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Abstract
Decision trees are an important class of supervised learning algo-

rithms. When multiple entities contribute data to train a decision

tree (e.g. for fraud detection in the financial sector), data privacy

concerns necessitate the use of a privacy-enhancing technology

such as securemulti-party computation (MPC) in order to secure the

underlying training data. Prior state-of-the-art (Hamada et al. [18])
construct an MPC protocol for decision tree training with a commu-

nication of O(ℎ𝑚𝑁 log𝑁 ), when building a decision tree of height

ℎ for a training dataset of 𝑁 samples, each having𝑚 attributes.

In this work, we significantly reduce the communication com-

plexity of secure decision tree training. We construct a protocol

with communication complexity O(𝑚𝑁 log𝑁 + ℎ𝑚𝑁 + ℎ𝑁 log𝑁 ),
thereby achieving an improvement of ≈ min(ℎ,𝑚, log𝑁 ) over [18].
At the core of our technique is an improved protocol to regroup

sorted private elements further into additional groups (according

to a flag vector) while maintaining their relative ordering. We im-

plement our protocol in the MP-SPDZ framework [1, 22] and show

that it requires 10× lesser communication and is 9× faster than [18].

Keywords
secure multiparty computation; decision tree training; privacy-

preserving machine learning

1 Introduction
One of the most important and popular machine learning algo-

rithms is decision tree learning. In this supervised learning ap-

proach, a classification or regression tree is built based on a set

of features or attributes present in the training dataset. As with

many learning algorithms, the accuracy of decision trees can be

greatly improved with larger volumes of data. However, this can be

a challenge since data may be present with many different parties

who are unwilling to share their data in the clear with each other.

Consider, for example, a decision tree model being built to analyze

the risk profile associated with banking transactions. While the

model built could benefit significantly from data from multiple

banks, this is realistically difficult given the privacy concerns.

The natural question is: can multiple parties, holding subsets of
a training dataset, jointly train a decision tree model? The crypto-
graphic technique of secure multi-party computation (MPC) [9, 16,

39] provides a generic way for multiple mutually distrusting par-

ties with private data to compute any function securely and hence

provides a solution to the above problem. However, generic MPC

protocols typically require copious amounts of communication be-

tween the participating parties (which grows with the complexity

of the function being computed). Over the last few decades, this

drawback of generic MPC has motivated development of specialized

protocols for important functions of interest, one of them being

secure decision tree training.

Perhaps the first work to consider secure decision tree training

was that of Lindell and Pinkas [26]. The work of Hoogh et al. [14]
provided the first concretely efficient MPC protocol for decision

tree training for the specific case when all attributes are categor-

ical (or discrete) values. For the more general (and useful) case

of continuous attributes, the work of Abspoel [3] showed how to

build a concretely efficient MPC protocol. This protocol required a

total communication
1
of O(2ℎ𝑚𝑁 log𝑁 ) to build a decision tree

of height ℎ from 𝑁 data points, each having𝑚 attributes, for the

case of 3-party secure computation (tolerating one semi-honest

corruption). The current state-of-the-art is the work of Hamada et
al. [18] that introduced a new secure data structure and used that

to obtain a protocol (for the same setting) for decision tree training

with communication of O(ℎ𝑚𝑁 log𝑁 ).

1.1 Our Results
In this work, we make the following contributions:

• We provide a new and more efficient protocol for secure deci-

sion tree training. For the case of 3-party secure computation

tolerating one semi-honest corruption, our techniques result

in a protocol with communication complexity O(𝑚𝑁 log𝑁 +
ℎ𝑚𝑁 + ℎ𝑁 log𝑁 ) that improves upon the state-of-the-art [18]

by roughly min(ℎ,𝑚, log𝑁 ). Our techniques easily extend to

the case of more parties and other threat models (Section 7).

• At the heart of our new protocol is a key sub-protocol that

enables us to securely divide multiple groups of sorted secret

elements into further sub-groups, according to a private flag

vector, while retaining their relative ordering and hiding the

group boundaries with a complexity of O(𝑁 ). Such a protocol

might be of independent interest.

• Finally, we implement
2
our protocol and show that our proto-

col is concretely 10×more communication frugal and 9× faster

than the state-of-the-art [18].

1
All asymptotic communication overheads presented in the paper include an im-

plicit factor of ℓ , the bitlength of elements. We omit this everywhere for the sake of

readability.

2
https://github.com/data61/MP-SPDZ/pull/1449

https://github.com/data61/MP-SPDZ/pull/1449
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1.2 Our Techniques
We retain the high-level protocol structure from Hamada et al. [18]
(that avoids the exponential dependence on the height of the tree).

However, we make crucial changes that reduce the use of expensive

sub-protocols, e.g., sorting. At the technical level, we design new

(inexpensive) sub-protocols that enable the re-use of the results of

expensive sub-protocols, and hence, amortize the cost of expensive

sorting. Before we describe our ideas in more detail, let us revisit

the protocol of Hamada et al. [18] starting with a basic description

of (cleartext) decision tree training.

A decision tree with height ℎ has ℎ levels, and is constructed

level by level starting from the root to the leaves. Each data point

(among the total 𝑁 data points) belongs to a unique node at each

level, based on the sequence of decisions made from the root to this

level. To create the next level, for each node, we need to figure out

the splitting attribute and the corresponding threshold, and using

this, data points in a node get sub-divided into its two children. One

popular methodology to pick a good split is “Gini index” (defined in

Section 2) where one determines the attribute and threshold with

the minimum Gini index.

The secure training protocol in [18] uses a single data structure

to store all data points at a level, where data points for a node belong

to a group and the group boundaries are kept hidden. Next, they

design efficient secure protocols to process over this data structure.

To run the decision tree training algorithm securely, they create

protocols to securely compute the best split for each node/group

and also securely sub-group each group to create the next level.

This is done through the following 2 high level steps.

• First, the Gini index for all possible attributes and thresholds

is computed. To do this, for each attribute, a groupwise sort is

performed using which the Gini index for all thresholds can

be computed using communication of O(𝑁 ). Here, groupwise
sort requires communication complexity of O(𝑁 log𝑁 ) and
this itself results in overall complexity of O(ℎ𝑚𝑁 log𝑁 ) as this
sort needs to be performed per attribute and per level.

• Second, once the Gini index is computed per attribute and

threshold, the minimum is computed in two steps - (1) for each

attribute, compute the threshold with minimum Gini index in

each group using aGroupMax protocol (with cost O(𝑁 log𝑁 ))
(2) find the best attribute by computing theminimum over all at-

tributes with aMax protocol (with cost O(𝑚𝑁 )). So the overall
complexity of finding the best Gini index is also O(ℎ𝑚𝑁 log𝑁 )
as the first step is repeated per attribute and per level.

To reduce the overall complexity, we must reduce the use of sorting

and compute the best split given the Gini indices more efficiently.

Our protocol makes two fundamental changes to address the

above two performance bottlenecks. First, for each attribute, we

sort the data points only once, at the beginning. This creates a

problem as computing all the Gini indices efficiently requires data

points to be sorted within each group. To address this, we reduce

this functionality to computing a new sorting permutation given

the old sorting permutation along with the grouping information,

and provide an efficient protocol to realize the same with com-

munication overhead of O(𝑁 ). Thus, we only must perform the

secure sorting once (irrespective of the tree height). This results

in an overall communication overhead of O(𝑚𝑁 log𝑁 + ℎ𝑚𝑁 ) as

opposed to O(ℎ𝑚𝑁 log𝑁 ) to compute sorted groups throughout

the training.

Second, in order to compute the minimum Gini index, we re-

verse the two operations performed in [18]. That is, (for each level)

we first compute for each sample, the minimum value over all at-

tributes using Max protocol (with cost O(𝑚𝑁 )), and then apply

the GroupMax protocol once over the resulting 𝑁 -element vector

to compute the minimum Gini index over all groups (with cost

O(𝑁 log𝑁 )). We show that doing so preserves functionality since

the group boundaries remain the same i.e. sorting according to dif-

ferent attributes is within groups and does not change the starting

and ending of a group. Crucially, this results in a reduced over-

all communication overhead of O(ℎ𝑚𝑁 + ℎ𝑁 log𝑁 ) (instead of

O(ℎ𝑚𝑁 log𝑁 )).

1.3 Related Work
Concurrent and independent to our work is ENTS [17] that also

improves upon Hamada et al. [18]. While they too reduce the num-

ber of sorting operations, their asymptotic complexity is the same

as [18]. Additionally, they enable almost all the cleartext values

to be secret shared over smaller rings and convert them to large

rings only when necessary, thus saving on communication. This

technique is orthogonal and compatible with our protocol design

and the two techniques can be combined. We provide a comparison

of ENTS [17] with our unmodified protocol in Section 6.

Protocols for secure training over horizontally (or vertically)

partitio- ned dataset are proposed in [29, 31, 38] ([27, 35, 36]). These

works assume that the computing servers know the partition of

the training dataset in the clear. Moreover, the main efficiency

improvements of these protocols come from leaking intermediate

outputs in the training which can allow an adversary to learn non

trivial information about the data (e.g. an adversary can learn the

training data distribution from the leakage in [35]).

In contrast, training algorithms that guarantee the complete pri-

vacy of the dataset have been designed either using Fully Homom-

orphic Encryption [15] or MPC based techniques (such as our work

and the works discussed in the previous subsection). In the FHE

based decision tree protocols [4, 5], a data owner sends the en-

crypted dataset to a server which runs the training algorithm.While

these algorithms have low communication and round complexity,

they have two major limitations: a) the training algorithm is modi-

fied to approximate various functions such as comparisons; and b)

the computational overhead is exorbitantly high making it imprac-

tical (e.g. the runtime in [4] for training even a small decision tree

of height 4 with only 10, 000 samples is ≈ 1.5 days).

A long line of work has focused on secure decision tree evalu-

ation only [11, 13, 21, 28, 33, 34, 37]. Our trained decision tree is

compatible with these works and can be augmented to facilitate

both secure training and evaluation of decision trees.

1.4 Organization
Section 2 introduces notation, the security model and provides a de-

scription of the cleartext algorithm for decision tree training. It also

introduces secret sharing schemes and specifically the replicated

secret sharing scheme used in this work. In Section 3, we describe

the various crypto building blocks needed to construct our secure
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decision tree protocol. This includes element wise operations (such

as multiplication, comparison etc.) as well as vector and groupwise

operations (e.g. shuffle, GroupMax etc.) for which protocols were

presented in prior works. Section 4 provides the complete descrip-

tion of our secure decision tree training protocol, while Section 5

describes the security proof of our new protocols. In Section 6, we

present details of our implementation and all experimental results.

In Section 7, we discuss extensions of our protocol to other threat

models and complex use cases such as multi-class classification, as

well as its applicability in training scenarios such as random forests

and gradient boosted decision trees.

2 Preliminaries
2.1 Notation
Let N be the set of natural numbers. [𝑁 ] denotes the set {1, . . . , 𝑁 }
for 𝑁 ∈ N. Z

2
ℓ is a ring of integers modulo 2

ℓ
for ℓ ∈ N. Subset 𝐵

of set 𝐴 is denoted by 𝐵 ⊆ 𝐴. We use 𝑛 to denote log
2
𝑁 .

2.2 Security Model
Our protocols satisfy the simulation based security definition [24].

We consider 3 parties 𝑆0, 𝑆1, 𝑆2 and a semi honest adversary A
corrupting one of the parties. All recent works on privacy pre-

serving decision tree training [3, 18] also consider this setting. All

parties follow the protocol specification faithfully (semi-honest

behaviour) and we show that the view of no single party reveals

any information. Suppose Π is the 3-party protocol that computes

the functionality F . A can corrupt at most one party out of 𝑆0, 𝑆1
and 𝑆2. For security, we require that the view of adversary A and

the outputs of honest parties in the real world are computationally

indistinguishable from the view and output of a simulator in an

ideal world which has access to the ideal functionality F . F simply

receives inputs from all three parties and provides the function

output (as defined by the functionality) to all parties i.e. for any

semi honest non-uniform PPT adversary A that corrupts at most

one party, there exists an ideal world PPT simulation Sim such

that for any input inp to the protocol Π that computes F , we have

Real(Π,A, inp) ≈𝑐 Ideal(F , Sim, inp) where Real is the joint dis-
tribution of the view of adversary A and output of honest parties

in the real world, and Ideal is the joint distribution of the view of

the simulator Sim and output of honest parties in the ideal world.

2.3 Cleartext Decision Tree Algorithm
We begin with a description of the cleartext decision tree algorithm

we use in this work (which is the same as the one in [3, 18]).We have

a labelled dataset D with𝑚 attributes x = (𝑥1, . . . , 𝑥𝑚) and label

𝑦. Here, D[𝑖] = (𝑥1 [𝑖], . . . , 𝑥𝑚 [𝑖], 𝑦 [𝑖]), where 𝑥 𝑗 [𝑖] is the value of
the 𝑗𝑡ℎ attribute and 𝑦 [𝑖] is the label value for the 𝑖𝑡ℎ sample in the

dataset. A decision tree is a machine learning model that predicts

the value of output variable 𝑦 given the input attributes x.
A binary decision tree has two kinds of nodes (1) internal nodes

associated with a test of the form 𝑥 𝑗 < 𝑡 (2) leaf nodes associated

with a label 𝑏. Each edge out of an internal node denotes a possible

outcome of the test i.e. true or false, and a corresponding child node

(true child or false child). Typically, the left child is the false child

and right child is the true child.

Decision Tree Evaluation. Given input attributes x of a sam-

ple, we can predict its label as follows. Starting from the root node,

the test at each internal node is evaluated for the sample and based

on the outcome of test, we trace an outgoing edge to reach the

child node i.e. if the test 𝑥 𝑗 < 𝑡 holds, we traverse to the right child,

else, we traverse to the left child. Traversing in this fashion, we

reach a leaf node and output the leaf label as the predicted value of

the label of the sample. The attributes can be continuous, where

attribute values are real numbers, or discrete, where the attribute

values are from a finite set.

Decision tree training. The algorithm to securely train decision

trees with discrete attributes is straightforward and given in [14].

We focus on the more complex case of continuous attributes as

our algorithm can be easily extended to handle discrete attributes

as well. A more detailed discussion on how to handle discrete at-

tributes is given in Appendix B.

Algorithm 14 (Appendix A) describes how to train a decision

tree of height ℎ with continuous attributes. The decision tree is

trained from root node to leaf nodes in a recursive manner. The root

node is considered to be at height 0. To distinguish leaf nodes from

internal nodes, the algorithm checks the height of the current node.

If the height is less than ℎ, the current node is an internal node.

In that case, the algorithm selects a test 𝑥 𝑗 < 𝑡 to be performed at

that node that splits the dataset in a way that minimizes the Gini

index of the resulting split. The Gini index 𝐺 for splitting a dataset

D using test 𝑥 𝑗 < 𝑡 is defined as:

𝐺𝑥 𝑗<𝑡 (D) =
|D𝑥 𝑗<𝑡 |
|D| Gini(D𝑥 𝑗<𝑡 ) +

|D𝑥 𝑗 ≥𝑡 |
|D| Gini(D𝑥 𝑗 ≥𝑡 )

whereGini(D) = 1−∑𝑏∈{0,1} ( |D𝑦=𝑏 |2/|D|2). The best split has the
minimum Gini index and Abspoel et al. [3] showed that minimizing

the Gini index is same as maximizing the following expression:

G
′
𝑥 𝑗<𝑡

(D) =
(��D𝑥 𝑗 ≥𝑡

�� (��D𝑥 𝑗<𝑡∧𝑦=0
��2 + ��D𝑥 𝑗<𝑡∧𝑦=1

��2)
(1)

+
��D𝑥 𝑗<𝑡

�� (��D𝑥 𝑗 ≥𝑡∧𝑦=0
��2 + ��D𝑥 𝑗 ≥𝑡∧𝑦=1

��2)) /(��D𝑥 𝑗<𝑡

�� ��D𝑥 𝑗 ≥𝑡
��) ,

where D𝑥 𝑗<𝑡∧𝑦=𝑏 = {(x, 𝑦) ∈ D | 𝑥 𝑗 < 𝑡 ∧ 𝑦 = 𝑏}. The algorithm
selects the test 𝑥 𝑗 < 𝑡 that maximizes this expression.

Once the test is selected, the algorithm partitions the training

dataset into D𝑥 𝑗<𝑡 and D𝑥 𝑗 ≥𝑡 . The left subtree T𝑙 is trained on the

partition D𝑥 𝑗<𝑡 and right subtree T𝑟 is trained on the partition

D𝑥 𝑗 ≥𝑡 . The algorithm outputs a decision tree with the current node

as root node, T𝑙 as left child and T𝑟 as right child.
If the height of the current node is ℎ, it is a leaf node. Let D𝐿 be

the partition of dataset D corresponding to the 𝐿𝑡ℎ leaf node. The

label of the leaf node is then set to the most occurring label in the

partition D𝐿 . In case of binary classification, we can compute the

label of 𝐿𝑡ℎ leaf node as follows:

Label =
∑︁
𝑖∈D𝐿

𝑦 [𝑖]
?

>
∑︁
𝑖∈D𝐿

(1 − 𝑦 [𝑖])

Number encodings. Real numbers are represented using fixed or

floating point numbers. However, we do not perform any non-linear

computation on attribute values except for comparisons in decision
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tree training. This means that we can map these attribute values

to elements of a sufficiently large ring as long as the ordering is

preserved. We use Z
2
ℓ ring (setting ℓ = 64 in the experiments) to

represent the continuous attribute values and class labels. In this

work, we focus on the case of binary labels. However, the training

algorithm can be extended to multi-class classification as well, as

described in Section 7.

2.4 Secret Sharing Schemes
A secret sharing scheme [32] allows a dealer to distribute a secret

value amongst a set of parties such that only allowed subsets of

parties can reconstruct the secret value and any unauthorized subset

of parties does not learn anything about the secret. We use (3, 2)-
Replicated secret sharing (RSS) [20] that allows distributing a secret

between 3 parties such that it is completely hidden from any single

party and any two parties can reconstruct the secret. A (3, 2)-RSS
over ring Z

2
ℓ has the following algorithms:

• Share: On input 𝑣 ∈ Z
2
ℓ , sample 𝑣0, 𝑣1, 𝑣2 ∈ Z

2
ℓ such that

𝑣0 +𝑣1 +𝑣2 = 𝑣 mod 2
ℓ
and output the shares (𝑥0, 𝑥1, 𝑥2) where

𝑥0 = (𝑣0, 𝑣1), 𝑥1 = (𝑣1, 𝑣2), 𝑥2 = (𝑣2, 𝑣0)

• Reconstruct: On input 𝑥𝑖 = (𝑣0, 𝑣1), 𝑥 𝑗 = (𝑣1, 𝑣2) ∈ Z2
2
ℓ where

𝑖 ≠ 𝑗 ; 𝑖, 𝑗 ∈ {1, 2, 3}, output 𝑣 ′ = (𝑣0 + 𝑣1 + 𝑣2) mod 2
ℓ
.

We denote the replicated shares of 𝑣 ∈ Z
2
ℓ by ⟨𝑣⟩ and the boolean

replicated shares 𝑣 ∈ Z2 by ⟨𝑣⟩B. The share of party 𝑆𝑖 is (𝑣𝑖 , 𝑣𝑖+1).

3 Crypto Building Blocks
Here, we describe the sub-protocols that serve as building blocks for

our secure decision tree training protocol. We first describe 3-party

functionalities where parties begin with shares of inputs according

to the (3,2)-RSS scheme described in Section 2.4 and receive shares

of outputs according to the same secret sharing scheme. We also

describe the (existing) protocols realizing these functionalities and

their efficiency.

3.1 Element wise operations
We require the following primitives to build our protocols:

• Secure Multiplication: denoted by ⟨𝑧⟩ = ΠMULT (⟨𝑢⟩ , ⟨𝑣⟩).
• Secure Bit Decomposition: denoted by ⟨𝑢⟩B = ΠA2B (⟨𝑢⟩).
• Secure Comparison: denoted by ⟨𝑏⟩ = ΠLT (⟨𝑢⟩ , ⟨𝑣⟩).
• Secure Equality: denoted by ⟨𝑏⟩ = ΠEQ (⟨𝑢⟩ , ⟨𝑣⟩).

We discuss the protocols for these and their communication costs

in Appendix D.

3.2 Permuting Secret Vectors
We represent a permutation over 𝑁 elements as an 𝑁 -length vector

Pwhere P[𝑖] denotes the position of the 𝑖𝑡ℎ element in the permuted

order. Let A ∈ Z𝑁
2
ℓ be a vector and P be a permutation. Let AP

be

the rearrangement of A according to P i.e. AP = Permute(A, P).
Since P[𝑖] denotes the new position of the 𝑖𝑡ℎ element, we have

AP [P[𝑖]] = A[𝑖] for all 𝑖 ∈ [𝑁 ]
The secret share of a permutation vector is defined as

⟨P⟩ = (⟨P[1]⟩ , . . . , ⟨P[𝑁 ]⟩)

We make use of four functionalities that permute secret vectors

– a) randomly shuffle a secret vector; b) apply a secret permutation

to a secret vector; c) compose secret permutations; and d) stably

sort a secret vector – and we describe them below. The protocols,

with linear communication cost realizing these functionalities were

given in [7, 8] (see Appendix E). Table 1 gives the concrete cost.

Oblivious Shuffling. (Functionality 1) Party 𝑆𝑖 (𝑖 ∈ {0, 1, 2})
inputs replicated secret shares of vector ⟨X⟩𝑖 ∈ Z𝑁

2
ℓ and a pair of

permutations (𝜋𝑖 , 𝜋 (𝑖+1) mod 3
). The functionality permutes X ac-

cording to 𝜋 = 𝜋2 ◦ 𝜋1 ◦ 𝜋0 and outputs replicated secret shares of

the permuted vector Y to parties. Protocol ΠShuffle in [7] (Figure 5)

computes the functionality with 4𝑁ℓ bits of communication in 2

rounds.

The Shuffle functionality can be used to shuffle a vector by

permutation 𝜋−1
by applying the permutations in reverse order i.e.

apply 𝜋−1
2

, then 𝜋−1
1

and finally 𝜋−1
0

as 𝜋−1 = 𝜋−1
0

◦ 𝜋−1
1

◦ 𝜋−1
2

. A

typical use of shuffling is to hide data dependent memory accesses.

To do this, parties shuffle a vector using 𝜋 , perform the memory

accesses and then shuffle by 𝜋−1
to get back the same ordering.

Functionality 1: Shuffle
Input: Party 𝑆𝑖 , 𝑖 ∈ {0, 1, 2} inputs ⟨X⟩𝑖 and (𝜋𝑖 , 𝜋𝑖+1)
Output: Parties receive ⟨Y⟩ where Y is a rearrangement of

X according to 𝜋 = 𝜋2 ◦ 𝜋1 ◦ 𝜋0.
1 Reconstruct X and 𝜋 = 𝜋2 ◦ 𝜋1 ◦ 𝜋0.
2 Compute Y = Permute(X, 𝜋).
3 Output ⟨Y⟩.

Apply permutation. Functionality 2 takes shares of a vectorX and

permutation P and outputs shares ofXP
whereXP = Permute(X, P).

Protocol ΠApplyPerm (Algorithm 16) in [8] realizes ApplyPerm with

8𝑁ℓ bits of communication in 2 rounds.

Functionality 2: ApplyPerm
Input: Parties input ⟨X⟩ and ⟨P⟩
Output: Parties receive

〈
XP〉

where XP = Permute(X, P).
1 Reconstruct X and P.
2 Compute XP

where XP = Permute(X, P).
3 Output

〈
XP〉

.

Composing permutations. Functionality 3 takes shares of per-

mutations P,Q as input and outputs shares of permutation R =

P ◦ Q where P ◦ Q denotes applying Q followed by applying P so

R[𝑖] = P[Q[𝑖]] i.e. 𝑖𝑡ℎ element goes to Q[𝑖] position which then

goes to P[Q[𝑖]] position. Protocol ΠPermComp (Algorithm 17) in [8]

computes PermComp with 8𝑁ℓ bits communication in 4 rounds.

Composing permutations is particularly helpful when we have

multiple permutations (say 𝑘 permutations) that we have to apply

to multiple vectors (say 𝑡 vectors of length 𝑁 ) sequentially. We

would have to apply 𝑘 permutations to each vector which will

cost 𝑘𝑡 × 8𝑁ℓ bits using ApplyPerm. Instead we use PermComp to

compute the final permutation to be applied to vectors and apply

this permutation to all 𝑙 vectors which costs (𝑘 + 𝑡) × 8𝑁ℓ bits.
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Functionality 3: PermComp

Input: Parties input ⟨P⟩ and ⟨Q⟩
Output: Parties receive ⟨R⟩ where R = P ◦ Q.

1 Reconstruct P,Q.
2 Compute R where R[𝑖] = P [Q[𝑖]] ∀𝑖 ∈ [𝑁 ].
3 Output ⟨R⟩.

Sorting permutation for binary key. Functionality 4 takes an

𝑁 -length binary vector b ∈ {0, 1}𝑁 as input and outputs shares of

permutation P that stably sorts b.

Definition 3.1. Permutation P stably sorts a list b if ∀𝑖, 𝑗 ∈ [𝑁 ]
P[𝑖] < P[ 𝑗] =⇒ (b[𝑖] < b[ 𝑗]) OR (b[𝑖] = b[ 𝑗] AND 𝑖 < 𝑗)

i.e. P sorts the vector while preserving the order of entries with

same value. Protocol ΠSortPermBit (Algorithm 18) in [8] computes

SortPermBit with 3𝑁ℓ bits communication in 1 round.

Functionality 4: SortPermBit

Input: Parties input ⟨b⟩ where b ∈ {0, 1}𝑁 .

Output: Parties receive ⟨P⟩ where P stably sorts b.
1 Reconstruct b.
2 Compute permutation P that stably sorts b.
3 Output ⟨P⟩.

Sorting permutation for arbitrary key. Functionality 5 takes a

vector x ∈ Z𝑁
2
ℓ as input and outputs shares of permutation P that

stably sorts x. Protocol ΠSortPerm (Algorithm 19) in [8] securely

computes SortPerm with 𝑁 calls to ΠA2B, 𝑙 calls to ΠApplyPerm, 𝑙

calls to ΠSortPermBit and 𝑙 calls to ΠPermComp. Note that [18] consid-

ers ΠSortPerm realized through a comparison based sorting protocol,

such as the one in [19]. The implementation of [18] (from [2]) uses

ΠSortPerm based on an oblivious radix sort protocol as in [8]. The

asymptotic improvement of our protocol over [18] remains the

same, irrespective of the underlying sort protocol used. To be fair

in our comparison of performance with [18], we use the oblivious

radix sort protocol in the implementation.

Functionality 5: SortPerm

Input: Parties input ⟨x⟩ where x ∈ Z𝑁
2
ℓ .

Output: Parties receive ⟨P⟩ where P stably sorts x.
1 Reconstruct x.
2 Compute permutation P that stably sorts x.
3 Output ⟨P⟩.

3.3 Groupwise Operations
Groupwise operations, first described in [18], are important con-

structions used in our decision tree training protocol.

Privately grouped vector. Let x be a vector of length 𝑁 , secret

shared among parties and grouped internally. This means that the

Protocol Input Cost Rounds
ApplyPerm ⟨x⟩ , ⟨P⟩ ∈ Z𝑁

2
ℓ 8𝑁ℓ 2

PermComp ⟨P⟩ , ⟨Q⟩ ∈ Z𝑁
2
ℓ 8𝑁ℓ 4

SortPermBit ⟨b⟩ ∈ Z𝑁
2
ℓ 3𝑁ℓ 1

SortPerm ⟨x⟩ ∈ Z𝑁
2
ℓ 42𝑛𝑁ℓ 𝑛

GroupSum ⟨x⟩ , ⟨b⟩ ∈ Z𝑁
2
ℓ 25𝑁ℓ 6

GroupPrefixSum ⟨x⟩ , ⟨g⟩ ∈ Z𝑁
2
ℓ 28𝑁ℓ 7

GroupMax ⟨x⟩ , ⟨g⟩ ∈ Z𝑁
2
ℓ 24𝑛𝑁ℓ 𝑛 log ℓ

GroupFirstOne ⟨b⟩ , ⟨g⟩ ∈ Z𝑁
2
ℓ 51𝑁ℓ 2 log ℓ

Table 1: Communication (in bits) and Rounds of Protocols

vector is divided into groups of different sizes. To represent these

internal groups, parties also have a secret shared group flag vector
g of length 𝑁 such that g[𝑖] = 1 if x[𝑖] is the first element of any

group. For example, let x = [2, 5, 6, 8, 10, 13] and g = [1, 0, 0, 0, 1, 0].
Then entries with index 1 to 4 belong to first group and entries

with index 5 to 6 belong to second group as g[5] = 1 (Assume 1-

indexing). Note that g[1] is always 1 as it is the first entry of the first
group. This data structure allows parties to secret share internally

grouped vectors and compute groupwise operations efficiently.

The authors of [18] give efficient secure protocols to compute

various groupwise operations like Group Sum, Group Prefix Sum

and Group Max. We will require these group wise operations as

building blocks. Let 𝑖 ∈ [𝑁 ] be an index and 𝑙𝑖 , 𝑟𝑖 be the leftmost

and rightmost index of the group that 𝑖 belongs to. In the above

example, 𝑙𝑖 = 1, 𝑟𝑖 = 4 for 1 ≤ 𝑖 ≤ 4 and 𝑙𝑖 = 5, 𝑟𝑖 = 6 for 5 ≤ 𝑖 ≤ 6.

Then we can define the following group wise operations:

(1) ⟨a⟩ = ΠGroupSum (⟨x⟩ , ⟨g⟩)
(2) ⟨b⟩ = ΠGroupPrefixSum (⟨x⟩ , ⟨g⟩)
(3) ⟨c⟩ = ΠGroupMax (⟨x⟩ , ⟨g⟩)
(4) ⟨d⟩ = ΠGroupFirstOne (⟨x⟩ , ⟨g⟩) defined when x ∈ {0, 1}𝑁

where ∀𝑖 ∈ [𝑁 ],

a[𝑖] =
𝑟𝑖∑︁
𝑗=𝑙𝑖

x[ 𝑗]; b[𝑖] =
𝑖∑︁

𝑗=𝑙𝑖

x[ 𝑗]; c[𝑖] = Max𝑗∈[𝑙𝑖 ,𝑟𝑖 ] x[ 𝑗]

d[𝑖] = 1 if x[𝑖] = 1 and x[ 𝑗] = 0 ∀ 𝑗 ∈ [𝑙𝑖 , 𝑖), 𝑒𝑙𝑠𝑒 0
By instantiating SortPermBit and ApplyPerm with protocols

from Appendix E, we can compute groupwise operations with

𝑂 (𝑁 ) communication in 𝑂 (1) rounds. In contrast, the communi-

cation complexity of these protocols in [18] was 𝑂 (𝑁 log𝑁 ) and
𝑂 (log𝑁 ) rounds. Hence, we save a factor of log𝑁 in both com-

munication and round complexity in groupwise operations. The

concrete complexities are summarised in Table 1.

4 Secure Decision Tree Training
We begin with a description of the input and output formats of our

secure training protocol.

Input. To begin with, the 3 parties have (3, 2) replicated secret

shares of a labelled dataset D ∈
(
Z𝑚
2
ℓ × {0, 1}

)𝑁
where 𝑚 is the

number of attributes and 𝑁 is the number of samples in dataset D.
The height ℎ of the decision tree to be built is public information.
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D[ 𝑗] = (x1 [ 𝑗], . . . , x𝑚 [ 𝑗], y[ 𝑗]) are the attribute and label values

for the 𝑗𝑡ℎ sample. x𝑖 ∈ Z𝑁
2
ℓ is a vector of all the 𝑁 values of the 𝑖𝑡ℎ

attribute and y ∈ {0, 1}𝑁 is the vector of 𝑁 labels.

Output. We setup some notation. Layer(𝑘 ) , parameterized by 𝑘 ∈
{1, . . . , ℎ+1}, is a collection of nodes at a distance of 𝑘 −1 from root

node. There are 𝑛𝑘 = 2
𝑘−1

nodes in Layer(𝑘 ) . Layer(1) consists of
only the root node. Layer(2) consists of child nodes of the root node
and so on. If a node belongs to Layer(𝑘 ) , its child nodes belong to

Layer(𝑘+1) . The leaf nodes belong to Layer(ℎ+1) .
Each internal node has three variables associated with it: node

id (NID), splitting attribute (𝐴 ∈ [𝑚]) and splitting threshold

(𝑇 ∈ domain(𝐴)). Each leaf node has two variables: node id (NID)

and label (𝐿 ∈ {0, 1}). The NID is unique for each node within a

layer. For a node with node id NID in Layer(𝑘 ) , the left child has

node id NID and right child has node id 𝑁𝐼𝐷 + 2
𝑘−1

in Layer(𝑘+1) .
The node id NID is set to 0 for the root node in Layer(1) .

Final output. The final output of the secure training protocol ΠTrain
(Protocol 15) is the trained binary decision tree of height ℎ in the

format described below. For all internal node layers 𝑘 ∈ {1, . . . , ℎ},
parties output

〈
Layer(𝑘 )

〉
= (⟨NID𝑘 ⟩ , ⟨A𝑘 ⟩ , ⟨T𝑘 ⟩) where

(1) NID𝑘 is a vector of length 𝑛𝑘 that stores the node id of nodes

in the 𝑘𝑡ℎ layer. If the tree constructed is an incomplete binary

tree i.e. the actual number of nodes are less than 𝑛𝑘 , then the

remaining elements of NID𝑘 are initialized to 0.

(2) A𝑘 is a vector of length 𝑛𝑘 that stores the attribute for splitting

at nodes in 𝑘𝑡ℎ layer. If NID𝑘 [𝑖] = 0, then AID𝑘 [𝑖] = 0.

(3) T𝑘 is a vector of length 𝑛𝑘 that stores the threshold for splitting

at nodes in 𝑘𝑡ℎ layer. If NID𝑘 [𝑖] = 0, then T𝑘 [𝑖] = 0.

For a given layer, (NID𝑘 [𝑖],A𝑘 [𝑖],T𝑘 [𝑖]) are the node id, attribute
and threshold of 𝑖𝑡ℎ (1 ≤ 𝑖 ≤ 𝑛𝑘 ) node in the layer.

For the leaf node layer i.e.𝑘 = ℎ+1, parties output
〈
Layer(ℎ+1)

〉
=

(⟨NIDℎ+1⟩ , ⟨Lℎ+1⟩) where Lℎ+1 is a vector of length𝑛ℎ+1 that stores
labels corresponding to leaf nodes. An example output of the train-

ing protocol along with the corresponding decision tree is given

in Figure 1 to illustrate how the output of the training protocol

encodes a binary decision tree.

Intermediary outputs. The layers of the decision tree are trained

sequentially. We call State(𝑘 ) , 𝑘 ∈ [ℎ + 1], an intermediary output

of the training protocol. State(𝑘 ) , 𝑘 ∈ [ℎ + 1] is a tuple of𝑚 + 3

vectors {D𝑘 , g𝑘 , {P𝑖𝑘 }𝑖∈[𝑚] ,NID}, each of length 𝑁 , where

(1) D𝑘 is the training dataset grouped by nodes in layer 𝑘 ,

(2) g𝑘 is the group flag vector encoding groups in D𝑘 ,

(3) P𝑖
𝑘
(for all 𝑖 ∈ [𝑚]) is the permutation that sorts D𝑘 based on

the 𝑖𝑡ℎ attribute value within each group; and

(4) NID is the vector of node ids of samples in D𝑘 . For example, if

D𝑘 [𝑖] belongs to the subset of the dataset associated with the

𝑗𝑡ℎ node, NID[𝑖] = 𝑗 .

To train the 𝑘𝑡ℎ layer (𝑘 ∈ [ℎ + 1]), parties input State(𝑘 ) to
ΠTrainInternalLayer (Protocol 12) and receive Layer(𝑘 ) and State(𝑘+1)

as output where State(𝑘+1) will serve as input to train the next layer.
As described in the cleartext decision tree algorithm, each node

has a subset of the dataset on which it is trained. Nodes in the

(a) Example output of training algorithm for height 3.

(b) Decision Tree constructed from output.

Figure 1: (a) is a sample output of our training protocol for
height 3 which takes as input 5 attribute values and outputs
a binary label. There are 3 internal node layers and 1 leaf
node layer. (b) is the decision tree encoded in the output. The
layers are color coded. Each node has a node id (written on
top of the node), splitting attribute (A ∈ [1, 5]) and splitting
threshold (T). In the output, Layer(1) has one node with value
(1, 2, 10) whichmeans there is one node in 1st layer with node
id 1 and test x2 < 10. From the numbering of node ids, the
left child (right child) of root node will have node id 1 (2)
respectively in Layer(2) . From the description of Layer(2) in
output, the left child will have test x1 < 50 and right child
will have test x3 < 20 as shown in (b). Continuing this way,
we can map the output description (a) to the decision tree (b).

𝑘𝑡ℎ layer partition the dataset which is encoded by a group flag

vector g𝑘 of length 𝑁 as described in Section 3.3. The samples in

the dataset belonging to the same group appear consecutively. That

means for 𝑖 < 𝑗 s.t. g𝑘 [𝑖] = g𝑘 [ 𝑗] = 1 and g𝑘 [𝑙] = 0 for all 𝑖 < 𝑙 < 𝑗 ,

all samples from D𝑘 [𝑖] to D𝑘 [ 𝑗 − 1] belong to the same group. As

a layer is trained and new groups are formed, the partition of the

dataset changes and the dataset D𝑘 has to be rearranged to ensure

that samples in the same group appear consecutively. Vectors g𝑘 , P𝑖𝑘
andNID are also updated accordingly. The output State(𝑘+1) stores
these updated vectors which can be used to train the next layer.

Table 2 summarizes the different variables that are used in the

training protocol.

4.1 Efficiency Bottleneck in the State-of-art
The communication complexity of the state-of-art secure decision

tree training protocol [18] is 𝑂 (ℎ𝑚𝑁 log𝑁 ). We identify and dis-

cuss the efficiency bottlenecks in this protocol and the challenges in
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Variable Description
h height of tree

m number of attributes

N number of training samples

ℓ bitlength of attributes

D Labeled training dataset

x𝑖 𝑖𝑡ℎ attribute vector

y Label vector

g Group flag vector

𝑁𝐼𝐷 node id

𝐴 splitting attribute

𝑇 splitting threshold

𝐿 Leaf label

Layer(𝑘 ) 𝑘𝑡ℎ layer information

State(𝑘 ) Invariant state at 𝑘𝑡ℎ layer

𝑛𝑘 Number of nodes in Layer
(𝑘 )

Table 2: Variables and their description.

removing these bottlenecks. Then, we redesign the training proto-

col to solve these challenges and remove the bottlenecks, achieving

both asymptotic and concrete improvements in communication

complexity over the state-of-art.

Recall that all the nodes in a layer are trained together and the

layers of the tree are trained sequentially using the train layer

subprotocol. Hence, we focus on the training of one internal node

layer. The training of an internal node layer consists of the following

steps:

(1) Compute Gini index for all possible attributes and thresholds

within each group.

(2) Compute splitting attribute and threshold associated with min-

imum Gini index in each group. This gives the output Layer.
(3) Compute new partition of the dataset based on the splitting

attributes and thresholds. This gives the output State which
serves as input to the next layer.

Step (1): To compute the Gini index for all possible thresholds of

one attribute, the parties need to sort the attribute and label vectors

(x, y) according to the attribute values within each group. Then

the parties can compute Expr. 1 securely for all groups with O(𝑁 )
communication. The cost of secure sorting is O(𝑁 log𝑁 ) so the

total cost in training due to Step (1) is O(ℎ𝑚𝑁 log𝑁 ). Note that
the cost of computing Gini index for all attributes and thresholds

over an unsorted dataset requires O(ℎ𝑚𝑁 2) [3] commmunication.

So even though the secure sorting is a bottleneck in this step, it is

an essential operation.

Step (2): Minimum Gini index (Max Expr. 1) for each group

is computed in two steps. First, parties compute the minimum

Gini index for each attribute in each group using ΠGroupMax and

then compute the minimum Gini index among all attributes using

ΠMax([3], Fig. 13). ΠGroupMax contributes O(ℎ𝑚𝑁 log𝑁 ) to the

total cost while ΠMax contributes O(ℎ𝑚𝑁 ).
Step (3): To compute the new partition, parties securely compare

the attribute values of each sample with the corresponding thresh-

old. This splits each group into two new groups based on whether

the test result is true or false. The dataset is sorted based on the

Figure 2: x is an attribute vector with two groups and x′ is
sorted x according to attribute value within groups. Let b be
the test results. Then xnew is the new attribute vector with
new groups which is obtained by stably sorting x based on
b. x′new is the new sorted attribute vector. As ordering of x
changes due to new groups, the permutation that sorts xnew
to x′new also changes.

Figure 3: Borrowing notations from Figure 2, updated sorting
permutation for xnew is P′ = 𝜓 ◦ P ◦ 𝜙−1.

outputs of the test i.e. all samples with false (0) result followed by

all samples with true (1) result. This sorting arranges the dataset

according to the new groups. The sorted dataset along with the

updated group flag vector marking new groups is the input to train

the next layer. Using the optimized ΠSortPermBit (Functionality 4),

this step costs O(ℎ𝑚𝑁 ).
In [18], the secure sorting performed for every layer in Step (1)

and GroupMax in Step (2) are the two bottlenecks in efficiency

contributing O(ℎ𝑚𝑁 log𝑁 ) each to communication.

4.2 Technical Overview
In this section, we discuss the challenges in removing these bottle-

necks and how we can overcome these challenges.

Idea 1. First, we note that in [18], for each layer and attribute,

parties have to sort, within the groups, the attribute values and la-

bel vector (x, y) according to the attribute values in Step (1). Since
the groups are different and contain different sets of elements in

each layer, [18] had to run a sorting protocol to sort the attribute

values and label vector in every layer (thus leading to a communi-

cation complexity of O(ℎ𝑚𝑁 log𝑁 ) for this step). See Figure 2 for
an example on how the attribute vector is updated from x to xnew
as new groups are created due to the split.

The key observation to address this challenge is that even though

x and xnew are different, xnew is simply a permutation of x. Similarly,
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x′new is a permutation of x′. This means that there are permutations

𝜙,𝜓 such that xnew = Permute(x, 𝜙) and x′new = Permute(x′,𝜓 ).
Given the old sorting permutation ⟨P⟩ (that sorts x),

〈
𝜙−1〉

and ⟨𝜓 ⟩,
the new sorting permutation (that sorts xnew) is P′ = 𝜓 ◦P◦𝜙−1

(see

Figure 3) which parties can compute with O(𝑁 ) using ΠPermComp.

Moreover, we show that

〈
𝜙−1〉

and ⟨𝜓 ⟩ can be computed with

O(𝑁 ) using ΠSortPermBit. Thus, given the old sorting permutation

⟨P⟩, parties can compute the new sorting permutation ⟨P′⟩ with
linear communication cost. This allows parties to update the sort-

ing permutation whenever a layer is trained and new groups are

formed. These sorting permutations can be applied to (x, y) directly
with a cost of O(𝑁 ). Thus, the cost of Step (1) becomes O(ℎ𝑚𝑁 )
improving by a factor of log𝑁 over [18]. Parties will also update

the sorting permutations in Step (3) whose cost remains O(ℎ𝑚𝑁 ).
This now only requires a one time secure sorting to compute the

sorting permutations initially (which costs O(𝑚𝑁 log𝑁 )). More-

over, this initial sort is concretely cheaper than the internal sort per

layer done in [18] as the initial sort requires sorting by the attribute

values whereas the latter sorts by both groups and attribute values.

Idea 2. The bottleneck in Step (2) is the GroupMax operation which

requires O(𝑁 log𝑁 ) communication. In [18], the parties invoke

𝑚 instances of ΠGroupMax (over 𝑁 -length vectors) to compute the

threshold with minimumGini index (Max Expr. 1) for each attribute.

Then, for each 𝑖 ∈ [𝑁 ], parties compute attribute (and threshold)

with minimum Gini index by invoking 𝑁 instances of ΠMax (over

𝑚-length vectors). We make two important observations here; (1)

The cost of computing maximum of 𝑁 values (O(𝑁 )) is less than
the cost of computing group wise maximum ((O(𝑁 log𝑁 ))); and
(2) reversing the order of operations does not change the output

i.e. we can replace the𝑚 invocations of ΠGroupMax (on 𝑁 -length

vector) followed by 𝑁 invocations of ΠMax (on𝑚-length vector)

with 𝑁 invocations of ΠMax (on𝑚-length vector) and 1 invocation

of ΠGroupMax (on 𝑁 -length vector). Reversing the order of these

operations preserves functionality crucially because all attributes

are grouped according to the same group boundaries. We formally

show this in the proof of security of the protocol (Lemma 5.1).

The proof relies on the fact that sorting according to different

attributes in Step (1) is within groups and does not change the

starting and ending index of a group. Thus, now the cost of step (2)

becomes O(ℎ𝑚𝑁 + ℎ𝑁 log𝑁 ) from O(ℎ𝑚𝑁 log𝑁 ) saving a factor

of min(𝑚, log𝑁 ).

Protocol overview. Putting these together, at a high-level, our

protocol can be broken down into the following steps:

(1) Compute and store the sorting permutations for all attributes.

This is a one-time (not per layer) set-up with communication

cost O(𝑚𝑁 log𝑁 ).
(2) For all internal node layers:

(a) Apply sorting permutation and compute Gini index. The

communication cost is O(𝑚𝑁 ).
(b) Compute the splitting attribute and threshold in each group

which has minimum Gini index. Communication cost is

O(𝑚𝑁 + 𝑁 log𝑁 ).

(c) Compute the new partition of dataset based on splitting at-

tribute and threshold, and the updated sorting permutation

for all attributes. Communication is O(𝑚𝑁 ).
(3) For the leaf node layer, compute the most occuring labels in

each group. Communication cost is O(𝑁 ).
Hence, the total communication cost of our new training protocol

is O(𝑚𝑁 log𝑁 +ℎ𝑚𝑁 +ℎ𝑁 log𝑁 ), which asymptotically improves

upon the state-of-the-art [18] by a factor of min(ℎ,𝑚, log𝑁 ).
We describe the subprotocols to compute each step described

above along with the improvements in efficiency in detail in the

following sections. In Section 4.6, we combine all these subprotocols

and present our end-to-end secure decision tree training protocol.

4.3 Set Up Phase/ Initial Sort
Parties compute the shares of permutation P𝑖

1
for all 𝑖 ∈ [𝑚] that

sorts D according to the 𝑖𝑡ℎ attribute. These are computed once in

the beginning and updated for each layer. Updating the permutation

is a part of the internal layer training subprotocols and described

in Section 4.4.4. We use ΠSortPerm that computes the sorting per-

mutation with O(𝑁 log𝑁 ) communication in O(log𝑁 ) rounds for
a vector of length 𝑁 . ΠSetupPerm (Protocol 6) requires 𝑚 calls to

ΠSortPerm.

Protocol 6: ΠSetupPerm

Input: Dataset ⟨D⟩ = (⟨x1⟩ , . . . , ⟨x𝑚⟩ , ⟨y⟩)
Output: Sorting permutation

〈
P𝑖
1

〉
for all 𝑖 ∈ [𝑚]

Cost :O(𝑚𝑛𝑁 )
1 for 𝑖 ∈ [𝑚] do
2

〈
P𝑖
1

〉
= ΠSortPerm (⟨x𝑖 ⟩)

3 end
4 Output

{〈
P𝑖
1

〉}
𝑖∈[𝑚] .

4.4 Training Internal Layers
Consider that we have trained nodes till layer𝑘−1 (𝑘 ∈ [ℎ]) and that
we are now training nodes at layer 𝑘 . The parties will have secret

shares of State(𝑘 ) = {D𝑘 , g𝑘 , {P𝑖𝑘 }𝑖∈[𝑚] ,NID} which satisfies the

following invariant:

(1) D𝑘 is the training dataset grouped by nodes in layer 𝑘 ,

(2) g𝑘 is the group flag vector that marks the starting of groups in

D𝑘 ,

(3) P𝑖
𝑘
(for all 𝑖 ∈ [𝑚]) is the permutation that sorts D𝑘 based on

𝑖𝑡ℎ attribute within each group and

(4) vector NID is the node id (or group id) of each sample in D𝑘 .

For example if D𝑘 [𝑖] belongs to group of 𝑗𝑡ℎ node, NID[𝑖] = 𝑗 .

There are 𝑛𝑘 = 2
𝑘−1

nodes in 𝑘𝑡ℎ layer.

The output of training the𝑘𝑡ℎ internal node layer will be

〈
Layer(𝑘 )

〉
defined in Section 4 and

〈
State(𝑘+1)

〉
i.e. updated state required to

train the next layer.

For the base case, ⟨D1⟩ = ⟨D⟩ , ⟨g1⟩ = ⟨[1, 0, . . . , 0]⟩ , ⟨NID⟩ =

⟨[1, 1, . . . , 1]⟩ as Layer 1 only has the root node. Hence, there is no

partitioning of nodes. Moreover, from the setup phase, we have
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〈
P𝑖
1

〉
= ΠSetupPerm (⟨x𝑖 ⟩). Thus,〈

State(1)
〉
=
{
⟨D1⟩ , ⟨g1⟩ , {

〈
P𝑖
𝑘

〉
}𝑖∈[𝑚] , ⟨NID⟩

}
satisfies the invariant for the base case.

The TrainInternalLayer functionality takes as input 𝑘 and shares

of State(𝑘 ) , and outputs shares of Layer(𝑘 ) , State(𝑘+1) where Layer(𝑘 )

is the 𝑘𝑡ℎ decision tree layer and State(𝑘+1) is the intermediary out-

put used to train the next layer. Protocol 12 securely computes this

functionality.

In Lemma 5.3, we show that if the input State(𝑘 ) to algorithm 12

satisfies the invariant described above, the output State(𝑘+1) also

satisfies the invariant. Therefore by induction,

〈
State(𝑘 )

〉
satisfies

the invariant for all 𝑘 ∈ [ℎ + 1].
The ΠTrainInternalLayer protocol has total𝑂 (𝑚𝑁 + 𝑁 log𝑁 ) com-

munication cost and consists of the following 4 steps:

(1) Compute all possible thresholds and Gini index from the re-

sulting split for each attribute. (Section 4.4.1)

(2) Select attribute and threshold for best split for all layer nodes.

(Section 4.4.2)

(3) Apply tests to compute new groups after split. (Section 4.4.3)

(4) Update the invariant state. (Section 4.4.4)

(5) Output the final output of decision tree training Layer(𝑘 ) . (Sec-
tion 4.4.5)

We construct subprotocols for each of these steps in the following

sections that outline various optimizations over [18].

4.4.1 Computing Gini index for an attribute. ComputeGini takes
an attribute (x) and label (y) vector, both sorted by attribute value

and computes all possible thresholds and the corresponding Gini

index of the split. The Gini index (𝑠) is stored as a tuple of integers

(𝑝, 𝑞) where 𝑠 = 𝑝/𝑞. This is done to avoid the expensive secure

division operation. Since we only need to perform comparisons on

Gini indices, 𝑠1 < 𝑠2 is equivalent to 𝑝1𝑞2 < 𝑝2𝑞1 where 𝑠𝑖 = (𝑝𝑖 , 𝑞𝑖 ).
ΠComputeGini (Protocol 7) securely computes the functionality. The

sorted attribute vector allows us to compute the split for each

threshold efficiently. If threshold 𝑡 is such that x[𝑖] < 𝑡 < x[𝑖 +
1], then the two partitions of the dataset are {x[1], . . . , x[𝑖]} and
{x[𝑖 + 1], . . . , x[𝑁 ]} respectively since the attribute vector is sorted.
The threshold t[𝑖] corresponding to an attribute element x[𝑖] is
set to (x[𝑖] + x[𝑖 + 1])/2. However, this involves the expensive

secure division operation, so we modify the test x𝑗 < t to 2x𝑗 < t′

such that t′ = 2t just as in [18]. t′ would then be computed as

x[𝑖] + x[𝑖 + 1].
Protocol ΠComputeGini is the same as the protocol for computing

Gini index in [18] except for one optimization. We take advantage

of the observation that while the Group Prefix Sum of y labels

changes based on ordering of samples, the Group Sum remains

same. In [18], the Group Sum of y labels is computed for each

attribute (𝑚 GroupSum invocations). We instead compute Group

Sum of y labels only once resulting in saving 25(𝑚 − 1)𝑁ℎ𝑙 bits of

communication. This is only a minor optimization and does not

change the asymptotic complexity of the protocol.

Let

〈
sy

0

〉
,
〈
sy

1

〉
be Group Sum of y and ¬y respectively which

are computed once and passed as arguments toΠComputeGini. ⟨x⟩ , ⟨y⟩
are attribute values and labels (sorted according to attribute) respec-

tively. The protocol outputs shares of t, s where t[𝑖] is a threshold

that splits the group at the 𝑖𝑡ℎ sample and s[𝑖] is the Gini index
resulting from this split. Note that t[𝑁 ] is set to MinValue, the

smallest representable value, such that t[𝑁 ] < MinValue always

gives a False result. This is to ensure non-zero number of samples

in each split.

In case of duplicate values, we split the group at the last in-

stance of the recurring value, as in [18]. For this, we set the thresh-

old against other instances of this value (apart from the last) as

MinValue, so that the result of comparison is always False i.e.

we never split at instances of this value apart from the last. If

x[𝑖] = x[𝑖 + 1], for 1 ≤ 𝛼 ≤ 𝑖 < 𝛽 < 𝑁 , we set t[𝑖] = MinValue for

𝛼 ≤ 𝑖 < 𝛽 and t[𝛽] = 𝑥 [𝛽] + 𝑥 [𝛽 + 1].
The correctness follows from Expr. 1 which is derived in [3].

ΠComputeGini requires 2 calls toΠGroupPrefixSum, 11𝑁 calls toΠMULT
and 𝑁 calls to ΠEQ .

Protocol 7: ΠComputeGini

Input: ⟨g⟩ , ⟨x⟩ , ⟨y⟩ ,
〈
sy

0

〉
,
〈
sy

1

〉
Output: ⟨s⟩ , ⟨t⟩ of length 𝑁 .

Cost :O(𝑁 )
1 ⟨u0⟩ = GroupPrefixSum (⟨y⟩ , ⟨g⟩)
2 ⟨u1⟩ = GroupPrefixSum (⟨¬y⟩ , ⟨g⟩)
3 ⟨wb⟩ =

〈
sy𝑏

〉
− ⟨ub⟩ for 𝑏 ∈ {0, 1}

4 ⟨w⟩ = ⟨w0⟩ + ⟨w1⟩ and ⟨u⟩ = ⟨u0⟩ + ⟨u1⟩
5 ⟨p⟩ = ⟨w⟩ ×

(
⟨u0⟩2 + ⟨u1⟩2

)
+ ⟨u⟩ ×

(
⟨w0⟩2 + ⟨w1⟩2

)
6 ⟨q⟩ = ⟨u⟩ × ⟨w⟩
7 ⟨s⟩ = (⟨p⟩ , ⟨q⟩)
8 ⟨t[𝑖]⟩ = ⟨x[𝑖]⟩ + ⟨x[𝑖 + 1]⟩ for all 𝑖 ∈ [𝑁 − 1],

⟨t[𝑁 ]⟩ = MinValue

9 ⟨r[𝑖]⟩ = ⟨g[𝑖 + 1]⟩OR
〈
x[𝑖] ?

= x[𝑖 + 1]
〉
for 𝑖 ∈ [𝑁 − 1],

⟨r[𝑁 ]⟩ = 1

10 ⟨s⟩ , ⟨t⟩ = IfElse (⟨r⟩ ; MinValue,MinValue; ⟨s⟩ , ⟨t⟩)

4.4.2 Test Selection. Functionality TestSelection takes as input the

database ⟨D𝑘 ⟩, group flag vector ⟨g𝑘 ⟩ and sorting permutations{〈
P𝑖
𝑘

〉}
𝑖
, and outputs the splitting attributes ⟨A⟩ and thresholds ⟨T⟩

where A[ 𝑗],T[ 𝑗] are the attribute and threshold with minimum

Gini index for the node that 𝑖 belongs to. Protocol ΠTestSelection
(Protocol 8) computes the functionality.

ΠTestSelection invokes ΠComputeGini as a subprotocol to compute

the Gini Index for all possible attributes and thresholds,

{⟨s𝑖 ⟩ , ⟨t𝑖 ⟩}𝑖∈[𝑚] where t𝑖 [ 𝑗] for 𝑗 ∈ [𝑁 ] is the threshold for split-

ting the dataset on the 𝑖𝑡ℎ attribute and s𝑖 [ 𝑗] is the resulting Gini
index from this split.

In [18], Test Selection is done by invoking𝑚 instances of Group

Max over 𝑁 -length vectors ⟨S′𝑖 ⟩ , ⟨T′𝑖 ⟩ = ΠGroupMax (g, s𝑖 ; t𝑖 ) to
compute the best threshold for the 𝑖𝑡ℎ attribute for all 𝑖 ∈ [𝑚]
followed by 𝑁 invocations of ΠMax (∀𝑗 ∈ [𝑁 ]) over 𝑚-length

vectors to compute the best attribute and corresponding threshold

A[ 𝑗],T[ 𝑗] = ΠMax

({
S′𝑖 [ 𝑗]; 𝑖,T′𝑖 [ 𝑗]

}
𝑖∈[𝑚]

)
We note that the order of operations can be reversed, reducing the

number of comparisons from𝑚𝑁 log𝑁 +𝑚𝑁 to𝑁 log𝑁 +𝑚𝑁 . Note
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that this optimization alone does not reduce the asymptotic cost

of [18] and is only useful when combined with our new training

protocol that uses secret shared permutations instead of repeated

secure sorting.

We know that {s𝑖 , t𝑖 }𝑖∈[𝑚] are correctly computed from the

correctness of ΠComputeGini. To prove correctness of ΠTestSelection,

we have to show that A,T computed in steps 6 − 9 of Protocol 8

are correct. Step 10 merely checks if the group of a node is already

homogenous (all labels are equal). If it is homogeneous, no more

splitting is required and therefore, the threshold is set to MinValue.

We show correctness of ΠTestSelection in Lemma 5.1 where we prove

that reversing the order of ΠGroupMax and ΠMax does not affect the

output.

ΠTestSelection requires 2𝑚 calls toΠApplyPerm,𝑚 calls toΠComputeGini,

𝑁 calls to ΠVectMax, 1 call to ΠGroupMax, 3𝑁 calls to ΠMULT and 2𝑁

calls to ΠEQ .

Protocol 8: ΠTestSelection

Input: ⟨D𝑘 ⟩ , ⟨g𝑘 ⟩ ,
{〈
P𝑖
𝑘

〉}
𝑖
,
〈
sy

0

〉
,
〈
sy

1

〉
Output: ⟨A⟩ , ⟨T⟩ of size 𝑁 .

Cost :O(𝑚𝑛 + 𝑛𝑁 )
1 for 𝑖 ∈ [𝑚] do
2 ⟨u𝑖 ⟩ = ΠApplyPerm

(
⟨x𝑖 ⟩ ,

〈
P𝑖
𝑘

〉)
3 ⟨v𝑖 ⟩ = ΠApplyPerm

(
⟨y⟩ ,

〈
P𝑖
𝑘

〉)
4 ⟨s𝑖 ⟩ , ⟨t𝑖 ⟩ = ΠComputeGini (⟨g𝑘 ⟩ , ⟨u𝑖 ⟩ , ⟨v𝑖 ⟩)
5 end
6 for 𝑗 ∈ [𝑁 ] do
7 ⟨s[ 𝑗]⟩ , ⟨t[ 𝑗]⟩ , ⟨a[ 𝑗]⟩ =

ΠMax

(
{⟨s𝑖 [ 𝑗]⟩ ; ⟨t𝑖 [ 𝑗]⟩ , 𝑖}𝑖∈[𝑚]

)
8 end
9 ⟨A⟩ , ⟨T⟩ = ΠGroupMax (⟨g𝑘 ⟩ , ⟨s⟩ ; ⟨a⟩ , ⟨t⟩)

10 ⟨f⟩ =
(〈
sy

0

〉
?

= 0

)
OR

(〈
sy

1

〉
?

= 0

)
11 ⟨A⟩ , ⟨T⟩ = IfElse (⟨f⟩ ; 1,MinValue; ⟨A⟩ , ⟨T⟩)

4.4.3 Applying Tests. Once parties have ⟨A⟩ , ⟨T⟩; parties compute

the partition of nodes based on comparison of selected attributes

with their corresponding thresholds.

The cost of ΠApplyTest is 𝑂 (ℎ𝑚𝑁 ), which is insignificant in the

total communication and we directly use the subprotocol from [18].

If A[ 𝑗] = 𝑖∗, the 𝑖∗𝑡ℎ attribute value has to be selected for the

𝑗𝑡ℎ sample (i.e. x𝑖∗ [ 𝑗]) to compare with the threshold T[ 𝑗]. To
fetch ⟨x𝑖∗ [ 𝑗]⟩ in an oblivious manner, parties have to compute

⟨e𝑖∗ ⟩ ∈ {0, 1}𝑚 from ⟨𝑖∗⟩ which is its one hot encoding.We compute

the one hot vector using𝑚 comparisons as:

⟨e𝑖∗ ⟩ =
(〈
𝑖∗
〉

?

= 1,
〈
𝑖∗
〉

?

= 2, . . . ,
〈
𝑖∗
〉

?

=𝑚

)
Then the parties can compute x𝑖∗ with dot product x · e𝑖∗ and

compare it with the threshold. ΠApplyTest (Protocol 9) requires 𝑁

calls to ΠMULT, 𝑁 calls to ΠLT and𝑚𝑁 calls to ΠEQ .

Protocol 9: ΠApplyTest

Input: ⟨D𝑘 ⟩ , ⟨A⟩ , ⟨T⟩
Output: ⟨b⟩ ∈ {0, 1}𝑁
Cost :O(𝑚𝑁 )

1 for 𝑖 ∈ [𝑁 ] do
2 ⟨e𝑖∗ ⟩ = OneHotEnc (⟨A[𝑖]⟩)

3 ⟨b[𝑖]⟩ =
(
2. ⟨D𝑘 [𝑖] · e𝑖∗ ⟩

?

< ⟨T[𝑖]⟩
)

4 end
5 Output ⟨b⟩.

4.4.4 Updating flag vector and state. After applying tests, each

group is divided into two new groups based on whether the com-

parison result b is equal to 0 or 1. To avoid sorting the dataset at

each layer, parties have to update State(𝑘+1) such that the new

groups satisfy the invariant described in Section 4.4. Functionality

UpdateState takes shares of State(𝑘 ) and b as input and outputs

State(𝑘+1) such that State(𝑘+1) satisfies the invariant. In [18], the

parties only update the group flag vector and rearrange the dataset

so that entries of the same group appear together. UpdateState
has to additionally update the sorting permutations so that we can

avoid sorting and use the output State(𝑘+1) to train the next layer

of the decision tree. ΠUpdateState (Protocol 10) securely computes

this functionality.

Updating sorting permutations results in additional O(𝑚𝑁 ) com-

munication for a layer. The cost of update in [18] is O(ℎ𝑚𝑁 ) so the
asymptotic cost does not increase with this change. Moreover, we

are able to eliminate repeated calls to secure sorting, eliminating

the efficiency bottleneck.

We create a new flag vector g that marks the first 𝑖 such that

b[𝑖] = 0 and b[𝑖] = 1 in each group using the ΠGroupFirstOne proto-

col from [18] (described in section 3.3). We do so as the first instance

of 0 and 1 in each group from the comparison results indicates the

starting of new groups now. We sort D𝑘 and g based on values of

b to obtain ⟨D𝑘+1⟩ , ⟨g𝑘+1⟩ We compute the updated permutations{
P𝑖
𝑘+1

}
𝑖∈[𝑚]

.

ΠUpdateState requires 3𝑚 + 3 calls to ΠApplyPerm and𝑚 calls to

ΠPermComp, 2 calls to ΠGroupFirstOne and𝑚 + 1 calls to ΠSortPermBit.

We provide a correctness proof for the UpdateState protocol in

Lemma 5.3.

4.4.5 Storing values of splitting nodes. Training each layer also

outputs the splitting attribute and threshold for all nodes in the layer

(stored in tuple Layer(𝑘 ) ). Subprotocol ΠStoreLayer (Protocol 11)

which outputs Layer(𝑘 ) tuple is not a bottleneck in communication

efficiency (O(ℎ𝑚𝑁 )) and we use it as is from [18].

Parties have ⟨NID⟩ , ⟨A⟩ , ⟨T⟩ containing node id, attribute and
threshold but the values repeat (same value for all elements in

one group). We want to store the output of training of internal

nodes in ⟨NID𝑘 ⟩ , ⟨A𝑘 ⟩ , ⟨T𝑘 ⟩ where NID𝑘 [𝑖],A𝑘 [𝑖],T𝑘 [𝑖] stores
the node id, attribute and threshold of 𝑖𝑡ℎ node. For the leaf node

layer, parties output ⟨NIDℎ+1⟩ , ⟨Lℎ+1⟩.
ΠStoreLayer requires 1 call toΠSortPermBit and 3 calls toΠApplyPerm.
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Protocol 10: ΠUpdateState

Input:
〈
State(𝑘 )

〉
=

(
⟨D𝑘 ⟩ , ⟨g𝑘 ⟩ ,

{〈
P𝑖
𝑘

〉}
𝑖
, ⟨NID⟩

)
, ⟨b⟩ , 𝑘

Output:
〈
State(𝑘+1)

〉
Cost :O(𝑚𝑁 )

1 ⟨Q⟩ = ΠSortPermBit (⟨b⟩)
2 ⟨D𝑘+1⟩ = ΠApplyPerm (⟨D𝑘 ⟩ , ⟨Q⟩)
3 ⟨NID⟩ = 2

𝑘−1 ⟨b⟩ + ⟨NID⟩
4

〈
NID

′
〉
= ΠApplyPerm (⟨NID⟩ , ⟨Q⟩)

5 ⟨g⟩ = ΠGroupFirstOne (⟨g𝑘 ⟩ , ⟨b⟩)
+ΠGroupFirstOne (⟨g𝑘 ⟩ , ⟨¬b⟩)

6 ⟨g𝑘+1⟩ = ΠApplyPerm (⟨g⟩ , ⟨Q⟩)
7 for 𝑖 ∈ [𝑚] do
8

〈
b𝑖
〉
= ΠSortPermBit

(
⟨b⟩ ,

〈
P𝑖
𝑘

〉)
9

〈
Q𝑖

〉
= ΠApplyPerm

(〈
P𝑖
𝑘

〉
, ⟨Q⟩

)
10

〈
R𝑖
〉
= ΠApplyPerm

(〈
b𝑖
〉)

11

〈
P𝑖
𝑘+1

〉
= ΠPermComp

(〈
R𝑖
〉
,
〈
Q𝑖

〉)
12 end

13 Output

〈
State(𝑘+1)

〉
=(

⟨D𝑘+1⟩ , ⟨g𝑘+1⟩ ,
{〈
P𝑖
𝑘+1

〉}
𝑖∈[𝑚]

,

〈
NID

′
〉)
.

Protocol 11: ΠStoreLayer

Input: ⟨NID⟩ , ⟨A⟩ , ⟨T⟩ , ⟨g𝑘 ⟩ of length 𝑁

Output: ⟨NID𝑘 ⟩ , ⟨A𝑘 ⟩ , ⟨T𝑘 ⟩ of length 𝑛𝑘 = min(2𝑘−1, 𝑁 )
Cost :O(𝑁 )

1 ⟨P⟩ = ΠSortPermBit (¬ ⟨g𝑘 ⟩)
2 ⟨NID𝑘 ⟩ = ΠApplyPerm (⟨NID⟩ , ⟨P⟩) //First 𝑛𝑘 terms

3 ⟨A𝑘 ⟩ = ΠApplyPerm (⟨A⟩ , ⟨P⟩) //First 𝑛𝑘 terms

4 ⟨T𝑘 ⟩ = ΠApplyPerm (⟨T⟩ , ⟨P⟩) //First 𝑛𝑘 terms

5 Output

〈
Layer(𝑘 )

〉
= (⟨NID𝑘 ⟩ , ⟨A𝑘 ⟩ , ⟨T𝑘 ⟩).

4.4.6 End to end internal layer training. With the subprotocols

constructed in Sections 4.4.1 to 4.4.5, we can describe the complete

internal training protocol in Protocol 12. Training one internal

layer requires 2 calls to ΠGroupSum, 1 call to ΠTestSelection, 1 call to

ΠApplyTests, 1 call to ΠStoreLayer and 1 call to ΠUpdateState.

4.5 Training Leaf Layer
After training all internal layers, we have to train the final leaf

node layer. The decision tree training halts on the leaf node and

outputs the label corresponding to the leaf label as the sample’s

classification result. The label of a leaf node is the value ∈ {0, 1}
that occurs most frequently in y for samples in the training dataset

belonging to this node. This can be computed using ΠGroupSum. The

final layer labels are stored in two vectors NID, L of length 𝑛ℎ+1
where NID stores the node id and L stores the corresponding labels.

We can modify the ΠStoreLayer accordingly to store the leaf layer

Protocol 12: ΠTrainInternalLayer

Input:
〈
State(𝑘 )

〉
=

(
⟨D𝑘 ⟩ , ⟨g𝑘 ⟩ ,

{〈
P𝑖
𝑘

〉}
𝑖
, ⟨NID⟩

)
, 𝑘

Output:
〈
Layer(𝑘 )

〉
,

〈
State(𝑘+1)

〉
Cost :O(𝑚𝑁 + 𝑛𝑁 )

1
〈
sy

0

〉
= GroupSum (⟨y𝑘 ⟩ , ⟨g𝑘 ⟩)

2
〈
sy

1

〉
= GroupSum (⟨¬y𝑘 ⟩ , ⟨g𝑘 ⟩)

3 ⟨A⟩ , ⟨T⟩ = ΠTestSelection

(
⟨D𝑘 ⟩ , ⟨g𝑘 ⟩ ,

{〈
P𝑖
𝑘

〉}
𝑖

)
4

〈
Layer(𝑘 )

〉
= ΠStoreLayer (⟨NID⟩ , ⟨A⟩ , ⟨T⟩ , ⟨g𝑘 ⟩ , 𝑘)

5 ⟨b⟩ = ΠApplyTest (⟨D𝑘 ⟩ , ⟨A⟩ , ⟨T⟩)
6

〈
State(𝑘+1)

〉
= ΠUpdateState

(〈
State(𝑘 )

〉
, ⟨b⟩ , 𝑘

)
7 Output

〈
Layer(𝑘 )

〉
,

〈
State(𝑘+1)

〉

output. ΠTrainLeafLayer (Protocol 13) requires 2 calls to ΠGroupSum,

1 call to ΠStoreLayer and 𝑁 calls to ΠLT.

Protocol 13: ΠTrainLeafLayer

Input:
〈
State(𝑘 )

〉
Output:

〈
Layer(𝑘 )

〉
= (⟨NID𝑘 ⟩ , ⟨L𝑘 ⟩)

Cost :O(𝑁 )
1 ⟨L⟩ = GroupSum (⟨y𝑘 ⟩ , ⟨g𝑘 ⟩) > GroupSum (⟨¬y𝑘 ⟩ , ⟨g𝑘 ⟩)
2 ⟨NID𝑘 ⟩ , ⟨L𝑘 ⟩ = ΠStoreLayer (⟨NID⟩ , ⟨L⟩ , ⟨g𝑘 ⟩ , 𝑘)
3 Output

〈
Layer(𝑘 )

〉
= (⟨NID𝑘 ⟩ , ⟨L𝑘 ⟩).

4.6 End to end training
Finally, we combine sub-protocols ΠSetupPerm, ΠTrainInternalLayer
and ΠTrainLeafLayer to obtain an end to end privacy preserving deci-

sion tree training protocol ΠTrain (Protocol 15 in Appendix C).

The communication cost of ΠSetupPerm, ΠTrainInternalLayer and

ΠTrainLeafLayer are O(𝑚𝑁 log𝑁 ), O(𝑚𝑁 + 𝑁 log𝑁 ) and O(𝑁 ) re-
spectively. The total communication cost of ΠTrainDecisionTree is

O(𝑚𝑁 log𝑁 + ℎ(𝑚𝑁 + 𝑁 log𝑁 )) which improves by a factor of

min(ℎ,𝑚, log𝑁 ) over the state-of-the-art [18].

5 Security Proof
Let Train be the functionality that takes as input the shares of

labelled dataset ⟨D⟩ and height ℎ and outputs shares of trained

decision tree of height ℎ i.e.

{
Layer(𝑖 )

}
𝑖
. To prove the security of

our training protocol, we show that the view of a semi-honest

adversary corrupting one of the parties in the real execution of

protocol ΠTrain can be simulated by a simulator with access to

functionality Train in the ideal world.

The protocols for building blocks ΠMULT,ΠA2B,ΠLT,ΠEQ and

ΠShuffle, ΠApplyPerm,ΠPermComp were already proven UC-secure

in [6, 30] and [10, 23] respectively. The groupwise operations also
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inherit the security of their underlying subprotocols and are UC-

secure [18]. Therefore, our end-to-end decision tree training proto-

col is also secure under the Universal Composability (UC) frame-

work [12] as it is just a series of concurrent and sequential compo-

sitions of these building blocks.

The correctness of subprotocols ΠComputeGini, ΠApplyTest and

ΠStoreLayer was shown in [18]. We show the correctness of new

protocols ΠTestSelection and ΠUpdateState.

5.1 Correctness of TestSelection
Lemma 5.1. Protocol ΠTestSelection defined in Protocol 8 correctly

computes the TestSelection functionality from Section 4.4.2.

Proof. To demonstrate correctness of ΠTestSelection, we prove

(Lemma 5.2) that reversing the order of invocations of ΠGroupMax
and ΠMax does not change the output in steps 6− 9 in ΠTestSelection
(Protocol 8). {s𝑖 }𝑖∈[𝑚] are the length 𝑁 vectors for Gini index for

all attributes which are correctly computed from the correctness of

ΠComputeGini protocol. □

Suppose {s𝑖 }𝑖∈[𝑚] are𝑚 vectors each of length𝑁 , g is group flag
vector denoting groups in s and 𝑗 ∈ [𝑁 ] is an index. 𝑙 𝑗 , 𝑟 𝑗 are the

leftmost and rightmost indices of the group that 𝑗 belongs to (see

Section 3.3). GroupMax andMax operations are defined as follows:

a = ΠMax (s1, . . . , s𝑚) and b𝑖 = ΠGroupMax (g, s𝑖 )

where

a[ 𝑗] = Max𝑖∈[𝑚] (s𝑖 [ 𝑗]) and b𝑖 [ 𝑗] = Max𝑙 𝑗 ≤𝑘≤𝑟 𝑗 (s𝑖 [𝑘])

Lemma 5.2. Borrowing notations from above, we have

ΠGroupMax (g, a) = ΠMax (b1, . . . , b𝑚)

Proof. Let LHS = c and RHS = dwhere c, d are vectors of length
𝑁 . We show that for all 𝑗 ∈ [𝑁 ], c[ 𝑗] = d[ 𝑗]. For any 𝑗 ∈ [𝑁 ]:

c[ 𝑗] = Max𝑙 𝑗 ≤𝑘≤𝑟 𝑗 (a[𝑘]) = Max𝑙 𝑗 ≤𝑘≤𝑟 𝑗

(
Max𝑖∈[𝑚] (s𝑖 [𝑘])

)
= Max 𝑖∈[𝑚]

𝑙 𝑗 ≤𝑘≤𝑟 𝑗
(s𝑖 [𝑘])

Similarly we have

d[ 𝑗] = Max𝑖∈[𝑚] (b𝑖 [ 𝑗]) = Max𝑖∈[𝑚]
(
Max𝑙 𝑗 ≤𝑘≤𝑟 𝑗 (s𝑖 [𝑘])

)
= Max 𝑖∈[𝑚]

𝑙 𝑗 ≤𝑘≤𝑟 𝑗
(s𝑖 [𝑘])

Therefore, LHS = RHS. □

5.2 Correctness of UpdateState
Lemma 5.3. Protocol ΠUpdateState defined in Algorithm 10 cor-

rectly computes the UpdateState functionality from Section 4.4.4.

We prove this Lemma in Appendix F.

Applying the composability theorem [12], we can then show:

Theorem 5.4. Protocol ΠTrain defined in Algorithm 15 securely
realizes the Train functionality.

(n, m, h) Comm. ( [18]) Comm. (Ours) IF
(13, 11, 4) 14.3 3.6 4.0

(13, 20, 4) 25.9 6.1 4.2

(13, 11, 10) 35.8 6.5 5.5

(13, 11, 20) 71.6 11.4 6.3

(16, 11, 10) 310.8 53.2 5.8

(16, 20, 20) 1, 123.7 151.6 7.4

(16, 40, 50) 5, 599.8 631.4 8.9

(18, 20, 20) 4, 730.4 612.7 7.7

(18, 50, 50) 29, 453.8 3, 117.7 9.4

(18, 100, 100) 119, 282.2 11, 539.6 10.3

(19, 11, 10) 2, 680.5 434.9 6.2

(19, 20, 50) 24, 239.6 2, 793.4 8.7

(19, 40, 40) 38, 667.5 4, 169.5 9.3

Table 3: Communication (GB) of Decision Tree Training for
a dataset containing 𝑁 = 2

𝑛 training samples,𝑚 attributes
to construct a decision tree of height ℎ. IF represents the
Improvement Factor i.e. Cost ( [18]) / Cost (Ours)

6 Experiments
Hamada et al. [18] is the state-of-the-art for secure decision tree

training and we use its implementation
3
provided in the MP-SPDZ

framework [1, 2, 22] as the baseline. We consider the setting of

three parties with one semi-honest corruption. We implement
4

our secure decision tree training protocols in the MP-SPDZ frame-

work and use the same implementations of the building blocks

(Section 3) as the baseline for a fair comparison. We make use

of (3, 2)-replicated secret-sharing based protocols over Z
2
128 ring

5

and use the oblivious radix sort protocol from [8] to implement

ΠSortPerm. In the following, we compare the communication and

performance of secure training using [18] and our protocols for

various values of (𝑛,𝑚,ℎ), where 𝑁 = 2
𝑛
is the number of data

points,𝑚 denotes the number of attributes, and ℎ is the height of

the tree that needs to be trained.

System Details. We evaluate on three Standard F16s v2 Azure in-

stances in the LAN and WAN settings. Each server has 16 vCPUs

and 64 GB RAM. Both the baseline and our code used 4 threads.

Our network bandwidth and ping latency are 9.5 Gbps and 1.2 ms

in the LAN setting, and 287 Mbps and 61 ms in the WAN setting,

respectively.

6.1 Communication and Rounds
In this section, we compare the concrete communication cost of our

training protocol with [18]. While our asymptotic improvement

over [18] matches𝑚𝑖𝑛(ℎ,𝑚, log𝑁 ), a better approximation for the

improvement factor based on the building block implementations

3
Code from the original paper is unavailable.

4
https://github.com/data61/MP-SPDZ/pull/1449

5
Even though the bit length of the cleartext attribute values is 32 bits, we secret share all

values in the protocol over Z
2
128 . This is because we require multiplications (without

truncating the values) to compute Gini indices without overflow (see Equation 1).

Since MP-SPDZ does not allow different variables to be secret shared over different

bit lengths, we are restricted to secret sharing all values over a large ring.

https://github.com/data61/MP-SPDZ/pull/1449
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(n, m, h) Initial Sort Internal Sort Compute Max Gini Rest Total
per layer (total) per layer (total) per layer (total)

[18] Ours [18] Ours [18] Ours [18] Ours [18] Ours

(13, 11, 4) 0 1.7 2.4(9.7) 0(0) 1.1(4.3) 0.1(0.4) 0.1(0.3) 0.4(1.5) 14.3 3.6

(16, 40, 50) 0 50.5 75.6(3781.1) 0(0) 35.3(1, 766.9) 1.7(83.5) 1.1(51.8) 10.0(497.4) 5599.8 631.4

(19, 20, 50) 0 200.3 321.7(16085.6) 0(0) 157.4(7868.9) 10.6(529.0) 5.7(285.0) 41.3(2064.1) 24, 239.5 2, 793.4

Table 4: Communication (GB) breakup across subprotocols for [18] and our training protocol for a dataset containing 𝑁 = 2
𝑛

training samples,𝑚 attributes to construct a decision tree of height ℎ.

(n, m, h) Runtime ( [18]) Runtime (Ours) IF
(13, 11, 4) 15.5 5.0 3.1

(13, 20, 4) 26.1 7.5 3.5

(13, 11, 10) 39.0 9.9 3.9

(13, 11, 20) 78.1 17.9 4.4

(16, 11, 10) 313.8 73.0 4.3

(16, 20, 20) 1, 036.7 186.6 5.6

(16, 40, 50) 5, 118.1 725.3 7.1

(18, 20, 20) 4, 627.4 826.0 5.6

(18, 50, 50) 26, 283.8 3, 496.3 7.5

(18, 100, 100) 105, 473.0 12, 009.5 8.8

(19, 11, 10) 2, 892.7 615.4 4.7

(19, 20, 50) 23, 461.4 3, 590.1 6.5

(19, 40, 40) 39, 394.0 5, 347.7 7.4

Table 5: Runtime (s) of Decision Tree Training for a dataset
containing 𝑁 = 2

𝑛 training samples,𝑚 attributes to construct
a decision tree of height ℎ in LAN setup. IF represents the
Improvement Factor i.e. Runtime( [18]) / Runtime (Ours)

in the MP-SPDZ library is

ℎ(3712𝑚𝑛𝑁 + 99531𝑚𝑁 + 16862𝑁 )
ℎ(12806𝑚𝑁 + 2286𝑁𝑛 + 19568𝑁 ) + 81331𝑚𝑁

that can (potentially) help understand our empirical findings better.

Next, we first compare the communication incurred in end-to-end

training followed by a communication breakup for a few choices

of (𝑛,𝑚,ℎ). We use the communication breakup to highlight the

bottlenecks in [18] and also discuss how our protocol design miti-

gates the same. Finally, we comment on the improvement in round

complexity of our protocol over [18].

End-to-end communication. For various values of 𝑛,𝑚 and ℎ, Table 3

compares the communication cost incurred by our protocol vs [18].

As can be observed from the table, our protocol is between 4 − 10×
more communication efficient than [18], with larger improvements

on larger values of 𝑛,𝑚 and ℎ.

Communication breakup.We present the breakup of communication

cost across critical subcomputations/subprotocols for both [18] and

our training protocol in Table 4. We pick three choices of parame-

ters (𝑛,𝑚,ℎ) to represent small, medium and large problem sizes.

For all instances, for [18], it is clear that the bulk of the communi-

cation is incurred in sorting and computing max Gini index, and

the rest of the cost is minimal. Our protocol addresses both of these

bottlenecks. First, our protocol design avoids sorting per layer and

only does sorting once. In doing this, it slightly increases the other

(n, m, h) Runtime ( [18]) Runtime (Ours) IF
(13, 11, 4) 438.7 152.5 2.9

(13, 20, 4) 710.5 219.0 3.2

(13, 11, 10) 1, 089.8 309.0 3.5

(13, 11, 20) 2, 177.3 571.2 3.8

(16, 11, 10) 4, 218.6 999.1 4.2

(16, 20, 20) 14, 576.4 2, 621.6 5.6

(16, 40, 50) 71, 740.0 10, 126.5 7.1

(18, 20, 20) 68, 133.4 10, 283.6 6.6

(19, 11, 10) 39, 076.6 7, 581.7 5.2

Table 6: Runtime (s) of Decision Tree Training for a dataset
containing 𝑁 = 2

𝑛 training samples,𝑚 attributes to construct
a decision tree of height ℎ in WAN setup. IF represents the
Improvement Factor i.e. Runtime( [18]) / Runtime (Ours)

cost, but this increase is much lower than sorting itself. Our initial

sort is also cheaper than the per-layer sort used in [18] as explained

in Section 4. Second, we compute the max Gini index much more

efficiently by using a single call to ΠGroupMax compared to [18] that

makes𝑚 calls to the same protocol.

Rounds. Our training protocol has roughly 1.5× lower rounds com-

pared to [18].

6.2 Performance
We compare the runtimes of training protocol in [18] and our work

in both the LAN and WAN settings in Tables 5 and 6 respectively.

We observe that our protocol is 3.1− 9× faster than [18] in the LAN

setting. In the WAN setting, we only ran the smaller benchmarks

(as [18] had an incredibly high run time exceeding nearly 13 hours);

even then our improvements range between 2.9 − 7.3×.
In the LAN setting, our improvement over [18] is dominated by

communication. In the WAN setting, where ping latency is higher

and bandwidth is lower than LAN, overall runtime depends on both

the rounds and the communication. Hence, we observe a slight

difference in WAN improvements compared to LAN improvements.

Recall that the round complexity of our protocol is lower than [18]

(see Section 6.1).

6.3 Comparison with ENTS [17]
ENTS [17] protocol performs two optimizations over Hamada et
al. [18]. First, they reduce the number of calls to the sorting protocol

similar to our protocol. However, the asymptotic communication of

their overall protocol remains O(ℎ𝑚𝑁 log𝑁 ) as the cost of comput-

ing the minimum Gini index is O(𝑚𝑁 log𝑁 ). In contrast, our work



Divyanshu Bhardwaj, Sandhya Saravanan, Nishanth Chandran, and Divya Gupta

reduces this cost to O(𝑚𝑁 + 𝑁 log𝑁 ). Second, they secret share

cleartext values over the small ring (Z
2
32 ) and convert these values

to shares over large rings (Z
2
128 ) only when computing the Gini

index. This technique is orthogonal and compatible with our work

and can be used directly to further reduce our protocol communi-

cation. Without this optimization incorporated into our protocol,

our protocol has ≈ 1.4× less communication than ENTS [17]. For

example, on the Adult and Skin Segmentation datasets (see [17] for

details on these), our protocol communicates 34.2GB and 68.3GB

compared to the ENTS protocol that communicates 50.5GB and

88.2GB respectively.

7 Extensions
7.1 Extension to other threat models
Our secure training protocol, as presented in Section 4, makes use

of existing sub-protocols for functionalities such as multiplication,

bit decomposition, comparison, equality, sort, and shuffle, while

minimizing the number of calls to the expensive functionalities. In

this work, we instantiated these protocols concretely in the setting

of 3-party seure computation tolerating 1 semi-honest corruption.

However, our protocol can easily be extended to a larger number of

parties with varying corruption thresholds as well as to the case of

malicious security by instantiating the underlying functionalities

with appropriate protocols.

7.2 Extension to Multi-Class Classification
Although this work focuses on binary classification, our training

protocol can be extended to handle class labels from a larger do-

main Z𝑐 , 𝑐 > 2. To do this, instead of a binary label 𝑦, we use

y1, . . . , y𝑐 ∈ {0, 1}𝑁 where (y1 [𝑖], . . . , y𝑐 [𝑖]) is a one-hot encod-

ing of the label of the 𝑖𝑡ℎ sample. The modified Gini index ex-

pression in this case will be: Gini(D) = 1 −∑
𝑏∈𝑐 ( |D𝑦𝑏=1 |2/|D|2).

The subprotocol that needs to be altered is ΠComputeGini which

would incur O(𝑐𝑁 ) communication cost with this extension. The

total communication cost of the training protocol would become

O(𝑚𝑁 log𝑁 + 𝑐ℎ𝑚𝑁 + ℎ𝑁 log𝑁 ).

7.3 Extension to more complex ML Models
In real world scenarios, a combination of random forests and gradi-

ent boosted decision (GBD) trees is used for training on datasets.

A random forest is a collection of decision trees independently

generated as a result of training on different subsets of the dataset.

GBD trees are also a collection of decision trees, where each tree is

built iteratively based on the decision trees previously generated,

thereby correcting the errors associated with the previous fits. Our

decision tree training protocol can be directly used in the training

process of random forests and GBD trees. Consider the case of

random forests, where we have 𝑞 different subsets of the dataset

on which we want to generate 𝑞 independent decision trees. This

involves 𝑞 invocations of our training protocol, with different input

attributes and labels. Similarly, GBD trees can be thought of as

repeatedly training a single decision tree, with a modified metric

to split features instead of Gini index, that takes into account the

error correction factor.
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A Plaintext Decision Tree Training
The algorithm for cleartext decision tree training is presented in

Algorithm 14.

Protocol 14: Plaintext decision tree training

Input: Labelled training dataset D, maximum height ℎ.

Output: Decision tree T
1 if ℎ = 0 then
2 Let 𝑣 be a leaf node.

3 Label(𝑣) is the most occuring label in D. Output tree
with 𝑣 as root node.

4 else
5 Find 𝑗, 𝑡 such that 𝑥 𝑗 < 𝑡 minimizes Gini index of the

split.

6 Let D𝑙 = D𝑥 𝑗<𝑡 and D𝑟 = D𝑥 𝑗 ≥𝑡 be partition of D based

on test.

7 Compute T𝑙 = Train(D𝑙 , ℎ − 1) and
T𝑟 = Train(D𝑟 , ℎ − 1).

8 Let 𝑣 be an internal node with test 𝑥 𝑗 < 𝑡 and with left

child T𝑙 , right child T𝑟 .
9 Output tree with 𝑣 as root node.

10 end

B Training protocol for discrete attributes
Our protocol can be easily extended to handle discrete attributes

as well. Using ideas of [14], we compute the Gini index for discrete

attributes. Suppose dataset D has attribute values for a binary at-

tribute 𝑑 ∈ {0, 1}. Then the Gini index of splitting from test 𝑑
?

= 0

(or 𝑑
?

= 1) is defined as

𝐺𝑑 =
|D𝑑=0 |
|D| Gini(D𝑑=0) +

|D𝑑=1 |
|D| Gini(D𝑑=1)

where Gini(D) = 1 − ∑
𝑏∈{0,1} ( |D𝑦=𝑏 |2/|D|2). Minimizing 𝐺𝑑 is

same as maximizing 𝐺 ′
𝑑
:

G
′
𝑑
(D) =

(
|D𝑑=1 |

(��D𝑑=0∧𝑦=0
��2 + ��D𝑑=0∧𝑦=1

��2)
+ |D𝑑=0 |

(��D𝑑=1∧𝑦=0
��2 + ��D𝑑=1∧𝑦=1

��2)) /(|D𝑑=0 | |D𝑑=1 |)

where D𝑑=𝑏′∧𝑦=𝑏 = {(d, 𝑦) ∈ D | 𝑑 = 𝑏′ ∧ 𝑦 = 𝑏}.
This expression is similar to that of the Gini index of continu-

ous variables and can be computed securely by simply modifying

ΠComputeGini. Once we have the Gini index for both continuous and

discrete attributes, simply choose the splitting test, which has the

maximum Gini index, and the rest of the training protocol proceeds

as described earlier.

If the attribute is discrete but non-binary i.e. domain(𝑑) = Z𝑘 ,
then each value 𝑖 ∈ domain(𝑑) induces a partition of dataset as{
D𝑑=𝑖 ,D𝑑≠𝑖

}
. We can then proceed to compute the Gini index of

all such possible splits using the expression above and select the

split associated with the minimum Gini index.

C End-to-end secure training protocol

Protocol 15: ΠTrain

Input: dataset ⟨D⟩, height ℎ
Output:

{〈
Layer(𝑖 )

〉}
𝑖∈[ℎ+1]

Cost :O(𝑚𝑁 log𝑁 + ℎ(𝑚𝑁 + 𝑁 log𝑁 ))
1 ⟨D1⟩ = ⟨D⟩
2 ⟨g1 [1]⟩ = 1 and ⟨g1 [𝑖]⟩ = 0 for 𝑖 ∈ [2, 𝑁 ]
3 ⟨NID[𝑖]⟩ = 1 for all 𝑖 ∈ [𝑁 ]
4
{〈
P𝑖
1

〉}
= ΠSetupPerm (⟨D1⟩)

5

〈
State(1)

〉
=

(
⟨D1⟩ , ⟨g1⟩ ,

{〈
P𝑖
1

〉}
𝑖∈[𝑚] , ⟨NID⟩

)
6 for 𝑘 = 1 to ℎ do
7

〈
Layer(𝑘 )

〉
,

〈
State(𝑘+1)

〉
=

ΠTrainInternalLayer

(〈
State(𝑘 )

〉
, 𝑘

)
8 end

9

〈
Layer(ℎ+1)

〉
= ΠTrainLeafLayer

(〈
State(ℎ+1)

〉)
10 Output

{〈
Layer(𝑖 )

〉}
𝑖∈[ℎ+1]

.

D Protocols for Element wise operations
The protocols realizing element wise operations are as follows:

• Secure Multiplication: denoted by ⟨𝑧⟩ = ΠMULT (⟨𝑢⟩ , ⟨𝑣⟩).
We use techniques from [6]. Parties have shares ⟨𝑢⟩ , ⟨𝑣⟩ ∈ Z

2
ℓ

and want to compute shares ⟨𝑧⟩ ∈ Z
2
ℓ where 𝑧 = 𝑢 · 𝑣 . Then

𝑧 = (𝑢0 + 𝑢1 + 𝑢2) · (𝑣0 + 𝑣1 + 𝑣2)
= (𝑢0𝑣0 + 𝑢0𝑣1 + 𝑢1𝑣0) + (𝑢1𝑣1 + 𝑢1𝑣2 + 𝑢2𝑣1)
+ (𝑢2𝑣2 + 𝑢2𝑣0 + 𝑢0𝑣2)

= 𝑧0 + 𝑧1 + 𝑧2

where party 𝑆𝑖 can compute 𝑧𝑖 locally. Parties mask this 𝑧𝑖 us-

ing correlated randomness generated non-interactively (party

𝑆𝑖 holds share 𝛼𝑖 such that 𝛼0 + 𝛼1 + 𝛼2 = 0 which is added to

𝑧𝑖 ). Each party can obtain replicated shares of 𝑧 with commu-

nication of 3ℓ bits (each party sends its masked 𝑧𝑖 to the next

party). An extension of the Secure Multiplication protocol to

the malicious adversary setting is provided in [25].

• Secure Bit Decomposition: denoted by ⟨𝑢⟩B = ΠA2B (⟨𝑢⟩).
Parties have RSS ⟨𝑢⟩ ∈ Z

2
ℓ and want to compute shares of

bit decomposition ⟨𝑢⟩B =

(
⟨𝑢ℓ−1⟩B, . . . , ⟨𝑢0⟩B

)
where 𝑢 =∑ℓ−1

𝑖=0 2
𝑖𝑢𝑖 . We use the method described in [30] which uses

ℓ log ℓ AND gates requiring 1 + log ℓ rounds. The concrete cost

of bit decomposition is ≈ 212ℓ bits.

• Secure Comparison: denoted by ⟨𝑏⟩ = ΠLT (⟨𝑢⟩ , ⟨𝑣⟩).
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Parties have RSS ⟨𝑢⟩ , ⟨𝑣⟩ ∈ Z
2
ℓ and want to compute ⟨𝑏⟩ ∈ Z

2
ℓ

where 𝑏 = (𝑢 < 𝑣). Parties compute ⟨𝑧⟩ = ⟨𝑢 − 𝑣⟩ locally and

compute 𝑏 = (𝑧 < 0) by extracting most significant bit of 𝑧

using techniques from [30] with 2ℓ AND gates in log ℓ rounds.

Note thatMSB(𝑧) = 1 if 𝑧 < 0 andMSB(𝑧) = 0 otherwise. The

concrete cost of secure comparison using (3, 2) RSS is ≈ 15ℓ

bits.

• Secure Equality: denoted by ⟨𝑏⟩ = ΠEQ (⟨𝑢⟩ , ⟨𝑣⟩).
Parties have RSS ⟨𝑢⟩ , ⟨𝑣⟩ ∈ Z

2
ℓ and want to compute ⟨𝑏⟩ ∈ Z

2
ℓ

where 𝑏 =

(
𝑢

?

= 𝑣

)
=

(
(𝑢 − 𝑣) ?

= 0

)
. Parties compute ⟨𝑧⟩ =

⟨𝑢 − 𝑣⟩ locally, compute its bit decomposition ( [30]) and then

check if z is zero using a binary circuit. The concrete cost of

secure equality using (3, 2) RSS is ≈ 20ℓ bits.

E Protocols for oblivious permutations
As discussed in Section 3.2, we present the protocols to – a) apply

a secret permutation to a secret vector (Protocol 16); b) compose

secret permutations (Protocol 17); c) compute stable sorting permu-

tation for binary key (Protocol 18); and d) compute stable sorting

permutation for arbitrary key (Protocol 19).

Protocol 16: ΠApplyPerm [8]

Input: Vector ⟨X⟩, permutation ⟨P⟩ of length 𝑁 .

Output: Vector
〈
XP〉

.

1 Parties compute ⟨X𝜋 ⟩ , P𝜋 = Shuffle (⟨X⟩ , ⟨P⟩).
2 for 𝑖 ∈ [𝑁 ] do
3

〈
XP [P𝜋 [𝑖]]

〉
= ⟨X𝜋 [𝑖]⟩

4 end
5 Output

〈
XP〉

Protocol 17: ΠPermComp [8]

Input: Permutations ⟨P⟩ and ⟨Q⟩ of length 𝑁 .

Output: Permutation ⟨G⟩ where G = P ◦ Q.
1 Parties compute ⟨Q𝜋 ⟩ = Shuffle (⟨Q⟩) and reconstruct Q𝜋

.

2 Let ⟨G𝜋 [𝑖]⟩ = ⟨P[Q𝜋 [𝑖]]⟩ for all 𝑖 ∈ [𝑁 ].
3 Parties compute ⟨G⟩ = Unshuffle (⟨G𝜋 ⟩).
4 Parties output ⟨G⟩.

Protocol 18: ΠSortPermBit [8]

Input: Vector ⟨b⟩ ∈ {0, 1}𝑁 .

Output: Permutation ⟨P⟩ that stably sorts b
1 ⟨𝑛𝑧⟩ = Sum (¬ ⟨b⟩)
2 ⟨r⟩ = PrefixSum (⟨b⟩) − ⟨b⟩ //Local compute

3 for 𝑖 ∈ {1, . . . , 𝑁 } do
4 ⟨P[𝑖]⟩ = 𝑖 − (𝑖 − 1) · ⟨b[𝑖]⟩ − ⟨r[𝑖]⟩ + ⟨b[𝑖]⟩ · ⟨𝑛𝑧 + 2r[𝑖]⟩
5 end
6 Output ⟨P⟩.

Protocol 19: ΠSortPerm [8]

Input: Vector ⟨x⟩ ∈ Z𝑁
2
ℓ .

Output: Permutation ⟨P⟩ that stably sorts x
1 for 𝑖 = 1 to 𝑁 do
2 Let ⟨𝑥𝑖 ⟩ = ⟨x[𝑖]⟩
3 (⟨𝑥𝑖 [ℓ − 1]⟩B, . . . , ⟨𝑥𝑖 [0]⟩B) = ΠA2B (⟨𝑥𝑖 ⟩)
4 end
5 Let ⟨P⟩ = ⟨[1, . . . , 𝑁 ]⟩.
6 for 𝑗 = 0 to ℓ − 1 do
7 Let

〈
y𝑗
〉
=
[
⟨𝑥1 [ 𝑗]⟩B, . . . , ⟨𝑥𝑁 [ 𝑗]⟩B

]
8

〈
yP
𝑗

〉
= ΠApplyPerm

(〈
y𝑗
〉
, ⟨P⟩

)
9 ⟨𝜎⟩ = ΠSortPermBit

(〈
yP
𝑗

〉)
10 ⟨P⟩ = ΠPermComp (⟨𝜎⟩ , ⟨P⟩)
11 end
12 Output ⟨P⟩.

F Correctness Lemma
In ΠUpdateState, parties compute the shares of the updated database

D𝑘+1 by stably sorting D𝑘 based on b. We prove that D𝑘+1 has

correctly grouped elements.

Lemma F.1. Entries of the same group appear consecutively in
D𝑘+1 where D𝑘+1 is obtained by sorting D𝑘 based on values of b.

Proof. We prove by contradiction. Suppose the theorem state-

ment is not true. This means that there exist 𝑑, 𝑒, 𝑓 ∈ [𝑁 ] such that

𝑑 < 𝑒 < 𝑓 and D𝑘+1 [𝑑], D𝑘+1 [𝑓 ] belong to the same group (call

it (𝑥,𝑦)) and D𝑘+1 [𝑒] belongs to a different group (call it (𝑥 ′, 𝑦′)).
This implies that either

(1) 𝑦 ≠ 𝑦′: This is a contradiction as D𝑘+1 is obtained by sorting

based on 𝑦 so for all 𝑒 ∈ [𝑑, 𝑓 ], 𝑦′ = 𝑦.

(2) 𝑥 ′ ≠ 𝑥 : We already know that𝑦′ = 𝑦. Suppose we have𝑑′, 𝑒′, 𝑓 ′

such that

D𝑘 [𝑑′] = D𝑘+1 [𝑑]
D𝑘 [𝑒′] = D𝑘+1 [𝑒]
D𝑘 [𝑓 ′] = D𝑘+1 [𝑓 ]

Then 𝑑′ < 𝑒′ < 𝑓 ′ (stable sorting) and for all 𝑒′ ∈ [𝑑′, 𝑓 ′],
𝑥 ′ = 𝑥 (all entries of a group appear consecutively in D𝑘 ). This

is also a contradiction.

Hence, all entries in the same group appear consecutively in D𝑘+1.
□

Lemma 5.3. Protocol ΠUpdateState defined in Algorithm 10 cor-
rectly computes the UpdateState functionality from Section 4.4.4.

Proof. In the UpdateState protocol, parties update the shares of

dataset, group flag and node id vectors. Parties also update the per-

mutations that sort the updated dataset according to each attribute

within groups. To prove correctness of ΠUpdateState, we show that

these updates are computed correctly and updated vectors satisfy

the invariant described in Section 4.4.

Correctness of D𝑘+1. Suppose D𝑘 has 𝑛𝑘 groups and satisfies

the invariant. Each group will be further subdivided into 2 new
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groups based on output of comparison i.e. b = 0 or 1. We can

denote the new groups of samples as a tuple (𝑥,𝑦), 𝑥 ∈ [1, 𝑛𝑘 ] and
𝑦 ∈ {0, 1} where 𝑥 is the sample’s group in D𝑘 and 𝑦 is the output

of comparison.

To obtain D𝑘+1, ΠUpdateState stably sorts D𝑘 based on values

of b. The order in which groups appear in D𝑘 is 1, 2, . . . , 𝑛𝑘 i.e. in

D𝑘 we first have elements of group 1 followed by group 2 and so

on. The order in which groups appear in D𝑘+1 is (1, 0), . . . , (𝑛𝑘 , 0),
(1, 1), . . . , (𝑛𝑘 , 1). The ordering of groups is irrelevant as long as

entries of the same group appear consecutively in D𝑘+1. However,
from Lemma F.1, we know that sorting D𝑘 according to b indeed
gives us D𝑘+1 with correctly grouped entries.

Correctness of g𝑘+1. We compute g from g𝑘 in step 5 in

ΠUpdateState using ΠGroupFirstOne protocol. From the description

of ΠGroupFirstOne (Section 3.3), we can see that g[𝑖] = 1 if b[𝑖] is
the first instance of a 0 or 1 in any group. This means g[𝑖] = 1 if 𝑖

is the first element of group ( 𝑗, 0) or ( 𝑗, 1) for any 𝑗 ∈ [1, 𝑛𝑘 ].
Finally ΠUpdateState sorts g according to b to obtain g𝑘+1 in step

6. As we are stably sorting, the first element of any new group inD𝑘

will be the first element of the group in D𝑘+1. Hence, g𝑘+1 [𝑖] = 1 if

𝑖 is the first element of a group in D𝑘+1.
Correctness of NID. Suppose we have a node with 𝑁𝐼𝐷 = 𝑑 .

Then the left child will be numbered 𝑑 and the right child will

be numbered 𝑑 + 2
𝑘−1

. This is computed in step 3 in ΠUpdateState

as NID = NID + 2
𝑘−1 · b. This numbering is consistent with the

ordering of groups in D𝑘+1 as the left children of all the nodes are

numbered followed by all the right children.

Finally we apply permutation Q in step 4 to keep the ordering

of NID and D𝑘+1 same. Same ordering is necessary so that NID[𝑖]
corresponds to the node id of sample D𝑘+1 [𝑖]. Hence, the updated
vector NID satisfies the invariant.

Correctness of sorting permutations P𝑖
𝑘+1. We introduce a

few more notations as follows:

(1) D𝑘 is the dataset grouped by nodes in 𝑘𝑡ℎ layer. P𝑖
𝑘
is the

permutation that sorts D𝑘 according to 𝑖𝑡ℎ attribute. Let D𝑖
𝑘
=

Permute

(
D𝑘 , P𝑖𝑘

)
.

(2) D𝑘+1 is the new dataset grouped by nodes in (𝑘 + 1)𝑡ℎ layer.

P𝑖
𝑘+1 is the new permutation that sorts D𝑘+1 according to 𝑖

𝑡ℎ

attribute. Let D𝑖
𝑘+1 = Permute

(
D𝑘+1, P𝑖𝑘+1

)
.

Suppose we are given P𝑖
𝑘
, D𝑘+1 and have to compute P𝑖

𝑘+1. From
the definition of D𝑖

𝑘
,D𝑖

𝑘+1, we have

D𝑖
𝑘

[
P𝑖
𝑘
[ 𝑗]

]
= D𝑘 [ 𝑗] ∀𝑖 ∈ [𝑚], 𝑗 ∈ [𝑁 ] (2)

D𝑖
𝑘+1

[
P𝑖
𝑘+1 [ 𝑗]

]
= D𝑘+1 [ 𝑗] ∀𝑖 ∈ [𝑚], 𝑗 ∈ [𝑁 ] (3)

Just like how we obtain D𝑘+1 from D𝑘 by sorting it based on b, we
can obtainD𝑖

𝑘+1 by sortingD
𝑖
𝑘
based on b𝑖 (can be proved similar to

lemma F.1) where b𝑖 = Permute(b, P𝑖
𝑘
). Let R𝑖 be the permutation

that sorts b𝑖 . Then, we have

b𝑖
[
P𝑖
𝑘
[ 𝑗]

]
= b[ 𝑗] ∀𝑖 ∈ [𝑚], 𝑗 ∈ [𝑁 ] (4)

D𝑖
𝑘+1

[
R𝑖 [ 𝑗]

]
= D𝑖

𝑘
[ 𝑗] ∀𝑖 ∈ [𝑚], 𝑗 ∈ [𝑁 ] (5)

Let Q be the permutation that sorts b. Then we have

D𝑘+1 [Q[ 𝑗]] = D𝑘 [ 𝑗] ∀𝑗 ∈ [𝑁 ] (6)

Let Q𝑖
be the permutation obtained by applying Q to P𝑖

𝑘
i.e.

Q𝑖 [Q[ 𝑗]] = P𝑖
𝑘
[ 𝑗] ∀𝑖 ∈ [𝑚], 𝑗 ∈ [𝑁 ] (7)

Using these equations, we have

D𝑖
𝑘+1

[
R𝑖 [ 𝑗]

]
= D𝑖

𝑘
[ 𝑗] from (5)

=⇒ D𝑖
𝑘+1

[
R𝑖

[
P𝑖
𝑘
[ 𝑗]

] ]
= D𝑖

𝑘

[
P𝑖
𝑘
[ 𝑗]

]
=⇒ D𝑖

𝑘+1
[
R𝑖

[
P𝑖
𝑘
[ 𝑗]

] ]
= D𝑘 [ 𝑗] from (2)

=⇒ D𝑖
𝑘+1

[
R𝑖

[
Q𝑖 [Q[ 𝑗]]

] ]
= D𝑘+1 [Q[ 𝑗]] from (6, 7)

=⇒ D𝑖
𝑘+1

[
R𝑖

[
Q𝑖 [ 𝑗]

] ]
= D𝑘+1 [ 𝑗]

Therefore, P𝑖
𝑘+1 = R𝑖 ◦Q𝑖

where R𝑖 is the permutation that sorts b𝑖

andQ𝑖
is the permutation obtained by applyingQ to P𝑖

𝑘
.ΠUpdateState

computes R𝑖 and Q𝑖
using ΠApplyPerm in steps 9, 10 and P𝑖

𝑘+1 using
ΠPermComp in step 11.

This concludes our correctness proof as all components of up-

dated State(𝑘+1) satisfy the invariant. □
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