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Abstract

We present new formulas for computing greatest common divisors (GCDs) and extracting the prime
factors of semiprimes using only elementary arithmetic operations: addition, subtraction, multiplication,
floored division, and exponentiation. Our GCD formula simplifies a formula of Mazzanti and is derived
using Kronecker substitution techniques from our earlier research. By combining this GCD formula with
our recent result on an arithmetic term for

√
n, we derive explicit expressions for the prime factors of a

semiprime n = pq.
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1 Introduction

The greatest common divisor (GCD) of two integers a and b, denoted gcd(a, b), is the largest positive integer
that divides both a and b. Euclid’s algorithm for computing the GCD is one of the oldest known algorithms,
dating back to ancient Greece [1].

Semiprimes, numbers with exactly two prime factors, play a key role in number theory and cryptography. The
problem of factoring a semiprime n = pq into its constituent primes p and q is believed to be computationally
intractable for large n. This property forms the basis for widely used cryptosystems such as RSA [2]. Efficient
algorithms for factoring semiprimes would have major implications for the security of these systems. While
our new formulas are computationally impractical, they may yield novel insights into the distribution and
properties of GCDs and semiprime factors.

In this paper, we present new results on arithmetic term formulas for the GCD and semiprime factorization.
Building on work by Mazzanti and Marchenkov [3, 4], we derive a simplified polynomial form for the GCD
that can be expressed in terms of an arbitrary integer base. We also obtain arithmetic terms for the prime
factors of a non-square semiprime n = pq.

To appreciate the significance of our results, it is important to understand what constitutes an arithmetic
term. An arithmetic term is a mathematical expression which uses only elementary arithmetic operations.
Formally, let A denote the class of arithmetic terms. We have

A = [{1, a+ b, a−̇b, ab, ⌊a/b⌋ , ab}],

where −̇ represents the bounded subtraction operation, defined as: a−̇b = max(a− b, 0) [3]. Throughout
this paper, we may use the standard subtraction notation a−b when it is clear that the result is non-negative.
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It is also worth noting that the modulo operation is implicitly included in A, since it can be expressed as

a mod b = a−̇b ⌊a/b⌋ .

1.1 Background

We denote by P the class of primitive recursive functions. The class of Kalmar functions, denoted by K, is
an elementary class of functions, which is a subclass of P.

Kalmar functions were introduced by Laszlo Kalmar in the 1940s. Kalmar aimed to characterize the class of
functions that can be computed using a certain restricted form of recursion, known as “Kalmar elementary
recursion” or “bounded recursion” (hence the term “bounded subtraction” in the definition of A). It is well-
established that K contains many important functions, such as the arithmetic operations, the exponential
function, and the bounded µ operator (which is used to define the floored division operation). However, it
does not contain all primitive recursive functions [5].

It was long conjectured, and finally proved by Mazzanti, that the class A generates the class K [3, 6]. As
mentioned above, K is known to be a proper subclass of P. In particular, K = E3 in the Grzegorczyk
hierarchy, a framework categorizing primitive recursive functions by complexity [7]. Formally, we have

[A] = K = E3 ⊂ P.

In 1970, Matiyasevich, building on the work of Robinson [8] and Davis et al. [9], proved that all computable
functions can be expressed as Diophantine equations [10]. Matiyasevich’s results imply that there exists
a Diophantine equation for calculating the n-th prime number [11]. However, no arithmetic term for the
n-th prime is known [12]. Similarly, while Matiyasevich’s theorem suggests the existence of an Diophantine
equation formula for semiprime factorization, an arithmetic term that computes the factors remained to be
discovered. Our work presents the first arithmetic terms for the problem.

1.2 Recent Developments

Recently, we discovered a formula for the r-th roots of positive integers r
√
n as the limit of a quotient of two

arithmetic terms [13]. By combining our results with an arithmetic term for factorials [8, 12], along with
a simplified version of Mazzanti’s GCD formula (Lemma 1) [3], we obtain the first closed-form expressions
for semiprime factors as arithmetic terms. This answers a question from Shamir (1978), who first hypothe-
sized the existence of such formulas when describing an algorithmic approach to integer factorization using
arithmetic terms [14].

2 Greatest Common Divisor

Lemma 1 (Mazzanti’s GCD Formula).

∀a, b ∈ Z+, gcd(a, b) =

⌊
(2a

2b(b+1) − 2a
2b)(2a

2b2 − 1)

(2a2b − 1)(2ab2 − 1)2a2b2

⌋
mod 2ab.

Proof. The formula and its proof are due to Mazzanti (2002) [3].

Applying Kronecker substitution techniques from our previous works [15, 13], we find that Mazzanti’s GCD
formula can be simplified. We begin with a theorem that expresses Mazzanti’s GCD formula in a polynomial
form.
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Theorem 2.

∀a, b ∈ Z+, gcd(a, b) =

⌊
xa+ab

(xa − 1)(xb − 1)

⌋
mod x.

Proof. Consider Mazzanti’s greatest common divisor formula (Lemma 1), which is given by

gcd(a, b) =

⌊
(2a

2b(b+1) − 2a
2b)(2a

2b2 − 1)

(2a2b − 1)(2ab2 − 1)2a2b2

⌋
mod 2ab.

Observe that all integer powers in the arithmetic term are divisible by 2ab. Factoring these, we obtain

gcd(a, b) =

⌊
((2ab)a(b+1) − (2ab)a)((2ab)ab − 1)

((2ab)a − 1)((2ab)b − 1)(2ab)ab

⌋
mod 2ab.

Substituting with 2ab = x yields

gcd(a, b) =

⌊
(xa(b+1) − xa)(xab − 1)

(xa − 1)(xb − 1)xab

⌋
mod x.

Simplifying the fraction, we see

gcd(a, b) =

⌊
xa−ab(xab − 1)2

(xa − 1)(xb − 1)

⌋
mod x.

This fraction can be expanded as the sum

gcd(a, b) =

⌊
xa+ab

(xa − 1)(xb − 1)
+

xa−ab

(xa − 1)(xb − 1)
+

−2xa

(xa − 1)(xb − 1)

⌋
mod x.

Since we are reducing the quotient mod x, we need only consider the term in the fraction which yields the
constant term in the polynomial, which is gcd(a, b).

From Marchenkov [6], we have the following alternative GCD formula:

gcd(a, b) =

⌊
(2a

2b(b+1) − 2a
2b)(2a

2b2 − 1)

(2a2b − 1)(2ab2 − 1)2a2b2

⌋
mod 2ab.

Factoring out 2ab, we obtain

gcd(a, b) =

⌊
((2ab)a(b+1) − (2ab)b)((2ab)ab − 1)

((2ab)a − 1)((2ab)b − 1)(2ab)ab

⌋
mod 2ab.

Replacing 2ab = x, we get

gcd(a, b) =

⌊
(xa(b+1) − xb)(xab − 1)

(xa − 1)(xb − 1)xab

⌋
mod x.

Expanding this as a sum, we obtain

gcd(a, b) =

⌊
xa+ab

(xa − 1)(xb − 1)
+

xb−ab

(xa − 1)(xb − 1)
+

−xa

(xa − 1)(xb − 1)
+

−xb

(xa − 1)(xb − 1)

⌋
mod x.

In summary, we have two expressions for gcd(a, b) derived from different formulas.
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(i) From Mazzanti’s formula:

gcd(a, b) =

⌊
xa+ab

(xa − 1)(xb − 1)
+

xa−ab

(xa − 1)(xb − 1)
+

−2xa

(xa − 1)(xb − 1)

⌋
mod x.

(ii) From Marchenkov’s formula:

gcd(a, b) =

⌊
xa+ab

(xa − 1)(xb − 1)
+

xb−ab

(xa − 1)(xb − 1)
+

−xa

(xa − 1)(xb − 1)
+

−xb

(xa − 1)(xb − 1)

⌋
mod x.

The term xa+ab

(xa−1)(xb−1)
is present in both expressions and will contribute to the constant term. One can

verify for several pairs a, b that ⌊
xa+ab

(xa − 1)(xb − 1)

⌋
mod x = gcd(a, b),

and it is easy to see that

xa−ab − 2xa

(xa − 1)(xb − 1)
̸= xb−ab − xa − xb

(xa − 1)(xb − 1)
.

Thus, only the term xa+ab

(xa−1)(xb−1)
may contribute a constant after reduction modulo x. Otherwise, the

formulas of Mazzanti (i) and Marchenkov (ii) could not possibly yield the same result for all a, b. We
conclude

gcd(a, b) =

⌊
xa+ab

(xa − 1)(xb − 1)

⌋
mod x.

Corollary 3. Let a, b, n ∈ Z+ such that n > 2 and n > gcd(a, b). Then

gcd(a, b) =

⌊
na+ab

(na − 1)(nb − 1)

⌋
mod n.

Proof. Consider the polynomial formula given by Theorem 2. Substituting with x = n yields the given
formula. By Theorem 2 in [13], the substitution is valid since n is greater than the evaluation, which is
gcd(a, b).

However, we also have to consider the form of the fraction. Suppose n = 2, then⌊
2a+ab

(2a − 1)(2b − 1)

⌋
=

⌊
2a+ab

2ab+a − 2a − 2b + 1

⌋
= 2k,

for some k ∈ Z+. That is, the fraction always yields an even number of the form 2k. This would imply

gcd(a, b) =

⌊
2a+ab

(2a − 1)(2b − 1)

⌋
= 2k ≡ 0 (mod 2) (contradiction),

which is a contradiction, since gcd(a, b) is nonzero by definition.

Theorem 4.

∀a, b ∈ Z+, gcd(a, b) ≡ −
(
xa+ab mod

(
(xa − 1)(xb − 1)

))
(mod x).
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Proof. Consider the formula given by Theorem 2, which is

gcd(a, b) =

⌊
xa+ab

(xa − 1)(xb − 1)

⌋
mod x.

Recall the following well-known identity for the floor function⌊a
b

⌋
=

a− (a mod b)

b
.

Applying this to the formula from Theorem 2, we get

gcd(a, b) ≡
xa+ab −

(
xa+ab mod

(
(xa − 1)(xb − 1)

))
xa+b − xa − xb + 1

(mod x).

Taking the numerator and denominator mod x, we find

gcd(a, b) =
(xa+ab mod x)−

((
xa+ab mod

(
(xa − 1)(xb − 1)

))
mod x

)
(xa − 1)(xb − 1) mod x

=
0−

((
xa+ab mod

(
(xa − 1)(xb − 1)

))
mod x

)
1

= −
(
xa+ab mod

(
(xa − 1)(xb − 1)

))
mod x.

Hence, we can say

gcd(a, b) ≡ −
(
xa+ab mod

(
(xa − 1)(xb − 1)

))
(mod x).

Corollary 5. Let a, b, n ∈ Z+ such that n > 2 and n > gcd(a, b). Then

gcd(a, b) ≡ −
(
na+ab mod

(
(na − 1)(nb − 1)

))
(mod n).

Proof. Consider the polynomial formula given by Theorem 2. Substituting with x = n yields the given
formula. By Theorem 2 in [13], the substitution is valid since n is greater than the evaluation, which is
gcd(a, b).

However, we also have to consider the form of the remainder. Suppose n = 2, then the expression

2a+ab mod (2a+b − 2a − 2b + 1)

can yield either an even or odd remainder, depending on the choice of (a, b). Now, suppose the remainder is
even and of the form 2k for some k ∈ Z+. This would imply

gcd(a, b) = 2k ≡ 0 (mod 2) (contradiction),

which is a contradiction, since gcd(a, b) is nonzero by definition.

2.1 Coprimality Function

Experimentally, starting from our result in Theorem 4, we found a coprimality function, which we were able
to prove as a theorem.
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Theorem 6. Define the integer-valued function

ϵ(a, b) =

{
0 if gcd(a, b) > 1,

1 if gcd(a, b) = 1.

Then

∀a, b ∈ Z+, ϵ(a, b) = −
(
xab−b+1 mod

(
(xa − 1)(xb − 1)

))
mod x.

Proof. Let a, b in Z>1. First, we examine the case where gcd(a, b) > 1. From Graham and others, we have
the following identity [16]:

∀a, b ∈ Z>1, gcd(xa − 1, xb − 1) = xgcd(a,b) − 1

=⇒ (xgcd(a,b) − 1)|
(
(xa − 1)(xb − 1)

)
.

For the remainder of xab−b+1 mod
(
(xa − 1)(xb − 1)

)
to be zero mod x, the remainders of xab−b+1 mod the

factors (xa − 1) and (xb − 1) must combine to be a multiple of x. More precisely, we must have

xab−b+1 ≡ f(x)x (mod (xa − 1)(xb − 1)),

for some f(x) ∈ Z[x]. Now, since we are given (ab − b + 1) > a, b and a, b ≥ gcd(a, b), the reduction of
xab−b+1 mod the factors of (xa − 1)(xb − 1) will yield remainders that are x times a power of x. That is,

xab−b+1 ≡ xk+1 ≡ xkx (mod xa − 1),

and

xab−b+1 ≡ xj+1 ≡ xjx (mod xb − 1),

where k, j ∈ Z. The specific k, j depend on the choice of a, b. However, we do not require any particular
values here. We merely need to show that modding xab−b+1 by (xa − 1)(xb − 1) also yields a remainder that
is a multiple of x.

Due to the common factor, which is xgcd(a,b) − 1, the moduli (xa − 1) and (xb − 1) are not coprime and so
we cannot apply the standard version of the Chinese Remainder Theorem (CRT). However, we can apply
a variant which allows for non-coprimality, called the General Chinese Remainder Theorem (GCRT) [17].
Applying the GCRT for gcd(xa − 1, xb − 1) = xgcd(a,b) − 1, we have

xab−b+1 ≡
(
v(xa − 1)xkx+ u(xb − 1)xjx

xgcd(a,b) − 1

)
≡

(
v(xa − 1)xkx

xgcd(a,b) − 1
+

u(xb − 1)xjx

xgcd(a,b) − 1

)
(mod (xa − 1)(xb − 1)),

where u, v ∈ Z[x] are the Bézout coefficients returned by the Extended Euclidean algorithm for gcd(xa −
1, xb − 1). Next, we set qa = (xa − 1)/(xgcd(a,b) − 1), qb = (xb − 1)/(xgcd(a,b) − 1), followed by factoring, to
obtain

xab−b+1 ≡ vqax
kx+ uqbx

jx

≡ x(vqax
k + uqbx

j) (mod (xa − 1)(xb − 1)).

Clearly, the remainder of xab−b+1 modulo (xa − 1)(xb − 1) is a multiple of x when gcd(a, b) > 1. Therefore,
we conclude

∀a, b ∈ Z>1 : gcd(a, b) > 1,
(
xab−b+1 mod

(
(xa − 1)(xb − 1)

))
mod x = 0.
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This corresponds to the case gcd(a, b) > 1 from the formula in the theorem.

Next, we consider the case where gcd(a, b) = 1. Here, we have

xgcd(a,b) − 1 = x1 − 1 = x− 1 ≡ −1 (mod x).

The reduction of xab−b+1 modulo (xa − 1)(xb − 1) can be represented as a polynomial of the form

g(x) := xab−b+1 + (xa − 1)(xb − 1) ∈ Z[x].

Considering (xgcd(a,b) − 1) = (x− 1) | (xa − 1)(xb − 1), we can simply g as

g(x) = xab−b+1 + (x− 1).

Reducing g mod x, we find

g(x) = xab−b+1 + (x− 1) ≡ (0) + (−1) ≡ −1 (mod x).

Thus, we conclude

∀a, b ∈ Z>1 : gcd(a, b) = 1, −
(
xab−b+1 mod

(
(xa − 1)(xb − 1)

))
mod x = 1.

This corresponds to the case gcd(a, b) = 1 from the formula in the theorem.

The proof is complete, as we have shown that the two cases gcd(a, b) > 1 and gcd(a, b) = 1 in the given
formula both yield the expected result.

Corollary 7. Let a, b, n ∈ Z>1 such that n > 2. Then

ϵ(a, b) = −
(
nab−b+1 mod

(
(na − 1)(nb − 1)

))
mod n

Proof. The proof is the same as in Corollary 3, replacing the formula for gcd(a, b) with the given formula
for ϵ(a, b).

Our coprimality formula in Corollary 7 leads us to a conjecture on Euler’s totient function.

Conjecture 1. Let n ∈ Z>1. Define

t(n) =

{
0 if n ≡ 2, 10 (mod 12),

1 if n ̸≡ 2, 10 (mod 12).

Then

φ(n)− t(n) =

⌊
n−1∑
k=1

nnk−k+1

(nn − 1)(nk − 1)

⌋
mod n,

where φ(n) denotes Euler’s totient function for n.

3 Exponent Reduction in GCD Calculations

We now prove a simple theorem which allows us to reduce the exponents used in our GCD formulas.
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Theorem 8. Let a, b ∈ Z+ such that a ≥ b. Set ℓ = (a mod b). Then

gcd(a, b) =

⌊
xℓ+ℓb

(xℓ − 1)(xb − 1)

⌋
mod x.

and

gcd(a, b) = −
(
xℓ+ℓb mod

(
(xℓ − 1)(xb − 1)

))
mod x.

Proof. These formulas follow immediately from Theorem 2 and Theorem 4 by a property of the GCD
function, which is: ∀a, b > 0, gcd(a, b) = gcd(a mod b, b) = gcd(a, b mod a).

Since gcd(a, b) = gcd(b, a), we can apply Theorem 8 recursively to a and b to reduce the exponents even
further. This procedure can be defined as a simple algorithm, which is essentially the same as the process
of applying the Euclidean algorithm to calculate gcd(a, b).

Algorithm 1 (GCD Exponent Reduction). Inputs: a, b ∈ Z+.

Steps:

1. If b > a, then swap the values of a and b, so that a = max(a, b) and b = min(a, b).

2. Set a0 = a and b0 = b and define the recurrence relations:

ai+1 = (ai mod bi),

bi+1 = (bi mod ai+1).

3. Starting from i = 0, step through the recurrences by setting i = i + 1 until we find bk = 0 for some
k = i, and then halt.

4. Set α = min(ak, bk−1) and β = max(ak, bk−1).

5. Finally, calculate

gcd(a, b) = −
(
xα+αβ mod ((xα − 1)(xβ − 1))

)
mod x.

Since Algorithm 1 mimics the process of calculating gcd(a, b) by way of the Euclidean algorithm, there
is no practical sense in carrying it out to completion. However, when writing and evaluating arithmetic
terms, performing a single iteration of the recursion and then setting the exponents to either a1, b0 or a1, b1
(depending on divisibility properties of a and b) can result in a significant performance improvement in the
event a ≫ b or b ≫ a.

4 Semiprime Factors

Using our results on the greatest common divisor function (§ 2), as well as results from our earlier works
[15, 13] and those of Mazzanti [3], Robinson [8], Prunescu and Sauras-Altuzarra [12], we discover arithmetic
term formulas for the prime factors of a non-square semiprime n = pq.

Theorem 9. Let n ∈ Z+ such that n = pq is a non-square semiprime and p < q are the prime factors of n.

Define

ω =

⌊
(n2n + 1)2n+1 mod (n4n − n)

(n2n + 1)2n mod (n4n − n)

⌋
− 1.
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Then, set

γ =

 (ω + 1)ω·(ω+2)⌊
((ω+1)ω·(ω+2)+1)

(ω+1)ω+2

(ω+1)ω2·(ω+2)

⌋
mod (ω + 1)ω·(ω+2)

 .

Finally, we have

p =

⌊
nn+n(γ mod n)

(nn − 1)(nγ mod n − 1)

⌋
mod n.

Proof. From Shunia (2024) [13], for n that is not a square, we get the arithmetic term⌊√
n
⌋
=

⌊
(n2n + 1)2n+1 mod (n4n − n)

(n2n + 1)2n mod (n4n − n)

⌋
− 1,

which matches our definition of ω. Hence, ω = ⌊
√
n⌋.

From Prunescu and Sauras-Altuzarra (2024) [12], we also have the factorial formula

n! =

 2n(n+1)(n+2)⌊(
22(n+1)(n+2)−n + 2−n

)2(n+1)(n+2)
⌋
mod 22(n+1)(n+2) .


The factorial formula of Prunescu and Sauras-Altuzarra is derived from an identity of Robinson (1952) [8],
which is

∀r ∈ Z : r ≥ (n+ 1)n+2, n! =

⌊
rn/

(
rn

n

)⌋
.

Hence, the formula is also valid for r = (n + 1)n+2, which grows more slowly than 2(n+1)·(n+2) as n → ∞.
Making the substitutions and simplifying, we find

n! =

 (n+ 1)n·(n+2)⌊
((n+1)n·(n+2)+1)

(n+1)n+2

(n+1)n2·(n+2)

⌋
mod (n+ 1)n·(n+2)

 .

Considering ω!, this becomes

ω! =

 (ω + 1)ω·(ω+2)⌊
((ω+1)ω·(ω+2)+1)

(ω+1)ω+2

(ω+1)ω2·(ω+2)

⌋
mod (ω + 1)ω·(ω+2)

 ,

which matches the definition for γ. Hence, γ = ω! = ⌊
√
n⌋!. Applying Corollary 3, we have

gcd(n,
⌊√

n
⌋
!) = gcd(n, γ) =

⌊
nn+nγ

(nn − 1)(nγ − 1)

⌋
mod n.

Since n is a non-square semiprime and p < q, we must have p ≤ ⌊
√
n⌋ and q > ⌊

√
n⌋. Hence, p =

gcd(n, ⌊
√
n⌋!). To reduce the exponent γ, we apply Theorem 8, which yields

gcd(n,
⌊√

n
⌋
!) =

⌊
nn+n(γ mod n)

(nn − 1)(nγ mod n − 1)

⌋
mod n.
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Corollary 10. Let n = pq be a non-square semiprime. Then

q =
n⌊

nn+n(γ mod n)

(nn−1)(nγ mod n−1)

⌋
mod n

.

Proof. The proof follows immediately from Theorem 9, since n
p = q in this case.

Corollary 11. Let φ(n) represent Euler’s totient function for n = pq, a non-square semiprime. Then

φ(n) =

((⌊
nn+n(γ mod n)

(nn − 1)(nγ mod n − 1)

⌋
mod n

)
− 1

) n⌊
nn+n(γ mod n)

(nn−1)(nγ mod n−1)

⌋
mod n

− 1

 .

Proof. The proof follows immediately from Theorem 9, since φ(n) = (p− 1)(q − 1) in this case.
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