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Abstract. Safety, liveness, and privacy are three critical properties for any private proof-of-stake (PoS)
blockchain. However, prior work (SP’21) has shown that to obtain safety and liveness, a PoS blockchain
must in theory forgo privacy. Specifically, to ensure safety and liveness, PoS blockchains elect parties based on
stake proportion, potentially exposing a party’s stake even with private transaction processing. In this work, we
make two key contributions. First, we present the first stake inference attack applicable to both deterministic
and randomized PoS with exponentially less running time in comparison with SOTA designs. Second, we use
differentially private stake distortion to achieve privacy in PoS blockchains and design two stake distortion
mechanisms that any PoS protocol can use. We further evaluate our proposed methods using Ethereum 2.0, a
widely-recognized PoS blockchain in operation. Results demonstrate effective stake inference risk mitigation,
reasonable privacy, and preservation of essential safety and liveness properties.

1 Introduction

Nakamoto introduced Bitcoin’s protocol [NB08], promoting open, permissionless participation in distributed
ledger maintenance. However, achieving consensus in the permissionless setting is hard as the traditional hon-
est majority (or two-thirds majority) assumption no longer hold as the adversary can create any number of
Sybil parties [Dou02] Permissionless protocols address safety against Sybils by leveraging constraint resources,
assuming honest parties hold the majority of such resources. They are classified into Proof-of-Work (PoW) pro-
tocols [NB08,SCG+14,VJR18], reliant on computing power, and Proof-of-Stake (PoS) protocols using monetary
stake [CM16,Woo16,Cha21,KN12,BLMR14,BGM16,BPS16]. While both protocols mark a major breakthrough in
distributed consensus in a permissionless context, the reliance on expensive computing power leads to significant en-
ergy wastage in PoW [OM14,CDE+16], prompting a trend of shifting from PoW to PoS blockchains [SCG+14,Cha21].

The open setup of the blockchain makes transaction privacy an important issue. Although, there are PoW de-
signs [SCG+14,NM+16,BCG+19] have taken the first step toward addressing this by concealing transaction details
using cryptographic primitives while maintaining blockchain functionality. In PoS blockchains, merely hiding trans-
actions is insufficient, as the stake is also sensitive [KMNS21]. Although some efforts [KKKZ19,GOT19,BMSZ20]
address PoS privacy by hiding both transaction and stake, a recent study [KMNS21] theoretically shows that SOTA
designs remain susceptible to side-channel leakages, i.e., the frequency a party adding a new block, which correlates
with the party’s stake. Additionally, they introduce reverse tagging attacks (RTA), enabling attackers to determine
if a party’s stake exceeds a specified value. The basic attack primitive has been deemed feasible in real-world
blockchains like Zcash [SCG+14]. Kohlweiss et al. [KMNS21] also propose a proof-of-concept stake inference
attack (SIA) that estimates a party’s unknown stake by repeatedly using RTA with varying comparison values.

This paper tackles the following open questions. The stake inference attack in [KMNS21] is impractical due
to simplifying assumptions like deterministic protocols and strict liveness guarantees. These assumptions do not
hold in real-world executions as PoS blockchains typically operate under a probabilistic manner [CM16,Cha21].
Hence, the first open question is whether there are stake inference attacks that can be launched in a real-world
context. Moreover, we are not aware of any PoS design that can ensure privacy against attacks like RTA, or the
derived SIA. Thus, the second open question is if there exist private PoS designs that address SIA risks. Motivated
by the open questions, we elaborate on our contributions as follows:

1.1 Contributions

C-1. Stake inference attacks (SIA) for PoS protocols.

– A general stake inference paradigm. We propose a general stake inference paradigm that provides a template for
innovating efficient and accurate SIA that can be run in practice. Our paradigm captures randomized protocols by
formulating liveness in a probabilistic manner and considers robust inference strategies that tolerate unreliable
feedback, i.e. incorrect comparisons between a candidate value and the target stake.
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– RdBin, a concrete stake inference attack. Following our inference paradigm, we provide RdBin, the first prac-
tical SIA against randomized PoS protocols. RdBin combines random walk and binary search to adaptively
approximate the target stake with exponentially more efficient running time than the SOTA one [KMNS21], i.e.
sublinear complexity related to the total stake 𝑆 in contrast to the linear time ensured by [KMNS21].

C-2. Private PoS using DP Stake Distortion.

– Formulating private PoS security model. In the presence of SIAs, existing PoS protocols under the standard UC
security model [KKKZ19,KMNS21] are clearly inadequate to achieve privacy. To address this, we define two
desiderata that ensures a practical PoS blockchain has rigorous and well-defined privacy. Based on this, we take
the first attempt to integrate differential privacy (DP) [DR+14] with previous UC security models of private
ledgers and derive a formal definition for the private PoS ledger. The improved model inherits key components
of UC private ledger definitions but also formulates provable stake and transaction privacy.

– Two stake distortion mechanisms that extend standard PoS to private PoS while balancing liveliness, safety
and privacy. Though naı̈ve methods exist, i.e. partition (disconnect) each party or use equal chance for leader
election, that address the potential privacy violations (SIA risks). The former completely abandons liveness
while the latter provides no safety. In this work, we propose two DP stake distortion mechanisms, namely Timer
and Binary mechanism, which can be mounted to any PoS protocol and extend the ordinary PoS into a private
PoS under our security model. Moreover, the resulting protocols ensure provable stake and transaction privacy
while preserving the original safety and liveness guarantees at the same time.

– Publicly verifiable protocols that securely realize DP distortion mechanisms. In addition to the idealized func-
tionalities, we construct concrete protocols that securely realize the them. To the best of our knowledge, the
protocols are the first attempts to provide publicly verifiable DP mechanisms over continual observations.

– Case study with real-world blockchains We conduct case studies on Ethereum 2.0 [Cha21] to show that the stake
distortion imbues real-world blockchains with reasonable stake privacy while retaining the original safety and
liveness. We also compare the methods and examine how they differ in ensuring these properties.

– Prototype protocol and efficiency evaluation. We implement prototype stake distortion protocols and evaluate
their efficiencies. The result indicates evaluating stake distortions adds small overheads to blockchain protocols
(i.e. less than 13% of Zcash [SCG+14]’s protocol). Moreover, the distortion occurs over certain intervals, which
causes the amortized cost to be even smaller.

The paper is structured as follows: Section 2 covers background, Section 3 addresses stake inference attacks,
Sections 4 and 5 present private PoS desiderata and our privacy model, while Sections 6,7, and8 detail our private
PoS design, case studies, and evaluations.

2 Background

Private ledger. We now examine the private ledger functionality ( 2.1), GPL, considered by this work, which is
adapted from earlier UC formulations [KKKZ19,KMNS21] of private ledgers. Given its complexity, we outline
the functionality concisely, suitable for technical dialogues, with extended analysis in Appendix A.

Functionality 2.1: GPL

The functionality GPL manages a general ledger state, state; a local state state𝑖 (a prefix of state) for
every party 𝑃𝑖; a buffer of unconfirmed transactions, buffer; and a sequence of honest inputs I𝐻 .
Upon receiving any input 𝐼 from party 𝑃𝑖 , record I𝐻 ← I𝐻 | | (𝐼, 𝑃𝑖 , 𝑡), if 𝐼 is not SUBMIT command,
then evaluate the following:

(a) (Add Transaction). If 𝐼 is command (SUBMIT, sid, tx), and tx is valid. Add tx to buffer, and update
I𝐻 = I𝐻 | | (𝐼, blind(tx), 𝑡) with the blinded transaction, for instance, blind(tx) hides the sender,
recipient, and the amount of tx

(b) (Read State). Return the blinded version of 𝑃𝑖’s local state, blind(state𝑖), with all non-𝑃𝑖 transactions
replaced by blind ones. If 𝑃𝑖 is corrupted, send (blind(state𝑖),I𝐻 , Lkg) to the adversary.

(c) (Extend chain). If 𝐼 is (MAINTAIN LEDGER, sid), then perform the ledger maintenance [KRDO17],
[DGKR18], [BGK+18] to add valid transactions in buffer to state.

In line with prior formulations [KKKZ19,KMNS21], we let the adversary know when corrupted party transac-
tions are confirmed. Thus, in blind(state𝑖), only non-𝑃𝑖 transactions are replaced with blind ones. In addition, GPL
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is also parameterized with a leakage profile Lkg, revealing block proposer (the party who maintains the ledger)
identities per round. It is noteworthy that Kohlweiss et al. [KMNS21] theoretically demonstrated the nonexistence
of private ledgers without leaking block proposer identities (even in presence of anonymous broadcast channels).
We stress that Lkg is indeed protocol-specific which especially depends on how the protocol elects the block
proposer. However, in PoS blockchains, block proposers are typically chosen through a “private lottery” [GOT19],
where the odds of a party winning ledger maintenance eligibility is proportional to their stake. Hence, one may
nevertheless formulate Lkg as a (possibly probabilistic) function over each party’s stake (See Appendix A.3 for an
example leakage profile).

Definition 1. Protocol
∏

is said to be a private ledger with leakage Lkg if the ptotocol UC-realizes [Can01]
functionality GPL in the presence of a p.p.t. adversary.

Private ledger properties. Following the private distributed ledger properties discussed in previous works
[KRDO17,DGKR18,KKKZ19,KMNS21], we formulate important properties considered by this work.

Definition 2 (Private ledger properties). Let
∏

to be a private ledger protocol executed by a set of parties. We
consider the following properties hold when 𝑓 fraction of the parties is malicious.

– Safety: No two honest users disagree on confirmed transactions (i.e., transactions appended to state).
– (𝑧, 𝑡)-Liveness: Any valid transaction that is input to at least an honest 𝑧 ≤ (1− 𝑓 ) fraction of the total parties,

will be appended to state within 𝑡 time steps.

Consistent with [CM16,Buc16,Maz15,XLCB18], we consider at least 2
3 fraction of the total stake is owned by the

honest parties, and correspondingly 𝑓 < 1
3 is interpreted as malicious corrupted stake fraction. Moreover, for various

reasons, the properties in Definition 2 may be ensured in a probabilistic manner. For example, Algorand [CM16]
and Ouroboros [KRDO17] use randomness for efficiency thus ensures safety or liveness only with high probability.

Privacy tradeoffs and attacks against PoS. Kohlweiss et al. [KMNS21] demonstrated that it is theoretically
impossible to have a private ledger ensuring liveness without revealing the block proposer’s identity. Moreover,
recognizing block proposers over time reveals the frequency at which parties take on the block proposer role.
In PoS blockchains, such frequency correlates with a party’s stake, potentially leading to stake privacy loss and
allowing attackers to deduce an individual’s stake. For example, Kohlweiss et al. [KMNS21] examined the Reverse
Tagging Attack (RTA), enabling attackers to assess if a party’s stake surpasses a specified threshold. RTA’s idea
involves creating input disparities between a target and other nodes, such as by delaying specific transactions. For
example, the attacker delays a self-created transaction tx for a target 𝑃𝑣 with stake 𝑓𝑣 , and a set of corrupted nodes
with stake 𝑓cmp. If tx isn’t confirmed after 𝑡 steps, by (𝑧, 𝑡)-liveness, the attacker learns 𝑓𝑣 ≥ 1−𝑧− 𝑓cmp.

The delay operation was implemented using the Invblock technique, first proposed in [MLP+15] and was later
used to infer Bitcoin topology [DSBPS+19]. Kohlweiss et al. [KMNS21] further assessed the validity of Invblock
against private ledgers, i.e. Zcash [SCG+14]. Note that, the cost of launching Invblock is low, as it necessitates the
attacker becoming one of the victim’s peers in the P2P network, rather than compromising all target node peers.

Additionally, [KMNS21] also outlined a stake inference attack (SIA) design by iteratively applying RTA with
adaptive 𝑓cmp. The attacker starts with 𝑓cmp = 0 and repeats RTA, increasing 𝑓cmp by 1

𝑆
each time until the first

𝑓cmp satisfies 𝑓𝑣 ≥ 1−𝑧− 𝑓cmp, where 𝑓𝑣 = 1−𝑧− 𝑓cmp approximates 𝑓𝑣 .

Differential privacy [DR+14]. guarantees that altering one input data element in an algorithm or mechanism
imposes minimal impact on the output. More specifically, let 𝐷 and 𝐷′ be two databases that differ by only a single
tuple, namely neighboring databases, then:

Definition 3 (𝜖-differential privacy). Given 𝜖 > 0, a randomized mechanism M is 𝜖-DP if for all pair of
neighboring databases 𝐷, 𝐷′, and any possible output 𝑜 ⊂ 𝑅𝑎𝑛𝑔𝑒(M), the following holds:

Pr [M(𝐷) ∈ 𝑜] ≤ 𝑒𝜖 Pr [M(𝐷′) ∈ 𝑜]

An alternative definition, known as approximate DP or (𝜖, 𝛿)-DP, allows a small failure probability 𝛿 in addition
to the constraints in Definition 3. In this paper, the focus is on 𝜖-DP, while an extended discussion that considers
the relaxed (𝜖, 𝛿)-DP can be found in Appendix E.

3 Stake Inference Attack
In this section, we discuss practical stake inference attacks against PoS protocols. In general, given a target party
𝑃𝑣 with stake 𝑓𝑣 , we consider attack strategies to adaptively choose 𝑓𝑣 that minimizes the error | 𝑓𝑣 − 𝑓𝑣 |.



4 Chenghong Wang, David Pujol, Kartik Nayak, and Ashwin Machanavajjhala

3.1 Issues with the SOTA Approach [KMNS21]

I-1. Restricted to deterministic protocols. Kohlweiss et al. [KMNS21] consider rather idealized deterministic pro-
tocols, assuming stringent liveness conditions. However, this assumption may not align with real-world scenarios, as
most blockchains function probabilistically, with liveness typically guaranteed at a high probability [CM16,Cha21].

I-2. RTA: One-sided comparison only. Based on (𝑧, 𝑡)-liveness, tx can be confirmed even if less than 𝑧 fraction
of honest parties receive it. Therefore, the 𝑠𝑣 + 𝑓cmp < (1−𝑧) conclusion may not hold when tx is confirmed within
𝑡 steps, potentially causing 𝑓𝑣 to be larger than 𝑓𝑣 . This one-sided comparison limitation makes RTA-based SIA
less reliable for accurate stake inferences.

I-3. Inefficient search strategy. The linear scan strategy considered by [KMNS21] requires a large number of
RTA executions, which is inherently inefficient.

The aforementioned limitations reduce the practicality of RTA-based SIA. In what follows, we focus on
developing a practical SIA that is efficient, accurate, and suitable for randomized PoS protocols.

3.2 The General Stake Inference Paradigm

In this section, we show that the problem of finding accurate stake inference against probabilistic PoS blockchains
can be reduced to a variant of Noisy Search problem [KK07].

Definition 4 (Noisy search problem). Given 𝑛 coins sorted by head probabilities (𝑝𝑖 for the 𝑖𝑡ℎ coin) and a target
coin with 𝑝1 ≤ 𝑝∗ ≤ 𝑝𝑛, an algorithm must find two coins 𝑖, 𝑖 + 1 satisfying a given 𝜏 > 0 such that [𝑝𝑖 , 𝑝𝑖+1]
intersects [𝑝∗−𝜏, 𝑝∗ + 𝜏], without knowing exact head probabilities but being allowed to flip coins

The general reduction idea is to map stake to simulated biased coins so that inferring stake values reduces to
locating search coins that is close to a target coin with heads probability tied to 𝑓𝑣 . Details are as follows.

Formulating liveness. To simulate stake-based biased coins, we rely on the liveness ensured by the blockchain.
To apply to randomized protocols, we adapt the (𝑧, 𝑡)-Liveness definition accordingly.

Definition 5 (Probabilistic (𝑧, 𝑡)-liveness). For any transaction tx that is input to 𝑧 fraction of the honest parties,
the probability tx is NOT confirmed after 𝑡 time steps equals to 𝑞(1−𝑧, 𝑡), where 𝑞(·) is a monotonically increasing
function related to 1−𝑧.

In general, 𝑞(·) is highly related to the protocol specification. For example, assuming the probability of a party
proposing the next block is determined by a slot function 𝜙(·) [GOT19,KKKZ19,KMNS21] over its stake. One
may obtain 𝑞(1−𝑧, 𝑡) = (1−𝜙(𝑧))𝑡 for any 𝑧, 𝑡 > 0. Although, this probability may differ from the theoretical one
in real executions, i.e., due to some other configurations, such as timeouts, transaction pool size, etc. One may
assume that as long as the protocol specification does not change, the value of 𝑞(𝑧, 𝑡) remains stable for any 𝑧 and
𝑡. Moreover, the actual value of 𝑞(·) in real executions may be not directly computable, but one may evaluate it
empirically.

Simulating “stake-based” biased coins. Given a node (or a group of nodes) with relative stake 𝑓𝑥 , we provide
an interface for simulating a biased coin with heads probability equal to 𝑞( 𝑓𝑥 , 𝑡) for any 𝑡 > 0. Note there are two
types of biased coins, the search coin and the target coin, for which the simulations are different. In simulating the
search coin, the attacker knows the pre-image 𝑓𝑥 , while it is unknown when simulating the target coin.

To simulate a search coin, the attacker first samples a set of corrupted nodes with total stake 𝑓𝑥 , then broadcasts a
self-created transaction, tx, to everyone, but removes tx from the sampled nodes’ transaction pool. The attacker waits
for 𝑡 time steps to observe if tx is confirmed. By Definition 5 the probability of tx not being confirmed after 𝑡 steps
is 𝑞( 𝑓𝑥 , 𝑡). For the target coin, we utilize the delay operation considered by previous works [KMNS21,MLP+15].
Specifically, the attacker broadcasts tx to everyone but delays it to the victim, such that tx does not reach 𝑃𝑣 for
at least 𝑡 time steps. Similarly, the attacker then waits to observe if tx is confirmed after 𝑡 steps, where the “not
confirmed” probability equals 𝑞( 𝑓𝑣 , 𝑡).

For demonstration purposes, we consider 𝑡 = 1 to be the default setting and therefore omit it. In what follows,
we use 𝑝𝑥 to directly denote the heads probability of a stake-based biased coin with pre-image 𝑓𝑥 .

Reduction. We provide an abstract algorithm for SIA by assuming the existence of a black-box solver, ns solver,
for the noisy search problem. Given 𝑃𝑣 with stake 𝑓𝑣 , and 𝑛 sorted stake values, the algorithm simulates corre-
sponding search coins as well as the target coin then inputs them to ns solver along with a specified 𝜏. Upon
receiving two coins 𝑖, 𝑖 + 1 output from ns solver, the algorithm computes 𝑞−1 (𝑝𝑖) and, 𝑞−1 (𝑝𝑖+1) to obtain the
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pre-images 𝑓𝑎, and 𝑓𝑏, then returns 𝑓𝑎+ 𝑓𝑏
2 as 𝑓 . Note that, in simulating the search coins, the algorithm knows

the pre-image of each stake-based biased coin, and thus 𝑓𝑎+ 𝑓𝑏
2 can be obtained within constant time. Therefore, if

ns solver requires 𝑇 (𝑛) times coins tosses before termination, then the running time of the SIA is dominated by
𝑇 (𝑛) many simulated coin flips. Figure 1 shows a diagram of the aforementioned reduction.

ns_solver
Party 𝑃!

with stake 𝑓!

Candidates
(𝑓" , 𝑓# ,… , 𝑓$)

sim_target_coin

𝑝! , 𝑝!"#Search coins
(𝑝# ,𝑝$ , … , 𝑝%)

Target coin 𝑝&

sim_search_coin

Given τ	 finds
𝑝! , 𝑝!"# that

intersects 𝑝& ± 𝜏

Outputs
𝑓'!

convert_outputs

Obtain pre-
image 𝑓'	, 𝑓)
corresponds to

𝑝! , 𝑝!"#

𝑓+& ←
𝑓' + 𝑓)
2

Fig. 1: Reduction diagram.

3.3 Practical Stake Inference Attack

Following our reduction, we provide RdBin, a practical SIA that combines random walk and binary search. Similar
to [KMNS21], we examine a loosely dynamic scenario where honest parties’ stakes remain stable over short periods
but change over longer durations. RdBin is parametered by 𝜃 > 0, and 𝜏 ∈ (0, 1), and is given a balanced (stake)
binary tree ST with each node labeled with a stake segment [ 𝑓𝑎, 𝑓𝑏] ⊆ [0, 𝑓 ]. Specifically, the root is labeled
with [0, 𝑓 ], and for every internal node 𝑣 with label [ 𝑓𝑎, 𝑓𝑏], its left and right child is labeled with [ 𝑓𝑎, 𝑚] and
[𝑚, 𝑓𝑏], respectively, where 𝑚 = ⌊ 𝑓𝑎+ 𝑓𝑏2 ⌋. Moreover, all leaf nodes satisfy 𝑓𝑏− 𝑓𝑎 = 𝜃

𝑆
. The algorithm starts with a

random walk in ST from the root, and for each round 𝑡 (assuming at node 𝑣(𝑡)), it evaluates a probabilistic stake
comparator, 𝑝SC, that compares 𝑓𝑣 with the pivot of 𝑣(𝑡), say 𝑓𝑎+ 𝑓𝑏

2 . If 𝑓𝑣 <
𝑓𝑎+ 𝑓𝑏

2 is claimed by 𝑝SC, it moves
to the left child, otherwise to the right child. RdBin halts and outputs 𝑓 ← 𝑓𝑎+ 𝑓𝑏

2 , if it reaches a leaf node or 𝑝SC
asserts min diff. The details are shown in Algorithm 1.

Algorithm 1 𝑝SC( 𝑓𝑣 , 𝑓cmp, 𝜏, 𝛿)
1: Sample a set of corrupted users 𝑃𝑐 with stake 𝑓cmp
2: for 𝑖 = 1, 2, 3... do 𝑝0 = 𝑝1 = 0
3: 𝜏𝑖 = 𝑒−𝑖/2, 𝛿𝑖 = 𝛿/𝑒𝑖 , 𝑛𝑖 = log(1/𝛿𝑖)/𝜏2

𝑖
4: if 𝜏𝑖 < 𝜏 then assert min diff
5: for 𝑗 = 1, ..., 𝑛𝑖 do (𝑏 ∈ {0, 1})
6: Broadcast conflicting transactions† tx0, tx1
7: Delay tx0 to 𝑃𝑣 and remove tx1 from 𝑃𝑐 .
8: 𝑝𝑏 = 𝑝𝑏 + 1/𝑛𝑖 , if tx𝑏 is not confirmed
9: if |𝑝0 − 𝑝1 | ≥ 2𝜏𝑖 then

10: assert 𝑓𝑣 > 𝑓cmp if 𝑝0 > 𝑝1 else 𝑓𝑣 ≤ 𝑓cmp
†As long as one transaction is confirmed, the other one is invalid, this allow us to flip two biased coins at the same time.

Theorem 6. Given 𝛿, 𝜏 ∈ (0, 1), 𝜏c = |𝑞( 𝑓𝑣)−𝑞( 𝑓cmp) |, and 𝜏𝑚 = max(𝜏, 𝜏𝑐), with probability at least 1−𝛿, 𝑝SC
outputs correctly after expected 𝑂

(
𝜏−2
𝑚 ln(1/𝛿𝜏𝑚)

)
many simulated coin tosses.

For each round 𝑖, the failure probability of testing coins is at most 𝛿𝑖 , thus by union bound [GS97], the failure
probability for the entire testing is bounded by

∑
𝑖 𝛿𝑖 < 𝛿. By Hoeffding’s inequality, the probability that 𝑝SC

to continue running for 𝜏𝑖 < 1
2𝜏 decreases exponentially in 𝑛𝑖 . Thus the expected complexity is dominated by

the complexity of round 𝑖 = log( 1
max(𝜏,𝜏c ) ), which is consistent with Theorem 6. We extend this to full proofs

in Appendix C.1. Overall, 𝑝SC provides accurate two-sided comparisons with a bounded failure probability.
Moreover, by setting 𝛿 = (log 𝑆

𝜃
)−1, the random walk ensures movement towards the correct node with probability

at least 1−(log 𝑆
𝜃
)−1, and by union bound, the failure probability of RdBin is bounded by a constant factor.

Theorem 7. Let 𝑛 = 𝑆
𝜃

, 𝛿 = 𝑂 (1/log 𝑛), 𝑝𝑣 = 𝑞( 𝑓𝑣), and 𝜂 = max
(
|𝑞−1 (𝑝𝑣 ± 𝜏) − 𝑓𝑣 |

)
, then RdBin satisfies:
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1. The running time is 𝑂 (𝜏−2log (log 𝑛/𝜏) log 𝑛).
2. With constant failure probability, RdBin outputs an inference 𝑓𝑣 with error | 𝑓𝑣 − 𝑓𝑣 | ≤ max( 𝜃

𝑆
, 𝜂).

Note that RdBin represents only one construction under our general inference paradigm, and there exist many
other designs in this space. We continue in Appendix D by providing two more SIAs, each adapted from a classical
noisy search algorithm. Due to the simplicity of RdBin and the fact that its implementation does not require
extra memory, we present it as the default attack. One may also derive certain extensions on RdBin. First, it is
possible to flip even more simulated coins at once. For instance, one can create a set of (conflicting) transactions,
tx1, tx2, ..., tx𝑛, broadcasting them all at once, but delaying the arrival of each tx 𝑗 to a specific target 𝑃 𝑗 . This further
enables the attacker to construct a parallelized RdBin against multiple victims. Second, as the stake is the additive
outcome of a series of transactions. It’s obvious that one can utilize RdBin to extrapolate transactions outcome for
any victim 𝑃𝑣 between any two time steps.

4 Private PoS Desiderata

We discuss requirements for achieving a private PoS by defining two desiderata that are designed to ensure a
practical protocol has rigorous and well-defined privacy.
D-1: Well-defined privacy on leakage. Any private PoS should provide a rigorous and provable bound on the
leakage of each party’s stake and transactions. To facilitate this we say that in addition to the standard UC security
model (Definition 1), a private PoS should also meet additional privacy definitions, i.e., Definition 12, which
constrains the knowledge that an adversary can obtain regarding each party’s stake and transactions by observing
the associated leakages.
D-2. Balance privacy, safety and liveness. While safety and liveness are traditionally ensured through a PoS
protocol, introducing privacy may create tension between these properties. For instance, one could ensure privacy
by using a consensus protocol that is completely independent of the parties’ stake. But such a system would not
be safe, since the fundamental purpose of introducing stake is to address safety against Sybils. Thus, given all
of safety, liveness, and privacy may not be achievable simultaneously, we require a practical private PoS ledger
should balance between these three properties.

5 Privacy Model

5.1 Privacy Requirements

PR-1. Limited stake inference. In general, we require that any attacker should not infer the current stake owned
by a certain party (by observing the protocol leakage) within an additive bound 𝛼. We assume that the adversary
knows all parties involved in the protocol, as their participation can be easily identified, for example, when block
proposers broadcast the updated ledger states, it inevitably indicates their involvement in the ledger maintenance.
Hence, we do not require stronger privacy in the form of “the existence of a party cannot be inferred”.
PR-2. Privacy with expiration. Considering that the parties’ stake changes dynamically, stake privacy should
be ensured under continual observation [DNPR10]. Ideally, we desire to obtain the same degree of privacy for
each time step based on all information disclosed until that time step. However, providing such strong privacy
guarantees inherently leads to errors accumulating over time [DNPR10,Dwo10]. In the context of PoS blockchains,
this can result in a large distorted adversarial stake potentially causing a significant decline in safety or liveness
guarantees. Therefore, to balance between these properties, in this work, we adopt a relaxed “privacy with
expiration” model [BFM+13,KPXP14,LSV+19a]. In this model, we aim to achieve strong privacy for parties’ stake
within a recent time frame while allowing the privacy of parties’ past stake to gradually decay over time.
PR-3. Transaction privacy. We also consider transaction privacy, that is, we bound the attacker’s ability to infer
the outcome of any party’s transaction. Typically, as the stake value directly reflects the additive outcome of
transactions, achieving PR-1 and PR-2 also implies transaction privacy if the protocol leakage is subject to parties’
stake, i.e., no information relevant to the transaction outcome is disclosed to the adversary, other than what can be
obtained from the parties’ stake at each time.
Putting it all together. Combining PR-1, 2, 3, we formulate our privacy requirements using Pufferfish [KM14]
framework, a well-known tool that translates common privacy requirements into formal definitions [HMA+17].

Definition 8 (Stake privacy requirement). Let 𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝑛} denote the set of participants with 𝑆𝑖 =

{𝑠𝑖1, 𝑠
𝑖
2, ...} as the stake history for party 𝑃𝑖 , where 𝑠𝑖

𝑗
is 𝑃𝑖’s stake at time 𝑗 . We denote 𝜃𝑖 ∈ Θ as the attacker’s
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belief about 𝑃𝑖’s stake, where Θ is the set of all possible adversarial beliefs. Given a private ledger with leakage
Lkg, and 𝜖, 𝛼 > 0, we require that at any time 𝑡 the following holds for all 𝜃𝑖 ∈ Θ, and 𝑜 ∈ 𝑅𝑎𝑛𝑔𝑒(Lkg).

Pr𝜃𝑖
[
𝑠𝑖
𝑗
= 𝑥 | Lkg = 𝑜

]
Pr𝜃𝑖

[
𝑠𝑖
𝑗
= 𝑦 | Lkg = 𝑜

] / Pr𝜃𝑖
[
𝑠𝑖
𝑗
= 𝑥

]
Pr𝜃𝑖

[
𝑠𝑖
𝑗
= 𝑦

] ≤ 𝑒𝜔 (𝑡− 𝑗 ) 𝜖 (1)

where 𝑗 ∈ [1, 𝑡] and 𝑥, 𝑦 ∈ R such that Pr[𝑠𝑖
𝑗
= 𝑥] ≥ 0, Pr[𝑠𝑖

𝑗
= 𝑦] ≥ 0, and 𝑥 ≤ 𝑦 ≤ 𝑥 + 𝛼. 𝜔 is the privacy decay

multiplier, which is a monotonically increasing function related to (𝑡 − 𝑗) with 𝜔(0) = 1.

As in Definition 8, the privacy requirement limits the maximum Bayes factor that an attacker can learn, after
observing the leakage Lkg, regarding the stake owned by any party at any point of time. Such a factor with respect
to the most recent stake 𝑠𝑡 is bounded by 𝑒𝜖 . Furthermore, for any stake 𝑠 𝑗 that is (𝑡 − 𝑗) time steps away from
current time, such a factor is bounded by 𝑒𝜔 (𝑡− 𝑗 )×𝜖 , which captures the notion of privacy decay (PR-2). Note that,
Definition 8 also addresses transaction privacy (PR-3). More specifically, let tx 𝑗: 𝑗+1 as 𝑃𝑖’s additive transactions
outcome between time 𝑗 and 𝑗 + 1. Since tx 𝑗: 𝑗+1 = 𝑠 𝑗+1 − 𝑠 𝑗 and by Equation 1, the attacker’s posterior odds (after
observing the leakage Lkg) about tx 𝑗: 𝑗+1 = 𝑥 rather than tx 𝑗: 𝑗+1 = 𝑦 (𝑥 ≤ 𝑦 ≤ 𝑥 + 𝛼) is at most 𝑒𝜔 (𝑡− 𝑗 )×𝜖 times the
attacker’s prior odds.

5.2 Formal Privacy Definition

In this section, we discuss the formal privacy model considered by this work. First, we formulate the leakage
privacy following the notion of differential privacy [DR+14].

Definition 9 ((𝛼, 𝑢)-neighbors). Let 𝑆𝑡 = {𝑠1, ..., 𝑠𝑡 } and 𝑆′𝑡 = {𝑠′1, ..., 𝑠
′
𝑡 } be the any two stake histories up to

time 𝑡. 𝑆𝑡 and 𝑆′𝑡 are (𝛼, 𝑢)-neighbors if the following holds: (i) 𝛼 > 0, and 𝑢 ∈ (0, 𝑡]; (ii) 𝑠 𝑗 = 𝑠′
𝑗

for all 𝑗 ≤ 𝑢;
and (iii) 𝑠 𝑗 ≤ 𝑠′

𝑗
≤ 𝑠 𝑗 + 𝛼 for all 𝑗 > 𝑢.

Definition 10 ((𝛼, 𝜖)-private leakage). Given Lkg that depends on stake, Lkg is said to be (𝛼, 𝜖)-private, if for
any two (𝛼, 𝑢)-neighbor stake histories 𝑆𝑡 , and 𝑆′𝑡 , any output 𝑜 ⊂ 𝑅𝑎𝑛𝑔𝑒(Lkg), and any 𝑃𝑖 , the following holds

Pr
[
Lkg⟨𝑃𝑖 ,𝑆𝑡 ⟩ = 𝑜

]
≤ 𝑒𝜔 (𝑡−𝑢) 𝜖 · Pr

[
Lkg⟨𝑃𝑖 ,𝑆

′
𝑡 ⟩ = 𝑜

]
(2)

where Lkg⟨𝑃𝑖 ,𝑆𝑡 ⟩ (resp. Lkg⟨𝑃𝑖 ,𝑆
′
𝑡 ⟩) denotes the leakage when 𝑃𝑖’s stake history is activated by 𝑆𝑡 (resp. 𝑆′𝑡 ), and 𝜔

is the decay function related to 𝑡 − 𝑢 with 𝜔(0) = 1.

Theorem 11. If Lkg is (𝛼, 𝜖) private (Definition 10), then Lkg satisfies all privacy requirements (Definition 8).

We stress that DP is a special case of Pufferfish privacy [KM14], and applying DP on party’s stake history ensures
all privacy requirements listed in Section 5.1. For complete proofs, interested readers can refer to Appendix C.2
Next, we formally define the private PoS ledger under the UC framework [Can01].

Definition 12 ((𝛼, 𝜖)-private PoS ledger). A PoS ledger protocol is said to be (𝛼, 𝜖)-private (resp. (𝛼, 𝜖, 𝛿)-
private), if: (i) it UC realizes [BMTZ17] GPL with leakage Lkg in the presence of a p.p.t. adversary A and (ii) the
leakage Lkg is (𝛼, 𝜖)-private (resp. (𝛼, 𝜖, 𝛿)-private).

We stress that private ledger protocols are allowed to interact with auxiliary functionalities (hybrids), which
captured the resources that are available to parties. The composability property [BMTZ17] of UC states that if 𝜋
interacts with F to UC realize functionality G, and 𝜋F UC realizes F , then substituting calls to F in 𝜋 with calls
to 𝜋F results in a secure protocol for G in the hybrid world. This also provides the flexibility to analyze the security
of complex protocols in a modular manner. In this paper, we primarily focus on the ledger maintenance protocol
(i.e., the sub-protocol that UC realizes MANTAIN LEDGER command in GPL), as this is the main component that
leaks stake-related information [DGKR18,GOT19,KKKZ19].

6 Private PoS with Stake Distortion

To mitigate SIA risks, naı̈ve approaches exist. For instance, one may consider each party to maintain the ledger
with the same chance, but clearly, this provides no safety at all. Although this can be improved by letting one party
own multiple nodes, each contributing independently to ledger maintenance, it requires a single party running the
private lottery protocol multiple times, causing significant overhead for large stakeholders. Another option is to
disconnect or impose long delays for each party to produce new blocks, but this severely impacts liveness. Steered
by our privacy model, we propose our private PoS design, which not only ensures provable privacy but also strikes
a balance between safety and liveness.



8 Chenghong Wang, David Pujol, Kartik Nayak, and Ashwin Machanavajjhala

6.1 Design Overview

We first provide a brief overview of the general design pattern (Protocol 6.1) for a PoS-based ledger maintenance pro-
tocol, from the view of a party𝑃. This pattern is abstracted from previous constructions [LSV+19b,KMNS21,GOT19].

Protocol 6.1: Ledger Maintenance,
∏

LM

1: Interact with functionality Fstk to retrieve lottery inputs: (in, comin, 𝑟) ← Fstk
// Lottery input in obtained from Fstk is the party’s true stake
[Our modifications: We consider a modified ledger maintenance protocol

∏
LM∗ , where lottery inputs

are obtained via interacting with (in, comin, 𝑟) ← Fsd, and in returned by Fsd is the distorted stake]
2: Evaluate a private lottery: ret← priv lottery(in)
3: if ret == WIN then
4: Generate zero-knowledge proof, 𝜋, proving:

(a) the party wins the lottery with input in
(b) lottery input in is consistent with comin.

5: Perform the ledger maintenance activities, i.e. propose a new block or take the part of a committee
to determine the next block.

In general, ledger maintenance execution occurs in discrete time slots, during which slot leaders are elected
through private lotteries to update ledger states. Specifically, in each round, each party 𝑃 interacts with a func-
tionality Fstk [GOT19] to obtain the lottery input in and partakes in a private lottery with winning odds tied to in.
If 𝑃 wins, then she contributes to ledger maintenance along with a zero-knowledge proof of eligibility. Typically,
to implement such a proof, other parties should also access a hiding commitment comin to 𝑃’s lottery input from
Fstk (while in practice, such commitments can efficiently be computed from the blockchain[KKKZ19]). However,
the actual value of in and the opening 𝑟 for comin remain exclusive to 𝑃. In a PoS blockchain, the lottery input in
returned by Fstk is 𝑃’s true stake at the current time.

However, as mentioned before, the standard PoS design unavoidably reveals the frequency of each party’s
lottery wins, closely linked to the party’s true stake and enabling accurate stake inferences. To mitigate this, our
design modifies how parties acquire lottery inputs while imposing no changes to other components. Specifically,
we consider parties interacting with a new functionality, Fsd, which produces a distorted stake as the lottery input
for each party at every time.

This suggests that one may directly derive an actual protocol under our design from the standard one by
mounting functionality Fsd, i.e., replacing how the parties obtain private lottery inputs with a subroutine call to
Fsd. As the input retrieval is completely independent of the core protocol, the derived protocol thus retains the
security guarantees of the original protocol [GOT19]. Moreover, the leakage for the derived protocol is no longer
related to users’ true stake, but rather tied to their distorted stake.

Theorem 13. Given protocol
∏

LM that UC-emulatesMAINTAIN LEDGER inGPL withFstk and Lkg = 𝜙
(
{𝑆𝑖}1≤𝑖≤𝑛

)
,

replacing Fstk in
∏

LM with Fsd yields a protocol
∏

LM∗ that UC-emulates MAINTAIN LEDGER with Lkg =

𝜙
(
{𝑆𝑖}1≤𝑖≤𝑛

)
, where 𝜙 is a slot leader function mapping parties’ stake distribution over time to a sequence

of slot leaders, and 𝑆𝑖 and 𝑆𝑖 denote 𝑃𝑖’s true and distorted (by Fsd) stake history, respectively.

We provide complete proof of Theorem 13 in Appendix C.3. As stake-related leakage occurs solely in leader
election [KRDO17,KKKZ19,DGKR18], we consider the distorted stake to be used exclusively for the private
lottery. For instance, to issue and validate payment transactions, one should keep using the true stake. This further
suggests that other protocols of the standard design, i.e., the transaction submission and validation, undergo no
alterations. In addition, by the composability of UC, if

∏
LM∗ realizes GPL through calls to Fsd, and

∏
sd realizes

Fsd, then substituting calls to Fsd with subroutine calls to
∏

sd leads to a secure protocol for GPL. This enables
us to explicitly establish our design objectives as designing practical Fsd that produces noisy stake satisfying
Definition 10 and devising protocols that securely realize Fsd.

6.2 Differentially Private Stake Distortion

We start with two different designs of Fsd, namely, the timer (FTimer) and the binary mechanism (FBin).
Timer mechanism FTimer. In general, the mechanism periodically (every 𝑇 time steps) distorts each party’s stake
with fresh Laplace noise drawn from Lap( 𝛼

𝜖
). For other times between two distortions, it reuses the noisy stake

in the previous round. The rationale for distorting stake in a periodic manner (as opposed to distorting every
time) is twofold. First, parties’ stake generally exhibits stability over short intervals. Insignificant stake changes
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exert negligible effects on their lottery winning odds, rendering the release of a new distorted stake each time
unwarranted. Second, distorting stake in a less frequent manner yields a smoother privacy decay (Section 6.3),
otherwise stake privacy may drop significantly over a short time. Note that the distorted stake can be negative due
to the symmetry of the Laplace noise. We stress that a party with a negative stake is treated the same as no stake,
and thus the corresponding party has no chance of winning the following private lottery. For the formal FTimer
formulation, please refer to Appendix B.2.

Theorem 14. Protocol
∏

LM∗ mounted with FTimer is (𝛼, 𝜖)-private with privacy decay 𝜔(𝑡 − 𝑢) = ⌊ 𝑡−𝑢
𝑇
⌋.

By the theory of the the Laplace mechanism [DR+14], the privacy loss for all stake values within the latest 𝑇
time steps is bounded by 𝜖 . Moreover, due to multiple releases of the noisy stake at different times, the privacy
loss of any historical stake follows the privacy loss under 𝑘-fold composition rules [DR+14]. Thus, one can obtain
a linear decay function such that 𝜔(𝑡 − 𝑢) = ⌊ 𝑡−𝑢

𝑇
⌋. We defer the complete proof of Theorem 14 in Appendix C.3.

Binary mechanism FBin. We improve upon FTimer and provide the binary (tree) mechanism, FBin, which provides
a smoother (logarithmic) privacy decay over time. In general, the mechanism relies on the fact that any party’s
stake is the additive outcome of all her transactions. For each party 𝑃𝑖 , the functionality internally groups all
𝑃𝑖’s transactions based on transaction time, wherein the additive outcome of each group represents a partial sum
(p-sum) of 𝑃𝑖’s current stake. Subsequently, FBin distorts each p-sum using Laplace noises, and for each time, the
noisy stake is obtained by aggregating a set of noisy p-sums. Moreover, a single noisy p-sum may be reused to
derive multiple noisy stake at different times, which further leads to less privacy loss over time.

[1,8]
[1,4] [5,8]

[1,2] [3,4] [5,6] [7,8]

1 2 3 4 5 6 7 8

Next phase 1Last phase 1 8×- intervals

(a) Binary interval tree

[1,8]
[1,4] [5,8]

[1,2] [3,4] [5,6] [7,8]

1 2 3 4 5 6 7 8

Last phase 1: ,′
Noisy stake: tx∗

0̃"!#$% = tx∗
+ 45 1,4 + 45[5,6] + 45[7]Noisy stake

Noisy p-sum

67896:_<=>:?(,&, ,& + 7A)

(b) Determine noisy p-sums

Fig. 2: Example of Binary Mechanism with 𝐿 = 8𝑇

Specifically, FBin features two distortion phases. In phase one, FBin releases a new distorted stake every 𝐿 ≫ 𝑇

time steps acting as a single noisy p-sum, reused for the next 𝐿 steps. Phase two occurs between phase one
distortions, with a new stake released every 𝑇 time steps. Precisely, FBin employs a binary interval tree, with leaf
nodes representing time intervals of length𝑇 and internal nodes integrating their children’s time intervals. Figure 2a
shows an example. For every 𝑇 time steps, FBin identifies a set of disjoint tree nodes that uniquely cover the interval
from the last phase one distortion to the current time. More specifically given the last phase one distortion time 𝑡′

and the current time 𝑗 , we use the following algorithm to cover [𝑡, 𝑗]: (i) Set index 𝑎 = 𝑡′, identify the sub-interval
(tree node) [𝑎, 𝑏] ⊆ [𝑎, 𝑗] encompassing 𝑇 · 2𝑘 time steps, with 𝑇 · 2𝑘+1 > | 𝑗 − 𝑎 |; (ii) Update 𝑎 = 𝑏 + 1 and repeat
step (i) until the entire interval is covered. For better illustration, we show an example in Figure 2b. Note that, by
running the aforementioned strategy, at most log2 ( 𝐿𝑇 ) nodes are required to uniquely any intervals. Subsequently,
FBin groups transactions based on selected nodes, computes noisy p-sums, and aggregates them into a new noisy
stake. For the formal FBin formulation, please see Appendix B.2.

For any stake 𝑠𝑢 with 𝑢 ≤ 𝑡 (current time), the total privacy loss of 𝑠𝑢 under FBin comes from both distortion
phases. By Theorem 14, the phase one privacy loss composes linearly. In phase two, the transaction outcome at
time 𝑢 impacts at most log2 (

max(𝑡−𝑢,𝐿)
𝑇

) noisy p-sums, thus leading to a logarithmic privacy decay. Combining the
two we conclude the overall privacy decay as follows.

Theorem 15. Protocol
∏

LM∗ mounted with FTimer is (𝛼, 𝜖)-private with privacy decay

𝜔(𝑡 − 𝑢) ≤
{
⌊ 𝑡−𝑢

𝐿
⌋ + log2 ( 𝐿𝑇 ), if (𝑡 − 𝑢) > 𝐿

log2 ( 𝑡−𝑢𝑇 ), otherwise
(3)

Proof. Please refer to Appendix C.3 for the complete proof.
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6.3 Analysis of the Stake Distortion

Resilience to SIA attacks. We first analyze how SIA errors change when stake distortion is employed. Theorem 7
implies that in standard protocols where no stake distortion is present, the SIA error can be made arbitrarily small
as long as the attacker can flip the stake-based coins unlimited times over a long period of time (this allows the
attackers to set 𝜃 and 𝜏 arbitrarily small). When switching to distorted stake, SIA only finds the interval where
the distorted stake is located. At this point, the errors are based on two factors, namely, the errors inherent in the
attack, and the errors due to the injected DP noises.

Theorem 16. Given protocol
∏

LM with SIA error Err. Extending it to
∏

LM∗ with FTimer and FBin yields SIA errors
in Err +𝑂 𝑝

(
𝛼
𝜖

)
1, and Err +𝑂 𝑝

(
𝛼
𝜖

√︁
log2 ( 𝐿𝑇 )

)
, respectively.

Theorem 16 is the direct application of Chernoff bound [HR70] (complete proofs in Appendix C.3) to the
injected Laplace noises. Note that the SIA error bounds now rely on both the attacker-selected parameters (𝜃 and
𝜏) and the privacy parameters (𝛼 and 𝜖), indicating that one may not achieve arbitrary precision in stake inferences
with an unlimited number of simulated coin flips.

Safety analysis. It is possible that the adversary’s stake after distortion, say 𝑓 , is larger than the pre-distortion value
𝑓 . However, as long as there is a limited number of parties (existing protocols typically bound this by imposing
a minimum staking amount [CM16,Cha21], say 𝜐), the bounded variance property of Laplace noise [DR+14]
enables the derivation of a slack, i.e. by Chernoff inequalities, that bounds the stake increment 𝑓 − 𝑓 with a high
probability. By setting the target as 𝑓 < 1

3 , and with the derived slack, one can obtain another threshold 𝜉 such
that as long as 𝑓 < 𝜉, then 𝑓 < 1

3 with high probability, i.e., the safety remains valid after stake distortion. We
summarize the safety bounds in Theorem 17 and show in Section 7 that they are reasonable through a case study.

Theorem 17. Assuming 0 < 𝛽 < 1, Γ = 1.74𝛼
𝜖 𝑆

√︁
𝑆
𝜐

log 1
𝛽
< 1, and 𝑓 =

1−𝛾
3 with Γ ≤ 𝛾 < 1 (or 𝛾 ≥

√︁
log2 ( 𝐿𝑇 ) ×Γ),

the adversary’s stake after distortion, 𝑓 , is less than 1
3 with a probability of at least 1 − 𝛽 under FTimer (or FBin).

Theorem 17 demonstrates that for a protocol,
∏

LM, tolerating up to 1
3 malicious stake, employing stake

distortion with FTimer and FBin results in a modified protocol,
∏

LM∗ , which tolerates up to 1
3−𝑂 𝑝

(
𝛼
𝜖 𝑆

√︁
𝑆
𝜐

)
, and

1
3−𝑂 𝑝

(
𝛼
𝜖 𝑆

√︁
𝑆
𝜐

log2 ( 𝐿𝑇 )
)

malicious controlled stake, respectively (complete proofs in Appendix C.3). Moreover,
Theorem 17 highlights a safety-privacy trade-off, where weaker privacy guarantees (small 𝜖 or large 𝛼) result in
smaller 𝛾, allowing for greater malicious tolerance. This offers practitioners the flexibility to balance safety and
privacy, opting to exchange some safety for enhanced privacy, or vice versa.

Liveness analysis. Typically, the liveness guarantee of PoS ledgers is directly tied with the honest majority assump-
tion (same as the safety guarantee) if no changes are made to the networking layer. For instance, by [DGKR18,
Theorem 9] and [CM16, Theorem 4] the liveness is ensured for PoS protocols as long as the honest parties control
more than a certain fraction of the total stake (i.e., > 2

3 ). Note that our stake distortion does not alter the network
assumptions (i.e., a network of authenticated multicast channels with bounded delayed [GOT19]), and by Theo-
rem 17, the honest majority assumption still holds after stake distortions. Therefore, without loss of generality, in
what follows we focus on the safety analysis and assume that once safety is preserved, liveness is also retained.

Impact on individual party. The noise introduced to each party’s stake has a distinct effect on their odds of winning
the slot leader election. Given the uniform variance of injected noise, smaller stakeholders might face evident stake
distortion or changes in their winning odds for a single election round. Conversely, for larger stakeholders, the
change in their winning odds might not be as prominent. Nevertheless, as the added noises possess zero means, for
long-term execution, the expected number of election wins aligns with each party’s true stake.

6.4 Stake Distortion Protocol Design

Building blocks. We build the protocols in a hybrid world where the following auxiliary functionalities are
available: (i) There exists a hiding commitment scheme [SCG+14] that given randomness 𝑟 and message 𝑥, an
algorithm Com𝑟 (𝑥) commits 𝑥 to com𝑥 with opening 𝑟; (ii) We utilize pseudorandom functions [KKKZ19],
PRFk (𝑥) with input 𝑥 and the evaluation key k, for deriving DP noises and rely on an unpredictable random oracle,
Fro, to produce randomness. An instantiation of Fro is the random beacon [BKNS22]; (iii) There exists a non-
interactive zero-knowledge functionality [KKKZ19], F Lnizk, that allows proving of statements in an NP language

1 𝑂 𝑝 is the Big 𝑂 in its probability notion [DC03]



Private Proof-of-Stake Blockchains using Differentially-private Stake Distortion 11

L; (iv) There is a “determine stake” functionality, Fstk, allows parties to access their stake, committed stakes,
and stake commitment opening at any time. Additionally, Fstk allows for querying a list, 𝐿, containing: (a) all
registered users with their respective committed stake, and (b) each party’s noise generation key. In practice, the
aforementioned information can be efficiently computed from the blockchain [GOT19].

Timer protocol
∏

timer. We provide the design of timer protocol
∏

timer that securely realizes FTimer. Initially, we
consider all parties agree on a global clock and each party derives a pair of noise generation keys (npk, nsk) upon
joining the system. Such key pair is sampled by selecting a random private key nsk and setting npk ← PRFnsk (0).
The parties manage nsk themselves, which remains unknown to others, but npk is accessible to other parties (i.e.,
through Fstk). Parties can join at any time, while stake distortion occurs every 𝑇 steps, thus we restrict each new
party to wait until the next distortion schedule to acquire the first distorted stake before it can participate in the
ledger maintenance. Protocol 6.2 shows details from the viewpoint of party 𝑃 with identifier pid.

Protocol 6.2: Timer protocol
∏

Timer

Upon receiving DISTORT from pid
1: Obtain current time 𝑗 from the global clock
2: if 𝑗 mod 𝑇 == 0 then (𝑠 𝑗 , com𝑠 𝑗 , 𝑟) ← Fstk
3: Generate private randomness: (ra, rb) ← Fro ( 𝑗), (𝑧0, 𝑧1) ← PRFnsk (ra, rb)
4: Transform private randomness to DP noises: 𝑠 𝑗 ← 𝑠 𝑗 + 𝛼

𝜖
(ln(𝑧0) − ln(𝑧1))

5: Sample 𝑟 and com𝑠 𝑗 ← Com𝑟 (𝑠 𝑗 )
6: Let x = (𝜖, 𝛼, npk, com𝑠 𝑗 , com𝑠 𝑗 , ra, rb), and w = (𝑠 𝑗 , 𝑠 𝑗 , nsk, 𝑧

0, 𝑧1, 𝑟, 𝑟)
7: Generate zero-knowledge proof: 𝜋 𝑗 ← F Ltimer

nizk (prove, x,w)
8: return 𝑠 𝑗 broadcast (pid, com𝑠 𝑗 , 𝜋 𝑗 )
9: else 𝑠 𝑗 = 𝑠 𝑗−1 return 𝑠 𝑗

Upon receiving (GET COMM, pid)
10: Retrieve (com𝑠 𝑗 , 𝜋 𝑗 ) for pid from the network.
11: if accept← F Ltimer

nizk (verify, 𝜋 𝑗 ) then
12: Record com𝑠 𝑗 for pid

In order to distort the stake,
∏

Timer first acquires necessary information from Fstk (or from the blockchain) and
obtains the current public randomness from Fro. The protocol then evaluates a PRF to derive private random seeds2,
𝑧0, 𝑧1, which are subsequently converted into an instance of Laplace noise drawn from Lap( 𝛼

𝜖
) [Ros14]. Given that

nsk remains concealed from other parties, no entity can gain knowledge about the derived DP noise. Furthermore,
provided the output of Fro is unpredictable, the adversary is unable to adaptively select nsk to maximize the
derived DP noise. Lastly,

∏
Timer returns the distorted stake to party 𝑃 and broadcasts a hiding commitment to

the distorted stake, accompanied by a zero-knowledge proof demonstrating that the committed stake has been
accurately distorted to all other parties. Next, we define the statements by their corresponding NP languages: A
tuple (x,w) ∈ Ltimer if all the following holds:

– Instance: x = (𝜖, 𝛼, npk, com𝑠 𝑗 , com𝑠 𝑗 , ra, rb)
– Witness: w = (𝑠 𝑗 , 𝑠 𝑗 , nsk, 𝑧

0, 𝑧1, 𝑟, 𝑟)
– Correctness of the noise generation key: PRFnsk (0) = npk
– Correctness of the randomness for deriving DP noises: PRFnsk (ra, rb) = (𝑧0, 𝑧1)
– Correctness of the stake distortion: 𝑠 𝑗 = 𝑠 𝑗 + 𝛼

𝜖
(ln(𝑧0) − ln(𝑧1))

– ∃ 𝑟, 𝑟 s.t. com𝑠 𝑗 = Com𝑟 (𝑠 𝑗 ) and com𝑠 𝑗 = Com𝑟 (𝑠 𝑗 )

For any other times between two distortion schedules, the protocol simply reuses the distorted stake from the
last distortion round. Furthermore, when a party receives a broadcast stake commitment from others, the protocol
interacts with F Lnizk to verify the validity of 𝜋, accepting the commitment only if 𝜋 is deemed valid.

Binary protocol
∏

Bin. To implement
∏

Bin that securely realizes FBin, we utilize the same strategy as
∏

Timer to
obtain randomness and transform DP noises. The tricky part is dealing with the DP interval tree and deriving noisy
p-sums. In our design, we use the binary representation of time to implicitly track the tree structure [CSS+10],
which simplifies the NP statements for generating proofs. The details are provided in Protocol 6.3.

2 We treat random seeds as fixed-point values in (0, 1).
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Protocol 6.3: Binary protocol
∏

Bin

//vectors tx, and t̃x are initiated as
−→
0 .

Upon receiving DISTORT from pid
1: Obtain current time 𝑗 from the global clock.
2: if 𝑗 mod 𝐿 = 0 then
3: Follow

∏
Timer steps 2-10, and cache 𝑠 𝑗 as tx∗

4: if 𝑡 mod 𝑇 = 0, where 𝑡 ← 𝑗 mod 𝐿 then
5: (𝑠 𝑗 , com𝑠 𝑗 , 𝑟), (𝑠 𝑗−𝑇 , com𝑠 𝑗−𝑇 , 𝑟

′) ← Fstk
6: Sample private randomness: (ra, rb) ← Fro ( 𝑗), (𝑧0, 𝑧1) ← PRFnsk (ra, rb)
7: Express current time 𝑡 in binary form: 𝑡 =

∑
𝑘 2𝑘 · bin𝑘 (𝑡)

8: Set ℓ as the first non-zero bit: ℓ ← min{𝑘 : bin𝑘 (𝑡) ≠ 0}
9: tx[ℓ] ← ∑

𝑘<ℓ tx[𝑘] +
(
𝑠 𝑗 − 𝑠 𝑗−𝑇

)
10: for 𝑘 < ℓ override t̃x[𝑘] = tx[𝑘] = 0; t̃x[ℓ] = tx[ℓ] + 𝛼

𝜖
(ln(𝑧0) − ln(𝑧1))

11: Release the noisy stake from noisy p-sums: 𝑠 𝑗 ← tx∗ +∑𝑘:bin𝑘 (𝑡 )=1 t̃x[𝑘];
12: Sample commitment randomness 𝑟, 𝑟ℓ , 𝑟ℓ
13: com𝑠 𝑗 ← Com𝑟 (𝑠 𝑗 ), comtx𝑘 ← Com𝑟ℓ (tx[ℓ]), and comt̃xℓ ← Com𝑟ℓ ( t̃x[ℓ]).
14: Let x = (𝜖, 𝛼, npk, ra, rb, com𝑠 𝑗 , com𝑠 𝑗−𝑇 , com𝑠 𝑗 , comtx, comt̃x)
15: Let w = (𝑠 𝑗 , 𝑠 𝑗−𝑇 , 𝑠 𝑗 , tx, t̃x, nsk, 𝑧

0, 𝑧1, 𝑟, 𝑟,−→𝑟 )
16: Get zero-knowledge proof: 𝜋 𝑗 ← F Lbin

nizk (prove, x,w)
17: return 𝑠 𝑗
18: broadcast (pid, com𝑠 𝑗 , comtxℓ , comt̃xℓ , 𝜋 𝑗 )
19: else 𝑠 𝑗 = 𝑠 𝑗−1 return 𝑠 𝑗

Upon receiving (GET COMM, pid)
20: retrieve commitments com𝑠 𝑗 , comtxℓ , comt̃xℓ , and the proof 𝜋 𝑗 for pid from the network
21: override the cached commitments ∀𝑘<ℓ comtx𝑘 = comt̃x𝑘 = Com(0) for pid
22: if accept← F Lbin

nizk (verify, 𝜋 𝑗 ) then
23: Record com𝑠 𝑗 , comtx0:ℓ , and comt̃x0:ℓ for pid

Phase one distortion in our design follows the same implementation as
∏

Timer, except the noisy stake is cached
in tx∗. In phase two, the protocol derives a new noisy p-sum every 𝑇 time steps based on the current time’s
binary representation (6.3:5-11).

∏
Bin then aggregates a subset of previously computed (cached) noisy p-sums to

determine the noisy stake (6.3:12). Note that,
∏

Timer can safely recycle a subset of ”old” p-sums (6.3:10), requiring
it to track at most log( 𝐿

𝑇
) noisy p-sums. Similarly,

∏
Bin generates proof for validating the stake distortion process,

with NP statements defined as follows: A tuple (x,w) ∈ Lbin if all the following holds:
– x = (𝜖, 𝛼, npk, ra, rb, com𝑠 𝑗 , com𝑠 𝑗−𝑇 , com𝑠 𝑗 , comtx, comt̃x)
– w = (𝑠 𝑗 , 𝑠 𝑗−𝑇 , 𝑠 𝑗 , tx, t̃x, nsk, 𝑧

0, 𝑧1, 𝑟, 𝑟,−→𝑟 )
– PRFnsk (0) = npk and PRFnsk (ra, rb) = (𝑧0, 𝑧1)
– Correct new p-sum: 𝑡𝑥 [ℓ] = ∑ℓ

𝑘=0 tx[𝑘] + 𝑠 𝑗 − 𝑠 𝑗−𝑇
– Noisy p-sum: ˜𝑡𝑥 [ℓ] ← tx[ℓ] + 𝛼

𝜖
(ln(𝑧0) − ln(𝑧1))

– Correct noisy stake: 𝑠 𝑗 ← tx∗ +∑𝑘:bin𝑘 (𝑡 )=1 t̃x[𝑘]
– ∃ opening 𝑟, 𝑟 s.t. opens com𝑠 𝑗 , com𝑠 𝑗 to 𝑠 𝑗 , 𝑠 𝑗 .
– ∀𝑘 (∃ 𝑟𝑘 , 𝑟𝑘 s.t. opens comtx𝑘 , comt̃x𝑘 to tx[𝑘], t̃x[𝑘])

Observe that
∏

Bin requires verifying nodes to cache additional objects per party, i.e., the commitments to tx, ˜𝑡𝑥.
However, one needs to keep track of at most log( 𝐿

𝑇
) p-sums(commitments). Hence, the storage blowup in contrast

to
∏

Timer is bounded by 𝑂 (log( 𝐿
𝑇
)).

Theorem 18.
∏

Timer and
∏

Bin UC emulates [Can01] FTimer, and FBin, respectively, in the (Fstk, Fro, F Lnizk)-hybrid
world with the presence of a p.p.t. adversary.

Proof. Please refer to the Appendix B.3

7 Case Study with Real-World System

In this section, we perform case studies on our stake distortion protocols using a real-world PoS blockchain,
Ethereum 2.0 [Fou22], and examine its impact on original guarantees. We explore the practicality of stake
distortion by addressing several key questions.
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– Q1. Will the ledger still provide safety guarantees after adopting stake distortion? What privacy level can be
achieved given certain safety requirements?

– Q2. How does FTimer compare to FBin in privacy decay? How one can benefit from a smoother decay?
– Q3. Does stake distortion mitigate the SIA risks?

Setup. We implement simulations based on Ethereum 2.0’s phase 0 specification [Cha21] and utilize key statistics
from the beacon chain [Eth22]. With an average daily transaction volume per unique address below 0.25, it’s
reasonable to assume that Ethereum 2.0 parties’ stakes remain stable over a 4-day period. Consequently, we set the
distortion schedule 𝑇 = 4 days and FBin’s phase 1 interval 𝐿 = 45𝑇 (6 months). Table 1 summarizes the setup.

Total stake, 𝑆 13,488,174 Eth
Minimum stake, 𝜐 32 Eth
Slot time (delay) 12 seconds

Distortion interval, 𝑇 4 days
FBin Phase 1 interval, 𝐿 45 × 𝑇

Table 1: Ethereum 2.0 parameters setup

7.1 Safety Guarantee

We plot safety curves in Figure 4 based on Theorem 17 with 𝛿 = 10−9 (safety failure probability),3 and assume
𝑓 < 1

3 as the general safety requirement. Given 𝛼 (resp. 𝜖), the additive bound for distinguishing two stake values,
the curves imply the minimum privacy loss, 𝜖 (resp. the maximum 𝛼), achievable at certain safety levels. For each
mechanism, we plot three curves, which correspond 20%, 25%, and 30% of malicious tolerance, respectively.
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Fig. 3: Safety upper bounds

Observation-1. Both mechanisms provide reasonable stake privacy while retaining safety at the same time.
In general, even with a relatively small 𝜖 and a large malicious threshold, i.e., 𝜖 = 0.5 4, and 𝑓 = 30%, 𝛼 can be set
up to 175 and 86, respectively, for FTimer and FBin. By the latest blockchain data [DMNP21], only less than 0.05%
of accounts have more than 80 Eth,which suggests that privacy is ensured for at least 99.95% of total users.

Observation-2. There is a trade-off between privacy and safety guarantees. Apparently, one can achieve a
larger 𝛼 or a smaller privacy loss when considering a relatively weaker safety (smaller malicious tolerance). This
suggests a trade-off between privacy and safety which provide flexibility for practitioners to better configure the
protocols. For example, if there is a slashing mechanism [AKS21] to help reduce the malicious fraction, one may
choose to gain better privacy by trading off some safety.

Given that the two mechanisms have different privacy decay, to better study them, we compare FTimer and FBin
under different privacy decay goals, i.e., privacy loss for the most recent (MR) time, the last 14, 30, 90, 180 and
365 days. First, we bound the malicious tolerance, i.e. 20%, and set 𝛼 = 200 then plot their privacy loss over time
in Figure 4a. Next, we compare them in a different angle in Figure 4b, where we keep the configurations of FTimer
unchanged but modify FBin to enforce it reaches the same privacy loss as FTimer under the different privacy decay
goals. We then compare the malicious tolerance (safety) ensured by two mechanisms.

3 Similar to a practical bound chosen by Algorand [CM16]
4 In comparison with Google community mobility report which uses 𝜖 = 2.4 per user per day, 𝜖 = 0.5 is quite small.
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Fig. 4: Timer vs. Binary mechanism

Observation-3. For short-term privacy, FTimer outperforms FBin, while the result is reversed when focusing
on long-term privacy. As shown in Figure 4a, FTimer exhibits lower short-term privacy loss than FBin when fixing
the safety level. This occurs since FTimer adds a single instance of DP noise, leading to smaller adversary stake
growth and enabling the configuration under a smaller 𝜖 . However, due to logarithmic privacy decay, FBin offers
better long-term privacy loss even with a larger 𝜖 . Figure 4b shows that if one is more concerned about long-term
privacy, it is better to employ FBin as it ensures a larger malicious tolerance, which up to 1.63× that of FTimer.
Overall, this observation provides practitioners with a sense of how they would benefit from a stake distortion that
has a smoother privacy decay.

7.2 Safety Simulation
To further validate the safety bounds we conduct stake distortion simulations. Specifically, we simulate a set of
stakeholders and assume the attacker corrupts different fractions of them. Subsequently, we configure 𝜖 , 𝛼 as per
Theorem 17 and run stake distortion over each party. Finally, we investigate whether the corrupted stake after
distortion, 𝑓 , exceeds 1/3. Additionally, to max out the attacker’s stake increment, we consider each individual
stakeholder to hold a minimum staking, and thus the number of parties is maxed out as 𝑛 = 𝑆

𝜐
. Table 2 summarizes

the result over 10K repeated runs.

Timer FTimer Binary FBin
𝑓 (%) (𝜖 , 𝛼) max 𝑓 (𝜖, 𝛼) max 𝑓

10% (0.5, 1214) 0.33082 (0.5, 552) 0.33078
15% (0.5, 963) 0.32952 (0.5, 475) 0.32869
20% (0.5, 701) 0.33055 (0.5, 346) 0.33132
25% (0.5, 438) 0.32858 (0.5, 216) 0.32336
30% (0.5, 175) 0.32309 (0.5, 86) 0.32626

Table 2: Simulation of stake distortion

Observation-4. With proper setups as per the safety bounds, 𝑓 < 1
3 with overwhelming probability. According

to Table 2, the corrupted stake, 𝑓 , after distortion for all testing groups does not exceed 0.3314, which is consistent
with the primary safety requirement, i.e., 𝑓 < 1/3. Consider that stake distortions occur every 4 days, thus the
10K repeated runs can actually simulate a 109-year operation of the blockchain coupled with stake distortion. The
simulation implies in those 109 years of operation, there has not been even one violation of the safety requirement.
In fact, as 𝛽 is set to 10−9, the probability of even one violation happens should smaller than 10−4 (taking union
bound). In general, we conclude that the simulations validate our safety upper bounds.

7.3 Resilience to SIA
We investigate whether stake distortion helps mitigate SIA risk, which is achieved by initiating RdBin on simulated
Ethereum 2.0’s ledger maintenance protocol with and without stake distortion, then compare their relative inference
errors. Moreover, we are also interested in the SIA resistance of FTimer and FBin under different safety requirements.
To address these, we simulate the protocol for 1.29 × 106 steps (6 months in the real world) and issue one RdBin
attack every 4 days. By default, we configure RdBin with 𝜃 = 𝜐, 𝜏 = 0.01, and run the attack against a target with
random stake 𝑓𝑣 ∈ (0, 𝑓 ). When simulating Ethereum 2.0 with stake distortion, we assume the protocol tolerates
different malicious fractions, i.e., from 10% to 30%, configure related parameters accordingly, and run attacks
against each group independently. We report the relative inference errors of RdBin in Figure 5.

Observation-5. Both FTimer and FBin mitigate SIA risk, and the simulation result suggests a trade-off between
safety guarantees and SIA resistance. According to Figure 5, when stake distortion is employed, the relative
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Fig. 5: Privacy loss vs. Time

SIA inference error is at least twice that of the standard protocol and can reach up to 7.8×. This further implies
the practicability of stake distortion in mitigating SIA risks. Moreover, the relative error of both FTimer and FBin
decreases when the malicious tolerance increases, i.e., the weaker the safety demanded, the stronger the resistance
to SIA obtained, and vice versa.

7.4 Key Takeaways

The first two observations address Q1, where we learn that our mechanisms provide reasonable privacy while
preserving safety (liveness). Moreover, we are aware of a privacy-safety tradeoff in our mechanisms. Observation
3 compares the two mechanisms and addresses Q2, from which we learn that one should choose FTimer when
focusing on short-term privacy goals, while FBin is a better option for long-term goals. The safety simulations
(Section 7.2) validate our theoretical bounds while the SIA experiments (Section 7.3) address Q3 and demonstrate
our mechanisms indeed mitigate SIA risks.

8 Performance Evaluation

Implementation and configuration. We utilize the same method as [SCG+14] to implement PRF and Com using
SHA256 compression functions. Fractional numbers are stored as 32-bit fixed-point values with a scaling factor
of 216, and we consider the public randomness as 16-bit unsigned fixed-point values with a scaling factor of 216,
ensuring the randomness is spread across (0, 1). We use the Remez algorithm [Taw05] to create approximated
polynomials for the ln(𝑥) circuit. Alternative techniques [NFPH15,Shi11] and engineering optimizations [fas21]
exist for implementing the ln(𝑥) circuit, potentially improving approximation accuracy or computational efficiency.
Developing optimized protocols is not the primary focus of this work, but may be of independent interest. Never-
theless, even without these optimizations, our evaluations still show a reasonable overhead associated with the stake
distortion protocols. To implement the NIZK proof, we utilize zk-SNARK library Zokrates-0.8.5 [zok22] under the
proving scheme Groth16 [Gro16]. In addition, we assume the existence of the parties’ stake commitments and their
integrity have been verified, as in practice such commitments can be effectively obtained and verified [SCG+14]
from the blockchain. The protocols are evaluated over machines with 2.6GHz CPU and 16Gb RAM.

Timer Binary

Setup
Setup time 19.64 s 20.63 s

Proving key size 38 Mb 38 Mb
Verification key size 4 Kb 4 Kb

Prove Proof time 7.07 s 7.32 s
Proof size 4 Kb 4 Kb

Verify Verification time 11 ms 10ms

Other Time 1.33 s 1.89 s
Storage 22.72 Mb 62.21 Mb

Table 3: Evaluation result for the prototype protocol

Evaluation result. Table 3 summarizes the evaluation results, apparently, the performance overhead is dominated
by the costs associated with the NIZK proof. Nevertheless, the adoption of our protocol may not impose an
excessive performance overhead, for example, Zcash requires more than 120 seconds of proof time (without
optimization) per block [SCG+14]. Thus, adopting our protocols only increase the proof overhead by at most 5.8%.
Furthermore, since stake distortion doesn’t transpire at every time step, the amortized overhead may be reduced.
For example, assuming stake distortion occurs every 4 days, the amortized overhead in the Zcash case could be
less than 0.002%. Note that stake distortion proofs can be combined with other ledger-specified proofs, enabling
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the verifier to validate all SNARK arguments via a single verification. For the storage overhead, both protocols
require parties to cache additional data objects, i.e., noisy stake, commitments, etc. However, the storage volume
does not exceed 63 Mb, which represents a slight overhead compared to storing the full blockchain data (i.e., 895
Gb for Ethereum [Eth22]).

9 Discussion
Mitigating privacy decay. One can create a stake distortion strategy without cumulative privacy loss over time.
For example, for every 𝑇 time steps, the party generates a noisy p-sum representing all transaction outcomes
from the last 𝑇 steps, and the noisy stake is derived by summing up all released noisy p-sums. This approach
guarantees that distortion takes place across distinct transactions, and the extraction of the noisy stake is simply a
post-processing step involving noisy p-sums. As per parallel composition and post-processing theorems [DR+14]
of DP, the total privacy loss is bounded by 𝜖 . Although privacy loss doesn’t accumulate, injected noise variance
does, leading to reduced safety guarantees over time, i.e., the upper bound of adversarial stake increment increases.
Another alternative is adopting the relaxed (𝜖, 𝛿)-DP guarantee, allowing unbounded privacy loss with a small
failure probability 𝛿. This allows injecting Gaussian noises (offer tighter composition bounds than Laplace noises)
that optimize privacy decay (see Appendix E for more details).

Permissionless clock synchronization. This work considers the globally synchronized setting in line with SOTA
designs [KRDO17,DGKR18,KKKZ19] such that all parties can retrieve time from a global clock (functionality).
We say that one can also adopt permissionless clock synchronization protocols [BGK+19], i.e. if some (honest)
party believes the global time as 𝑗 , all parties believe it as 𝑗 ± 𝛿𝑐, with a small 𝛿𝑐, if a global clock is not accessible.
Although, there might be small chances for a party that fails the slot leader election due to the use of outdated noisy
stake, i.e. within 𝛿𝑐 right after a (globally defined) distortion schedule. Since 𝛿𝑐 is typically small [BGK+19] and
the stake distortion interval 𝑇 is relatively large, thus for the majority of time slots, all parties agree on the most
recent distorted stake. While integrating our design with permissionless clock synchronization is not this paper’s
focus, it is considered an important future enhancement.

10 Related Works

Proof-of-Stake private ledgers. The first PoS design appears in [KN12]. Followed by this, there has been a series of
efforts [BLMR14,CM16,BPS16,KRDO17,DGKR18,BGK+18,GKZ19,Cha21,GN17,Zam17] on formulating PoS
models as well as providing protocols with provable security guarantees. Recently, several works have been proposed
to address the stake and transaction privacy of PoS ledgers, which include Ouroborous Crypsinous [KKKZ19],
Ganesh et al. [GOT19], and Baldimtsi et al. [BMSZ20]. However, the stake privacy is typically ensured at the cost
of assuming complete anonymity of parties’ identity [GOT19,KKKZ19]. Unfortunately, [KMNS21] demonstrates
the existence of a tension between liveness and anonymity. In this work, we provide the first-of-its-kind solution
that provides provable stake privacy for PoS private ledgers that do not assume anonymity.

Stake inference attacks. Both [KKKZ19] and [GOT19] state that the parties’ stake information may be revealed
with the execution of the PoS protocols, no specific attacks for inferring stake have been proposed until the
publication of [KMNS21]. However, their proposed attack considers only deterministic protocols and requires
linear time complexity. In this work, we provide a practical stake inference attack that is proven to be valid against
randomized protocols with probabilistic liveness. Moreover, our attack only yields sublinear time complexity.

Differential privacy. Differential privacy (DP) introduced by Dwork et.al. [DR+14] is currently the “de-facto”
standard for achieving data privacy. Since 2010, a couple of efforts have been proposed to address DP under dynamic
setting (or under the continual observation) [DNPR10,Dwo10,CSS+10,BFM+13,KPXP14,WBNM21,WBNM22].
Several works [BFM+13,KPXP14,LSV+19b] employs a relaxed privacy with decay model to ensure better utility,
which is similar to our formulation. Nevertheless, as far as we know, we are the first to incorporate DP with private
PoS blockchains.

11 Conclusion
In this paper, we present the first practical stake inference attack against randomized PoS protocols. The existence
of such an attack further implies the inadequacy of SOTA PoS designs in achieving stake and transaction privacy.
To formulate a rigorous privacy definition, we incorporate DP with the standard UC definition of private ledgers.
Guided by the derived privacy model, we design DP stake distortion protocols that assist existing PoS protocols in
resolving stake and transaction privacy.
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A UC Model of Private Ledger

In this section, we offer an extended overview of the Universal Composability (UC) formalization of private
(distributed) ledgers. For a comprehensive understanding of this topic, we recommend readers refer to important
previous works, such as [DGKR18,KRDO17,BGK+18,KKKZ19,KMNS21]. Hence, in what follows, we will focus
on reviewing important related contents that enable readers to comprehend the technical intricacies of our study
and omit low-level details.

A.1 UC security in Brief

In the UC security framework [Can01], we consider the following entities: (i )Ideal functionality G: a trusted
third party (cannot be corrupted) that performs specific computations based on parties’ commands. (ii) Honest
parties adhere to a specified protocol, interacting with one another, the environment, and functionalities. (iii) The
adversary corrupts a set of parties, referred to as dishonest parties, and prompts them to deviate arbitrarily from
the protocol. (iv) The environment E is a program that selects inputs for honest parties, interacts with the adversary
(representing corrupted parties), and receives outputs from all parties.

UC incorporates ideal and real execution models, with the actual protocol 𝜋 operating in the real model. In
the ideal model, honest parties act primarily as relayers, conveying information between their environment E and
the trusted functionality G. Security requires that for any adversary A in the real model, there should exist a
simulator S that corrupts the same set of parties asA and renders the ideal-world execution indistinguishable from
the real-world executions from the perspective of any environment E. More specifically, let IDEALGS,E (𝜆, 𝑧), and
REAL𝜋

A,E (𝜆, 𝑧), to be the transcript of the ideal world execution, respectively, where 𝜆 is the security parameter
and 𝑧 ∈ {0, 1}∗ is the input environment.

Theorem 19 (UC-emulation). Protocol 𝜋 UC-emulates functionality G if for all adversaries A, there exists an
simulator S (who corrupts the same parties as A) such that the following holds

{IDEALGS,E (𝜆, 𝑧)}𝜆∈N,𝑧∈{0,1}∗

≈ind {REAL𝜋
A,E (𝜆, 𝑧)}𝜆∈N,𝑧∈{0,1}∗

(4)

For ease of notation, we may abuse the notation IDEALGS,E , and REAL𝜋
A,E for the aforementioned assembles in

Equation 4 and omits the inputs.

A.2 Private ledger functionality GPL

Next, we provide the description of the private ledger functionality, denoted as GPL. This is primarily derived from
the functionalities explored in [KKKZ19,KMNS21], which in turn expanded on earlier research on distributed
ledgers [KRDO17,DGKR18]. In accordance with the construction outlined in [KKKZ19,KMNS21], we consider
in the ideal model, the simulator S can read a sequence of honest inputs, denoted as I𝐻 , which also encompass
blinded versions of transactions submitted by honest parties. The simulator can also query a general purpose
leakage profile, Lkg that (i) assists in simulating the protocol’s leadership election, or in other words, helps

https://github.com/Zokrates/ZoKrates
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determine which party has been activated by E to perform ledger maintenance activities; and (ii) allows the
simulator to know when corrupted parties submitted transactions get confirmed. We assume that parties can access
a global clock functionality, represented by Gclock. This functionality maintains a record of the current (global)
round and provides this information to any party that requests about it.

Functionality 1.1 shows the details of the GPL. To ensure privacy, GPL conceals transactions details by only
allow adversary to read the blind version of transactions submitted by honest parties.

Functionality 1.1: GPL

GPL is parameterized by a general purpose leakage function Lkg. GPL manages: (i) a ledger state, state;
(ii) a buffer of unconfirmed transactions, buffer; (iii) a sequence of honest inputs, I𝐻 ; and (iv) a pointer
ptr𝑖 for each party 𝑃𝑖 represents its local state. i.e. the length of the prefix of state that is tailored to 𝑃𝑖 .
We use −→ptr to denote of all parties’ local stake pointer.

In what follows, we will denote the set of honest parties as 𝐻, and the set of all registered parties as 𝑃.

Upon receiving any input 𝐼 from party 𝑃𝑖 , consult Gclock to retrieve current time 𝑡, and record interaction
in I𝐻 . Specifically, if 𝐼 is not SUBMIT command, then I𝐻 ← I𝐻 | | (𝐼, 𝑃𝑖 , 𝑡), then evaluate the following:

(a) (Add Transaction). If 𝐼 is (SUBMIT, sid, tx), add tx to buffer if the transaction is valid, update
I𝐻 = I𝐻 | | (𝐼, blind(tx), 𝑡), and reveal blind(tx) to A, where blind(tx) hides transaction details, i.e.,
the sender, recipient, and the amount of tx.

(b) (Read State). If 𝐼 is (READ, sid), send back the blind transactions, I𝐻 , and the leakage Lkg. Set
state𝑖 = state[ptr𝑖], and return blind(state𝑖), the blinded version of 𝑃𝑖’s local state, back to 𝑃𝑖 . If
𝑃𝑖 ∈ 𝑃/𝐻, send (state𝑖 ,I𝐻 , Lkg) to the adversary.

(c) (Extend chain). If 𝐼 is (MAINTAIN LEDGER, sid), then perform the ledger maintenance actions. For the
low-level details of the consensus, we refer readers to the important related works [KRDO17,DGKR18].
In general, the goal is to continuously update state with valid transactions in buff. At the same time
GPL ensures the following properties:

– The update of state is append only, and transactions are typically added to state by block
structures. This can be represented as: state← state| | (Block(tx1, tx2, ..., txm), 𝑡).

– Within bounded delay, valid transactions in buff will be added to state †.
– We consider the adversary can set slackness for each party’s stake pointer, however, for all

pointers the maximum lag behind the most current state is bounded by a certain value, i.e.
∀ 𝑖 |state| − |state[ptr𝑖] | ≤ lag bound

† In terms of randomized protocols, this property may be ensured under certain (high) probability

In GPL, we abuse the notation blind(·) for both the blind version of transactions submitted by honest parties
and the blinded local state. For blind transactions, blind(tx), we assume that the sender, recipient, and amount
are all concealed. In the case of the blinded local state, i.e., blind(state𝑖), it replaces all transactions in state𝑖

that are not submitted by party 𝑃𝑖 with blind transactions while leaving the others unaltered. In other words, the
adversary can still determine when transactions submitted by corrupted parties are confirmed and the details of
those transactions. Beyond that, the adversary’s knowledge is bounded to a sequence of blind transactions.

A.3 Leakage profile in GPL

The functionality is parameterized with a leakage function, Lkg, which essentially simulates the protocol’s leader-
ship election and reveals the winning party. This is necessary because, otherwise, the simulator would be unable to
identify which party is activated with the MAINTAIN LEDGER command. Furthermore, Kohlweiss et al. [KMNS21]
provided a theoretical proof that no simulator exists if the ideal functionality does not disclose the block proposers’
identities, even if parties have the access to an idealized functionality for anonymous broadcasting. We note that
this leakage is indeed protocol-specific, however, as all PoS blockchains consider to elect leaders proportional to
their owned stake, thus one may formulate Lkg as a (possibly probabilistic) function Lkg = 𝑓 ({𝑆𝑖}1≤𝑖≤𝑛), such
that 𝑆𝑖 = {𝑠𝑖

𝑗
} 𝑗∈N+ denotes party 𝑃𝑖’s entire stake history at each step.

In what follows we provide an example leakage profile based on the leader election protocol of Ouroboros
Genesis [BGK+18]. Note that Ouroboros Genesis itself does not consider transaction privacy. Thus by default, the
ledger reveals its entire content to the simulator, such as state, buff, etc. Here, we only adopt the leader election
design from Ouroboros Genesis and create a sample leakage profile accordingly.
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Example 20 (Example leakage LkgGen). Let 𝑃{𝑃1, ..., 𝑃𝑛} to be all parties, 𝑆𝑖 as party 𝑃𝑖’s stake history. For every
time 𝑡, the odds that 𝑃𝑖 is elected as a block proposer is determined by a slot leader election function 𝜙(𝑠𝑖𝑡 ) ∈ (0, 1)
over 𝑃𝑖’s stake at time 𝑡. Then leakage LkgGen is abstract in Algorithm 2

Algorithm 2 Lkglead ({𝑆𝑖}1≤𝑖≤𝑛, 𝑡)
1: Initiate the leader set Lead = ∅
2: for 𝑗 = 1, 2, 3, ..., 𝑡 do
3: Initiate Lead 𝑗 = ∅
4: for 𝑖 = 1, 2, 3, ..., 𝑛 do
5: Add 𝑃𝑖 to Lead 𝑗 with probability 𝜙(𝑠𝑖

𝑗
)

6: Lead← Lead ∪ Lead 𝑗

7: return Lead

B Private PoS with Stake Distortion

B.1 Standard ledger maintenance

Based on the private ledger functionality GPL, the command (MAINTAIN LEDGER, sid) triggers the main ledger
update activities. In a standard protocol implementation, i.e. [LSV+19b,KMNS21,GOT19], the execution of ledger
maintenance is separated into distinct time slots, during which one or more slot leaders are chosen for each slot to
modify the ledger states. In PoS blockchains, slot leaders are selected according to each party’s owned stake. More
specifically, for every round, each party retrieves all relevant information for the current round from the network,
obtains the most recent stake parameters, then initiates a private lottery such that the winning odd is proportional
to her stake. Depending on the consensus, the winner maintains the ledger in different ways. For instance, in the
longest chain-based PoS [BGK+18,W+14], the winner maintains the ledger (i.e., extends the chain with new blocks)
for a predefined time slot. While for committee-based PoS [CM16], a lottery winner wins the right to take part in
committee(s) and one or more of the members determine the next block.

B.2 Stake distortion functionality

We provide the formal functionality descriptions for both the timer (FTimer) and the binary (FBin) mechanism.

Timer mechanism FTimer. The details are provided in Functionality 2.1. In general, parties can interact with FTimer
with command DISTORT to retrieve the distorted stake at each time, or with command GET COMM to obtain distorted
stake commitments for every other party.

Functionality 2.1: FTimer

For every time step 𝑗 evaluate the following:
1: if 𝑗 mod 𝑇 = 0 then
2: for party 𝑖 = 1, 2, .. do
3: Determine the true stake 𝑠𝑖

𝑗
owned by 𝑃𝑖

4: Distort 𝑃𝑖’s true stake using Laplace noise: 𝑠𝑖
𝑗
← 𝑠𝑖

𝑗
+ Lap( 𝛼

𝜖
)

5: Commit 𝑠𝑖
𝑗

to com𝑠𝑖
𝑗

with 𝑟 𝑖
𝑗

6: Record 𝑠𝑖
𝑗
, com𝑠𝑖

𝑗
, and 𝑟 𝑖

𝑗
for 𝑃𝑖

7: else
8: for party 𝑖 = 1, 2, .. do
9: Reuse the objects from last time step: 𝑠𝑖

𝑗
← 𝑠𝑖

𝑗−1, 𝑟 𝑖
𝑗
← 𝑟 𝑖

𝑗−1, com𝑠𝑖
𝑗
← com𝑠𝑖

𝑗−1
10: Record 𝑠𝑖

𝑗
, com𝑠𝑖

𝑗
, and 𝑟 𝑖

𝑗
for 𝑃𝑖

Upon receiving (DISTORT, sid) from 𝑃𝑖 :
11: return 𝑠𝑖

𝑗
, com𝑠𝑖

𝑗
, and 𝑟 𝑖

𝑗
.

12: add com𝑠𝑖
𝑗

to every registered party’s local cache.
Upon receiving (GET COMM, id, sid) from 𝑃𝑖 :

13: return com𝑠𝑘
𝑗

from 𝑃𝑖’s cache
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Binary (tree) mechanism FBin. The details are provided in Functionality 2.2. Parties can interact with FBin with
command DISTORT to retrieve the distorted stake at each time, or with command GET COMM to obtain distorted
stake commitments for every other party along with the commitments to the p-sums and noisy p-sums that derives
the distorted stake.

Functionality 2.2: Binary mechanism FBin

We consider the functionality maintains a binary interval tree IT𝑖 for every party 𝑃𝑖 .

For every time step 𝑗 evaluate the following:
1: if 𝑗 mod 𝐿 = 0 then
2: for party 𝑖 = 1, 2, .. do
3: Determine the true stake 𝑠𝑖

𝑗
owned by 𝑃𝑖

4: Distort 𝑃𝑖’s true stake using Laplace noise: 𝑠𝑖
𝑗
← 𝑠𝑖

𝑗
+ Lap( 𝛼

𝜖
)

5: Commit 𝑠𝑖
𝑗

to com𝑠𝑖
𝑗

with 𝑟 𝑖
𝑗

6: Record 𝑠𝑖
𝑗
, com𝑠𝑖

𝑗
, and 𝑟 𝑖

𝑗
for 𝑃𝑖

7: Cache tx∗ = 𝑠𝑖
𝑗
, 𝑡∗ = 𝑗 for 𝑃𝑖

8: if (𝑡 ← 𝑗 mod 𝐿) mod 𝑇 = 0 then
9: for party 𝑖 = 1, 2, .. do

10: Initiate 𝑐𝑡𝑖 = ∅
11: 𝑎 ← 𝑡∗, 𝑏 ← 0
12: while 𝑎 ≠ 𝑗 do
13: Get node [𝑎, 𝑏] ∈ IT𝑖 such that:

|𝑎 − 𝑏 | = 2𝑘𝑇 , and 2𝑘+1𝑇 > | 𝑗 − 𝑎 |
14: 𝑐𝑡𝑖 ← 𝑐𝑡𝑖 ∪ [𝑎, 𝑏]
15: 𝑎 ← 𝑏 + 1
16: for 𝑘 = 1, 2, 3, ... do
17: if 𝑐𝑡𝑖 [𝑘] exists then

//𝑐𝑡𝑖 [𝑘] denotes the noisy p-sum of 𝑐𝑡𝑖 [𝑘]
18: read 𝑐𝑡

𝑖 [𝑘] from cache
19: else
20: 𝑐𝑡

𝑖 [𝑘] ← 𝑐𝑡𝑖 [𝑘] + Lap( 𝛼
𝜖
)

21: Commit 𝑐𝑣𝑖 [𝑘] to com𝑐𝑣𝑖 [𝑘 ]

22: 𝑠𝑖
𝑗
← ∑

𝑘 𝑐𝑡 [𝑘] + tx∗

23: Commit 𝑠𝑖
𝑗

to com𝑠𝑖
𝑗

with 𝑟 𝑖
𝑗

24: Record 𝑠𝑖
𝑗
, com𝑠𝑖

𝑗
, and 𝑟 𝑖

𝑗
for 𝑃𝑖

25: else
26: for party 𝑖 = 1, 2, .. do
27: 𝑠𝑖

𝑗
← 𝑠𝑖

𝑗−1, 𝑟 𝑖
𝑗
← 𝑟 𝑖

𝑗−1, com𝑠𝑖
𝑗
← com𝑠𝑖

𝑗−1
28: Record 𝑠𝑖

𝑗
, com𝑠𝑖

𝑗
, and 𝑟 𝑖

𝑗
for 𝑃𝑖

//com𝑐𝑡𝑘 and 𝑐𝑜𝑚
𝑐𝑡

𝑘 represent the commitments to the p-sums and noisy p-sums for computing 𝑠𝑖
𝑗

Upon receiving (DISTORT, sid) from 𝑃𝑖 :
29: return 𝑠𝑖

𝑗
, com𝑠𝑖

𝑗
, and 𝑟 𝑖

𝑗

30: add com𝑠𝑖
𝑗
, com𝑐𝑡𝑘 , com

𝑐𝑡
𝑘 to every registered party’s local cache.

Upon receiving (GET COMM, id = 𝑘, sid) from 𝑃𝑖 :
31: return com𝑠𝑘

𝑗
, com𝑐𝑡𝑘 , com

𝑐𝑡
𝑘 from 𝑃𝑖’s cache
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B.3 Security proof

In this section, we present the primary security proof (for Theorem 18) related to the stake distortion protocol
proposed in this work. To minimize redundancy, we focus on the security proof for the Timer protocol. However,
we emphasize that using the same proof technique, one can easily derive a proof for the Binary protocol.

Proof. (Theorem 18)We prove this theorem by constructing a simulator Stimer, which corrupts the same set
of nodes as the real-world adversary A and interacts with Fsd. This simulator can produce a transcript that is
computationally indistinguishable from the real-world protocol execution of

∏
sd in the presence ofA. We assume

the existence of a simulator that simulates the message broadcast channel (the network) as described in [GOT19].
Consequently, we will not delve into the details of simulating message broadcasting in real-world execution. For
more information, readers may refer to [GOT19].

To construct the simulator, we consider the existence of a simulator, SLtimer
nizk , for non-interactive zero-knowledge

(NIZK) that proves statements in the NP language of Ltimer. SLtimer
nizk is able to simulate a proof using a trapdoor

(without requiring the witness) that is indistinguishable from one an honest prover would provide with the
witness [Bel20,Gro06]. We refer to the proof generated by SLtimer

nizk using the trapdoor as the simulated proof. The
detailed construction is provided in Simulator 2.1.

Simulator 2.1: Simulator Stimer

Simulating noise generation keys:
1: for 𝑖 = 1, 2, 3... do
2: if 𝑃𝑖 is a dishonest party then
3: return𝑃𝑖’s noise keys (n𝑖

pk, n
𝑖
sk).

4: else
//simulate honest party’s private key using a random string

5: Sample a random string as n𝑖
pk

6: return n𝑖
pk ← PRFn𝑖sk

(0)

Simulating DP noises:
7: for 𝑖 = 1, 2, 3... do
8: if 𝑃𝑖 is a dishonest party then
9: Determine the public randomness ra, rb.

//Internally emulates FTimer to produce DP noises
10: 𝑧0 = PRFn𝑖sk

(ra), 𝑧1 = PRFn𝑖sk
(rb)

11: return 𝑧 ← 𝛼
𝜖
(log(𝑧0) − log(𝑧1))

12: else
//simulate honest party’s DP noise with simulated randomness and keys

13: Sample random strings r1, r2.
14: 𝑧0 = PRFn𝑖sk

(r1), 𝑧1 = PRFn𝑖sk
(r2)

15: return 𝑧 ← 𝛼
𝜖
(log(𝑧0) − log(𝑧1))

Simulating Fstk:
16: for 𝑖 = 1, 2, 3... do
17: if 𝑃𝑖 is a dishonest party then
18: Determine 𝑃𝑖’s current stake 𝑠𝑖 .
19: Sample 𝑟 𝑖 and com𝑠𝑖 ← Com𝑟 𝑖 (𝑠𝑖)
20: else

//simulate honest party’s commitment with 0
21: Sample 𝑟 𝑖 and com𝑠𝑖 ← Com𝑟 𝑖 (0)

22: Upon receiving a request from (dishonest) 𝑃𝑖 to retrieve distorted stake: return 𝑠𝑖 , com𝑠𝑖 , 𝑟
𝑖 to 𝑃𝑖

23: Upon receiving a request from (dishonest) 𝑃𝑖 to retrieve stake commitments for honest party with pid = 𝑘:
return com𝑠𝑘 to 𝑃𝑖

24: Upon receiving a request from (dishonest) 𝑃𝑖 to retrieve noise generation key for honest party with
pid = 𝑘: return the simulated key n𝑘

pk.
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Simulating noisy stake (and commitments):
25: for 𝑖 = 1, 2, 3... do
26: if 𝑃𝑖 is a dishonest party then
27: Internally emulates FTimer to derive 𝑠𝑖 , com𝑠𝑖 , and the opening 𝑟 𝑖 to com𝑠𝑖 .
28: Generate NIZK proof 𝜋𝑖 with witness.
29: else

//simulate noisy stake and commitments using true stake=0, simulated noise 𝑧 and random opening
30: Simulate noisy stake 𝑠𝑖 using the simulated DP noise and true stake as 0.
31: Sample 𝑟 𝑖 , com𝑠𝑖 = Com𝑟 𝑖 (𝑠𝑖)
32: Interact with SLtimer

nizk to extract simulated proof 𝜋𝑖 without witness.

33: Upon receiving a request from (dishonest) 𝑃𝑖 to retrieve distorted stake: return 𝑠𝑖 , 𝑟 𝑖 , to 𝑃𝑖 and simulate
message broadcasting for com𝑠𝑖 , 𝜋

𝑖 .
34: Upon receiving a request from (dishonest) 𝑃𝑖 to retrieve stake commitments for honest party with pid = 𝑘:

return com𝑠𝑘 , 𝜋
𝑘 to 𝑃𝑖 .

Let HYB0 represent the distribution of real-world protocol execution of
∏

timer (in the hybrid world where
auxiliary functionalities are available). We consider the world HYB1, which is the same as the protocol execution,
except for the following: the noise generation keys and the DP noises are obtained from the simulator Stimer.
The simulator Stimer generates the keys and DP noises using the corresponding simulation primitives. Since the
private noise generation key, nsk itself is a random string, thus by the security of PRF the output of PRFnsk (0)
is computational indistinguishable from PRFrd string (0). Moreover, by the fundamental transformation laws of
probabilities, Laplace or Gaussian random variables are statistically indistinguishable from the ones transformed
from uniform distributions. Hence, we say that the distributions of HYB0 and HYB1 are indistinguishable.

Next, we consider another world HYB2, which is identical to the world HYB1 except for replacing the calls
to Fstk with the interaction to Stimer. The simulator Stimer generates necessary outputs and responds to requests
using the appropriate simulation primitives. In HYB2, the simulator simulates the honest party’s stake commitment
using Com𝑟 (0), where 𝑟 is a random opening, and returns the honest party’s public noise generation key with the
simulated one (as demonstrated in HYB1, the simulated npk is indistinguishable from the actual key). Owing to
the equivocality property of commitment schemes [KKKZ19], we can conclude that the distributions of HYB1 are
indistinguishable from those of HYB2.

Lastly, we consider the ideal world HYB3. The only difference between HYB3 and HYB2 is that in HYB3, the
noisy stake commitments for honest parties are simulated using (i) 0 stake as the true value; (ii) simulated DP noise 𝑧;
(iii) a random opening to derive the commitment; and (iv) a simulated NIZK proof generated bySLtimernizk. Due to
the equivocality property of commitments, we know that the simulated noisy stake commitments for honest parties
are indistinguishable from the actual ones. Furthermore, the simulation security of NIZKs (or zero-knowledge
property) ensures that the simulated proof by SLtimernizk, generated without using a witness, is computationally
indistinguishable from the actual proof obtained from F Lnizk. Consequently, we conclude that the distribution of
the ideal world HYB3 is indistinguishable from that of HYB2 and, by extension, also indistinguishable from the
real-world executions, HYB0.

One can employ similar proof techniques to establish the security of the Binary protocol. To simulate the
execution of

∏
Bin, the simulator would also need to simulate the commitments to the p-sums and noisy p-sums

for honest parties. However, this can be achieved using a similar approach, such as setting all p-sums to 0 and
generating commitments with random openings.

C Proof of Theorems

C.1 Stake Inference Attacks

In this section, we provide proofs regarding theorems for the proposed stake inference attacks (Section 3).

Proof of Theorem 6 We start this section by introducing the necessary Lemma 21 that is used in our main proof.
We then prove the bounded failure probability of Algorithm 1 in Theorem 22 and the running time in Theorem 23.

Lemma 21 (Hoeffding’s Inequality [KS69]). Given a biased coin with heads probability 𝑝. Let 𝑝𝑛 denote the
heads frequency for 𝑛 independent coin flips. For any 𝑛 > 1 and 𝜏 > 0, the heads frequency 𝑝𝑛 satisfies

Pr [|𝑝𝑛 − 𝑝 | ≥ 𝜏] ≤ 𝑒−2𝜏2𝑛
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Theorem 22. Given 𝛿 ∈ (0, 1), with probability at least 1−𝛿, 𝑝SC(..., 𝛿) outputs correct comparisons.

Proof. We first prove that for each round, the probability that Algorithm 1 outputs the wrong comparison between
the two biased coins 𝑞 ( 𝑓𝑣) and 𝑞( 𝑓cmp) is at most 𝛿𝑖 . Without loss of generality, we consider the case where the
algorithm outputs 𝑓𝑣 > 𝑓cmp (𝑝0 > 𝑝1 and |𝑝0 − 𝑝1 | > 2𝜏𝑖). By Lemma 21, and the union bound, the failure
probability that Algorithm 1 outputs the wrong comparison satisfies

Pr [wrong cmp]
≤ Pr [𝑞( 𝑓𝑣) < 𝑝0−𝜏𝑖] + Pr

[
𝑞( 𝑓cmp) > 𝑝1 + 𝜏𝑖

]
≤ 𝑒−2𝑒

log( 1
𝛿𝑖
)
= 𝑒−2𝛿𝑖

(5)

Next, by combing union bound, we show that the total failure probability is bounded by 𝛿, which is sufficient to
prove

∑+∞
𝑖 𝛿𝑖 < 𝛿. Given that

𝑒−1 =

∫ 𝑒−1

0
1 𝑑𝑥 =

+∞∑︁
𝑛=1
(𝑒−𝑛−𝑒−(𝑛+1) ) = (1−𝑒−1)

+∞∑︁
𝑛=1

𝑒−𝑛 (6)

Thus by Equation 6, we can obtain ∑︁
𝑖=1

𝛿

𝑒𝑖
< 𝛿

∑︁
𝑖=1

𝑒−𝑖 <
𝛿𝑒−1

1 − 𝑒−1 =
𝛿

𝑒 − 1
(7)

Theorem 23. The expected running time of 𝑝SC is bounded by 𝑂
(

log(1/𝛿 )+log(1/max (𝜏,𝜏c ) )
max(𝜏,𝜏c )2

)
(sim) coin flips.

Proof. We prove the complexity of 𝑝SC by following the same technique used by [KK07] for proving Lemma 3.2.
Without loss of generality, we consider 𝑞( 𝑓𝑣) > 𝑞( 𝑓cmp).

We start with the case of 𝜏𝑐 > 𝜏, and let 𝑘 = log( 1
𝜏𝑐
), so for any round ℓ > 𝑘 we have 𝜏ℓ <

𝜏𝑐
2 . In order to let

the algorithm keep running after ℓ > 𝑘 rounds, then at least one of the following must be true(
𝑝
(ℓ )
0 < 𝑞( 𝑓𝑣)−

𝜏𝑐

2

)
or

(
𝑝
(ℓ )
1 > 𝑞( 𝑓cmp) +

𝜏𝑐

2

)
where 𝑝

(ℓ )
0 , and 𝑝

(ℓ )
1 denotes the estimated heads frequency for 𝑞( 𝑓𝑣), and 𝑞( 𝑓cmp), respectively under round ℓ.

By Lemma 21, the probability is at most

𝑒−
𝜏2
𝑐𝑛

2 ≤ 𝑒
−

𝜏2
𝑐 log( 1

𝛿ℓ
)

2𝜏2
ℓ = 𝛿 · 𝑒

−
(
𝑒2ℓ 𝜏2

𝑐
2 +ℓ

)
(8)

Note that the running time of round ℓ > 𝑘 grows exponentially in ℓ, while by Equation 8, the probability that
Algorithm 1 to continue running after round ℓ > 𝑘 decrease faster than exponential in ℓ. Hence, the expected
running time is bounded by the running time of 𝑘 𝑡ℎ round:

𝑂

(
log

(
1
𝛿𝑘

)
1
𝜏2
𝑐

)
= 𝑂

©«
log

(
1
𝛿

)
+ log

(
1
𝜏𝑐

)
𝜏2
𝑐

ª®®¬ (9)

Next, we consider the case where 𝜏𝑐 < 𝜏. With the same technique, one can obtain that the expected running
time is bounded by the running time of 𝑘 𝑡ℎ round where 𝑘 = log( 1

𝜏
), which is 𝑂

(
log(1/𝛿 )+log(1/𝜏 )

𝜏2

)
.

Combining both cases, one can obtain that the expected running time of 𝑝SC is bounded by

𝑂

(
log(1/𝛿) + log(1/max (𝜏, 𝜏c))

max(𝜏, 𝜏c)2

)
(10)

Proof of Theorem 7 We first prove the (expected) running time of RdBin in Theorem 24, then prove the error
bound stated in Theorem 25.

Theorem 24. Let 𝑛 = 𝑆
𝜃

, and 𝛿 = 𝑂 ( 1
log 𝑛 ), then the running time of RdBin is bounded by

𝑂

(
log(log 𝑛/𝜏)

𝜏2 × log 𝑛
)
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Proof. Let 𝛿 = 𝑐
log 𝑛 , where 𝑐 is considered to be a constant factor and 𝑐 > 0. By Equation 10, we can obtain that

for each random walk phase of RdBin, the expected running time is bounded by

𝑂

(
log(log 𝑛/𝑐) + log(1/𝜏)

𝜏2

)
∼ 𝑂

(
log(log 𝑛/𝜏)

𝜏2

)
Note that the random walk will terminate within log 𝑛 steps, and thus we can obtain the overall running time of
RdBin is bounded by the term 𝑂

(
log(log 𝑛/𝜏 )

𝜏2 × log 𝑛
)
.

Theorem 25. Let 𝑝𝑣 = 𝑞( 𝑓𝑣), 𝜂 = max
(
𝑞−1 (𝑝𝑣 ± 𝜏)

)
, and 𝛿 = 𝑂 ( 1

log 𝑛 ), then (i) the random walk of RdBin exits
at the correct node with constant failure probability; and (ii) the inference error is bounded by max( 𝜃

𝑆
, 𝜂).

Proof. At each step of the random walk, the probability of moving in the wrong direction is bounded by 𝑂 ( 1
log 𝑛 ).

As such, by union bound, the overall failure probability is bounded by𝑂 (1), which is a constant. If the random walk
exits correctly, it must have either reached a leaf node or an interval [ 𝑓𝑎, 𝑓𝑏] where |𝑞( 𝑓 =

𝑓𝑎+ 𝑓𝑏
2 ) − 𝑞( 𝑓𝑣) | < 𝜏,

indicating that the minimum comparison threshold has been met. For the first case, since | 𝑓𝑎 − 𝑓𝑏 | = 𝜃
𝑆

, thus
the inference error must be bounded by 𝜃

𝑆
. For the second case, it is clear that the error must be smaller than

max
(
|𝑞−1 (𝑝𝑣 + 𝜏) − 𝑓𝑣 |, |𝑞−1 (𝑝𝑣 − 𝜏) − 𝑓𝑣 |

)
.

C.2 Privacy Model

We now provide complete proofs for theorems related to our general privacy model (Section 5).

Proof of Theorem 11
Proof. (Theorem 11) Consider party 𝑃𝑖 and let 𝑆𝑖 = {𝑠𝑖1, 𝑠

𝑖
2, ..., 𝑠

𝑖
𝑡 } to be the stake history of 𝑃𝑖 . Given 𝑆𝑡 =

{𝑠1, 𝑠2, ..., 𝑠𝑡 } and 𝑆′𝑡 = {𝑠′1, 𝑠
′
2, ..., 𝑠

′
𝑡 } to be a pair of (𝛼, 𝑢)-neighbor stake profiles. Let 𝑥, 𝑦 ∈ R such that

𝑥 ≤ 𝑦 ≤ 𝑥 + 𝛼, and by definition of (𝛼, 𝑢)-neighbor we have 𝑠𝑢 = 𝑥, 𝑠′𝑢 = 𝑦. We also consider a given
output 𝑜 ⊂ 𝑅𝑎𝑛𝑔𝑒(Lkg) and next. we compute the following probabilities (Note that we simplify the term
Pr

[
Lkg⟨𝑃𝑖 ,𝑆⟩ = 𝑜

]
as a conditional probability Pr [𝑜 | 𝑆])

Pr
[
𝑜 | 𝑠𝑖𝑢 = 𝑠𝑢

]
=

∑︁
𝑆𝑡⊂S

Pr [𝑜 | 𝑆𝑡 ] Pr
[
𝑆𝑡 | 𝑠𝑖𝑢 = 𝑥

]
≤ max

𝑆𝑡
Pr [𝑜 | 𝑆𝑡 ] ×

∑︁
𝑆𝑡⊂S

Pr
[
𝑆𝑡 | 𝑠𝑖𝑢 = 𝑥

] (11)

Pr
[
𝑜 | 𝑠𝑖𝑢 = 𝑠′𝑢

]
=

∑︁
𝑆𝑡⊂S

Pr
[
𝑜 | 𝑆′𝑡

]
Pr

[
𝑆′𝑡 | 𝑠𝑖𝑢 = 𝑦

]
≥ min

𝑆′𝑡
Pr

[
𝑜 | 𝑆′𝑡

]
×

∑︁
𝑆′𝑡⊂S

Pr
[
𝑆′𝑡 | 𝑠𝑖𝑢 = 𝑦

] (12)

Note that any stake dataset 𝑆 ⊂ S is a (𝛼, 𝑢)-neighbor of itself. Thus it holds that
∑

𝑆𝑡⊂S Pr
[
𝑆𝑡 | 𝑠𝑖𝑢 = 𝑥

]
≤∑

𝑆′𝑡⊂S Pr
[
𝑆′𝑡 | 𝑠𝑖𝑢 = 𝑦

]
, since for any 𝑆𝑡 there exists at least one (𝛼, 𝑢)-neighbor 𝑆′𝑡 . In addition, by Definition 10,

we know that max𝑆𝑡 Pr [𝑜 | 𝑆𝑡 ] ≤ 𝑒𝜔 (𝑡−𝑢) ×min𝑆′𝑡 Pr
[
𝑜 | 𝑆′𝑡

]
. Thus by combing the two facts, we can conclude:

Pr
[
𝑜 | 𝑠𝑖𝑢 = 𝑠𝑢

]
Pr

[
𝑜 | 𝑠𝑖𝑢 = 𝑠′𝑢

] =

∑
𝑆𝑡⊂S Pr [𝑜 | 𝑆𝑡 ] Pr

[
𝑆𝑡 | 𝑠𝑖𝑢 = 𝑥

]∑
𝑆𝑡⊂S Pr

[
𝑜 | 𝑆′𝑡

]
Pr

[
𝑆′𝑡 | 𝑠𝑖𝑢 = 𝑦

]
≤
∑

𝑆𝑡⊂S Pr
[
𝑆𝑡 | 𝑠𝑖𝑢 = 𝑥

]∑
𝑆′𝑡⊂S Pr

[
𝑆′𝑡 | 𝑠𝑖𝑢 = 𝑦

] × max𝑆𝑡 Pr [𝑜 | 𝑆𝑡 ]
min𝑆′𝑡 Pr

[
𝑜 | 𝑆′𝑡

]
≤𝑒𝜔 (𝑡−𝑢) × 𝜖

(13)

By Bayes’ theorem

Pr
[
𝑠𝑖𝑢 = 𝑥 | 𝑜

]
Pr

[
𝑠𝑖𝑢 = 𝑦 | 𝑜

] / Pr
[
𝑠𝑖𝑢 = 𝑥

]
Pr

[
𝑠𝑖𝑢 = 𝑦

]
=

Pr
[
𝑠𝑖𝑢 = 𝑥 | 𝑜

]
Pr[𝑜]

Pr
[
𝑠𝑖𝑢 = 𝑥

] / Pr
[
𝑠𝑖𝑢 = 𝑦 | 𝑜

]
Pr[𝑜]

Pr
[
𝑠𝑖𝑢 = 𝑦

]
=

Pr
[
𝑜 | 𝑠𝑖𝑢 = 𝑠𝑢

]
Pr

[
𝑜 | 𝑠𝑖𝑢 = 𝑠′𝑢

] ≤ 𝑒𝜔 (𝑡−𝑢) × 𝜖 (Definition 8)

(14)
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In general, Equation 14 shows that for any leakage profile Lkg, if it satisfies Definition 10, then it also satisfies the
privacy requirements defined in Definition 8.

C.3 Stake Distortion

We now prove related theorems in Section 6.

Proof of Theorem 13

Proof. (Theorem 13) We first recall the important notations: (i) REAL𝜋
A,E , denotes the transcript of real world

protocol (𝜋) execution between the honest party and the adversary A involving environment E; (ii) IDEALFS,E ,
denotes the transcript generated by simulator a S with input of a leakage profile Lkg who corrupts the same parties
as A and interacts only with a trusted functionality F and the environment E.

We consider a set of parties 𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝑛}, and the environment E can activate stake distribution,
S = {𝑆𝑖}1≤𝑖≤𝑛, for all parties across every time slot. (In fact, the environment E can activate every transaction for
each party, which essentially governs stake distribution among parties over time.)

By definition, as
∏

UC-emulates ledger maintenance command (for ease of notation, we denote this as an
independent functionality FLM) in GPL, thus we know that there must exist a simulator SLM such that:

IDEALFLM
SLM (𝜙 (S) ) ,E ≈ind REAL

∏(S)
A,E (15)

holds for any environment and any stake distribution.
Next, we prove that with the same simulator SLM (for simulating execution transcripts against protocol

∏
), one

can also simulate indistinguishable transcripts against protocol
∏

LM∗ . We prove this by contradiction.
Assume there exists an environment E and a distorted stake distribution S̃𝑎 ← 𝑓 (S𝑎) such that

IDEALFLM
SLM(𝜙 (S̃𝑎 ) ) ,E

0ind REAL
∏

LM∗ (S𝑎 )
A,E (16)

where
∏

LM∗ (S𝑎) denotes the execution of protocol
∏

LM∗ under the stake distribution S𝑎. As
∏

LM∗ only
modifies the inputs rather than the interface with the environment or the components of

∏
, the equivalence

REAL
∏

LM∗ (S𝑎 )
A,E ≈ind REAL

∏(S̃𝑎 )
A,E becomes evident. In other words, we keep the environment unchanged but only

change the stake distribution from S𝑎 to S̃𝑎, then the execution transcripts of
∏

LM∗ (S) and
∏(S̃) should be

indistinguishable. And by the assumption Eq 16, we can trivially obtain that

IDEALFLM
SLM(𝜙 (S̃𝑎 ) ) ,E

0ind REAL
∏(S̃𝑎 )
A,E

This implies that if E activates the stake distribution as S̃𝑎, then simulator SLM is unable to generate in-
distinguishable transcripts against the real protocol executions of

∏
, which evidently contradicts Equation 15.

Consequently, we can deduce that no such environment exists, and the assumption (Eq 16) is incorrect. Therefore,
for any stake distribution activation, the same simulator SLM can also produce indistinguishable transcripts against
the real execution of

∏
LM∗ with leakage 𝜙(S̃).

Proof of Theorem 14

Proof. (Theorem 14) Let 𝑆𝑡 = {𝑠 𝑗 }1≤ 𝑗≤𝑡 and 𝑆′𝑡 = {𝑠′𝑗 }1≤ 𝑗≤𝑡 be any (𝛼, 𝑢) neighboring stake assignment pairs
for an honest party 𝑃. We abstract the stake distortion at each time 𝑗 asM 𝑗 (𝑠), which takes an input stake, 𝑠, and
outputs 𝑠 + Lap( 𝛼

𝜖
) if 𝑗 mod 𝑇 == 0, and M 𝑗−1 (𝑠) otherwise. For ease of notation, we write the conditional

probability Pr
[
M 𝑗 (𝑠 𝑗 ) = 𝑜 𝑗 | ∀1≤𝑘≤ 𝑗−1M𝑘 (𝑠𝑘) = 𝑜𝑘

]
as Pr

[
M 𝑗 (𝑠 𝑗 ) = 𝑜 𝑗 | ∗

]
, and compute the following term

Pr
[
𝑆𝑡 = o

]
Pr

[
𝑆′𝑡 = o

] =

𝑡∏
𝑗=1

Pr
[
M 𝑗 (𝑠 𝑗 ) = 𝑜 𝑗 | ∗

]
Pr

[
M 𝑗 (𝑠′𝑗 ) = 𝑜 𝑗 | ∗

]
≤

𝑢−1∏
𝑗=1

1 ×
𝑡∏

𝑗=𝑢∧ 𝑗=𝑘𝑇,𝑘∈N+
𝑒𝜖 ≤ 𝑒⌊

𝑡−𝑢
𝑇
⌋×𝜖

(17)

In addition, knowing that Lkg = 𝑓 (𝑆𝑡 ) is a probabilistic function related to the noisy stake assignment. Thus, by
post-processing theorem of DP [DR+14], Pr [Lkg = o]/Pr [Lkg′ = o] ≤ 𝑒⌊

𝑡−𝑢
𝑇
⌋×𝜖 . In general, the total privacy loss

for stake values at any time 𝑢 is subject to 𝑘-fold composition theorem of DP mechanisms [DR+14], where 𝑘

denotes the total number of noisy stake releases from time 𝑢 up to the current moment, which is 𝑡−𝑢
𝑇

.
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Proof of Theorem 15

Proof. (Theorem 15)
Let 𝑆𝑡 = {𝑠 𝑗 }1≤ 𝑗≤𝑡 to be the stake profiles of an honest party 𝑃, and tx𝑡 = {tx 𝑗 }1≤ 𝑗≤𝑡 to be the corresponding

transaction outcomes at each time, i.e., tx 𝑗 = 𝑠 𝑗−𝑠 𝑗−1. Let M(tx𝑡 ) be a mechanism that processes the noisy p-sums
based on tx𝑡 , and 𝑆𝑡 ← 𝑓 (M(tx𝑡 )) is an algorithm that aggregates the output of M to derive the noisy stake at each
time. We say that, for any pair of (𝛼, 𝑢)-neighboring stake profiles 𝑆𝑡 , and 𝑆′𝑡 , with corresponding tx𝑡 , tx′𝑡 . It is
obvious that if for any o ⊆ 𝑅𝑎𝑛𝑔𝑒(M),

Pr [M(tx𝑡 ) = o]
Pr [M′ (tx𝑡 ) = o] ≤ 𝑒𝜔 (𝑡−𝑢)×𝜖 (18)

then the released noisy stake 𝑆𝑡 ← 𝑓 (M(tx𝑡 )) satisfies Definition 10 under the same decay function 𝜔, given 𝑓

only conduct post-processing operations. By the theory of the Laplace mechanism, Pr[M (tx𝑡 )=o]
Pr[M′ (tx𝑡 )=o] ≤ 𝑒𝜖 , when 𝑡 = 𝑢.

Moreover, when 0 < 𝑡−𝑢 ≤ 𝐿, then the privacy loss is subject to phase two distortion (privacy loss due to noisy
interval tree generation). Note that tx𝑢 can be used to generate at most log2 (

(𝑡−𝑢)
𝑇
) many noisy nodes (p-sums),

thus the phase two privacy loss is bounded by

Pr [Lkg = o]/Pr [Lkg′ = o] ≤ 𝑒log2 ( 𝑡−𝑢𝑇 )×𝜖

In addition, when 𝑡−𝑢 > 𝐿, then the mechanism incurs privacy loss for both phase one and phase two distortion.
By Theorem 14 the total phase one privacy loss is bounded by ⌊ 𝑡−𝑢

𝐿
⌋ × 𝜖 . For phase two, the max privacy loss is

bounded by 𝑒log2 ( 𝐿𝑇 )×𝜖 . As such, we may conclude

Pr [Lkg = o]/Pr [Lkg′ = o] ≤ 𝑒( ⌊ 𝑡−𝑢𝐿 ⌋+log2 ( 𝑡−𝑢𝑇 ))×𝜖

As summary, the privacy decay function to be

𝜔(𝑡 − 𝑢) ≤
{
⌊ 𝑡−𝑢

𝐿
⌋ + log2 ( 𝐿𝑇 ), if (𝑡 − 𝑢) > 𝐿

log2 ( 𝑡−𝑢𝑇 ), otherwise
(19)

Proof of Theorem 16 For the purpose of completeness, we start with the necessary Lemmas which were discussed
in [DR+14,WBNM21] but with necessary variations.

Lemma 26. Given 𝑛 independent and identically distributed (i.i.d.) Laplace random variables 𝑋1, 𝑋2, ..., 𝑋𝑛 drawn
from Lap( Δ

𝜖
). Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 , 0 < 𝛼 ≤ 𝑛 Δ

𝜖
, then:

Pr [ 𝑋 ≥ 𝛼] ≤ 𝑒

(
−𝛼2Δ2
4𝑛𝜖 2

)
Proof. Please refer to the proof to Lemma 12.2 in [DR+14] or proof to Theorem 6 in [WBNM21]

Lemma 27. Given 𝑛 i.i.d. Laplace random variables, 𝑋1, 𝑋2, ..., 𝑋𝑛, where each 𝑋𝑖 ∼ Lap( Δ
𝜖
). Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 ,

and 𝛽 ∈ (0, 1), the following inequality holds

Pr

[
𝑋 ≥ 2

Δ

𝜖

√︄
𝑛 log

1
𝛽

]
≤ 𝛽

Proof. As per Lemma 26, let 𝑒 (
−𝛼2Δ2
4𝑛𝜖 2 ) = 𝛽, and take log on both sides, one can obtain the following:

log
(
𝑒
( −𝛼2Δ2

4𝑛𝜖 2 )
)
= log (𝛽) =⇒ log

(
𝑒
( 𝛼2Δ2

4𝑛𝜖 2 )
)
= log

(
1
𝛽

)
=⇒ 𝛼2Δ2

4𝑛𝜖2 = log
(

1
𝛽

)
=⇒ 𝛼2 =

4𝑛𝜖2

Δ2 log
(

1
𝛽

)
=⇒ 𝛼 = 2

Δ

𝜖

√︄
𝑛 log

1
𝛽

(20)

Proof. (Theorem 16) When adopting stake distortion, the inference errors consists of two parts: (i) the error due
to injected DP noises and (ii) the error caused by the inference algorithm. By Theorem 28, the part (ii) noise is
bounded by 𝜂. By Lemma 27, when FTimer and FBin are applied, the part (i) errors are bounded by 𝑂 ( 𝛼

𝜖
), and

𝑂 (
√
𝐿𝛼
𝜖
), respectively.
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Proof of Theorem 17

Proof. (Theorem 17) Let 𝑋𝑎 ≤ 1−𝛾
3 𝑆, 𝑋ℎ ≥ 2+𝛾

3 𝑆 to be stake controlled by the adversary and the honest parties,
respectively. We denote the distorted stake as �̃�𝑎 ← 𝑋𝑎 +𝑌𝑛𝑎 , and �̃�ℎ ← 𝑋ℎ +𝑌𝑛ℎ , respectively for adversary and
honest, where 𝑌 𝑥 is the summation of 𝑥 i.i.d. Laplace random variables, and 𝑛𝑎, 𝑛𝑏 denotes the number of honest
and malicious parties, respectively, such that 𝑛𝑎 + 𝑛𝑏 = 𝑛. To ensure that the corrupted stake after distortion is
bounded by 1

3 , we need to have �̃�ℎ − 2�̃�𝑎 > 0 with high probability. Knowing that:

�̃�ℎ − 2�̃�𝑎 = (𝑋ℎ − 2𝑋𝑎) + 𝑌𝑛ℎ − 2𝑌𝑛𝑎 = 𝛾𝑆 + 𝑌𝑛ℎ − 2𝑌𝑛𝑎 (21)

Since the random variables are symmetric, without loss of generality, we may assume the following

Pr
[
�̃�ℎ − 2�̃�𝑎 < 0

]
= Pr [𝑌𝑛ℎ + 2𝑌𝑛𝑎 > 𝛾𝑆] (22)

By Lemma 12.2 in [DR+14], we can obtain that for 𝛽 ∈ (0, 1)

Pr

[
𝑌𝑛ℎ + 2𝑌𝑛𝑎 >

√︄
log

2
𝛽

𝛼
(√

𝑛ℎ + 2√𝑛𝑎
)

𝜖𝑆

]
≤ 𝛽 (23)

By setting 𝛾 ≥
√︃

log 2
𝛽

𝛼(√𝑛ℎ+2√𝑛𝑎)
𝜖 𝑆

, with probability at least 1 − 𝛽, the adversary controlled stake after distortion
does not exceed 1

3 of the total fraction.

In what follows we show that √𝑛ℎ + 2√𝑛𝑎 < 1.74
√︃

𝑆
𝜐

. Let 𝑓 (𝑥, 𝑦) =
√
𝑥 + 2√𝑦 such that 𝑥 > 0 and 𝑦 > 0, then

𝜕 𝑓 (𝑥, 𝑦)
𝜕𝑥

=
1

2
√
𝑥
,
𝜕 𝑓 (𝑥, 𝑦)

𝜕𝑦
=

1
√
𝑦

(24)

By Equation 24, we conclude that 𝑓 (𝑥, 𝑦) is a monotonically increasing function related to 𝑥 and 𝑦. Therefore,
max 𝑓 (𝑥, 𝑦) = 𝑓 (max(𝑛ℎ),max(𝑛𝑎)). Given minimum staking amount 𝜐, max(𝑛ℎ) = ℎ𝑆

𝜐
, and max(𝑛𝑎) = (1−ℎ)𝑆𝜐

,
where ℎ > 2

3 denotes the fraction of honest stake. Obviously, the value
√
ℎ + 2
√

1 − ℎ decreases when ℎ increases,

thus the max value is
√︃
( 2

3 ) + 2
√︃

1
3 < 1.74.

Thus, with knowledge of 𝑆 and 𝜐 for any system, one may derive an upper bound on slack 𝛾 by replacing
√
𝑛ℎ + 2√𝑛𝑎 with 1.74

√︃
𝑆
𝜐

, this proves the theorem.

D Stake Inference Attack Continued

D.1 Binary search with backtracking.

The algorithm is given the total stake 𝑆, a target 𝑃𝑣 with stake 𝑓𝑣 , 𝜃, 𝜏 > 0, and a balanced (stake) binary tree ST
with each node labeled with a stake segment [ 𝑓𝑎, 𝑓𝑏] ⊆ [0, 𝑓 ]. Specifically, the root is labeled with [0, 𝑓 ], and for
every internal node 𝑣 with label [ 𝑓𝑎, 𝑓𝑏], its left and right child is labeled with [ 𝑓𝑎, 𝑚] and [𝑚, 𝑓𝑏], respectively,
where 𝑚 = ⌊ 𝑓𝑎+ 𝑓𝑏2 ⌋, and all leaf nodes satisfy 𝑓𝑏− 𝑓𝑎 = 𝜃

𝑆
.

The algorithm proceeds with a random walk in ST starting from the root, and for each round 𝑡 (assuming at
node 𝑣(𝑡)), it performs the following. First, it runs two “one-flip-test (OFT)” to compare 𝑓𝑣 with 𝑓𝑎 and 𝑓𝑏 (labels
of 𝑣(𝑡)). To invoke an OFT between any value 𝑓𝑥 and 𝑓𝑣 , the attacker creates two conflicting transactions (i.e., as
long as one is confirmed, the other one is invalid), tx0, and tx1, broadcast them to everyone but (i) delays tx0 to 𝑃𝑣

and (ii) removes tx1 from the corrupted users with stake 𝑓𝑥 . If tx0 (resp. tx1) is not confirmed in the next time slot,
the test claims 𝑓𝑣 > 𝑓𝑥 (resp. 𝑓𝑣 < 𝑓𝑥), otherwise the test claims a random comparison result. This test design
allows us to flip and compare two simulated coins at the same time. If 𝑓𝑣 < 𝑓𝑎 or 𝑓𝑣 > 𝑓𝑏, the algorithm moves
back to the parent node of 𝑣(𝑡), otherwise evaluate another “one-flip-test” with 𝑚 ← 𝑓𝑎+ 𝑓𝑏

2 , and moves to the left
child if 𝑓𝑣 < 𝑚, and right otherwise.

When a leaf node is reached, the algorithm runs an exit test by tossing the coins corresponding to 𝑓𝑎, 𝑓𝑣 , and
𝑓𝑏, ( log 1/𝛿

𝜏2 ) many times each to obtain the estimated heads probabilities 𝑝𝑎, 𝑝𝑣 , and 𝑝𝑏, respectively. If 𝑝𝑣 ± 𝜏

intersects [𝑝𝑎, 𝑝𝑏], it computes 𝑞−1 (𝑝𝑎, 𝑝𝑏) and return 𝑓𝑎+ 𝑓𝑏
2 , otherwise moves back to the parent node.

Theorem 28. With probability at least 1−𝛿, the algorithm outputs 𝑓𝑣 that | 𝑓𝑣 − 𝑓𝑣 | ≤ 𝜃
𝑆
+ 𝜂 with expected

Ω( log 1
𝛿

log( 𝑓 𝑆
𝜃
)

𝜏2 ) many (sim) coin flips, where 𝜂 = max( |𝑞−1 (𝑝𝑎−𝜏)− 𝑓𝑎 |, |𝑞−1 (𝑝𝑏+𝜏)− 𝑓𝑏 |).
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We provide formal proofs of Theorem 28 as follows.

Lemma 29. When the algorithm terminates and outputs 𝑓𝑣 , then with probability at least 1−𝛿, | 𝑓𝑣 − 𝑓𝑣 | ≤ 𝜃 + 𝜂,
where 𝜂← max( |𝑞−1 (𝑝𝑎−𝜏)− 𝑓𝑎 |, |𝑞−1 (𝑝𝑏+𝜏)− 𝑓𝑏 |).

Proof. We say that the proof of Lemma 29 is equivalent to show 𝑝𝑎 and 𝑝𝑏 intersects 𝑝𝑣 ± 𝜏 at the algorithm
termination. For any two biased coins with heads probability 𝑝 and 𝑝′ such that |𝑝 − 𝑞 | ≥ 𝜏, and let 𝑝, 𝑞 denotes
the heads frequencies for each coin after 2 1

𝜏2 log 2
𝛿

many tosses. Note that by Hoeffding’s Inequality [HR70],

Pr[|𝑝 − 𝑝 | ≥ 𝜏

2
] ≤ 𝑒−2𝜏2× 𝜏2

4 ×log 2 2
𝛿 =

𝛿

2

The same holds for 𝑞 and 𝑞, thus by applying union bound, we say that after 2 1
𝜏2 log 2

𝛿
many coin tosses on

each coin, with probability at least 1 − 𝛿, one can correctly distinguish between coin 𝑝 and 𝑞. Therefore, we say
that when RdBin terminates and outputs 𝑓𝑣 at least one of the following is true with probability at least 1−𝛿:

1. |𝑝𝑎 − 𝑝𝑣 | ≤ 𝜏 or |𝑝𝑏 − 𝑝𝑣 | ≤ 𝜏

2. |𝑝𝑎 − 𝑝𝑣 | ≥ 𝜏 and |𝑝𝑏 − 𝑝𝑣 | ≥ 𝜏 and 𝑝𝑎 ≤ 𝑝𝑣 ≤ 𝑝𝑏

And thus proof completes.

For any leaf node of the binary stake tree, we say a node is a good node if the corresponding endpoints 𝑝𝑎, and 𝑝𝑏
intersect with 𝑝𝑣 , we denote the set of good (leaf) nodes in the stake tree as G.

Lemma 30. Let 𝑑 (𝑣,G) denotes the distance between a true node 𝑣 and the closest good node in G. Conditional
on 𝑣(𝑡) ∉ G, the probability of 𝑑 (𝑣(𝑡),G) = 𝑑 (𝑣(𝑡 − 1),G) − 1 is at least 1

2 + 𝜏.

Proof. Given the condition that 𝑣(𝑡) ∉ G, and let 𝑝𝑎, 𝑝𝑏 to be 𝑣(𝑡)’s endpoints, then one of the following is true

1. 𝑝𝑏 < 𝑝𝑣 − 𝜏 or 𝑝𝑎 > 𝑝𝑣 + 𝜏
2. 𝑝𝑎 ≤ 𝑝𝑣 ≤ 𝑝 and |𝑝𝑏 − 𝑝𝑣 | + |𝑝𝑎 − 𝑝𝑣 | ≥ 2𝜏

Note that given two biased coins 𝑝, and 𝑞 such that |𝑝 − 𝑞 | ≥ 𝜏 and 𝑝 > 𝑞, the probability that the one flip
test outputs the correct comparison is at least 1

2 + 𝜏. Thus for case one, conditional on 𝑣(𝑡) ∉ G the probability of
𝑑 (𝑣(𝑡),G) = 𝑑 (𝑣(𝑡 −1),G) −1 is equivalent to the probability that the OFT outputs the correct claim that 𝑝𝑏 < 𝑝𝑣
or 𝑝𝑎 > 𝑝𝑣 , which is at least 1

2 + 𝜏. The same probability can be obtained for case two as well.

Lemma 31. The algorithm halts and output a result after expected Ω( log 1
𝛿

log( 𝑓 𝑆
𝜃
)

𝜏2 ) many (sim) coin flips.

Proof. By Lemma 30 for every step the random walk moving to the correct direction with probability at least 1
2 .

Thus by Theorem 3.5 in [FRPU94], the expected steps of the random walk before halting is bounded by Ω(log 𝑓 𝑆

𝜃
),

and thus the expected complexity of the entire inference approach is bounded by Ω( log 1
𝛿

log( 𝑓 𝑆
𝜃
)

𝜏2 ).

D.2 Bayes learner based construction.

Follows our general paradigm, we continue our discussion on another Bayesian learner based SIA construction
(BLSIA). The details are provided in Algorithm 3.

Similarly, BLSIA is given 𝜃 > 0 and 𝜏 ∈ (0, 1), the algorithm first evenly divides the attacker’s stake 𝑓 into
𝑚 ← 𝑆

𝜃
equal size range segments {𝑎1, 𝑎2, ..., 𝑎𝑚}, such that 𝑎𝑖 denotes the range

[
(𝑖−1) 𝜃

𝑆
, 𝑖 𝜃

𝑆

]
. Then, the it

proceeds as follows. First, BLSIA assigns an initial weight 𝑤𝑖 ← 1
𝑚

to each segment 𝑎𝑖 , and starts updating them.
For each step, BLSIA picks the larges index 𝑗 such that

∑ 𝑗

𝑖=1 𝑤 𝑗 < 1
2 , and chooses the middle value indicated

by segment 𝑎 𝑗 to launch a one flip test (Alg 3:4,5). BLSIA then updates each weight accordingly based on the
OFT output (Alg 3:6-9). We stress that the weight update process is the direct application of the Bayes posterior
probability update process, and in order to ensure the updated weight sum up to 1, all weights are normalized after
updates. This process is repeated until it finds a weight 𝑤𝑖 such that 𝑤𝑖 >

1
2 . The attack then terminates and outputs

(2𝑖−1) 𝜃
2𝑆 , the middle value indicated by the segment 𝑎𝑖 , (Alg 3:10,11) as the inference result.

Theorem 32. BLSIA’s running time is bounded by expected 𝑂 ( log𝑚
𝜏2 ) many simulated coin flips.

To prove this theorem, we first summarizes important notations used in our proof:

– 𝐻 (𝑋) denotes the entropy of random variable 𝑋 and 𝐼 (𝑋) ← 1 − 𝐻 (𝑋) is the corresponding negentropy;
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Algorithm 3 Stake Inference Attack - II (Bayes learner)
Input: 𝜃 > 0, 𝜏 ∈ (0, 1); 𝑃𝑣 with stake 𝑓𝑣 .
Output: The approximated stake 𝑓𝑣 for party 𝑃𝑣 .

1: 𝑚 ← 𝑆
𝜃

, {𝑎1, 𝑎2, ..., 𝑎𝑚} : 𝑎𝑖 ← [(𝑖 − 1)𝜃, 𝑖𝜃]
2: Initialize weights 𝑎𝑖 , {𝑤1, 𝑤2, ..., 𝑤𝑚} : 𝑤𝑖 ← 1

𝑚

3: 𝑝 ← 1
2 + 𝜏

4: for 𝑡 = 1, 2, 3... do
5: Select 𝑗 , that 𝑗 = max𝑘 :

∑𝑘
𝑖=1 𝑤𝑖 <

1
2

6: Run OFT between 𝑓 ′ ← (2 𝑗−1) 𝜃
2𝑆 , and 𝑓𝑣

7: if 𝑓 ′ > 𝑓𝑣 by OFT then

8: 𝑤𝑖 =


(1−𝑝)𝑤𝑖

(1−𝑝) ∑ 𝑗

𝑖=1 𝑤𝑖+𝑝
∑𝑚

𝑖= 𝑗+1 𝑤𝑖

∀ 𝑖 ≤ 𝑗 ,

𝑝𝑤𝑖

(1−𝑝) ∑ 𝑗

𝑖=1 𝑤𝑖+𝑝
∑𝑚

𝑖= 𝑗+1 𝑤𝑖

∀ 𝑗 < 𝑖 ≤ 𝑚.

9: else

10: 𝑤𝑖 =


𝑝𝑤𝑖

𝑝
∑ 𝑗

𝑖=1 𝑤𝑖+(1−𝑝)
∑𝑚

𝑖= 𝑗+1 𝑤𝑖

∀ 𝑖 ≤ 𝑗 ,

(1−𝑝)𝑤𝑖

𝑝
∑ 𝑗

𝑖=1 𝑤𝑖+(1−𝑝)
∑𝑚

𝑖= 𝑗+1 𝑤𝑖

∀ 𝑗 < 𝑖 ≤ 𝑚.

11: if ∃𝑖 : 𝑤𝑖 >
1
2 then

12: return 𝑓𝑣 ← (2𝑖−1) 𝜃
2𝑆

– 𝐻 (𝑋) denotes the entropy of random variable 𝑋 and 𝐼 (𝑋) ← 1 − 𝐻 (𝑋) is the corresponding negentropy;

Lemma 33. If algorithm 3 terminates at round 𝑡 and outputs a value, then 𝐻 (w(𝑡 ) ) < log(3).

Proof. If algorithm 3 terminates, then there exists 𝑖 such that 𝑤𝑖 >
1
3 . By the definition of entropy, we compute

𝐻 (w(𝑡 ) ) =
𝑚∑︁
𝑖=1
−𝑤 (𝑡 )

𝑖
log(𝑤 (𝑡 )

𝑖
) <

𝑚∑︁
𝑖=1
−𝑤 (𝑡 )

𝑖
log( 1

3
)

= log(3)
𝑚∑︁
𝑖=1

𝑤
(𝑡 )
𝑖

= log(3)
(25)

Lemma 34. Given the weights before and after applying the 𝑡𝑡ℎ update as w(𝑡−1) , and w(𝑡 ) . The expected
information gain after 𝑡𝑡ℎ round of weight update satisfies

E
(
𝐼 (w(𝑡 ) ) − 𝐼 (w(𝑡−1) )

)
≥ 2

9
𝐼 (𝑝)

Proof. Let 𝜅 ← ∑ 𝑗

𝑖=1 𝑤
(𝑡−1)
𝑖

, nor0 ← 1
𝑝𝜅+(1−𝑝) (1−𝜅 ) , and assume the reverse tagging attack outputs 𝑏 = 0 at 𝑡𝑡ℎ

round. We computes the following

𝐼 (w(𝑡 ) |𝑏 = 0)

= log𝑚 +
𝑗∑︁

𝑖=1
nor0 · 𝑝𝑤 (𝑡−1)

𝑖
log(nor0 · 𝑝𝑤 (𝑡−1)

𝑖
) +

𝑚∑︁
𝑖= 𝑗+1

nor0 · (1 − 𝑝)𝑤 (𝑡−1)
𝑖

log(nor0 · (1 − 𝑝)𝑤 (𝑡−1)
𝑖
)

= log𝑚 + nor0 · 𝑝 log(nor0 · 𝑝)
𝑗∑︁

𝑖=1
𝑤
(𝑡−1)
𝑖

+ nor0 · 𝑝
𝑗∑︁

𝑖=1
𝑤
(𝑡−1)
𝑖

log(𝑤 (𝑡−1)
𝑖
)

+ nor0 · (1 − 𝑝) log(nor0 · (1 − 𝑝))
𝑚∑︁

𝑖= 𝑗+1
𝑤
(𝑡−1)
𝑖

+ nor0 · (1 − 𝑝)
𝑚∑︁

𝑖= 𝑗+1
𝑤
(𝑡−1)
𝑖

log(𝑤 (𝑡−1)
𝑖
)

= log𝑚 + nor0 · 𝑝𝜅 log(nor0 · 𝑝) − nor0 · 𝑝𝐻 (𝑤 (𝑡−1)
1 , ..., 𝑤

(𝑡−1)
𝑗
)

+ nor0 · (1 − 𝑝) (1 − 𝜅) log(nor0 · (1 − 𝑝)) − nor0 · (1 − 𝑝)𝐻 (𝑤 (𝑡−1)
𝑗+1 , ..., 𝑤

(𝑡−1)
𝑚 )

(26)

Note that, with the same technique, one can obtain the negentropy of w(𝑡 ) when 𝑏 = 1. Next, we compute the
expected negentropy for w(𝑡 ) after weight update:
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E(𝐼 (w(𝑡 ) ))
=𝐼 (w(𝑡 ) |𝑏 = 0) × Pr[𝑏 = 0] + 𝐼 (w(𝑡 ) |𝑏 = 1) × Pr[𝑏 = 1]

=𝐼 (w(𝑡 ) |𝑏 = 0) × 1
nor0

+ 𝐼 (w(𝑡 ) |𝑏 = 1) ×
(
1 − 1

nor0

)
=𝐼 (w(𝑡−1) ) + log 𝑛 − 1 + (𝑝𝜅 + (1 − 𝑝) (1 − 𝜅)) log(nor0) + (𝑝(1 − 𝜅) + (1 − 𝑝)𝜅) log

(
nor0

nor0 − 1

)
− 𝐻 (𝑝)

=𝐼 (w(𝑡−1) ) + log 𝑛 − 1 − 1
nor0

log
(

1
nor0

)
+
(
1 − 1

nor0

)
log

(
1 − 1

nor0

)
− 𝐻 (𝑝)

≥𝐼 (w(𝑡−1) ) − 1
nor0

log
(

1
nor0

)
+
(
1 − 1

nor0

)
log

(
1 − 1

nor0

)
− 𝐻 (𝑝)

=𝐼 (w(𝑡−1) ) + 𝐻
(

1
nor0

)
− 𝐻 (𝑝)

(27)

According to Eq 26, we can obtain that

E
(
𝐼 (w(𝑡 ) ) − 𝐼 (w(𝑡−1) )

)
≥ 𝐻

(
1

nor0

)
− 𝐻 (𝑝)

In what follows we show that the 𝐻

(
1

nor0

)
−𝐻 (𝑝) is at least 2

3 𝐼 (𝑝). Assuming that the range segment partition

selects index 𝑗 such that
∑ 𝑗

𝑖=1 𝑤𝑖 ≤ 1
2 and

∑ 𝑗+
𝑖=1 𝑤𝑖 ≥ 1

2 . In the ideal case, if the partition perfectly divide weights
into two groups with summation equals to 1

2 , then 𝐻

(
1

nor0

)
= 1, and the expected information gain equals to

1 − 𝐻 (𝑝) ≥ 2𝜏2 ≥ 2
9𝜏

2. If it is not a perfect partition, and assume a slack 𝜔 such that 𝜅 =
∑ 𝑗

𝑖=1 𝑤𝑖 ≥ 1
2 − 𝜔.

Additionally, its obvious that 𝜔 < 1
3 , otherwise the algorithm terminates at 𝑡 − 1 round. Now, we compute the

following term

𝐻

(
1

nor0

)
=𝐻 (𝑝𝜅 + (1 − 𝑝) (1 − 𝜅)) ≥ 𝐻

(
1
2
+ 𝜔(1 − 2𝑝)

)
≥1 − (2𝜔(1 − 2𝑝))2 = 1 − 4𝜔2 (1 − 2𝑝)2

=1 − 16𝜔2𝜏2

(28)

Putting it all together we can obtain that

E
(
𝐼 (w(𝑡 ) ) − 𝐼 (w(𝑡−1) )

)
≥1 − 𝐻 (𝑝) − 16𝜔2𝜏2

≥2𝜏2 (1 − 8𝜔2) ≥ 2
9
𝜏2

(29)

Proof. (Theorem 32) According to Lemma 33, when BLSIA terminates at round 𝑡, then 𝐻 (w(𝑡 ) ) < log(3). Note
that in the initial stage, we assign all weights as 1

𝑚
, therefore 𝐻 (w(0) ) = log(𝑚), where w(0) denotes the initial

weight assignments. Thus the expected rounds of simulated coin flips is captured by the following term

log𝑚 − log 3
E
(
𝐼 (w(𝑡 ) ) − 𝐼 (w(𝑡−1) )

) ≤ 9 log𝑚
2𝜏2 ∼ 𝑂 ( log𝑚

𝜏2 ) (30)

Theorem 35. Given 𝜃 > 0 and 𝜏 ∈ (0, 1), BLSIA finds the correct stake approximation 𝑓𝑣 , such that | 𝑓𝑣 − 𝑓𝑣 | ≤
𝜃 + 𝜂 with constant failure probability.

Proof. (Theorem 35) Note that the weight update process can also be abstracted as a voting procedure. Each
round, the algorithm divides the weights into two parts and votes (by multiplying those weights by a factor of 𝑝)
for the partition that is considered to include the correct range segment, 𝑎𝑖 . Now let’s assume the algorithm finds
the incorrect segment, say 𝑎 𝑗 , where 𝑎 𝑗 does not contain 𝑓𝑣 , this means that 𝑎 𝑗 received at least one vote more
than the correct segment 𝑎𝑖 . Given that the voting procedure is 𝑝-accurate, saying that with probability at least 𝑝
the algorithm votes for 𝑎𝑖 . By Hoeffding’s inequality, the probability of such incorrect segment 𝑎 𝑗 get more votes
than the correct segment 𝑎𝑖 is bounded by

2𝑒−2𝜏2𝑂 ( log𝑚
𝜏2 )

which is at most a constant factor.
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E Stake Distortion with Gaussian Noise

As discussed before, one may also choose to follow the approximated DP [DR+14] notions by adding an additive
slack 𝛿 to the right side of Equation 2 in Definition 10. This derives a relaxed definition, which as per Lemma
3.17 in [DR+14], is equivalent to saying that Equation 2 holds with probability 1 − 𝛿. To distinguish, we refer to
the leakage that satisfies the relaxed privacy notion as (𝜖, 𝛼, 𝛿)-private leakage. There are certain benefits for the
relaxation, for instance, it provides a tighter privacy composition bound [KOV15]. This property further leads to a
smoother privacy decay over time. In what follows, we examine the stake distortion approach that utilizes Gaussian
noise, N(0, 𝛼2𝜎2), which eventually derives (𝜖, 𝛼, 𝛿)-private leakage but provides a smoother privacy decay.

E.1 Analysis of FTimer, and FBin mechanisms under Gaussian noises

Theorem 36. With Gaussian noise N(0, 𝛼2𝜎2) such that 𝜎2 =
2 ln(1.25𝛿 )

𝜖 2 , FTimer, and FBin leaks (𝛼, 𝜖, 𝛿)-DP

leakage with 𝜔(𝑡 − 𝑢) ≤ 0.5𝑘𝜖 +
√︃
𝑘 log 1

𝛿
, where:

𝑘 =


⌊ 𝑡−𝑢

𝑇
⌋, if FTimer

⌊ 𝑡−𝑢
𝐿
⌋ + log(𝐿), if FBin and (𝑡 − 𝑢) > 𝐿

log( 𝑡−𝑢
𝑇
), if FBin and (𝑡 − 𝑢) ≤ 𝐿

(31)

Proof. (Theorem 36) We consider same notations as used in the proof of Theorem 14. We abstract the stake
distortion at time 𝑗 asM 𝑗 (𝑠) ← 𝑠 +N(0, 𝛼2𝜎2). As per [DR+14], Pr[M 𝑗 (𝑠) = 𝑜] ≤ 𝑒𝜖 Pr[M 𝑗 (𝑠′) = 𝑜] + 𝛿 when
𝜎2 =

2 ln(1.25𝛿 )
𝜖 2 . Similarly, we compute same term as Equation 17 and derive the following inequality.

𝑡∏
𝑗=1

Pr
[
M 𝑗 (𝑠 𝑗 ) = 𝑜 𝑗 | ∗

]
Pr

[
M 𝑗 (𝑠′𝑗 ) = 𝑜 𝑗 | ∗

] ≤ 𝑡−𝑢∏
𝑘=1

Pr [M𝑢 (𝑠𝑢) = 𝑜𝑢 | ∗]
Pr [M𝑢 (𝑠′𝑢) = 𝑜𝑢 | ∗] (32)

By the theorem of Concentrated Differential Privacy [DR16], Gaussian mechanism satisfies 𝜌-zCDP with 𝜌 = 1
2𝜎2 ,

and by the composition theorem of 𝜌-zCDP. Total privacy loss for Gaussian mechanism after 𝑘 runs satiesfies
( 𝑘

2𝜎2 )-zCDP, which is ( 𝑘

2𝜎2 + 2
√︃

𝑘

2𝜎2 log( 1
𝛿
), 𝛿) − 𝐷𝑃. Thus we can obtain

𝜔𝜖 =
𝑘

2𝜎2 + 2
√︂

𝑘

2𝜎2 log( 1
𝛿
)

=
𝑘𝜖2

4 ln(1.25𝛿) +
𝜖
√

2

√︂
𝑘 log( 1

𝛿
)

(33)

Thus we can obtain 𝜔 ≤ 𝑘𝜖
2 +

√︃
𝑘 log 1

𝛿
. Knowing that the privacy decay of FTimer is subject to ⌊ 𝑡−𝑢

𝑇
⌋-fold

privacy composition where the privacy decay of FBin is subject to log( 𝑡−𝑢
𝑇
)-fold composition when (𝑡 − 𝑢) ≤ 𝐿 or

(⌊ 𝑡−𝑢
𝐿
⌋ + log(𝐿))-fold composition when (𝑡 − 𝑢) > 𝐿.

According to Theorem 36 one may replace the noise in
∏

LM∗ from Laplace to Gaussian noise for a smoother
privacy decay. In what follows, we derive the safety bounds for stake distortion with Gaussian noise,N(0, 𝛼2𝜎2).

Theorem 37. Consider the same setting as Theorem 17, and let Γ = 1.74𝛼𝜎
𝑆

√︃
𝑆
𝜐

log 1
𝛽

. Assuming the adversary
controls 𝑓 =

1−𝛾
3 of the total stake that 𝛾 ≥ Γ (𝑟𝑒𝑠𝑝. 𝛾 ≥

√︁
log 𝐿 × Γ), then with probability at least least 1 − 𝛽,

𝑓 < 1
3 under FTimer (𝑟𝑒𝑠𝑝. FBin).

Lemma 38. Let 𝑌𝑚 =
∑𝑚

𝑖 𝑌𝑖 , where each 𝑌𝑖 is an independent Gaussian random variable sampled from the
distribution N(0, 𝜎2).

Proof. By Markov inequality

Pr [𝑌𝑖 ≥ 𝛾] = Pr
[
𝑒−𝑡𝑌𝑖 ≥ 𝑒−𝑡𝛾

]
≤ E(𝑒

−𝑡𝑌𝑖 )
𝑒−𝑡𝛾

=
𝑀𝑌 (−𝑡)
𝑒−𝑡𝛾

=⇒ Pr [𝑌𝑚 ≥ 𝛾] ≤
∏𝑚

𝑖 𝑀𝑌 (−𝑡)
𝑒−𝑡𝛾

≤ min
𝑡>0

𝑒
𝑚𝜎2𝑡2

2

𝑒𝑡𝛾
= min

𝑡>0
𝑒

𝑚𝜎2𝑡2
2 −𝛾𝑡

(34)
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Knowing that the minimum value of 𝑚𝜎2𝑡2

2 − 𝛾𝑡 is when 𝑡 =
𝛾

𝜎2 , thus min𝑡>0
𝑚𝜎2𝑡2

2 − 𝛾𝑡 = 𝑒
−𝛾2

2𝑚𝜎2 . Let 𝛽 = 𝑒
−𝛾2

2𝑚𝜎2 ,

we obtain 𝛾 = 𝜎

√︃
2𝑚 log 1

𝛽
, therefore we conclude that

Pr

[
𝑌𝑚 ≥ 𝜎

√︄
2𝑚 log

1
𝛽

]
≤ 𝛽 (35)

Proof. (Theorem 37) By Lemma 38 and Equation 22, we can conclude that by setting 𝛾 ≥ Γ (resp. 𝛾 ≥ log 𝐿Γ),
with probability at least 1 − 𝛽, the distorted stake satisfies �̃�ℎ − 2�̃�𝑎 > 0 under FTimer (resp. FBin).

Theorem 39. Consider the same setting as Theorem 16. By injecting noiseN(0, 𝛼2𝜎2). Extending
∏

LM to
∏

LM∗

by mounting with FTimer, and FBin yields SIA errors in Err +𝑂 (𝛼𝜎), and Err +𝑂 (
√
𝐿𝜎𝛼), respectively.

Proof. (Theorem 39) The proof of this theorem is a direct application of Lemma 38.

E.2 Protocols with Gaussian noises

It’s not hard to adapt stake distortion protocols,
∏

Timer and
∏

Bin, to cope with Gaussian noises. The only change is to
transform the uniformly distributed randomness into a Gaussian random variable (was Laplace random variables).
This can be done by the following approach. Given two randomness 𝑧0, 𝑧1 which are obtained follow Protocol 6.2:3,
then one can transform the randomness to Gaussian noise by computing 𝑧 = 𝜎

√︁
−2 ln(𝑧0) cos(2𝜋𝑧1) [Box58].

Similarly, one can approximate the complex circuits such as cos(𝑥),
√
𝑥 with polynomials by using Remez

algorithm [Taw05].
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