
Optimized Privacy-Preserving Clustering with
Fully Homomorphic Encryption

Chen Yang1,2, Jingwei Chen1,2(�), Wenyuan Wu1,2, and Yong Feng1,2

1 Chongqing Key Laboratory of Secure Computing for Biology, Chongqing Institute
of Green and Intelligent Technology, Chinese Academy of Sciences
2 Chongqing College, University of Chinese Academy of Sciences
{yangchen, chenjingwei, wuwenyuan, yongfeng}@cigit.ac.cn

Abstract. Clustering is a crucial unsupervised learning method ex-
tensively used in the field of data analysis. For analyzing big data,
outsourced computation is an effective solution but privacy concerns
arise when involving sensitive information. Fully homomorphic encryp-
tion (FHE) enables computations on encrypted data, making it ideal for
such scenarios. However, existing privacy-preserving clustering based on
FHE are often constrained by the high computational overhead incurred
from FHE, typically requiring decryption and interactions after only one
iteration of the clustering algorithm. In this work, we propose a more
efficient approach to evaluate the one-hot vector for the index of the
minimum in an array with FHE, which fully exploits the parallelism of
single-instruction-multiple-data of FHE schemes. By combining this with
FHE bootstrapping, we present a practical FHE-based k-means cluster-
ing protocol whose required round of interactions between the data owner
and the server is optimal, i.e., accomplishing the entire clustering process
on encrypted data in a single round. We implement this protocol using
the CKKS FHE scheme. Experiments show that our protocol signifi-
cantly outperforms the state-of-the-art FHE-based k-means clustering
protocols on various public datasets and achieves comparable accuracy
to plaintext result. Additionally, We adapt our protocol to support mini-
batch k-means for large-scale datasets and report its performance.

Keywords: Clustering · k-means · Mini-batch k-means · Privacy-preserving
computation · Fully homomorphic encryption · Outsourced computation.

1 Introduction

Nowadays, computation power has become a commercial good. It is more and
more common for one party who owns data to utilize the computation power
of another party to analyze the data. In this two-party scenario, data privacy
is of important concern. There are many solutions proposed to protect data
privacy in this outsourced computation scenario, such as differential privacy,
secure multi-party computation, and fully homomorphic encryption (FHE). The
idea of FHE is to allow one to operate on ciphertexts and get the expected



2 C. Yang et al.

result after decryption. This idea emerged and has been pursued a long time
ago [26]. For example, the famous RSA public key encryption system supports
homomorphic addition [27]. But a scheme can be called fully homomorphic only
when it supports both addition and multiplication simultaneously and has no
limit on the number of these two operations that can be consecutively done. It
was not until 2009 that Gentry proposed the first FHE scheme [13]. Afterward,
many FHE schemes have been proposed, such as BGV [5], BFV [4,11], CKKS
[7], GSW [14], TFHE [9] and FHEW [10], and they are less complicated and
much more efficient.

Clustering is a crucial unsupervised machine learning method to analyze
data, which can reveal intrinsic patterns and characteristics hidden in the data
and is widely used in many fields. There are already some privacy-preserving k-
means clustering algorithms, such as [30,16,17,24,31], which are based on multi-
party computation. Here, we narrow our focus only on those based on FHE.
Jäschke and Armknecht [15] proposed an algorithm based on the TFHE scheme,
which supports logic operations AND, OR, NOT. So, they construct their algo-
rithm circuit with many logic gates, resulting in their algorithm requiring too
much run time. Lu et al. [22] proposed a scheme named PEGASUS which sup-
ports switch between two different FHE schemes, CKKS and FHEW, and they
accomplished only one iteration of k-means clustering algorithm using PEGA-
SUS. Recently, Zhang et al. [32] proposed a scheme based on CKKS, but did not
utilize bootstrapping, so their scheme only supports a few times of iterations of
k-means clustering.

1.1 Results

In this paper, we propose a protocol named COPPk-means (Protocol 6) for Com-
pletely Outsourced Privacy-Preserving k-means based on FHE. It is accurate,
efficient, and completely outsourced.

– To test the effectiveness of our protocol, we compare the accuracy of our
privacy-preserving protocol on ciphertexts with that of the original k-means
clustering on plaintexts, and the result shows almost equivalent accuracy of
them, with differences smaller than 3%.

– To test the efficiency of our protocol, we compare the run time of our protocol
with some other previous works. Compared with the work of Jäschke and
Armknecht [15], which is completely outsourced but too costly, our work is
56683× faster. Compared with the work of Lu et al. [22], which accomplishes
only one iteration of k-means clustering, our work is up to 44.3× faster.
Compared with the work of Zhang et al. [32], which will require decryption
and re-encryption after only one or two iterations of k-means clustering, our
work is about 2× to 3× faster than theirs under the same setup (i.e., without
bootstrapping).

– In particular, our protocol is based on the CKKS scheme and utilizes the
bootstrapping of CKKS to enable a limitless number of iterations of k-means
clustering. Hence, it requires only one round of interaction between the data



Optimized Privacy-Preserving Clustering with FHE 3

owner and the computation server. We also report the performance (run time
and memory consumed) of our COPPk-means protocol with bootstrapping
on several popular datasets, which shows that our protocol performs well in
both efficiency and memory consumption.

Furthermore, for large-scale datasets, we present a mini-batch variant of our
COPPk-means. And we report its performance on the MNIST dataset com-
pressed by PCA to extract 64 features from 784 features for all the 60000 samples
in the training set.

1.2 Techniques

Comparison and ciphertext division are two unfriendly operations for CKKS.
However, k-means clustering requires comparing distances and also requires di-
visions to update centroids.

In the “compare distances” step of k-means clustering, which is meant to allo-
cate points to their nearest centroids by comparing their distances to centroids,
we use a polynomial to approximate the comparison function[8]. In the “update
centroids” step, to avoid dividing by the ciphertext of the numbers of points
that allocated to the same centroid, we adopt the stabilized variant of k-means
(see, e.g., [15]), which let the centroids in the last iteration to play a role in the
next iteration. In this way, dividing by a ciphertext (that encrypts the number
of points allocated to each centroid) can be replaced by dividing by a plaintext
(i.e., the whole number of points in the dataset). We also leverage the batching
technique of CKKS, which enables multiple values to be encoded and encrypted
in one ciphertext.

Since the sign function is approximated by a polynomial, which requires
multiple times of ciphertext addition and multiplication operations, we propose a
parallel method (Section 3.4), against the usual serial method used in comparison
operation on plaintexts, to find the minimum element in an array, and thus save
plenty of levels needed to finish these addition and multiplication operations on
ciphertexts. By integrating the parallel comparison method with the batching
technique of the CKKS scheme, our protocol theoretically achieves high efficiency
in terms of program run time.

2 Background

In this section, we introduce the basic concepts of k-means clustering and FHE
that are necessary for the subsequent discussions.

2.1 Original K-means Clustering Algorithm

K-means is a classic and well-known clustering algorithm, which requires no
prior knowledge about datasets and uses an iterative method to obtain the final
clusters. It contains the following steps.



4 C. Yang et al.

1. Initialization: set the value of “k”, the number of clusters you want. Then
choose k points randomly from the dataset, to be the initial centroids of the
k clusters.

2. Repeat the following steps, until the k centroids change little or reach
the predetermined times of iterations.
(a) Compute distances: compute distances between all points in the dataset

and all the k centroids. Here, the distance could be l2-norm distance or
other distance metrics.

(b) Compare distances: allocate points in the dataset to its nearest centroid.
These points that are allocated to the same centroid form a cluster. So
by the end of this step, we obtain k clusters.

(c) Update centroids: recalculate k centroids of these k new clusters, then
go back to Step (a).

2.2 Fully Homomorphic Encryption

As mentioned in Section 1, there are many FHE schemes have been proposed
since Gentry’s seminal work [13], such as BGV [5], BFV [4,11], CKKS [7], GSW
[14], TFHE [9] and FHEW [10]. Among them, GSW, TFHE and FHEW can
homomorphically evaluate AND, OR, NOT operations on 0, 1. While BGV and
BFV can homomorphically evaluate addition and multiplication over integers,
and CKKS can homomorphically evaluate addition and multiplication on real
numbers or complex numbers.

2.3 The CKKS Scheme

In CKKS [7], the plaintext space is M = Z[x]/⟨XN + 1⟩ =: R while messages
are complex vectors in Cℓ with ℓ = N/2, where N is a power-of-two integer. The
ciphertext space of CKKS is C = R/qR, where q is the ciphertext modulus, a
large integer. The canonical embedding R[X]/⟨XN + 1⟩ → Cℓ maps m(X) ∈ R

into m ∈ Cℓ by evaluating m(X) at the primitive 2N -roots of unity ξj = ξ5
j

for
0 ≤ j < ℓ. The inverse of the canonical embedding encodes a message m as a
plaintext m(X). Thus, CKKS naturally support single-instruction-multiple-data
(SIMD) operations, i.e., performing an operation on a ciphertext corresponds to
performing the same operation on ℓ = N/2 entries of m in parallel. Each entry
of the message m ∈ Cℓ is called a plaintext slot.

For x = (xi)1≤i≤ℓ and y = (yi)1≤i≤ℓ, let ct.x and ct.y be the ciphertext
encrypted by CKKS under a same public key. Then CKKS supports the following
basic operations:

– Enc(x) encrypts x and returns the ciphertext.
– Add(ct.x, ct.y) returns an encryption of x + y. The Add operation can also

accept multiple input parameters and return the sum of them. The input
parameters can also be some messages from Cℓ, but there must be at least
one ciphertext in these input parameters.



Optimized Privacy-Preserving Clustering with FHE 5

– Sub(ct.x, ct.y) returns an encryption of x− y. One of the two input param-
eters can also be a message from Cℓ.

– Mul(ct.x, ct.y) returns an encryption of x ⊙ y, where ⊙ is for Hadamard
product, i.e., component-wise multiplication.

– CMul(m, ct.x) returns an encryption of m ⊙ x, where m is a message Cℓ;
for m ∈ C, CMul(m, ct.x) is a special case of CMul(m, ct.x) with m =
(m, . . . ,m).

– Square(ct.x) returns an encryption of x⊙ x.
– Avg(ct.x, n) = Enc(a1,0, a2,0, . . . , aℓ/n,0), where (ai)1≤i≤ℓ/n is the average

of (x1+(i−1)n, . . . , xn+(i−1)n). It should be ensured that n divides ℓ.

The security of almost all existing FHE schemes, including CKKS, is based on
the Learning With Errors (LWE) assumption [25] or its variants. In particular,
CKKS is semantic secure under the Ring-LWE assumption [23]. For a detailed
discussion on the security of CKKS, we refer to [21].

2.4 Bootstrapping of the CKKS Scheme

When a ciphertext is newly encrypted, it is at a high level (the specific value
depends on the setup parameters). As more operations have been done on the
ciphertext, the lower the level the ciphertext is at. When the ciphertext is at
the lowest level, no further operations can be done on it. To support further
operations, the ciphertext must be refreshed to go back to a higher level. Such
a process is called “bootstrap”, introduced by Gentry in [13]. In the literature,
there exists a series of papers working on bootstrapping for the CKKS scheme,
such as [6,19,3,20].

– Bootstrap(ct.x) return a bootstrapped version of the ciphertext ct.x, which
is refreshed back to the initial high level to support further operations.

2.5 Comparison Function Approximated by Polynomial

The CKKS scheme can readily support addition and multiplication, but com-
parison is an unfriendly operation for CKKS. There have already been some re-
searches on polynomial approximation of comparison function in CKKS context.
Actually, comparison function is equivalent to sign function, since to compare
two values is equivalent to evaluate sign function on their difference. We adopt
the approximation in [8], which proves a theoretically optimal way of polynomial
approximation of sign function in the interval [−1, 1] in CKKS context. And the
general expression given in that paper is

ft(x) =

t∑
i=0

1

4i
·
(
2i

i

)
· x

(
1− x2

)i
. (1)

But a more accurate polynomial approximation requires more times of ad-
dition and multiplication, which means more levels to be consumed. There is a



6 C. Yang et al.

trade-off between accuracy and numbers of levels consumed. And since the sign
function is approximated by a polynomial, the output value of it will not be
exactly −1 or 1 but a value in [−1, 1].

– Sign(ct.x) utilize addition and multiplication according to equation(1) on
ciphertext ct.x to accomplish an approximate evaluation of sign function on
plaintext x. All the elements in x must be between [-1, 1].

3 Building Blocks

In this section, we introduce some building blocks that will be used in next
section to construct our whole protocol.

First, we fix some notations that will be used throughout this paper. Let
ℓ be the number of slots in a plaintext. The dataset is denoted by a matrix
P = (pi,j) ∈ Rd×n, where d is the dimension of each sample and n is the
number of samples, i.e. each column of P represents a sample. Let pi be the
i-th row of P , and P[i,j] be the submatrix consists of i-th to j-th rows of P .
Let ct.x be an encryption of x, and let ct.P be an encryption of the matrix P ,
viewed as a vector row by row. And k is the number of centroids. In addition,
Rm(x) = (x, . . . ,x) ∈ Rmd for x ∈ Rd.

3.1 Encode and Encrypt

For simplicity, we assume that d · n ≤ ℓ, which implies that the dataset matrix
P can be encrypted into a single ciphertext. But note that our protocol actually
also works for larger datasets (like MNIST used in Section 6), where d · n > ℓ.

Algorithm 1 encrypts all data points in the dataset into one ciphertext, mini-
mizing the communication cost between the data owner and computation server.

Algorithm 1 Encode and Encrypt
Input: A matrix P ∈ Rd×n with d · n ≤ ℓ.
Output: ct.P which is an encryption of P .
1: Convert P ∈ Rd×n to a vector p = (p1, . . . ,pd) ∈ Rnd.
2: ct.P ← Enc(p).
3: return ct.P .

3.2 Extract Points and Centroids

Algorithm 2 is meant to extract the information of data points and centroids
from the output ciphertext of Algorithm 1, and the output (ct.Pi)1≤i≤d and
(ct.Ci)1≤i≤d of Algorithm 2 represent data points and centroids respectively.

The arrangement of data points and centroids in ciphertexts of the algorithm
2 is meant to better utilize the SIMD of the CKKS scheme, such that operations



Optimized Privacy-Preserving Clustering with FHE 7

on each pair of ct.Pi and ct.Ci accomplish the calculation for the i-th dimension
of all k centroids, no matter how large the k is. If ndk is smaller than the number
of slots of one ciphertext, all these d ciphertexts representing data points can be
combined into one ciphertext and all the d ciphertexts representing centroids also
can be combined into one ciphertext, such that operations on the two ciphertexts
accomplish the calculation for all d dimension of all k centroids, achieving a
better utilization of SIMD of the CKKS scheme.

Algorithm 2 Extract Points and Centroids
Input: ct.P , k, d and n.
Output: (ct.Pi)1≤i≤d and (ct.Ci)1≤i≤d, where ct.Pi is an encryption of Rk(pi) ∈ Rkn

and ct.Ci is an encryption of (Rn(pi,rj ))1≤j≤k ∈ Rkn.
1: Generate k random numbers [r1, r2, . . . , rk], indicating which data points will be

chosen as initial centroids.
2: for 1 ≤ i ≤ d do
3: Set ct.pi to be the ciphertext of pi extracted from ct.P and then repeat ct.pi

for k times to obtain ct.Pi.
4: for 1 ≤ i ≤ d do
5: for 1 ≤ j ≤ k do
6: Extract a ciphertext ct.pi,rj from ct.P .
7: Repeat ct.pi,rj for n times to obtain ct.p̃i,rj .
8: Concatenate these ct.p̃i,rj ’s as one ciphertext ct.Ci.
9: return (ct.Pi)1≤i≤d and (ct.Ci)1≤i≤d

3.3 Compute Distances

Algorithm 3 is meant to compute the square of distances between all data points
and all centroids, which will be used as input of Algorithm 4 later. We note that
the for-loop in Algorithm 3 can be executed in parallel for further acceleration.

Algorithm 3 Compute Distances
Input: d, (ct.Pi)1≤i≤d and (ct.Ci)1≤i≤d where ct.Pi is an encryption of Rk(pi) ∈ Rkn

and ct.Ci is an encryption of (Rn(pi,rj ))1≤j≤k ∈ Rkn.
Output: ct.D which is an encryption of D = (di,j) ∈ Rk×n, and di,j is the square of

the Euclidean distance between the i-th centroid and the j-th data point.
1: for i = 1, . . . , d do
2: ct.ti ← Square(Sub(ct.Pi, ct.Ci)).
3: ct.D ← Add((ct.ti)1≤i≤d).
4: return ct.D

3.4 Compare Distances

Parallel One-to-one Comparison to Speedup The most difficult part of
k-means clustering algorithm realized with CKKS is that to allocate points in



8 C. Yang et al.

a dataset to its nearest centroid, because this step requires finding the smallest
value in an array. As said above, the comparison operation is demanding in
CKKS, which is approximated by a polynomial and needs many levels. If we
practice the find-minimum operation in CKKS as the usual serial way does on
plaintexts, the SIMD advantage of the CKKS scheme can not be utilized. And
most frustrating is that if these comparison operations are done in series, a much
more levels will be needed to support serial comparison operations.

Can we utilize the SIMD advantage of the CKKS scheme and make sure
a lower level is enough to accomplish the find-minimum operation in CKKS?
The key is to avoid serial comparison operations. Consider that if the compari-
son results of every two elements in an array are known, then this information
is enough to determine which is the largest or smallest element in this array.
Though it may cost additional comparison operations to obtain the comparison
results of every two elements, the point is that now the comparison operations
can be done in parallel and the number of levels required is much less. And con-
siderable time can be saved by utilizing the SIMD feature of CKKS. We name
such a method the parallel one-to-one comparison method.

We remark that this parallel one-to-one comparison method can also be used
in other FHE applications that need to find the biggest or smallest element in
an array to save considerable time and levels.

Below, in Table 1, we give an easy example of this parallel one-to-one com-
parison method. The final result in the rightmost column is a one-hot vector
indicating the location of the minimum element. It can be calculated from the
comparison results of every two elements, by multiplying every 0 or 1 in each
row together, dismissing the asterisk.

Table 1. An easy example illustrating parallel one-to-one comparison method

8 7 9 6 result
8 * 0 1 0 0
7 1 * 1 0 0
9 0 0 * 0 0
6 1 1 1 * 1

Compare Distance Algorithm We adopt the parallel one-to-one comparison
method into Algorithm 4 to save considerable run time and levels needed.

Algorithm 4 packs all the distances that need to be compared into two cipher-
texts (Step 1), requiring only one time of the Sign evaluation on the subtracted
difference of the two ciphertexts (Step 2 and 3), rather than evaluate Sign on
every difference of these distances. Such pack method saves many times of addi-
tion and multiplication, since the sign function is approximated by a polynomial
which is consisted of lots of addition and multiplication. After Sign evaluation,
convert the result of sign function to the format of comparison result (Step 4 and



Optimized Privacy-Preserving Clustering with FHE 9

5). At last, unpack the result to the matrix format and multiply them together
(Step 6 to 8) to obtain the final output.

Algorithm 4 Compare Distances
Input: k and ct.D which is an encryption of D ∈ (0, 1)k×n.
Output: ct.B which is an encryption of B ∈ (0, 1)k×n, and the i-th column of B is

an approximate one-hot vector indicating the index of the minimum in the
i-th column of D.

1: Construct ciphertexts ct.D1 and ct.D2 that are encryptions of
(Rk−1(d1),Rk−2(d2), . . . ,R1(dk−1)) and (D[2,k],D[3,k], . . . ,D[k,k]), respectively,
where di is the i-th row of D.

2: ct.E ← Sub(ct.D1, ct.D2).
3: ct.E′ ← Sign(ct.E). ▷ e′i,j ∈ (−1, 1).
4: ct.F ← CMul(0.5 · 1,Add(ct.E′,1)).
5: ct.F ′ ← Sub(1, ct.F ).
6: for i = 1, . . . , k − 1 do
7: Concatenate (ct.f ′

i+aj
)1≤j≤i, where aj = (j − 1)(k − 1)− j(j − 1)/2, and

ct.F[1+(i−1)(k−1)−(i−1)(i−2)/2,i(k−1)−i(i−1)/2] as one ciphertext ct.Gi.
8: ct.B ← Mul((ct.Gi)1≤i≤k−1).
9: return ct.B

The following example illustrates how Algorithm 4 works. Suppose now we
have n = 4, k = 3, and the matrix D as

D =

0.2 0.3 0.9 0.5
0.1 0.4 0.7 0.6
0.4 0.8 0.5 0.2


We want to find the minimum in each column. Firstly, according to Step 1,

we construct

D1 = (R2(d1),R1(d2)) = (d1,d1,d2)

= (0.2, 0.3, 0.9, 0.5, 0.2, 0.3, 0.9, 0.5, 0.1, 0.4, 0.7, 0.6)

and

D2 = (D[2,3],D[3,3]) = (d2,d3,d3)

= (0.1, 0.4, 0.7, 0.6, 0.4, 0.8, 0.5, 0.2, 0.4, 0.8, 0.5, 0.2).

Then after the execution of Step 2, we have E = D1 −D2:

(0.1,−0.1, 0.2,−0.1, −0.2,−0.5, 0.4, 0.3, −0.3,−0.4, 0.2, 0.4).

Then evaluating Sign function (Step 3) on E obtains

E′ = Sign(E) = (1,−1, 1,−1, −1,−1, 1, 1, −1,−1, 1, 1).



10 C. Yang et al.

Note that the actual values of E′ may not be exactly −1 or 1, because the sign
function is approximated by a polynomial in CKKS. We use −1 and 1 here for
the purpose of an easy example.

Now execute step 4 and 5 to obtain

F = 0.5⊙ 1⊙ (E′ + 1) = (1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1)

and
F ′ = 1− F = (0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0).

Then according to Step 6, we construct

G1 = (f ′
1,F[1,2]) = (0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1)

and
G2 = (f ′

2,f
′
3,F[3,3]) = (1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1).

Finally, according to Step 7, multiply G1 and G2 together in element-wise
way, obtain

B = G1 ⊙G2 = (0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1) →

0 1 0 0
1 0 0 0
0 0 1 1

 .

We can write B in matrix format to check that the result is correct. Since in
the first column of B, “1” is at the second location, so we check that the second
location of the first column of D is “0.1”, and indeed “0.1” is the minimum value
in the first column of D. Other columns can also be checked in this way.

3.5 Update Centroids

Stabilized k-means Since ciphertext division is an unfriendly operation for
the CKKS scheme, it is difficult to accomplish the “Update centroids” step in
k-means clustering using CKKS. This step requires dividing the sum of values
of the points in a cluster by the number of points in this cluster, which is in
ciphertext state, to obtain the new centroid of this cluster.

So to avoid the ciphertext division, we adopt the stabilized variant of k-means
clustering [15]. Instead of dividing by the number of points in a cluster, which is
in ciphertext state and may change in each iteration, we divide by the number
of all points in the dataset, which is not encrypted and never change in every
iteration. But now the problem is that we are dividing by something bigger. So
to keep the result not too different from the original k-means, something else
must be added to the numerator, i.e. sum of values of the points in a cluster,
before division. Here, we choose the value of centroid in last iteration to add.
And such way makes sense, since the centroid in the last iteration play a role
like anchor, preventing the new centroid from changing too much.

Suppose the number of points is n, number of centroids is k, and newci
represents the i-th centroid in current iteration, oldci represents the i-th centroid



Optimized Privacy-Preserving Clustering with FHE 11

in last iteration, pj represents the j-th point, and bi,j indicates whether pj should
be allocated to oldci, value being 1 if should and 0 if not. Below is the equation
of the stabilized method to calculate new centroids.

newci =

 n∑
j=1

(pj · bi,j + oldci · (1− bi,j))

 /n, i = 1, ..., k (2)

Update Centroid Algorithm Algorithm 5 adopts the stabilized method to
update centroids to avoid ciphertext division in CKKS.

Algorithm 5 Update Centroids
Input: d, n, ct.B which has the same format as the output of Algorithm 4, (ct.Pi)1≤i≤d

and (ct.Ci)1≤i≤d which are ciphertexts of data points and centroids respec-
tively.

Output: (ct.C′
i)1≤i≤d which are ciphertexts of updated centroids.

1: for i = 1 to d do
2: Compute ct.Hi ← Add(Mul(ct.Pi, ct.B),Mul(ct.Ci, Sub(1, ct.B))).
3: ct.ci ← Avg(ct.Hi, n). ▷ The decryption of ct.ci contains the information of the

i-th dimension of all the k updated centroids.
4: Extract the information of i-th (1 ≤ i ≤ d) dimension of all updated centroids from

(ct.ci)1≤i≤d and combine them all into one ciphertext ct.c.
5: ct.c′ ← Bootstrap(ct.c).
6: Extract d ciphertexts (ct.c′i)1≤i≤d from ct.c′ such that they are in the same format

as ct.ci.
7: Construct d ciphertexts (ct.C′

i)1≤i≤d from (ct.c′i)1≤i≤d such that they are in the
same format as the output of Algorithm 2.

8: return (ct.C′
i)1≤i≤d.

Algorithm 5 actually has already obtained the information of updated cen-
troids when the for-loop (Step 1 to 3) ends. Step 4-6 are meant to combine the
information of all centroids into one ciphertext, so to save the times of boot-
strapping needed. Step 7 recovers the format of centroids back to the same as
the output of Algorithm 2 to continue the next iteration. We note that the
bootstrapping operation can be omitted in Step 5 and be operated in follow-
ing iterations where the levels are used up. But when bootstrapping is operated
somewhere else, there could be multiple ciphertexts need to be bootstrapped,
consuming much more run time.

4 Our COPPk-means Protocol

Protocol 6 presents our Completely Outsourced Privacy-Preserving k-means
clustering protocol, which is constructed by the building blocks in section 3
and consists of two parties, data owner and computation server.



12 C. Yang et al.

Protocol 6 Completely Outsourced Privacy-Preserving k-means
Input of Data Owner: sk (secret key), ek (evaluation key), k (number of centroids),

d (dimension), n (number of data points), T (times of iteration) and the dataset
P .

Data Owner:
1: Calling Algorithm 1 with dataset P as its input returns ct.P .
2: Send ek, k, d, n, T and ct.P to the computation server.
Computation Server:
3: Initialization: Calling Algorithm 2 with k, d, n and ct.P as its input returns 2d

ciphertexts, (ct.Pi)1≤i≤d and (ct.Ci)1≤i≤d.
4: Repeat T times:
5: Compute distances: Calling Algorithm 3 with d, (ct.Pi)1≤i≤d and (ct.Ci)1≤i≤d

as its input returns ct.D.
6: Compare distances: Calling Algorithm 4 with k and ct.D as its input returns

ct.B.
7: Update centroids: Calling Algorithm 5 with d, n, ct.B, (ct.Pi)1≤i≤d and

(ct.Ci)1≤i≤d as its input returns (ct.C′
i)1≤i≤d.

8: Send ct.B to the data owner.
Data Owner:
9: Data owner decrypts: Decrypt ct.B with sk to obtain the matrix B with size

of k × n. ▷ For i-th (1 ≤ i ≤ n) column of B, find the location of the largest value
in this column to determine which centroid the i-th data point should be allocated
to.

Remark 1 The dataset P owned by the data owner must satisfy that the square
of the longest distance between two points in the dataset does not exceed 1, oth-
erwise the data owner should first scale the dataset to satisfy this requirement
before encrypting it, since Algorithm 4 in step 6 requires that plaintext of its
input ciphertext must be in [0, 1].

Firstly, Data owner generates secret key sk and evaluation key ek, and owns
the dataset P with size of number of points n × dimension d. Before encrypting
P, data owner has to operate the scale preprocess on P, so as to make the follow-
ing computation steps on the server side can be operated successfully. The reason
for the scale preprocess is explained in Remark 1. Then, data owner encrypts
the preprocessed dataset P and sends the ciphertext of it to the computation
server. Besides the ciphertext of P and evaluation key ek, data owner has also
to send some necessary parameters, including dimension d, number of points n,
number of centroids k, and the times of iterations T to be operated.

After receiving the ciphertext of dataset P, evaluation key ek, and param-
eters (n, k, d, T ), computation server randomly chooses k data points as initial
centroids and then perform T iterations of k-means clustering. After T itera-
tions, the computation server sends the result, which is a ciphertext of a boolean
matrix B with size of k × n indicating which centroids these points should be
allocated to, back to the data owner.



Optimized Privacy-Preserving Clustering with FHE 13

Then data owner decrypts B and do some simple calculations to obtain the
final result. Each column of B contains the information that which centroid
a point should be allocated to. For example, when k is 4, one column with k
elements could be (0.01, 0.84, 0.02, 0.10), and the point should be allocated to
the second centroid because 0.84 is the maximum in this column.

4.1 Analysis of Our Protocol

Correctness Correctness is guaranteed since the operations on ciphertexts
strictly follow that of stabilized k-means in plain. And the noise introduced
by the CKKS scheme has little effect on the final result, which will be checked
by an accuracy test in Section 5.

Computational Complexity Since the bootstrapping operation is relatively
much more time-consuming compared to other operations, and the primary fac-
tor determining the required number of bootstrapping is the levels (multiplica-
tion depths) consumed during the computation, so we here focus solely on the
number of levels consumed.

In the “Initialization” (Step 3), one level is consumed to extract data points
and centroids. In the “Compute distances” (Step 5), only one ciphertext mul-
tiplication is required, consuming one level. In the “Compare distances” (Step
6), the Step 1 of Algorithm 4 consumes one level, the Step 3 of Algorithm 4
consumes ⌈log2(p)⌉ levels where p is the degree of the approximate polynomial
of the sign function, and Step 4-8 of Algorithm 4 consumes 2 + ⌈log2(k)⌉ levels
where k is the number of centroids. And in the “Update centroids” (Step 7), 3
levels are consumed.

Totally, each iteration (Step 5-7 of Protocol 6) consumes 7 + ⌈log2(p)⌉ +
⌈log2(k)⌉ levels, where p is the degree of the approximate polynomial of the sign
function and k is the number of centroids.

Communication Complexity From the description of Protocol 6, it is clear
that the entire protocol involves only one round of interaction. Specifically, at
the beginning, the data owner sends the encrypted dataset to the computation
server, and at the end, the computation server sends the ciphertext results back
to the data owner. Therefore, it is optimal in terms of the number of communica-
tion rounds. Additionally, the amount of ciphertext data sent by the data owner
includes at most ⌈nd/ℓ⌉ ciphertexts, while the encrypted results contain at most
⌈nk/ℓ⌉ ciphertexts. In particular, when max(nd, nk) ≤ ℓ, the communication
overhead is just two ciphertexts.

Security Here we only consider the security of Protocol 6 in the semi-honest
adversarial model. The data owner encrypts the dataset and then sends this ci-
phertext and evaluation key ek and some parameters (n, k, d, T ). It is apparent
that T has no relevance to the dataset. The parameters n, k, and d can be con-
sidered as public information, because even in the ideal model, such information



14 C. Yang et al.

is also required to complete the clustering computation. All the computations
done on the computation server side are on ciphertexts encrypted by CKKS.
Therefore, the security follows from the semantic security of the CKKS scheme.

5 Implementation and Experiments

We implemented Protocol 6 with Lattigo v5 [1], and our implementation is avail-
able at https://github.com/JohnJimAir/COPPk-means. The machine we use to
test our implementation is equipped with Intel Xeon Gold 6248R (3.00GHz,
24Core) and 128G (32G×4) memory. The parameters we use are the default
parameters for demonstrating bootstrapping in Lattigo v5 [1], with ring degree
N = 216 and log q ≈ 638, which achieves a 128 security according to the latest
lattice estimator [2].

In our implementation, the specific values of t in the approximate polynomial
(Eq. (1)) for the sign function are 3, 7, 15, i.e., Sign ≈ f15(f15(f7(f3(X)))) which
consumes 3 + 4 + 5 + 5 = 17 levels.

5.1 Clustering Accuracy

We run k-means clustering for T = 5 iterations on G2 dataset [12], and T = 10
iterations on FCPS dataset [29]. The size of datasets and the average accuracy of
clustering result is presented in Table 2, the fifth column for the original k-means
algorithm on plaintexts, and the sixth column for our COPPk-means algorithm
on ciphertexts. From the result, we can see that there is little accuracy loss of
our protocol on ciphertexts compared to the original k-means on plaintexts.

Table 2. Test Accuracy

Dataset n d k The original Ours Difference

G2-1-20 2048 1 2 99.4% 99.3% -0.1%
G2-2-20 2048 2 2 100.0% 100.0% 0.0%
G2-4-20 2048 4 2 100.0% 100.0% 0.0%
G2-8-20 2048 8 2 100.0% 100.0% 0.0%
G2-16-20 2048 16 2 100.0% 100.0% 0.0%
Chainlink 1000 3 2 65.3% 65.4% +0.1%
EngyTime 4096 2 2 95.1% 94.8% -0.3%

Hepta 212 3 7 80.2% 80.2% 0.0%
Lsun 400 2 3 71.0% 71.2% +0.2%
Tetra 400 3 4 100.0% 96.8% -3.2%

TwoDiamonds 800 2 2 100.0% 100.0% 0.0%
WingNut 1016 2 2 96.3% 95.3% -1.0%

https://github.com/JohnJimAir/COPPk-means


Optimized Privacy-Preserving Clustering with FHE 15

5.2 Comparison with Lu et al. [22]

Table 3 shows the time cost of one iteration for datasets whose values are sampled
from [−1, 1] uniformly at random with 256, 1024, 4096 points and dimension of
16. We run our implementation of Protocol 6 with 20 threads, as in Lu et al.
[22]. From the result, our protocol is 1.5× to 44.3× faster than Lu et al., and the
larger the dataset, the faster our protocol compared with the work of them. This
is because for the datasets used here, nk does not exceed the number of slots in
one ciphertext in our implementation (number of slots = 32768, determined by
the setup parameters). So whether n is 256, 1024 or 4096, it makes no difference
in terms of run time in our implementation.

Table 3. Compare with Lu et al.

n k Lu et al. [22] (min) Ours (min) Speedup

2 1.35 0.89 1.5×
256 4 2.33 0.93 2.5×

8 4.09 1.16 3.5×

2 3.66 0.89 4.1×
1024 4 7.57 0.90 8.4×

8 15.34 1.20 13.2×

2 13.95 0.90 15.4×
4096 4 26.61 0.90 29.5×

8 52.04 1.19 44.3×

5.3 Comparison with Jäschke et al. [15] and Zhang et al. [32]

Since Jäschke et al. [15] and Zhang et al. [32] reported their run time on the
Lsun dataset with a single thread, here we also test our protocol on the same
dataset with a single thread. The work of Jäschke et al. has two versions, exact
and approximate. The approximate version is derived from the exact version by
dismissing some bits of information encrypted by the TFHE scheme. The result
in Table 4 shows that our protocol is 55683× faster than the exact version of
Jäschke et al., 1004× faster than the approximate version of Jäschke et al., and
3× faster than Zhang et al..

Since the work of Jäschke et al. is based on the TFHE scheme which operates
on logic gates, while ours is based on the CKKS scheme which operates directly
on real numbers, the speedup we achieved is an expected result from theory.
And the speedup we achieved compared with the work of Zhang et al., which
is also based on the CKKS scheme, could result from the different way adopted
to deal with the ciphertext division operation in “Update centroids” step. Zhang
et al. adopted polynomial to approximate the division operation, which requires
multiple times of addition and multiplication on ciphertexts, while we adopt the



16 C. Yang et al.

stabilized method to avoid the division operation, which requires only one time
of ciphertext multiplication.

Table 4. Compare with Jäschke et al. and Zhang et al.

Work Version Threads Time (T = 10)

Jäschke et al. [15] exact one 363.90 days
Jäschke et al. [15] approximate one 154.70 h
Zhang et al. [32] – one 1606.36 s

This work Protocol 6 one 554.68 s

Now we compare our protocol with Zhang et al.’s [32] further. For fairness,
we use the same parameters as Zhang et al., and the run time is presented in
Table 5. From the results, our protocol is about 2× to 3× faster than Zhang
et al.. And note that theirs is not a completely outsourced scheme, requiring
decryption and re-encryption after only one or two iterations.

Table 5. Compare with Zhang et al. (T = 5 for G2 and T = 10 for FCPS)

Dataset Zhang et al. (s) Ours (s) Speedup

G2-1-20 222.41 111.36 2.0×
G2-2-20 221.11 114.35 1.9×
G2-4-20 250.20 117.96 2.1×
G2-8-20 311.55 124.19 2.5×
G2-16-20 441.89 139.22 3.2×
Chainlink 421.09 231.19 1.8×
EngyTime 394.87 227.50 1.7×

Hepta 1213.90 488.78 2.5×
Lsun 442.65 237.18 1.9×
Tetra 620.42 273.55 2.7×

TwoDiamonds 397.73 228.06 1.7×
WingNut 395.45 227.45 1.7×

5.4 Performance of COPPk-means

In Table 6, we report the performance of Protocol 6 on all datasets mentioned
earlier. It should be noted that the run time and memory consumed listed here
are recorded by executing Protocol 6 faithfully, i.e. accomplish T iterations of
k-means with just one single round of interaction between the data owner and
the computation server (without decryption and re-encryption). To our best
knowledge, this is the first practical experimental result on the efficiency of a
completely outsourced privacy-preserving k-means clustering protocol via FHE.



Optimized Privacy-Preserving Clustering with FHE 17

Table 6. Performance of COPPk-means (T = 5 for G2 and T = 10 for FCPS)

Dataset Run Time (min) Memory (GB)

G2-1-20 7.42 27.86
G2-2-20 7.54 29.16
G2-4-20 7.57 31.17
G2-8-20 7.67 31.80
G2-16-20 8.12 37.79
Chainlink 14.68 31.77
EngyTime 14.20 30.35

Hepta 16.16 36.46
Lsun 14.38 31.33
Tetra 14.54 32.13

TwoDiamonds 14.40 30.49
WingNut 14.77 31.71

6 Mini-batch K-means

For large-scale dataset clustering, mini batch k-means [28] is a significant method,
and its algorithm on plaintexts is presented in Algorithm 7.

Algorithm 7 Mini-batch k-means on plaintexts
Input: s (size of batch, i.e. number of points in one batch), k (number of centroids),

dataset P .
Output: (ci)1≤i≤k (updated centroids).
1: According s, split the dataset P into some small batches, suppose obtain q batches.
2: Randomly choose k points from first batch as initial centroids, denoted as (ci)1≤i≤k.
3: for i = 1, . . . , q do
4: Allocate data points in i-th batch to its nearest centroid among (ci)1≤i≤k, to

obtain k clusters.
5: Update (ci)1≤i≤k as the centroids of the k clusters just obtained.
6: return the updated k centroids (ci)1≤i≤k.

Protocol 6 can be readily adapted to support the mini-batch k-means. And
to avoid ciphertext division, we still employ the stabilized variant, resulting in
an encrypted version of the stabilized mini-batch k-means protocol. We omit the
detailed description of this encrypted version here, we just call it Protocol 8
for convenience.

We also implemented this Protocol 8 on Lattigo v5. To test the performance
of Protocol 8 on large-scale datasets, we use PCA (principal component analysis)
to extract 64 features from 784 features for all the 60000 samples in the training
dataset of MNIST [18]. And then these 60000 samples are divided into 19 batches,
each batch containing 3158 samples (the last batch contains 2 more samples



18 C. Yang et al.

selected randomly from the whole 60000 samples, to maintain the organization
coherence of data information in ciphertexts). The experiment results in Table
7 demonstrate that Protocol 8 is capable of dealing with datasets of large scale.

Table 7. Performance of Protocol 8

Dataset size Batch size Total time Time per batch Memory

64×60000 64×3158 80.42 min 4.23 min 78.17 GB

7 Conclusion

In this paper, we present a protocol that achieves a completely outsourced
privacy-preserving k-means clustering based on the CKKS FHE scheme. Our
protocol only needs one round of interaction between the data owner and the
computation server. It can accomplish limitless times of iteration of k-means
clustering on the computation server side. We also give the mini-batch variant
of our protocol, which is capable of dealing with large-scale datasets. Experi-
ments based on our proof-of-concept implementation show that our protocols
perform well in practice.

Acknowledgments This work was partially supported by National Key Research
and Development Program of China (2020YFA0712303), Natural Science Foun-
dation of Chongqing (2022yszx-jcx0011cstb, cstb2023yszx-jcx0008), and Western
Young Scholars Program of CAS.

References

1. Lattigo v5. Online: https://github.com/tuneinsight/lattigo (Feb 2024), EPFL-
LDS, Tune Insight SA

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015), https://doi.org/
10.1515/jmc-2015-0016.

3. Bossuat, J.P., Troncoso-Pastoriza, J., Hubaux, J.P.: Bootstrapping for approximate
homomorphic encryption with negligible failure-probability by using sparse-secret
encapsulation. In: Ateniese, G., Venturi, D. (eds.) ACNS 2022, LNCS, vol. 13269,
pp. 521–541. Springer, Cham (2022), https://doi.org/10.1007/978-3-031-09234-3_
26

4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012, LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012), http://doi.org/10.1007/
978-3-642-32009-5_50

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) 3rd ITCS, pp. 309–325.
ACM, New York (2012), https://doi.org/10.1145/2633600

https://github.com/tuneinsight/lattigo
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.1007/978-3-031-09234-3_26
http://doi.org/10.1007/978-3-642-32009-5_50
http://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2633600


Optimized Privacy-Preserving Clustering with FHE 19

6. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approx-
imate homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) Advances
in Cryptology – EUROCRYPT 2018, p. 360–384. Springer, Cham (2018), https:
//doi.org/10.1007/978-3-319-78381-9_14

7. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) Proceedings of ASI-
ACRYPT 2017 – 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Part I, LNCS, vol. 10624, pp. 409–437.
Springer, Heidelberg (2017), https://doi.org/10.1007/978-3-319-70694-8_15

8. Cheon, J.H., Kim, D., Kim, D.: Efficient homomorphic comparison methods
with optimal complexity. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020,
LNCS, vol. 12492, pp. 221–256. Springer, Cham (2020), https://doi.org/10.1007/
978-3-030-64834-3_8

9. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020),
https://doi.org/10.1007/s00145-019-09319-x

10. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015), https://doi.org/10.1007/
978-3-662-46800-5_24

11. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive https://eprint.iacr.org/2012/144 (2012)

12. Fränti, P., Sieranoja, S.: K-means properties on six clustering benchmark datasets.
In: Applied Intelligence, vol. 48, pp. 4743–4759 (2018), https://doi.org/10.1007/
s10489-018-1238-7

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the forty-first annual ACM symposium on Theory of com-
puting (May 31 - June 2, 2009, Bethesda, USA), pp. 169–178. ACM, New York
(2009), https://doi.org/10.1145/1536414.1536440

14. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) Advances in Cryptolog– CRYPTO 2013 , Part I, LNCS,
vol. 8042, pp. 75–92. Springer, Heidelberg (2013), http://dx.doi.org/10.1007/
978-3-642-40041-4_5

15. Jäschke, A., Armknecht, F.: Unsupervised machine learning on encrypted data.
In: Cid, C., Jacobson Jr., M.J. (eds.) Selected Areas in Cryptography – SAC 2018,
LNCS, vol. 11349, pp. 453–478. Springer, Cham (2019), https://doi.org/10.1007/
978-3-030-10970-7_21

16. Jha, S., Kruger, L., McDaniel, P.: Privacy preserving clustering. In: di Vimer-
cati, S.d.C., Syverson, P., Gollmann, D. (eds.) Computer Security – ESORICS
2005, vol. 3679, pp. 397–417. Springer, Heidelberg (2005), https://doi.org/10.1007/
11555827_23

17. JPayman, M., Mike, R., Ni, T.: Practical privacy-preserving k-means clustering
(2019), https://eprint.iacr.org/2019/1158

18. LeCun, Y., Cortes, C., Burges, C.J.C.: The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/

19. Lee, J.W., Lee, E., Lee, Y., Kim, Young-Sikand No, J.S.: High-precision boot-
strapping of RNS-CKKS homomorphic encryption using optimal minimax polyno-
mial approximation and inverse sine function. In: Canteaut, A., Standaert, F.X.
(eds.) EUROCRYPT 2021, LNCS, vol. 12696, pp. 618–647. Springer, Cham (2021),
https://doi.org/10.1007/978-3-030-77870-5_22

https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-64834-3_8
https://doi.org/10.1007/978-3-030-64834-3_8
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/s10489-018-1238-7
https://doi.org/10.1007/s10489-018-1238-7
https://doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-030-10970-7_21
https://doi.org/10.1007/978-3-030-10970-7_21
https://doi.org/10.1007/11555827_23
https://doi.org/10.1007/11555827_23
https://eprint.iacr.org/2019/1158
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-030-77870-5_22


20 C. Yang et al.

20. Lee, Y., Lee, J.W., Kim, Y.S., Kim, Y., No, J.S., Kang, H.: High-precision
bootstrapping for approximate homomorphic encryption by error variance min-
imization. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022,
LNCS, vol. 13275, pp. 551–580. Springer, Cham (2022), https://doi.org/10.1007/
978-3-031-06944-4_19

21. Li, B., Micciancio, D.: On the security of homomorphic encryption on approx-
imate numbers. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
LNCS, vol. 12696, p. 648–677. Springer, Cham (2021), https://doi.org/10.1007/
978-3-030-77870-5_23

22. Lu, W., Huang, Z., Hong, C., Ma, Y., Qu, F.: PEGASUS: Bridging polynomial
and non-polynomial evaluations in homomorphic encryption. In: IEEE S&P 2021,
pp. 1057–1073. IEEE Computer Society, Los Alamitos (2021), https://doi.org/10.
1109/SP40001.2021.00043

23. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J ACM 60(6), 43:1–35 (2013), https://doi.org/10.1145/2535925

24. Rao, F.Y., Samanthula, B.K., Bertino, E., Yi, X., Liu, D.: Privacy-preserving and
outsourced multi-user k-means clustering. In: Proceedings of the 2015 IEEE Con-
ference on Collaboration and Internet Computing, pp. 80–89. IEEE, Los Alamitos
(2015), https://doi.org/10.1109/CIC.2015.20

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J ACM 56(6), 34:1–40 (2009), https://doi.org/10.1145/1568318.1568324

26. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: DeMillo, R.A., Dobkin, D.P., Jones, A.K., Lipton, R.J. (eds.) Founda-
tions of Secure Computation, pp. 165–179. Academic Press, Atlanta (1978)

27. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

28. Sculley, D.: Web-scale k-means clustering. In: WWW ’10, pp. 1177–1178. ACM,
New York (2010), https://doi.org/10.1145/1772690.1772862

29. Ultsch, A.: Clustering wih SOM: U*C. In: Proc. Workshop on Self-Organizing
Maps (2005)

30. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically par-
titioned data. In: KDD ’03, pp. 206––215. ACM, New York, USA (2003), https:
//doi.org/10.1145/956750.956776

31. Yongkai, F., Jianrong, B., Xia, L., Weiguo, L., Qian, H., Guodong, W., Jiaming,
G., Gang, T.: PPMCK: Privacy-preserving multi-party computing for k-means
clustering. Journal of Parallel and Distributed Computing 154, 54–63 (2021),
https://doi.org/10.1016/j.jpdc.2021.03.009

32. Zhang, M., Wang, L., Zhang, X., Liu, Z., Wang, Y., Bao, H.: Efficient clustering on
encrypted data. In: Pöpper, C., Batina, L. (eds.) ACNS 2024, LNCS, vol. 14583, pp.
213–236. Springer, Cham (2024), https://doi.org/10.1007/978-3-031-54770-6_9

https://doi.org/10.1007/978-3-031-06944-4_19
https://doi.org/10.1007/978-3-031-06944-4_19
https://doi.org/10.1007/978-3-030-77870-5_23
https://doi.org/10.1007/978-3-030-77870-5_23
https://doi.org/10.1109/SP40001.2021.00043
https://doi.org/10.1109/SP40001.2021.00043
https://doi.org/10.1145/2535925
https://doi.org/10.1109/CIC.2015.20
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/956750.956776
https://doi.org/10.1145/956750.956776
https://doi.org/10.1016/j.jpdc.2021.03.009
https://doi.org/10.1007/978-3-031-54770-6_9

	Optimized Privacy-Preserving Clustering with Fully Homomorphic Encryption

