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Abstract

Orion (Xie et al. CRYPTO’22) is a recent plausibly post-quantum zero-knowledge argument
system with a linear time prover. It improves over Brakedown (Golovnev et al. ePrint’21 and
CRYPTO’23) by reducing the proof size and verifier complexity to be polylogarithmic and addi-
tionally adds the zero-knowledge property. The argument system is demonstrated to be concretely
efficient with a prover time being the fastest among all existing succinct proof systems and a proof
size that is an order of magnitude smaller than Brakedown. Since its publication in CRYPTO
2022, two revisions have been made to the zk-SNARK. First, there was an issue with how zero-
knowledge was handled. Second, Orion was discovered to be unsound, which was then repaired
through the use of a commit-and-prove SNARK as an “outer” SNARK.

As we will show in this paper, unfortunately, Orion in its current revision is still unsound (with
and without the zero-knowledge property) and we will demonstrate practical attacks on it. We
then show how to repair Orion without additional assumptions, with the resuling polynomial
commitment denoted as Scorpius, which requires non-trivial fixes when aiming to preserve the
linear time prover complexity. The proposed fixes lead to an even improved efficiency, i.e., smaller
proof size and verifier time, over the claimed efficiency of the initial version of Orion. We also ap-
ply the recent ideas of Diamond and Posen (CiC’24) to make the challenge in Orion logarithmically
sized. Moreover, we provide the first rigorous security proofs and explicitly consider multi-point
openings and non-interactivity. While revisiting Orion we make some additional contributions
which might be of independent interest, most notable an improved code randomization technique
that retains the minimum relative distance.

1 Introduction

Zero-knowledge proof systems are a fascinating concept and were introduced by Goldwasser, Mi-
cali, and Rackoff [18] in the 1980s. The basic idea is that a prover who holds a witness to an NP
statement can convince any verifier, who only knows the statement, of the validity of the statement
without revealing any information about the witness. Besides being an interesting theoretical ob-
ject of study on its own, it has been shown to have numerous practical cryptographic applications,
e.g., as a tool to prevent malicious behavior in multi-party protocols, enabling privacy-friendly au-
thentication or to construct digital signatures. While for many years most of these concepts were
only of theoretical interest, nowadays zero-knowledge proofs see widespread adoption. One fa-
mous (implicit) long-term use of zero-knowledge proofs are Schnorr signatures [26], which can be
seen as a particular example of Sigma protocols made non-interactive via the Fiat-Shamir heuristic
[16]. However, also their explicit construction has gained in popularity with the increased need for
post-quantum replacements for existing signatures. One particularly popular approach is via the
multi-party computation in the head (MPCitH) paradigm [20], enabling schemes that do not require
structured hardness assumptions, e.g., Picnic [11] or FAEST [3], but which meanwhile turned into a
popular paradigm also for structured hardness assumptions.

The arguably most quickly developing domain related to zero-knowledge is that of zk-SNARKs
(succinct non-interactive arguments of knowledge) [5]. Those are computationally sound zero-
knowledge proofs that are knowledge sound (i.e., if a proof is accepted by a verifier it is guaranteed
that the prover knows the witness), non-interactive (i.e., there is only a single message sent from the
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prover to the verifier) and they are succinct, i.e., the size of their proofs is sublinear in the size of the
witness to be proven. A lot of the developments are spurred by practical applications in blockchains
and cryptocurrencies.

There are various techniques to construct zk-SNARKS that come with different trade-offs in proof
sizes as well as prover and verifier complexities (cf. [25, 28] for a comprehensive overview). In the
following we will focus on the construction of SNARKS that achieve linear time prover complexity
and square root (or even polylogarithmic) proof complexity. While the first schemes that fall into
this category [6, 7, 8] seemed to be only of theoretical interest, recent works [19, 29] have shown
how following these ideas can yield practically efficient schemes. We recall that a popular paradigm
to construct SNARKs is to rely on an information theoretic primitive often abstracted in the form
of a polynomial IOP (PIOP) [9] which is then combined with a polynomial commitment scheme
[21] and made non-interactive using the Fiat-Shamir heuristic. Brakedown [19] observes that [7]
implicitly describe a polynomial commitment scheme with a linear time commitment phase (relying
on linear-time encodable codes), which they make explicit and combine it with the PIOP for R1CS
from Spartan [27] to obtain a SNARK. The so obtained SNARK is not yet zero-knowledge, but can
be made so using one layer of recursive proof composition, i.e., using an “outer SNARK” that is
zero-knowledge to prove knowledge of a proof of the “inner” SNARK (that does not need to be
zero-knowledge).

In this paper we are focusing on Orion [29], which improves over Brakedown [19]. Due to the
used building blocks Orion like Breakdown is plausibly post-quantum secure and is transparent,
i.e., does not require a trusted setup, both being highly desirable properties in practice. Moreover,
to the best of our knowledge, under those SNARKs that are plausibly post-quantum, Orion has the
fastest prover time among all existing schemes focusing on linear-time provers in the literature.

High-level overview of Orion. The Orion proof system [29] improves on Brakedown in two ways.
First, by improving the linear-time encodable code used, to have a good minimum distance except
with negligible probability. Second, a “code-switching” proof composition technique is employed
with the goal of reducing the proof size and verifier time from O(

√
N) to O(log2(N)). Since the

verifier work for Brakedown is O(
√

N), it is possible to use an outer zk-SNARK that is quasilinear
while maintaining the overall linear-time prover. Specifically, Virgo [32] is used as the outer zk-
SNARK.

To commit, the prover first parses the polynomial coefficients as a k× k matrix W. The matrix is
then encoded by first encoding every row using the linear code EC. To achieve zero-knowledge, a
random row r⃗i is sampled by the prover, which is then added as well as appended to every code-
word. This yields matrix C. After that, every column of the resulting matrix is again encoded using
EC, giving matrix D. The prover finally creates a Merkle tree commitment to D to obtain the com-
mitmentR to the polynomial.

In the evaluation procedure, the prover attempts to convince the verifier of a certain evaluation
of the committed polynomial.1 The verifier sends a random vector γ⃗ to the prover, which the prover
uses to compute y⃗γ, a linear combination of the rows of W. In Brakedown, this row is sent to the
verifier, who checks correctness by opening a number of columns at random and verifying that for
every selected column index j this linear combination has been computed correctly. Furthermore,
due to the use of linear codes, any inconsistencies will be caught with overwhelming probability.
Orion uses the same idea, but performs these checks in the outer zk-SNARK. In particular, the prover
computes

c⃗γ j = ∑i γ⃗iCij, y⃗γ j = ∑i γ⃗iWij, r⃗γ = ∑i γ⃗i r⃗i,

and sends a commitment to c⃗γ to the verifier. At this point the verifier samples a random column set
J, after which the prover additionally commits to y⃗γ and r⃗γ, as well as C·,j for all columns j ∈ J. For
this it uses the outer SNARK, which is in the form of a commit-and-prove SNARK (CP-SNARK),
i.e., a part of the witness is hidden in a commitment and the zk-SNARK proves the relation and
the consistency of the witness in the commitments. The verifier then provides a row index set I,
after which the prover generates the zk-SNARK proof. Here, P checks that ⟨γ⃗, C⃗·j⟩ = EC(y⃗γ +
r⃗γ)||r⃗γ at columns j ∈ J. This is identical to the check done in Brakedown, modulo the added

1In [29], Eval is conceptually split into a prove and a verify phase. We merge these, since V should only be convinced
if the challenges were sampled honestly: in neither the interactive nor the non-interactive setting does Verify suffice as a
standalone verification procedure.
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zero-knowledge. The zk-SNARK also outputs c⃗γ j so that the verifier can check consistency with
the earlier commitment. Lastly, the proof outputs the column encoding using EC(D·j)i at indices
i ∈ I, with the goal that these can be checked with the commitment to D without having to open
the columns entirely. Since we have a constant number of openings, the proof size is asymptotically
dominated by the proof size of the outer SNARK.

Issues with the soundness of Orion. Since its publication in CRYPTO 2022 [29], two revisions
have been made to the zk-SNARK in the paper.2 First, there was an issue with how zero-knowledge
was handled. In short, the polynomial ϕ(x⃗) was masked by sampling a random polynomial r(x⃗)
and proving evaluations of (ϕ + r)(x⃗) as well as r(x⃗). However, since encoding the polynomials
added redundancy, this could not be simulated. This was fixed in a revised version [30].

Second, due to an issue in the challenge order, Orion was discovered to be unsound. In particular,
the row index set I would be provided too early on in the proof generation, causing the prover to be
able to cheat. The authors of Hyperplonk [12] are credited with discovering the problem. Indeed,
the same issue is not present in their polynomial commitment scheme Orion+, which has a much
smaller proof size but cannot be post-quantum secure because of its reliance on pairing friendly
elliptic curve groups. The mentioned soundness issue was subsequently repaired by the authors of
Orion in another revised version [31] through the use of a CP-SNARK, which forces the prover to
commit to the witness before the index set I is provided by the verifier. This indeed prevents some
ways in which the prover could cheat. Unless noted otherwise, when we henceforth talk about
Orion we refer to this latest revision [31].

As we will demonstrate, unfortunately the Orion polynomial commitment in its current form,
and by extension the Orion proof system, is still unsound. This is due to a second issue in the
challenge-response order. In this paper, we will demonstrate that this issue indeed exists, and that it
is practical to forge a proof such that any committed polynomial can be opened to any desired eval-
uation. The issue is inherent to the protocol and persists when considering its non-zero-knowledge
version. We also provide an implementation of this attack, where we use additional techniques to
make it efficient enough to be practical.

The issue lies in the fact that unlike the row set I, the column set J is known to the prover before
committing to the CP-SNARK witness, which enables the prover to adaptively choose a witness that
will pass the subsequent verification procedure. In fact, this is required for efficiency: if this index
set was not known at this point, the prover would need to commit to C in its entirety.

Consequently, when using Virgo as the outer zk-SNARK as Orion does, this would cost
O(N log(N)) prover time, meaning that the prover no longer runs in overall linear time and

thus invalidating the claims of having a linear time prover.

Resurrecting Orion. To remedy the unsoundness and simultaneously retain succinctness, we find
a way to split the column index set J between rounds. This way, we can use one challenge set J that
is unknown to the prover when committing to the witness of the CP-SNARK, while using another
challenge set Ĵ such that the prover can commit to C·j instead of C in its entirety.

However, this is not possible without breaking the zero-knowledge property of the scheme,
which is why we also provide a new method of adding zero-knowledge while retaining the linear-
time prover. For this we use zero-knowledge codes [8], which we instantiate concretely using mask-
ing polynomials of constant degree. This way, we can retain the linear-time prover. In the process
we obtain a new polynomial commitment scheme, which we call Scorpius, with smaller proof sizes
and a more efficient verifier, that also works for polynomials of lower degree (beyond just padding
up to a supported degree).

Lastly, Orion is actually not fully succinct due to the use of a challenge of size
√

N, making the
verifier who needs to sample this challenge have complexity O(

√
N). A recent work by Diamond

and Posen [14] addresses this issue by considering the tensor product
⊗log(k)

i=1 (1− η⃗i, η⃗i) instead of
a uniformly random vector from Fk. We adapt their results for Orion to obtain a fully succinct
polynomial commitment scheme.

2Actually, the paper had three revisions. The third revision, however, is concerned with the testing whether a random
bipartite graph is a lossless expander (required for the generalized Spielman codes) and is not relevant to our treatment of
Orion in this paper.

3



1.1 Summarizing our Contributions

Subsequently, we will briefly summarize the contributions of this work.

• We take another look at the Orion proof system [31] and show its unsoundness, which we also
support by giving explicit and efficient attacks.

• We show how to overcome these existing soundness issues and thus resurrect Orion. In order
to not introduce additional assumptions and to maintain a linear time prover though, this
requires fixes that are non-trivial. Notably, with our fixes we achieve a smaller proof size and
verifier time while keeping prover time comparable. We also apply the recent ideas in [14] to
make the proof Orion system fully succinct.

• We provide rigorous formal proofs for the modified Orion construction to show that our fixes
indeed solve the soundness issues. We provide a new simulator and the first rigorous analysis
of the zero-knowledge property. This is necessary because the current simulator used in [31]
does not satisfy their own definition, since it requires knowledge of the evaluation point at
the time of committing. Lastly, we provide an explicit treatment of how to make the Orion
polynomial commitment scheme non-interactive using the Fiat-Shamir transformation [16].

• In the course of fixing Orion, we obtain a new polynomial commitment scheme, which we call
Scorpius, with smaller proof sizes and a more efficient verifier, that also works for polynomi-
als of lower degree and does not require padding up to a supported degree. We extend the
polynomial commitment to open at multiple points by taking a random linear combination of
all evaluation vectors while retaining zero-knowledge. Moreover, zero-knowledge holds even
if the evaluation point is not known at the time of committing.

• We provide a general transformation to perfectly zero-knowledge codes [8], which may be
of independent interest. In brief, instead of a random vector to mask the witness we use a
randomized polynomial. This retains the same relative minimum distance instead of reducing
it by half as in the vector masking approach (which is used by Orion), while retaining linear
encodability.

2 Preliminaries

For security parameter λ, we write negl(λ) for the negligible function. We also write a ≈λ b as
shorthand for |a− b| ≤ negl(λ) and a||b for the concatenation of strings a and b.

We write w
(⃗

a, b⃗
)

to denote the Hamming weight of vectors a⃗ and b⃗ of equal length n, and

∆
(⃗

a, b⃗
)
= {i ∈ [n]|⃗ai ̸= b⃗i} as well as d

(⃗
a, b⃗

)
=

∣∣∣∆ (⃗
a, b⃗

)∣∣∣. For vector space L, we define w(⃗a, L)
as w(⃗a, c⃗) for the c ∈ L that minimizes the weight—∆(⃗a, L) and d(⃗a, L) are defined analogously. For
matrix M ∈ Fn×m, we write d(M, Ln) for the number of columns at which M differs from C for the
C ∈ Lm for which this number is minimal, and ∆(M, L) for the corresponding column indices.

2.1 Randomized Linear Codes

Following [8], we make use of randomized linear codes, which are encoding functions ẼC(m⃗; r⃗) =
EC(m⃗ || r⃗), where EC is some linear code Fkm+kr → Fnm+nr and the message m⃗ ∈ Fkm and random-
ness r⃗ ∈ Fkr are logically separated. We simply write ẼC(m⃗) if r⃗ ∈R Fkr .

Definition 2.1. A randomized linear code ẼC is q-query uniform if for any message m ∈ Fkm , any q
adaptively chosen locations of ˜EC(m) are distributed uniformly at random.

An example of a q-query uniform linear code is the Reed-Solomon code RS[n,km+q,d] with n =
km + q + d− 1. This follows from the fact that there is exactly one codeword that conforms to any
km + q evaluations.
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2.2 Collision-Resistant Hashing and Merkle Trees

Let us consider a family {Hs}s∈I of functions for which there exists a PPT key generation algorithm
s ← Gen(1λ). Given the security parameter λ, it outputs an index s ∈ I, or equivalently a function
Hs : {0, 1}ℓ(λ) → {0, 1}ℓ′(λ) with ℓ(λ) > ℓ′(λ). We require that there exists a PPT evaluation algo-
rithm that on input s ∈ I and x ∈ {0, 1}ℓ(λ) computes Hs(x). The collision-resistance property for
such a family states that every PPT algorithmA that is given s← Gen(1λ), and outputs a pair x ̸= x′

such that Hs(x) = Hs(x′) only succeeds with negligible probability.
The following presentation is based on the one in [2]. For a collision-resistant hash function3 H, a

Merkle tree hash [24] is a succinct commitment to a list k = 2d of values represented by a single hash
value h (the root hash) such that opening the commitment on any of the k values requires revealing
O(d) hash values.

Let m1, . . . , mk be k messages, then a Merkle tree is represented by a binary tree of depth d where
the messages mi are assigned to the leafs of the tree from left to right. The values assigned to the
internal nodes of the tree are computed as H(u||v) where u and v are the left and right children
of the respective node. Consequently, the root of the tree represents a commitment to messages
m1, . . . , mk. To open the commitment to a message mi, the opening proof is represented by all the
values assigned to nodes on the path from the root to mi, and the values assigned to the siblings of
all these nodes. Verifying the opening proof for mi recomputes the entire path from mi to the root
bottom-up and compares the so obtained root hash to the commitment value.

The binding of a Merkle hash tree follows from the collision-resistance of the hash function.
Moreover, when replacing the hash function H used to compute the Merkle tree by a random oracle,
statistical binding follows from the hardness of finding a collision in this model. Additionally, in the
random oracle model setting the leaf for every mi to mi||ri where ri is chosen uniformly at random
from {0, 1}λ, the Merkle tree hash is also a statistically hiding commitment.

Throughout this paper, we will use the notation from [2] and denote committing to messages
m1, . . . , mk by h← CommitM(m1, . . . , mk) and opening of a message mi by (mi, path(i))← OpenM(h, i).
Moreover, we denote verification of an opening (mi, path(i)) by b← VerifyM(h, mi, path(i)).

2.3 (Commit-and-Prove) SNARKs

In the following we will formally introduce SNARKs as well as commit-and-prove SNARKs (CP-
SNARKs).

Succinct non-interactive argument of knowledge (SNARK).

Definition 2.2 (SNARK). A succinct non-interactive argument of knowledge (SNARK) for relation
generator RGen is a tuple of algorithms Π = (Setup, Prove, Verify):

• crs := (pk, vk) ← Setup(R, auxR): given a relation and auxiliary information (R, auxR) ←
RGen(1λ) as input; outputs a common reference string crs consisting of a proving key pk and
a verification key vk.

• π ← Prove(pk, R, auxR, u, w) given a proving key pk, a relation R, auxiliary information auxR,
a statement u and witness w with (u, w) ∈ R; outputs a proof π.

• b ← Verify(vk, R, auxR, u, π) given a verification key vk, a relation R, auxiliary information
auxR, a statement u and a proof π; outputs a bit b indicating reject (b = 0) or accept (b = 1).

A SNARK satisfies completeness, knowledge soundness, and succinctness. If it is a zk-SNARK it in
addition satisfies zero-knowledge. We formally introduce the properties below:

Completeness. Π is complete for RGen, if for all λ, all (R, auxR)←RGen(1λ) and (u, w) ∈ R

Pr
[

(pk, vk)← Setup(R, auxR), π ← Prove(pk, R, auxR, u, w) :
Verify(vk, R, auxR, u, π) = 1

]
= 1.

3We will usually omit the key s for the sake of simplicity.
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Knowledge soundness. Π is knowledge sound if for all λ, all (R, auxR) ←RGen(1λ) and any PPT
adversary A there exists a PPT extractor E with full access to A such that

Pr
[

(pk, vk)← Setup(R, auxR), ((u, π); w)← A||E(pk, vk, R, auxR) :
(u, w) /∈ R ∧ Verify(vk, R, auxR, u, π) = 1

]
≈λ 0

Succinctness. Π is succinct if the size of the proof π is poly(λ + log |w|) and Verify runs in time
poly(λ + |u|+ log |w|).

Zero-knowledge. Π is zero-knowledge (a zk-SNARK) if for all λ, all (R, auxR) ←RGen(1λ) and
(u, w) ∈ R there exists a PPT simulator S = (S0,S1) with (R, auxR, τ) ← S0(1λ) such that for
all PPT adversaries A it holds that

Pr
[

(pk, vk)← Setup(R, auxR), π ← Prove(pk, R, auxR, u, w) :
A(R, auxR, pk, vk, w, π) = 1

]
≈λ

Pr
[

(pk, vk, )← Setup(R, auxR), π ← S1(pk, R, auxR, u, τ) :
A(R, auxR, pk, vk, w, π) = 1

]
.

Commit-and-Prove SNARKs. In a commit-and-prove SNARK (CP-SNARK) one wants to prove
knowledge of (u, w) such that (u, w) ∈ R holds with respect to a witness w = (w, ω) and w is the
value committed to in a commitment cw. We follow the formalization of [10] Campanelli et al. so
that only a part of the witness w, i.e., w, is committed to and w splits over some subdomains. Before
we start defining CP-SNARKs, we need to introduce commitment schemes.

Definition 2.3 (Commitment scheme). A commitment scheme is a triple of efficient algorithms
(Setup, Commit, Open), which are defined as follows:

• ck← Setup(1λ): takes as input a security parameter λ; outputs the commitment key ck which
implicitly contains a description of the input spaceD, commitment space C and opening space
O.

• (c, o) ← Commit(ck, m): takes as input the commitment key ck and a value m; outputs a com-
mitment c and opening o.

• b ← Open(ck, c, m, o): takes as input the commitment key ck, a commitment c, value m and
opening o; outputs a bit b indicating reject (b = 0) or accept (b = 1).

A commitment scheme is required to provide correctness, binding and hiding. We omit a formal
definition of correctness as it is straightforward. The remaining properties are defined as follows.

Binding. A commitment scheme is binding, if for all PPT adversaries A

Pr
[

ck← Setup(1λ), (c∗, m∗, o∗, m′∗, o′∗)← A(ck),
1← Open(ck, c∗, m∗, o∗), 1′ ← Open(ck, c∗, m′∗, o′∗) : m∗ ̸= m′∗

]
≈λ 0.

Hiding. A commitment scheme is hiding, if for all PPT adversaries A

Pr

[
ck← Setup(1λ), (m0, m1, state)← A(ck), b R← {0, 1},
(c, o)← Commit(ck, mb), b∗ ← A(ck, c, state) : b = b∗

]
≈λ

1
2

.

We now present the definition of a CP-SNARK, which is adapted from [10].

Definition 2.4 (CP-SNARK [10]). Let RGen be a relation generator for relations R overDu×Dw×Dω

such that Dw splits over ℓ arbitrary domains (D1 × · · · × Dℓ) for some arity parameter ℓ ≥ 1. Let
Com =(Setup, Commit, Open) be a commitment scheme (as per Definition 2.3) whose input space D is
such that Di ⊂ D for all i ∈ [ℓ]. A commit and prove SNARK for Com and RGen is a zk-SNARK for a
family of relations RGenCom such that:

• every RCom ∈ RGenCom is represented by a pair (ck, R) where ck ∈ Com.Setup(1λ) and R ∈ RGen;
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• RCom is over pairs (u, w) where the statement is u := (u, (cj)j∈[ℓ]) ∈ Dx × Cℓ, the witness is
w := ((wj)j∈[ℓ], (oj)j∈[ℓ], ω) ∈ D1 × · · · × Dℓ ×Oℓ ×Dω, and the relation RCom holds iff∧

j∈[ℓ]
Open(ck, cj, wj, oj) = 1 ∧ R(u, (wj)j∈[ℓ], ω) = 1.

Furthermore, when we say that the CP-SNARK is knowledge-sound for a relation generator RGen,
we mean it is a knowledge-sound SNARK for the relation generator RGenCom that runs ck← Com.Setup(1λ)
and (R, auxR)← RGen(1λ), and returns ((ck, R), auxR).

A CP-SNARK is a triple of algorithms CP = (Setup, Prove, Verify):

• crs := (pk, vk)← Setup(ck, R, auxR) generates a common reference string crs consisting of a
proving key pk and a verification key vk.

• π ← Prove(pk, R, auxR, u, (cj)j∈[ℓ], (wj)j∈[ℓ], (oj)j∈[ℓ], ω) outputs the proof.

• b← Verify(vk, R, auxR, u, (cj)j∈[ℓ], π) outputs a bit b indicating reject (b = 0) or accept b = 1.

2.4 Polynomial Commitments

We adapt the definition from [19], and add zero-knowledge. A polynomial commitment scheme for
multivariate polynomials is a tuple of four (interactive) algorithms PC = (Gen, Commit, Open, Eval):

• pp ← Gen(1λ, µ): takes as input µ (the number of variables in a multilinear polynomial); pro-
duces public parameters pp.

• R ← Commit(pp, ϕ; r): takes as input a µ-variate polynomial ϕ over a finite field F and ran-
domization r; produces a commitmentR. We omit r if it is sampled uniformly at random.

• b ← Open(pp,R, ϕ, oh): given opening hint oh, verifies the opening of commitment R to the
µ-variate polynomial ϕ; outputs b ∈ {0, 1}.

• b ← Eval(pp,R, x⃗, y, µ, ϕ) is an interactive algorithm between a PPT prover P and verifier V .
Both V and P know a commitment R, the number of variables µ, the evaluation point x⃗ and
claimed evaluation y. P additionally knows a µ-variate polynomial ϕ. P attempts to convince
V that ϕ(x⃗) = y. At the end of the protocol, V outputs b ∈ {0, 1}.

Definition 2.5. A tuple of four (interactive) algorithms (Gen, Commit, Open, Eval) is a zero-knowledge
extractable polynomial commitment scheme for µ-variate polynomials over a finite field F if the follow-
ing conditions hold.

Completeness. For any µ-variate polynomial ϕ and all randomness r,

Pr
[
pp← Gen(1λ, µ),R ← Commit(pp, ϕ) :
Eval(pp,R, x⃗, y, µ, ϕ) = 1∧ y = ϕ(x⃗)

]
= 1.

Binding. For any PPT adversary A, size parameter µ ≥ 1,

Pr

 pp← Gen(1λ, µ), (R, ϕ, ϕ′, oh, oh′) = A(pp),
b0 ← Open(pp,R, ϕ, oh), b1 ← Open(pp,R, ϕ′, oh′) :

b0 = b1 = 1∧ ϕ ̸= ϕ′

 ≈λ 0

Knowledge Soundness. For any PPT adversary A, size parameter µ ≥ 1, there exists a PPT extrac-
tor E with full access to A such that:

Pr
[
pp←Gen(1λ, µ), (R, x⃗, y)←A(pp),1= ⟨A,VEval⟩(pp,R, x⃗, y, µ, ϕ),
(ϕ, oh)← EA(pp, (R, x⃗, y)) : ϕ(x⃗) ̸= y ∨ Open(pp,R, ϕ, oh) ̸= 1

]
≈λ 0
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Zero-knowledge. For any µ-variate polynomial ϕ and any PPT adversaryA, there exists a simulator
S = (S0,S1) for which it holds that

Pr
[
RealA,ϕ(pp)

]
≈λ Pr

[
IdealA,ϕ,SA(pp)

]
,

where the experiments Real and Ideal are defined as follows:

RealA,≺(pp):

1. R ← Commit(pp, ϕ)

2. x⃗ ← A(R, pp)

3. y← ϕ(x⃗)

4. b← ⟨PEval,A⟩(pp,R, x⃗, y, µ, ϕ)

5. Output b

IdealA,≺,SA(pp):

1. R ← S0(1λ, pp)

2. x⃗ ← A(R, pp)

3. y← ϕ(x⃗)

4. b← ⟨S ,A⟩(pp,R, x⃗, y, µ)

5. Output b

Here ⟨A,B⟩ indicates an interaction between parties A and B, and PEval a prover running the
Eval protocol.

Note that we make a distinction between the commitment randomization and the opening hint,
because the prover may not generate the Merkle tree entirely honestly and know, say, all but a single
opening. The scheme in this case is still binding, since ϕ is still the single closest codeword.

3 Orion and its Unsoundness

The full protocol for the Orion polynomial commitment is given in Figure 1, and the CP-SNARK
statement is given in Figure 2. A CP-SNARK is used in the construction with the intention of making
the prover commit to all values before the verifier provides the challenges. Unfortunately, there
exists an issue with the challenge order. The row index set I is provided at step 6 in Figure 1, which
is after the CP-SNARK commitment at step 4. However, the column challenge set J is provided before
this commitment. This gives the prover the opportunity to choose the CP-SNARK witness based on
J. For the columns of C this is not an issue, as these are already bound by the Merkle commitment
R to D. However, the vectors y⃗γ, y⃗1, r⃗1 and r⃗1 are all committed to only after the verifier has sent
their challenge set, when the prover executes the commitment phase of the CP-SNARK. Although
their encodings c⃗γ and c⃗1 are committed to beforehand, we will see that the prover can nonetheless
cheat. In fact, it turns out that this enables the prover to open any committed polynomial inR to any
point y. The commitment does not need to be forged specifically with this goal—any pre-existing
commitment can be opened at any point x⃗ to any desired evaluation y.

Suppose the prover has some commitment R to a polynomial. In steps 1-4 of the Eval phase, P
follows the protocol honestly, except for the fact that P sends the desired evaluation y in place of
the honest evaluation corresponding to ϕ(x). At step 5, P needs to provide the CP-SNARK witness.
Here the prover is able to forge a y⃗1 such that for any I sent by the verifier in step 6, the prover will
be able to complete the outer SNARK proof. This is sufficient for the verifier to accept this invalid
evaluation proof.

To see that this is always possible, first note that the outer SNARK is the only place where y⃗1 is
validated. The vectors are also not committed to until the commit phase of the CP-SNARK in step 5.
The CP-SNARK procedure constructs c⃗1 directly from y⃗1 and r⃗1, so the goal of the prover is to find
y⃗1
′ and r⃗′1 such that together with the derived c⃗1

′ = EC(y⃗1
′) + r⃗′1 || r⃗′1, the following conditions hold:

(1) ∀j ∈ J : c⃗1
′
j = ∑i∈[k] x⃗0,iCij.

(2) y = ∑j∈[k] x⃗1 jy⃗1
′
j

(3) ∀j ∈ J : Rc⃗1 j opens to c⃗1
′
j

The first two conditions are checked in the CP-SNARK, while the last condition is checked directly
by the verifier. Since c⃗1 contained in the commitment Rc⃗1

has been honestly computed from C by
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Commit(pp, ϕ; r): The prover P performs the following operations, where any randomness is
deterministically derived from r:

1. Parse ϕ as a k× k matrix W of its coefficients.

2. For each i ∈ [k], sample row r⃗i ∈ Fn uniformly at random.

3. Compute C ∈ Fk×2n by encoding every row of W using the encoding function EC and
hiding with r⃗i as follows: ∀i ∈ [k] : Ci = EC(Wi) + r⃗i || r⃗i.

4. Compute D ∈ Fn×2n by encoding every column of C using EC.

5. Commit to columns: ∀j ∈ [2n] : Rj ← CommitM(D·j).

6. Output final commitmentR ← CommitM(R1, . . . ,R2n).

Eval(pp,R, X = x⃗0 ⊗ x⃗1, y, µ, ϕ): The prover and verifier execute the following protocol:

1. V sends a uniformly random vector γ⃗ ∈ Fk to P .

2. The prover computes

c⃗1←∑k
i=1 x⃗0iCi, y⃗1←∑k

i=1 x⃗0iWi, r⃗1←∑k
i=1 x⃗0i r⃗i, Rc⃗1

←CommitM(c⃗1),
c⃗γ←∑k

i=1 γ⃗iCi, y⃗γ←∑k
i=1 γ⃗iWi, r⃗γ←∑k

i=1 γ⃗i r⃗i, Rc⃗γ
←CommitM(c⃗γ).

3. P computes y = ∑k
i=1 y⃗1 j x⃗1 j and sendsRc⃗1

,Rcγ and y to the verifier.

4. V samples and sends column indices J ⊂ [2n] uniformly at random, under the condi-
tion that

|J| = 2t, |J ∩ [n]| = t, |J ∩ [n + 1 . . . 2n]| = t, ¬∃j : j, j + n ∈ Î.

5. The prover commits to the witness of the CP-SNARK (Figure 2), consisting of

y⃗1, y⃗γ, ∀(i,j)∈[k]×J : Cij, r⃗1, r⃗γ.

6. The verifier samples row index set I ⊂ [n], |I| = t and sends it to the prover.

7. The prover computes the CP-SNARK argument π and sends it with

∀j ∈ Ĵ : OpenM(Rc⃗1
, j), OpenM(Rc⃗γ

, j),
∀j ∈ Ĵ : OpenM(R, j), ∀(i, j) ∈ I × Ĵ : OpenM(Rj, i).

8. V checks the proof π using the CP-SNARK verification procedure.

9. V checks the Merkle tree proofs of Dij inR for all (i, j) ∈ I × J.

10. V checks the Merkle tree proofs of c⃗1 j and c⃗γ j inRc⃗1
andRc⃗γ

.

The verifier accepts if all checks are successful.

Figure 1: The full description of the Orion polynomial commitment protocol.

the prover, conditions (1) and (3) can in fact be reduced to the single condition that ∀j ∈ J : c⃗1
′
j = c⃗1 j,

where c⃗1
′ is the vector derived from y⃗1 and r⃗1 in the outer SNARK. The protocol can be broken as
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Committed witness: y⃗1, y⃗γ, r⃗1, r⃗γ, ∀j ∈ J : C·j.

Public input:

• γ⃗, x0, x1, y, I, J

• ∀j ∈ J : c⃗1 j, c⃗γ j

• ∀(i, j) ∈ I × J : Dij

Proof circuit: The CP-SNARK circuit performs the following checks and computations:

• Build encodings of row vector combinations:

– c⃗γ ← EC(y⃗γ) + r⃗γ || r⃗γ.
– c⃗1 ← EC(y⃗1) + r⃗1 || r⃗1.
– Check for j ∈ J that c⃗γ j and c⃗1 match the input.

• Check that these are valid linear combinations:

– Check ∀j ∈ J : c⃗γ j
?
= ∑i∈[k] γ⃗iCij.

– Check ∀j ∈ J : c⃗1 j
?
= ∑i∈[k] x⃗0iCij.

• Encode columns and compare:

– ∀j ∈ J : D·j = EC(C·j).
– Check for (i, j) ∈ I × J that Dij matches the input.

• Check claimed evaluation:

– Check y ?
= ∑j∈[k] x⃗1 jy⃗1 j.

Figure 2: The procedure for the CP-SNARK. The committed witness contains the values that are part
of the CP-SNARK commitment. Any other witness values arise only from the intermediate values
due to the arithmetization.

follows: we first select any vector y⃗1 that satisfies condition (2).4 Then we need that

∀j ∈ J ∩ 1 . . . n : r⃗1
′
j= EC(y⃗1)j − EC(y⃗1

′)j + r⃗1 j,
∀j ∈ J ∩ n + 1 . . . 2n : r⃗1

′
j= r⃗1 j.

To retain zero-knowledge, the challenge space is restricted so that these two sets are precisely dis-
joint. As such, we can just choose any r⃗1 that satisfies these conditions.

One might then assume that the unsoundness is due to zero-knowledge, but in fact it is also
possible to break (knowledge) soundness for the non-zero-knowledge version of the protocol. Even
if we omit all r⃗i so that Ci = EC (⃗yi) and J is just sampled uniformly random from [n], the protocol
can still be broken. Take the generator matrix G of EC. The condition c⃗γ

′
j = c⃗γ j for j ∈ J can be

expressed through defining the matrix Bij ≡ 1{Ji = j} ∈ Ft×n, where Ji denotes the ith element of
the set J in some order. B can be interpreted as selecting t entries in J. Condition (2) can be appended
as a column to the resulting matrix to obtain the linear system

c⃗1(J1)

c⃗1(J2)

. . .
c⃗1(Jt)

y

 =

[
BGT

x⃗1

] 
y⃗1
′
1

y⃗1
′
2

. . .
y⃗1
′
k

 . (1)

4The only situation in which this is not possible, is if we structurally restrict ϕ to have a zero constant term, and we
evaluate at x⃗ = 0⃗. Such an evaluation can only be 0 and as such a verifier cannot be convinced otherwise.
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There are two reasons why there might not exist a solution. First, it is possible that there is no
other codeword equal to c⃗1 at J. Second, it may be possible that all candidate codewords have
messages that are orthogonal to x⃗1. To address both these possibilities: consider the vector space
A = {m⃗ ∈ Fk : (BGTm⃗) = 0⃗}.

Lemma 1. Let 0 < l = k− t. Then dim(A) ≥ l.

Proof. From the rank-nullity theorem k = rank(BGT) + dim(ker(BGT)), and so

dim(A) = dim(ker(BGT)) = k− rank(BGT) ≥ l.

It follows that the first possibility is never applicable if k > t. This is a very weak assumption
corresponding exactly to those situations where the inner SNARK does useful work: if k ≤ t, the
CP-SNARK does more work than it would do by evaluating the polynomial directly. As such, in this
situation one should always opt to commit to the polynomial using the CP-SNARK commitment,
and evaluate the polynomial in its circuit.

For the second condition, the system is solvable if and only if there exists m⃗ ∈ A, m⃗ /∈ ker(x⃗1).
Here, ker(x⃗1) has dimension k − 1 by the rank-nullity theorem (or k if x⃗1 = 0⃗, but then y = 0
would be the only possible evaluation regardless of ϕ). As k increases, so does dim(A) ≥ k− t, and
therefore it becomes more likely that there exists such a message. We have the following lemma:

Lemma 2. Let x⃗1 ∈R F1×k
p and k > t. Then Eq. (1) has a solution except with negligible probability.

Proof. We know that the solutions to Eq. (1) are a subset of y⃗1 + m⃗ for m⃗ ∈ A and y⃗1 = ∑i∈[k] x⃗0iWi
for the original witness. If there exists one message m⃗ ∈ A such that ∑j∈[n] x⃗1 jm⃗j = α ̸= 0, then

y⃗1 +
(

y−∑j∈[n] x⃗1 jy⃗1 j

)
α−1m⃗ will be a solution to the system. Consider one message m⃗′ ∈ A and

index j′ where m⃗′j′ ̸= 0. Then the probability that there exists no solution is given by

Pr
[
∀m⃗ ∈ A :

〈
x⃗1 jm⃗j

〉
= 0

]
≤ Pr

 ∑
j∈[n]

x⃗1 jm⃗′ j = 0


= Pr

x⃗1 j′ = −m⃗′
−1
j′ ∑

j∈[n]\{j′}
x⃗1 jm⃗′

 =
1
|F|

Similarly, the case where x⃗1 j = xj for some uniformly random x ∈ F has negligible failure
probability by the Schwartz-Zippel lemma. Unfortunately it is not possible to give a general success
probability without knowing a distribution of the evaluation point x⃗1. It is likely that the adversary
succeeds with high probability for evaluation points that are not adversarially chosen. Note that
even a small probability is already sufficient in the non-interactive setting, since the prover can
simply try for poly(λ) different challenge sets J.

3.1 Attack Implementation

Since Orion uses a Generalized Spielman code, the encoding algorithm can be expressed much more
efficiently than through its generator matrix G, both computationally as well as in terms of memory
usage. Fortunately, we do not need to construct G explicitly for the attack either.

The encoding algorithm EC
(d)(x⃗) consists of three parts. We use d to indicate the depth, since the

algorithm is recursive. In the base case, d = 0 and we just copy the message directly. Otherwise,
m⃗1 = x⃗A(d) is computed for some expander graph A(d). We then compute c⃗1 = EC

(d−1)(m⃗1) through
a recursive call. Lastly c⃗2 = c⃗1 A(d) ′ is computed for another expander graph. The final codeword is
x⃗||c⃗1||c⃗2.

Instead of computing G from this process through encoding basis vectors for the message space,
we apply GT to B from the right. Note that B has size t × n, much smaller than G. We start by
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inverting A(d) ′ to the right-most columns of B. We can view the result as a matrix that maps x⃗||c⃗1
to the output at the chosen indices. The next step is a recursive call, creating a matrix that takes
x⃗||m⃗1 as a right input. Lastly, we invert A(d) and arrive at the final matrix that maps x⃗ to the correct
evaluation of EC at the selected indices.

While every lossless expander graph may be sparse, the resulting generator matrix is not. There-
fore, this method is much more memory efficient: B has only t rows and starts with n columns, and
BGT will have dimension t× k. During this process, the size of B has only shrunk from its original
size. We therefore use only O(|B|) memory. Computing is also efficient: inverting expander graphs
is as efficient as applying them.

After having computed the resulting matrix BA, a valid codeword can be found by computing

the pseudoinverse Q† of Q =

[
BA
x⃗1

]
. We then find a solution to the system by setting

y⃗γ
′ = Q†

[
c⃗γ(J1)

c⃗γ(J2)
. . . c⃗γ(Jt)

y
]T

.

We provide an implementation of the above described algorithm, which demonstrates the effi-
ciency and practicality of the attack. 5

4 Restoring Soundness of Orion

The order in which challenges and commitments must be sent is naturally constrained by the proto-
col. First, we do not want to commit to C entirely and so the column set J needs to be known at this
time. Second, to check that C is consistent with the commitment to D, we should sample I only after
committing to these columns. Third, the vector y⃗γ needs to be compared to C, but here the column
vector J must be sampled afterward to ensure y⃗γ cannot be chosen to open correctly at only these
points.

4.1 One More Round of Commitments

One way to reconcile this, is by committing to y⃗γ before Î is sampled, and opening this commitment
in the SNARK. This can be generically achieved by creating a Merkle commitment and opening
it inside the CP-SNARK. This is undesirable however, since hash-computations are expensive to
perform inside the SNARK circuit. Alternatively, we could switch to a CP-SNARK that supports
multiple rounds of commitments: the vectors y⃗1, y⃗γ, r⃗1 and r⃗γ would be committed to first, and
when J is sampled, then the prover commits to c⃗1·j as the second part of the witness.

Done naively, this would incur significant overhead on the CP-SNARK, since the committed wit-
ness now uses two polynomial commitments of half the size instead of one. If the verifier time and
proof size incurred by this step are polylogarithmic, these would almost double, with the opening
of polynomial commitments representing the majority of the total work. This naive approach can be
improved upon through the use of batching. One option is to use FRI [4], which can be efficiently
batched with minimal overhead.

4.2 Sampling a Different Column Set

In this paper we will instead focus on regaining soundness of the original construction, where we
do not want to put additional requirements on the outer SNARK. As we will see, we can fix the
protocol without requiring that the CP-SNARK supports efficient batching or even multiple rounds
of commitments at all. The only cost associated with our approach is that the verifier samples a new
column set Ĵ. Additionally, we have to switch the zero-knowledge scheme, but this will actually
improve verifier time and proof size, while keeping the prover time comparable.

If it were possible to sample such a second, independent column set Ĵ, this set could be used
for the columns C·j, while the other parts of the protocol could depend on a different J that is only
provided by V after P has already committed to the CP-SNARK witness. This way, we can have the

5An implementation of this attack can be found at https://github.com/ThomasdenH/orion-attack.
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column set Ĵ available when we commit to selected columns of C, while not allowing the prover to
select y⃗γ such that it opens correctly precisely at J, which would be sampled later.

This approach has several advantages: first, we do not increase the witness size, just the state-
ment size of the CP-SNARK. We have one additional challenge, which does not need to be sent
with the proof. We don’t create any new Merkle commitments or open existing commitments at
additional points at all.

Unfortunately, this approach still has an issue. To retain zero-knowledge, the second column set
J cannot be sampled independently of Ĵ. It is necessary that ¬∃j : j, j + n ∈ J ∪ Ĵ or part of the
witness could be learned. But this requirement implies that before committing to the CP-SNARK
witness, P knows t entries that will never be queried by the verifier in J.

4.3 Using Zero-knowledge Linear Codes

To remedy this issue, the zero-knowledge scheme is changed to use a randomized polynomial in-
stead of a vector to mask the witness. This has the desirable property that entries are distributed
uniformly at random as long as the degree is at least

∣∣J ∪ Ĵ
∣∣− 1. This construction is an instance of a

q-query uniform linear code, which in turn is a specific case of a zero-knowledge linear code. In fact,
this general transformation of any code to a perfectly zero-knowledge code may be of independent
interest. It retains the same relative minimum distance instead of reducing it by half as in the vector
masking approach, while retaining linear encodability. Crucial is the observation that we require
EC,ZK to be linearly encodable in k, not in q.

Lemma 3. Let EC be a linear code [n, k, d] and let q < 2n − 4d. Then EC,ZK
q, defined for (⃗y, r⃗) ∈

Fk ×Fq as

∀i ∈ [2n] : EC,ZK
q (⃗y; r⃗)i = (EC (⃗y) || EC (⃗y))i +

q−1

∑
j=0

r⃗jij,

is the randomized linear code [2n, k + q, 2d]. Furthermore, if EC is encodable in O(n) operations,
then EC,ZK

q is encodable in O (q(n + q)) operations.

Proof. The fact that EC,ZK
q is a linear code follows directly from the definition.

To see that the minimum distance is 2d, note that the right-hand side is just RS[2n,q,2n−q+1]. For
(⃗y || r⃗) ̸= 0⃗ it holds that

w (EC,ZK (⃗y; r⃗)) ≥
∣∣∣2w(EC (⃗y))− RS[2n,q,2n−q+1] (⃗r)

∣∣∣
≥ min(2d, 2n− q + 1, 2n− 2d− q− 1) ≥ 2d

by the restriction that q < 2n− 4d.
To see that it is q-query uniform, note that for any message y⃗ and any q queried locations (ij) and

corresponding values (ej) with j ∈ [q], there is exactly one r⃗ such that EC,ZK (⃗y; r⃗)ij = ej for all j ∈ [q],
since q points uniquely determine all coefficients of a degree q− 1 polynomial. This means that for
r⃗ uniformly random, any q queries are also uniformly random.

Lastly, encoding a codeword EC,ZK (⃗y; r⃗) takes O(k) operations for encoding EC, and then q(n +
q + d− 1) = O(q(n + q)) operations for computing the polynomial.

Using EC,ZK as the row encoding means that the challenge space can be simplified: V can simply
select Ĵ and J independently uniformly at random. Additionally, for the same message space, our
randomized linear code has twice the minimum distance as the code EC (⃗y) + r⃗ || r⃗. This means that
we get the same security level for smaller proof sizes.

Interestingly, only the prover ever needs to run EC,ZK. This means that it might be possible
to encode randomness in the (secret) generator matrix instead of having a random contribution,
potentially shrinking codeword size and thereby proof size. One potential issue is that it must be
efficiently verifiable that the code has a good minimum relative distance. It may be possible that
an existing randomly sampled linear-time encodable code already has the desired properties. This
leaves an interesting research question with potential to optimize this zk-SNARK further.
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4.4 Using a Logarithmically Sized Challenge

Due to the use of the challenge γ⃗ ∈ Fk, the verifier has to sample a random vector of size O(
√

N).
Since it is not included in the proof, this does not impact its size. The verifier complexity on the
other hand is affected: V needs to provide γ⃗ as the public statement to the CP-SNARK, making the
verifier complexity O(

√
N) as well.

This issue is addressed by [14], which improves on Brakedown by letting the verifier sample

challenge η⃗ ∈ Flog(k), which is then used to compute the vector
⊗log(k)

i=1 (1 − η⃗i, η⃗i). In our case,
this transformation can be done inside the outer SNARK circuit, which enables succinctness in both
proof size as well as verifier time. The authors show that this incurs only a logarithmic soundness
loss, which may be resolved by using a slightly larger field size. We adapt this challenge structure
to our polynomial commitment scheme.

4.5 Scorpius: A New Polynomial Commitment Scheme

Our new polynomial commitment scheme can be found in Figure 3, and the corresponding CP-
SNARK relation in Figure 4.

Theorem 4. Let EC be a linear code [n, k, d] with
(

1− d
3n

)t
≤ negl(λ) and let EC,ZK

2t be the 2t-query

uniform linear code [ñ, k̃, d̃] obtained from EC through Lemma 3. Then the protocol in Figure 3, using a
complete, knowledge-sound, zero-knowledge CP-SNARK to instantiate the outer SNARK relation in Figure 4,
is a zero-knowledge polynomial commitment scheme.

We provide a proof in Section 5.
In addition to our new polynomial commitment scheme, we also make an improvement to the

simulator. The one currently used in [31] does not follow its own definition, since it requires knowl-
edge of the evaluation point at the time of committing. This is likely an issue with the current
simulator and proof as opposed to the scheme itself—it seems possible to describe a correct simula-
tor. This difference has practical relevance too, however. The evaluation point may realistically not
be known beforehand, even by the verifier, and in this case we still want zero-knowledge. The defi-
nition therefore also concerns a more realistic scenario than what is currently achieved. We therefore
describe a new simulator that can openR to any evaluation point, anywhere.

4.6 Efficiency

Our construction achieves prover complexity of O(N), and proof size and verifier complexity of
log2(N). Our solution also improves verifier efficiency as well as proof size, and is only slightly
worse in terms of prover time.

First consider the impact on the CP-SNARK circuit. There, the only penalty in performance of our
approach is the 2t · 2n = O(

√
N) multiplications to evaluate the randomized polynomial, instead

of n additions, as well as the computation of the challenge γ⃗ from η⃗. Since we already perform t
encodings in O(

√
N) operations (with a higher constant), the circuit does not grow significantly.

Since the prover time is O(
√

N) and the proof size and verifier time are O(log2(N)), we only expect
the prover to incur a noticeable (but still minor) overhead from the new CP-SNARK circuit, and the
verifier time and proof size to not be noticeably impacted.

Outside the CP-SNARK, the prover additionally needs to do N constant size polynomial eval-
uations. We do not expect this to make the prover significantly less efficient either, since it already
needs to perform 5k encodings of EC in O(N) time, as well as compute 2N hash functions for the
Merkle commitment.

As we have seen before, for the verifier time and proof size, the impact of the new CP-SNARK
circuit is tiny. At the same time, the minimum distance of the used code becomes larger due to the
new randomization technique. This means that the number of opened columns and rows, t, more
than halves, meaning that there are much fewer elements in the proof. The verifier time depends on
verifying π and is otherwise linear in t. In addition, it now needs to compute and verify a challenge
only of size O(log(N)) instead of O(

√
N) and so it is expected to decrease significantly as well.
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Commit(pp, ϕ; r): The prover P performs the following operations, where any randomness is
deterministically derived from r:

1. Parse ϕ as a k× k matrix W of its coefficients.

2. Compute C ∈ Fk×ñ by encoding every row of W using the encoding function
EC,ZK

2t(Wi; r⃗i) for r⃗i ∈R Fq.

3. Compute D ∈ Fn×ñ by encoding every column of C using EC.

4. Commit to columns: ∀j ∈ [ñ] : Rj ← CommitM(D·j).

5. Output final commitmentR ← CommitM(R1, . . . ,Rñ).

Eval(pp,R, X = x⃗0 ⊗ x⃗1, y, µ, ϕ): The prover and verifier execute the following protocol:

1. V sends a uniformly random vector η⃗ ∈ Flog(k) to P .

2. The prover computes γ⃗ =
⊗log(k)

i=1 (1− η⃗i, η⃗i) and

c⃗1←∑k
i=1 x⃗0iCi, y⃗1←∑k

i=1 x⃗0iWi, r⃗1←∑k
i=1 x⃗0i r⃗i, Rc⃗1

←CommitM(c⃗1),
c⃗γ←∑k

i=1 γ⃗iCi, y⃗γ←∑k
i=1 γ⃗iWi, r⃗γ←∑k

i=1 γ⃗i r⃗i, Rc⃗γ
←CommitM(c⃗γ).

3. P computes y = ∑k
i=1 y⃗1 j x⃗1 j and sendsRc⃗1

,Rcγ and y to the verifier.

4. V samples and sends column indices Ĵ ⊂ [ñ] uniformly at random.

5. The prover commits to the witness of the CP-SNARK (Figure 4), consisting of

y⃗1, y⃗γ, r⃗1, r⃗γ, ∀j∈ Ĵ : C·j.

6. The verifier samples and sends row index set I ⊂ [n], |I| = t, as well as a new
column index set J ⊂ [ñ], |J| = t, uniformly at random.

7. The prover computes the CP-SNARK argument π and sends

∀j ∈ J : OpenM(Rc⃗1
, j), OpenM(Rc⃗γ

, j),
∀j ∈ Ĵ : OpenM(R, j), ∀(i, j) ∈ I × Ĵ : OpenM(Rj, i).

8. V checks the proof π using the CP-SNARK verification procedure.

9. V checks the Merkle tree proofs of Dij inR for all (i, j) ∈ I × Ĵ.

10. V checks the Merkle tree proofs of c⃗1 j and c⃗γ j inRc⃗1
andRc⃗γ

.

The verifier accepts if all checks are successful.

Figure 3: The protocol for our new polynomial commitment scheme Scorpius.

4.7 Supporting Smaller Polynomials

Orion requires that 4k = n ≥ 2t to be able to satisfy the constraints on the challenge space. For the

relative minimum distance δ = 0.055, we set t = 4795 in order that
(

1− δ
3

)t
≤ 2−λ.6 Note that our

code can be used for n > t
1−2δ , or k > t

4(1−2δ)
≈ 1347 for the generalized Spielman code used in

Orion. This means that we directly support polynomials of less than half the size.
As we have noted in Section 3 already, for polynomials where k < t it would make sense to use

6Although Orion selects t = 1568, checking the linear combination gives rise to a success probability
(

1− d
3·2n

)t
, implying

a security level of λ ≈ 14. For λ = 128, a value of t = 9635 would have been required instead.
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Committed witness: y⃗1, y⃗γ, r⃗1, r⃗γ, ∀j ∈ Ĵ : C·j.

Public input:

• η⃗, x⃗0, x⃗1, y, Ĵ, I, J.

• ∀j ∈ J : c⃗1 j, c⃗γ j.

• ∀(i, j) ∈ I × J : Dij.

Proof circuit: The CP-SNARK circuit performs the following checks and computations:

• Compute γ⃗ =
⊗log(k)

i=0 (1− η⃗i, η⃗i).

• Build encodings of row vector combinations:

– c⃗γ ← EC,ZK(y⃗γ; r⃗γ)

– c⃗1 ← EC,ZK(y⃗1; r⃗1)

– Check for j ∈ J that c⃗γ j and c⃗1 j match the input.

• Check that these are valid linear combinations:

– Check ∀j ∈ Ĵ : c⃗γ j
?
= ∑i∈[k] γ⃗iCij.

– Check ∀j ∈ Ĵ : c⃗1 j
?
= ∑i∈[k] x⃗0iCij.

• Encode columns:

– ∀j ∈ Ĵ : D·j = EC(C·j).

– Check for (i, j) ∈ I × Ĵ that Dij matches the input.

• Check claimed evaluation:

– Check y ?
= ∑j∈[k] x⃗1 jy⃗1 j.

Figure 4: The procedure for the fixed CP-SNARK. The committed witness contains the values that
are part of the CP-SNARK commitment. Any other witness values arise only from the intermediate
values due to the arithmetization.

the CP-SNARK directly. There are however some additional ways of making the proof system more
efficient even for small k. For one, as was already noted in [31], at some point it is faster to avoid
using codes for the columns and instead open these directly. This removes the cost of encoding and
shrinks the amount of data to be committed to. For each column, k elements are now opened instead
of t, and so this approach is always better when k < t. Second, for the rows it is possible to switch
to Reed-Solomon codes in place of EC,ZK in situations where k is small enough that the O(n log(n))
cost is acceptable. This will allow for much lower values of t due to the larger relative minimum
distance of the code. For example, for k = 2000 we can pick the code RS[7486,2000+2t,4847] with t = 365
and for k = 1000 the code RS[9896,1000+2t,8585] with t = 156 suffices. Since proof size and verifier time
depend mostly on t, this will give a small and efficient proof system, although it comes at the cost of
prover speed.

4.8 Open at Multiple Points

Since one of our goals is to support zero-knowledge, we cannot run the Eval procedure multiple
times, even though this would be desirable in many protocols. Fortunately, the scheme is easily
extended to open at multiple points by taking a random linear combination of all evaluation vectors.
This protocol can be found in Figure 5.

Lemma 5. The protocol in Figure 5 is complete, binding and zero-knowledge. In addition, it is
knowledge sound, i.e. for any adversary A, size parameter µ ≥ 1, there exists a PPT extractor E
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with full access to A such that:

Pr

 pp← Gen(1λ, µ), (pp,R, x⃗0,0 ⊗ x⃗0,1, . . . , x⃗y0, . . . , ⃗ym−1)← A(pp, )
1 = ⟨A,VEval⟩(pp,R, x⃗, y, µ, ϕ), (ϕ, oh)← EA(pp, (R, x⃗, y)) :
ϕ(x⃗1) ̸= y1 ∨ · · · ∨ ϕ( ⃗xm−1) ̸= ym−1 ∨ Open(pp,R, ϕ, oh) ̸= 1

 ≈λ 0.

We provide a proof in Section 5.

Evalm(pp,R,(X0= x⃗1,0 ⊗ x⃗1,1,. . . , Xm−1= ⃗xm−1,0 ⊗ ⃗xm−1,1),(y0, . . . , ym−1), µ, ϕ):
The prover and verifier execute the following protocol:

• V selects a random vector α⃗ ∈ Fm and sends it to the prover.

• P and V compute X′ = ∑m−1
i=0 α⃗iXi.

• P and V compute y′ = ∑m−1
i=0 α⃗iyi.

• P and V run the protocol Eval(pp,R, X′, y′, µ, ϕ).

Figure 5: A procedure to open the polynomial commitment at multiple points.

4.9 On (Weak) Simulation Extractability

Simulation Extractability (SE) is a strengthened knowledge-soundness property, which guarantees
that the witness is extractable even if the adversary has access to simulated proofs for arbitrary adap-
tively chosen statements. This is a property often desirable in applications and intensively studied
recently either generically for PIOPs [17, 22, 15] or for various concrete proof systems (e.g, [13, 23]).
At least two variants can be distinguished: strong SE, where the adversary wins by providing a
proof that was not simulated before, or weak SE, where the adversary wins by providing a proof for
statement that was not simulated before.

Unfortunately, polynomial commitment schemes based on [7], such as those used in Orion,
Brakedown [19] and Ligero [1, 2] cannot provide (strong) SE. The consistency check relies on the
fact that a linear combination of vectors far from all codewords, will also be far from any codeword.
This means that the closest codeword is correct. However, it cannot be enforced that this vector (i.e.
c⃗γ in Orion) is equal to a codeword. In fact, if the prover changes just a single index they have a
decent probability of passing all verifier checks. This means the prover can do something that re-
sembles rerandomization and thus breaking strong SE. Note that the message corresponding to the
closest codeword cannot be changed, and therefore it is still possible that Orion satisfies weak SE. In
fact, this seems likely if the outer CP-SNARK is at least weak SE: if we include the transcript in the
outer CP-SNARK statement, we will never be able to re-use a simulated outer proof. Therefore, P
is always forced to go through the verification procedure. Proving that the Orion PC is weak SE, or
more importantly that the Orion zk-SNARK is weak SE, is an interesting question for future work.

5 Security

Orion uses the result [2, Lemma A.1] that if a single row of matrix C is far away from a codeword,
then a random linear combination will also be far away with high probability. Or, conversely, that
if a random linear combination is e-close to a codeword, then every row of the matrix is equal to a
codeword except at at most e columns. To enable a logarithmic verifier however, we will instead use
the following related lemma due to Diamond and Posen.

Lemma 6. [14, Theorem 3.1] Fix an arbitrary [n, k, d]-code EC, and a proximity parameter e ∈
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{
0, . . . ,

⌊
d−1

3

⌋}
. If C ∈ Fk×n satisfies

Pr
η⃗∈Flog(k)

d

log(k)⊗
i=1

(1− η⃗i, η⃗i) · C, EC

 ≤ e

 > 2 log(k)
e + 1
|F| ,

then d(C, EC
k) ≤ e.

Furthermore, like [14], we need two extraction strategies. First, we can read ROM-queries to open
the Merkle-tree commitment R and obtain the randomization used in the commitment. Second,
because we do not assume (and in fact do not have) an efficiently decodable linear code, we require
a separate strategy to obtain the decodings. This is done through rewinding, in order to obtain k
vectors y⃗γ for linearly independent γ⃗ =

⊗log(k)
i=1 (1− η⃗i, η⃗i). To make this more difficult, while the

verifier is public-coin, its challenges may not be uniformly distributed when restricted to accepting
proofs. To this end, we will use [14, Lemma 4.13], which states that these challenges will be linearly
independent except with negligible probability, if this fact is taken into account.

We can now give the proof for Theorem 4.

Proof. (Theorem 4)
Completeness. The protocol in Figure 3 is perfectly complete by construction. The CP-SNARK

is complete by assumption so we conclude that the polynomial commitment scheme as a whole is
complete.

Binding. Define the algorithm Open(pp,R, ϕ, oh) as follows: construct matrix D̃ ∈ Fn×ñ by filling
in all entries that have valid Merkle tree openings contained in oh, setting the others to 0. Compute
C honestly from ϕ and the randomization vectors (⃗ri)

k
i=1 (contained in oh) and encode vertically to

obtain D. Output 1 if, for more than ñ − d̃
3 columns j, it holds that |∆(D̃·j, D·j) ∪ Mj| < d

2 , where
Mj denotes the indices in this column for which oh did not contain a Merkle tree opening. Output 0
otherwise.

Suppose there exists a PPT adversary A that can find ϕ, r, ϕ′, r′ such that ϕ ̸= ϕ′ and both
Open(pp,R, ϕ, r) = 1 and Open(pp,R, ϕ′, r′). On the one hand, for the honestly computed encod-
ings C and C′, there must be a row i such that d(Ci, C′i) ≥ d̃. Thus, there must exist at least d̃ indices
where the columns of C and C′ differ and thus as many columns for which d(D·j, D′·j) > d.

Consider then the Merkle tree openings D̃ and D̃′. Since a PPT adversary cannot open the Merkle
tree anywhere at two distinct points, it must hold that any index in ∆(D·j, D′·j) must be in either
∆(D·j, D̃·j) ∪Mj or ∆(D′·j, D̃′·j) ∪M′j, i.e. it must differ from the opening or be absent in (at least) one

of the two claimed openings. Since we know that for less than d̃
3 columns j it holds that |∆(D·j, D′·j)∪

Mj| ≥ d
2 , there exist at least one column j for which |∆(D·j, D′·j)∪Mj| < d

2 and |∆(D̃·j, D̃′·j)∪ M̃j| < d
2 .

Now the set ∆(D·j, D′·j) is a subset of ∆(D·j, D′·j)∪Mj ∪∆(D̃·j, D̃′·j)∪ M̃j, and so it has size at most d,
a contradiction.

Knowledge Soundness. For knowledge soundness, we construct an extractor E which opens
the polynomial commitment for any adversary A that succeeds with non-negligible probability. Al-
though we use the same high-level structure as [14], the details will be quite different due to the use
of the outer SNARK and the code-switching technique. In particular, the proof will be structured as
follows:

(1) We first define the extractor E , which provides both D and W.

(2) We show that the extractor succeeds with overwhelming probability.

(3) We show thatR opens to a unique D and corresponding decoding C.

(4) We show that C decodes to W.

(5) We show that this implies Open(pp,R, ϕ, oh) = 1.

(6) We show that x⃗0Wx⃗1 = ϕ(x⃗) = y.
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(1): We construct E as follows: First, E reads the random oracle queries and attempts to re-
construct the Merkle tree witness D. To this end, it runs the following procedure recursively, with
starting input (R, 2 log(k), 0):

Given string h, depth d and index j, do the following:

• If d = 0 and h = H(x) where x ∈ F is a preimage of h, write Dj = x.

• If d > 0 and h = H(h0 || h1), recurse with inputs (h0, i− 1, 2j) and (h1, d− 1, 2j + 1).

Indices j missing from Dj are denoted by M and set to 0. Finally, interpret the resulting vector
column-first as a k× k matrix D.

Second, E needs to extract the polynomial coefficients without making use of an efficient decoder.
To this end, we run the adversary repeatedly for distinct uniform random vectors η⃗ ∈ Flog(k). In each
run where we obtain a verifying proof, we extract y⃗γ = ∑k

i=1 γ⃗iWi from the CP-SNARK witness, with

γ⃗ =
⊗log(k)

i=1 (1− η⃗i, η⃗i). After k runs, if the vectors γ⃗ are linearly independent, we solve the linear
system to obtain W and the randomization vectors r⃗i for i ∈ [k].

(2): The only way in which the extractor can fail is if the vectors γ⃗ are not linearly independent
and so the resulting linear system cannot be solved to recover W. Fortunately, the following lemma
is applicable:

Lemma 7. [14, Lemma 4.13] The probability that the rows
(⊗k

j=1(1− η⃗i j, η⃗i j)
)

are linearly depen-
dent is negligible.

Here η⃗i denotes the verifier challenge from the ith iteration in the second extractor step. The

lemma proof requires that the probability of the adversary convincing the verifier is at least
√

log(k)
|F| ,

which is the case for an adversary that succeeds with non-negligible probability. The extractor then

fails with probability at most (k− 1)
√

log(k)
|F| ≤ negl(λ).

(3): From the CP-SNARK, we can also extract the columns C·j for j ∈ Ĵ. Denote their encoding by
EC as D′. In the CP-SNARK circuit, D′·j is checked at row indices i ∈ I with |I|, a set that is sampled
only after these columns are committed to. Denote the entries in M corresponding to column j by
Mj. By the binding property of the CP-SNARK, if |∆(D·j, D′·j)∪Mj| > d

2 for any j ∈ Ĵ, the adversary

succeeds with probability at most
(

1− d
2n

)t
≤ negl(λ).

We thus know that if the adversary succeeds with non-negligible probability, then C·j with j ∈ Ĵ

in the CP-SNARK equals the unique decoding of D·j. Suppose now that there are at least d̃
3 column

indices for which the adversary cannot succeed with non-negligible probability. The success proba-

bility is then at most
(

1− d̃
3ñ

)t
≤ negl(λ). This means that D has a unique decoding to C, except at

fewer than d̃
3 columns and except with negligible probability.

(4): The commitment Rc⃗γ
is compared with the codeword c⃗γ in the outer SNARK, at indices

j ∈ J that are sampled only after the CP-SNARK commitment fixes its value. Let Mj be the unopen-
able entries in Rc⃗γ

and c⃗γ
′ the opening of Rc⃗γ

, setting unopenable entries to 0. Suppose then that

|∆(c⃗γ
′, c⃗γ) ∪ Mj| > d̃

2 . The adversary succeeds with probability at most
(

1− d̃
2ñ

)t
≤ negl(λ). It

must therefore hold thatRc⃗γ
already binds c⃗γ, and similarlyRc⃗1

binds c⃗1.
The vector c⃗γ is claimed to be a linear combination of rows of the unique C opening D. Suppose

that this c⃗γ is at least d̃
3 -far from the correct linear combination. We test this linear combination

in the CP-SNARK at columns Ĵ (Rc⃗γ
binds c⃗γ before Ĵ is sampled), and so again A succeeds with

probability at most
(

1− d̃
3ñ

)t
≤ negl(λ). By the exact same logic, c⃗1 must be d̃

3 -close to the claimed
linear combination.

Since d̃ is an integer,
⌊

d̃−1
3

⌋
is the first integer smaller than d̃

3 . Because c⃗γ is a codeword that is⌊
d̃−1

3

⌋
-close to the claimed linear combination, Lemma 6 applies. From it, we conclude that C has
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codewords for all rows, except at at most
⌊

d̃−1
3

⌋
columns. This in particular means that every row

of C decodes to a unique message, which we interpret as W and the randomization vectors.
(5): Since c⃗γ is d̃

3 -close to the claimed linear combination of rows of C, it must hold that y⃗γ =

∑k
i=1 γ⃗iWi and r⃗γ = ∑k

i=1 γ⃗i r⃗i whenever the adversary convinces the verifier. Since the extractor suc-
ceeded, this means that E recovers the unique W and randomization vectors that form the message
corresponding to C. We interpret W as the coefficients of polynomial ϕ. Furthermore, we have seen
in (3) that the Merkle tree is well-formed at sufficiently many places that E obtains opening hints oh
such that Open(pp,R, ϕ, oh) = 1.

(6): Finally, by the same logic as (4), c⃗1 must be d̃
3 -close to the correct linear combination of rows

of C, which means that it decodes to y⃗1 and r⃗1 and so y⃗1 = ∑k
i=1 x⃗0iWi as claimed. The last check of

the CP-SNARK finally ensures that y = ∑j∈[k] x⃗1 jy⃗1 j.
Zero-Knowledge: The simulator can be found in Figure 6. First note that S is complete by

construction: Ĵ ∪ J determines at most 2t coefficients of r⃗γ and r⃗1, and so it is always possible to
find such polynomials. Second, it makes non-black box use of our zero-knowledge code to pick the
randomness for each codeword, but makes no assumptions on (the efficient decodability of) the code
underlying the transform. To see that no PPT adversary A can distinguish between two executions,
we show that the communication is distributed identically in both RealA,ϕ and IdealA,ϕ,SA . The
elements sent by the prover are:

• Merkle commitmentsR,Rc⃗γ
,Rc⃗1

and its opening proofs. The unopened values remain statis-
tically hidden.

• Evaluation y, which is identical in both games.

• The CP-SNARK proof π and corresponding commitment, which we compute honestly and
which are in both cases indistinguishable from the output of the CP-SNARK simulator by
zero-knowledge of the CP-SNARK.

• The openings Dij for I × Ĵ, and c⃗1 j, c⃗γ j for j ∈ Ĵ. Note that these are all linear combinations of

columns j ∈ Ĵ of C. Since each row of C is a codeword of EC,ZK and we open
∣∣ Ĵ∣∣ ≤ 2t entries,

these openings are distributed uniformly at random in both cases.

Proof of Lemma 5. We now show that the construction in Figure 3 is a polynomial commitment
scheme even for openings at multiple adversarially chosen points.

Proof. (Lemma 5):
Completeness, binding, zero-knowledge. These follow directly from Thm. 4.
Knowledge-Soundness. By Thm. 4, any PPT adversary has negligible probability of succeeding

without the extractor obtaining ϕ(·) that opens the polynomial commitment such that ∑m
i=0 αiϕ(x⃗i) =

∑m
i=0 αiyi = ỹ.

Due to the binding property of our underlying polynomial commitment, ϕ is fixed before α⃗ is
picked uniformly at random by the verifier. Suppose that there exists one i′ for which ϕ(x⃗i′) ̸= yi′ .
Then

Pr

[
m−1

∑
i=0

αiϕ(x⃗i) =
m−1

∑
i=0

αiyi

]
= Pr

αi′(ϕ(x⃗i′ − yi′)) = −
m−1

∑
i=0
i ̸=i′

αi(ϕ(x⃗i)− yi)



= Pr

αi′ = −(ϕ(x⃗i′ − yi′))
−1

m−1

∑
i=0
i ̸=i′

αi(ϕ(x⃗i)− yi)

 =
1
|F| ,

and so the prover has negligible success probability.
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Function SA0 (1λ, pp): To simulate a commitment, S0 simply runs Commit(pp, ϕ) for ϕ ≡ 0.

Function SA1 (pp,R, x⃗, y, µ) : The simulator engages in a protocol with the verifier V .

• V sends a uniformly random vector η⃗ ∈ Flog(k).

• S1 computes γ⃗ =
⊗log(k)

i=1 (1− η⃗i, η⃗i).

• S1 sets y⃗γ = 0⃗ and chooses r⃗γ uniformly at random under the restriction that

∀j ∈ Ĵ ∪ J : EC,ZK(y⃗γ; r⃗γ)j = ∑
i∈[k]

γ⃗iCij.

• S1 chooses any y⃗1 such that y = ∑j∈[k] x⃗1 jy⃗1 j. It then selects r⃗1 uniformly at random
under the restriction that

∀j ∈ Ĵ ∪ J : EC,ZK(y⃗1; r⃗1)j = ∑
i∈[k]

x⃗0iCij − (EC(y⃗1) || 0⃗)j

• S1 continues the rest of the protocol honestly, starting with step 3.

Figure 6: The zero-knowledge simulator for the protocol in Figure 3.

5.1 Non-interactivity through Fiat-Shamir

Since the protocol in Figure 3 is public coin, we can apply the Fiat-Shamir transform [16]. In the
proof of Theorem 4 we show that rewinding k times to the start of Eval will fully extract ϕ from its
commitment.

This means that the non-interactive version of the polynomial commitment scheme is also knowl-
edge sound. We will use different random oracles for the Merkle hash tree, the verifier challenges
and (potentially) for the outer SNARK. In practice this can be implemented using domain separa-
tion. Let A be an adversary that is able to finish the protocol with V except with non-negligible
probability, performing at most Q random oracle queries. We let A complete the protocol and in
addition run the CP-SNARK extractor. By definition the CP-SNARK extractor succeeds with over-
whelming probability. We obtain a transcript that verifies except with negligible probability as well
as the CP-SNARK witness. We then reset the random oracle for the verifier challenges and start
another, independent run of A. After k runs, we have k verifying transcripts and y⃗γ for linearly
independent γ⃗, and we can reconstruct W as described in the proof for Theorem 4. The adversary
has performed at most kQ ROM queries in the process, in addition to the overhead of running the
CP-SNARK extractor k times.

As a result we obtain a non-interactive polynomial commitment scheme. Orion uses the poly-
nomial IOP from [27, 19]. Both works apply the Fiat-Shamir transformation but do not provide a
full analysis. We leave such a detailed analysis of using Fiat-Shamir to obtain a zk-SNARK and the
associated security loss to future work.
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