with a large
number of constraints, especially when compared to non-CP
counterparts, such as the ones in [51].

C. Varying number of provers

In our second experiment, we fixed the number of con-
straints at 210 and varied the number of provers to show how
collaborative CP-NIZKs scale with an increasing number of
provers. We show the results in Figure 5. Our results are
consistent with that in [51] for Groth16. For bulletproofs the
increase in the number of provers causes a significant decrease
in performance. This is mainly because bulletproofs requires
more communication compared to Groth16 as will be shown
in Section VII-D.

As can be observed from our results, the performance
of running two instances of collaborative CP-NIZKs with N
provers compared to running one instance with 2N provers

would result in 1.3–2× improved performance, highlighting
the importance of composition. Splitting prover groups be-
comes beneficial in settings with a large number of provers (>8
provers). For instance, splitting 64 provers into 2 collaborative
CP-NIZKs would improve the per-party runtime by ≈ 2×.

D. Communication Cost

In Figure 7, we report the communication cost per party
for both collaborative CP-NIZKs (LegoGro16 and bulletproof).
The results show that bulletproof requires more communication
than LegoGro16.

E. Improving efficiency by composition

In our final experiment, we aim to answer our third ques-
tion: whether using different collaborative CP-NIZKs would
improve performance (for provers) compared to simply using
a single general-purpose NIZK, such as those used in [51].
To answer this question, we first examined when using col-
laborative Bulletproofs or LegoGro16 would be less costly.
For this, we plotted the runtime performance overhead of both
protocols as we varied the number of constraints. Figure 8
shows our results. Based on these results, it can be observed
that it is optimal to use LegoGro16 for large circuits (with
a large number of constraints) and Bulletproofs for smaller
circuits. Therefore, we conclude that it is indeed more efficient
to use a combination of these two CP-NIZKs on the same
input than to rely solely on a single one. In Section VIII we
further support this conclusion by evaluating the performance
improvement as a result of proof composition by means of an
application scenario.

VIII. APPLICATION: PRIVATE AUDITS

As we discussed earlier in Section I-A, collaborative
CP-NIZKs can be utilized to generate proofs in a setting where
a mortgage applicant needs to demonstrate compliance with the
bank’s requirements. This setting is analogous to the proofs
about net assets presented in [51]. Below, we discuss how
collaborative CP-NIZKs can be constructed in this setting,
evaluate the time required to construct the proof, and show
how we significantly improve efficiency over the Collaborative
SNARKs approach in [51].

Consider k transactions distributed among N banks, where
each transaction is a 64-bit signed integer. Each bank publishes
a Merkle tree commitment of all transactions. The applicant is
required to prove that the net of their debits and credits across
all banks exceeds a threshold T . This claim can be split into
the following checks:

1. The transactions are in the committed Merkle tree.
2. The transactions are well-formed (represented as a 64-bit

signed integer).
3. The sum of all transactions is computed correctly.
4. The computed sum is larger than the threshold T .

A straightforward approach is to include all checks in
one collaborative zk-SNARK, requiring around 364 · n as
demonstrated in [51]. However, since the claim can be split
into multiple checks, we can utilize the modularity of our
proposed collaborative CP-NIZKs and use a combination of
both collaborative Groth16 and Bulletproofs to gain efficiency.

12

Fig. 3. Runtime per prover party for bulletproofs:
(1) Collaborative with CPlink (col-cp-bp), (2) Col-
laborative (col-bp), (3) Single prover (bp).

Fig. 4. Runtime per prover party for: (1) Collabo-
rative LegoGro16 (col-cp-gro16), (2) Collaborative
Groth16 (col-gro16), (3) Single prover Groth16
(gro16).

Fig. 5. Runtime per prover party for varying
number of constraints and prover group sizes.

Fig. 6. Runtime per prover party for CtS and
StC where each party provides a witness to the
commitment.

Fig. 7. Collaborative LegoGro16 and bulletproofs
communication costs for varying circuit sizes. The
number of provers is 2.

Fig. 8. Setup and prove runtime per prover party
for Collaborative LegoGro16 (col-cp-gro16) and
Collaborative bulletproofs with CPlink (col-cp-bp).
The number of provers is 2.

In this setting, checking that each transaction is well-formed
and is included in the Merkle tree can be done individually
by each bank, as each bank can generate such proofs for their
set of transactions. Then, computing the sum and checking it
against the threshold T can be done collaboratively using our
construction of collaborative CP-NIZKs, which would link this
collaborative proof with the individually generated proofs. We
exploit this modularity even further by employing Groth16 for
large circuits such as checks 1 and 4, and Bulletproofs for
checks 2 and 3.

For evaluating the two approaches (on our consumer
machine) we set the number of transactions to 90 (≈ 215

constraints) and the number of banks to 2. Generating a
proof would take ≈ 165 seconds and require ≈ 217 messages
exchanged using the approach in [51]. Using our construc-
tion, the two parties each with 45 transactions will run 214

constraints on their set of transactions locally (without MPC)
using legoGro16 in ≈ 8.3 seconds. Then the two banks
will collaboratively run CP-NIZKs to compute the sum and
compare to T requiring 64 + log2k ≈ 71 constraints in ≈ 0.5
seconds. Thus, generating the proof using our construction is
done in ≈ 9 seconds and requires ≈ 28 messages exchanged.
This results in an 18× improvement in per-party runtime and
only 0.2% of the required communication. We note that if
the number of transactions is fixed at 90 but the number
of parties (banks) increases, the per-party runtime decreases
since each party will locally prove k/N transactions (215/N
constraints). We evaluated this for 4 and 8 banks, finding
that the improvement in runtime becomes 33× and 55×,
respectively. Overall, our protocol is 18–55× faster in this

application setting compared to [51] with only a fraction of the
required communication between parties. We estimate that this
improvement in performance increases with a higher number of
transactions (constraints). Processing 220 constraints using [51]
approach would be infeasible on a consumer machine, taking
≈ 400 minutes. In contrast, using our approach the time taken
would be ≈ 9.5 minutes. Therefore, we project that for 220

constraints, the performance enhancement would be in the
range 40–200×.

IX. CONCLUSION

We have formally defined collaborative CP-NIZKs and
showed how to generically construct these from existing
NIZKs and MPCs frameworks, by taking advantage of the
modularity of our construction. Moreover, we present two
commitment paradigms that allow the adoption of CP-NIZKs
in varying settings, both adaptive and on-the-fly.

By combining the strengths of collaborative proofs with the
composability of the commit-and-prove paradigm, we achieve
significant efficiency improvements over non-composable
counterparts while maintaining the flexibility of collaborative
proofs. Our implementation in Arkworks demonstrates the
practical feasibility and modularity of our approach, paving the
way for future work and extensions to easily integrate novel
NIZKs and MPCs schemes. Our experiments show that our
approach incurs minimal overhead and provides substantial
performance benefits, including efficiency improvements of
18–55× compared to existing constructions in realistic applica-
tion scenarios. This makes collaborative CP-NIZKs a valuable
tool for a wide range of applications.

13

REFERENCES

[1] S. Agrawal, C. Ganesh, and P. Mohassel, “Non-Interactive Zero-
Knowledge Proofs for Composite Statements,” in Advances in Cryp-
tology – CRYPTO 2018, ser. Lecture Notes in Computer Science,
H. Shacham and A. Boldyreva, Eds. Cham: Springer International
Publishing, 2018, pp. 643–673.

[2] R. Alvarez and M. Nojoumian, “Comprehensive survey on privacy-
preserving protocols for sealed-bid auctions,” Computers & Security,
vol. 88, p. 101502, Jan. 2020.

[3] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero:
Lightweight Sublinear Arguments Without a Trusted Setup,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, Oct. 2017, pp. 2087–2104.

[4] arkworks contributors, “arkworks zksnark ecosystem,” arkworks, 2022.
[Online]. Available: https://arkworks.rs

[5] T. Attema and R. Cramer, “Compressed Σ-Protocol Theory and Prac-
tical Application to Plug & Play Secure Algorithmics,” in Advances in
Cryptology – CRYPTO 2020, ser. Lecture Notes in Computer Science,
D. Micciancio and T. Ristenpart, Eds. Cham: Springer International
Publishing, 2020, pp. 513–543.

[6] C. Baum, I. Damgård, and C. Orlandi, “Publicly Auditable Secure
Multi-Party Computation,” in Security and Cryptography for Networks,
ser. Lecture Notes in Computer Science, M. Abdalla and R. De Prisco,
Eds. Cham: Springer International Publishing, 2014, pp. 175–196.

[7] C. Baum, R. Jadoul, E. Orsini, P. Scholl, and N. P. Smart, “Feta:
Efficient Threshold Designated-Verifier Zero-Knowledge Proofs,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’22. New York, NY, USA:
Association for Computing Machinery, Nov. 2022, pp. 293–306.

[8] D. Beaver, “Efficient Multiparty Protocols Using Circuit Randomiza-
tion,” in Advances in Cryptology — CRYPTO ’91, ser. Lecture Notes in
Computer Science, J. Feigenbaum, Ed. Berlin, Heidelberg: Springer,
1992, pp. 420–432.

[9] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza, “Secure
Sampling of Public Parameters for Succinct Zero Knowledge Proofs,”
in 2015 IEEE Symposium on Security and Privacy. San Jose, CA,
USA: IEEE, May 2015, pp. 287–304.

[10] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and
N. P. Ward, “Aurora: Transparent Succinct Arguments for R1CS,” in
Advances in Cryptology – EUROCRYPT 2019, Y. Ishai and V. Rijmen,
Eds. Cham: Springer International Publishing, 2019, pp. 103–128.

[11] E. Ben-Sasson, A. Chiesa, and N. Spooner, “Interactive Oracle Proofs,”
in Theory of Cryptography, M. Hirt and A. Smith, Eds. Berlin,
Heidelberg: Springer, 2016, pp. 31–60.

[12] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ser. ITCS ’12. New York, NY,
USA: Association for Computing Machinery, Jan. 2012, pp. 326–349.
[Online]. Available: https://dl.acm.org/doi/10.1145/2090236.2090263

[13] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge
and its applications,” in Proceedings of the twentieth annual ACM
symposium on Theory of computing, ser. STOC ’88. New York, NY,
USA: Association for Computing Machinery, Jan. 1988, pp. 103–112.
[Online]. Available: https://dl.acm.org/doi/10.1145/62212.62222

[14] T. Bontekoe, M. Everts, and A. Peter, “Balancing privacy and account-
ability in digital payment methods using zk-SNARKs,” in 2022 19th
Annual International Conference on Privacy, Security & Trust (PST).
Fredericton, NB, Canada: IEEE, Aug. 2022, pp. 1–10.

[15] T. Bontekoe, D. Karastoyanova, and F. Turkmen, “Verifiable Privacy-
Preserving Computing,” Apr. 2024.

[16] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short Proofs for Confidential Transactions and More,” in
2018 IEEE Symposium on Security and Privacy (SP). San Francisco,
CA, USA: IEEE, May 2018, pp. 315–334.

[17] M. Campanelli, D. Fiore, and A. Querol, “LegoSNARK: Modular
Design and Composition of Succinct Zero-Knowledge Proofs,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, Nov. 2019, pp. 2075–2092.

[18] M. Chase, C. Ganesh, and P. Mohassel, “Efficient Zero-Knowledge
Proof of Algebraic and Non-Algebraic Statements with Applications to
Privacy Preserving Credentials,” in Advances in Cryptology – CRYPTO
2016, M. Robshaw and J. Katz, Eds. Berlin, Heidelberg: Springer,
2016, pp. 499–530.

[19] D. Chaum, “Secret-ballot receipts: True voter-verifiable elections,”
IEEE Security & Privacy, vol. 2, no. 1, pp. 38–47, Jan. 2004.

[20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. Ward,
“Marlin: Preprocessing zkSNARKs with Universal and Updatable
SRS,” 2019, publication info: A major revision of an IACR
publication in EUROCRYPT 2020. [Online]. Available: https:
//eprint.iacr.org/2019/1047

[21] A. Chiesa, R. Lehmkuhl, P. Mishra, and Y. Zhang, “Eos: Efficient
Private Delegation of zkSNARK Provers,” in 32nd USENIX Security
Symposium (USENIX Security 23). Anaheim, CA, USA: USENIX
Association, 2023, pp. 6453–6469. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity23/presentation/chiesa

[22] A. Chiesa, D. Ojha, and N. Spooner, “Fractal: Post-quantum and
Transparent Recursive Proofs from Holography,” in Advances in Cryp-
tology – EUROCRYPT 2020, ser. Lecture Notes in Computer Science,
A. Canteaut and Y. Ishai, Eds. Cham: Springer International Publishing,
2020, pp. 769–793.

[23] J. D. Cohen and M. J. Fischer, “A robust and verifiable cryptographically
secure election scheme,” in 26th Annual Symposium on Foundations of
Computer Science (Sfcs 1985). Portland, OR, USA: IEEE, Oct. 1985,
pp. 372–382.

[24] G. Cormode, M. Mitzenmacher, and J. Thaler, “Practical verified
computation with streaming interactive proofs,” in Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, ser. ITCS
’12. New York, NY, USA: Association for Computing Machinery, Jan.
2012, pp. 90–112.

[25] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur, “Geppetto: Versatile Verifiable
Computation,” in 2015 IEEE Symposium on Security and Privacy. San
Jose, CA, USA: IEEE, May 2015, pp. 253–270.

[26] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty Com-
putation from Somewhat Homomorphic Encryption,” in Advances in
Cryptology – CRYPTO 2012, ser. Lecture Notes in Computer Science,
R. Safavi-Naini and R. Canetti, Eds. Berlin, Heidelberg: Springer,
2012, pp. 643–662.

[27] P. Dayama, A. Patra, P. Paul, N. Singh, and D. Vinayagamurthy,
“How to prove any NP statement jointly? Efficient Distributed-
prover Zero-Knowledge Protocols,” 2021. [Online]. Available: https:
//eprint.iacr.org/2021/1599

[28] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai,
“Robust Non-interactive Zero Knowledge,” in Advances in Cryptology
— CRYPTO 2001, J. Kilian, Ed. Berlin, Heidelberg: Springer, 2001,
pp. 566–598.

[29] H. de Valence, “Merlin,” https://github.com/dalek-cryptography/merlin,
2024, accessed: 2024-05-17.

[30] H. de Valence, C. Yun, and O. Andreev, “Bulletproofs,” https://github.
com/dalek-cryptography/bulletproofs, 2024, accessed: 2024-03-17.

[31] M. Dutta, C. Ganesh, S. Patranabis, and N. Singh, “Compute,
but Verify: Efficient Multiparty Computation over Authenticated
Inputs,” 2022, publication info: Preprint. [Online]. Available: https:
//eprint.iacr.org/2022/1648

[32] A. Fiat and A. Shamir, “How To Prove Yourself: Practical Solutions to
Identification and Signature Problems,” in Advances in Cryptology —
CRYPTO’ 86, ser. Lecture Notes in Computer Science, A. M. Odlyzko,
Ed. Berlin, Heidelberg: Springer, 1987, pp. 186–194.

[33] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “PLONK:
Permutations over Lagrange-bases for Oecumenical Noninteractive
arguments of Knowledge,” 2019, publication info: Preprint. [Online].
Available: https://eprint.iacr.org/2019/953

[34] S. Garg, A. Goel, A. Jain, G.-V. Policharla, and S. Sekar,
“zkSaaS: Zero-Knowledge SNARKs as a Service,” in 32nd USENIX
Security Symposium (USENIX Security 23). Anaheim, CA, USA:

14

https://arkworks.rs
https://dl.acm.org/doi/10.1145/2090236.2090263
https://dl.acm.org/doi/10.1145/62212.62222
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://www.usenix.org/conference/usenixsecurity23/presentation/chiesa
https://www.usenix.org/conference/usenixsecurity23/presentation/chiesa
https://eprint.iacr.org/2021/1599
https://eprint.iacr.org/2021/1599
https://github.com/dalek-cryptography/merlin
https://github.com/dalek-cryptography/bulletproofs
https://github.com/dalek-cryptography/bulletproofs
https://eprint.iacr.org/2022/1648
https://eprint.iacr.org/2022/1648
https://eprint.iacr.org/2019/953

USENIX Association, 2023, pp. 4427–4444. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity23/presentation/garg

[35] O. Goldreich, The Foundations of Cryptography - Volume 2: Basic
Applications. Cambridge: Cambridge University Press, 2004. [Online].
Available: http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html

[36] S. Goldwasser and Y. Kalai, “On the (In)security of the Fiat-Shamir
paradigm,” in 44th Annual IEEE Symposium on Foundations of Com-
puter Science, 2003. Proceedings. Cambridge, MA, USA: IEEE, Oct.
2003, pp. 102–113.

[37] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity
of Interactive Proof Systems,” SIAM Journal on Computing, vol. 18,
no. 1, pp. 186–208, Feb. 1989.

[38] J. Groth, “Non-interactive Zero-Knowledge Arguments for Voting,” in
Applied Cryptography and Network Security, ser. Lecture Notes in
Computer Science, J. Ioannidis, A. Keromytis, and M. Yung, Eds.
Berlin, Heidelberg: Springer, 2005, pp. 467–482.

[39] ——, “Short Pairing-Based Non-interactive Zero-Knowledge Argu-
ments,” in Advances in Cryptology - ASIACRYPT 2010, ser. Lecture
Notes in Computer Science, M. Abe, Ed. Berlin, Heidelberg: Springer,
2010, pp. 321–340.

[40] ——, “On the Size of Pairing-Based Non-interactive Arguments,” in
Advances in Cryptology – EUROCRYPT 2016, ser. Lecture Notes
in Computer Science, M. Fischlin and J.-S. Coron, Eds. Berlin,
Heidelberg: Springer, 2016, pp. 305–326.

[41] J. Y. Halpern and Y. Moses, “Knowledge and common knowledge in
a distributed environment,” Journal of the ACM, vol. 37, no. 3, pp.
549–587, Jul. 1990.

[42] D. E. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash
Protocol Specification, Version 2023.4.0 [NU5],” Dec. 2023, Protocol
specification. [Online]. Available: https://zips.z.cash/protocol/protocol.
pdf

[43] K. Jurek, “What is a zero-knowledge proof?” Oct. 2023. [Online].
Available: https://www.aleo.org/post/what-is-a-zero-knowledge-proof/

[44] S. Kanjalkar, Y. Zhang, S. Gandlur, and A. Miller, “Publicly
Auditable MPC-as-a-Service with succinct verification and universal
setup,” Jul. 2021, arXiv:2107.04248 [cs]. [Online]. Available: http:
//arxiv.org/abs/2107.04248

[45] H. Kikuchi, M. Hakavy, and D. Tygar, “Multi-round anonymous auction
protocols,” IEICE Transactions on Information and Systems, vol. 82,
no. 4, pp. 769–777, 1999.

[46] M. Kohlweiss, M. Maller, J. Siim, and M. Volkhov, “Snarky Cere-
monies,” in Advances in Cryptology – ASIACRYPT 2021, M. Tibouchi
and H. Wang, Eds. Cham: Springer International Publishing, 2021,
pp. 98–127.

[47] J. Lee, J. Choi, J. Kim, and H. Oh, “SAVER: SNARK-friendly,
Additively-homomorphic, and Verifiable Encryption and decryption
with Rerandomization,” 2019, publication info: Preprint. MINOR
revision. [Online]. Available: https://eprint.iacr.org/2019/1270

[48] Y. Lindell, “Secure Multiparty Computation (MPC),” 2020. [Online].
Available: https://eprint.iacr.org/2020/300

[49] H. Lipmaa, “Prover-Efficient Commit-and-Prove Zero-Knowledge
SNARKs,” in Progress in Cryptology – AFRICACRYPT 2016,
D. Pointcheval, A. Nitaj, and T. Rachidi, Eds. Cham: Springer
International Publishing, 2016, pp. 185–206.

[50] B. Marrika, van, “ING launches Zero-Knowledge Range Proof solution,
a major addition to blockchain technology,” Nov. 2017. [Online]. Avail-
able: https://www.ingwb.com/en/insights/distributed-ledger-technology/
ing-launches-major-addition-to-blockchain-technology

[51] A. Ozdemir and D. Boneh, “Experimenting with Collaborative
zk-SNARKs: Zero-Knowledge Proofs for Distributed Secrets,”
in 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022, pp.
4291–4308. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/ozdemir

[52] S. Panja and B. Roy, “A secure end-to-end verifiable e-voting system
using blockchain and cloud server,” Journal of Information Security and
Applications, vol. 59, p. 102815, Jun. 2021.

[53] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio:
nearly practical verifiable computation,” Communications of the

ACM, vol. 59, no. 2, pp. 103–112, 2013. [Online]. Available:
https://dl.acm.org/doi/10.1145/2856449

[54] T. P. Pedersen, “Distributed Provers with Applications to Undeniable
Signatures,” in Advances in Cryptology — EUROCRYPT ’91, D. W.
Davies, Ed. Berlin, Heidelberg: Springer, 1991, pp. 221–242.

[55] ——, “Non-Interactive and Information-Theoretic Secure Verifiable
Secret Sharing,” in Advances in Cryptology — CRYPTO ’91, ser.
Lecture Notes in Computer Science, J. Feigenbaum, Ed. Berlin,
Heidelberg: Springer, 1992, pp. 129–140.

[56] K. Ramchen, C. Culnane, O. Pereira, and V. Teague, “Universally
Verifiable MPC and IRV Ballot Counting,” in Financial Cryptography
and Data Security, ser. Lecture Notes in Computer Science, I. Goldberg
and T. Moore, Eds. Cham: Springer International Publishing, 2019,
pp. 301–319.

[57] B. Schoenmakers, “A Simple Publicly Verifiable Secret Sharing Scheme
and Its Application to Electronic Voting,” in Advances in Cryptology
— CRYPTO’ 99, ser. Lecture Notes in Computer Science, M. Wiener,
Ed. Berlin, Heidelberg: Springer, 1999, pp. 148–164.

[58] B. Schoenmakers, M. Veeningen, and N. de Vreede, “Trinocchio:
Privacy-Preserving Outsourcing by Distributed Verifiable Computation,”
in Applied Cryptography and Network Security, ser. Lecture Notes in
Computer Science, M. Manulis, A.-R. Sadeghi, and S. Schneider, Eds.
Cham: Springer International Publishing, 2016, pp. 346–366.

[59] M. Veeningen, “Pinocchio-Based Adaptive zk-SNARKs and
Secure/Correct Adaptive Function Evaluation,” 2017, publication info:
Published elsewhere. Minor revision. Proceedings AFRICACRYPT
2017. [Online]. Available: https://eprint.iacr.org/2017/013

[60] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish, “Doubly-
Efficient zkSNARKs Without Trusted Setup,” in 2018 IEEE Symposium
on Security and Privacy (SP). San Francisco, CA, USA: IEEE, May
2018, pp. 926–943.

[61] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica,
“DIZK: A Distributed Zero Knowledge Proof System,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD,
USA: USENIX Association, 2018, pp. 675–692. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/wu

APPENDIX

A. Additional Related Work

PA-MPC from distributed proofs. The research on
PA-MPC [6] is closely related to the context of our work.
However, constructions for PA-MPC are often very specific
to one scheme and do not consider composability, contrary to
our generic, modular approach. In PA-MPC, a group of parties,
each holding some private values, collaboratively evaluates a
function, in such a way that correctness of the result can be
verified by any external party. PA-MPC is often proposed for
the outsourcing setting, in which data parties secret share there
data to multiple servers, who compute the proof in a distributed
fashion. Since data parties themselves can also be computation
servers, it can also be used in the setting of VPPCs [15].
Correctness is, generally, derived from commitments to the
parties’ inputs.

In the initial construction for PA-MPC [6] a verifier had
to assert correctness of a full transcript. However, later it
was shown by Veeningen that PA-MPC can be made more
efficient by creating a distributed ZKP on committed data.
Veeningen showed how to construct PA-MPC from an adaptive
CP-SNARK based on Pinocchio [53]. Here, adaptive means
that the scheme is secure even when the relation is chosen
after the input commitments are generated. PA-MPC is realized
by applying the CP-SNARK approach to Trinocchio [58], a
distributed version of [53].

15

https://www.usenix.org/conference/usenixsecurity23/presentation/garg
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html
https://zips.z.cash/protocol/protocol.pdf
https://zips.z.cash/protocol/protocol.pdf
https://www.aleo.org/post/what-is-a-zero-knowledge-proof/
http://arxiv.org/abs/2107.04248
http://arxiv.org/abs/2107.04248
https://eprint.iacr.org/2019/1270
https://eprint.iacr.org/2020/300
https://www.ingwb.com/en/insights/distributed-ledger-technology/ing-launches-major-addition-to-blockchain-technology
https://www.ingwb.com/en/insights/distributed-ledger-technology/ing-launches-major-addition-to-blockchain-technology
https://www.usenix.org/conference/usenixsecurity22/presentation/ozdemir
https://www.usenix.org/conference/usenixsecurity22/presentation/ozdemir
https://dl.acm.org/doi/10.1145/2856449
https://eprint.iacr.org/2017/013
https://www.usenix.org/conference/usenixsecurity18/presentation/wu

Kanjalkar et al. [44] improve upon [59], by constructing
PA-MPC from a new CP-SNARKs based on Marlin [20],
which only requires a single trusted setup ceremony that can be
used for any statement, rather than the relation-specific trusted
setup of Pinocchio. More recently, Dutta et al. [31] consider the
notion of authenticated MPC, on signed inputs. They construct
several distributed proofs of knowledge for opening Pedersen
commitments and compressed Σ-protocols [5].

B. Distributed Inner-Product Argument.

A core building block of the bulletproof system is the inner
product argument (IPA). It allows the prover to convince a
verifier that a scalar c ∈ Zp is the correct inner-product of
two vectors a and b where a, b ∈ Zn

p . Bulletproofs employs
a recursive argument to demonstrate the validity of an inner
product relation under cryptographic commitments. In the
bulletproofs setup, the IPA provides a structured proof for the
relation:

{(g,h ∈ Gn, u, P ∈ G;a,b ∈ Zn
p) : P = gahb · u⟨a,b⟩}.

Here, it is assumed that n is a power of 2, ensuring the
inputs align correctly; if not, zero padding may be applied to
the vectors. To prove the above relation, the prover conducts
k = log2 n rounds, where in each round, the prover sends a
commitment to the left half of the vector L and a commitment
to the right half of the vector R to the verifier, receives
a challenge x, and refines the vectors a,b,G,H for the
next round. This reduction process is crucial for enhancing
the efficiency of the protocol. If the reduced commitment
maintains the prescribed relation at any round, it implies, with
overwhelming probability, that the original, un-reduced com-
mitment also satisfies the relation. The interactive protocol is
described in [16], and by employing the Fiat-Shamir heuristic,
the protocol can be made non-interactive, substituting rounds
of interaction with cryptographic hashes of the commitments
as we do in our implementation.

When extended to multiple provers, the protocol can be
adapted to a distributed setting where each prover holds parts
of the vectors a and b. Each prover can then create shares of
their parts and distribute them to all parties, resulting in each
prover having shares of vectors a and b, denoted by JaKi, JbKi
for i ∈ [N] where N is the number of provers. These provers
collaboratively generate parts of the overall proof without
revealing their individual vector shares to the verifier or each
other. To achieve this, each prover runs the IPA protocol with
their respective shares in parallel and broadcasts the resulting
commitments JLKi and JRKi to obtain the challenge x. At the
conclusion of the protocol, each party broadcasts their partial
proof, which is then combined to make the proof that the
verifier can use. The non-interactive distributed protocol is
summarized in Figure 9 for the prover and Figure 10 for the
verifier. We note that the verification in Figure 10 is done
through a single multi-exponentiation as described in [16,
Section 3.1]. This method enhances verification speed, and we
have adopted it in our implementation as well.

Additionally, in Figure 12 we compare the performance of
using the distributed IPA compared to running the IPA on re-
vealed a and b vectors. This clearly shows that the distributed
version incurs a noticeable overhead over the regular version.

Pi’s input: (g,h ∈ Gn, u ∈ G, JaKi, JbKi ∈ Zn
p)

Output: π
1. Each Pi computes:

n′ ← n , k ← log2 n
Ja′Ki ← JaKi , Jb′Ki ← JbKi
g′ ← g , h′ ← h
x0 ← 0
for j = 1, . . . , k

n′ = n
2

JcL,jKi = ⟨Ja′
[:n′]Ki, Jb′

[n′:]Ki⟩ ∈ Zp

JcR,jKi = ⟨Ja′
[n′:]Ki, Jb′

[:n′]Ki⟩ ∈ Zp

JLjKi = g
Ja′

[:n′]Ki
[n′:] h

Jb′
[n′:]Ki

[:n′] uJcL,jKi ∈ G

JRjKi = g
Ja′

[n′:]Ki
[:n′] h

Jb′
[:n′]Ki

[n′:] uJcR,jKi ∈ G
P: open (Lj , Rj)
P : xj ← H(xj−1, Lj , Rj) ∈ Zp

Ja′Ki = Ja′
[:n′]Ki · xj + Ja′

[n′:]Ki · x−1
j ∈ Zn′

p

Jb′Ki = Jb′
[:n′]Ki · x−1

j + Jb′
[n′:]Ki · xj ∈ Zn′

p

g′ = g′x
−1
j

[:n′] ◦ g
′xj

[n′:] ∈ Gn′

h′ = h′xj

[:n′] ◦ h
′x

−1
j

[n′:] ∈ Gn′

2. P: open (a′, b′)
3. Output: (L,R ∈ Gk, a′, b′ ∈ Zp)

Fig. 9. Distributed IPA prover protocol ΠDIPA.Prove.

V’s input:
(g,h ∈ Gn, u, P ∈ G, π = (L,R ∈ Gk, a, b ∈ Zp))
Output: {V accepts, or V rejects}
1. V computes challenges x ∈ Zk

p:
x0 ← 0
for j = 1, . . . , k
xj ← H(xj−1, Lj , Rj)

2. V computes s ∈ Zn
p :

si =
∏k

j=1 x
b(i,j)
j ∀i ∈ [1, n]

where: b(i, j) =

{
1 the jth bit of i− 1 is 1
−1 otherwise

3. V checks:
ga·s · hb·s−1

· ua·b ?
= P ·

∏k
j=1 L

(x2
j)

j ·R
(x−2

j)

j

- If yes, V accepts; otherwise V rejects.

Fig. 10. Distributed IPA verifier protocol ΠDIPA.Verify.

C. Bulletproofs Verifier Protocol

In Figure 11, we present the non-interactive version of the
Bulletproof verification algorithm, adapted for the commit-
and-prove setting. At a high level, this algorithm mirrors
the standard verification protocol with the addition of CPlink
verification. Besides the proof and public parameters, the
verification protocol requires V̂ , an external commitment to
the same witnesses in V, and vkCPlink , the verification key
used for CPlink verification. This ensures that the witnesses in
V satisfy the arithmetic circuit and are linked to the external
commitment V̂ . Additionally, this Bulletproof verification uses
IPA to reduce communication costs, as detailed in Figure 10.

D. Additional Experimental Evaluations

CPlink overhead. In this experiment, we measured the over-
head of CPlink, a technique, as described previously, that allows

16

V’s input: g, h ∈ G,g,h ∈ Gn, c ∈ ZQ
p ,V ∈ Gm, V̂ ∈ G,

WL,WR,WO ∈ ZQ×n
p ,WV ∈ ZQ×m

p , πCPlink ,vkCPlink ,
π = (AI , AO, S, T1, T3, T4, T5, T6, τx, µ, t̂, πIPA)

Output: {V accepts,V rejects}

1. V computes challenges from π : {y, z, x, xu}

2. V computes and checks:

yn = (1, y, y2, . . . , yn−1) ∈ Zn
p

zQ+1
[1:] = (z, z2, . . . , zQ) ∈ ZQ

p

h′
i = hy−i+1

i ∀i ∈ [1, n]

WL = h′zQ+1
[1:]

·WL

WR = g
y−n◦

(
z
Q+1
[1:]

·WR

)

WO = h′zQ+1
[1:]

·WO

P = Ax
I ·A

(x2)
O · h′−yn

·W x
L ·W x

R ·WO · S(x3)

P ′ = P · h−µ · gxu·t̂

{0, 1} ← ΠIPA.Verify(g,h′, gxu , P ′, πIPA)

3. V computes and checks:

V ′ =

m∑
j=0

Vj

{0, 1} ← CPlink.Verify(vkCPlink , V
′, V̂ , πCPlink)

4. If all checks succeed, V accepts, else V rejects.

Fig. 11. Protocol ΠDBP .Verify for verifying bulletproofs in the commit-
and-prove setting (with CPlink).

linking the commitment to the witnesses in both LegoGro16
and Bulletproofs to an external commitment. The results
provide insight into the cost associated with linking proofs in a
distributed setting compared to a single prover setting. While
CPlink does come with a cost (overhead), it is certainly far
more efficient than linking the commitments inside the circuit.
Figure 13 shows the performance of CPlink for an increasing
number of provers where each prover contributes a witness to
the commitment.

Fig. 12. Runtime of a single prover for: (1) IPA on opened a and
b input vectors (col-cp-bp); (2) on shared input (col-cp-bp(DIPA)). The
number of provers is fixed at 2.

Fig. 13. Runtime per prover for CPlink with a varying number of
provers.

17

	Introduction
	Example Use Cases.

	Related Work
	Preliminaries
	Multiparty computation
	Commitments
	Zero Knowledge Proofs
	Collaborative NIZKs

	Collaborative CP-NIZKs
	Security properties
	Composition of collaborative CP-NIZKs
	Practical PA-MPC from collaborative CP-NIZKs

	Distributed Protocols for CP-NIZKs
	Collaborative Pedersen-like commitments
	Collaborative CPlink
	Collaborative LegoGro16
	Collaborative Bulletproofs for arbitrary arithmetic circuits

	Implementation
	Experiments
	Setup and commitments
	Varying number of constraints
	Varying number of provers
	Communication Cost
	Improving efficiency by composition

	Application: private audits
	Conclusion
	References
	Appendix
	Additional Related Work
	Distributed Inner-Product Argument.
	Bulletproofs Verifier Protocol
	Additional Experimental Evaluations

