
Reed-Solomon codes over the circle group

Ulrich Haböck and Daniel Lubarov and Jacqueline Nabaglo

Polygon Labs / Polygon Zero
{uhaboeck,daniel.l,jnabaglo}@polygon.technology

June 2, 2023

Abstract

In this note we discuss Reed-Solomon codes with domain of definition within the unit circle of the
complex extension C(F) of a Mersenne prime field F . Within this unit circle the interpolants of “real”,
i.e. F -valued, functions are again almost real, meaning that their values can be rectified to a real
representation at almost no extra cost. Second, using standard techniques for the FFT of real-valued
functions, encoding can be sped up significantly. Due to the particularly efficient arithmetic of Mersenne
fields, we expect these “almost native” Reed-Solomon codes to perform as native ones based on prime
fields with high two-adicity, but less processor-friendly arithmetic.

Contents

1 Introduction 1

2 The complex extension and real FFTs 2

3 Interpolants over S1 5

4 Almost native Reed-Solomon codes for Mersenne fields 6

1 Introduction

The performance of STARKs [BSBHR18b], i.e. scalable and transparent arguments of knowledge based on
Reed-Solomon codes and the FRI [BSBHR18a, BSCI+20] proof of proximity, is largely determined by the
finite field in which the witness trace is represented. While StarkWare’s implementation of their Cairo zero-
knowledge virtual machine [GPR21] still uses cryptographically large prime fields, Plonky2 [Tea] leverages
the 64 bit small prime field with modulus

p = 264 − 232 + 1,

commonly referred to as the Goldilocks field. While the size of the modulus enables efficient implementa-
tions for standard computer architectures, its multiplicative group is smooth enough to support efficient
Fast Fourier transform (FFT) Reed-Solomon encoding, with two-adic subgroups up to size 232. The
Goldilocks field has subsequently been adopted by many other projects, such as Polygon Hermez [Her] and
Polygon Miden [Mid].

1

However, from the point of view of both efficient field implementation as well as arithmetic circuits,
even smaller fields are desirable. At the time of writing, Risc Zero [BG] is the only project known to us
which goes in this direction, using the 31 bit small Baby Bear prime

p = 231 − 227 + 1

as the native modulus for the witnesses. As with Goldilocks, the multiplicative group of Baby Bear is
sufficiently smooth for most practical applications, p − 1 = 227 · 3 · 5. There exist primes of similar form
as Baby Bear, for example p = 231 + 230 + 1, which have comparable smooth multiplicative groups and
efficient field arithmetic.

The most efficient fields for arithmetic seem to be Mersenne fields, defined by primes of the form
p = 2e − 1. In particular, the prime

p = 231 − 1

enables very efficient arithmetic on 32 bit architectures. Since 232 = 2 (mod p), a widened product
encoded as 232 · xhi + xlo is trivially reduced to a much smaller quantity, 2 · xhi + xlo. However, as
p − 1 = 2 · 32 · 7 · 11 · 31 · 151 · 331, the multiplicative group lacks two-adic subgroups, which are useful for
efficient Cooley-Tukey Fast Fourier Transforms (FFTs).

In this write-up we describe almost native Reed-Solomon codes for Mersenne fields, which leverage FFT
encoding over the circle group S1 of the complex extension. Moving to the complex does not seem beneficial
at first glance. First of all, extension field arithmetic is significantly more expensive than that of the base
field, and secondly, code words become complex-valued, effectively halving the rate of our code. However,
it turns out that for real, i.e. basefield-valued functions defined on a subgroup of S1, the interpolant over
the rest of the circle group is again almost real, meaning that its values are within a real linear subspace
which (essentially) depends only on the coset of the subgroup. Furthermore, using standard techniques for
improving the FFT of real-valued functions, the cost of interpolation can be more than halved. Based on
these facts we obtain Reed-Solomon codes which are “almost native” in the following sense:

• for real functions, the encoding costs are comparable to that of Cooley-Tukey-based encoding over
an equally sized field with high two-adicty, and

• the resulting codewords can be compressed to a wholly real-valued representation, causing essentially
the same commitment costs as in the native case.

Given the particularly efficient arithmetics of our target prime p = 231 − 1 (see Table 1) we expect that
almost native Reed-Solomon codes are equally performing as native solutions over fields like Baby Bear,
while enjoying the benefits of faster field arithmetic at all other places, such as trace computation and
arithmetic hashing.

The structure of the document is as follows. Section 2 is of preliminary character. It summarizes
elementary properties on the complex extension and the unit circle group, and recaps facts on the FFT
for real-valued functions. Section 3 is the core chapter and describes interpolants of real functions within
the unit circle, yielding the aforementioned native representation of codewords. In Section 4, we apply
our findings and introduce almost native Reed-Solomon codes. An implementation of our approach will be
provided in a future version of the document.

2 The complex extension and real FFTs

Although our main target are Mersenne fields, the results of this section hold for every prime field F = Fp

with modulus p = 3 mod 4. That condition on p is equivalent to demand that p−1
2 is odd, or −1 is not a

2

quadratic residue. In this case the polynomial X2 + 1 is irreducible over F and we can build the complex
extension field C(F) = F [X]/(X2 + 1). The extension is obtained by adjoining the formal root i :=

√
−1,

C(F) = {x + i · y : x, y ∈ F},

and its field operations are imposed by the algebraic constraint i2 = −1 on that root. The unit circle over
F is the algebraic set S1 = {(x, y) ∈ F 2 : x2 + y2 = 1}, or in complex representation

S1 = {z ∈ C(F)∗ : z · z̄ = 1},

where z̄ denotes the conjugate z̄ = x − i · y of z = x + i · y. Since conjugation is a field automorphism, S1 is
closed under complex multiplication, forming a subgroup of the complex multiplicative group C(F)∗, the
(unit) circle group.

Lemma 1 (Circle group). Let F = Fp be a prime field with p = 3 mod 4. Then the circle group S1 over
F equals the group of (p + 1)-th roots of unity in C(F)∗, and has order p + 1.

Proof. 1The Lemma is a simple consequence of the fact that conjugation equals the Frobenius isomorphism,
z = zp. With this x2 + y2 = z · z = zp+1, and together with (p + 1)|(p2 − 1) we conclude that the circle
group is equal to the order p + 1 sugroup of the (p + 1)-th roots of unity.

The geometry of the complex plane over F is similar to the classical case known from calculus. Although
not needed in the sequel, we quickly cite the analogue of the polar form of complex numbers.

Proposition 1. Let F = Fp be a prime field with p = 3 mod 4. The multiplicative subgroup of all complex
squares QC = {z2 : z ∈ C(F)∗} decomposes into

QC = QF ⊗ S1,

where QF are the p−1
2 many quadratic residues in the base field F , and S1 is the unit circle group over F

of order p + 1.

Remark 1. In terms of group orders, we have |QC(F)| = p2−1
2 = (p−1)·(p+1)

2 . The real quadratic residues
QF correspond to the odd p−1

2 -term, and the unit circle group S1 to the coprime factor (p + 1).
Remark 2. The entire multiplicative group C(F)∗ decomposes into

C(F)∗ = QF ⊗ S±1,

where S±1 = {z ∈ C(F)∗ : z · z̄ ∈ {±1}} is the subgroup formed by the unit circle and the anti-unit circle
S−1 = {z ∈ C(F)∗ : z · z̄ = −1}. In terms of group orders S±1 corresponds to the 2 · (p + 1) term in
|C(F)∗| = 2 · (p + 1) · p−1

2 .

Fourier transform and real FFTs

Suppose that H is a multiplicative subgroup of an (arbitrary) finite field K with order |H| = N , and let
g be a generator of H. The (discrete) Fourier transform f̂ of a function f : H → K is the function on H
defined by

f̂(gk) := 1
N

·
N−1∑
j=0

f(gj) · g−k·j , (1)

1We would like to thank William Borgeaut for pointing out this simple proof, which is much elegant than our argument in
previous version of the document.

3

where k = 0, . . . , N − 1. Its values are the coefficients of the interpolant of f , i.e. the unique polynomial
p(X) of degree less than N which interpolates f over H,

f(gi) =
N−1∑
k=0

f̂(gk) · gk·i, (2)

for all i = 0, . . . , N − 1. The right-hand side of (2) is the inverse Fourier transform of f̂ : H → K.
The standard algorithm for computing the Fourier transform is the Cooley-Tukey algorithm. The

algorithm leverages the group structure of H and computes (1) (and likewise the inverse (2)) using overall

|H| · log |H| ·
(1

2 · M + A
)

, (3)

where M and A denote multiplications and additions/substractions in K. (For a detailed description see
any standard textbook such as [vzGG13] or [CLRS09].)

In the case of K = C(F), the complex extension of a finite field F with prime modulus p = 3 mod 4,
one may make use of the simple form of the roots of unity up to order 8, which are

c · (1 + i), i, c · (−1 + i), −1, c · (−1 − i), −i, c · (1 − i),
and 1, where c is a real quadratic root of either +1

2 or −1
2 , depending on which of the two is a quadratic

residue modulo p. Multiplication with these roots involve fewer real multiplications, if any at all. This
yields more efficient higher radix variants of the FFT such as radix-4 and radix-8 [Ber68], or even better
the split-radix variant [Yav68, DH84, SHB86], a mixture of radix 2 and radix 4. The split-radix algorithm
costs slightly less than radix-8, consuming at most

|H| · log |H| · (1 · MF + 3 · AF) ,

in the 3/3-regime, where one complex multiplication counts 3 real multiplications MF and 3 real additions
AF (c.f. [SJHB87]). Compared to the Cooley-Tukey radix-2 FFT this is 33% less multiplications and
20% less additions. Furthermore, all these different radix FFTs can be sped up for real-valued functions
f : H → F by leveraging Hermitian symmetry of the Fourier transform, i.e.

f̂(ω̄) = f̂(ω),
for every ω ∈ H. That symmetry may used to halve the number of computations in each step of the algo-
rithms, and the same can be done for the inverse transforms of Hermitian symmetric functions. Although
described for the classical case of the complex extension of the reals R, the algorithms and their cost
analysis carry over verbatim to finite fields. We summarize the discussion by the following Proposition.
Theorem 3 ([SJHB87]). Let K = C(F) be the complex extension of a finite field F with prime modulus
p = 3 mod 4, and H be a two-adic multiplicative subgroup of K. The Fourier transform of a real-valued
function f : H → F , as well as the inverse transform of a conjugate Hermitian function f̂ : H → K can
be computed in less than

|H| · log |H| ·
(1

2 · M + 3
2 · A

)
, (4)

where M and A denote field multiplications and additions over the base field F .
Remark 4. In our target Mersenne field with modulus p = 231 − 1, the 8-th primitive root of unity is

1√
2 · (1 + i) = 215 · (1 + i). Thus multiplications by 8-th roots of unity involve merely shifts, additions and

subtractions. For this reason one obtains similar operation counts by using the packing trick and a radix-8
transform: One splits the function into functions of half the size (corresponding to the values over the two
cosets of an index 2 subgroup), packs them into a single complex one and applies a radix-8 algorithm. From
the result one extracts the Fourier transforms of the two half-sized functions, which are then combined in
the Cooley-Tukey sense to the requested one.

4

3 Interpolants over S1

The following proposition is the key for our real representation of Reed Solomon code words over the unit
circle group. Although our main target are Mersenne prime fields, our observations solely assume that
F = Fp is a prime field with p = 3 mod 4.

Proposition 2. Let F = Fp be a prime field with p = 3 mod 4, and H be a subgroup of S1 the unit circle
group in the complex extension C(F), having even order |H| ≥ 2. Then for every F -valued function f over
H, the values of its interpolant p(X) = c0 + ∑|H|−1

k=1 ck · Xk over a coset τ · H, τ ∈ S1, are in a real linear
subspace of C(F) determined by c0 and τ , i.e.

p(x) − c0 ∈ ϕ(τ) · F, (5)

for all x ∈ τ · H, where
ϕ(τ) = τ

|H|
2 . (6)

Furthermore, the mapping ϕ defines an injective homomorphism ϕ : S1/H → S1/{±1}, the image of which
is equal to the “projective” cyclic subgroup C2·β/{±1}, with β = |S1|/|H|.

Remark 5. For subgroups H of odd order a similar result holds, but one needs to do a more careful
proof since

√
τ might be in the anti-unit circle S−1, and thus conjugate-equals-inverse relation breaks,√

τ ·
√

τ = −1. As we will not make use of this special case, we omit the details.

Proof. As f is real over H, the coefficients of its interpolant p(X) = ∑|H|−1
k=0 ck ·Xk are Hermitian symmetric

with respect to conjugation, i.e. c0 = c̄0, and c|H|−k = c̄k for k = 1, . . . , |H| − 1. Let us now consider the
values of p(X) − c0 over τ · H, where τ ∈ S1:

p(τ · X) − c0 =
|H|−1∑
k=1

ck · τk · Xk =
∑

k

dk · Xk,

with

dk =
{

ck · τk for 1 ≤ k ≤ |H| − 1,

0 otherwise.

Scaling the function by τ− |H|
2 leads to coefficients d′

k := τ− |H|
2 · dk which satisfy the Hermitian symmetry

d′
|H|−k = τ− |H|

2 · τ |H|−k · c|H|−k = τ
|H|

2 · τ−k · c̄k = τ− |H|
2 · τk · ck = d̄′

k,

for k = 1, . . . , |H| − 1. We therefore conclude that τ− |H|
2 · (p(τ · x) − c0) ∈ F , for every x ∈ H, which proves

the first claim of the proposition.
The second claim is seen easily from the fact that, for every x ∈ H we have x

|H|
2 ∈ {±1} and thus

(τ · x)
|H|

2 ∈ τ
|H|

2 · {±1}. Thus ϕ projects to an isomorphism from S1/H into S1/{±1}, and the kernel of
that isomorphism is trivial since τ

|H|
2 ∈ {±1} is equivalent to τ |H| = 1. As S1 is cyclic, so is the projective

unit circle S1/{±1} and the image of ϕ is the unique subgroup of order β = |S1/H|, which is equal to the
subgroup C2·β/{±1}.

5

Figure 1: Illustration of the coset correction factors and their linear subspaces for a subgroup H of index
β. Assuming that the powers of τ enumerate the cosets of H, i.e. S1 = H ∪ τ · H ∪ τ2 · H ∪ . . . ∪ τβ−1 · H,
and for simplicity that c0 = 0, then the values over the first coset τ · H are located on the line spanned by
the ϕ(τ) which is the (2 · β)-th primitive root of unity g = 1

1
2β . The values over the second coset τ2 · H

are within the line spanned by its second power g2, the values over τ3 · H within the subspace spanned by
g3, and so on. In the general case c0 ̸= 0 the lines are shifted by the real value c0.

1-1

1

1

Β

1

1

2 Β

1

3

2 Β

4 Almost native Reed-Solomon codes for Mersenne fields

Let us now apply our findings to the case of Mersenne fields F = Fp, with prime modulus p = 2e − 1. By
Lemma 1 the unit circle group S1 is a purely two-adic subgroup of C(F)∗,

|S1| = p + 1 = 2e.

amenable for the FFT algorithms outlined in Section 2. In the context of STARKs which use Lagrange
representations of witness polynomials, such as algebraic intermediate representations (AIR) [BSBHR18b,
BSGKS20, Sta21] or Plonkish arithmetization [GWC19], one faces the following issue. Given the values of
the witness polynomial over a witness domain H, interpolate it to some larger sampling domain D, of size
|D| = β · |H|, with integer β, and commit the obtained values via a Merkle hash. If both H and D can be
placed within the unit circle group S1 we obtain what we like to call an almost native Reed-Solomon code:

• By leveraging the mixed-radix FFT for real-valued functions (Proposition 3), computing the inter-
polant and its demanded coset values costs about the same as native over an equally sized field with
high two-adicity.
First, one computes the Fourier transform of the real witness function w : H → F . Then, for each
coset τ · H ⊆ D, one multiplies the Fourier transform of w (minus its constant term) by the gauged
shift factors τk− |H|

2 , k = 1, . . . , |H| − 1, and then uses the inverse FFT for Hermitian symmetric
functions to obtain the real values of the rectified τ− |H|

2 · (w(X) − c0) over τ · H.

• The native representation of the codeword consists of the real coset evaluations

τ− |H|
2 · (w(x) − c0)

∣∣∣
x∈τ ·H

, (7)

where τ · H ⊆ D, together with the constant term c0 = ∑
x∈H w(x).

Instead of committing w(x)|x∈D, one may commit only to rectified values (7), and additionally
announce (or, commit to) the scalar c0. We note that in many applications one can even assume
that c0 = 0: Often, not all of the domain H is consumed by witness data and one can use an unused
value to adjust the domain sum to zero. 2

6

Table 1: Benchmarks for field operations on an Apple M1 and an Intel Ice Lake, using NEON or AVX-512
vector instructions. On both architectures the M31 field with prime p = 231 − 1 improves over the rather
generically structured Baby bear prime (using Montogomery arithmetic for the latter).

ARM (NEON) ops / cycle cycles/op
mul add mul add

M31 3.2 5.33 0.31 0.19
Baby bear 2 5.33 0.5 0.19

x86 (AVX-512) ops / cycle cycles/op
mul add mul add

M31 2.91 10.67 0.34 0.09
Baby bear 2.29 10.67 0.44 0.09

In the non-zero-knowledge setting, our target Mersenne prime p = 231 − 1 enables almost native Reed-
Solomon codes for witness domains H up to size 230, considering a sampling domain D = S1 of size 231,
which corresponds to a blow-up factor β = 2. When targeting zero-knowledge, the largest possible size for
H is 229, using a disjoint sampling domain D within S1 of double the size of H.

On standard computer architectures we expect the benefit of Mersenne arithmetics balances out the
overhead in the number of additions introduced by the mixed-radix FFT over the complex extension. This
expectation is supported by our benchmarks in Table 1, together with the operation counts (3) and (4),
according to which a mixed-radix real FFT over M31 would cost

|H| · log |H| ·
(1

2 · 0.31 + 3
2 · 0.19

)
≈ 0.44 · |H| · log |H|,

|H| · log |H| ·
(1

2 · 0.34 + 3
2 · 0.09

)
≈ 0.31 · |H| · log |H|

clock cycles on an Apple M1 ARM processor and an Intel Ice Lake x86 processor, respectively, versus

|H| · log |H| ·
(1

2 · 0.5 + 1 · 0.19
)

≈ 0.44 · |H| · log |H|,

|H| · log |H| ·
(1

2 · 0.44 + 1 · 0.09
)

≈ 0.31 · |H| · log |H|

clock cycles for the Cooley-Tukey algorithm over Baby Bear, again for Apple M1 and Intel Ice Lake.3 All
in all, we believe that almost native Reed-Solomon codes over Mersenne fields are performing as native
ones over highly two-adic fields of the same size, while providing the benefits of exceptionally fast field
arithmetic. A proof of concept, including benchmarks, will be provided in a future update of this note.

References

[Ber68] Glenn David Bergland. A fast Fourier transform algorithm using base 8 iterations. In
Mathematics of Computation, volume 22, 1968.

[BG] Jeremy Bruestle and Paul Gafni. RISC Zero zkVM: scalable, transparent arguments of RISC-
V integrity. https://www.risczero.com/proof-system-in-detail.pdf.

2We further point out, that the native representation (7) may be used to speed up the computation of the overall quotient
polynomial, assuming the case c0 = 0. Evaluating the constraints and the overall polynomial can be done in a most greedy
manner, by computing the terms of same absolute degree using throughout native representations, and converting to the more
expensive complex representation as late as possible.

3We are surprised that we obtain as good as identical operation counts for the two fields. If anyone believes that this is
not a coincident, please tell us.

7

https://www.risczero.com/proof-system-in-detail.pdf

[BSBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon
interactive oracle proofs of proximity. In ICALP 2018, 2018. Full paper: https://eccc.
weizmann.ac.il/report/2017/134/.

[BSBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent,
and post-quantum secure computational integrity. In IACR ePrint Archive 2018/046, 2018.
https://eprint.iacr.org/2018/046.

[BSCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proxim-
ity gaps for Reed-Solomon codes. In FOCS 2020, 2020. Full paper: https://eprint.iacr.
org/2020/654.

[BSGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: Sam-
pling outside the box improves soundness. In ITCS 2020, 2020. Full paper: https:
//eprint.iacr.org/2019/336.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cifford Stein. Introduction
to algorithms (3rd ed.). MIT Press, 2009.

[DH84] Pierre Duhamel and Henk D.L. Hollman. Split radix FFT algorithm. In Electorn. Lett.,
volume 20, 1984.

[GPR21] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a Turing-complete STARK-
friendly CPU architecture. In IACR ePrint Archive 2021/1063, 2021. https://eprint.
iacr.org/2021/1063.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
Lagrange-bases for oecumenical non-interactive arguments of knowledge. In IACR ePrint
Archive 2019/953, 2019. https://eprint.iacr.org/2019/953.

[Her] Polygon Hermez. https://github.com/orgs/0xPolygonHermez/repositories.

[Mid] Polygon Miden: A STARK-based virtual machine. https://github.com/maticnetwork/
miden.

[SHB86] Henrik V. Sorensen, Michael T. Heideman, and C. Sidney Burrus. On computing the split-
radix FFT. In IEEE Transactions on Acoustics, Speech and Signal Processing, volume 34(1),
1986.

[SJHB87] Henrik V. Sorensen, Douglas L. Jones, Michael T. Heideman, and C. Sidney Burrus. Real-
valued fast Fourier transform algorithms. In IEEE Transactions on Acoustics, Speech and
Signal Processing, volume 35(6), 1987.

[Sta21] StarkWare Team. ethSTARK documentation – version 1.1. In IACR preprint archive
2021/582, 2021. https://eprint.iacr.org/2021/582.

[Tea] Polygon Zero Team. Plonky2: Fast recursive arguments with PLONK and FRI. https:
//github.com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra (3rd ed.). Cam-
bridge Univ. Press, 2013.

[Yav68] R. Yavne. An economical method for calculating the discrete Fourier transform. In Proc. of
AFIPS‘68 Fall Joint Computer Conference, volume 1, 1968.

8

https://eccc.weizmann.ac.il/report/2017/134/
https://eccc.weizmann.ac.il/report/2017/134/
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2020/654
https://eprint.iacr.org/2020/654
https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2021/1063
https://eprint.iacr.org/2021/1063
https://eprint.iacr.org/2019/953
https://github.com/orgs/0xPolygonHermez/repositories
https://github.com/maticnetwork/miden
https://github.com/maticnetwork/miden
https://eprint.iacr.org/2021/582
https://github.com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf
https://github.com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf

	Introduction
	The complex extension and real FFTs
	Interpolants over S1
	Almost native Reed-Solomon codes for Mersenne fields

