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Abstract. Digital Signatures are ubiquitous in modern computing. One
of the most widely used digital signature schemes is ECDSA due to its
use in TLS, various Blockchains such as Bitcoin and Etherum, and many
other applications. Yet the formal analysis of ECDSA is comparatively
sparse. In particular, all known security results for ECDSA rely on some
idealized model such as the generic group model or the programmable
(bijective) random oracle model.
In this work, we study the question whether these strong idealized models
are necessary for proving the security of ECDSA. Specifically, we focus
on the programmability of ECDSA’s “conversion function” which maps
an elliptic curve point into its x-coordinate modulo the group order.
Unfortunately, our main results are negative. We establish, by means of
a meta reductions, that an algebraic security reduction for ECDSA can
only exist if the security reduction is allowed to program the conversion
function. As a consequence, a meaningful security proof for ECDSA is
unlikely to exist without strong idealization.
Keywords. ECDSA, random oracle model, programmability, meta re-
ductions

1 Introduction

The digital signature algorithm (DSA) [34]1 and its elliptic curve variant ECDSA
[28] are two of the most prevalent digital signatures to date, used in TLS [4] and
various cryptocurrencies such as Bitcoin and Ethereum. Furthermore, there has
been a lot of recent interest in designing threshold signing protocols for ECDSA
such as [31,25,18,32,19,14,15,12,16,17,30].

Despite its practical importance, only a few research papers so far have studied
the provable security of (EC)DSA. Further, all security proofs require some form
of strong idealization, e.g. the random oracle model [5,21], the bijective random
oracle model [20], the (elliptic curve) generic group model (GGM) [8,27], or the
algebraic bijective random oracle model [37].

Generic DSA signatures (GenDSA) are defined over a group G of prime order
p with generator g, a hash function H, and a so-called “conversion function”
1 FIPS 186-5 from February 2023 does no longer approve DSA signatures for digital
signature generation. However, DSA may still be used for signature verification.
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f : G∗ → Zp mapping group elements to exponents. A public key consists of a
single group element X = gx with its discrete logarithm x being the secret key. To
sign a message m, the signer samples a random exponent r, computes gr and then
applies the conversion function to compute t = f(gr). Next, it hashes the message
m and computes s = H(m)+tx

r mod p. The signature is the tuple (s, t) ∈ Z∗p × Z∗p.
DSA and ECDSA can be seen as special cases of GenDSA, instantiated over specific
groups and with specific conversion functions. For ECDSA, G is an elliptic curve
group and the conversion function f maps an element on the elliptic curve to
its x-coordinate modulo p; for DSA, G is a subgroup of order p of a prime order
field, and f reduces a group element modulo p.

Whereas in most previous security proofs of GenDSA, the hash function H
was modeled as a perfect random function (i.e., a random oracle [3]), properly
modeling the conversion function f : G∗ → Zp turned out to be problematic. In
both DSA and ECDSA, the conversion functions in essence reduce (part of) the
group element modulo the order of the group generator, but they completely
disrupt the algebraic meaning of their input. Specifically, for ECDSA, f is “almost
invertible”, i.e., inverting f only loses the sign of the elliptic curve point. However,
all known security proofs (of full UF-CMA security) have the following drawback:

Observation: All existing security proofs of (EC)DSA model (parts of) the
conversion function f as some programmable, idealized function.

Specifically, they either model f explicitly using a random function/bijection [5,37,20]
or they hide the group elements via the random encoding of the GGM and hence
model f implicitly as a random function [8,27]. While this approach does mimic
how f breaks the algebraic meaning of its inputs, it actually does even more. By
using a random oracle/bijection, a reduction is allowed to program the random
function, as long as the adversary cannot detect the changes. Similarly, the GGM
allows for programming of the representations of the group elements, which makes
any non-algebraic function f mapping from G implicitly programmable. Pro-
grammability is already somewhat debatable when modeling hash functions [22],
but it is especially unsatisfying when modeling the conversion function f , as the
function is conceptually very simple and not random at all, which makes pro-
grammability especially unrealistic. Yet, all known proofs for (EC)DSA crucially
rely (explicitly or implicitly) on programming the conversion function f . So in
this work, we ask the following natural question:

Question: Is (EC)DSA provably secure without relying on the programmability
of the conversion function f?2

2 We stress that we do not question the modeling of GenDSA’s hash function H as a
programmable random oracle. Even though the programmable random oracle model
has received valid criticism (e.g., [13]), it is generally viewed as a valid heuristic for a
modern hash function which was designed to behave randomly.
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1.1 Main Contributions

Unfortunately, our results are negative: We show that without modeling (part
of) the conversion function f as a programmable idealized object, there is little
hope for proving (EC)DSA secure. Together with the known positive results
on (EC)DSA by Fersch, Kiltz, and Poettering [20,21], we obtain the following
complete picture on the provable security of (EC)DSA:

Main result (informal): (EC)DSA is provably secure if and only if the
conversion function f is modeled using a programmable idealized function.

To be a bit more precise, we follow the framework of [20] and decompose the
conversion function f into three functions ϕ,ψ,Π, with f = ψ ◦Π ◦ ϕ, where
only Π : {0, 1}L → {0, . . . , 2L − 1} is an idealized random bijection and ϕ and ψ
are standard model functions. (More details on the modeling of f will be given
in Section 3.2.) To simplify the presentation of our results, in the remainder of
this introduction we call conversion function f programmable iff the random
bijection Π is programmable.

Our main results are summarized in Figure 1, where the considered security
notions are Unforgeability against Chosen-Message Attack (UF-CMA), Unforge-
ability against No-Message Attack (UF-NMA – no signing queries allowed), and
Multi-User UF-CMA (n-UF-CMA).

DLog SDLog ⇔
UF-NMA UF-CMA n-UF-CMA6

f = non-progr., rewind. (Th. 1)
OR f = progr., non-rewind. (Th. 2)

6
f = non-progr.,
rewind. (Th. 3)

6
f = non-progr., rewind., loss < n (Th. 4)

OR f = progr., non-rewind., loss < n (Th. 5)

f = progr., rewind. [20] f = progr., non-rewind. [20] f = arb., loss = n [24]

Fig. 1. Relations between hardness assumptions DLog and SDLog (relative to conversion
function f) and security notions for GenDSA (relative to hash function H and conversion
function f). A crossed arrow refers to an impossibility result, together with the condition
under which it holds. “f = progr.” means that the conversion function f is modeled as
programmable, “f = non-progr.” means that f is modeled as non-programmable, and
“f = arb.” means that f can be arbitrary; “rewind.” and “non-rewind.” means that the
security reduction is rewinding and non-rewinding, respectively. In all negative relations,
GenDSA’s hash function H (if available) is modeled as a programmable random oracle.

Relation Between DLog and UF-NMA security of GenDSA. We first study
the question whether the standard Discrete Logarithm assumption (DLog) can
provably imply UF-NMA security of GenDSA (i.e., no signing queries allowed).
Since for arbitrary conversion functions f , UF-NMA security is known to be
equivalent to the SDLog assumption when modeling the hash function H as a
programmable random oracle [6,21], we equivalently study the (simpler) relation
between the DLog and the SDLog assumption. Here SDLog refers to the Semi
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Discrete Logarithm assumption relative to conversion function f [6].3 On the
positive side, [20] use a rewinding reduction to show that DLog is equivalent to
SDLog if f is programmable. We contrast their positive result with two negative
results.

Firstly, we present a meta reduction showing that if the conversion function
f is non-programmable, then there exists no algebraic reduction that reduces
the SDLog to the DLog assumption, as long as the Free-Base One-More Discrete
Logarithm assumption (FBOMDL) holds in the group. FBOMDL, introduced
by Paillier and Vergnaud [36], is a stronger variant of the regular One-More
Discrete Logarithm assumption (OMDL) [2]. (See below for a general discussion
on assumptions in the context of meta reductions.) Secondly, we show that even
if the conversion function f is programmable, SDLog cannot be reduced to the
DLog assumption by an algebraic, non-rewinding reduction, as long as FBOMDL
holds.

By the equivalence of SDLog and the UF-NMA security of GenDSA, the
relation between DLog and UF-NMA security of GenDSA can be summarized as
follows: DLog provably implies UF-NMA security of GenDSA if and only if f is
programmable and the reduction is allowed to rewind the adversary.
Relation Between UF-NMA and UF-CMA Security. On the positive side,
[20] use a non-rewinding reduction to show that UF-NMA implies UF-CMA security
of GenDSA if f is programmable. Contrasting their positive result, we prove that
there cannot exist an algebraic reduction from the UF-CMA security of GenDSA
to its UF-NMA security, if the DLog assumption holds and f is non-programmable.

Note that UF-NMA and UF-1CMA security are known to be equivalent for
GenDSA [21], where in UF-1CMA security the adversary is only allowed to query
one signature for each message. By transitivity, our negative result also shows
that UF-1CMA does not imply full UF-CMA security, unless f is programmable.
This gives a negative answer to an open question of [21].
Relation between Single-User and Multi-User Security. We also
consider the multi-user security of GenDSA. While single-user and multi-user
security are tightly equivalent for other schemes such as Schnorr signatures [29],
we prove that the generic security loss linear in the number of users proven
in [24] is indeed optimal for GenDSA, if the reduction is algebraic and f is
non-programmable. We also show optimality of the linear loss for the case if
the conversion function f is programmable but the reduction is restricted to be
non-rewinding. Our interpretation is that GenDSA’s multi-user security inherently
loses a linear factor compared to single-user security, unless the reduction can
program f and is allowed to rewind the adversary. But rewinding reductions
usually require the forking lemma and therefore result in an even worse (quadratic)
security loss.
Interpretation of our Results Our results show that there can be no
algebraic reductions under the conditions mentioned above. More specifically, we

3 The SDLog assumption essentially says that it is hard to forge a GenDSA signature
relative to a message m with H(m) = 1, see Definition 3.
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have to restrict the class of reductions even further (see Section 3.2). So how
relevant are our results then? First, note that almost all security reductions
are generic, i.e. they do not use anything other than the group structure of a
cryptographic group. All generic algorithms are also algebraic [23] and have to
fulfill the additional requirements we make on our reductions, so most reductions
commonly used are covered by our impossibility results. Another formulation of
our results would be that in order to prove GenDSA secure without programming
f , one would either have to break FBOMDL, find some new, non-algebraic proof
technique or apply additional idealized model such as the AGM or GGM.
Generic Hardness of the FBOMDL Assumption. As we are dealing with
meta-reductions, all our negative results are naturally conditioned on certain
computational assumptions. Some of them are non-standard and quite strong
assumptions, such as the FBOMDL assumption. We would like to stress that we
only prove “unprovability” based on such strong assumptions. That is, if the
strong assumption gets broken, we only lose the impossibility result and (EC)DSA
signatures are most likely still secure. The natural interpretation of our results is
that a formal security proof is impossible unless one finds a way to break the
assumptions. In that sense for impossibility results from meta-reductions there is
only a small risk in using strong assumptions. Other examples following a similar
approach include the impossibility result of [10], which is conditioned on the
existence of indistinguishability obfuscation (iO). This is in stark contrast to an
actual security proofs from strong assumptions where the security of the whole
system would be jeopardized in case the assumption is broken.

The OMDL assumption was recently proven secure in the GGM [1]. Their
proof mainly uses that each query to the discrete logarithm oracle reveals a linear
relation. While the free-base variant allows queries to a different basis point,
answers still only reveal linear relations, so their proof applies to the FBOMDL
assumption as well. For completeness, we provide a formal proof of the FBOMDL
assumption in the GGM in Supplementary Material A.

1.2 Related Work

The first formal security results on unmodified (EC)DSA are due to Brown [7,8,9]
and prove security of ECDSA in the generic group model. However, the proof is
somewhat problematic in that it not only idealizes the underlying group G but
also implicitly the conversion function f . This allows Brown to prove that ECDSA
is strongly unforgeable (as observed by Stern et al. [39]), which it obviously is not.
Additionally, Brown shows different necessary and sufficient conditions for the
security of ECDSA, however the sufficient conditions are significantly stronger
than the discrete logarithm problem.

As already mentioned, [20,21] take a different approach in that they do not
idealize the underlying group but conversion function f and hash function H.
Modeling f as a programmable idealized object, [20] show that DLog implies
UF-NMA security, which in turn implies full UF-CMA security. Furthermore, [21]
model only H as a random oracle, and show that, for any function f , the Semi
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Discrete Logarithm assumption (SDLog) implies the UF-NMA security of GenDSA,
which in turn implies UF-1CMA security, i.e. an adversary is only allowed a single
signature on each message.

Recently, Groth and Shoup [27] revisited the security of ECDSA in the generic
group model. They avoid the shortcomings of Brown’s proof by considering
ECDSA in the so-called Elliptic Curve GGM (EC-GGM). This variant of the
GGM keeps some relationships in the elliptic curve intact, such as the fact which
points share the same x-coordinate. Their proof still implicitly idealizes the
conversion function f , but only requires standard properties for the hash function
H. They also consider the security of ECDSA with additive key derivation and
when using presignatures (i.e. an adversary gets a number of random group
elements and can choose which the challenger has to use to answer signature
queries).

In terms of impossibility results, Pailler and Vergnaud [36] show that a large
class of signatures including DSA and ECDSA cannot be proven secure in the
standard model via a meta reduction to a variant of the One-More Discrete
Logarithm problem. We prove a stronger impossibility result, since we model f
as in [20] with a (non-programmable) ideal bijection and make no restrictions on
the modeling of H (i.e., even allow it to be a programmable RO).

Further research either considered variants of GenDSA (or DSA and ECDSA)
[33] or analyzed their behavior in the presence of specific faults such as (par-
tial) randomness reuse [35] or collisions [40,41]. Blind signatures and threshold
signatures based on ECDSA were proposed in [11,37] and [26,15] respectively.

2 Preliminaries

For integers m,n ∈ Z, let [m : n] = {m,m + 1, . . . , n}. If m = 1, we write [n]
instead. Let S be a (finite) set, then we write s $← S for sampling an element s
uniformly at random from S.

2.1 Algebraic Algorithms

We model all algorithms (i.e. adversaries, reductions and meta reductions) as
stateful and probabilistic (the specific computational model is not relevant, but
one can think of interactive Turing machines). For a probabilistic algorithm A,
we write y $← A(x1, . . . , xn) when A outputs y on input (x1, . . . , xn) using fresh
random coins. For deterministic algorithms, we use y ← A(x1, . . . , xn). We write
AO(·) to indicate that A gets black-box access to algorithm O which is also called
an oracle. That is, A can make arbitrary many queries xi to O and obtains O(xi)
as answers.

Throughout this paper, we fix a cryptographic group G = (G, p, g), where G
is a finite multiplicative group G of prime order p, generated by g. An algorithm
A is called algebraic [36,23], if it outputs every group element together with a
representation relative to its inputs. We also consider oracle-aided algorithms,
where an oracle can output (random) group elements. If this is the case, an
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algebraic algorithm treats these group elements as additional inputs. On the
other hand, if an oracle takes group elements as input, an algebraic algorithm is
also required to output a representation for these inputs.

Definition 1 (Algebraic Algorithm). An algorithm A is called algebraic
relative to a group G = (G, p, g), if whenever it outputs a group element X ∈ G
it additionally outputs a representation vector ~z ∈ Znp s.t. X =

∏n
i=1 Y

zi
i , where

Y1, . . . , Yn denote the group elements previously known to A.

Our meta reductions will require that the assumed reduction is algebraic, yet
the meta reductions themselves (and therefore also the adversaries simulated by
them) will not be algebraic. This is analogue to security reductions in the AGM,
where an adversary is assumed to be algebraic, but the reduction and the oracles
it provides are not algebraic.

As noted by in [42,43], it is somewhat imprecise to talk about the group
elements “known” to an algorithm, because additional group elements might
be encoded in its inputs. However, all adversaries that we consider only receive
group elements as inputs (most only a single group element), so we assume that
those are the only group elements known.

2.2 Idealized Functions

In our security reductions we will model the conversion function f and the
hash function H of GenDSA as publicly accessible, idealized functions. The
most prominent idealized function is a random oracle [3], where a hash function
H : X → Y is modeled as a perfect random function H $← {H : X → Y} that
can only be accessed through oracle queries. Note that oracle H can be efficiently
implemented using lazy sampling.

Let Func(X ,Y) be the set of all functions from X to Y and let Bij(X ,Y) be
the set of all bijections from X to Y. The idealized functions that we will use in
this work, together with their oracle interfaces, are listed in the following table.

Idealized object Function type Oracle Distribution
Random Oracle (RO) Function H : X → Y H H $← Func(X ,Y)
Bijective Random Oracle (bRO) Bijection Π : X → Y (Π,Π−1) Π $← Bij(X ,Y)

2.3 Security Reductions and Programmability

Proving that a hard problem P (e.g., DLog) implies the security of some crypto-
graphic protocol S (e.g., the ECDSA signature scheme) is commonly done via a
security reduction. In a security reduction, an adversary A against S is executed
by a reduction R, denoted as RA, which uses A to solve its own hard problem P.
If further R’s success is meaningfully related to that of A, then one can deduce
P⇒ S. In this work, we always consider Fully Black Box reductions [38], i.e. the
reduction can not depend on any internal properties of the adversary like its
code. However, we assume that upper bounds on the number of oracle queries of
all algorithms are known.
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Programmable Idealized Functions. If A is an adversary with oracle access
to an idealized function O (see Section 2.2), then reduction R executes A by
providing its inputs, randomness, and answering all queries made to the expected
oracle O. Using our notation, we write RAO to denote the reduction executing
AO. Consequently, R has complete control over A’s input and output channel
and therefore in particular over oracle O. In the most general case, R can even
rewind the adversary A in a black-box manner by running it again with the same
initial inputs (including randomness) and altering the oracle answers at some
point of the execution. Hence in the context of a security reduction, such idealized
functions are also called programmable. Most prominently, if O is modeled as a
random function H, then H is the well known programmable random oracle or
simply random oracle [3].
Non-Programmable Idealized Functions. One can also model A’s oracle
as an idealized function that reduction R does not control but is only able to
observe. We call such an oracle a non-programmable idealized function Ō. We
use the notion Ō (“overline”) to make the non-programmability of the function
explicit. Here, observing means that whenever A makes a query X to Ō, it
obtains the response Ō(X) directly from Ō, but R also gets the pair (X, Ō(X)).4
Furthermore, we also provide the reduction R black-box access to Ō. (In the
programmable case this is not necessary since R has already full control over the
oracle O.) In the context of a security reduction, we use the notation RŌ,AŌ to
indicate that Ō is non-programmable by R.

The special case where Ō is a perfectly random function H̄ yields the well-
known non-programmable random oracle [22].

The differences between a programmable and a non-programmable idealized
function in the context of a security reduction are visualized in Figure 2.

2.4 Meta Reductions

Meta reductions are a useful tool for proving the (conditional) impossibility
of security reductions. On a technical level, a meta reduction M assumes the
existence of a reduction R = RA proving P⇒ S, i.e., R solves problem P with
black-box access to an adversary A. Meta reductionM then uses said assumed
reduction to break some (potentially different) hard problem P′. As a consequence,
such a security reduction R proving P⇒ S cannot exist unless problem P′ turns
out to be easy. The above requires simulating an adversary A for R to work,
which is often the main challenge of constructing a meta reduction.

The meta reduction has to provide R with all oracles it expects in its game
as well as (programmable or non-programmable) idealized functions, while R in
turn provides all programmable oracles O to the (simulated) adversary A. This is
depicted in Figure 3. For the case of a non-programmable ideal function, there are
4 [22] consider a more general modeling where R gets X before the query and can
make its own oracle queries which could influence the response Ō(X). However, since
such queries would never alter the behavior in all of our reductions, we only consider
this simplified definition.
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R A

O

P
R A

Ō

P

Fig. 2. Left: Security reduction R running adversary A with access to a programmable
idealized function O. Reduction R has full control over A’s queries to O. Right: Security
reduction R running A with access to a non-programmable idealized function Ō.
Reduction R can only observe A’s queries to Ō.

some intricacies to the modeling. Specifically, if R expects a non-programmable
idealized function,M can itself simulate a programmable idealized function (via
standard lazy sampling), which is indistinguishable from a non-programmable
idealized function for R.

R A

O

P

M

P′

R A

Ō

P

M

P′

Fig. 3. Depiction of a meta reductionM interacting with a game P′ with a programmable
oracle O (left) and non-programmable oracle Ō (right), and a reduction R. In the
programmable case, the oracle is “internal” to the reduction, i.e., O can be controlled
arbitrarily by R. In the non-programmable case, the oracle is external to R and hence
meta-reductionM is able to control Ō.

Fishlin et al. [22] argue that one should allow the reduction the same pro-
gramming and observability capabilities as the meta reduction, as it keeps the
modeling of the function replaced by the random oracle consistent. Intuitively,
if the goal is to model realistic functions, it is unreasonable to assume that one
(efficient) algorithm has more control over some function than another (efficient)
algorithm without any trapdoors. However in our proofs, we have to allow the
meta-reduction to program while the reduction sees the random oracle as non-
programmable. Indeed, programmability for the meta-reduction seems necessary
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in order to extract solutions in the end of the meta reduction. Looking ahead, the
meta-reduction will use the solution of the reduction together with the observed
random oracle queries to extract a discrete logarithm from the solution and
previously simulated signatures.

2.5 Hardness Assumptions

We now recall three hard problems over a group G = (G, p, g): The standard
Discrete Logarithm problem, the Semi Discrete Logarithm problem [6], and the
Free-Base One-More Discrete Logarithm problem [36].

Definition 2 (Discrete Logarithm Problem). The discrete logarithm (DLog)
problem is (t, ε)-hard in group G = (G, p, g), if for all adversaries A running in
time at most t, Pr[x′ = x | x $← Zp;X := gx;x′ $← A(X)] ≤ ε.

Definition 3 (Semi-Discrete Logarithm Problem). The Semi-Discrete
Logarithm (SDLog) problem is (t, ε)-hard relative to group G = (G, p, g) and
conversion function f : G→ Zp, if for any adversary A running in time at most t,
Pr[t∗ 6= 0∧s∗ 6= 0∧ t∗ = f((g ·Xt∗)s∗−1) | x $← Zp;X = gx; (s∗, t∗) $← A(X)] ≤ ε.

We remark that the SDLog problem can equivalently be seen as “forging a GenDSA
signature (see Definition 8) on a message m with H(m) = 1”. While SDLog is
defined relative to a specific conversion function f , it can be replaced by an
idealized function in a reduction similar to how explicit hash functions can be
replaced with random oracles.

Definition 4 (Free-Base One-More Discrete Logarithm Problem). The
q-Free-Base One-More Discrete Logarithm (q-FBOMDL) problem is (t, ε)-hard in
group G = (G, p, g), if for all adversaries A running in time at most t,

Pr
[
∀0 ≤ i ≤ q : Xi = gxi

∣∣∣∣ X0
$← G

(x0, . . . , xq) $← ADL(·,·),Chal(X0)

]
≤ ε,

where the oracles are defined as follows. The challenge oracle Chal, on its i-th
query, outputs a group element Xi

$← G∗. It can be queried at most q times. The
free-base discrete logarithm oracle DL(·, ·), on input (X,R) ∈ G×G∗, outputs
z ∈ Zp s.t. Rz = X. It can be queried as many times as the Chal oracle was
queried.

q-FBOMDL is a stronger variant of the regular One-More Discrete Logarithm
assumption [2], where the discrete logarithm oracle is restricted to base g. To
increase the confidence in q-FBOMDL, we will prove its unconditional hardness
in the GGM in Supplementary Material A.

2.6 Digital Signatures

We recall the definition of digital signatures and their standard notions of security.
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Definition 5 (Digital Signatures). A digital signature scheme SIG = (Gen,
Sign,Ver) is a tuple of three algorithms with the following properties:

Gen $→ (sk, vk): The key generation algorithm outputs a public key/secret key
pair. The public key implicitly defines the message spaceM.

Sign(sk,m) $→ σ: The signing algorithm takes a secret key sk and a message
m as input and returns a signature σ.

Ver(vk,m, σ): The (deterministic) verification algorithm gets a public key vk,
a message m and a signature σ and outputs 1 for accept and 0 for reject.

A digital signature scheme is ε-correct, if for all (sk, vk) ∈ Gen and all messages
m ∈M

Pr [Ver(vk,m,Sign(sk,m)) = 0] ≤ ε

Definition 6 (Signature Security). Let n ∈ N and SIG = (Gen,Sign,Ver) be a
digital signature scheme. SIG is said to be (t, ε, qS)-n-UF-ATK secure (Multi-User
Unforgeability against ATK attacks), if for every adversary A running in time at
most t and making at most qS queries to the oracle Sign,

Pr
[

(i∗,m∗) 6∈ Q∧
Ver(vki∗ ,m∗, σ∗) = 1

∣∣∣∣ For i ∈ [n] : (vki, ski) $← Gen
(i∗,m∗, σ∗) $← ASign(·,·)((vki)i∈[n])

]
≤ ε,

where depending on ATK, the oracle Sign is defined as follows:

– ATK = NMA: The oracle Sign always returns ⊥.
– ATK = CMA: On input of a message m and an index i ∈ [n], Sign returns a
signature σ for m under secret key ski and adds (i,m) to Q.

If the adversary has additionally access to an idealized function via oracle O(·),
we denote this as (t, ε, qS , qO)-n-UF-ATK security, where qO denotes the number
of queries to O. For NMA security, we omit the parameter q from the description
and simply write (t, ε)-n-UF-NMA. If n = 1, i.e. we are in a single-user setting,
we instead write (t, ε, qS)-UF-ATK = (t, ε, qS)-1-UF-ATK.

3 Generic DSA and the Conversion Function

In this section, we recall the definition of GenDSA from [20] and discuss the
modeling of the conversion function f in our meta reductions. We also recall
some basic definitions beforehand.

Definition 7 (Semi-Injective Function). Let G be a prime order group and
Y a set. A function ϕ : G∗ → Y is called semi-injective if

1. its range ϕ(G∗) ⊆ Y is efficiently decidable and
2. it is either injective or a 2-to-1 function with ϕ(x) = ϕ(y) =⇒ x ∈ {y, y−1}
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3.1 Generic DSA Signatures

In this work, we will study Generic DSA (GenDSA) [20], an abstract signature
framework which subsumes both DSA and ECDSA. It models the conversion
function as f = ψ ◦Π ◦ϕ for efficient functions ψ,ϕ and a bijection Π. According
to [20], the idea is to reflect in ϕ the structure of f that involves only its domain
and to reflect in ψ the structure that involves only its range; the component that
is responsible for disrupting any algebraic link between the domain and the range
is modeled by Π. In security proofs we, Π will be replaced by a bijective random
oracle. DSA and ECDSA can naturally be obtained, together with the specific
peculiarities of their conversion functions, by correspondingly instantiating ϕ
and ψ. For a more in-depth discussion of GenDSA, we refer the reader to [20].

Definition 8 (GenDSA). Let L ∈ N. The signature scheme GenDSA = (Gen,
Sign,Ver) relative to a group G = (G, p, g), a hash function H : {0, 1}∗ → Zp and
a conversion function f : G∗ → Zp with f = ψ ◦Π ◦ϕ for efficient functions ψ,ϕ
and bijection Π with

G∗
ϕ−→ {0, 1}L Π−→ [0 : 2L − 1] ψ−→ Zp

is defined as follows.

Gen:
x $← Zp; X := gx

vk := X; sk := x
return (vk, sk)

Sign(sk = x,m):

r $← Z∗p;R := gr

t := f(R);h := H(m)
s := h+x·t

r
if (t = 0) ∨ (s = 0) then

return ⊥
return (s, t)

Ver(vk = X,m, σ = (s, t)):
if (t = 0) ∨ (s = 0) then

return ⊥
h := H(m)
t′ = f

((
ghXt

) 1
s

)
return t = t′

To the function ψ from Definition 8, we associate the quantity

εψ = max
t∈Zp

Pr
y∈[0:2L−1]

[ψ(y) = t], (1)

ECDSA and DSA. For ECDSA [28], G is instantiated with a prime-order
subgroupG of an elliptic curve group over Fq. For L = dlog2(q)e, ϕ : G∗ → {0, 1}L
maps an elliptic curve point R = (Rx, Ry) ∈ Fq ×Fq to the binary representation
of its x-coordinate Rx, which makes it a semi-injective 2-to-1 function. Note
that ϕ(G) is efficiently decidable. Function ψ : [0 : 2L − 1]→ Zp is the modular
reduction modulo p. By Hasse’s theorem, we get p ≤ 2q for all q ≥ 13 (see [27]).
If q ≥ p, then the probability that ψ maps an element from [0 : 2L − 1] with
L = dlog2(q)e to a specific y ∈ Zp is at most 2/p, since there are at most d2L/pe
preimages per y. On the other hand, if q ≤ p, we get that the same probability is
bounded by 1/q ≤ 1/(p/2) = 2/p, where the inequality follows from the Hasse
bound. So in both cases εψ ≤ 2/p.
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For DSA, G is instantiated with a multiplicative prime order subgroup of the
a prime order field Fq, i.e. G ⊂ F∗q . For L = dlog2(q)e ϕ : G∗ → {0, 1}L is the
mapping of a group element to its binary representation, hence it is injective (so
also semi-injective). ϕ(G) is efficiently decidable since the group order is known.
ψ : [0 : 2L − 1]→ Zp is the reduction modulo p. Since we always have p ≤ 2q + 1,
it is straight forward to see εψ ≤ 2/p.

3.2 Modeling the Conversion Function in Proofs

As observed by Brown [9], the non-algebraic conversion function f : G∗ → Zp is
an integral part of a security analysis of GenDSA. However, modeling the abstract
properties of f in formal proofs turns out to be a non-trivial task.

We use Definition 8 and decompose f as f = ψ◦Π ◦ϕ. In our meta reductions,
permutation Π : {0, 1}L → [0 : 2L − 1] is modeled as a bijective Random Oracle
(bRO) (Π,Π−1) and the two functions ϕ : G∗ → {0, 1}L, ψ : [0 : 2L−1]→ Zp are
standard model functions. This allows to accurately model the biases introduced
by the real conversion functions while having a clear interface to work with in
(meta-)reductions.
The Conversion Function in the AGM. In our results we will provide an
algebraic algorithm A (i.e., a reduction) access to a bijective Random Oracle
(Π,Π−1). Since algorithm A is algebraic, we make the following constraints:

1. Whenever an algebraic algorithm A queries Π−1(y) for some y ∈ [0 : 2L − 1],
it receives the output x = Π−1(y) ∈ {0, 1}L of the bRO. If x ∈ ϕ(G∗) (which
can be efficiently decided by Definition 7), then we add ϕ−1(x) to the list of
known group elements relative to which the algebraic algorithm can output
representations. Note that, by using lazy sampling, queries to Π−1(y) can be
efficiently simulated even if ϕ is not efficiently invertible: We first sample a
fresh random element x ∈ {0, 1}L. If x 6∈ ϕ(G∗), we define Π−1(y) := x. If
x ∈ ϕ(G), we discard x and define Π−1(y) := ϕ(gr) for r $← Zp.

2. Whenever an algebraic algorithm A queries Π(x) for some x ∈ ϕ(G∗), it
also has to provide a group element R ∈ ϕ−1(x), together with an algebraic
representation of R. (Note that ϕ is semi-injective, and hence the exact choice
of R ∈ ϕ−1(x) is irrelevant.)

The latter constraint above was previously introduced in [37] as the Algebraic
Bijective Random Oracle model. However they only consider algebraic use of the
bRO interface Π used in f in contrast to the fully algebraic reductions in our
meta reductions. Therefore, we make the need for a representation relative to
ϕ part of the algebraic adversary instead of (Π,Π−1) and add the potentially
new group elements computable from (Π,Π−1) to A’s inputs. Specifically, this
is not an additional idealization of ϕ for (Π,Π−1) but a restriction on the class
of algorithms we consider.

Why is this a reasonable modeling of the conversion function in the algebraic
group model? First, as argued in [20], the composition of the three functions
allows to accurately model the biases and intricacies of the conversion function
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in many different settings such as DSA and ECDSA. However, since the bijective
random oracle (Π,Π−1) does not receive group elements as inputs, it is generally
incompatible with the AGM. The second constraint bridges this gap somewhat
artificially by demanding a representation of a preimage under ϕ whenever Π
is queried, which implicitly assumes that an algorithm will always use Π in
composition with ϕ (it can still use ϕ without querying Π). This assumption can
be seen as a simply another convenient constraint on algorithms similar to the
ones already made by the AGM. From this point of view, we simply consider an
even more limited class of algorithms.

Note that all generic algorithms are still covered by this limited class. Specifi-
cally, in the GGM, a representation of a preimage under ϕ is always known for
every z ∈ {0, 1}L as long as ϕ−1(z) is a valid label. This is due to the fact that
the GGM can simply track all calls to the group oracle and therefore knows a
representation for all defined labels relative to the inputs. If ϕ−1 produces a new,
valid label, the GGM can internally simply assign it a random group element for
which it knows a representation, keeping this invariant intact. For invalid labels,
nothing has to be done.

However, this restriction is indeed also a reasonable assumption if we look at
the concrete instantiations of the conversion function. For ECDSA, ϕ is essentially
the projection of an elliptic curve point (Rx, Ry) to is x-coordinate. While it
is easy for many curves to sample x-coordinates uniformly at random, doing
so samples the curve point obliviously, i.e. without knowledge of the discrete
logarithm or a representation relative to other points. If an algorithm were to
use such a group element in its solution, it would have to produce a non-trivial
equation in the secret key or challenge and this unknown discrete logarithm.
Worse still, this choice of an x-coordinate also does not give any more control
over the output of Π or ψ ◦Π, since Π is a random function, so using Π without
ϕ only loses information.

4 Impossibility Results

4.1 DLog 6⇒ SDLog

Our first result is to show that DLog does not imply SDLog if we consider only
non-programming, algebraic reductions. Specifically, the following theorem states
that there cannot exist an algebraic reduction from SDLog to DLog that does
not program the random bijection (Π̄, Π̄−1), unless the FBOMDL assumption is
false.

Theorem 1 (DLog
Π non-progr.

6⇒ SDLog). Let f = ψ ◦Π ◦ϕ be a conversion func-
tion with semi-injective ϕ : G∗ → {0, 1}L, ψ : [0 : 2L−1]→ Zp and Π : {0, 1}L →
[0 : 2L − 1] modeled by a non-programmable bijective random oracle (Π̄, Π̄−1).
If there exists an algebraic reduction R that (tR, εR, q′Π̄, q

′
Π̄−1)-breaks the DLog

assumption given qP -times access to an adversary A that (tA, εA, qΠ̄, qΠ̄−1)-breaks
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the SDLog assumption, then there exists a meta-reduction M which (tM, εM)-
breaks the qP -FBOMDL assumption with

εM ≥ εR − 2qP εψ −
q2

2L , tM ≈ tR + qP tA,

where q = qP (qΠ̄ + qΠ̄−1) + q′Π̄ + q′Π̄−1 is the total amount of queries to (Π̄, Π̄−1)
made by A and R.

We state an orthogonal impossibility result for non-rewinding reductions
which have access to a programmable bRO (Π,Π−1). Specifically, the following
theorem states that there cannot exist an algebraic reduction R that reduces
SDLog to DLog without rewinding the adversary, unless the FBOMDL assumption
is false.

Theorem 2 (DLog
non-rew.

6⇒ SDLog). Let f = ψ ◦Π ◦ϕ be a conversion function
with semi-injective ϕ : G∗ → {0, 1}L, ψ : [0 : 2L − 1] → Zp and Π : {0, 1}L →
[0 : 2L − 1] modeled by a programmable bijective random oracle (Π,Π−1). If
there exists an algebraic reduction R that (tR, εR)-breaks the DLog assumption
given one-times access to an adversary A that (tA, εA, qΠ, qΠ−1)-breaks the SDLog
assumption, then there exists a meta-reduction M which (tM, εM)-breaks the
1-FBOMDL assumption with

εM ≥ εR, tM ≈ tR + tA.

We now prove Theorem 1. The proof of Theorem 2 is similar and can be
found in Supplementary Material B.1.

Proof (of Theorem 1). Let A be an adversary that (tA, εA, qΠ̄, qΠ̄−1)-breaks the
SDLog assumption, and let R be the security reduction that (tR, εR, q′Π̄, q

′
Π̄−1)-

breaks the DLog assumption.R = R(Π̄(·),Π̄−1(·)) has access to the non-programmable
bRO (Π̄, Π̄−1) and executes up to qP -times adversary A. (Recall that the bars
of (Π̄, Π̄−1) indicate non-programmability.) We denote the i-th execution of A
as Ai. Ai = A(Π̄(·),Π̄−1(·))

i has access to the non-programmable bRO (Π̄, Π̄−1) of
the SDLog game and R can observer all queries made by A to (Π̄, Π̄−1). We will
construct a meta-reductionM trying to solve the qP -FBOMDL game by running
the reduction R, simulating the DLog experiment, the non-programmable bRO
(Π̄, Π̄−1) via lazy sampling, and the qP executions Ai of adversary A.
MChal,DL(·,·)(X) receivesX as its qP -FBOMDL input, has access to FBOMDL’s

challenge oracle Chal and discrete logarithm oracle DL and executes the reduc-
tion RΠ̄,Π̄−1(X) with X as its DLog challenge. Reduction R in turn executes up
to qP adversaries Ai(X̂i) (simulated byM) on an arbitrary group element X̂i as
its SDLog challenge. Meta reductionM and Ai(X̂i) simulated byM are shown
in Figure 4. Since R is algebraic, it provides Ai (and hence alsoM) with the rep-
resentations (ai, bi, ci,1, . . . , ci,i−1)i∈[qP ] of X̂i. That is, X̂i = gaiXbi

∏
j<iX

ci,j
j

for ai, bi, ci,j ∈ Zp, where Xj is the j-th challenge returned by the Chal oracle.
R will learn exactly one new Xj for each execution of A through its queries to
Π, so X̂i can only depend on g, X, and X1, . . . , Xi−1.
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Meta Reduction MChal,DL(·,·)(X)

1: Run R(X)
2: for i ∈ [qP ] do
3: Receive X̂i from R
4: Simulate AΠ̄(·),Π̄−1(·)

i (X̂i) for R
5: Receive solution x from R
6: Solve equations for x1, . . . xqP

7: return (x, x1, . . . , xqP )

Adversary AΠ̄(·),Π̄−1(·)
i (X̂i) �X̂i = gaiXbi

∏
j<i

X
ci,j
j

8: Xi ← Chal
9: t∗i ← ψ(Π̄(ϕ(Xi))) �via oracle query to Π̄
10: Make remaining qΠ̄ − 1 dummy queries to Π̄
11: Make qΠ̄−1 dummy queries to Π̄−1

12: if t∗i = 0 ∨ g · X̂i
t∗
i = 1 then �⇔ s∗i = 0

13: abort
14: s∗i ← DL(g · X̂i

t∗
i , Xi) �from FBOMDL game

15: return
{

(s∗i , t
∗
i ) with prob. εA

⊥ else

Fig. 4. Meta reductionM and simulated adversaries Ai against the SDLog assumption.
DL and Chal areM’s oracles from the FBOMDL assumption. If the Ai is run with
the same randomness and public key as Aj , thenM simply replays the queries made
by Aj and does not query the Chal or DL oracle.

Ai embeds one of the FBOMDL challenges Xi into its first query to Π̄.5
Next, it makes qΠ̄ − 1 dummy queries to Π̄ and qΠ̄−1 queries to Π̄−1. Here, all
queries are chosen such that the group elements corresponding to them via ϕ
are independent of the Xi, so the representation of all public keys for future
executions of A still collapses as described above. After making all of its queries,
Ai checks if the challenge Xi results in an invalid solution (line 12) and ends
its execution if so. Otherwise, it uses one query to the DL oracle to obtain
s∗i = DL(g · X̂i

t∗i , Xi) = 1+x̂it∗i
xi

6= 0, where X̂j = gx̂j and Xj = gxj ∈ G∗. Next,
it returns a valid SDLog solution (s∗i , t∗i ) ∈ Z∗p × Z∗p relative to public key X̂i.
Note that every Ai makes one Chal query and at most one DL query.

We can assume w.l.o.g. that all executions of Ai are distinct. (If Ai is run
with the same randomness and public key as Aj for j < i, thenM simply replays
the same queries as made in Aj . Specifically, it does not query the Chal oracle
and sets Xi = Xj . This results in a correct simulation, since (Π̄, Π̄−1) is a
non-programmable bRO, so R can only control the randomness and input of Ai
and nothing else.)

The simulation of Ai is perfect, as it wins with exactly probability εA, unless
t∗i = 0 or t∗i · x̂i + 1 = 0 with X̂i = gx̂i (line 12). We call the overall abort
Bad and the two sub-events Bad1 and Bad2 respectively. In order to analyze
Pr[Bad], we assume that (Π̄, Π̄−1) is a random function instead of a random
permutation. This allows us to assume that all output values are always chosen
uniformly at random, but might incur an error if a collision occurs. The latter
can be bounded by the birthday bound as q2/2L, where q is the total number of
queries to (Π̄, Π̄−1) observed by R.

We now analyze Bad1 and Bad2 for each individual execution of Ai. Event
Bad1 occurs iff t∗i = f(Xi) = ψ(Π̄(ϕ(Xi))) = 0. The random variable yi :=
Π̄(ϕ(Xi)) is distributed uniformly random since Π̄ is a random function. There-
fore, Pr[Bad1] = Pr[f(Xi) = 0] = Pr[ψ(Π̄(ϕ(Xi))) = 0] = Pr

yi
$←[0:2L−1][ψ(yi) =

0] ≤ εψ. Similarly, for each execution of Ai, event Bad2 occurs iff x̂it∗i + 1 = 0
with t∗i 6= 0 and x̂i 6= 0. x̂i is (implicitly) chosen by R before t∗i is computed
5 This fixed embedding is not exploitable by R since (Π̄, Π̄−1) is non-programmable



Limits in the Provable Security of ECDSA Signatures 17

by Ai with its first query to Π̄, so it is independent of t∗i . So in order for
Bad2 to occur, we have to bound the probability that t∗i = −x̂−1

i . With the
same argument as for Bad1, we get Pr[Bad2] = Pr[t∗i = −x̂i] ≤ εψ. So overall,
Pr[Bad] ≤ Pr[Bad1] + Pr[Bad2] ≤ 2εψ for each execution of Ai. A union bound
over all executions of A and the birthday bound yields that the probability that
Bad occurs in any execution is

Pr[Bad] ≤ 2qP εψ + q2/2L.

Now assume that none of the Ai aborts, i.e., Bad does not happen. Then
all Ai are simulated perfectly, so R will be successful with probability εR and
output x s.t. gx = X. Let xi (i ∈ [qP ]) be the unknown discrete logarithms
of the FBOMDL challenges Xi = gxi from line 8. Using the representations
ai, bi, (ci,j)j∈[qP ] of X̂i = gaiXbi

∏
j<iX

ci,j
j ,M gets the equations

s∗i xi = 1 + t∗i ai + t∗i bix+ t∗i
∑

1≤j<i
ci,jxj ,

for i ∈ [qP ] in the variables x1, . . . , xqP .
There are qP equations in qP variables, so there exists a unique solution unless

its determinant is zero. Looking at these equations as a matrix, we see that it is
a triangle matrix with the s∗i on the diagonal. Its determinant is

∏
i∈[qP ] s

∗
i 6= 0

since s∗i 6= 0.M computes the xi using standard linear algebra and returns all
qP + 1 discrete logarithms (x, x1, . . . , xqP ) as its solution. Hence, M wins the
qP -FBOMDL game if R is successful and Bad occurs in no execution of A, so

εM ≥ εR − Pr[Bad] ≥ εR − 2qP εψ −
q2

2L ,

which concludes the proof. ut

4.2 NMA 6⇒ CMA

Next, we prove that with non-programmable bijective random oracles, GenDSA’s
UF-NMA security does not imply UF-CMA security. By transitivity, this also
implies that UF-1CMA security does not imply UF-CMA security without pro-
grammability of (Π,Π−1).

Specifically, the following theorem states that there cannot exist an algebraic
reduction R that reduces the UF-CMA security of GenDSA to its UF-NMA se-
curity that does not program the random bijection (Π̄, Π̄−1), unless the DLog
assumption does not hold in the group.

Theorem 3 (UF-NMA
Π non-progr.

6⇒ UF-CMA). Let H,H′ : {0, 1}∗ → Zp be hash
functions modeled as a programmable random oracle and f = ψ ◦Π ◦ ϕ be a
conversion function with semi-injective ϕ : G∗ → {0, 1}L, ψ : [0 : 2L − 1]→ Zp
and Π : {0, 1}L → [0 : 2L − 1] a non-programmable bijective random oracle
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(Π̄, Π̄−1). If there exists an algebraic reduction R that (tR, εR, q′Π̄, q
′
Π̄−1 , q

′
H)-

breaks the UF-NMA security of GenDSA (instantiated with H) with qP -time access
to an adversary A that (tA, εA, qs, qΠ̄, qΠ̄−1 , qH′)-breaks the UF-CMA security of
GenDSA (instantiated with H′), then there exists an algorithmM that (tM, εM)-
breaks the DLog assumption where

εM ≥ εR − (2(q′Π̄ + q′Π̄−1)q′H + 1)εψ − q′H/p− q2/2L, tM ≈ tR,

where q = q′Π̄ +q′Π̄−1 +qP (qΠ̄ +qΠ̄−1) is total number of queries made to (Π̄, Π̄−1)
by R and A.

Since the goals of R and A are identical, i.e. producing a valid signature for
a given key, we cannot generally use the output of R to makeM work, since if
R just forwards its own challenge key, the solution of A is also a solution for R.
So in this case, the idea of the meta-reduction is to ask for two signatures on
the same message and then extract a DLog solution from the oracle queries and
the signatures that R produces. Disallowing the reduction from programming
the bRO (Π̄, Π̄−1) is necessary, as otherwise the proof from [20] applies. For the
same reason, an analogue of Theorem 2 is impossible here, as the reduction of
[20] is non-rewinding.

Proof. Let A be an adversary that (tA, εA, qs, qΠ̄, qΠ̄−1 , qH′)-breaks the UF-CMA
security of GenDSA and letR be the security reduction that (tR, εR, q′Π̄, q

′
Π̄−1 , q

′
H)-

breaks the UF-NMA security of GenDSA. A = AH′,Π̄,Π̄−1(vk′) has access to the
non-programmable bRO (Π̄, Π̄−1) and the programmable random oracle H′ of
the UF-CMA game. R = RH,Π̄,Π̄−1 has access to the non-programmable bRO
(Π̄, Π̄−1) and the random oracle H of the UF-NMA game, internally simulates
the programmable random oracle H′ of the UF-CMA game (accessed by A) and
observes all queries made by A to (Π̄, Π̄−1). Meta-reductionM tries to solve
the DLog game by running the reduction R, simulating the UF-NMA experiment
together with its RO H and the non-programmable bRO (Π̄, Π̄−1), and simulating
adversary A.
M(X) receives a DLog challenge X = gx as input and sets vk = X. It runs

RH,Π̄,Π̄−1(vk) with the signature key vk as input and simulates the random oracle
H and the bRO (Π̄, Π̄−1) via lazy sampling. It keeps a list L where it stores pre-
vious queries and assorted information on the queries. When R queries Π̄(z) for a
fresh z ∈ {0, 1}L,M samples a fresh random y ∈ [0 : 2L−1]. If z 6∈ ϕ(G∗), it stores
(⊥, z,⊥, y) in L and returns y. If z ∈ ϕ(G∗), R has to provide a representation a, b
s.t. ϕ(ga ·Xb) = z andM stores (gaXb, z, (a, b), y) (and (g−aX−b, z, (−a,−b), y)
if ϕ is 2-to-1) in L. When R queries Π̄−1(z′) on a fresh z′ ∈ [0 : 2L − 1], M
samples a random x ∈ {0, 1}L. If x 6∈ ϕ(G∗), M sets Π̄−1(z′) = x (i.e. stores
(⊥, x,⊥, z′) in L) and returns x. Otherwise, it samples (a, b) $← Z2

p s.t. a+xb 6= 0,
computes R := ga ·Xb and sets Π̄−1(z′) := ϕ(R). In the latter case, it additionally
stores (R,ϕ(R), (a, b), z′) (and (R−1, ϕ(R), (−a,−b), ψ(z′)) if ϕ is 2-to-1) in L
and returns ϕ(R) to R. Note that this simulation of (Π̄, Π̄−1) implements a
random function instead of a random bijection. By the birthday bound, this
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incurs a statistical loss q2/2L, where q = q′Π̄ + q′Π̄−1 + qP (qΠ̄ + qΠ̄−1) is the total
number of queries made to (Π̄, Π̄−1) by R and A due to it possibly introducing
collisions.

When R invokes the UF-NMA adversary A = AH′,Π̄,Π̄−1 , M simulates it
for R. Note that A has access to the same oracles Π̄ and Π̄−1 as R, since we
model (Π̄, Π̄−1) as a non-programmable bRO, but H′ is fully controlled by R.
R starts A by sending a public key vk′. Since R is algebraic, it also outputs a
representation of vk′ relative to all its inputs, including group elements calculated
from answers to Π̄−1 queries. SinceM knows all discrete logarithms except for
X from the simulation described above, this representation implicitly collapses
to one relative to g and X:

vk′ = gαXβ ∈ G . (2)

At this point,M reacts differently depending on whether β = 0 or not.
Case 1: β = 0. In this case, R effectively does not need the adversary A as it
can compute any signature produced by A on its own. (Note that the simulation
of adversary A is trivial in this case as R is algebraic and thereforeM knows
sk′ = α, which also makes rewinding/multiple executions trivial.) Meta-reduction
M continues the execution of R until it terminates and produces a forgery
(m∗, σ∗ = (s∗, t∗)). Assume the forgery is valid, i.e., it satisfies

t∗ = f(R∗), where R∗ =
(
gH(m∗)Xt∗

) 1
s∗

. (3)

We we will now use another case distinction to show thatM can solve its DLog
challenge in Case 1 except with probability 2εψq′H(q′Π̄ + q′Π̄−1).
Case 1.a: β = 0 and @(R∗, ∗, (a∗, b∗), y∗) ∈ L with ψ(y∗) = t∗. In this case, t∗
does not correspond to a query made by R to Π̄ or Π̄−1 andM can not compute
a discrete logarithm solution in this case and aborts. We call this case Bad1. We
will show that Pr[Bad1] ≤ εψ. First, note that since Π̄ is random, the random
variable y∗ = Π̄(ϕ(R∗)) is distributed uniformly over [0 : 2L − 1]. Therefore, we
have

Pr[Bad1] = Pr[ψ(Π̄(ϕ(R∗)) = t∗] = Pr[ψ(y∗) = t∗] ≤ εψ.

Case 1.b: β = 0 and ∃(R∗, ∗, (a∗, b∗), y∗) ∈ L with ψ(y∗) = t∗. Since R∗ =
ga
∗
Xb∗ , (3) simplifies to

s∗(a∗ + b∗x) = H(m∗) + t∗x . (4)

Consequently, unless s∗b∗ = t∗ (which we denote as event Bad2),M can extract
x = s∗a∗−H(m∗)

t∗−s∗b∗ and solve its DLog challenge. To finish the analysis of Case 1.b,
it remains to show

Pr[Bad2] = Pr[t∗ = s∗b∗] ≤ 2εψq′H(q′Π̄ + q′Π̄−1) + q′H/p. (5)

Assuming t∗ = s∗b∗, the verification equation (4) can be rearranged as

t∗a∗ = H(m∗)b∗. (6)
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For every fixed m∗, a∗, b∗, the value t∗ satisfying (6) is unique unless a∗ = 0.
However in that case, (6) implies that either b∗ = 0 or H(m∗) = 0. The first
case already reveals x = H(m∗)/t∗ from (4). The second case only occurs with
probability q′H/p, since H is a random oracle that R can not program and we
also abort in this case. Hence, conditioned on H(m∗) 6= 0, Pr[ψ(Π̄(ϕ(ga∗Xb∗)) =
t∗] ≤ εψ, where the probability is over the random function (Π̄, Π̄−1).R can chose
from q′H many tuples (m∗,H(m∗)) (H is the oracle provided by the UF-NMA
game to R so it is not programmable) and from 2(q′Π̄ +q′Π̄−1) many tuples (a∗, b∗)
(ϕ is semi-injective, i.e., there are potentially 2 preimages for every t∗). So a
union bound over the number of tuples yields that the probability that R finds a
tuple (a∗, b∗, t∗,m∗) satisfying (6) is at most 2εψq′H(q′Π̄ + q′Π̄−1) + q′H/p.

Overall,M is successful in Case 1 iff Bad1 and Bad2 do not happen.
Case 2: β 6= 0. In this case, R effectively uses the adversary A.M continues
simulating A by picking an arbitrary message m satisfying H′(m) 6= 0 and asks
for two signatures σ1 = (s1, t1) and σ2 = (s2, t2) on the same m. Without loss
of generality, we assume that σ1 6= σ2. Next,M aborts the execution of A and
R. Note thatM has simulated the UF-NMA game and an UF-CMA adversary
perfectly up to this point. Again, rewinding/multiple executions are handled
trivially, as every instance of A only queries two signatures on a random message
m with H′(m) 6= 0.

Let r1, r2 ∈ Zp s.t. Ri := gri and f(Ri) = ti for i ∈ {1, 2}. Note that there
might be multiple such r1, r2 as f is generally not injective. We assume that
the two values chosen here are the ones used by the reduction in its answer and
its queries to f (if they were made, see case distinction below). Assuming the
signatures σ1 and σ2 are valid, we have

∀i ∈ {1, 2} : siri −H′(m) = tiα+ tiβx, (7)

with si 6= 0, ti 6= 0 and α, β are from (2). Note that M only knows Ri = gri

and not ri. We now distinguish two cases depending on whether R1 and R2 have
been recorded as a query to (Π̄, Π̄−1) or not.

– Case 2.a: @(Ri, zi, (ai, bi), z′i) ∈ L s.t. gri = Ri for at least one i ∈ {1, 2}
– Case 2.b: ∃(Ri, zi, (ai, bi), z′i) ∈ L s.t. gri = Ri, i.e. ri = ai+xbi for i ∈ {1, 2}

Case 2.a: This case is almost identical to Case 1.a, asM can again not extract
a DLog solution and aborts. We call this event Bad3. As in Case 1.a, we have
that the probability of R succeeding in this case is upper bounded by εψ, because
R has to simulate a proper signing oracle, so the signatures σ1, σ2 need to verify
and with the same argument as in the other case, we get

Pr[Bad3] ≤ εψ.

Case 2.b: In this case, R made queries to (Π̄, Π̄−1) to compute f(Ri) for both
signatures (or f−1(ti) respectively). Therefore due to the way (Π̄, Π̄−1) is pro-
grammed and the fact that the reduction is algebraic,M knows a representation
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of Ri = gaiXbi , which it can use to solve for x. Plugging ri = ai + xbi for
i ∈ {1, 2} into (7) we obtain

∀i ∈ {1, 2} : −H′(m)− tiα+ siai = (tiβ − sibi)x . (8)

M can solve any of these two equations for x (and hence solve its own challenge),
unless

∀i ∈ {1, 2} : : tiβ = sibi . (9)

We call this event Bad4. Assuming (9) is the case, (8) simplifies to −H′(m)−
tiα+ siai = 0 which implies

H′(m)bi = ti∆i (10)
t2b1∆2 = t1b2∆1, (11)

where ∆i := aiβ − biα.
Assume b1 6= 0 and ∆2 6= 0. By (11), t2 directly depends on t1 and the

exponents a2, b2, which are used in the bRO query that outputs t2 (or chosen at
random byM when a ψ−1(t2) is queried to Π̄−1). Most importantly, R has to fix
w.l.o.g. t1 before it can choose t2. So similar to Case 1.b, the probability that R
computes a t2 which satisfies equation (11) is upper bounded by 2εψ(q′Π̄ + q′Π̄−1)
since it can only evaluate (Π̄, Π̄−1) up to q′Π̄ + q′Π̄−1 many times. Therefore

Pr[Bad4] ≤ 2εψ(q′Π̄ + q′Π̄−1)

andM extracts a DLog solution unless Bad4 occurs. Note that the bound does
not depend on qH, because both signatures are for the same message and H(m∗)
cancels in (11).

It remains to argue why we could assume b1 6= 0 and ∆2 6= 0. If b1 = 0, then
(9) and t1 6= 0 implies β = 0 contradicting (2). If ∆2 = 0, then (10) implies b2 = 0
(and hence β = 0 as in the case above) or H′(m) = 0 (contradicting H′(m) 6= 0).

As in Case 1,M is successful in Case 2, if Bad3 and Bad4 do not occur.
Combining the probabilities for the two cases and the collision bound, the

theorem follows:

εM ≥ εR − max
i∈{1,3}

(Badi + Badi+1)− q2/2L

≥ εR − εψ(2q′H(q′Π̄ + q′Π̄−1) + 1)− q′H/p− q2/2L

ut

Remark 1. Note that it is necessary for the meta reduction to program the
responses to Π̄−1 queries in order to know the discrete logarithms of the R
corresponding to the responses. Suppose that this was not allowed. Then if the
reduction makes a query Π̄−1(z) for some t,M does not know a representation
for the resulting group element R with ϕ(R) = Π̄−1(z). So if a signature provided
by the reduction includes this R, the meta-reduction will not be able extract a
solution. Yet, it seems intuitive that an adversary that uses such a random group
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element already needs to know its discrete logarithm, because a valid solution
fulfills a non-trivial equation with this group element. So such an adversary would
break the DLog problem in G. However, in order to “use” this (implicit) DLog
adversary, we need to embed a DLog challenge in the random oracle. But without
programming, the challenge will only occur with negligible probability, leaving
us with the same problem.

We avoid this seemingly technical problem by allowing the meta-reduction to
program the random oracle. Note that we only use it for exactly this purpose,
namely so that the meta-reduction knows the discrete logarithms of all results of
Π̄−1 queries.

4.3 Single-User security does not tightly imply multi-user security

Lastly, we show that for GenDSA, single user security does not tightly imply
multi-user security with algebraic, non-programming reductions.

The following theorem states that there cannot exist an algebraic reduction
from the multi-user UF-NMA-security of GenDSA to its single-user security that
does not program the random bijection (Π̄, Π̄−1) and loses less then a factor
linear in the number of users, unless the FBOMDL assumption does not hold.

Theorem 4 (UF-NMA
loss<n
6⇒ n-UF-NMA). Let H : {0, 1}∗ → Zp be a hash

function modeled as a programmable random oracle H and f = ψ ◦Π ◦ ϕ be
a conversion function with semi-injective ϕ : G∗ → {0, 1}L, ψ : [0 : 2L −
1] → Zp and Π : {0, 1}L → [0 : 2L − 1] modeled by a non-programmable
bijective random oracle (Π̄, Π̄−1). If there exists an algebraic reduction R that
(tR, εR, q′Π̄, q

′
Π̄−1 , q

′
H)-breaks the UF-NMA security of GenDSA with qP -time black-

box access to an adversary A that (n, tA, εA, qΠ̄, qΠ̄−1 , qH′)-breaks the n-UF-NMA
security of GenDSA, then there exists an algorithmM that (tM, εM)-breaks the
qP -FBOMDL assumption where

εM ≥ εR −
qP
n
εA −

(
2(q′Π̄ + q′Π̄−1)q′H + qP + 2

)
εψ − q2/2L, tM ≈ tR + qP tA

where q = (q′Π̄ +q′Π̄−1 +qP (qΠ̄ +qΠ̄−1)) is the total amount of queries to (Π̄, Π̄−1)
made by A and R.

As an orthogonal impossibility result we prove that single user security does
not tightly imply multi-user security with algebraic, non-rewinding reductions.
Specifically, the following theorem states that there cannot exist an algebraic
reduction from the multi-user UF-NMA-security of GenDSA to its single-user
security that does not rewind the multi-user adversary A and loses less than a
factor linear in the number of users, unless the FBOMDL assumption does not
hold.

Theorem 5. Let H : {0, 1}∗ → Zp be a hash function modeled as a programmable
random oracle H and f = ψ ◦Π ◦ ϕ be a conversion function with semi-injective
ϕ : G∗ → {0, 1}L, ψ : [0 : 2L − 1]→ Zp and Π : {0, 1}L → [0 : 2L − 1] modeled
by a programmable bijective random oracle (Π,Π−1). If there exists an algebraic
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reduction R that (tR, εR, qΠ, qΠ−1 , qH)-breaks the UF-NMA security of GenDSA
with one-time black-box access to an adversary A that (n, tA, εA, qΠ′ , qΠ′−1 , qH′)-
breaks the n-UF-NMA security of GenDSA, then there exists an algorithmM that
(tM, εM)-breaks the 1-FBOMDL assumption where

εM ≥ εR −
1
n
εA − (2(qΠ + qΠ−1)qH + 1) εψ − q2/2L, tM ≈ tR + tA

where q = qΠ + qΠ−1 is the total number of queries to (Π,Π−1) made by R. We
now prove Theorem 4. The proof of Theorem 5 is similar and can be found in
Supplementary Material B.2.

Remark 2. The results of Theorem 4 and Theorem 5 also hold for UF-CMA
and n-UF-CMA security with small adjustments. The main difference is that
the meta reduction now uses the qS + qP -FBOMDL (resp. qS + 1-FBOMDL)
assumption, as we need the additional oracle queries to answer signature queries.
The additional challenges used in the signatures do not pose a problem when
eventually extracting the discrete logarithm solutions. Similar to the proof of
Theorem 1, they form a random upper triangular matrix, so unless the forgery
lies in the span of the new signatures (which can only happen with negligible
probability) a solution can be extracted in the same way as in Theorem 4 (resp.
Theorem 5).

Proof (of Theorem 4). Let A be an adversary that (tA, εA, qΠ̄, qΠ̄−1 , qH)-breaks
the n-UF-NMA security of GenDSA, and let R be the algebraic security re-
duction that (tR, εR, q′Π̄, q

′
Π̄−1 , q

′
H)-breaks the UF-NMA security of GenDSA.

A = AH′(·),Π̄(·),Π̄−1(·) has access to the non-programmable bRO (Π̄, Π̄−1) and
the random oracle H′ of the n-UF-NMA game. R = RH(·),Π̄(·),Π̄−1(·) has access
to the same non-programmable bRO (Π̄, Π̄−1) and the programmable random
oracle H of the UF-NMA game and internally simulates the programmable RO
H′, which is accessed by A. Meta reductionM tries to solve the qP -FBOMDL
assumption by running the reduction R, simulating the UF-NMA game, the
adversary A up to qP times and the oracles H and (Π̄, Π̄−1).

Meta-reduction M and simulated A are described in Figure 5. Note that
since A is simulated by M, it has access to the DL and Chal oracles. The
meta reduction M gets a FBOMDL challenge X as input and has to output
x, x1, . . . , xqP s.t. X = gx and Xi = gxi , where the Xi are returned by its
Chal oracle. It simulates the UF-NMA game for R by setting vk = X and runs
RH,Π̄,Π̄−1(vk).M simulates the bRO (Π̄, Π̄−1) and the regular random oracle
H via lazy sampling. When R queries Π̄ on a fresh bitstring z with preimage
group element R under ϕ, it has to provide a representation a, b, c1, . . . , cqP s.t.
R = ga ·Xb ·

∏
j<iX

cj
j , whichM stores together with the random answer z′. If no

such representation exists,M only samples z′ and returns it. Similarly, when R
queries Π̄−1 on some z′,M first samples a random z ∈ {0, 1}L \L (i.e. a random
z that it hasn’t returned yet) and if z ∈ ϕ(G∗)M chooses random (a, b) ∈ Z2

p s.t.
R′ = gaXb 6= 1 and returns ϕ(R′). Otherwise, it simply returns z. In both cases,
M stores the input/output pairs together with the potential representation in a
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Meta Reduction MDL(·,·),Chal(X)

1: L = ∅
2: Run RH(·),Π̄(·),Π̄−1(·)(X)
3: for i ∈ [qP ] do
4: Simulate AH′(·),Π̄(·),Π̄−1(·)

i ((vki,j)j∈[n])
5: if Ai aborts then
6: abort
7: Receive forgery (m∗, σ∗ = (s∗, t∗)) from R
8: if ∃i ∈ [qP ] s.t. σ∗ = (si, ti) then �R guessed n∗i

9: abort
10: if @(R∗, ϕ(R∗), (∗, . . . , ∗), ψ−1(t∗)) ∈ L then
11: abort
12: Solve verification equations for x, x1, . . . , xqP

13: return (x, x1, . . . , xqP )

Oracle Π̄(z)

14: if @(∗, z, ∗, z′) ∈ L then
15: z′ $← [0 : 2L − 1]
16: if z ∈ ϕ(G∗) then �R provides representation
17: Let z = ϕ(Y ) = ϕ(gaXb

∏
j∈[qP ] X

cj
j )

18: L +← (Y, z, (a, b, (cj)j∈[qP ]), z′)
19: L +← (Y −1, z, (−a,−b, (−cj)j∈[qP ]), z′)
20: else
21: L +← (⊥, z,⊥, z′)
22: Let (∗, z, ∗, z′) ∈ L
23: return z′

Adv. AH′(·),Π̄(·),Π̄−1(·)
i (vki,j)j∈[n])

�vki,j = gai,jXbi,j
∏

k<i
X
ci,j,k
k

24: for j ∈ [qH] do
25: mj

$←M, hj ← H′(mj)
26: n∗i $← [n]; k∗i

$← [qΠ̄]; j∗i
$← [qH]

27: for j ∈ [qΠ̄] \ k∗i do
28: rj

$← Zp, Rj ← grj

29: tj ← ψ(Π̄(ϕ(Rj))) �via oracle query to Π̄
30: Xi ← Chal
31: Rk∗

i
← Xi, tk∗

i
← ψ(Π̄(ϕ(Xi))) �Embed challenge

32: if tk∗
i

= 0 then
33: abort
34: Make qΠ̄−1 dummy queries to Π̄−1

35: ti ← tk∗
i

36: hi ← hj∗
i

; mi ← mj∗
i

37: if ghi · vkti
i,n∗

i

= 1 then

38: abort
39: si ← DL(ghi · vkt

i,n∗
i
, Xi) �From FBOMDL game

40: σi ← (si, ti)

41: return
{

(n∗i ,mi, σi) with prob. εA
⊥ else

Oracle Π̄−1(z′)

42: if @(∗, z, ∗, z′) ∈ L then
43: x $← {0, 1}L
44: if x 6∈ ϕ(G∗) then
45: L +← (⊥, x,⊥, z′)
46: else
47: (a, b) $← Z2

p s.t. ga ·Xb 6= 1
48: z ← ϕ(gaXb)
49: L +← (gaXb, z, (a, b, 0, . . . , 0), z′)
50: L +← (g−aX−b, z, (−a,−b, 0, . . . , 0), z′)
51: Let (∗, z, ∗, z′) ∈ L
52: return z

Fig. 5. Meta reduction M and simulated n-UF-NMA adversary for Theorem 4. For
ease of notation, we group queries to Π̄, Π̄−1 and H and write the challenge queries
separately, but assume that A interweaves them at position k∗i and j∗i respectively. If
two executions of A receive the same randomness, public keys and answers to all H
queries, thenM replays the previous execution of A and makes no additional Chal
query.
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list L in order to keep the random oracles consistent. Note that it is necessary to
first sample a uniformly random x ∈ {0, 1}L and check if it lies in ϕ(G∗) to keep
the distribution of (Π̄, Π̄−1) consistent. Furthermore, (Π̄, Π̄−1) is simulated as
a random function, instead of a random permutation. By the birthday bound,
this incurs a statistical error of q2/2L, where q = q′Π̄ + q′Π̄−1 + qP (qΠ̄ + qΠ̄−1) is
the total number of queries made to (Π̄, Π̄−1) by A and R due to the possibility
of collisions. The random oracle H is simulated honestly, i.e. via lazy sampling
without programming any values.

Eventually, R invokes up to qP copies AH′,Π̄,Π̄−1

i ((vki,j)j∈[n]) of the adversary
A with n verification keys of its choosing. Note that all adversaries get access
to the same Π̄ and Π̄−1 because it is non-programmable for R, but H′ is fully
controlled by R. Since R is algebraic, it also outputs representations of all keys,
so let vki,j = gai,j ·Xbi,j ·

∏
k∈[qP ]X

ci,j,k
k for i ∈ [qP ], j ∈ [n]. To be precise, R

provides a representation relative to g,X,X1, . . . , XqP and all elements it can
compute from outputs of Π̄−1. Due to the programming described above, M
knows a representation of all these group elements relative to X and X1, . . . , XqP ,
so we can assume that M gets a representation only relative to them. Note
however that at the start of the first execution of A, R did not receive any of the
Xi yet, so the first verification keys only depend on g and X. In the second, it
has only seen X1 and so on (w.l.o.g. we order the adversary executions such that
the i-th adversary is the adversary that queried its challenge after i − 1 other
adversaries queried theirs). So for the i-th adversary, ci,j,k = 0 for k ≥ i.

Note that R can only program H′. So if R executes an adversary Ai with the
same randomness and inputs as Aj , Ai makes the same queries to H′ as Aj and
if they are answered identically, then Ai uses the same challenge as Aj and does
not query Chal or DL. However if the answers to H′ differ in at least one place,
then Ai behaves as depicted in Figure 5 (i.e. queries a fresh challenge, etc.). To
detect which is the case, A has to make all queries to H′ before querying a new
challenge. Otherwise,M would have to use two queries to DL with the same
challenge if R reprograms H′ on the message Ai intends to forge on after all
queries to Π̄ have already been made, makingM unable to win the FBOMDL
game. So w.l.o.g., we assume that all adversaries Ai for i ∈ [qP ] are distinct.

EachAi clearly (tA, εA, qΠ̄, qΠ̄−1 , qH)-breaks the n-UF-NMA security of GenDSA,
unless the aborts in line 33 or 38 occur and M makes exactly one Chal
query and at most one DL query per simulation of A. The abort in line
33 occurs if tk∗

i
= ψ(Π̄(ϕ(Xi))) = 0 for any i ∈ [qP and we call this event

Bad1. Since (Π̄, Π̄−1) is a random function, it follows that the random vari-
able y∗ = Π̄(ϕ(Xi)) is uniformly random over [0 : 2L − 1]. Therefore, we have
Pr[ψ(Π̄(ϕ(Xi) = 0] = Pr[ψ(y∗) = 0] ≤ maxt∈Zp Pr

y
$←[0:2L−1][ψ(y) = t] ≤ εψ,

so Pr[Bad1] ≤ εψ for any single execution of Ai. A union bound over the qP
executions of A allows us to bound the probability of Bad1 occurring in any
execution of Ai by

Pr[Bad1] ≤ qP εψ.
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Now consider the abort in line 38, i.e. ghi · vktii,n∗
i

= 1, which we call Bad2. If
Bad2 occurs, it implies that

H′(m∗i ) = ti(ai,n∗
i

+ bi,n∗
i
x+

∑
j∈[i−1]

ci,n∗
i
,jxj).

Note that R can program H′, so it can trigger Bad2 if it programs H′(m∗i )
correctly. However, Ai makes all of its queries to H′ before it makes any queries
to (Π̄, Π̄−1). Therefore, in order to correctly program H′(m∗i ), R has to guess
the correct indices n∗i , j∗i and a group element R′ s.t. f(R′) = ti, since they are
all information-theoretically hidden from R. With the same argument as for
Bad1, the probability of finding a R′ that maps to ti can be bounded by εψ, so
together with guessing the indices, we get that

Pr[Bad2] ≤ εψ
nqH

If R aborts at any point or does not return a valid signature,M aborts as well.
So assume R eventually outputs a valid forgery (m∗, σ∗ = (s∗, t∗)) for key vk∗.
Since R can choose all verification keys vki,j , it can set one to its own challenge
key for each execution of A (It can only do this at one point since the challenge
keys need to be distinct). So with probability at most 1/n, an Ai produced a
forgery for the public key thatM gave to R, in which case R can just forwards
the signature it got from Ai and M aborts (line 10). We the event that this
happens for any execution of A Bad3. This abort occurs with probability 1

nεA
for each execution of A, so via a union bound, the probability of Bad3 occurring
in any execution of A is

Pr[Bad3] ≤ qP
n
εA.

Otherwise, R produces a fresh forgery and together with the signatures from the
simulated adversaries Ai and the verification equation of GenDSA, we get that

s1 · x1 − bn∗1 t1x = h1 + an∗1 t1 (12)
...

sqP · xqP − tqP
∑

j∈[qP−1]

cqP ,n∗qP ,j
xj − bn∗qP tqP x = hqP + an∗qP

tqP (13)

s∗ · r∗ − t∗x = H(m∗) (14)

with f(gr∗) = t∗.
NowM checks L for an entry (gr∗ , z, (α, β, (γi)i∈[qP ]), z′) with ψ(z′) = t∗. If

such an entry exists, we have r∗ = α+ βx+
∑
i∈[qP ] γixi, yielding the equation
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system

s1 · x1 − bn∗1 t1x = h1 + an∗1 t1

...

sqP · xqP − tqP
∑

j∈[qP−1]

cqP ,n∗qP ,j
xj − bn∗qP tqP x = hqP + an∗qP

tqP

s∗
∑
j∈[qP ]

γjxj + (βs∗ − t∗)x = H(m∗)− αs∗

If no such r∗ exists, then R never queried the bRO on a preimage of t∗ or
received a preimage of t∗ from the bRO. We call this case Bad4 andM aborts
(line 12) as it can not solve its FBOMDL challenge in this case. By the same
argument as for Bad1, we get

Pr[Bad4] ≤ εψ.

Otherwise, the signatures form a system of qP + 1 equations with qP + 1
variables, where each variable represents a solution to one of the discrete logarithm
challenges. So unless the determinant of the system is 0,M can extract a solution
for its FBOMDL instance. So all that is left is to analyze the probability of this
bad case.

In matrix notation, we can write this condition as

det



s1 0 0 · · · bn∗1 t1

t2c2,n∗2 ,1 s2 0
. . .

...
...

. . .
...

...
tqP cqP ,n∗qP ,1

· · · tqP cqP ,n∗qP ,qP−1 sqP bn∗qP
tqP

s∗γ1 · · · s∗γqP βs
∗ − t∗

 6= 0

Note that every entry of the matrix except for the main diagonal includes factors
which are under the adversaries control, namely the ci,n∗

j
,k and bn∗

i
. So for

simplicity, we assume that the adversary can have them take an arbitrary value.
The only problematic part is the main diagonal, which depends on all the si,
which are given by the adversary A and βs∗ − t∗ given by the reduction. Next,
note that all the si are non-zero, as otherwise the signatures would be invalid.
Therefore, for the determinant to be zero, βs∗ − t∗ = 0 is required.6 We call this
event Bad5.

So assume that βs∗ = t∗. Substituting in Equation (14) yields the equation

t∗(
∑
j∈[qP ]

γjxj + α) = β ·H(m∗) (15)

6 Since the adversary can control all other terms, it could also make the diagonal match
the sum of all other values, but that is just as hard as making the main diagonal
zero.
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Since t∗ 6= 0 and s∗ 6= 0 (otherwise R didn’t produce a valid forgery), β 6= 0.

Then we get H(m∗) =
t∗(
∑

j∈[qP ]
γjxj+α)

β where H is the random oracle that R
can not program.

For every fixed m∗, α, β, (γi)i∈[qP ], there is a unique t∗ that satisfies Equa-
tion (15) and since (Π̄, Π̄−1) is a random function, we have Pr[ψ(Π̄(ϕ(R) =
t∗] ≤ εψ for every R ∈ G. R can choose from qH tuples (m∗,H(m∗) and from
2(q′Π̄ + q′Π̄−1) tuples (α, β, (γi)i∈[qP ]) (ϕ is semi-injective, so there are 2 tuples for
every query). So a union bound over the number of tuples yields that the proba-
bility of R finding a tuple (H(m∗), α, β, (γi)i∈[qP ], t

∗) that satisfies Equation (15)
is at most 2εψqH(qΠ̄ + qΠ̄−1) and

Pr[Bad5] ≤ 2εψqH(qΠ̄ + qΠ̄−1).

Combining all probabilities, we get

εM ≥ εR −
5∑
i=1

Pr[Badi]− q2/2L

≥ εR −
2qP
n
εA − εψ

(
2(q′Π̄ + q′Π̄−1)q′H + qP + 2

)
− q2/2L

which concludes the proof. ut
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Supplementary Material
A Hardness of FBOMDL in Generic Groups

Recently, [1] proved a lower bound in the GGM on the q-OMDL assumption
which is independent of q. We now show how to adapt this proof to show the
same bound on the q-FBOMDL assumption.

A.1 Shoup’s Generic Group Model

In the Generic Group Model (GGM), the (cyclic) cryptographic group is replaced
by a generic group, i.e. instead of receiving group elements and doing all group
arithmetic themselves, all algorithms instead receive random labels (e.g. bit-
strings from a large enough domain) for group elements. Since these labels do not
contain any semantic meaning, they are also provided with a group operation
oracle GGMOp, which takes two labels as input and returns the label of the
group element that is the result of the group operation applied to the group
elements corresponding to the input labels.

A standard technique, which we will also use, is to replace group elements
with polynomials and only choosing the acutal group element after the execution
is done. Therefore, we extend the labeling to arbitrary polynomials in the straight-
forward way. Replacing group elements with polynomials is indistinguishable for
an adversary, unless it finds two polynomials, which are different but evaluate to
the same group element for the randomly chosen point. Generally, the probability
of this bad case occurring is bounded using the Schwartz-Zippel lemma. However,
as [1] observed, this approach only works if all variables are replaced after the
execution. However, since we want to prove the FBOMDL assumption in the
GGM, we have to handle DL queries during the execution, which makes applying
the lemma hard. To circumvent this, we use the lemma proven in [1], which we
recall in Lemma 1.

Lemma 1 ([1]). Let p ∈ N, D1, . . . , Dm, Q1, . . . , Qq+1 ∈ Zp[X1, . . . , Xn] of
degree 1 and

∀i ∈ [q] : Qi ← {~x ∈ Znp : Qi(~x) = 0}
∀i ∈ [m] : Di ← {~x ∈ Znp : Di(~x) = 0}

C ←

⋂
i∈[q]

Qi

 \
 ⋃
i∈[m]

Di

 .

Assume Qq+1 ∩ C 6= ∅ and Qq+1 is linearly independent of (Qi)i∈[q]. Then

p−m
p2 ≤ Pr[Qq+1(~x) = 0 | ~x $← C] ≤ 1

p−m
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Intuitively, we will use the lemma to bound the probability that an adversary
finds a DL query (Qq+1) which will cause an inconsistency (i.e., it is linearly
independent of the previous queries (Qi), but Qq+1(~x) = 0) for a choice of ~x that
is consistent with its previous view (i.e., the Di and Qi).

A.2 FBOMDL holds in the GGM

We now state the formal theorem and proceed with the proof that the FBOMDL
assumption holds unconditionally in the generic group model.

Theorem 6. Let A be an adversary (t, ε)-breaks the q-FBOMDL problem. Then

ε ≤ m2

p−m2 + 1
p
,

where m ≈ t is the number of queries to GGMOp made by A.

Proof. The proof is almost identical to the proof of Theorem 1 in [1]. The main
change is made in the simulation of the DL oracle, since it now gets two labels
as input. However, all abort conditions are identical, so the overall bound is the
same as in [1].

For the proof consider the games in Figure 6. We keep the notation from [1].
The Chal, DL and GGMOp oracles have the same function as in the regular
FBOMDL game. Encoding a group element is done via the function Enc. This
function takes no explicit input, but instead produces an encoding for the last
group element generated by another function. This group element is indexed by
the variable j, which is always set by the other oracles before calling Enc.

All other oracles use Encwhen they generate a new group element, specifically
Chal and GGMOp end with a call to Enc. Note that all encodings ξi are
associated with their respective discrete logarithm ai (and the polynomial Pi in
the later games). Since the challenge oracle Chal can be queried at any time, all
challenges xi have an associated aji (and later Pji).

The idea of the proof is to gradually remove the need to know the challenge ~x
from the game. This is done by replacing them with variables. This will introduce
a small error probability because two distinct polynomials might coincide on
the challenge ~x, but we can use Lemma 1 to bound it. After some rearranging
to make all checks using only the polynomials, we can eventually choose all
challenges after the execution of the adversary in a way that is consistent with
the random answers we gave before.

We will now describe the changes between the different games and analyse
the probability of an adversary distinguishing two subsequent games.
G0: This is the regular FBOMDL game in the generic group model. We assign
each group element seen by the adversary an increasing number j in addition
to its label as in [1]. The group generator 1 gets index 0 and label ξ0. The n-th
challenge gets index jn and is called xn.

We have
Pr[GA0 = 1] = ε.
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Games G0-G4

1: j := 0; q := 0;n := 0
2: a0 ← 1 �G0-G1

3: P0 ← 1; L← ∅ �G1-G4

4: ξ0 = Enc()
5: ξ1 $← Chal
6: ~y $← ADL,Chal,GGMOp(ξ0, ξ1)
7: if q > n then
8: return 0
9: for i ∈ [n] do �G3-G4

10: xi ← DL(ξji , ξ0)
11: return ~x = ~y

Oracle Chal

12: n← n+ 1
13: j ← j + 1
14: jn ← j
15: xn

$← Zp �G0-G3

16: aj ← xn �G0-G1

17: Pj ← Xn �G1-G4

18: return Enc()

Oracle Enc

19: if ∃k ∈ [0 : j − 1] : ak = aj then �G0-G1

20: ξj ← ξk

21: if ∃k ∈ [0 : j − 1] : Pj(~x) = Pk(~x)
∧ Pj − Pk 6∈ span(L) then �G1-G2

22: abort
23: if ∃k ∈ [0 : j − 1] : Pj − Pk ∈ span(L) then �G2-G4

24: ξj ← ξk

25: else
26: ξj

$← {0, 1}∗ \ (ξk)k∈[0:j−1]
27: return ξj

Oracle DL(ξ, ξ′)

28: if ξ 6∈ {ξi}i∈[0:j] ∨ ξ′ 6∈ {ξi}i∈[0:j] then
29: return ⊥
30: i← min{k : ξk = ξ}
31: i′ ← min{k : ξk = ξ′}
32: q ← q + 1
33: v ← ai �G0-G1

34: v′ ← ai′

35: v ← Pi(~x); v′ ← Pi′(~x) �G2-G4

36: v, v′ $← Z2
p �G4

37: if Pi ∈ span(1, L) then
38: Let Pi = α0 +

∑
Q∈L

αQQ
39: v ← α0
40: if Pi′ ∈ span(1, L) then
41: Let Pi′ = α0 +

∑
Q∈L

αQQ

42: v′ ← α0
43: if v′ = 0 then
44: Qq ← Pi′ − v
45: else
46: Qq ← Pi − v

v′Pi′

47: L← L ∪ {Qq} �G1-G4

48: if ∃i1, i2 ∈ [0 : j]2 : Pi1 −Pi2 ∈ span(L)
∧ ξi1 6= ξi2 then �G3-G4

49: abort
50: if v′ = 0 then
51: return ⊥
52: return v

v′

Oracle GGMOp(ξ, ξ′)

53: if ξ 6∈ {ξi}i∈[0:j] ∨ ξ′ 6∈ {ξi}i∈[0:j] then
54: return ⊥
55: i← min{k : ξk = ξ}
56: i′ ← min{k : ξk = ξ′}
57: j ← j + 1
58: aj ← ai + ai′ �G0

59: Pj ← Pi + Pi′ �G1-G4

60: return Enc()

Fig. 6. Games G0-G4 for the proof of Theorem 6. Each group element has a unique
index i, its discrete logarithm is denoted by ai and is associated to a polynomial Pi,
which is constant for all regular group elements and a monomial for all challenge group
elements.

G1: In G1, we introduce polynomials. Specifically, each challenge xi is associated
with a monomial Xi. In parallel to the scalars ai, we now also track polynomials
Pi, to which we apply the same operations as the ai. Here, the polynomial P0 is
the constant polynomial 1 corresponding to a0 = 1. Specifically, Pi(~x) = ai for
all i ≤ j. We still sample the xi whenever a new challenge is requested and use
the real ai to answer discrete logarithm queries.

Additionally, the (initially empty) set L is introduced. Intuitively, L will
contain all relations A knows on the challenge vector ~x. Specifically, it will
contain all polynomials that A queried to its DL oracle rearranged to equal 0.
So whenever A makes a DL query on two labels ξ, ξ′, the corresponding values
ai, ai′ are looked up. If ai′ = 0, then the discrete logarithm query fails, so the only
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information that A gets is that ai′ = 0. So we return ⊥ and add Pi′−Pi′(~x) = Pi′

to L. Otherwise, we return v/v′ and add Pi − v
v′Pi′ to L. In both cases, the

dimension of L can increase by at most 1 (which will be relevant in the last
game).

This is the main divergence from the original proof of [1] for the regular OMDL
assumption, because we need to handle queries relative to an arbitrary basis.
However note that although the adversary provides two labels for polynomials, it
still only gets a solution for one affine equation, so the proof can continue as in
[1].

Lastly, we introduce the first abort condition, namely the game aborts if the
encoding function is called on a polynomial which, evaluated on ~x is equal to
another polynomial evaluated on ~x, but the difference of the two polynomials
is not in the span of L. This case is indeed problematic, as it results in two
polynomials that agree when evaluated on ~x having different labels, which the
adversary would be able to detect. We call this event Bad.

Since this is the only non-conceptual change, we see that

Pr[GA0 = 1] ≤ Pr[GA1 = 1] +m · Pr[Bad]

With verbatim the same argument as in [1] (p. 17f), we can use Lemma 1
and see that

Pr[Bad] ≤ m

p−m2 ,

so overall we get

Pr[GA0 = 1] ≤ Pr[GA1 = 1] + m2

p−m2 .

G2: Next, we change how the DL oracle is implemented. First, instead of looking
for ai, ai′ , we instead search for the corresponding polynomials Pi, Pi′ and evaluate
them on ~x to calculate the v, v′. This does not change the game, because for all
i ∈ [0 : j − 1] : ai = Pi(~x). However, eventually in G4, we want to remove the
need to know ~x entirely. To prepare for this step, we additionally check if one of
the polynomials can be represented as a linear combination of the Q ∈ L. Since
all Q evaluate to 0 on ~x, the constant part of this representation is exactly v
(resp. v′).

All these changes are only conceptual, so we get

Pr[GA1 = 1] = Pr[GA2 = 1]

G3: In this game, we move the abort condition from the encoding function to
the DL oracle. In order to abort in the same cases as G2, we also now query the
DL oracle on every challenge after the adversary returned its solution.

In G2, we check for every polynomial that we encode whether it coincides
with another polynomial on the challenge ~x while this relation is not mirrored in
L and abort in this case.

On the other hand, in G3, we check in DL if there are pairs of polynomials
such that their difference is in L but they have different labels. Most importantly,
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this condition can be checked without knowing ~x. Note that we call DL at the
end of the protocol for all challenges Xi, so this check is always done at the end
of the execution.

First, we argue that if G3 aborts, then G2 aborts as well. So assume that
there are Pi1 , Pi2 s.t. P = Pi1 − Pi2 ∈ L but ξi1 6= ξi2 . Since P ∈ L, we have
Pi1(~x) = Pi2(~x). Let i1 < i2. Then when the encoding ξ2 was computed, the
algorithm chose a fresh ξ2, so P 6∈ L. But since Pi1(~x) = Pi2(~x), G2 had to abort
at that point.

On the other hand, assume that G2 aborts. Then there are i1, i2 s.t. P =
Pi1 − Pi2 6∈ L but Pi1(~x) = Pi2(~x). So in G3, we do not abort at this point
but the two polynomials get different labels ξi1 6= ξi2 . At the end of the game,
the challenger calls DL on all Xi relative to 1, so L contains the polynomials
Xi − xi for i ∈ [n]. Let P = P (~0) +

∑
i∈[n] αiXi. Rewriting with the polynomials

in L, we get P = P (~0) +
∑
i∈[n] αi(Xi − xi) + xi. Since G2 would abort, we

have P (~x) = Pi1(~x) + Pi2(~x) = 0 and P (~x) = P (0) +
∑
i∈[n] αixi. Therefore,

P =
∑
i∈[n] αi(Xi − xi), so at the end of the game P ∈ L and G3 aborts because

ξi1 6= ξi2 .
Therefore, we have

Pr[GA2 = 1] = Pr[GA3 = 1]

G4: In this last game, we do not sample the xi in calls to Chal and only return
a label for the new monomial Xn. Since the xi are now undefined, we can finally
replace v and v′ with random exponents instead of evaluating the corresponding
Pi, Pi′ , unless the answers to previous queries to DL already define the answer,
i.e. one of the Pi queries is in the span of L. Again, identically to [1], we can use
Lemma 1 to see that the v and v′ are distributed uniformly in G3, so choosing
them at random does not change the distribution in G4 and we have

Pr[GA3 = 1] = Pr[GA4 = 1]

Finally, we have to bound the winning probability in G4. To this end, note
that the dimension of L is at most q, but there are n > q challenges Xi. Since
~x is chosen adaptively to be consistent with L, the challenger chooses a vector
of dimension n with q constraints, so at least one component is not defined by
the constraints in L and is therefore chosen after A outputs its solution ~y in the
final queries to the DL oracle done by the challenger. Since this last x is chosen
uniformly at random, we have

Pr[GA4 = 1] ≤ 1
p
.

ut

B Non-Rewinding Reductions
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B.1 Proof of Theorem 2

Proof. The idea of the proof is similar to Theorem 1, except that we now only
need one additional FBOMDL challenge as the meta reduction now only simulates
one execution of A. However, we have to take extra care how we embed the
second challenge X ′ as the reduction can now program the bRO (Π,Π−1).

Let A be an adversary that (tA, εA, qΠ, qΠ−1)-breaks the SDLog assumption,
and let R be the security reduction that (tR, εR)-breaks the DLog assumption.
A = A(Π(·),Π−1(·)) has access to the programmable bRO (Π,Π−1) of the SDLog
game. R executes adversary A once and simulates the bRO (Π,Π−1) for A.
We will construct a meta-reductionM trying to solve the 1-FBOMDL game by
running the reduction R, simulating the DLog experiment and the one execution
of adversary A.
MChal,DL(·,·)(X) receivesX as its 1-FBOMDL input, has access to FBOMDL’s

challenge oracle Chal and discrete logarithm oracle DL and executes the re-
duction R(X) with X as its DLog challenge. Reduction R in turn executes
AΠ(·),Π−1(·)(X̂) with SDLog challenge X̂ = gaXb. It simulates the SDLog exper-
iment and the bRO (Π,Π−1). Since R is algebraic, it provides A (and therefore
M) with the representation a, b of X̂. Note that the representation only depends
on the generator and X as no other FBOMDL challenges have been queried so far
and R does not have access to an external oracle that could provide new group
elements. We assume that b 6= 0. This is without loss of generality, because if
b = 0, then the representation of X̂ reveals the corresponding discrete logarithm
a and A can honestly compute a SDLog solution, which R could also compute
without using A.
A is simulated byM as shown in Figure 7.

Meta Reduction MChal,DL(·,·)(X)

1: Run R(X)
2: Receive X̂ = gaXb from R �w.l.o.g. b 6= 0

3: Simulate AΠ(·),Π−1(·)(X̂) for R
4: if A aborts in line 18 then
5: x← − 1+at∗

bt∗

6: x′ ← DL(X ′, g)
7: return (x, x′)
8: Receive solution x from R
9: x′ ← 1+(a+bx)t∗

s∗ − r′j∗
10: return (x, x′)

Adversary AΠ(·),Π−1(·)(X̂) �X̂ = gaXb, b 6= 0

11: X′ ← Chal
12: for j ∈ [qΠ] do

13: r′j
$← Zp; Rj ← X′ · gr

′
j �w.l.o.g. Rj $← G∗

14: tj ← f(Rj) �via oracle query to Π
15: Make qΠ−1 dummy queries to Π−1

16: Let j∗ s.t. tj∗ 6= 0
17: t∗ ← tj∗ ; R∗ ← Rj∗

18: if g · X̂t
∗

= 1 then �⇔ s∗ = 0
19: abort
20: s∗ ← DL(g · X̂t

∗
, R∗) �from FBOMDL game

21: return
{

(s∗, t∗) with prob. εA
⊥ else

Fig. 7. Meta reductionM and simulated adversary A against the SDLog assumption.
DL and Chal areM’s oracles from the FBOMDL assumption.

A begins by querying a fresh DL challenge X ′ and embeds it in all of its
queries Rj = X ′ · gr

′
j to f (i.e. it queries ϕ(Ri) to Π) with an additive blinding

term gr
′
j for j ∈ [qΠ]. Here we assume that Rj is uniformly distributed in G∗, as
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in GenDSA. (If Rj = 1G we simply resample r′j .) Denote the answers as zj and
tj ← ψ(zj).

In Line 16 we assume that there exists an index j∗ with tj∗ 6= 0. This is without
loss of generality, as otherwise all valid signatures are information theoretically
hidden from any adversary and the reduction can forge a signature with at least
the same probability as the adversary without using it. A picks such a t∗ = tj∗

and checks whether g · X̂t∗ = 1. If this is the case, then A is not able to extract
a SDLog solution using t∗. However, this implies

0 = 1 + (a+ bx)t∗ ⇔ x = −1 + at∗

bt∗
,

where the latter is well-defined since b 6= 0 and t∗ 6= 0 by assumption.M can
then use its DL query to get x′ and wins the game.

So assume that g · x̂t∗ 6= 1. Then A uses the DL query to compute s∗ =
DL(g·X̂t∗ , R∗) = 1+x̂t∗

r∗ , where R∗ = gr
∗ and X̂ = gx̂. Note that (s∗, t∗) ∈ Z∗p×Z∗p

is a valid solution to the SDLog game. This simulation is perfect, so R eventually
outputs the discrete logarithm x of its challenge X with probability εR. Finally,
using r∗ = x′ + r′j∗ and x̂ = a+ bx,M can can recover x′ as from x as

x′ = 1 + (a+ bx)t∗

s∗
− r′j∗ .

To conclude,M wins the 1-FBOMDL game exactly if R is successful. ut

B.2 Proof of Theorem 5

Proof. Let A be an adversary that (tA, εA, qΠ′ , qΠ′−1 , qH′)-breaks the n-UF-NMA
security of GenDSA, and letR be the algebraic security reduction that (tR, εR, qΠ,
qΠ−1 , qH)-breaks the UF-NMA security of GenDSA. A = AH′(·),Π′(·),Π′−1(·) has
access to the programmable bRO (Π′,Π′−1) and the random oracle H′ of the
n-UF-NMA game. R = RH(·),Π(·),Π−1(·) has access to the programmable bRO
(Π,Π−1) and the programmable random oracle H of the UF-NMA game and
internally simulates the programmable RO H′ and programmable bRO (Π′,Π′−1),
which are accessed by A. Meta reduction M tries to solve the 1-FBOMDL
assumption by running the reduction R, simulating the UF-NMA game, the
adversary A once and the oracles H and (Π,Π−1).

Meta reductionM and adversary A are described in Figure 8.
M(X) receives a FBOMDL challenge X = gx and sets vk = X. It runs

RH(·),Π(·),Π−1(·)(vk) on the signing key vk and simulates the random oracle H
and the bRO (Π,Π−1) via lazy sampling. H is simulated perfectly random
without programming. When R queries Π(z) for a fresh z with z = ϕ(Y ), it
has to provide the representation a, b, c s.t. Y = ga · Xb · X ′c and M stores
(Y, z, (a, b, c),Π(z)) in a list L, where X ′ is the additional DL challenge that A
queries at some point. If z 6∈ ϕ(G∗), then M only samples a random value to
return. For duplicate queries, M answers consistently using the list L. When
R queries Π−1(z′) on a fresh z′,M samples a fresh z ∈ {0, 1}L. If z ∈ ϕ(G∗),
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Meta Reduction MDL(·,·),Chal(X)

1: L = ∅
2: Run RH(·),Π(·),Π−1(·)(X)
3: Simulate AH′(·),Π′(·),Π′−1(·)((vkj)j∈[n])
4: if A aborts in line 37 then
5: x← h+an∗ t

bn∗ t
�w.l.o.g. bn∗ 6= 0

6: x′ ← DL(X ′, g)
7: return x, x′

8: Receive forgery (m∗, σ∗ = (s∗, t∗)) from R
9: if σ∗ = (s, t) then �R guessed n∗

10: abort
11: if 6 ∃(R, (∗, . . . , ∗), t∗) ∈ L then
12: abort
13: Solve verification equations for x, x′
14: return (x, x′)

Oracle Π(z)

15: if @(∗, z, ∗, z′) ∈ L then
16: z′ $← [0 : 2L − 1]
17: if z ∈ ϕ(G∗) then �R provides representation
18: Let z = ϕ(Y ) = ϕ(gaXb

∏
j∈[qP ] X

cj
j )

19: L +← (Y, z, (a, b, (cj)j∈[qP ]), z′)
20: L +← (Y −1, z, (−a,−b, (−cj)j∈[qP ]), z′)
21: else
22: L +← (⊥, z,⊥, z′)
23: Let (∗, z, ∗, z′) ∈ L
24: return z′

Adversary AH′(·),Π′(·),Π′−1(·)(vkj)j∈[n]) �vkj = gajXbj

25: n∗ $← [n]; j∗ $← [qH′ ] �w.l.o.g. bn∗ 6= 0
26: X′ ← Chal
27: for j ∈ [qΠ′ ] do
28: rj

$← Zp, Rj ← X′grj

29: tj ← f(Rj) �via oracle query to Π′
30: for j ∈ [qH′ ] do
31: mj

$←M, hj ← H′(mj)
32: Make qΠ′−1 dummy queries to Π′−1

33: Let k∗ s.t. tk∗ 6= 0
34: t← tk∗
35: h← hj∗ ; m← mj∗

36: if gh · vktn∗ = 1 then
37: abort
38: s← DL(gh · vktn∗ , Rk∗ ) �From FBOMDL game
39: σ ← (s, t)

40: return
{

(n∗,m, σ) with prob. εA
⊥ else

Oracle Π−1(z′)

41: if @(∗, z, ∗, z′) ∈ L then
42: x $← {0, 1}L
43: if x 6∈ ϕ(G∗) then
44: L +← (⊥, x,⊥, z′)
45: else
46: (a, b) $← Z2

p s.t. ga ·Xb 6= 1
47: z ← ϕ(gaXb)
48: L +← (gaXb, z, (a, b, 0, . . . , 0), z′)
49: L +← (g−aX−b, z, (−a,−b, 0, . . . , 0), z′)
50: Let (∗, z, ∗, z′) ∈ L
51: return z

Fig. 8. Meta reductionM and simulated n-UF-NMA adversary A for Theorem 5.

it samples (a, b) $← Z2
p s.t. R = gaXb 6= 1 and sets Π−1(z′) = ϕ(R). It stores

(R,ϕ(R), (a, b, 0), z′) (and (R−1, ϕ(R), (−a,−b, 0), z′) if ϕ is 2-to-1) in L and
returns ϕ(R) to R. Otherwise, it sets Π−1(z′) = z, stores (⊥, z,⊥, z′) in L and
returns z. Note that this simulates a random function instead of a random
permutation. By the birthday bound, this is only incurs a statistical error of
q2/2L due to possibly causing collisions, where q = qΠ + qΠ−1 is the number of
queries made by R to (Π,Π−1).

Eventually, R invokes the n-UF-NMA adversary A = AH′(·),Π′(·),Π′−1(·)(vk1,
. . . , vkn) on signing keys (vki)i∈[n]. All oracles for A are under the reductions
control. Since R is algebraic, it also provides representations for the signing keys,
i.e. vki = gaiXbi for i ∈ [n]. Note that all keys are independent of X ′ since it is
unknown to R at this point.
A is simulated byM and begins by sampling random indices n∗ ∈ [n] and

j∗ ∈ [qH′ ]. Without loss of generality, we assume that bn∗ 6= 0, as otherwise the
secret key corresponding to vkn∗ is an∗ and A can simply compute an honest
signature using said key.
A begins by invoking the challenge oracle Chal and embeds the challenge

X ′ in all queries to Π′ by randomizing it with Rj for j ∈ [qΠ′ ]. It then proceeds
to make the appropriate number of queries to its other oracles. Next, A picks
an index k∗ s.t. tk∗ 6= 0. Again, without loss of generality, we assume that such
an index exists, as otherwise all valid signatures are information theoretically
hidden from any adversary and the reduction could compute a valid forgery with
at least the same probability as the adversary without using it.
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It then attempts to create a forgery on mj∗ using tk∗ for the key vkn∗ . First,
it checks whether

ghj∗ · vktk∗n∗ = 1.

This would imply that the corresponding signature part s = 0, which results in
an invalid signature. However, the above equation also implies

hj∗ + (an∗ + bn∗x)tk∗ = 0,

and since by assumption bn∗ 6= 0 and tk∗ 6= 0,M can solve this equation for x
and get x′ with a query to DL, solving its FBOMDL challenge.

So assume that ghj∗ · vktk∗n∗ 6= 1. Then A uses its query to DL to produce a
valid forgery and returns it with the appropriate probability. Then the simulation
of A is perfect. Therefore, R will eventually produce a forgery σ∗ = (s∗, t∗) with
probability εR. If vkn∗ = X, thenM aborts, as in this case R will just forward
the signature created by A andM won’t be able to solve its challenge. We call
this event Bad1. However, this abort can only occur with probability 1

nεA, as R
can embed its own key only once in A’s challenge, as the keys have to be distinct,
so

Pr[Bad1] ≤ 1
n
εA

So assume that σ∗ 6= σ. Then we have the two equations

x′s = h+ (an∗ + bn∗x)t (16)
r∗s∗ = H(m∗) + xt∗ (17)

with gr
∗ =: R∗. We consider two cases depending on the queries R made to

(Π,Π−1):
Case 1: @(R∗, z, (a∗, b∗, c∗), z′) ∈ L with ψ(z′) = t∗. In this case, R did not
compute t∗ from Π output or queried ψ−1(t∗) to Π−1. M aborts in this case
as it will not be able to solve its FBOMDL instance. We call this event Bad2.
Consider the random variable y∗ = Π(ϕ(R∗)). Since Π is a random function, y∗
is distributed uniform over [0 : 2L − 1], so Pr[ψ(y∗) = t∗] ≤ εψ. This allows us to
bound

Pr[Bad2] ≤ εψ.

Case 2 : ∃(R∗, z, (a∗, b∗, c∗), z′) ∈ L with ψ(z′) = t∗. Here, R queried either
ψ−1(t∗) to Π−1 or computed t∗ from a query to Π on the image of ϕ of a group
element. In both cases, we get a representation for R∗ = gr

∗ with ψ(Π(ϕ(R∗))) =
t∗. Substituting in the above equation and rearranging slightly yields

−h− an∗t = bn∗tx− sx′

a∗s∗ −H(m∗) = (t∗ − b∗s∗)x− s∗c∗x′

The equation system has determinant

D = st∗ − bn∗ts∗c∗ − sb∗s∗
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and is solvable if and only if D 6= 0. Since σ and σ′ are valid signatures, we know
that t∗, t, s∗ and s are non-zero. Assume that D = 0, which we call Bad3. Then

s∗(b∗s+ bn∗tc
∗) = st∗

Solving for s∗, we have s∗ = st∗

∆ with ∆ = b∗s+ bn∗tc
∗. Note that ∆ 6= 0 as

otherwise s = 0 or t∗ = 0. Replacing s∗ in Equation (17), we get

(a∗ + b∗x+ c∗x′)st∗

∆
= H(m∗) + t∗x.

Every term not including t∗ contains either a∗, b∗ or c∗. So if we solve for t∗, we
get

t∗ = H(m∗)∆
a∗s+ (b∗s−∆)x+ c∗x′s

,

where the denominator is non-zero with probability 1 − qH
p , as it implies that

H(m∗) = 0. With the same argument as in Theorem 4, we get that the probability
that R finds a∗, b∗, c∗, t∗ and m∗ which fulfil the above equation is bounded by
2εψ(qΠ + qΠ−1)qH, so

Pr[Bad3] ≤ 2εψ(qΠ + qΠ−1)qH.

Combining all probabilities of the bad cases and the birthday bound yields
the theorem. ut


	 Limits in the Provable Security of ECDSA Signatures  

