
A fast heuristic for mapping Boolean circuits to
functional bootstrapping

Sergiu Carpov

Arcium

Abstract. Functional bootstrapping in FHE schemes such as FHEW and
TFHE allows the evaluation of a function on an encrypted message, in
addition to noise reduction. Implementing programs that directly use
functional bootstrapping is challenging and error-prone. In this paper,
we propose a heuristic that automatically maps Boolean circuits to func-
tional bootstrapping instructions. Unlike other approaches, our method
does not limit the encrypted data plaintext space to a power-of-two
size, allowing the instantiation of functional bootstrapping with smaller
parameters. Furthermore, the negacyclic property of functional boot-
strapping is exploited to extend the plaintext space. Despite the inher-
ently greedy nature of the heuristic, experimental results show that the
mapped circuits exhibit a significant reduction in evaluation time. Our
heuristic demonstrates a 45% reduction in evaluation time when com-
pared to hand-optimized Trivium and Kreyvium implementations.

Keywords: Functional bootstrapping · Boolean circuit mapping · Fully
Homomorphic Encryption.

1 Introduction

Fully homomorphic encryption (FHE) is an encryption scheme that enables the
direct execution of arbitrary computations on encrypted data. The first FHE
scheme was introduced by Gentry in his seminal work [18]. The construction
relies on a technique called bootstrapping, which is used to reduce noise in
FHE ciphertexts. This construction theoretically enables the execution of any
computation directly over encrypted data but remains slow in practice. Many
works [17,6,16,11,12] have built upon Gentry’s initial proposal and have con-
tributed to further improvements in the efficiency of FHE.

FHE schemes are typically classified into two main categories. The first cate-
gory of FHE schemes is based on Gentry’s initial proposal. While the bootstrap-
ping procedure is relatively time-consuming, it enables the efficient packing of
data through the use of batching techniques. Typically ciphertexts are boot-
strapped as rarely as possible following the evaluation of numerous homomor-
phic operations. The second type of FHE schemes is based on the GSW somewhat
homomorphic scheme, which was proposed in 2013 by Gentry [19] and supports
branching programs with polynomial noise overhead. These schemes are referred
to as fast bootstrapping schemes. One limitation of these schemes is that they

2 Sergiu Carpov

can only bootstrap one message at a time, but the bootstrapping procedure is
relatively fast. One of the key benefits of these schemes is that they can be
used to compute an arbitrary function while simultaneously reducing noise. We
refer to it as functional bootstrapping (FBS). The FHEW scheme [16] introduced
a FBS procedure which evaluates a nand gate in addition to noise reduction,
and suggested an extension for other/larger gates. In a subsequent work [4] the
FHEW scheme was adapted to accommodate arbitrary multi-input Boolean gates.
The authors of [11,12] further enhanced these designs and introduced the TFHE
library [13]. TFHE’s bootstrapping implementation can execute any two-input
Boolean gate in approximately 10 milliseconds. In [10], the authors propose a
bootstrapping method for evaluating several functions on the same inputs at
once which was further improved in [22].

In order to evaluate functions with several inputs, it is necessary to linearly
combine them into a single value beforehand. This method is referred to as multi-
input FBS throughout the remainder of this document. Linear combinations are
fast and are implemented through the use of scalar ciphertext multiplications
and ciphertext-ciphertext additions. Typically, the binary composition function∑

i xi · 2i is used for evaluating any Boolean functions with n inputs. However,
this approach has a significant drawback: the required plaintext space size is
exponential in the number of function inputs. To address this limitation, we can
use linear combinations with smaller plaintext space sizes for specific Boolean
functions. One such example is symmetric Boolean functions, where the output
depends only on the number of activated inputs and not on their position.

Motivation.

Boolean circuits are evaluated in a gate-by-gate manner using fast bootstrap-
ping schemes. Logic synthesis tools can be used to map circuits to a library of
Boolean gates that are supported by a particular FHE scheme. As an example,
in the case of TFHE, the library contains the complete set of 2-input gates. An-
other option is to map the Boolean circuit to lookup tables (LUT) and evaluate
them homomorphically as generic n-input functions. Both of these solutions are
straightforward to implement because Boolean circuit mapping is a well-studied
problem in the field of logic synthesis, and there are plenty of performant tools
available [3,25].

Limiting the evaluation to generic n-input gates is not the most efficient
approach. As mentioned before, symmetric Boolean gates require smaller FHE
parameters, resulting in faster processing times. A FBS parameterized for generic
n-input gates can be used to evaluate any symmetric Boolean function with up
to 2n − 1 inputs. Additionally, it should be noted that FBS with power-of-two
plaintext space is not always necessary.

As an example, the full-adder is a logic circuit which computes the sum of
three input bits and outputs it on two bits. The minimal number of 2-input gates
(or FBS with plaintext Z4) required for this circuit is 5. However, when mapping
this circuit to 3-input LUTs (or FBS with plaintext Z8) only 2 are needed.
Furthermore, this circuit can be implemented with 2 FBS with a plaintext space

A fast heuristic for mapping Boolean circuits to functional bootstrapping 3

of only Z3 because full-adder outputs are symmetric functions, or as low as 1
FBS if multi-output technique from [10,22] is used.

Contribution.

We propose a new heuristic method which automatically maps Boolean circuits
to functional bootstrapping. The algorithm takes a circuit comprising two-input
gates and the maximum supported FBS parameters (plaintext space size and
linear combination norm) as input. The nodes of the circuit are merged together
into larger nodes as long as they can be evaluated using the given FBS procedure
parameters. Nodes are visited only once in the order in which they appear. The
algorithm employs a greedy strategy which tries to merge nodes for as long as
possible, with the aim of minimising the total number of bootstrappings. The
size of the FBS plaintext is not limited to power-of-two values. Furthermore, the
negacyclic property of the TFHE FBS implementation is used to enhance the
performance of the mapped circuits.

We have implemented a proof of concept for this heuristic, which is publicly
available. The heuristic has been tested on a number of circuit benchmark suites,
including the EPFL combinational benchmarks, ISCAS 85 and ISCAS 89. It
has also been applied to Boolean circuits implemented by hand, namely the
Trivium/Kreyvium cipher and other cryptographic primitives. The estimated
evaluation time of the mapped circuits has been compared to the performance
of non-mapped versions, specifically the original circuit evaluated with generic
2-input gates. Our heuristic consistently finds circuits that are more efficient
than their non-mapped counterparts. In comparison to manual Kreyvium FBS
implementations from [2], our heuristic identified a Kreyvium implementation
that uses 20% less FBSs and has a 45% lower evaluation cost.

Existing works.

The AutoHoG method from [21] presents an automated approach for mapping
Boolean circuits to FBS. A procedure for optimising multi-input FBS linear
combination coefficients is proposed. The objective is to maximise the number
of inputs in each FBS, which should subsequently reduce execution time. The
authors utilise TFHE FBS with Z32 in the benchmarks and do not consider other
plaintext spaces. Another distinction from our work is that AutoHoG is more
resource-intensive as it attempts to optimise the linear combination coefficients
for multi-input sub-circuits. In comparison, this work restricts the search to
linear combinations with two coefficients.

Helm [20] is a framework for circuit synthesis, mapping and execution target-
ing TFHE gate or functional bootstrapping. The authors of [24] introduce a circuit
mapping to LUTs and consider the special case of full-adders being a symmetric
Boolean function. Furthermore, a post-synthesis step is employed which groups
several LUTs into one multi-output LUT, leveraging the results from [10]. These
works follow the standard approach to logic synthesis tools and do not take into
account the specific characteristics of FBS.

4 Sergiu Carpov

Another line of research introduces gate libraries with either multi-input
gates [23] or uses alternative plaintext space sizes as [14]. In their work, the
authors of [23] show how to evaluate 3-input gates using an extended plaintext
space FBS. The Chocobo paper [14] generalises binary logic gates to base-B gates
which are computed as an FBS. A variety of approaches to computing two-input
B-gates are presented. The chaining method corresponds to the multi-input FBS
with plaintext space ZB2 . However the authors do not consider specific B-gates
which require a much smaller plaintext space.

A novel method of encoding Boolean values is introduced in [5]. In contrast
to the typical approach of using a fixed Boolean encoding scheme, namely the
two-element set {0, 1}, the authors put forward a novel proposal: the use of
a distinct Boolean encoding, denoted p-encoding, for each circuit wire. Each
circuit wire has a unique set of potential values (from Zp) for each Boolean
value. Our methodology is comparable to theirs. To provide some context, the
sum of the p-encodings is equivalent to a linear combination of the two-element
Boolean encoding used in our work, refer to Section 4.3 for more details. The
authors present two methods for determining the p-encodings for the inputs of
a Boolean function to be evaluated, one exact and one heuristic. A drawback
of the proposed methods is the exponential complexity in the number of inputs
ℓ of the Boolean function. In our work, we adopt an alternative approach to
solving the problem for large Boolean functions. Rather than attempting to find
a solution directly, we construct it in an iterative manner by examining a 2-
input gate representation of the function in question. So, instead of searching
for ℓ p-encodings (or linear combination coefficients), we only need to find 2.

The authors of [2,26] present hand-optimised algorithms employing FBS.
They demonstrate how to implement Trivium, Kreyvium and AES, showcasing
various optimisation techniques (negacyclic functions, larger than 2 plaintext
spaces, etc.). However, they do not consider non-power-of-two plaintext spaces.

Paper organization.

We begin with a comprehensive overview of functional bootstrapping in Sec-
tion 2, followed by the proposed mapping heuristic in Section 3 and with exper-
imental results in Section 4.

2 Multi-input functional bootstrapping

Notations A vector of size n is denoted by v, v = {v0, v1, . . . , vn−1}, and the
i-th vector element is vi.

2.1 Functional bootstrapping

TFHE [11,12] is a fully homomorphic encryption scheme with a fast bootstrapping
procedure. The paper describes, the use of functional bootstrapping to evaluate

A fast heuristic for mapping Boolean circuits to functional bootstrapping 5

2-input logic gate circuits, which is denoted gate bootstrapping. The bootstrap-
ping procedure is implemented via a homomorphic accumulator which evaluates
the linear part of the decryption function, followed by the non-linear part. For
this line of schemes, the structure of the bootstrapping can be divided in 4 steps:

1. The coefficients of an input LWE ciphertext c = (a, b) are mapped to Z2N .
A cyclic multiplicative group G, where Z2N ≃ G, is used for an equivalent
representation of Z2N elements. G contains all the powers Xk mod XN +1,
where XN + 1 is the quotient polynomial defining the RLWE scheme.

2. The message phase encrypted in the input ciphertext c is transformed to
a RLWE encryption of Xφ. The encryption Xφ is obtained by computing
the linear transformation b − a · s (≈ φ) using GSW encryptions of Xsi (i.e.
bootstrapping key). We obtain the so-called accumulator ACC which contains
an encryption of Xφ ∈ G. This is the linear step of the LWE decryption
algorithm.

3. The accumulator ACC is multiplied with a test polynomial (or test vector)
TVF . The test polynomial encodes the output values of a function G for each
possible input message phase φ ∈ Z2N , where G is a function from Z2N to
Zp. Function G is a composition of the "payload" function F : Zp → Zp and a
rounding function Rp : Z2N → Zp. The rounding function is needed because
phase φ is a noised version of the actual message m = Rp (φ) encrypted in
c = (a, b) The rounding function corresponds to the final non-linear step of
ciphertext c decryption.

4. Finally, an LWE encryption of F (m) (or G (φ)) is extracted from RLWE en-
cryption TVF ·Xφ.

The following sections consider FBS as a method for evaluating generic func-
tions F : Zp → Zp. The input to this method is an LWE encryption of m ∈ Zp,
and the output is also an LWE encryption of the function F applied on m. In the
context of cyclotomic rings with modulus XN +1, the functional bootstrapping
can be extended to negacyclic functions F : Z2p → Zp, which verify the equality
F (x) = −F (x+ p) for all x ∈ Zp.

2.2 Multi-input functional bootstrapping

The FBS procedure is designed to handle a single encrypted message as input. To
extend its capabilities to multiple input ciphertexts, the ciphertexts are linearly
combined into a single ciphertext, after which the aforementioned bootstrapping
procedure is performed. This bootstrapping procedure is referred to as multi-
input functional bootstrapping due to its ability to evaluate generic multi-input
functions.

The first step of multi-input FBS is a linear combination of inputs (LWE
ciphertexts) with integer coefficients. The second step is a FBS procedure with a
specially crafted test polynomial. In the context of multi-input Boolean function
evaluation, the linear combination maps input Boolean values to an integer value,
which is subsequently mapped back to a Boolean value by the bootstrapping
procedure.

6 Sergiu Carpov

Let Zp be the LWE message space supported by FBS. Hereafter we ignore the
fact that in the case of TFHE, messages are values on the torus and instead con-
sider them scaled to Zp. Let f be an n-input Boolean function to be evaluated
over Boolean values encrypted as LWE ciphertexts. Boolean values are encoded in
LWE ciphertexts as either 0s or 1s. Let us define the function ϕ as a linear com-
bination function. We can describe FBS as the composition of a linear function
ϕ followed by a non-linear mapping F : Zp → Z2, such that:

f = F ◦ ϕ.

The non-linear function F is embedded in the test vector, which maps each value
of the image of the function ϕ to a Boolean value. The following sections will
provide a more detailed overview of these two steps.

Linear combination The function ϕc (x) represents a linear combination, ex-
pressed as

∑n
i=1 ci ·xi, where the coefficients c are integers. A linear combination

ϕc can be used in a multi-input FBS to evaluate a logic function, f , if it is ca-
pable to distinguish the output values of f . In more formal terms, for any x and
x′ such that f(x) ̸= f(x′) the linear combination must satisfy ϕc (x) ̸= ϕc (x

′).
To illustrate, the binary composition function, represented by

∑
i xi · 2i, is

a bijective linear combination that can be used to evaluate any Boolean func-
tion f . The mapping function is given by F (z) = f(x) where z =

∑
i xi · 2i.

However, this approach has the disadvantage that the required FBS precision is
exponential in the number of inputs, n. In this case, the required FBS plaintext
space is Z2n .

Not all Boolean functions require the linear combination to be bijective.
For example, the n-input majority function MAJn (x) (which outputs true if the
majority of inputs are active) can be computed with the linear combination

∑
i xi

and the mapping function F (x) = x ≥ n/2. This linear combination is surjective
and can only be used to evaluate a subclass of Boolean functions, in particular
symmetric functions. In comparison to the generic binary composition function,
the multi-input FBS which employs the function

∑
i xi, requires a significantly

smaller precision, which is linear in the number of inputs n.
Let us denote by imsize (c) the image size of the linear combination ϕc. This

is defined as follows:

imsize (c) = max
x

ϕc (x)−min
x

ϕc (x) + 1

For the sake of simplicity, we assume that ϕc (x) ≥ 0. It is possible to transform
any linear combination into an equivalent one that verifies the aforementioned
relation by subtracting minx ϕc (x).

Let us suppose that imsize (c) ≤ p. In this case function f = F ◦ ϕc can
be evaluated by a multi-input FBS with message space Zp. The noise of the
input LWE ciphertexts is inversely proportional to the Euclidean norm ∥c∥2 and it
should be chosen in such a way that the error amplitude of the linear combination
over the LWE ciphertexts is smaller than 1/2. This implies that the output noise

A fast heuristic for mapping Boolean circuits to functional bootstrapping 7

of the linear combination should remain within one message space segment with
overwhelming probability.

In conclusion, the precision of FBS depends on two factors: the plaintext
space size, p, and the maximal Euclidean norm, l, of supported linear combi-
nations. A FBS parameterised with p and l can be used to evaluate any other
Boolean function (regardless of input count) whose linear combination, ϕc, ver-
ifies imsize (c) ≤ p and ∥c∥2 ≤ l.

Blind rotation The output of the linear combination evaluation over the en-
crypted values x is a LWE encryption of ϕc (x). Each value of linear combination,
ϕc, image is mapped to the corresponding value of the Boolean function f by
the FBS procedure using a specific test vector TV. TV maps the integer value
ϕc (x) to the Boolean value f(x) for every x. The TV is defined as follows:

TV =
∑

0≤k<K

F (k)
∑

⌊ k·N
p ⌉≤i<⌊ (k+1)·N

p ⌉
Xi mod XN + 1.

In addition to the function F , this test vector encodes the rounding to Zp func-
tion of the LWE decryption.

F (0)

F (1)

F (2)

F (3)

F (4)

−F (0)

−F (1)

−F (2)

−F (3)

−F (4)

0

1
2

3

4

5

6
7

8

9

Fig. 1. Example of FBS function encoding (colored segments) and message space
(dashed lines separators).

Figure 1 illustrates the message space partition for p = 5 and the function
F encoded in the TV. For illustration purposes, a small RLWE ring size (N = 32)
was selected. It should be noted that the encoding of the function and message

8 Sergiu Carpov

space do not match exactly, as the test vector is discretised to 2 ·N values and
message space elements are not. It is possible to extend the message space to
Z2p without incurring any additional cost for negacyclic functions F . Refer to
the lower half of Figure 1 for negacyclic function encoding illustration.

Negacyclic function evaluation A FBS parameterised for message space Zp can
be employed for negacyclic functions over Z2p. A function F is negacyclic if
F (x) = −F (x+ p) for any x ∈ Zp.

Let us consider a Boolean function, f = F ◦ϕc, where the image size of ϕc is
larger than FBS parameter p, i.e. imsize (c) > p. In this context, three distinct
types of negacyclic Boolean functions exist:

1. F (x) = ¬F (x+ p) – first and last function values are negated,
2. F (x) = F (x+ p) = 1 – first and last function values are ones,
3. F (x) = F (x+ p) = 0 – first and last function values are zeros.

These functions are evaluated as a FBS of function F ′(x) = F (x)−µ for x ∈ Zp

followed by an addition of a constant µ. Here µ equals to 1/2, 1 and 0 for each
negacyclic function type respectively. It is straightforward to see that function
F ′ is negacyclic. Furthermore, it can be shown that after the constant µ has
been added, the original function F is restored.

3 Mapping Boolean circuits to functional bootstrapping

A Boolean circuit is a directed acyclic graph, denoted by G = (V,E), where
V represents the set of nodes and E is the set of directed edges. A vertex v ∈
V can be either a circuit input, a circuit output, or a logic gate. An edge,
(w, v) ∈ E, is a directed connection from a source node w to a destination
node v. The function pred(v) returns the predecessors of a given node v, and is
defined as pred(v) = {u | (u, v) ∈ E}. A gate node is associated with a Boolean
function, fv (U), where U = pred(v) represents the set of predecessors of v. A
cone, designated as Cv, is defined as a sub-set of the node v ancestors, including
the node itself, such that for any w ∈ Cv every path from w to v must lie entirely
within Cv. The support of a cone, denoted by sup(Cv), is a set of nodes that feed
into the nodes in the cone but do not belong to it. Formally, this is expressed
as sup(Cv) = {u | (u,w) ∈ E,w ∈ Cv}. The Boolean function fCv

with inputs
sup(Cv) is defined as the logic function of cone Cv.

The objective of this work is to partition a Boolean circuit into a set of
sub-circuits such that each sub-circuit can be executed by a single functional
bootstrapping. We call this problem Boolean circuit mapping to functional boot-
strapping. Let p be the number of plaintext space divisions and l the linear
combination Euclidean norm for which FBS has been parameterised. A solution
to this problem is a set B of circuit nodes to bootstrap where for each node
v ∈ B we have a cone Cv and a vector of integer coefficients cv (a coefficient per
node in sup(Cv)) such that:

– B contains all circuit outputs,

A fast heuristic for mapping Boolean circuits to functional bootstrapping 9

– any circuit node belongs to at least one cone:
⋃

v∈B Cv = V ,
– linear mapping ϕcv

is valid for cone logic function fCv
: for any x,x′ ∈ Z|cv|

2

such that fCv
(x) ̸= fCv

(x′) we have ϕcv
(x) ̸= ϕcv

(x′),
– FBS parameters are valid, i.e. imsize (cv) ≤ p and ∥cv∥2 ≤ l.

Given a Boolean circuit the optimization problem is to find a mapping which
minimizes circuit evaluation time. The evaluation time of a circuit depends on
the input FBS parameters and on the number of bootstrappings in the mapped
circuit.

3.1 Heuristic mapping

The following section introduces a heuristic that maps Boolean circuits to FBS,
where the parameters of the latter are fixed. The heuristic is outlined in detail
in Algorithm 1. The algorithm takes as inputs a Boolean circuit G, a function
find_params which returns a valid linear combination for a node v and func-
tional bootstrapping parameters p and l. The functional bootstrapping parame-
ters support at least any 2-input Boolean gate. We introduce several implemen-
tations for function find_params, with further details provided subsequently.
The algorithm output is a solution to the Boolean circuit mapping to functional
bootstrapping problem. The heuristic traverses circuit nodes in topological or-
der, incrementally attempting to merge existing cones or bootstrap nodes in
cases where merges do not satisfy the functional bootstrapping parameters.

Each input node of the circuit belongs to an empty cone (line 3). The logic
function of an empty cone is the identity function, f{}(x) = x. The image size
of the corresponding coefficient vector is imsize ([1]) = 2. The circuit output
nodes are added to the set B of nodes to bootstrap. For each gate node v,
function find_params returns a valid linear combination for the merged cone
{v} ∪ Cu ∪ Cw where u,w are the predecessors of v (line 9). In case a lin-
ear combination, which verifies FBS parameters p and l, is found (function
is_valid_size) the linear combination coefficients cv and cone Cv for node
v are added to solution. Otherwise, the algorithm bootstraps predecessor node
with largest linear combination image size (line 11) and resets its cone Cu to
single node (line 12). The process is repeated, i.e. the second predecessor w is
bootstrapped, in the event that no valid linear combination is identified (line 13).
After the third find_params call (line 17), both the predecessors of node v are
bootstrapped, and the new linear combination is certainly valid.

We introduce two algorithms for the cone composition function. The objec-
tive of these functions is to identify a linear combination that represents the
logic function of the merged cone, represented by {v} ∪Cu ∪Cw. Let f (x∥y) =
fv (fCu (x) , fCw (y)) denote the Boolean function of the merged cone. The com-
position algorithms return a vector of coefficients, c, such that ϕc is a valid
linear combination for the function f . It should be noted that these functions
are agnostic about the FBS parameters and can return a vector c whose image
size or Euclidean norm is larger than p or l, respectively.

10 Sergiu Carpov

Algorithm 1 Generic mapping algorithm
Input: Boolean circuit G = (V,E) with 2-input gates
Input: find_params(fCu , cu, fCw , cw, fv) - a function that returns a valid linear

combination for cone v ∪ Cu ∪ Cw.
Input: p, l - FBS message space size and maximal norm of linear combination
Output: B - A set of gates to bootstrap
Output: Cv - A cone for v ∈ B
Output: cv - A vector of coefficients for v ∈ B
1: for all node v ∈ V in topological order do
2: if v is input then
3: Cv, cv ← {}, [1]
4: else if v is output then
5: B ← B ∪ {v}
6: Cv, cv ← {}, [1]
7: else
8: u,w ← pred(v) such that imsize (cu) ≥ imsize (cw)
9: cv ← find_params(fCu , cu, fCw , cw, fv)

10: if not is_valid_size(cv) then
11: B ← B ∪ {u}
12: Cu, cu ← {}, [1]
13: cv ← find_params(fCu , cu, fCw , cw, fv)
14: if not is_valid_size(cv) then
15: B ← B ∪ {w}
16: Cw, cw ← {}, [1]
17: cv ← find_params(fCu , cu, fCw , cw, fv)
18: end if
19: end if
20: Cv ← {v} ∪ Cu ∪ Cw

21: end if
22: end for
23: function is_valid_size(c)
24: return imsize (c) ≤ p and ∥cv∥2 ≤ l
25: end function

A fast heuristic for mapping Boolean circuits to functional bootstrapping 11

The first function is illustrated in Algorithm 2 and it uses a naive approach.
A scaled version of coefficient vector cu is concatenated with vector cw (see
line 3). The coefficient vector cu is scaled by the image size imsize (cw) of the
second vector. The output linear combination function is:

imsize (cw) · ϕcu
(x) + ϕcw

(y)

for x ∈ Z|cu|
2 and y ∈ Z|cw|

2 .

Algorithm 2 Naive cone composition
1: function find_params_naive(fCu , cu, fCw , cw, ·)
2: a, b← imsize (cw) , 1
3: cv ←

[
a · cu

∥∥ b · cw
]

4: return cv
5: end function

The second cone composition function, outlined in Algorithm 3, also concate-
nates scaled versions of the vectors cu and cw (line 5). In contrast to previous
composition function, this function exhaustively searches for scaling coefficients
a and b and returns the coefficient vector with the smallest image size. The
output linear combination function is:

a · ϕcu
(x) + b · ϕcw

(y)

for x ∈ Z|cu|
2 and y ∈ Z|cw|

2 . The possible ranges for these coefficients are |a| ≤
imsize (cw) and |b| ≤ imsize (cu). Since the linear combination functions ϕc and
ϕ−c are equivalent, only positive values for the coefficient a are considered. This
effectively reduces the search space by 2.

Cone composition example. Let us consider a node, v, with a logic function
fv(x, y) = x and y. Additionally, we assume that the gate predecessor cones
are empty (Cx = Cy = {}). The functions of the predecessors are identities,
we have fCx

(x) = x and fCy
(y) = y. Furthermore, the coefficients vectors are

equal, cx = cy = [1]. The naive composition function returns the coefficients
cnaive = [2, 1], where 2 is the image size of cx, and the search composition
function returns csearch = [1, 1]. The image size of cnaive is 4, whereas the image
size of csearch is only 3. The truth-table and linear combination outputs for
function fv are given following table:

x fv(x) ϕcnaive(x) ϕcsearch(x)

[0, 0] 0 0 0
[0, 1] 0 1 1
[1, 0] 0 2 1
[1, 1] 1 3 2

12 Sergiu Carpov

Algorithm 3 Search cone composition
1: function find_params_search(fCu , cu, fCw , cw, fv)
2: cmin

v ← ∅
3: for all a = 1, . . . , imsize (cw) do
4: for all b = −imsize (cu) , . . . ,−1, 1, . . . , imsize (cu) do
5: cv ←

[
a · cu

∥∥ b · cw
]

6: Let f (x∥y) = fv (fCu (x) , fCw (y))
▷ f is the logic function of cone Cu ∪ Cw ∪ {v}

7: if is_valid(f, cv) then
8: if imsize (cv) ≤ imsize

(
cmin
v

)
then

9: if ∥cv∥2 <
∥∥cmin

v

∥∥
2

then
10: cmin

v ← cv
11: end if
12: end if
13: end if
14: end for
15: end for
16: return cmin

v

17: end function
18: function is_valid(f, c)
19: V0 ←

{
ϕc (x) | x ∈ Z|c|

2 , f (x) = 0
}

20: V1 ←
{
ϕc (x) | x ∈ Z|c|

2 , f (x) = 1
}

21: return V0 ∩ V1 ≡ ∅
22: end function

A fast heuristic for mapping Boolean circuits to functional bootstrapping 13

It can be observed that the functions ϕcnaive and ϕcsearch are valid linear com-
binations for the node v logic function as the corresponding linear combination
values for fv(x) ≡ 0 and fv(x) ≡ 1 are different.

Implementation details. The algorithm listings have been simplified by omitting
several implementation details. Gates with a single-input f(v), same-input gates
f(v, v), and constant f(v) = cst gates are ignored because the same linear
combination cv of gate input is valid for gate output also. Furhtermore, linear
combinations with image sizes larger than 216 are pruned by default. In the
search composition function, Algorithm 3, common nodes in the supports of
Cu and Cv are only considered once. In this way obtained linear combination
coefficients are smaller.

4 Implementation and performance

A proof of concept of the proposed circuit mapping heuristic has been imple-
mented in python and is publicly available1. The algorithm is parameterised by
the two cone composition methods that were previously presented. The map-
ping heuristics are referred to as either as the naive heuristic or as the search
heuristic. A minor discrepancy between Algorithm 1 and the implemented ver-
sion is that the latter does not consider the Euclidean norm l when evaluating
the validity of a linear combination (function is_valid_size). This was done
because the Euclidean norm exerts a lesser influence on FBS parameters when
compared to the number of plaintext divisions p.

In order to assess the efficacy of the proposed heuristic, we have employed
Boolean circuits from a range of benchmark suites, as well as circuits generated
manually. Both heuristics have been executed on each circuit benchmark for
varying values of the FBS parameter p. For each execution, the elapsed time has
been recorded, along with the characteristics of the mapped circuit, including
the number of bootstrappings, linear combinations, the maximal Euclidean norm
of the linear combinations, and so forth.

The experimental results demonstrate that the number of output bootstrap-
pings does not exhibit a monotonically decreasing trend with an increase in the
value of p. To illustrate, the blue line in Figure 2 depicts the output bootstrap
count as a function of the FBS size, p, for the search heuristic applied to the
AES 128 circuit. A similar phenomenon is observed for the naive heuristic. We
think this phenomenon occurs due to the greedy nature of the heuristics, which
aim to maximise the image size of linear combinations and consequently FBS
are added too late by the heuristic. In the conducted tests, a maximal value P
was assigned for the FBS size. Subsequently, the heuristic was executed for each
value of 2 ≤ p ≤ P . The mapped circuit with the lowest metric (either evaluation
cost or bootstrapping count) value is kept as output.

1 https://github.com/ssmiler/tfhe_fbs_map

https://github.com/ssmiler/tfhe_fbs_map

14 Sergiu Carpov

2 4 6 8 10 12 14 16
FBS size (p)

17500

20000

22500

25000

27500

30000

32500

35000

nu
m

be
r o

f b
oo

ts
tra

ps

0.9

1.0

1.1

1.2

ev
al

ua
tio

n
co

st

1e6AES circuit

Fig. 2. Search heuristic applied to AES circuit. Mapped circuit number of bootstrap-
pings and estimated evaluation cost as a function of FBS size.

The evaluation cost of a circuit is estimated as the number of circuit boot-
strappings multiplied by the cost of a single bootstrapping. The concrete2 com-
piler is used to estimate the execution cost of a single multi-input FBS with given
parameters. In order to facilitate the utilisation of non power-of-two values for
the FBS size and Euclidean norm, the compiler code has been patched. As an
example, the red line in Figure 2 illustrates the evaluation cost of the AES cir-
cuit as a function of FBS size. It is important to note that while the number of
bootstrappings may continue to decrease with FBS size, the evaluation cost of
the circuit consistently increases for p > 6. Furthermore, starting from p = 8,
the evaluation cost will exceed that of the non-optimised circuit (i.e. the mapped
circuit for p = 2). This is due to the fact that the reduction in bootstrapping
count is no longer sufficient to compensate for the increase of a FBS cost.

4.1 EPFL combinational benchmark suite

The EPFL combinational benchmark suite [1] comprises 10 arithmetic, 10 ran-
dom/control circuits and 3 multi-million gate designs. In our experiments, we
have used the first two types of benchmarks, a total of 20 Boolean circuits.
The naive and the search heuristics are used to map each benchmark circuit to
FBS. The mapping heuristic is executed with FBS sizes varying from 2 to 15.
2 https://github.com/zama-ai/concrete

https://github.com/zama-ai/concrete

A fast heuristic for mapping Boolean circuits to functional bootstrapping 15

The mapped circuit with the smallest cost and smallest the FBS size in case of
a tie is kept as the output. Furthermore, we estimate the cost of executing a
reference mapping where each Boolean circuit gate is executed as a TFHE gate
bootstrapping (i.e. FBS with size 2).

Table 1. EPFL benchmark. Evaluation cost improvements for FBS mapped circuits
(column “cost”), decrease in bootstrappings count (column “#boots.”) and correspond-
ing FBS sizes. Cells where no gain has been obtained are not included in the presen-
tation.

bench naive search
cost #boots. FBS size cost #boots. FBS size

adder −64% −75% 5 (7)
bar −25% −69% 14 (21)
div −30% −52% 5 (10)
hyp −41% −63% 7 (14)
log2 −38% −57% 5 (10)
max −6% −38% 7 (8) −34% −68% 9 (15)
multiplier −50% −68% 7 (14)
sin −37% −60% 7 (14)
sqrt −26% −53% 7 (14)
square −35% −55% 5 (10)

arbiter −20% −45% 5 (8) −48% −64% 5 (8)
cavlc −36% −59% 7 (13)
ctrl −3% −37% 7 (8) −40% −61% 7 (12)
dec
i2c −1% −35% 7 (8) −34% −57% 7 (14)
int2float −8% −40% 7 (8) −49% −67% 7 (13)
mem_ctrl −4% −38% 7 (8) −31% −55% 7 (13)
priority −40% −60% 6 (11)
router −9% −40% 7 (8) −42% −63% 7 (14)
voter −38% −57% 5 (10)
avg. −3% −15% −37% −58%

Refer to Table 1 for a comparison of the evaluation speedups of the circuits
mapped with the proposed heuristics compared to the reference mapping (col-
umn “cost”). The two column groups (denoted as “naive” and “search”) represent
the two cone composition functions. Furthermore, two additional columns are
given for the mapping with the lowest execution cost:

– “#boots.” – difference in number of bootstrappings.
– “FBS size” – FBS size and linear combination image size (in brackets) for

which this mapping was obtained. We remind that the linear combination
image size can be larger than the FBS size in the case of negacyclic functions.

The last table row represents the average of the respective columns.

16 Sergiu Carpov

The mapping heuristic with search cone composition consistently gives better
execution cost and a lower bootstrapping number when compared to the naive
cone composition. On average, the search heuristic results in 37% reduction
in execution cost and a 58% reduction in the number of bootstrappings. The
functional bootstrapping size, which yields the lowest execution cost, is almost
always smaller or equal to 8 except for the bar and the max benchmarks. This
aligns with the earlier observation made for the AES circuit.

2 4 6 8 10 12 14 16
FBS size (p)

0

200

400

600

800

1000

1200

ex
ec

ut
io

n
tim

e
pe

r g
at

e
(m

s)

naive
search

Fig. 3. The average of the mapping heuristics execution time divided by the number
of circuit nodes.

Figure 3 illustrates heuristics average execution time divided by the input
circuit gate count, for each FBS size. As anticipated, the search heuristic is
slower than the naive one and scales non-linearly with FBS size due to the
exhaustive search in Algorithm 3.

4.2 Trivium and Kreyvium stream ciphers

The authors of [2] introduce hand-optimised implementations for Trivium/Kreyvium
stream ciphers [15,9] using TFHE FBS. Several approaches to implementing a sin-
gle iteration of stream ciphers are presented, beginning with gate bootstrapping
and concluding with functional bootstrapping. The most efficient solution uses
a 2-bit message space (or 3-bit in case of negacyclic functions).

A fast heuristic for mapping Boolean circuits to functional bootstrapping 17

// version 1
t1 = s66 ^ s93
t2 = s162 ^ s177
t3 = s243 ^ s288 ^ k127

out = t1 ^ t2 ^ t3

out_t1 = t1 ^ (s91 & s92) ^ s171 ^ iv127
out_t2 = t2 ^ (s175 & s176) ^ s264
out_t3 = t3 ^ (s286 & s287) ^ s69

// version 2
t1 = s66 ^ s93
t2 = s162 ^ s177
t3 = s243 ^ s288 ^ k127

out = t1 ^ t2 ^ t3

out_t1 = (t1 ^ s171 ^ iv127) ^ (s91 & s92)
out_t2 = (t2 ^ s264) ^ (s175 & s176)
out_t3 = (t3 ^ s69) ^ (s286 & s287)

Listing 1: The two versions of an iteration of Trivium, underlined are Kreyvium
differences. The circuits have 15 inputs, respectively 17 for Kreyvium, and 4
outputs (out, out_t1, out_t2 and out_t3).

18 Sergiu Carpov

The heuristics we introduce process circuit gates in the order in which they
appear in the input circuit file. This is just one of the many possible topological
orders and it has an impact on the quality of the mapped circuit. Two versions of
each stream cipher have been implemented, resulting in a total of four circuits.
The code used to generate these circuits is given in Listing 1. The difference
between the two versions is in how the last 3 instructions are expressed. The
second version groups together the XOR gates when variables out_t1, out_t2
and out_t3 are computed.

The search heuristic has been applied to the four circuits with FBS sizes vary-
ing from 2 to 12. Figure 4 and Figure 5 plot the bootstrapping count and the
estimated evaluation cost for the mapped circuits. The second version demon-
strates a faster convergence rate and a lower number of required bootstrappings,
with the exception of p = 7. The minimal number of bootstrappings for these
circuits is four, which is the number of outputs. This is reached at p = 6 for
Trivium and at p = 9 for Kreyvium.

4

6

8

10

12

14

nu
m

be
r o

f b
oo

ts
tra

ps

2 4 6 8 10 12
FBS size (p)

200

250

300

350

400

450

ev
al

ua
tio

n
co

st

version 1 version 2

Fig. 4. Trivium stream cipher. Bootstrapping count and evaluation cost for the 2 circuit
versions. The result from [2] is shown with red dots.

Our heuristic maps the Trivium circuit to the same number of bootstrappings
(8) and the Kreyvium circuit to 20% less bootstrappings (8 instead of 10) using
the same message space Z4 as in [2]. Furthermore, a solution with the same
number of bootstrappings is found for p = 3. The evaluation cost is reduced in
this case due to the smaller TFHE FBS parameters.

A fast heuristic for mapping Boolean circuits to functional bootstrapping 19

4

6

8

10

12

14

16

nu
m

be
r o

f b
oo

ts
tra

ps

2 4 6 8 10 12
FBS size (p)

250

300

350

400

450

ev
al

ua
tio

n
co

st

version 1 version 2

Fig. 5. Kreyvium stream cipher. Bootstrapping count and evaluation cost for the 2
circuit versions. The result from [2] is shown with red dots.

The mapped circuit with the lowest evaluation cost is obtained with p = 6
for Trivium (4 bootstrappings) and for Kreyvium (5 bootstrappings). The evalu-
ation cost is 45% less than that of the solutions presented in [2]. One significant
advantage of the heuristic proposed in this paper over [2] is that circuits are
automatically mapped.

Listing Listing 2 illustrates version 2 of ciphers Listing 1 which have been
mapped to FBS with size p = 3. The mapped circuit has 8 bootstrappings and
is not dependent on the implemented stream cipher. The first and the last 4
bootstrappings are independent of each other. In the scenario of parallel exe-
cution, the mapped circuit has a latency equivalent of 2 bootstrappings. When
compared to [2], the Kreyvium latency is reduced by 50% (from 3 to 2) by our
heuristic.

4.3 Comparison to other cryptographic primitives

In the paper [5], the authors introduce a novel p − encoding of Booleans in
TFHE plaintext space Zp. In contrast to the conventional approach of encoding
Booleans as two distinct values, namely 0 and 1, the authors propose to encode
them as distinct sets of values from Zp. A p − encoding is defined as a pair
{E0, E1}, where E0, E1 ⊂ 2Zp and E0 ∩ E1 = ∅. The inputs of a Boolean gate to
be evaluated are encoded as singleton sets. The p− encoding for gate inputs are

20 Sergiu Carpov

m1 = 2 - s66 + s93 - s162 + s177
m2 = Bootstrap(m1, [0, 1, 0, 1, 0])
m3 = 1 - s66 + s93 + s171 + iv127
m4 = Bootstrap(m3, [1, 0, 1, 0, 1])
m5 = 1 - s162 + s177 + s264
m6 = Bootstrap(m5, [1, 0, 1, 0])
m7 = 1 - s243 + s288 + k127 + s69
m8 = Bootstrap(m7, [1, 0, 1, 0, 1])
m9 = 1 + m2 - s243 + s288 + k127
out = Bootstrap(m9, [1, 0, 1, 0, 1])
m10 = 3 * m4 + s91 + s92
out_t1 = Bootstrap(m10, [0, 0, 1, 1, 1, 0])
m11 = 3 * m6 + s175 + s176
out_t2 = Bootstrap(m11, [0, 0, 1, 1, 1, 0])
m12 = 3 * m8 + s286 + s287
out_t3 = Bootstrap(m12, [0, 0, 1, 1, 1, 0])

Listing 2: Version 2 of Listing 1 which was mapped to FBS with size p = 3.

chosen such that their sum is a valid p−encoding representing gate functionality.
Let {{k0} , {k1}} be a p − encoding of an input. This encoding is as an affine
transformation of the Boolean encoding we use. The p − encoding of x is Ex =
{(k1 − k0) · x+ k0} for x ∈ {0, 1}. So in this context, the sum of the p-encodings
is equivalent to a linear combination of the two-element Boolean encoding used
in our work.

There is a major difference in the manner the authors of [5] encode plaintext
messages. The authors chose to split the plaintext message space into 2 · p seg-
ments for odd p-s and to use half of the message space values, i.e. values 2 · k
for 0 ≤ k < p. This trick allows to obtain a Zp message space and to completely
ignore the negacyclic property of TFHE. In our case, we use a larger but more
constrained message space, namely Z2p, however the evaluated functions must
be negacyclic.

We have implemented the cryptographic primitives described in [5] and mapped
them to FBS using the proposed search heuristic. As before, we have executed
the heuristic with different FBS sizes and kept the best solution in terms of es-
timated execution time. Our heuristic found the same or better solutions for all
the circuits. Table 2 gives the circuits for which a better solution is found. The
search heuristic proposed in this work

Interestingly enough the search heuristic found an equivalent solution for
SIMON function. Due to different plaintext encoding and to the use of the
negacyclic property our solution uses a smaller plaintext space Z6 instead of
Z9. Listing 3 gives the solution the search heuristic found. Observe that linear
combination coefficients have the same values as inputs encoding from [5]: E0 =
E1 = {0, 1} and E2 = E3 = E4 = {0, 2}. And respectively, the output encoding
Eout = {{0, 1, 4, 5, 8} , {2, 3, 6, 7}} is also the same as the test vector Boolean

A fast heuristic for mapping Boolean circuits to functional bootstrapping 21

Table 2. Comparison of search heuristic results with [5].

bench [5] search speedup#boots. FBS size #boots. FBS size

SIMON 1 9 1 6 (9) 1.05×
ASCON 5 17 5 10 (17) 1.17×
AES s-box 36 11 39 6 (11) 1.45×

values positions from Listing 3. Note that in our case because the test vector is
negacylic a FBS of size 6 is sufficient even if test vector length is 9.

m1 = 1 * b0 + 1 * b1 + 2 * b2 + 2 * b3 + 2 * b4
out = Bootstrap(m1, [0, 0, 1, 1, 0, 0, 1, 1, 0])

Listing 3: SIMON function which was mapped to FBS with size Z6.

In case of ASCON and the AES s-box the heuristic proposed in this paper
obtains solutions with smaller FBS sizes and by consequence faster. For example,
for AES s-box a 45% speedup in the estimated evaluation time is obtained.

4.4 Comparison to AutoHoG

In paper [21] the authors proposed a circuit mapping procedure, designated
AutoHoG, for TFHE functional bootstrapping. AutoHoG takes a Boolean circuit
as input and generates a circuit with “compound” gates, which is similar to our
FBS mapping. In addition to single-output gates, the AutoHoG authors employ
the multi-output evaluation method from [10] to factor out bootstrappings with
the same inputs.

In their experiments, the authors use the ISCAS’85 circuit benchmark [8]
and the ISCAS’89 sequential circuit benchmark [7] in their experiments. We use
the same techniques to transform ISCAS’89 sequential circuits with flip-flops
into combinational circuits. The sequential circuits are unrolled for 10 clock
cycles using the ABC logic synthesis tool [3] (command frames -F 10 -i). Both
ISCAS’85 and ISCAS’89 (after unrolling) are mapped to 2-input gates using a
complete gate library that has been generated manually.

In AutoHoG, a single parameterisation of TFHE is employed, enabling the
evaluation of a multi-output FBS with p = 32. The authors compare the ex-
ecution times of mapped circuits with those of input circuits using the same
TFHE parameters. However, the presented speedup results may be overly opti-
mistic, given that the input circuit can be executed with significantly smaller
TFHE parameters.

To ensure a fair comparison with AutoHoG, we execute our mapping heuristic
with FBS size varying from 2 to 32 and keep the circuit with smallest number of

22 Sergiu Carpov

bootstrappings as output. The speedup is approximated as the ratio between the
number of input circuit gates and the number of FBSs in the mapped circuit.
This is equivalent to the method used by AutoHoG to compute speedup. In
this approximation, the overhead due to linear combinations in multi-input FBS
evaluation is ignored. The linear combination has a much smaller impact on
execution time than the bootstrapping part.

Table 3. ISCAS’85 speedup and comparison with AutoHoG. The best benchmark-wise
speedup is presented in bold, with the exception of benchmarks for which an AutoHoG
speedup is not available.

bench search AutoHoG
speedup FBS size speedup

c17 3.00× 8 (13) 2.50×
c432 2.81× 13 (21) 2.16×
c499 3.86× 14 (27) −
c880 2.88× 15 (30) −
c1355 3.86× 14 (27) 6.03×
c1908 2.68× 32 (49) −
c2670 3.72× 22 (31) −
c3540 2.49× 11 (20) 3.90×
c5315 3.33× 23 (46) −
c6288 2.98× 24 (31) −
c7552 2.57× 23 (46) 5.68×
avg. 3.11× nan 4.05×

Table 3 and Table 4 depict the speedups of the search heuristic (column
“search”) and the speedup from AutoHoG paper. As previously, we provide the
FBS size (column “FBS size”) for which the circuit with the fewest number of
bootstrappings is obtained. Observe that the FBS size is not always equal to
the maximum value 32. This indicates that fixing the FBS size in advance is not
always advantageous. The speedup of AutoHoG results has been computed by
dividing the available numeric values in [21] (Fig. 7 and TABLE IV). AutoHoG
demonstrates enhanced speedups across the majority of benchmarks in case of
ISCAS’85 and for ISCAS’89 benchmarks our heuristic results get closer to Au-
toHoG ones. This outcome was expected, given that our approach does not use
the multi-output FBS technique.

Perspectives

The heuristic presented in this paper has several shortcomings that require fur-
ther attention and need to be tackled in future works. The first issue is that the
heuristic performance depends on the order of visit of circuit nodes. As an exam-
ple, two implementations of Trivium/Kreyvium have been used (each resulting

A fast heuristic for mapping Boolean circuits to functional bootstrapping 23

Table 4. ISCAS’89 speedup and comparison with AutoHoG. The best benchmark-wise
speedup is presented in bold, with the exception of benchmarks for which an AutoHoG
speedup is not available.

bench search AutoHoG
speedup FBS size speedup

s27 4.11× 22 (35) 1.27×
s208 2.88× 32 (54) −
s298 3.14× 29 (51) 3.43×
s344 3.24× 28 (41) 3.05×
s349 3.39× 32 (54) 2.79×
s382 3.51× 30 (52) 4.46×
s386 2.92× 32 (64) 5.85×
s400 3.31× 29 (52) 4.73×
s420 3.05× 26 (47) 2.94×
s444 3.57× 23 (43) 4.73×
s510 2.94× 29 (56) 3.43×
s526 3.10× 32 (57) 4.19×
s641 3.04× 21 (34) 2.14×
s713 3.19× 27 (45) 2.45×
s820 4.59× 26 (39) 4.75×
s832 4.93× 27 (39) 4.79×
s838 3.34× 26 (47) 3.01×
s953 2.77× 30 (56) 3.51×
s1196 3.85× 31 (50) 4.15×
s1238 3.80× 32 (50) 3.66×
s1423 3.09× 30 (59) 3.01×
s1488 3.55× 28 (55) 7.45×
s1494 3.66× 32 (59) −
s5378 3.54× 23 (46) 7.35×
s9234 3.11× 32 (63) 3.60×
s13207 3.40× 32 (63) 2.33×
s15850 3.14× 25 (50) 2.22×
s35932 5.68× 28 (54) 3.19×
s38417 3.82× 26 (52) −
s38584 3.32× 31 (61) 2.51×
avg. 3.50× nan 3.74×

24 Sergiu Carpov

in different visit orders) to ensure the best solution is found. Another short-
coming is to not use the multi-output FBS techniques from [10], which could
potentially result in mapped circuits with a smaller number of FBS. It would
be beneficial to consider the reduction modulo p property of the input plaintext
space Zp. The authors of [5] use a plaintext space Z2 to evaluate two-input XOR
gates for free, in contrast to a plaintext space Z3 and one FBS in our case.

A fast heuristic for mapping Boolean circuits to functional bootstrapping 25

References

1. Amarú, L., Gaillardon, P.E., De Micheli, G.: The epfl combinational benchmark
suite. In: Proceedings of the 24th International Workshop on Logic & Synthesis
(IWLS) (2015)

2. Balenbois, T., Orfila, J.B., Smart, N.: Trivial transciphering with trivium and
tfhe. In: Proceedings of the 11th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography. pp. 69–78 (2023)

3. Berkeley Logic Synthesis and Verification Group: ABC: A Sys-
tem for Sequential Synthesis and Verification, commit 2d70deb.
http://www.eecs.berkeley.edu/˜alanmi/abc/, http://www.eecs.berkeley.edu

4. Biasse, J.F., Ruiz, L.: Fhew with efficient multibit bootstrapping. In: Progress in
Cryptology–LATINCRYPT 2015: 4th International Conference on Cryptology and
Information Security in Latin America, Guadalajara, Mexico, August 23-26, 2015,
Proceedings 4. pp. 119–135. Springer (2015)

5. Bon, N., Pointcheval, D., Rivain, M.: Optimized homomorphic evaluation of
boolean functions. Cryptology ePrint Archive (2023)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014)

7. Brglez, F., Bryan, D., Kozminski, K.: Combinational profiles of sequential bench-
mark circuits. In: 1989 IEEE International Symposium on Circuits and Systems
(ISCAS). pp. 1929–1934. IEEE (1989)

8. Brglez, F., Fujiwara, H.: A neutral netlist of 10 combinational benchmark circuits
and a target translator. In: Fortran. ISCAS’85 (1985)

9. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. Journal of Cryptology 31(3), 885–916 (2018)

10. Carpov, S., Izabachène, M., Mollimard, V.: New techniques for multi-value input
homomorphic evaluation and applications. In: Topics in Cryptology–CT-RSA 2019:
The Cryptographers’ Track at the RSA Conference 2019, San Francisco, CA, USA,
March 4–8, 2019, Proceedings. pp. 106–126. Springer (2019)

11. Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Advances in Cryptology–
ASIACRYPT 2016: 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I 22. pp. 3–33. Springer (2016)

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption library (August 2016), https://tfhe.github.io/tfhe/

14. Clet, P.E., Boudguiga, A., Sirdey, R.: Chocobo: Creating homomorphic circuit
operating with functional bootstrapping in basis b. Cryptology ePrint Archive
(2024)

15. De Canniere, C.: Trivium: A stream cipher construction inspired by block cipher
design principles. In: International Conference on Information Security. pp. 171–
186. Springer (2006)

16. Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less
than a second. In: Annual international conference on the theory and applications
of cryptographic techniques. pp. 617–640. Springer (2015)

http://www.eecs.berkeley.edu

26 Sergiu Carpov

17. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

19. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances in
Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I. pp. 75–92. Springer (2013)

20. Gouert, C., Mouris, D., Tsoutsos, N.G.: Helm: Navigating homomorphic encryption
through gates and lookup tables. Cryptology ePrint Archive (2023)

21. Guan, Z., Mao, R., Zhang, Q., Zhang, Z., Zhao, Z., Bian, S.: Autohog: Automating
homomorphic gate design for large-scale logic circuit evaluation. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2024)

22. Guimarães, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in
tfhe. IACR Transactions on Cryptographic Hardware and Embedded Systems pp.
229–253 (2021)

23. Matsuoka, K., Hoshizuki, Y., Sato, T., Bian, S.: Towards better standard cell
library: Optimizing compound logic gates for tfhe. In: Proceedings of the 9th on
Workshop on Encrypted Computing & Applied Homomorphic Cryptography. pp.
63–68 (2021)

24. Mono, J., Kluczniak, K., Güneysu, T.: Improved circuit synthesis with amortized
bootstrapping for fhew-like schemes. Cryptology ePrint Archive (2023)

25. Soeken, M., Riener, H., Haaswijk, W., Testa, E., Schmitt, B., Meuli, G., Mozafari,
F., Lee, S.Y., Tempia Calvino, A., Marakkalage, Dewmini Sudara De Micheli, G.:
The EPFL logic synthesis libraries (Jun 2022), arXiv:1805.05121v3

26. Trama, D., Clet, P.E., Boudguiga, A., Sirdey, R.: A homomorphic aes evaluation
in less than 30 seconds by means of tfhe. In: Proceedings of the 11th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography. pp. 79–90 (2023)

	A fast heuristic for mapping Boolean circuits to functional bootstrapping

